NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

JPL PUBLICATION 80-23

N80-26408

(NASA-CR-163284) SUBMILLIMETER, MILLIMETER, AND MICROWAVE SPECTRAL LINE CATALOGUE (Jet Propulsion Lab.) 141 p BC A07/MF A01 CSCL 07D Unclas G3/25 23615

Submillimeter, Millimeter, and Microwave Spectral Line Catalogue

R. L. Poynter H. M. Pickett

June 1, 1980

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute Of Technology Pasadena, California

and the second secon

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. JPL Pub. 80-23	2. Government A	ccession No.	3. Recipient's Catalog No.
4. Title ond Subtitle Submillimeter, Millimeter, and Microwave Spectral		ectral	5. Report Date June 1, 1980
Line Catalogue			6. Performing Organization Code
7. Author(s) R.L. Poynter and H.M. Picket	t		8. Performing Organization Report No.
9. Performing Organization Name or	nd Address		10. Work Unit No.
California Institut 4800 Oak Grove Driv	te of Technology	y	11. Contract or Grant No. NAS 7-100
Pasadena, Californ	ia 91103		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Ad	dress		JPL Publication
NATIONAL AERONAUTICS AND Washington, D.C. 20546	SPACE ADMINISTR	ATION	14. Sponsoring Agency Code
15. Supplementary Notes			
spoor GAZ (1.6., Wavelengths longer than 100 m). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated pre- dictions and their estimated errors are based upon the resultant fitted param- eters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (122 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.			
Physical Chemistry Geophysics Atomic and Molecular Physics Astronomy		Unclassifi	led - Unlimited
19. Security Clossif. (of this report) Unclassified	20. Security Clo Unclassifi	assif. (of this p ed	page) 21. No. of Pages 22. Price 142

.

JPL PUBLICATION 80-23

Submillimeter, Millimeter, and Microwave Spectral Line Catalogue

R. L. Poynter H. M. Pickett

June 1, 1980

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute Of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100.

ABSTRACT

This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 3000 GHz (i.e., wavelengths longer than 100 μ m). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment.

The catalogue has been constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (122 species) as new data appear.

The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records. "Page missing from available version"

CONTENTS

ų,

I.	Introduction
II.	Format of data tape
III.	Intensity units and conversions
IV.	General comments on precision
۷.	Format of quantum numbers
VI.	Documentation by species

Tables

وبالأفحيل إبرا أتعدها خليري فالبائل والوحي ويعاطنا وزمعوه

V-1.	Standard quantum number formats	• •	9
V_2	Special-case quantum number formats.		10

I. Introduction

This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 3000 GHz (i.e. wavelengths longer than 100μ m). The catalogue is intended to be used as a guide in the planning of spectral line observations and as a reference which can facilitate identification and analysis of observed spectral lines. The selection of lines for the catalogue is based on the projected needs of astronomers and atmospheric scientists.

The catalogue is constructed using theoretical least squares fits and predictions based on spectral lines, mostly obtained from the literature. In subsequent versions of the catalogue, more molecules will be added and existing molecular listings will be updated as new data appears.

The catalogue is available as a magnetic data tape recorded in card images, with one card image per spectral line. The format of the data is given in Section II. Section III gives conversions between different measures of spectral line intensity. General comments on the precision of the spectral line positions and intensities are given in Section IV, while species specific comments are reserved for Section VI. Section V gives the format of quantum numbers as they appear in the catalogue. Documentation for each molecular or atomic species is listed in Section VI in order of the "species tag". This tag is a six digit number in which the three most significant digits represent the mass number of the molecule or atom and the last three digits are an accession number for the given mass. Usually there is a separate tag for each vibration-electronic state of a particular molecule.

II. Format of Data Tape

The catalogue data tape is composed of 80 character card images, with one card image per spectral line. The format of each card image is given below:

FREQ ,	ERR ,	LGINT,	DR ,	ELOW ,	GUP,	TAG, Q	NFORM,	QN	
(F13.4,	F8.4 ,	F8.4 ,	I2,	F10.4 ,	I3,	I7,	14 ,	1212,	II)

FREQ: Frequency of the line in MHz.

ERR: Estimated or experimental error of FREQ in MHz.

LGINT: Base 10 logarithm of the integrated intensity in units of nm^2 MHz at 300K. (See Section III for conversions to other units.)

DR: Degrees of freedom in the rotational partition function (0 for atoms, 2 for linear molecules, 3 for non-linear molecules).

ELOW: Lower state energy in cm^{-1} .

GUP: Upper state degeneracy.

TAG: Species tag or molecular identifier.

A negative value flags that the line frequency has been measured in the laboratory. The absolute value of TAG is then the species tag and ERR is the reported experimental error. The three most significant digits of the species tag are coded as the mass number of the species as explained above.

- QNFORM: Identifies the format of the quantum numbers given in the field QN. These quantum number formats are given in Section V.
- QN: Quantum numbers for the upper and lower states coded according to QNFORM.

III. Intensity Units and Conversions

The units of intensity given in the catalogue, nm^2 MHz, are based on the integral of the abosrption cross section over the spectral lineshape. The value of the intensity is calculated for 300K and is directly comparable with the common infrared intensity unit of cm^{-1} /(molecule/cm²). The latter is obtainable by dividing the catalogue intensity by 2.9979 x 10⁺¹⁸.

The line intensity in the catalogue I_{ha} , is obtained from

$$I_{ba} = \frac{8\pi^{3}}{3hc} v_{ba} V_{ba} V_{ba} (e^{-E''/kT} - e^{-E'/kT})/Q_{rs}$$
(1)

in which v_{ba} is the line frequency, ${}^{X}S_{ba}$ is the line strength, μ_{x} is the dipole moment along the molecular axis x, E" and E' are the lower and upper state energies respectively, and Q_{rs} is the rotation-spin partition function (using the same zero of energy as E' and E"). Care must be taken to assure that ${}^{X}S_{ba}$ and Q_{rs} are determined with same state degeneracies. Note that with this definition the intensities are defined with respect to the total concentration of the vibration electronic state of the species.

The temperature dependence of I_{ba} can be obtained from the value of I_{ba} at T=300K by the use of Eq. (1) once the temperature dependence of Q_{rs} is known. For linear molecules Q_{rs} is proportional to T in the limit where the energy spacings are small compared to kT. For non-linear molecules Q_{rs} is proportional to $T^{3/2}$ in the same limit.

Peak intensities of collision broadened lines can be obtained from ${\bf I}_{\rm ba}$ from the relation

$$\alpha_{\max} = \frac{I_{ba}}{\Delta \nu} \left(\frac{300K}{T}\right) \times 102.46$$
(2)

in which Δv is the half-width at half-height in MHz at 1 torr partial pressure of absorber, I_{ba} is in units of nm² MHz, and α_{max} is in units of cm⁻¹. The corresponding value of α_{max} in the thermal Doppler limit is

$$\alpha_{\text{max}} = \frac{I_{\text{ba}}}{\nu_{\text{ba}}} p \left(\frac{T}{300 \text{K}}\right)^{-3/2} \sqrt{\frac{m}{28}} \times 1.2898 \times 10^{8}$$
(3)

in which p is the partial pressure of absorber, v_{ba} is the line frequency in MHz, and m is the mass of the absorber.

The absorption cross-section of an interstellar absorber integrated over a 1 km/s velocity interval is

$$\sigma_{ba} = \frac{I_{ba}}{v_{ba}} \times 2.9979 \times 10^{-9} \text{ cm}^2.$$
 (4)

The inverse of σ_{ba} is the column density per unit optical depth in the same 1 km/s velocity interval.

The average spontaneous emission rate from the upper states into the lower states is

$$A_{ba} = I_{ba} v_{ba} \frac{Q_{rs}}{g'} \left(e^{-E''/kT} - E'/kT \right)^{-1} \times 2.7964 \times 10^{-16} \text{ sec}^{-1}(5)$$

in which g' is the degeneracy of the upper state. The value of g' is listed as part of the spectral line information in the catalogue, and the value of $Q_{\rm rs}$ at 300K is listed in Section VI.

IV. General Comments on Precision

The expected errors of the frequency as listed in the catalog are usually based on a propagation of errors estimated from a least squares fit of the observed frequencies to a model Hamiltonian, using the following equation:

$$\varepsilon_n^2 = \sum_{k,\ell} \frac{\partial v_n}{\partial p_k} \frac{\partial v_n}{\partial p_\ell} V_{k\ell}$$
(6)

in which ε_n is the estimated error of frequency v_n and $V_{k\ell}$ is an element of the least squares variance – covariance matrix for the parameters p_k . This variance – covariance matrix is determined from the observed lines by

$$\left(V^{-1} \right)_{k\ell} = \sum_{\mathbf{m}} \frac{\partial v_{\mathbf{m}}}{\partial p_{k}} \frac{\partial v_{\mathbf{m}}}{\partial p_{\ell}} \varepsilon^{-2}$$
(7)

in which the summation over \underline{m} is over the experimental lines using experimental uncertainties, $\varepsilon_{\underline{m}}$. The diagonal elements of \underline{V} are the squares of the parameter uncertainties and the off-diagonal elements of \underline{V} are products of the parameter uncertainties and correlation coefficients.

Experimental uncertainties in the literature vary from 1.6 σ estimates to 3 σ estimates and are more usually "guess-timates". Many times the statistical nature of the uncertainties are not stated. Therefore, the expected errors in predicted lines will usually reflect this ambiguity in laboratory uncertainties through Eq (6) and (7). In some cases, the quality of the least squares fit of the parameters to the experimental lines can be a guide to the statistical nature of the experimental uncertainties. Whenever possible, the expected errors in the catalog will reflect an expected 95% confidence interval based on the model used to fit the data. However, the errors can be different from this design goal by factors of three just due to the quality of input error estimates. Lines with an expected error greater than 1 GHz have been dropped from the catalogue.

The expected errors can only be computed relative to the model used. There are at least two ways the model can be "wrong" for the predicted frequencies. First, higher-order centrifugal distortion terms may no longer be negligible for the predicted frequencies. This effect will generally be important for lines of higher J or K than the laboratorydetermined data set. In a sense, the predictions are then a form of extrapolation rather than interpolation and are therefore more suspect. A second factor leading to discrepancies in the predicted frequencies comes from "resonances". These resonances come from a near overlap of energy states that are coupled by elements of the Hamiltonian matrix. Poor predictability comes when these elements are neglected in the model or are treated inadequately by some form of perturbation theory. Such a neglect of coupling elements is always necessary at some level in any practical calculation. A major contributing problem is that often the existing data set is not sensitive to the parameters which are needed to characterize the resonance.

Precision in the intensity estimates is generally less critical than precision in the frequency. Contributing to intensity uncertainty are errors in the dipole moment, errors in the line strength ${}^{x}S_{ba}$ and errors in the rotation-spin partition function. (The vibration-electronic partition function does not enter directly because the catalogued intensities are defined on the basis of concentrations of the given vibrationelectronic state.) Dipole moment errors come directly from the experimental determination and indirectly from the J dependence of the dipole moment due to centrifugal mixing of vibrational states. Line strength errors can come from deficiencies in the model Hamiltonian and are particularly severe when resonances have been inadequately accounted for. Partition function errors are relatively benign but can become significant if the classical formulae are used at low temperatures for small molecules. With the exception of unanticipated resonances and poorly determined dipole moments, worst case errors in the intensity will generally be at the 1% level or lower.

V. Format of Quantum Numbers

and the second secon معامل المحمد ا

> The quantum numbers of the catalogued lines are given in the field QN according to a format QNFORM, as discussed in Section II. In this section the identities of the quantum numbers will be described for each distinct format. The field QN will be regarded as being divided into 13 integers. The first 12 integers are two digits long and the last integer is a single digit (a FORTRAN 1212, Il format).

The spectroscopic nomenclature followed is the standard one in which upper state quantities are denoted by a single prime and lower state quantities are denoted by a double prime.

In addition,

L	electron orbital angular momentum
R	rotational angular momentum
N = R+L	
S	electron spin
J = N+S	total electron and rotational angular momentum
Ι	nuclear spin
$F_i = I_1 + J$	intermediate F value for two nuclear spins ${\rm I}_1 \text{and} {\rm I}_2$
$F = I_2 + F_1$	(for two non-zero nuclear spin)
= I + J	(for one non-zero nuclear spin)
Ω	projection of J on the molecular axis of a linear molecule
K	projection of J on the symmetry axis of a
	symmetric rotor
р	parity under inversion (1 = gerade, -1 = ungerade)
v	vibrational quantum number
K1	prolate K quantum number for an asymmetric rotor
K ₊₁	oblate K quantum number for an asymmetric rotor

In all cases, half integer quantum numbers will be written into the QN field after rounding <u>up</u> to the next integer. For example, J = 1/2 will be entered in the catalogue as a <u>1</u>. The format specification QNFORM is designed so that the correct half-integer value can be recovered unambiguously.

The format integer QNFORM is allocated four digits. The most significant digit is zero for the standard formats described in Table V-1 and is non-zero for special-case formats which will be allocated as the need arises. Of the remaining three digits, the most significant is used to describe the type of species involved and the least significant digits are used to specify the nature of the integers in the field. The formats are shown in Tables V-1 and V-2.

Table V-1: Standard Quantum Number Formats

 $\lim_{t\to\infty} |f_{i}(x_{i})|^{2} \leq \lim_{t\to\infty} |g_{i}(x_{i})|^{2} \leq \lim_{t\to\infty} |f_{i}(x_{i})|^{2} <\lim_{t\to\infty} |f_{i}(x_{i})$

•

N	
QNFORM	

A. Atoms

010	J' + ½ , J " + ½	-
020	J', J"	"
110	J' + ½, J" + ½, F' + ½, F" + ½	
012	J' + ½, J" + ½, F', F"	
021	J', J", F' + ½, F" + ½	
022	J', J", F', F"	

J half integer, F integer J integer, F half integer

J and F integer

J and F half integer

0, J half integer

Remarks

0, J integer

8. Linear molecules and Diatomic molecules

1 ₂ state	² E state	³ E state	1n state	² Π state	³ п state	¹∆ state
J', J", ×', ×", Y', Y"	J' + ½, N', J" + ½, N", x', x", y', y"	J', N', J", N", ×', ×", Y', Y'	J', P', J", P", x', x", y', y"	J' + ½, Ω' + ½, p', J'' + ½, Ω'' + ¾, p'', x'', x'', y', y''	J', Ω', P', J", Ω", P", ×', Y", Y', Y"	J', R', P', J", R", P", X', X", Y', Y"
YXI	2XY	ЭХҮ	4XY	5XY	6XY	7XY

C. Symmetric Rotors (3-fold symmetry or higher, S = 0)

8XY J', K', J", K", x', x", y', y"

D. Asymmetric Rotors

95Y N', K' ₁ , K' ₁ , V', K' ₁ , K' ₁ , N', K' ₁ , J' + ½, J' + ¼, y', y'' S=½ open shell radic 96Y N', K' ₁ , K' ₁ , N'', K'' ₁ , V'', J' + ¼, J' + ¼, y', y'' S=½ open shell radic 96Y N', K' ₁ , K' ₁ , N'', K'' ₁ , V'', V'', Y'' S=1 triplet state	ell molecule l radical tate
95Y N', K' ₁ , K' ₁ , N", K' ₁ , Y', J' + ¼, J" + ¼, Y', Y" S=¼ open shell radic 96Y N', K' ₁ , Y', Y", K'', Y'', Y'', J', J'', Y', Y" S=1 triplet state	l radical tate
96Y N', K', K', M', K'', J', J', Y', Y' S=1 triplet state	tate
X = 0: x = 0 (Y must be zero) Y = 0; y = 0	
$X = 1$: $x = F_{+1}$ (F half integer) $Y = 1$: $\dot{y} = F_1 + F_3$ or	
X = 2: x = F (Finteger) = F + 1 ₂ i F X = 4	X = 4
$X = 4$: $x = v$ vibrational state label (further $Y = 2$: $y = F_1$ or	
specified in the species description) = F if X = 4	4

' signifies upper energy state, " signifies lower energy state

OF POOR QUALITY

Table V-2: Special-Case Quantum Number Formats

(Formats will be provided in later supplements.)

÷

VI. Documentation by Species

 $\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{$

The documentation for each molecular or atomic species appears in order of "species tag." On the following page, immediately preceding the documentation, is an "Index of Species." This index lists all the species documentation contained in this publication, ordered by "species tag."

INDEX OF SPECIES

1001	H-Atom
3001	HD
12001	C-Atom
13001	C-13-Atom
14001	N-Atom-D-State
16001	0-Atom
17001	НО
17002	NH3 CU2D
18001	
18002	N-15-H3
18003	H20
19001	HO18
27001	HCN
27002	HNC
28001	CO
28002	HC-13-N
28003	DCN-15
28005	HNC-13
28006	HN-15-C
28007	DNC
29001	U-13-0 HCO+
29003	CH2NH
30001	CO-18
30002	HC-13-0+
30003	
30005	C-13-H2NH
30006	CH2N-15-H
30007	CH2ND
31001	NU HCD-18+
31002	H2C-13-0
32001	02
32002	02v1
32003	LH30H H2CO-18
34001	0-18-0
34002	H2S
34003	PH3
35001	нсı
38001	HC1-37
40001	СНЗССН
41001	CH3CN
41002	LH3LL-13-H

41003	CH3C-13-CH
41004	
41006	CH2DCCH
42001	CH3CN-15
42002	CH2CO
43001	CHDCU
44001	SiO
44003	CH3CH0-A
44004	N20
45001	C-13-5
45002	NH2CH0
46001	CS-34
46002	Si-30-0
46003	H2CS
46004	
47001	H2C-13-S
47002	HC-13-00H
47003	DCOOH
4/004	HCOOD
48001	50 S0v1
48003	H2CS-34
48004	03
50001	S-34-0
50002	03-5YM-0-18
50004	03-ASYM-0-18
51001	HCCCN
51002	
52001	HUUU-13-N HCC-13-CN
52003	HC-13-CCN
52004	HCCCN-15
52005	DCCCN
53001	C_{1-37-0}
54001	CH2CHC-13-N
54002	CH2C-13-HCN
54003	C-13-H2CHCN
54004 55001	C2H5CN
56001	CH3CH2C-13-N
56002	CH3C-13-H2CN
56003	C-13-H3CH2CN
56004	
56006	CH2DCH2CN-A

60001	OCS
60002	SiS
61001	0C-13-S
61002	Si-29-S
62001	005-34
62002	0-18-05
62002	Si_30_S
62003	SiS_34
6/001	c2
64001	52 502
75001	
75001	HULLUN
76001	HUUUUU-13-N
76002	HCCCC-13-CN
76003	HCCC-13-CCN
76004	HCC-13-CCCN
76005	HC-13-CCCCN
76006	HCCCCCN-15
76007	DCCCCCN
80001	HBr-79
82001	HBr-81
95001	Br-79-0
97001	Br-81-0
~	

Species Tag: 1001 Pag	e 1 of 1	Version: 1	Date: Oct, 1979
Species Name: Atomic Hydr	ogen	Author: H. M.	Pickett
² S _{1,2} ground state		Min. Int. = 8 X	10 ⁻¹⁰ nm ² MHz
Q (Spin-Rot., T = 300K) =	4.0	$J Max. = (\frac{1}{2})$	Lines Listed = 1
Dipole Moments/Debye: µ _a	I	^µ b = magnetic	^μ c ⁼
Rot. Const./MHz: A =	В	-	C =

「読む」を対象では明確についた。

The atomic hydrogen line at 21 cm has been measured to a precision of 0.001 Hz (L. Essen, R. W. Donaldson, M. J. Bangham, and E. G. Hope, 1971, <u>Nature 229</u>, 110). The average spontaneous emission lifetime of the three F = 1 states is 2.876×10^{-15} sec⁻¹.

Species Tag: 2001	Page 1 of ¹	Version: 1	Date: Oct. 1979
Species Name: Atomic Hydrogen Deuterium Isotope ² S ₁₂ ground state		Author: H. M. F	lickett
		Min. Int. = 5×10^{-11} nm ² MHz	
Q (Spin-Rot., T = 300K)	= 6.0	$J Max. = \binom{1}{2}$	Lines Listed = 1
Dipole Moments/Debye:	^µ a ⁼	^µ b = magnetic	^µ c ⁼
Rot. Const./MHz: A =	В	1	C =

The atomic deuterium line at 327 MHz has been measured to an accuracy of 0.002 Hz (D. J. Wineland and N. F. Ramsey, 1972, Phys. Rev. A <u>5</u>, 821). The average spontaneous emission lifetime for the four F = 3/2 states is 4.695 X 10⁻¹⁷ sec⁻¹.

Species Tag:	.3001	Page 1	of	1	Version: 1		Date: Oct.	1979
Species Name	HD	cular hy	droge	n	Author: H. M.	Picke	ett	
		curur ny	ur og c		Min. Int. = 1	0 ⁻⁶		nm ² MHz
Q (Spin-Rot.	, T = 300K	() = 5.01	16		J Max. = (1)	Line	es Listed	= 1
Dipole Momer	nts/Debye:	$\mu_a = 5$.85 X	10 ⁻⁴	чь =	^µ c [†]	2	
Rot. Const./	′MHz: A ≠			В	= 1339100.	C =		

 $\widehat{\Phi}_{i}^{(R,1)} \stackrel{\mathrm{def}}{\longrightarrow} e_{i} \, \bigoplus_{j=1}^{n} \widehat{\Phi}_{j}^{(L)} \stackrel{\mathrm{def}}{\longrightarrow} \widehat{\Phi}_{$

The dipole moment is from M. Trefler and H. P. Gush, 1968, Phys. Rev. Letters, <u>20</u>, 703. The rotational constant is from R. A. Durie and G. Herzberg, 1960, Can. J. Phys. <u>38</u>, 806. The frequency and its error limits were obtained from the difference of the S_1 (0) and R_1 (1) transitions listed by A. McKellar, 1974, Can. J. Phys. <u>52</u>, 1144.

Species Tag: 12001 P	Page 1 of 1	Version: 1	Date: Oct. 1979	
Species Name: Atomic Carbon		Author: H. M. Pickett		
³ P ground state		Min. Int. = 10^{-5} nm ² MHz		
Q (Spin-Rot., T = 300K)	- 7.8330	J Max. = (2) L	ines Listed = 2	
Dipole Moments/Debye: µ	'a ⁼	^µ b ⁼ magnetic _µ	c ⁻	
Rot. Const./MHz: A =	В	=	C =	

The lines of atomic carbon have been measured by Laser Magnetic Resonance (R. J. Saykally and K. M. Evenson, Symp. on Molecular Spectroscopy, Columbus, OH, 1979). Intensities were calculated using the free electron g factor. The partition function was calculated from the following table:

	Energy	Degeneracy
0	0.0 cm^{-1}	1
1	16.4168	3
2	43.4138	5

Species Tag: 13001 Page 1 of	l Version: 1	Date: Oct. 1979	
Species Name: Atomic Carbon	Author: H. M. Pick	ett	
¹³ C isotope	Min. Int. = 10 ⁻¹	Min. Int. = 10^{-16} nm ² MHz	
Q (Spin-Rot., T = 300K) = 15.666	J Max. = (2) Li	nes Listed = 7	
Dipole Moments/Debye: µ _a =	^µ b [#] magnetic ^µ c	3	
Rot. Const./MHz: A =	B = C		

The fine structure intervals of 12 C were multiplied by 0.999992967 to account for the isotope effect on the Rydberg constant. The hyperfine intervals of G. Wolber, H. Figger, R. A. Haberstroh and S. Penselin, 1969 (Physics Letters <u>A29</u>, 461) were then used to compute the line frequencies. Intensities were calculated using the free electron g value.

Species Tag: 14001 Page 1 of 1	Version: 1 Date: Oct. 1979	
Species Name: Atomic Nitrogen	Author: H. M. Pickett	
"S _{3/2} ground state	Min. Int. = 10^{-13} nm ² MHz	
Q (Spin-Rot., T = 300K) = 12.0	J Max. = $(3/2)$ Lines Listed = 2	
Dipole Moments/Debye: µ _a =	ν _b = magnetic γ _c =	
Rot. Const./MHz: A =	· - C -	

The hyperfine transitions of atomic nitrogen at 15.6 and 26.1 MHz were obtained from J. M. Hirsch, G. H. Zimmerman, III, D. J. Larson, and N. F. Ramsey, 1977, Phys. Rev. <u>A 16</u>, 484. Intensities were calculated using the experimental g_J value.

Species Tag: 14002 Page 1 of	Version: 1 Date: Nov. 1979
Species Name: Atomic Nitrogen	Author: H. M. Pickett
² D excited state	Min. Int. = 10^{-8} nm ² MHz
Q (Spin-Rot., T = 300K) = 29.510	J Max. = $(5/2)$ Lines Listed = 6
Dipole Moments/Debye: µ _a =	^µ b ⁼ magnetic _µ c ⁼
Rot. Const./MHz: A *	B = C =

The ${}^{2}D_{5/2}$ state is 19223 cm⁻¹ above the ground ${}^{4}S_{3/2}$ state. (C. E. Moore, 1949, Atomic Energy Levels I, U. S. N. Bureau of Stds.). The ${}^{2}D_{3/2} - {}^{2}D_{5/2}$ inverted fing structure transition at 260 GHz has a predicted uncertainty of \pm 000 MHz, but the hyperfine structure intervals are uncertain by less than 1 MHz. (H. E. Radford and K. M. Evenson, 1968, Phys. Rev. <u>168</u>, 70). The average spontaneous cuission rate from the ${}^{2}D$ states to the ${}^{4}S$ states is 1.06 X 10⁻⁶ sec ⁻¹. In contrast, the spontaneous emission rate from ${}^{2}D_{3/2}$ F = 5/2 to ${}^{2}D_{5/2}$ F = 7/2 is 3.15 X 10⁻⁹ sec⁻¹.

Species Tag: 16001 Page 1 of 1	Version: 1 Date: Oct.	1979	
Species Name: Atomic Oxygen	Author: H. M. Pickett		
r ground state	Min. Int. = 10^{-4} nm ² MHz		
Q (Spin-Rot., T = 300K) = 7.4943	J Max. = (2) Lines Listed =	1	
Dipole Moments/Debye: µ _a =	μ _b = magnetic μ _c =		
Rot. Const./MHz: A =	B * C *		

The 68 cm⁻¹ J = 1-2 line of oxygen has been measured by Laser Magnetic Resonance (R. J. Saykally and K. M. Evenson, Symposium on Molec. Specty., Columbus, 1979). Intensities were calculated using the free electron g factor. The partition function was calculated from the following table:

<u> J </u>	Energy	Degeneracy
0	227.0195	1
1	68.7165	3
2	0.0	5

Species Tag: 17001 Page 1 of	1 Version: 1	Date: Dec. 1979	
Species Name: Hydroxyl Radical OH	Author: R. L.	Poynter & H. M. Picket	
ground "3/2 and "1/2 states	Min. Int. =	Min. Int. = 10^{-13} nm ² MHz	
Q (Spin-Rot., T = 300K) = 83.328	J Max. = 19.5	Lines Listed = 125	
Dipole Moments/Debye: µ _a = 1.667	^µ b [■]	^µ c ⁼	
Rot. Const./MHz: A =	B = 556140.9	C =	

The calculational method and microwave Jata are reported in R. A. Beaudet and R. L. Poynter, 1978, J. Phys. Chem. Ref. Data <u>7</u>, 311. The partition function was calculated by a sum over states to J = 11.5. Other values are:

Т	Q _{sr}
150K	40.230
70	21.800
30	16.354
10	15.696

Only the J = 5/2 - 3/2 and J = 3/2 - 1/2 submillimeter transitions are included in the catalogue.

Species Tag: 17002 Page 1 of 1	Version: 1	Date: Dec. 1979			
Species Name: Ammonia NH ₃ ground	Author:R. L. Po	Author: R. L. Poynter & H. M. Pickett			
inversion states	Min. Int. = 10^{-17} nm ² MHz				
Q (Spin-Rot., T = 300K) = 581.4432	J Max. = 20	Lines Listed = 235			
Dipole Moments/Debye: µ _a =	^μ b =	$\mu_{c} = 1.476$			
Rot. Const./MHz: A = ^B	B = 298115.37	C = 185092.			

The calculational method and microwave data are reported in R. L. Poynter and R. K. Kakar, 1975, Ap. J. Suppl. <u>29</u>, 87. The vibrational state designations in the catalogue are v = 0 for the lower inversion state and v = 1 for the upper state.

Species Tag: 17003 P	age l of 1		Version: 1	Date: Feb. 1980
Species Name: Deutero M	lethane		Author: R. L. I	Poynter
СН _З Д			Min. Int. = 10 ⁻	-8 rım ² MHz
Q (Spin-Rot., T = 300K)	= 402.166		J Max. = 13	Lines Listed = 80
Dipole Moments/Deb/e: $\mu_a = 5.6 \times 10^{-3}$			^µ b ⁼	^μ c ⁼
Rot. Const./MHz: A =	157412.	В	= 116325.308	C = B

The J = 0 \rightarrow 1 line has been measured by H. M. Pickett and E. A. Cohen, 1980, Ap. J. Letters. Predicted lines are based upon the constants given by C. Chakerian and G. Guelachvilli, 1980, J. Mol. Spect., in press. The dipole moment has been measured by I. Ozier, W. Ho, and G. Birnbaum, 1969, J. Chem. Phys. <u>51</u>, 4873, and by S. C. Wofsey, J. S. Muenter, and W. Klemperer, (1970), J. Chem. Phys. <u>53</u>, 4005.

Species Tag: 18001	Page 1 of 1		Version:	1	Da	te:Dec.	1979
Species Name: Deuterated hydroxy1			Author: R.L. Poynter & H.M. Pickett				
radical: OD 2 ₁₁ ground states		Min. Int. = 10^{-13} nm ² MHz					
Q (Spin-Rot., T = 300K) = 215.558		J Max. =	19.5	Lines	Listed	= 235
Dipole Moments/Debye:	$\mu_{a} = 1.653$		^µ b ⁼		^μ c ⁼		
Rot. Const./MHz: A =		B	= 296312.	0	C =		

The calculational method and microwave data are reported in R. A. Beaudet and R. L. Poynter, 1978, J. Phys. Chem. Ref. Data <u>7</u>, 311. The partition function was calculated using the relation $Q=6 Q_{rot} [1 + exp$ (-188.112/T)], in which Q_{rot} is the rotational partition function for a diatomic molecule. No submillimeter lines are currently listed in the catalogue for OD.

Species Tag: 18002	Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Ammonia - ¹⁵ N ¹⁵ NH ₃ ground inversion. states		Author: R. L. Poynter			
		Min. Int. =	10 ⁻¹¹ nm ² MHz		
Q (Spin-Rot., T = 300)K) = 581.44	J Max. = 14	Lines Listed = 106		
Dipole Moments/Debye:	μ = a	μ _b =	μ _c = 1.476		
Rot. Const./MHz: A =	В	B = 298115.37	C = 185092.		

The Contractory of

The lines used in the fit were reported by E. Schnabel, T. Törring, and W. Wilke, (1965) Z. Phys. <u>188</u>, 167.

The most recent measurements of H Sasada, 1980, J. Mol. Spect., in press, were received too late to include in the catalogue.

The dipole moment was assumed to be the same as 14 NH₃. The computational method is the same as that used for 14 NH₃.

Species Tag: 18003	Page	l of	1	Version: 1	Date: Feb. 1980	
Species Name: Water			Author: R. L. Poynter			
H ₂ 0				Min. Int. = 10	-9 nm ² MHz	
Q (Spin-Rot., T = 300K) = 177	7.06		J Max. = 13	Lines Listed = 151	
Dipole Moments/Debye:	μ _a =	0		^µ b ⁼ 1.855	^µ c ⁼ 0	
Rot. Const./MHz: A =	83584().29	В	= 435351.72	C = 278138.7	

The data on H₂0 are from F. C. DeLucia, P. Helminger, R. Cook, and W. Gordy (1972), Phys. Rev. <u>A</u>, <u>5</u>, 487, R. T. Hall and J. M. Dowling (1967), J. Chem. Phys. <u>47</u>, 2454, and R. T. Hall and J. M. Dowling, (1970), J. Chem. Phys. <u>52</u>, 1161. The dipole moment is from S. Clough, Y. Beers, G. P. Klein, and L. Rothman (1973), J. Chem. Phys. <u>59</u>, 3125. Other references are given in F.C. DeLucia, P. Helminger, and W. H. Kirchhoff, (1974), J. Phys. Chem. Ref. Data, <u>3</u>, 211.

Due to model problems and an incomplete least squares fitting program for this special case, no least squares fit was done for this molecule. Rather, the line frequencies were calculated in double precision using the set of rotational constants determined by De Lucia, et al. (1972, 1974) with a Hamiltonian that included up through tenth order distortion terms. The lower frequency lines that are computed from this Hamiltonian are in reasonable agreement with De Lucia, et al., but the higher frequency, higher J lines show deviations, possibly due to rourd off problems. The error estimates were set to a fixed 160 MHz for all the calculated lines, since our present program does not give the information necessary to evaluate the predicted errors.

Further work will be done on this problem. The present list is therefore an interim set of results.

Species Tag: 19001 Page	1 of	1	Version: 1	Date: Dec. 197	9
Species Name: Hydroxyl radical Oxygen - 18 isotope ¹⁸ OH		Author: R. L. Poynter & H. M. Pickett			
			Min. Int. = 10^{-13} nm ² MHz		IHz
Q (Spin-Rot., T = 300K) = 4	83.882		J Max. = 20	Lines Listed = 11	3
Dipole Moments/Debye: $\mu_a =$	1.667		ⁿ P =	^µ c ⁼	
Rot. Const./MHz: A =		В	= 552470.	C =	

The calculational method and microwave data are reported in R. A. Beaudet and R. L. Poynter, 1978, J. Phys. Chem. Ref. Data 7, 311. The partition function was calculated using the ¹⁶OH value and the ratio of the B values. No pure rotational lines are currently listed in the catalogue.

Species Tag: 19002 Page 1 of 1	Version: 1	Date: Feb. 1980		
Species Name: Water	Author: R. L. Poynter			
HDO	Min. Int. = 10^{-13} nm ² MHz			
Q (Spin-Rot., T = 300K) = 146.05	J Max. = 13	Lines Listed = 221		
Dipole Moments/Debye: $\mu_a = 0.657$	^µ b = 1.732	^µ c ^{= 0} .		
Rot. Const./MHz: A = 701931.5 B	= 272912.6	C = 192055.2		

The observed lines are from F. C. De Lucia, R. L. Cook, P. Helminger, and W. Gordy (1971), J. Chem. Phys. <u>55</u>, 5334, and J. W. Fleming and M. J. Gibson, (1976), J. Mol. Spect. <u>62</u>, 326. The dipole moment components are from S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman, (1973), J. Chem. Phys. <u>59</u>, 2254.

Further references can be found in F. C. De Lucia, P. Helminger, and W. H. Kirchhoff, (1974), J. Phys. and Chem. Ref. Data <u>3</u>, 211.

Due to model problems and an incomplete least squares fitting program for this special case, no least squares fit was done for this molecule. Rather, the line frequencies were calculated in double precision using the set of rotational constants determined by De Lucia, et al. (1971, 1974) with a Hamiltonian that included up through tenth order distortion terms. The lower frequency lines that are computed from this Hamiltonian are in reasonable agreement with De Lucia, et al., but the higher frequency, higher J lines show deviations, possibly due to round off problems. The error estimates were set to a fixed 160 MHz for all the calculated lines, since our present program does not give the information necessary to evaluate the predicted errors.

Further work will be done on this problem. The present list is therefore an interim set of results.
Species Tag: 27001 Page 1 of	1 Version: 1	Date: Dec. 1979
Species Name: Hydrogen Cyanide	Author: R	. L. Poynter
HCN	Min. Int. =	10 ⁻⁴ nm ² MHz
Q (Spin-Rot., T = 300K) = 424.154	J Max. = 3	4 Lines Listed = 45
Dipole Moments/Debye: _{µa} = 2.984	ⁿ b =	"c
Rot. Const./MHz: A =	B = 44315.975	() =

The observed transitions are from F. C. De Lucia and W. Gordy (1969), Phys. Rev. <u>187</u>, 58. The dipole moment is from G. Tomasevich, (1970), Thesis, Harvard Univ.

Species Tag: 27002 Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Hydrogen Isocyanide	Author: R. L.	Author: R. L. Poynter		
HNC	Min. Int. = 1	Min. Int. = 10^{-3} nm ² MHz		
Q (Spin-Rot., T = $300K$) = 138.223	J Max. = (34)	Lines Listed = 34		
Dipole Moments/Debye: µ _a = 2.699	^ν b ⁼	^µ c ⁼		
Rot. Const./MHz: A =	B ≈ 45332.00	C =		

Species Tag: 28001 Pag	elof 1 V	ersion: 1	Date: Dec. 1979	
Species Name: Carbon Mon	oxide A	Author: R. L. Poynter		
со	М	in. Int. = 1	10^{-5} nm ² MHz	
Q (Spin-Rot., T = 300K) =	108.787 J	Max. = (26)	Lines Listed = 26	
Dipole Moments/Debye: µ	= 0.1098 μ _b	*	μ = c	
Rot. Const./MHz: A =	B =	57635,97	C =	

The experimental measurements were reported by B. Rosenblum, A. H. Nethercot, Jr., and C. H. Townes, 1958, Phys. Rev. <u>109</u>, 400; W. Gordy and M. J. Cowan, 1957, Bull. Am. Phys. Soc. <u>2</u>, 212; and by P. Helminger, F. C. De Lucia and W. Gordy, 1970, Phys. Rev. Lett. <u>25</u>, 1397.

The dipole moment was measured by J. S. Muenter, 1975, J. Mol. Spect. 55, 490.

Species Tag: 28002 Page 1 of 1	Version: 1 Date: Dec. 1979)
Species Name: Hydrogen Cyanide	Author: R. L. Poynter	
Carbon - 13 isotope H ¹³ CN	Min. Int. = 10^{-4} nm ² M	IHz
Q (Spin-Rot., T = 300K) = 435.385	J Max. = 34 Lines Listed = 45	
Dipole Moments/Debye: _{µa} = 2.984	^μ b = ^μ c =	
Rot. Const./MHz: A =	B = 43170.137 C =	

The measured lines are from E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 28003	Page 1 of	1	Version:	1	Date: Dec. 1	1979
Species Name: Hydrog	en Cyanide		Author:	R. L. 1	Poynter	
Nitrogen – 15 isot HC ¹⁵ N	ope		Min. Int.	- 3	x 10 ⁻³ n	m ² MHz
Q (Spin-Rot., T = 300K) = 435.204)	J Max. =	35	Lines Listed =	35
Dipole Moments/Debye:	^μ a ⁼ 2.984		^µ b ⁼		^µ c [±]	
Rot. Const./MHz: A =		B	= 43027.69		C =	

The measured lines are from E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 28004	Page 1 of	1	Version: 1	Date: Dec. 1979	
Species Name: Hydrogen Cyanide			Author: R. L. Poynter		
Deuterium isotope DCN		•	Min. Int. = 7×10^{-5} nm ² MHz		
Q (Spin-Rot., T = 300K) = 518.916			J Max. = 41	Lines Listed = 54	
Dipole Moments/Debye: µ _a = 2.984			^µ b ⁼	μ _c =	
Rot. Const./MHz: A =		B	= 36207.46	C =	

The observed transitions are from F. C. De Lucia and W. Gordy (1969), Fhys. Rev. 187, 58. The dipole moment is from G. Tomasevich, (1970), Thesis, Harvard Univ.

Species Tag: 28005 Page 1 of 1	Version: 1	Date: Dec, 1979		
Species Name: Hydrogen Isocyanide	Author: R. L.	Poynter		
Carbon - 13 isotope HN ¹³ C	Min. Int. = 2×10^{-3} nm ² MHz			
Q (Spin-Rot., T = 300K) = 143.880	J Max. = (35)	Lines Listed = 35		
Dipole Moments/Debye: µ _a = 2.699	"b ⁼	"c ⁼		
Rot. Const./MHz: A =	B = 43545.61	C =		

Species Tag: 28006 Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Hydrogen Isocyanide	Author: R. L. 1	Author: R. L. Poynter		
Nitrogen - 15 isotope H ¹⁵ NC	Min. Int. = 2	x 10 ⁻³ nm ² MHz		
Q (Spin-Rot., T = 300K) = 141.013	J Max. = (33)	Lines Listed = 33		
Dipole Moments/Deby(: µ _a = 2.699	μ _b =	^µ c ⁼		
Rot. Const./MHz: A = B	= 44433.04	C =		

Species Tag: 28007	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Hydrog	en Isocyanide	Author: R. L. Poynter		
Deuterium isotope				
DNC		Min. Int. = 10^{-3} nm ² MHz		
Q (Spin-Rot., T = 300K	2) = 164.169	J Max. = (39)	Lines Listed = 39	
Dipole Moments/Debye:	μ = 2.699	μ _b =	μ _c =	
Rot. Const./ MHz: A =		B = 38152.995	C =	

Species Tag: 29001	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Carbon monoxide		Author: R. L. P	Yoynter	
Carbon - 13 isotop	e .		······································	
¹³ co		Min. Int. = 8×10^{-6} nm ² MHz		
Q (Spin-Rot., T = 300K) = 113.776	J Max. = (27)	Lines Listed = 27	
Dipole Moments/Debye:	$\mu_{a} = 0.110$	"b =	^μ c ⁼	
Rot. Const./MHz: A =	E	3 = 55101.02	(. =	

The experimental measurement was reported by B. Rosenblum, A. H. Nethercot, Jr. and C. H. Townes, 1958, Phys. Rev. <u>109</u>, 400.

The dipole moment was measured by W. L. Meerts, F. H. De Leeuw, and A. Dymanus, 1977, Chem. Phys. <u>22</u>, 319.

Species Tag: 290	02 Pag	ge 1	of	1	Version: 1	Date: Dec.	1979
Species Name: Formyl radical cation			Author: R. L. Poynter				
нсо	+				Min. Int. = 1	o ⁻³	nm ² MHz
Q (Spin-Rot., T =	300K) =	140	. 504		J Max. = (33)	Lines Listed	= 33
Dipole Moments/Det	oye: ^µ a	= 3.	. 30		μ _b =	^μ c ⁼	
Rot. Const./MHz:	A =			12	÷ 44594.46	C = '	

١

Only one line has been observed in the laboratory, by R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, (1975), Phys. Rev. Lett. <u>35</u>, 1269.

The dipole moment was estimated theoretically in the same paper.

Species Tag: 29003	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Methyl	lenimine	Author: R. L. Poynter		
CH ₂ NH		Min. Int. = 6×10^{-11} nm ² MHz		
Q (Spin-Rot., T = 300)	() = 5893.	J Max. = 40	Lines Listed = 4769	
Dipole Moments/Debye:	$\mu_{a} = 1.325$	μ _b = 1.530	μ _c = 0.	
Rot. Const./MHz: A =	196211.045	B = 34532.395	C = 29352.232	

Ì

The data set and computational method are referenced in W. H. Kirchhoff, D. R. Johnson, and F. J. Lovas, 1973, J. Phys. Chem. Ref. Data <u>2</u>, 1.

Species Tag: 30001	Page 1 of	1 Vers	ion: 1	Date:	Dec. 1979	
Species Name: Carbon Monoxide			Author: R. L. Poynter			
oxygen - 18 isotop C ¹⁸ O	e	Min.	Int. = 8	x 10 ⁻⁶	nm ² MHz	
Q (Spin-Rot., T = 300K) = 114.2096	J Ma	x. = (27)	Lines Li	sted = 27	
Dipole Moments/Debye:	$\mu_{a} = 0.110$	^μ b =		^μ c =	28	
Rot. Const./MHz: A =		B = 548	391.425	C =		

The experimental measurement was reported by B. Rosenblum, A. H. Nethercot, Jr. and C. H. Townes, 1958, Phys. Rev. <u>109</u>, 400.

The dipole moment was reported by W. L. Meerts, F. H. De Leeuw, and A. Dymanus, 1977, Chem. Phys. 22, 319.

Species Tag: 30002	Page 1 of	1	Version: 1	Date: Dec. 1979		
Species Name: Formyl radical cation			Author: R. L. Poynter			
carbon - H ¹³ CO ⁺	13 isotope		Min. Int. = 3×10^{-3} nm ² MHz			
Q (Spin-Rot., T = 300K) = 144.437	<u></u>	J Max. = (34)	Lines Listed = 34		
Dipole Moments/Debye:	$\mu_{a} = 3.30$		^μ b ⁼	^μ c ⁼		
Rot. Const./MHz: A =		В	= 43377.36	C = '		

Only one line has been observed in the laboratory, by R. C. Woods, R. J. Saykally, T. A. Dixon, P. G. Szanto, and T. Anderson, (1976) 31st Symposium on Molecular Spectroscopy, Columbus, Ohio.

Species Tag: 30003 Page 1 of 1	Version: 1	Date: Dec. 1979			
Species Name: Formyl radical cation	Author: R. L.	Author: R. L. Poynter			
Deuterium isotope DCO ⁺	Min. Int. = 2	x 10 ⁻³ nm ² MHz			
Q (Spin-Rot., T = 300K) = 173.872	J Max. = (42)	Lines Listed = 41			
Dipole Moments/Debye: µ _a = 3.30	^μ b ⁼	^µ c ⁼			
Rot. Const./MHz: A =	B = 36019.76	C =			

1

Only one line has been observed in the laboratory, by R. C. Woods, R. J. Saykally, T. A. Dixon, P. G. Szanto, and T. Anderson, (1976) 31st Symposium on Molecular Spectroscopy, Columbus, Ohio.

Species Tag: 30004	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Formald	lehyde	Author: R. L.	Poynter
н ₂ со		Min. Int. = 10	-20 nm ² MHz
Q (Spin-Rot., T = 300K) = 2876.7	J Max. = 40	Lines Listed = 611
Dipole Moments/Debye:	μ _a = 2.331	μ _b = 0.	^μ c ^{= 0.}
Rot. Const./MHz: A =	281925.97	B = 38836.582	C = 34001.6729

The experimental data were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

J. K. Bragg and A. H. Sharbaugh, 1949, Phys. Rev. 75, 1774.

- J. S. Chardon and D. Guichon, 1977, J. Phys. (Paris), <u>38</u>, 113; 1973, J. Phys. (Paris), <u>34</u>, 791.
- F. Y. Chu, S. M. Freund, J. W. C. Johns, and T. Oka, 1973, J. Mol. Spect. <u>48</u>, 328.
- D. Dangoisse, E. Willemot, and J. Bellet, 1978, J. Mol. Spect. 71, 414.
- D. R. Johnson, R. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.
- A. F. Krupnov, L. I. Gershtein, V. G. Shustrov, and V. V. Polyakov, 1970, Opt. Spect. (USSR), <u>28</u>, 257.

R. B. Lawrence and M. W. P. Strandberg, 1949, Phys. Rev. 75, 1774.

- T. Oka, H. Hirakawa, and K. Shimoda, 1960, J. Phys. Soc. Japan, 15, 2265.
- T. Oka, T. Takagi, Y. Morino, 1964, J. Mol. Spect. <u>14</u>, 27.

The dipole moment was measured by K. Kondo and T. Oka, 1960, J. Phys. Soc. Japan, <u>15</u>, 307.

Species Tag: 30005 Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Methylenimine Carbon - 13 isotope	Author: R.L.	Poynter
¹³ CH ₂ NH	Min. Int. =	10 ⁻⁸ nm ² MHz
Q (Spin-Rot., T = 300K) = 2012.45	J Max. = 10	Lines Listed = 439
Dipole Moments/Debye: µ _a = 1.325	^µ b = 1.530	^μ c = 0.
Rot. Const./MHz: A = 196195.217	B = 33747.872	C = 28707.047

The computational method is the same as that used on the parent species, CH_2NH . The data are from R. Pearson, Jr. and F. J. Lovas, 1977, J. Chem. Phys. <u>66</u>, 4149. The dipole moment has been assumed the same as for the parent species.

Species Tag: 30006	Page] of 1	Version: 1	Date: Jan. 1980		
Species Name: Methylenimine		Author: R. L. Poynter			
Nitrogen - 15 isoto	ope				
сн ₂ ¹⁵ NH		Min. Int. = 1	.0 ⁻⁸ nm ² MHz		
Q (Spin-Rot., T = 300K)	= 2015.792	J Max. = 10	Lines Listed = 440		
Dipole Moments/Debye: 1	a 1.325	μ _b = 1.530	μ _c = 0.		
Rot. Const./MHz: A =	195738.07	B = 33736.100	C = 28688.614		

ł

The computational method is the same as that used on the parent species, CH_2NH . The data are from R. Pearson, Jr. and F. J. Lovas, 1977, J. Chem. Phys. <u>66</u>, 4149. The dipole moment has been assumed the same as for the parent species.

Species Tag: 30007	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Methyle	nimine	Author: R. L.	Poynter
Deuterium isotope on CH ₂ ND	i nitrogen atom	Min. Int. = 8	x 10 ⁻¹⁰ nm ² MHz
Q (Spin-Rot., T = 300K)	= 7181.07	J Max. = 15	Lines Listed = 1820
Dipole Moments/Debye:	μ = 1.325	μ _b = 1.530	μ _c = 0.
Rot. Const./MHz: A =	157673.877	B = 32069.366	C = 26563.849

The computational method is the same as that used on the parent species, CH_2NH . The data are from R. Pearson, Jr. and F. J. Lovas, 1977, J. Chem. Phys. <u>66</u>, 4149. The dipole moment has been assumed the same as for the parent species.

Species Tag: 30008	Page	1 0	of 1	Vers	ion: 1	Date:	Feb. 1980
Species Name: Nitric Oxide		Auth	Author: H. M. Pickett				
ground ² states NO	I			Min.	Int. =	10 ⁻²⁰	nm ² MHz
Q (Spin-Rot., T = 300K) = 1	159.	464	J Ma	x. = 35.	5 Lines Li	sted = 1909
Dipole Moments/Debye:	µa =	0.1	5872	^µ b ⁼	0.	^µ c ^{≠ 0.}	,
Rot. Const./MHz: A =	<u> </u>			B = 50	849.06	(=	

The spectrum of NO was fit to the fine structure Hamiltonian described by C. Amiot, R. Bacis and G. Guelachvili, 1978, Can. J. Phys. <u>56</u>, 251, along with the hyperfine Hamiltonian described by W. L. Meerts, 1976, Chem. Phys. <u>14</u>, 421. The radio frequency lines are from W. L. Meerts and A. Dymanus, 1972, J. Mol. Spectroscopy. 44, 320. The millimeter lines were measured at JPL by H. M. Pickett and E. A. Cohen. The partition function was determined by a sum over states to J=71/2. Other values are:

<u> </u>	9
10	30.394
30	80.168
60	162.551
100	296.509
150	492.323

Species Tag: 31001 Page 1 of 1	Version: 1 Date: Dec. 1979
Species Name: Formyl radical cation	Author: R. L. Poynter
Oxygen - 18 isotope HC ¹⁸ 0 ⁺	Min. Int. = 3×10^{-3} run ² MHz
Q (Spin-Rot., T = 300K) = 145.427	J Max. = (34) Lines Listed = 34
Dipole Moments/Debye: "a "	^μ b [*] 3.30 ^μ c [*]
Rot. Const./MHz: A =	B = 43081.217 C =

Only one line has been observed in the liboratory, by R. C. Woods, R. J. Saykally, T. A. Dixon, P. G. Szanto, and T. Anderson, (1976) 31st Symposium on Molecular Spectroscopy, Columbus, Ohio.

Species Tag: 31002	Page 1 of	1	Version: 1	Date: Jan. 1980		
Species Name: Fo rma ldehyde			Author: R. L. Poynter			
Carbon - 13 isotop H ₂ ¹³ CO	e		Min. Int. = 5 x	10 ⁻¹⁰ nm ² MHz		
Q (Spin-Rot., T = 300K) = 2949.7		J Max. = 40	Lines Listed = 601		
Dipole Moments/Debye:	$\mu_{a} = 2.331$		μ _b = 0.	μ _c = 0.		
Rot. Const./MHz: A =	281930.85	В	= 37811.92	C = ' 33213.19		

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

- D. Dangoisse, E. Willemot, and J. Bellet, 1978, J. Mol. Spect. 71, 414.
- D. R. Johnson, F. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.
- R. B. Lawrence and M. W. P. Strandberg, 1951, Phys. Rev. 83, 363.
- R. Nerf, 1972, Ap. J., <u>174</u>, 467.
- T. Oka, H. Hirakawa, and K. Shimoda, 1960, J. Phys. Soc. Japan, 15, 2265.
- T. Oka, T. Takagi, and Y. Morino, 1964, J. Mol. Spect. 14, 27.
- K. D. Tucker, G. R. Tomasevich, and P. Thaddeus, 1972, Ap. J. <u>174</u>, 463, 1971, Ap. <u>169</u>, 429.

The dipole moment was assumed to be the same as the parent H_2^{12} CO.

Species Tag: 32001 Page 1	of 1	Version:	1	Date: Oct.	1979
Species Name: Molecular Oxyger	Author: H. M. Pickett				
$100_2 v = 0 \text{ state}$ of ground $3\Sigma_g^-$ electroning	lo s tate	Min. Int.	= 10 ⁻	13	nm ² MHz
Q (Spin-Rot., T = 300K) = 218.5	529	J Max. = ((50)	Lines Listed	= 74
Dipole Moments/Debye: µ _a =		^µ b = magnet	ic _l	^µ c ⁼	
Rot. Const./MHz: A =	8	= 43099.79	5	C =	

The measurements and calculational method are from T. Amano and E. Hirota, 1974, J. Mol. Spectroscopy <u>53</u>, 346. The Raman lines of 0_2 (M. Loete and H. Berger, 1977, J. Mol. Spectroscopy <u>68</u>, 317) were used with the millimeter wavelength measurements and the submillimeter-line of W. Steinbach and W. Gordy (1973, Phys. Rev <u>A 8</u>, 1953) in a combined fit of the v = 0 and v = 1 transitions. The intensities of the magnetic dipole transitions have been calculated using the g values obtained from laser magnetic resonance (D. M. Evenson and M. Misushima, 1972, Phys. Rev. A <u>6</u>, 2197).

The value of Q is determined by a sum over states to J = 60. Other values are:

<u> </u>	_9
10	8.306
30	22.615
60	44.326
100	73.327
150	109.605

Species Tag: 32002	Page 1 of 1	Version: 1	Date: Oct, 1979	
Species Name: Molecular Oxygen ${}^{16}O_2 v = 1$ state of the ground ${}^{3}\Sigma_g^-$ state		Author: H. M.	Author: H. M. Pickett	
		Min. Int. = 10	Min. Int. = 10^{-10} nm ² MHz	
Q (Spin-Rot., T = 300K)	= 220.918	J Max. = (40)	Lines Listed = 63	
Dipole Moments/Debye:	^µ a ⁼	^µ b ⁼ magnetic	^μ c ⁼	
Rot. Const./MHz: A =		B = 42626.9	(=	

r

The calculations are described for the ground state (Species 32001). The vibrationally excited state, v = 1, is 1556.38 ± 0.01 cm⁻¹ above the ground state (M. Loete and H. Berger, 1977, J. Molec. Specty. <u>68</u>, 317). Intensities were calculated using the ground state g values.

The value of Q was determined by a sum over states to J = 60. Other values are:

<u> </u>	<u>_</u> Q
10	8.348
30	22.819
60	44.772
100	74.097
150	110.779

Species Tag: 32003	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Methyl	Alcohol (Methano	1) Author: H.M. Pic	kett & R.L. Poynter	
CH ₃ OH lowest A, E ₁ , and E ₂ vibrational states		Min. Int. = 10 ⁻	Min. Int. = 10^{-10} nm ² MHz	
Q (Spin-Rot., T = 3001	() = 6414.2516	J Max. = 12	Lines Listed = 142	
Dipole Moments/Debye:	^µ a [#] 0.885	^μ b ⁼ 1.440	μ _c = 0	
Rot. Const./MHz: A =	127,484.	B = 24,679.98	C = 23769.70	

in second state of the second seco

The lines below 200 GHz are reported by R. M. Lees, F. J. Lovas, W. H. Kirckhoff, and D. R. Johnson, 1973, J. Phys. Chem. Ref. Data, <u>2</u>, 205. Additional lines are referenced in F. J. Lovas, L. E. Snyder, and D. R. Johnson, 1979, Ap. J. Suppl., <u>41</u>.

The partition function is twice the value for a rigid rotor with the rotational constants given above. The quantum numbers for methanol are listed in the 840 format even though methanol is not a symmetric rotor. The \underline{v} quantum numbers in the catalogue are:

<u>v</u>	species	asymmetric rotor correspondence
1	A+	upper K state for K even, lower for K odd
2	A-	upper K state for K odd, lower for K even
3	E1	no direct correspondence
4	E ₂	no direct correspondence

Species Tag: 32004	Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Formaldehyde Oxygen - 18 isotope` H ₂ C ¹⁸ O		Author: R. L. Poynter	
		Min. Int. = 10 ⁻⁹ nm ² MHz	
Q (Spin-Rot., T = 300K) = 3017.226	J Max. = 20	Lines Listed = 449
Dipole Moments/Debye:	$\mu_{a} = 2.331$	$^{\mu}b = 0.$	$^{\mu}c = 0.$
Rot. Const./MHz: A =	281993.0 B	- 36903.573	C = 32514.740

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

D. Dangoisse, E. Willemot, and J. Bellet, 1978, J. Mol. Spect. 71, 414.

- D. R. Johnson, F. Lovas, and W. K. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.
- R. B. Lawrence and M. W. P. Strandberg, 1951, Phys. Rev. 83, 363.

T. Oka, H. Hirakawa, and K. Shimoda, 1960, J. Phys. Soc. Japan, 15, 2265.

T. Oka, T. Takagi, and Y. Morino, 1964, J. Mol. Spect. 14, 27.

K. D. Tucker, G. R. Tomasevich, and P. Thaddeus, 1972, Ap. J. <u>174</u>, 463, 1971, Ap. J., <u>169</u>, 429.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 34001 Page 1 of 1	Version: 1	Date: Oct. 1979
Species Name: 180 160	Author: H. M.	Pickett
Molecular Oxygen - 0 ¹⁸ species ground state	Min. Int. = 2.5	x 10 ⁻¹¹ nm ² MHz
Q (Spin-Rot., T = 300K) = 462.32	J Max. ≖ (42)	Lines Listed = 132
Dipole Moments/Debye: µ _a =	^µ b = magnetic	μ _c =
Rot. Const./MHz: A =	B = 40708.	C =

The measurements and calculational method are from T. Amano and E. Hirota, 1974, J. Mol. Spectroscopy 53, 346. Intensities of Magnetic dipole transitions have been calculated using the g values for the ${}^{16}0_2$ species (K. M. Evenson and M. Mizushima, 1972, Phys. Rev. A <u>6</u>, 2197). The electric dipole moment is expected to be $\sqrt{5} \times 10^{-5}$ Debye, based on the arguments of P. R. Bunker, 1973, J. Mol. Spectroscopy <u>46</u>, 119. Therefore, no electric dipole transitions have been included in the catalogue. At high J the error estimates are likely to be optimistic since the expected errors in the assumed centrifugal distortion constants are not included.

The value of Q is determined by a sum over states to J = 60. Other values are:

<u> </u>	<u>_Q</u>
10K	17.13
30	47.46
60	93.44
100	154.85
150	231.67

Species Tag: 34002	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Hydrog	en sulfide	Author: R. L.	Poynter
H ₂ S		Min. Int. =	10 ⁻⁸ ma ² MHz
Q (Spin-Rot., T = 300K)	= 512.21	J Max. = 10	Lines Listed = 213
Dipole Moments/Debye:	μ = 0.	μ _b = 0.974	μ = 0. c
Rot. Const./MHz: A =	310182.24	B = 270884.05	C = 141705.880

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers: P. Helminger, R. L. Cook, and F. C. De Lucia, 1972, J. Chem. Phys. <u>56</u>, 4581.

P. Helminger, F. C. De Lucia, and W. H. Kirchhoff, 1973, J. Phys. Chem. Ref. Data; 2, 213,

The dipole moment was reported by C. Huiszoon and A. Dymanus, 1965, Physica, <u>31</u>, 1049.

Species Tag: 34003 Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Phosphine	Author: R. L. Po	ynter
PH3	Min. Int. = 10 ⁻¹	.8 nm ² MHz
Q (Spin-Rot., T = 300K) = 608.55	J Max. = (19)	Lines Listed = 126
Dipole Moments/Debye: $\mu_a = *8.3 \times 10^{-5} \mu_b = \mu_c = 0.574$		
Rot. Const./MHz: A = B B	= 33480.15	C = 117488.85

*centrifugally induced

The measured lines are taken from:

D. Helms and W. Gordy (1977), J. Mol. Spect., <u>66</u>, 206, F. Y. Chu and T. Oka, (1974), J. Chem. Phys. <u>60</u>, 4612, P. B. Davies, R. M. Newman, S. C. Wofsy, and W. Klemperer, (1971), J. Chem. Phys. <u>55</u>, 3564.

The J = 1 + 2 lines measured by A. F. Krupnov, A. A. Melnikov, and V. A. Skvortsov (1979) Opt. Spectrosc. (USSR) <u>46</u> (5), 570, came to our attention too late to include in this analysis.

The dipole moment measured by P. B. Davies, et al., above, is $0.57395 \pm 0.0003D$.

Species Tag: 35001 Page 1 of :	Version: 1	Date: Feb. 1980	
Species Name: Hydrogen Sulfide	Author: R. L.	Author: R. L. Poynter	
Deuterium Isotope HDS	Min. Int. = 4	x 10 ⁻¹² nm ² MHz	
Q (Spin-Rot., T = 300K) = 430.900	J Max. = 20	Lines Listed = 1138	
Dipole Moments/Debye: $\mu_a = 0.470 \mu_b = 0.974 \mu_c = 0.$			
Rot. Const./MHz: A = 292351.302	B = 147861.801	C = 96704.120	

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>40</u>, 125. G. Steenbeckliers, quoted in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment was reported by R. E. Hillger and M. W. P. Strandberg, 1951, Phys. Rev. <u>83</u>, 575.

Species Tag: 36001 Page 1 of 1	Version: 1	Date: Feb. 1980	
Species Name: Hydrogen Chlorida	Author: R. L. Poynter & H. M. Pickett		
H ³³ Cl	Min. Int. = 5×10^{-2} nm ² MHz		
Q (Spin-Rot., T = 300K) = 81.232	J. Max. = 4	Lines Listed = 17	
Dipole Moments/Debye: $\mu_a = 1.109$	^µ b = 0	^µ c ⁼ 0	
Rot. Const./MHz: A = 1	8 = 312989.3	C =	

•

The observed lines were measured by F. C. De Lucia, P. Helminger, and W. Gordy, 1971, Phys. Rev., <u>A</u> 3, 1849.

The dipole moment was measured by F. A. deLeeuw and A. Dymanus, 1971, Symposium on Molec. Spect., Columbus, Ohio.

Species Tag: 38001 Page 1 of	1 Version: 1	Date: Feb. 1980
Species Name: Hydrogen Chloride	Author:R. L.	Poynter & H. L. Pickett
Chlorine - 37 isotope H ³⁷ Cl	Min. Int. =	5 x 10 ⁻² nm ² MHz
Q (Spin-Rot., T = 300K) = 81.352	J Max. = 4	Lines Listed = 17
Dipole Moments/Debye: µ _a = 1.109	μ ^μ Β =	μ _c =
Rot. Const./MHz: A =	B = 312519.12	C =

The observed lines were measured by F. C. De Lucia, P. Helminger, and W. Gordy, 1971, Phys. Rev., <u>A</u> 3, 1849.

The dipole moment was measured by F. A. DeLeeuw and A. Dymanus, 1971, Symposium on Molec. Spect., Columbus, Ohio.

Species Tag: 40001 Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Propyne	Author: R. L. Poynter Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
сн ₃ ссн			
Q (Spin-Rot., T = 300K) = 5428.80	J Max. = 80	Lines Listed = 813	
Dipole Moments/Debye: µ _a = 0.750	"P =	^µ c ⁼	
Rot. Const./MHz: A = 158590.	3 = 8545.860	C = B	

The experimental measurements were obtained from A. Dubrille, D. Boucher, J. Burie, and J. Demaison, 1978, J. Mol. Spect. <u>72</u>, 158. The A moment was estimated from the structure.

The dipole moment was measured by J. S. Muenter and V. W. Laurie, 1966, J. Chem. Phys. <u>45</u>, 855.

Species Tag: 41001 Page 1 o	f 1	Version: 1	Date: Dec. 1979
Species Name: Acetonitrile CH ₃ CN ground state		Author: R. L. Poynter	
		Min. Int. = 3×10^{-5} nm ² MHz for J > 14	
Q (Spin-Rot., T = 300K) = 15145.		J Max. = 82	Lines Listed = 1441
Dipole Moments/Debye: µ _a = 3.91	9	ν _b =	^µ c ⁼
Rot. Const./MHz: A = 158290.	B	= 9198.8993	(= B

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.

Species Tag: 41002 Page 1 of 1	Version: 1 Date: Dec. 1979		
Species Mame: Propyne,	Author: R. L. Poynter		
Carbon - 13 isotope on atom 1 CH ₃ C ¹³ CH	Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300K) = 5596.11	J Max. = 80 Lines Listed = 822		
Dipole Moments/Debye: $\mu_a = 0.750$	"b = "c =		
Rot. Const./MHz: A = 158590.	B = 8290.259 C = B		

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.

Species Tag: 41003	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Propyne, Carbon - 13 isotope on atom 2 CH ₃ ¹³ CCH		Author: R. L.	Author: R. L. Poynter	
		Min. Int. = 3 for J	Min. Int. = 3×10^{-5} nm ² MHz for J > 14	
Q (Spin-Rot., T = 300K)) = 5431.06	J Max. = 79	Lines Listed = 813	
Dipole Moments/Debye: $\mu_a = 0.750$ $\mu_b = \mu_c^{=}$				
Rot. Const./MHz: A =	158590.	B = 8542.304	C = B	

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.
Species Tag: 41004	Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Propyne,		Author: R. L. F	oynter
carbon - 13 isotope on atom 3 H ₃ ¹³ CCCH		Min. Int. = 3 ; for J	10 ⁻⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 5580.65	J Max. = 80	Lines Listed = 821
Dipole Moments/Debye:	$\mu_{a} = 0.750$	^µ b ⁼	^µ c ⁼
Rot. Const./MHz: A =	158590. B	= 81313.24	C = B

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.

Species Tag: 41005	Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Propyne, Deuterium isotope on carbon atom 1 CH ₃ CCD		Author: R. L. Poynter	
		Min. Int. = 3×10^{-5} nm ² MHz for J > 14	
Q (Spin-Rot., T = 300K) = 5956.732	J Max. = 82 L	ines Listed = 800
Dipole Moments/Debye:	$\mu_a = 0.750$	^ν b = ν	c ⁼
Rot. Const./MHz: A =	158590.0 B	= 7788.158	C = B

The experimental measurements are from J. S. Muenter and V. W. Laurie, 1966, J. Chem. Phys. <u>45</u>, 855; L. F. Thomas, E. I. Sherrard, and J. Sheridan, 1955, Trans. Far. Soc. <u>51</u>, 619.

The dipole moment was assumed to be the same as the parent species for this calculation. An experimental value, 0.770D (avg.) corrected for the new OCS standard, has been reported by Muenter and Laurie (above). This result came to our attention too late to include in this version.

Species Tag: 41006 Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Propyne Deuterium	Author: R. L.	Author: R. L. Poynter	
isotope on methyl carbon atom CH ₂ D CCH	Min. Int. = 2×10^{-10} nm ² MHz		
Q (Spin-Rot., T = 300K) = 9982.44	J Max. = 15	Lines Listed = 223	
Dipole Moments/Debye: $\mu_a = 0.750$	μ _b = 0.	μ _c = 0.	
Rot. Const./MHz: A = 117744.370	B = 8155.784	C = 8025.577	

The experimental measurements are from L. F. Thomas, E. I. Sherrard, and J. Sheridan, 1955, Trans. Far. Soc. <u>54</u>, 619.

The dipole moment was assumed to be the same as the parent species for this calculation.

Species Tag: 42001 Page 1 or	f 1	Version: 1	Date: Dec. 1979
Species Name: Acetonitrile		Author: R. L. Poynter	
Nitrogen - 15 isotope CH ₃ C ¹⁵ N		Min. Int. = 2 fo	x 10 ⁻⁵ nm ² MHz or J > 14
Q (Spin-Rot., T = 300K) = 15145		J Max. = 90	Lines Listed = 2755
Dipole Moments/Debye: $\mu_a = 3.9$	19	μ _b =	^μ c ⁼
Rot. Const./MHz: A = 158290.	B	= 9198.8993	C = B

The experimental measurements were obtained from A. Bauer and S. Maes, 1969, J. de Phys. <u>30</u>, 169; J. Demaison, A. Dubrulle, D. Boucher, J. Burie, 1969, J. Mol. Spect. <u>76</u>, 1.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 42002 Page 1 of 1	Version: 1 Date: Jan. 1980
Species Name: Ketene	Author: R. L. Poynter
H ₂ CCO	Min. Int. = 3×10^{-15} nm ² MHz
Q (Spin-Rot., T = 300K) = 10322.9	J Max. = 29 Lines Listed = 835
Dipole Moments/Debye: $\mu_a = 1.422$	$\mu_{b} = 0 \qquad \mu_{c} = 0$
Rot. Const./MHz: A = 282473	3 = 10293.80 C = 9916.38

B. Fabricant, D. Krieger, and J. S. Muenter, 1977, J. Chem. Phys. <u>67</u>, 1576.
J. W. C. Johns, J. M. R. Stone, and G. Winnewisser, 1972, J. Mol. Spect. <u>42</u>, 523.
H. R. Johnson and M. W. P. Strandberg, 1952, J. Chem. Phys. <u>20</u>, 687.

The dipole moment was reported by Johnson (above) and by B. Fabricant, et al. (above).

ورغاه فالمقادر والإردار فيريان ممالاً لات فأنفاهم متاديد والالالا إلى ليرتب

Species Tag: 43001	Page 1	of	1	Version: 1	Date: Jan. 1980
Species Name: Ketene				Author: R. L.	Poynter
Deuterium isotope HDCCO				Min. Int. = 10	-23 nm ² MHz
Q (Spin-Rot., T = 300K) = 668	2.68		J Max. = 29	Lines Listed = 886
Dipole Moments/Debye:	μ _a = 1	422		μ _b = 0.	$\mu_{c} = 0.$
Rot. Const./MHz: A =	194313.	0	B	= 9647.396	C = ' 9174.975

L. Nemes and M. Winnewisser, 1976, Z. Naturforsch. 31a, 272.

The dipole moment was assumed the same as the parent species.

Species Tag: 44001 Page 1 of	1	Version: 1	Date: Dec. 1979
Species Name: Carbon Monosulfide		Author: R. L. P	oynter
ground state CS		Min. Int. = 4	x 10 ⁻⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 255.515		J Max. = (60)	Lines Listed = 60
Dipole Moments/Debye: µ _a = 1.957		^μ b ⁼	^µ c ⁼
Rot. Const./MHz: A =	B	= 24495.554	C =

The experimental data were taken from the following papers:

R. Kewley, K. V. L. N. Sastry, M. Winnewisser, and W. Gordy, 1963, J. Chem. Phys. <u>39</u>, 2856.

R. C. Mockler and G. R. Bird, 1955, Phys. Rev. <u>98</u>, 1837.

The dipole moment is from G. Winnewisser and R. L. Cook, 1968, J. Mol. Spect. <u>28</u>, 266.

Species Tag: 44002 Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Silicon Monoxide	Author: R. L.	Poynter
²⁸ si 0	Min. Int. = 3 3	k 10 ^{-5 ·} nm ² MHz
Q (Spin-Rot., T = 300K) = 287.232	J Max. = 66	Lines Listed = 66
Dipole Moments/Debye: µ _a = 3.098	^µ b ⁼	^µ c [*]
Rot. Const./MHz: A =	B = 21787.46	C =

The experimental data were taken from the following papers:

E. Tiemann, 1974, J. Phys. Chem. Ref. Data, T. Torring, 1968, Z. Naturforsch. 23a, 777.

The dipole moment was reported by J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, 1970, J. Chem. Phys. <u>52</u>, 3458.

A more recent set of measurements, discovered too late to include in this edition, has been given by E. L. Manson, W. W. Clark, F. C. De Lucia, and W. Gordy, 1977, Phys. Rev. <u>A15</u>, 223. The catalogue predictions are within three standard deviations of their measurements.

Species Tag: 44003	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Acetald	ehyde	Author: R. L.	Poynter
ground vibrational A state			
CH ₃ CHO		Min. Int. = 6	x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K)	= 12112.28	J Max. = 20	Lines Listed = 1347
Dipole Moments/Debye:	μ = 2.550	μ _b = 0.870	μ _c = 0.
Rot. Const./MHz: A =	56609.474	B = 10162.766	C = 9100.412

The data set used is referenced by A. Bauder, F. J. Lovas and D. R. Johnson 1976, J. Phys. Chem. Ref. Data <u>5</u>, 53. The lines were fit to a rigid rotor with centrifugal distortion.

Species Tag: 44004 Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Nitrous Oxide	Author: R. L.	Poynter & H. M. Pickett
N ₂ 0	Min. Int. = 2	x 10 ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) =	J Max. = 61	Lines Listed = 61
Dipole Moments/Debye: µ _a = .1608	^µ b =	^µ c ⁼
Rot. Const./MHz: A =	B = 12561.637	C =

The experimental data were taken from the summary given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment was measured by L. H. Scharpen, J. S. Muenter, and V. W. Laurie, 1970, J. Chem. Phys. <u>53</u>, 2513.

Species Tag: 45001 Page 1 of 1	Version: 1 Date: Dec. 1979
Species Name: Carbon Monosulfide	Author: R. L. Poynter
Carbon - 13 isotope ¹³ CS	Min. Int. = 3×10^{-5} nm ² MHz
Q (Spin-Rot., T = 300K) = 270.652	J Max. = (62) Lines Listed = 62
Dipole Moments/Debye: µ _a = 1.957	^µ b ⁼ ^µ c ⁼
Rot. Const./MHz: A =	B = 23123.807 C =

The experimental measurement was reported by R. C. Mockler and G. R. Bird, 1955, Phys. Rev. <u>98</u>, 1837.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 45002 Page 1 of 1	Version: 1 Date: Dec. 1979
Species Name: Silicon Monoxide	Author: R. L. Poynter
silicon - 29 isotope ²⁹ Si O	Min. Int. = 4×10^{-5} nm ² MHz
Q (Spin-Rot., T = 300K) = 290.878	J Max. = 66 Lines Listed = 66
Dipole Moments/Debye: µ _a = 3.098	^v b ⁼ ^v c ⁼
Rot. Const./MHz: A = B	= 21514.07 C =

The experimental data were taken from the following papers:

E. Tiemann, 1974, J. Phys. Chem. Ref. Data, T. Törring, 1968, Z. Naturforsch. 23a, 777.

The dipole moment was reported by J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, 1970, J. Chem. Phys. <u>52</u>, 3458.

A more recent set of measurements, discovered too late to include in this edition, has been given by E. L. Manson, W. W. Clark, F. C. De Lucia, and W. Gordy, 1977, Phys. Rev. <u>A15</u>, 223. The catalogue predictions are within three standard deviations of their measurements.

Species Tay: 45003 Page	l of 1	Version: 1	Date: Jan. 1980
Species Name: Formamide		Author: R. L.	Poynter
NH ₂ CHO		Min. 1nt. = 10	0 ⁻¹¹ nm ² MHz
Q (Spin-Rot., 1 - 300K) - 2	9155.75	J Max. = 30	Lines Listed = 3246
Dipole Moments/Debye: µ	3.616	μ _b = 0.852	^μ c ⁼ 0.
Rot. Const./MHz: A = 7271	6.945	B = 11373.453	C = 9833.903

C. C. Costain and J. M. Dowling, 1960, J. Chem. Phys. <u>32</u>, 290.

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.

W. H. Kirchhoff and D. R. Johnson, 1973, J. Mol. Spect. <u>45</u>, 159.

S. G. Kukolich and A. C. Nelson, 1971, Chem. Phys. Lett. 11, 383.

R. J. Kurland and E. B. Wilson, Jr., 1957, J. Chem. Phys. 27, 585.

The dipole moment was reported in the paper by Kurland and Wilson.

Species Tag: 46001	Page 1	of 1	Version	: 1	Date: Dec.	19.79
Species Name: Carbon	Monosulfi	de	Author:	R. L. P.	oynter	
Sulfur - 34 isotop C ³⁴ S	e		Min. In	t. = 3 :	× 10 ^{−5}	nm ² MHz
Q (Spin-Rot., T = 300K)) = 259.0	665	J Max.	= (61)	Lines Listed =	61
Dipole Moments/Debye:	$\mu_{a} = 1.9$	957	¹¹ p =		¹¹ c ⁼	
Rot. Const./MHz: A =			B = 24103	• 550	C =	

The experimental measurement was reported by R. C. Mockler and G. R. Bird, 1955, Phys. Rev. <u>98</u>, 1837.

The dipole moment was assumed to be the same as the parent species.

Species Tag:	46002	Page	1	of	1	1	lersion	:	1		Date: Dec	. 1979
Species Name: Silicon Monoxide Silicon - 30 isotope ³⁰ Si O			Author:		R. L.	Po	ynter					
			Min. Int. = 3×10^{-5} nm ² MH			nm ² MHz						
Q (Spin-Rot.,	T = 300K) = 29	94.3	358			J Max.	=	67	Li	nes Listed	= 67
Dipole Moments	s/Debye:	μ a =	3.	098		μ	b =			μc	=	
Rot. Const./M	Iz: A =					B =	2125	9.4	48	С	=	

The experimental data were taken from the following papers:

E. Tiemann, 1974, J. Phys. Chem. Ref. Data, T. Törring, 1968, Z. Naturforsch. 23a, 777.

The dipole moment was reported by J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, 1970, J. Chem. Ref. Data, T. Törring, 1968, Z. Naturforsch.

A more recent set of measurements, discovered too late to include in this edition, has been given by E. L. Manson, W. W. Clark, F. C. De Lucia, and W. Gordy, 1977, Phys. Rev. <u>A15</u>, 223. The catalogue predictions are within three standard deviations of their measurements.

Species Tag: 46003	Page 1	of	L	Version: 1	Date: Jan. 1980			
Species Name: Thioformaldehyde				Author: R. L. Poynter				
. H ₂ CS				Min. Int. = 8×10^{-10} nm ² MHz				
Q (Spin-Rot., T = 300K) = 5984.646				J Max. = 27	Lines Listed = 517			
Dipole Moments/Debye: µ _a = 1.649				μ _b = 0.	$\mu_{\rm C} = 0.$			
Rot. Const./MHz: A =	291291.6	541	B	= 17699.628	C = 16651.830			

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data <u>1</u>, 1011.

Other references were taken from this paper.

The dipole moment was taken from B. Fabricant, D. Krieger, and J. S. Muenter, 1977, J. Chem. Phys. <u>67</u>, 1576.

Species Tag: 46004	Page 1 of	1	Version: 1		Date: Jan 1980	
Species Name: Ethyl Alcohol			Author: R. L. Poynter			
ground trans state C ₂ H ₅ OH			Min. Int. = 3	x 10	o ⁻¹⁰ nm ² MHz	
Q (Spin-Rot., T = 300K) = 17010.5		J Max. = 20	Lin	nes Listed = 1236	
Dipole Moments/Debye:	$\mu_{a} = 0.046$		^µ b = 1.438	μc	= 0.	
Rot. Const./MHz: A =	34891.75	B	= 9350.635	C	= 8135.236	

J. Michielson-Effinger, 1969, J. de Phys. <u>30</u>, 333.
Y. Sasada, M. Takano, and T. Satoh, 1971, J. Mol. Spect. <u>38</u>, 33.
M. Takano, Y. Sasada, and T. Satoh, 1968, J. Mol. Spect. <u>26</u>, 157.
Additional measurements were made by E. A. Cohen, 1979, private communication.

The dipole moment was reported by Takano, et al, above.

Species Tag: 46005	Page 1 of	1	Version: 1		Date: Jan, 1980
Species Name: Formic	Acid		Author: R. L. I	Poynt	er
ground trans stat HCOOH	e	-	Min. Int. = 6	x 1	o ⁻¹⁰ nm ² MHz
Q (Spin-Rot., T = 300K) = 8884.2		J Max. = 20	Lin	es Listed = 1888
Dipole Moments/Debye:	$\mu_a = 1.396$		μ _b = 0.260	μc	= 0.
Rot. Const./MHz: A =	77512.25	В	= 12055.11	C	= 10416.12

J. Bellet, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure <u>9</u>, 49.

P. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. <u>26</u>, 680. R. Trambarulo, A. Clark, and C. Hearns, 1958, J. Chem. Phys. <u>28</u>, 736.

The dipole moment measured by H. Kim, R. Keller, and W. D. Gwinn, 1962, J. Chem. Phys. <u>37</u>, 2748, was adjusted to the new OCS standard, (J. S. Muenter, 1968, J. Chem. Phys. <u>48</u>, 4544).

Species Tag: 47001 Pag	je l of 1	Version: 1	Date: Jan. 1980
Species Name: Thioformaldehyde		Author: R. L. Po	Dynter
Carbon - 13 isotope H ₂ ¹³ CS		Min. Int. = 2	x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K) =	6219.87	J Max. = 10	Lines Listed = 110
Dipole Moments/Debye: ^µ a	= 1.649	μ _b = 0.	^μ c ⁼ 0.
Rot. Const./MHz: $A = 2$	91660.0	B = 16998.342	C = 16030.791

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data <u>1</u>, 1011.

Other references were taken from this paper.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 47002 p	age l of l	Version: 1	Date: Jan. 1980
Species Name: Formic Ac	id trans state	Author: R. L. F	Poynter
Carbon - 13 isotcpe H ¹³ COOH		Min. Int. = 10	-10 nm ² MHz
Q (Spin-Rot., T = 300K)	= 8896.76	J Max. = 20	Lines Listed = 1194
Dipole Moments/Debye: µ	a = 1.396	$\mu_{b} = 0.260$	^µ c ^{≖ 0.}
Rot. Const./MHz: A = 7	7580.494	B = 12053.567	C = 10378.997

J. Bellet, A. Deldalle, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure, <u>9</u>, 65.

R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. 26, 680.

The dipole moment was assumed the same as the parent species, tag #46005.

Species Tag: 47003 Page 1 of	1 V	ersion:	1	Date: Jan.	1980	
Species Name: Formic Acid Deuterium isotope on C-atom DCOOH		Author: R. L. Poynter				
		Min. Int. = 2×10^{-9} nm ² MHz				
Q (Spin-Rot., T = 300K) = 10531.1	.9 J	Max. =	20 Li	nes Listed	= 628	
Dipole Moments/Debye: $\mu_a = 1.396$	μ _μ	= 0.26	^۵ 0 ^۴ 0	÷ 0.		
Rot. Const./MHz: A = 57709.33	B =	12055.97	·1 (; = 9955.6	09	

J. Bellet, A. Deldalle, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure, 9, 65.
R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. <u>26</u>, 680.

The dipole moment was assumed the same as the parent species, tag #46005.

Species Tag: 47004 Page 1 of 1	Version: 1 Date: Jan. 1980			
Species Name: Formic Acid	Author: R. L. Poynter			
Deuterium isotope on O-atom HCOOD	Min. Int. = 10^{-9} nm ² MHz			
Q (Spin-Rot., T = 300K) = 9954.87	J Max. = 20 Lines Listed = 612			
Dipole Moments/Debye: _{µa} = 1.396	$^{\mu}b = 0.260 ^{\mu}c = 1.$			
Rot. Const./MHz: A = 66100.14 B	= 11762.577 C = 9969.943			

J. Bellet, A. Deldalle, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure, <u>9</u>, 65.

R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. 26, 680.

The dipole moment was assumed the same as the parent species, tag #46005.

Species Tag: 48001 Page 1 of	Version: 1 Date: Dec. 1979				
Species Name: Sulfur monoxide	Author: H. M. Pickett				
SO ^J Σ ground state	Min. Int. = 10^{-6} nm ² MHz				
Q (Snin-Rot., T = 300K) = 850.099	J Max. = 50 Lines Listed = 330				
Dipole Moments/Debye: $\mu_a = 1.55$	^µ b ⁼ ^µ c ⁼				
Rot. Const./MHz: A =	B = 21523.02 C =				

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The data used is from W. W. Clark and F. C. DeLucia, 1976, J. Molec. Spectroscopy <u>60</u>, 332. Both electric dipole and magnetic dipole transitions are listed.

The partition function was obtained by a sum over states to J=50. Other values are

<u>T</u>	2
10K	17.284
30	69.382
60	154,400
100	269.677
150	414.502

Species Tag: 48002 Page 1 of	1 Version: 1	Date: Dec. 1979
Species Name: Sulfur Monoxide v = 1	Author: H. M.	Pickett
vibrationally excited state of t ground ³ E electronic state	he Min. Int. = 4	x 10 ⁻⁶ nm ² MHz
Q (Spin-Rot., T = 300K) = 856.726	J Max. = 50	Lines Listed = 261
Dipole Moments/Debye: $\mu_a = 1.55$	^µ b =	*c =
Rot. Const./MHz: A =	B = 21351.0	C =

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The data are from T. Amano, E. Hirota, and Y. Morino, 1967, J. Phys. Soc. Japan <u>22</u>, 399. All centrifugal distortion constants were fixed to their ground state values. Magnetic and electric dipole transitions are included.

This state is 1111.5 cm⁻¹ above v = 0 (G. Herzberg, 1950, Spectra of Diatomic Molecules, Van Nostrand, New York). The partition function is determined by a sum over states to J = 50. Other values are:

<u>T</u>	Q	
10K	17.341	
30	69.781	
60	155.452	
100	271.644	
150	417.628	

Species Tag: 48003 Page 1 o	f 1 Version: 1	Date: Jan. 1980
Species Name: Thioformaldehyde	Author: R. L.	, Poynter
Sulfur - 34 isotope H ₂ C ³⁴ S	Min. Int. = 3	x 10 ⁻⁹ mm ² MHz
Q (Spin-Rot., T = 300K) = 6084	.57 J Max. = 10	Lines Listed = 111
Dipole Moments/Debye: µ = 1	.647 μ _b = 0.	μ _c = 0.
Rot. Const./MHz: A = 291660	. B = 17387.949	C = 16376.922

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data <u>1</u>, 1011.

Other references were taken from this paper.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 48004 Page 1 of 1	Version: 1	Date: Jan, 1980
Species Name: Ozone ground state	Author: R. L. Poynter and H. M. Pickett	
16 ₀₃	Min. Int. = 3 x	10 ⁻¹⁰ nm ² MHz
Q (Spin-Rot., T = 300K) = 3378.28	J Max. = 40 L	ines Listed = 1465
Dipole Moments/Debye: $\mu_a = 0$.	μ _b = 0.5324 μ	c [*] ⁰ .
Rot. Const./MHz: A = 106535.234 B	= 13349.0901	C = 11834.5235

The catalog of the ozone lines is based on the work of M.J.C. Depannemaecker, B. Duterage, and M. J. Bellet, 1977, J. Quant. Spect. Radiat. Transfer <u>17</u>, 519. Additional lines are cited in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data <u>7</u>, 1445.

Species Tag: 50001 Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Sulfur Monoxide Sulfur 34 isotope ³ E ground state ³⁴ SO	Author: H. M. Pickett		
	Min. Int. = 10	Min. Int. = 10^{-6} nm ² MHz	
Q (Spin-Rot., T = 300K) = 866.870	J Max. = 50	Lines Listed = 280	
Dipole Moments/Debye: µ _a = 1.55	^μ b *	^µ c [≖]	
Rot. Const./MHz: A =	B = 21102.72	C =	

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The data used is reported in E. Tiemann, 1974, J. Phys. Chem. Ref. Data <u>3</u>, 259. Both electric dipole and magnetic dipole transitions are listed in the catalogue.

The partition function was determined by a sum over states. Other values are:

<u>T</u>	9
10K	17.554
30	70.654
60	157.354
100	274.922
150	422.629

Species Tag: 50002 Page 1 of 1	Version: 1	Date: Dec, 1979
Species Name: Sulfur Monoxide	Author: H. M. Pickett	
Oxygen 18 isotope	Min. Int. = j	LO ⁻⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 917.393	J Max. = 50	Lines Listed = 179
Dipole Moments/Debye: µ _a = 1.55	^µ b ⁼	^μ c ⁼
Rot. Const./MHz: A = B	= 19929.	C =

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The value of μ was fixed at -156.51 MHz and $\mu(1)$ was set to zero. Both electric dipole and magnetic dipole transitions are listed in the catalogue. The data used is listed in E. Tiemann, 1974, J. Phys. Chem. Ref. Data. <u>3</u>, 259.

The partition function was determined by a sum over states. Other values are:

<u>T</u>	<u>Q</u>	
10K	18.370	
30	74.493	
60	166.257	
100	290.728	
150	447.118	

6-2

Species Tag: 50003 Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Symmetric ¹⁸ 0	Author: H. M. Pic	kett & R. L. Poynter
Ozone ground state		_0 2
16 ₀₋ 18 ₀₋ 16 ₀	Min. Int. = 10	nm ^c MHz
Q (Spin-Rot., T = 300K) = 3525.63	J Max. = 40	Lines Listed = 1568
Dipole Moments/Debye: µ _a = 0.	μ _b = 0.5324 ι	rc = 0.
Rot. Const./MHz: A = 98646.687 B	= 13352.732	C = 11731.767

The catalog of symmetric 18 O ozone is based on the work of J. Depannemaecker and J. Bellet (1977, J. Molo Specty. <u>66</u>, 106). The dipole moment used is the ${}^{16}O_3$ value.

Species Tag: 50004 Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Asymmetric ¹⁸ 0	Author: H. M. PI	ickett & R. L. Poynter
Ozone 18 ₀₋ 16 ₀₋ 16 ₀	Min. Int. = 10 ⁻	-9 nm ² MHz
Q (Spin-Rot., T = 300K) = 7213.74	J Max. = 40	Lines Listed = 4036
Dipole Moments/Debye: $\mu_a = 0.0068$	$\mu_{b} = 0.5324$	$^{\mu}c = 0.$
Rot. Const./MHz: A = 104573.161	B = 12591.533	C = 11212.5057

The catalog of asymmetric 18 0 ozone is based on the work of J. Depamemaecker and J. Bellet (1977, J. Mol. Specty. <u>66</u>, 106). The dipole moment used is the 16 0₃ value rotated to the inertial axes of asymmetric 18 0 ozone (based on the equilibrium structure).

Species Tag: 51001 Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Cyanoacetylene	Author: R. L.	Poynter
HCCCN	Min. Int. = 2	2 x 10 ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) = 4123.26	J Max. = 99	Lines Listed = 154
Dipole Moments/Debye: µ _a = 3.599	¹¹ P =	^µ c ⁼
Rot. Const./MHz: A =	B = 4549.059	C =

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 441.

The dipole moment was remeasured by the *c*bove authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 51002 Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Chlorine Monoxide	Author: H. M.	Pickett
2π states 35 clo v = o	Min. Int. = 10	-10 nm ² MHz
Q (Spin-Rot., T = 300K) = 3289.29	J Max. = 83	Lines Listed = 2610
Dipole Moments/Debye: µ _a = 1.239	^µ b =	^µ c ⁼
Rot. Const./MHz: A = B	= 18602.86	C =

The experimental lines below 200 GHz are from R. K. Kakar, E. A. Cohen, and M. Geller, 1978, J. Mol. Spec. <u>70</u>, 243. Lines above 200 GHz were measured at JPL by E. A. Cohen and H. M. Pickett. The lines were fit to a fine structure Hamiltonian which included p_D and q_D terms and centrifugal distortion on B to sixth power in J. The hyperfine terms in the Hamiltonian included all off-diagonal matrix elements for a, b, c, d, n_1 , n_2 , and n_3 . The partition function was determined by a sum over states to F = 49 for both the $\Omega = 1/2$ and $\Omega = 3/2$ states. Other values are:

<u> </u>	_2
150	1424.27
100	921,36
60	553:46
30	284.09
10	105.25

Species Tag: 52001 Page 1 of 1	Version: 1	Cate: Dec. 1979	
Species Name: Cyanoacetylene	Author: R. L. Poynter Min. Int. = 2×10^{-7} nm ² MHz		
carbon - 13 isotope on atom 1 H ¹³ CCN			
Q (Spin-Rot., T = 300K) = 4140.42	J Max. = 99	Lines Listed = 152	
Dipole Moments/Debye: µ _a = 3.599	^μ b =	^μ c ⁼	
Rot. Const./MHz: A =	B = 4530.198	C ='	

÷.,

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 52002	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanoacetylene Carbon - 13 isotope on atom 2 HC ¹³ CCN		Author: R. L. Poynter		
		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K)) = 4140.82	J Max. = 99	Lines Listed = 146	
Dipole Moments/Debye:	μ = 3.599	μ _b =	μ _c =	
Rot. Const./ MHz: A =	<u> </u>	B = 4529.76	C =	

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 52003 Page 1 of 1	L Version: 1	Date: Dec, 1979		
Species Name: Cyanoacetylene	Author: R. L.	Author: R. L. Poynter		
Carbon - 13 isotope on atom 3 H ¹³ CCCN	Min. Int. = 2	Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4254,75	J Max. = 99	Lines Listed = 144		
Dipole Moments/Debye: _{µa} = 3.599	"b =	¹¹ c ⁷		
Rot. Const./MHz: A =	B = 4408.44	C = .		

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 52004	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanoacetylene Nitrogen - 15 isotope, HCCC ¹⁵ N		Author: R. L. Poynter Min. Int. = 4×10^{-6} nm ² MHz		
Dipole Moments/Debye: $\mu_a = 3.599$ $\mu_b = \mu_c$				
Rot. Const./MHz: A =		B = 4416.75	• C =	

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.
Species Tag: 52005 Page 1 of	1 Version: 1	Date: Dec. 1979
Species Name: Cyanoacetylene	Author: R. L.	Poynter
Deuterium Isotope DCCCN	Min. Int. = 10	o ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) = 4443.03	J Max. = 99	Lines Listed = 156
Dipole Moments/Debye: µ _a = 3.724	μ _b =	^µ c ⁼
Rot. Const./MHz: A =	B = 4221.58	C =

ЧĘ.,

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Dats, <u>7</u>, 441.

Species Tag: 53001 Page	1 of 1	Version: 1	Date: Jan. 1980
Species Name: Acrylonitrile		Author: R. L. Pcynter	
C ₂ H ₃ CN		Min. Int. = 10) ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K) =	26198.1	J Max. = 40	Lines Listed = 3697
Dipole Moments/Debye: µ _a =	3.68	$\mu_{\rm b} = 1.25$	μ _c = 0.
Rot. Const./MHz: A = 49850	.712	8 = 4971.0849	C = 4513.8005

C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 777.
M. C. L. Gerry and G. Winnewisser, 1973, J. Mol. Spect. <u>48</u>, 1.
M. C. L. Gerry, K. Yamada, and G. Winnewisser, 1979, J. Phys. Chem. Ref. Data <u>8</u>, 107.

The dipole moment was measured by W. W. Wilcox, J. H. Goldstein, and J. W. Simmons, 1954, J. Chem. Phys. <u>22</u>, 516.

Species Tag: 53002 Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Clorine Monoxide	Author: H. M. P	ickett
2π states Chlorine - 37 isotope 37 CLO $v = 0$	Min. Int. = 10^{-10} nm ² MHz	
Q (Spin-Rot., T = 300K) = 3403.2	J Max. = 25	Lines Listed = 926
Dipole Moments/Debye: $\mu_a = 1.239$	^µ b ⁼	^µ c ⁼
Rot. Const./MHz: A = 8	= 1828.70	C =

The experimental and calculational method lines are from R. K. Kakar, E. A. Cohen, M. Geller, 1978, J. Mol. Spec. $\underline{70}$, 243. The partition function was scaled from 35 CLO by the ratio of the B values.

Species Tag: 54001 Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Acrylonitrile	Author: R. L	. Poynter
Carbon - 13 isotope on atom 1 CH ₂ CH ¹³ CN	Min. Int. =	4 x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K) = 26333.	J Max. = 10	Lines Listed = 118
Dipole Moments/Debye: $\mu = 3.68$	μ _b = 1.25	μ _c = 0
Rot. Const./MHz: A = 49781.	B = 4948.153	C = 4494.485

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 54002	Page 1 of 1	Version: 1	Date: Jan. 1980		
Species Name: Acrylonitrile carbon - 13 isotope on atom 2 CH ₂ ¹³ CHCN		Author: R. L	Author: R. L. Poynter		
		Min. Int. =	Min. Int. = 3×10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300K)) = 26665.	J Max. = 10	Lines Listed = 117		
Dipole Moments/Debye:	μ _a = 3.68	$\mu_{b} = 1.25$	μ _c = 0		
Rot. Const./MHz: A =	48645.	B = 4948.700	(= 4485.145		

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 54003	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Acrylon	itrile	Author: R. L.	Poynter
Carbon - 13 isotope	on atom 3		
¹³ CH ₂ CHCN		Min. Int. = 3	x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K)) = 27087.5	J Max. = 10	Lines Listed =
Dipole Moments/Debye:	μ _a = 3.68	μ _b = 1.25	μ _c = 0
Rot. Const./MHz: A =	49180.	B = 4837.34	C = 4398.07

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 54004 Page 1 of 1	Version: 1	Date: Jan. 1980		
Species Name: Acrylonitrile	Author: R. L. I	Author: R. L. Poynter		
Deuterium isotope on atom 2 CH ₂ CDCN	Min. Int. = 93	10 ⁻¹⁰ nm ² MHz		
Q (Spin-Rot., T = 300K) = 29697.8	J Max. = 10	Lines Listed = 322		
Dipole Moments/Debye: $\mu_a = 3.68$	μ _b = 1.25	μ _c = 0		
Rot. Const./MHz: A = 40198.6 E	3 = 4934.35	C = 4388.41		

.

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 55001	Page 1 of 1	Version: 1	Date: Jan. 1980		
Species Name: Ethyl Cyanide C ₂ H ₅ CN		Author: R. L.	Author: R. L. Poynter		
		Min. Int. = 2×10^{-12} nm ² MHz			
Q (Spin-Rot., $T = 300$	K) = 111848.	J Max. = 20	Lines Listed = 2799		
Dipole Moments/Debye: μ_a = 3.850		μ _b = 1.23	$\mu_{\rm c} = 0.$		
Rot. Const./MHz: A =	27663.66	B = 4714.144	C = 4235.041		

- J. Burie, J. Demaison, A. Dubrille, and D. Boucher, 1978, J. Mol. Spect. <u>72</u>, 275.
- D. R. Johnson, F. J. Lovas, C. A. Gottlieb, E. W. Gottlieb, M. M. Litvak, M. Guelin, and P. Thaddeus, 1977, Ap. J. <u>218</u>, 370.

H. Mader, H. M. Heise, and H. Dreizler, 1973, Z. Naturforsch. 29a, 164.

The dipole moment was taken from H. M. Heise, H. Lutz, and H. Dreizler, 1974, Z. Naturforsch. <u>29a</u>, 1345.

Species Tag: 56001	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Ethyl C	yani de	Author: R. L. P	oynter
carbon - 13 isotope CH ₃ CH ₂ ¹³	e on atom 1 CN	Min. Int. = 2 x	10 ⁻¹² nm ² MHz
Q (Spin-Rot., T = 300K) = 112466.	J Max. = 10	Lines Listed = 1189
Dipole Moments/Debye:	μ _a = 3.840	$\mu_{b} = 1.370$	μ _c = 0
Rot. Const./MHz: A =	27634.94	B = 4689.805	C = 4214.746

H. M. Heise, H. Lutz, and H. Driezler, 1973, Z. Naturforsch. 29a, 1345.

The dipole moment was assumed the same as in the parent species, tag #55001.

Species Tag: 56002 Pa	ge 1 of	1 Version: 1	Date: Jan. 1980	
Species Name: Ethyl Cyanide		Author: R.	Author: R. L. Poynter	
Carbon - 13 isotope on atom 2 CH ₃ ¹³ CH ₂ CN		Min. Int. =	2 x 10 ⁻¹² nm ² MHz	
Q (Spin-Rot., T = 300K) =	113691.	J Max. = 10	Lines Listed = 1197	
Dipole Moments/Debye: µ _a	= 3.840	μ _b = 1.370	μ _c = 0.	
Rot. Const./MHz: A = 27	7045.40	B = 4697.868	C = 4207.046	

H. M. Heise, H. Lutz, and H. Driezler, 1973, Z. Naturforsch. 29a, 1345.

The dipole moment was assumed the same as in the parent species, tag #55001.

110

Species Tag: 56003 Page 1 of	1	Version: 1	Date: Jan. 1980
Species Name: Ethyl Cyanide Carbon - 13 isotope on atom 3 ¹³ CH ₃ CH ₂ CN		Author: R. L. Poynter Min. Int. = 2×10^{-12} nm ² MHz	
Dipole Moments/Debye: $\mu_a = 3.840$		μ _b = 1.370	μ _c =
Rot. Const./MHz: A = 27342.174	B	= 4597.939	C = 4133.707

H. M. Heise, H. Lutz, and H. Driezler, 1973, Z. Naturforsch. 29a, 1345.

The dipole moment was assumed the same as in the parent species, tag #55001.

Species Tag: 56004	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Ethyl	Cyanide	Author: R. L.	Poynter	
Nitrogen - 15 - isotope CH ₃ CH ₂ C ¹⁵ N		Min. Int. = 2×10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300	K) - 38458.	J Max. ≖ 20	Lines Listed = 1621	
Dipole Moments/Debye:	μ _a = 3.840	μ _b = 1.370	^μ c ⁼ 0.	
Rot. Const./MHz: A =	27541.953	B = 4574.771	C = 4119.4300	

H. M. Heise, H. Mader, and H. Dreizler, 1976, Z. Naturforsch. 31a, 1228.

The dipole moment was assumed the same as in the parent species, tag #55001.

Species Tag: 56005 Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Ethyl Cyanide	Author: R. L. Poynter		
Deuterium isotope on methyl carbon atom trans to CN group CH ₂ D CH ₂ CN - S	Min. Int. = 2×10^{-12} nm ² MHz		
Q (Spin-Rot., 1 = 300K) = 118802.	J Max. = 10	Lines Listed = 1178	
Dipole Moments/Debye: $\mu_d = 3.840$	$\mu_{b} = 1.370$	μ _c = 0	
Rot. Const./MIL/: A 27650.795 B	= 4425.061	C = 4000.763	

I G

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

H. Mader, H. M. Heise, and H. Dreizler, 1973, Z. Naturforsch. 29a, 164.

Species Tay: 56006 Pa	ye i of i	Version: 1	[Date: Jan. 1980	
Species Name: Ethyl Cyanide Deuterium Isotope on methyl carbon gauche to CN group CH ₂ DCH ₂ CN-a		m Author: .	Author: . L. Poynter		
		Min. Int. =	Min. Int. = 4×10^{-13} nm ² MHz		
Q (Spin-Rot., T - 300K) -	121064.	J Max. = 1	0 Line	es Listed = 1214	
Dipole Moments/Debye: "a	= 3.840	^µ b = 1.370	^μ c [°]	= 0	
Rot. Const./MHz: A = 25	022.568	B = 4583.422	C •	4110.245	

H. Mader, H. M. Heise, and H. Dreizler, 1973, Z. Naturforsch. 29a, 164.

Species Tag: 60001 Page 1 of	1 Version: 1	Date: Dac. 1979
Species Name: Carbonyl Sulfide	Author: R. L.	Poynter
OCS	Min. Int. = 4	x 10 ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) = 1028.1	J Max. = 99	Lines Listed = 99
Dipole Moments/Debye: $\mu_a = 0.715$	¹¹ b =	[#] c [*]
Rot. Const./MHz: A =	B = 6081.4924	C =

TABLE IN CONSISTENCE AND DESCRIPTION OF THE PARTY OF THE

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment has been remeasured by J. M. L. J. Reinartz and A. Dymanus, 1974, Chem. Phys. Lett. <u>24</u>, 346.

Species Tag: 60002 Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Silicon Monosulfide	Author: R. L.	Poynter
²⁸ Si ³² S	Min. Int. = 9 3	10 ⁻⁶ nm ² MHz
Q (Spin-Rot., T = 300K) = 688.940	J Max. = 97	Lines Listed = 97
Dipole Moments/Debye: $\mu_a = 1.730$	^µ b ⁼	^µ c ⁼
Rot. Censt./MHz: A =	B = 9077.45	C =

The experimental measurements are summarized in E. Tiemann, 1976, J. Phys. Chem. Ref. Data, <u>5</u>, 1147.

The dipole moment was measured by J. Hoeft, F. J. Lovas, E. Tiemann, and T. Törring, 1969, Z. Naturforsch. <u>24a</u>, 1422.

és;

N.

Species Tag: 61001 Page 1 of 1	Version: 1	Date: Dec, 1979	
Species Name: Carbonyl Sulfide	Author: R. L. Poynter		
Carbon - 13 isotope 0 ¹³ CS	Min. Int. = 4	Min. Int. = 4×10^{-7} mm ² MHz	
Q (Spin-Rot., T = 300K) = 1031.492	J Max. = (99)	Lines Listed = 99	
Dipole Moments/Debye: µ _a = .71?	¹¹ b [±]	"c ~	
Rot. Const./MHz: A =	B = 6061.916	C .	

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

Species Tag: 51002 Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Silicon Monosulfide	Author: R. L.	Poynter
Silicon – 29 isotope 29 _{Si} ³² S	Min. Int. = 9	x 10 ⁻⁶ nm ² MHz
Q (Spin-Rot., T = 300K) = 701.830	J Max. = 98	Lines Listed = 98
Dipole Moments/Debye: u _a = 1.730	"b ⁼	^μ c ^Ξ
- Rot. Const./MHz: A =	B = 8910.6 6	C =

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

Species Tag: 62001 Pag	ge 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Carbonyl Sulfide Sulfur - 34 isotope OC ³⁴ S		Author: R. L. P	Author: R. L. Poynter		
		Min. Int. = 4	Min. Int. = 4×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) =	1053.926	J Max. = (99)	Lines Listed = 99		
Dipole Moments/Debye: µ _a	= 0.715	μ ^ρ =	¹¹ C ⁼		
Rot. Const./MHz: A =		B = 5932.8411	C =		

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445.

Species Tag: 62002	Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Carbonyl Sulfide		Author: R. L. Poynter	
Oxygen - 18 isotope		Min Int - (- 1	o-172m_
18 OCS		$[] MIN. INC. = 4 \times]$.0 nm MHZ
Q (Spin-Rot., T = 300K)) = 1096.031	J Max. = (99)	Lines Listed = 99
Dipole Moments/Debye:	μ a = 0.715	μ _b =	μ _c =
Rot. Const./MHz: A =		B = 5704.8608	C =

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, $\underline{7}$, 1445.

The dipole moment was assumed to be the same as the parent species.

120

Species Tag: 62003	Page 1 of	1	Version: 1		Date: Dec. 1979
Species Name: Silicon Monosulfide		Author: R.	L. Po	ynter	
Silicon - 30 isoto 30 _{Si} 32	pe S		Min. Int. =	8 x 1	.0 ⁻⁶ nm ² MHz
Q (Spin-Rot., T = 300)	() = 714.275		J Max. = 99	Li	nes Listed = 99
Dipole Moments/Debye:	$\mu_a = 1.730$		^µ b =	۴c	2
Rot. Const./MHz: A =		B	= 8755.33	C	=

...

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

Species Tag: 62004 Pa	age l of 1	Version: 1	Date: Dec. 1979	
Species Name: Silicon Monosulfide Sulfur - 34 - isotope 28 _{Si} ³⁴ S		Author: R. L. Poynter		
		Min. Int. = 9×10^{-6} nm ² MHz		
Q (Spin-Rot., T = 300K) =	= 708.329	J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye: 4	a = 1.730	^μ b =	^µ c ⁼	
Rot. Const./MHz: A =	В	= 8828.86	C = '	

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445.

The dipole moment was assumed to be the same as the parent species.

122

Species Tag: 64001 Page 1 of 1	Version: 1	Date: Oct. 1979
Species Name: Diatomic Sulfur	Author: H. M. Pi	ckett
$v = 0, \frac{3\Sigma}{g}$ ground state	Min. Int. = 4.0	x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K) = 965.37	J Max. = 35	Lines Listed = 34
Dipole Moments/Debye: µ _a =	μ _b ⁼ magnetic	^µ c ⁼
Rot. Const./MHz: A = B	= 8831.2	C =

The experimentally measured lines are given in H. M. Pickett and T. L. Boyd, 1979, J. Mol. Specty. <u>75</u>, 53. The calculational method used is from T. Amano and E. Hirota, 1974, J. Mol. Specty. <u>53</u>, 346. For S₂, the parameter μ (1) is assumed to be zero. Only transitions between states with J = N and J = N - 1 are listed because the energies of the J = N + 1 states are uncertain by more than 1 GHz. All the neglected transitions from J = N + 1 states lie above 450 GHz for J < 35.

The intensities of the magnetic dipole allowed transitions were calculated using the g values given in Pickett and Boyd. Hund's case (b) nomenclature is used even though the states are closer to Hund's case (a) for low J. The J = N + 1 states correlate with $\Sigma = 0$ and the J = N - 1 and J = N states correlate with $\Sigma = \pm 1$ states of p = $\pm (-1)^{J}$ inversion parity, respectively.

The value of Q is determined from a sum over states to J = 50.

Species Tag: 64002	Page 1 of ₁	Version: 1	Date: Jan, 1980
Species Name: Sulfur	Dioxide	Author: R. L.	Poynter
so ₂		Min. Int. = 5 x	10 ^{-9 nm²MHz}
Q (Spin-Rot., T = 300K) = 5898.91	J Max. = 40	Lines Listed = 1902
Dipole Moments/Debye:	ν _a = 0.	μ _b = 1.633	^µ c ⁼ 0.
Rot. Const./MHz: A =	60778.558	B = 10317.913	C = 8799.652

F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445. (A complete summary and references to all available data).

The dipole moment was taken from D. Patel, D. Margolese, and T. R. Dyke, 1979, J. Chem. Phys. <u>70</u>, 2740.

124

Species Tag: 75001	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
HC5N		Min. Int. = 2	2×10^{-7} nm ² MHz	
Q (Spin-Rot., T = 300K)) = 4695.48	J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye:	$\mu_{a} = 4.330$	μ _b =	μ _c =	
Rot. Const./MHz: A =		B = 1331.33	C =	

The dipole moment was measured by the same authors.

×.****

Species Tag: 76001 Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Cyanodiacetylene	Author: R. L.	Author: R. L. Poynter		
Carbon - 13 isotope on atom 1 HCCCC ¹³ CN	Min. Int. = 2×10^{-7} nm ² MHz			
Q (Spin-Rot., T = 300K) = 4742.326	J Max. = 99	Lines Listed = 99		
Dipole Moments/Debye: µ _a = 4.330	"b =	^u c ⁼		
Rot. Const./MHz: A =	B = 1318.18	C =		

Species Tag: 76002	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on atom 2 HCCC ¹³ CCN		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K)	= 4699.78	J Max. = 99	Lines Listed = 99	
Dipole Moments/ Debye:	μ a = 4.329	μ _b =	μ _c =	
Rot. Const./MHz: A =		B = 1330.11	C =	

聊

The experimental measurements were taken from A. J. Alexander, H. W. Kroto, and D. R. M. Walton, 1976, J. Mol. Spect. <u>62</u>, 175.

Species Tag: 76003 Page 1 of	1 Version: 1	Date: Dec. 1979
Species Name: Cyanodiacetylene	Author: R.L.F	oynter
Carbon - 13 isotope on atom 3		
HCC ¹³ CCCN	Min. Int. = 2	x 10 ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) = 4700.34	5 J Max. = 99	Lines Listed = 99 $_{e}$
Dipole Maments/Debye: µ = 4.32	9 µ _b =	μ _c -
Rot. Const./MHz: A =	B = 1329.95	C =

Species Tag: 76004	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on atom 4 CH ¹³ CCCCN		Min. Int. = $2 \times 10^{-7} \text{ nm}^2 \text{MHz}$		
Q (Spin-Rot., T = 300K)	= 4744.09	J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye:	μ = 4.329	μ _b =	μ _c =	
Rot. Const./MHz: A =		3 = 1317.689	C =	

•

The experimental measurements were taken from A. J. Alexander, H. W. Kroto, and D. R. M. Walton, 1976, J. Mol. Spect. <u>62</u>, 175.

Species Tag: 76005	Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Cyanodiacetylene		Author: R. L. Poynter			
Carbon - 13 isotop H ¹³ CCCCCN	Carbon - 13 isotope on atom 5 H ¹³ CCCCCN		Min. Int. = 2×10^{-7} ma ² MHz		
Q (Spin-Rot., T = 300	K) = 4820.96	J Max. = 99	Lines Listed = 99		
Dipole Moments/Debye:	μ 4.329	μ	μ _c		
Rot. Const./MHz: A =	<u></u>	B = 1296.68	C =		

Species Tag: 76006	Page 1 of 1	Version: 1	Date: Dec.	1979
Species Name: Cyanodiacetylene Nitrogen - 15 isotope HC ₅ ¹⁵ N		Author: R. L. Poynter		
		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4813.68		J Max. = 99	Lines Listed =	99
Dipole Moments/Debye:	μ = 4.329	μ _b	μ _c =	
Rot. Const./MHz: A =		B = 1298.639	C =	

The dipole moment was measured by the same authors.

131

Species Tag: 76007 Page 1 of	1 Version: 1	Date: Dec. 1979
Species Name: Cyanodiacetylene	Author: R. L.	Poynter
Deuterium isotope DC ₅ N	Min. Int. = 2	x 10 ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) = 4918.13	J Max. = 99	Lines Listed = 99
Dipole Moments/Debye: μ_{a} = 4.329	μ _h =	μ _c =
Rot. Const./MHz: A =	B = 1271.056	C =

Species Tag: 80001 Page 1	of 1	Version: 1	Date: Feb. 1980	
Species Name: Hydrogen Bromide Bromine - 79 isotope H ⁷⁹ Br		Author:R. L. Poynter & H. M. Pickett		
		Min. Int. = 7×10^{-3} nm ² MH		
Q (Spin-Rot., T = 300K) = 101	.214	J Max. =	ines Listed = 19	
Dipole Moments/Debye: µ _a = 0	.828	μ ^b = ι	'c ⁼	
Rot. Const./MHz: A =	В	= 250357.6	C =	

The experimental data were taken from F. A. Van Dijk and A. Dymanus, 1969, Chem. Phys. Lett. 4, 170.

The dipole moment was also reported by these same authors in a later publication, and updated in F. A. Van Dijk and A. Dymanus, 1971, 26th Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, R12, p. 80.

Species Tag: 82001	Page 1 of 1	Version: 1		Date: Feb. 1980
Species Name: Hydrogen Bromide Bromine - 81 isotope H ⁸¹ Br		Author: R. 1	L. Poynt	er & H. M. Pickett
		Min. Int. =	Min. Int. = 7×10^{-3} nm ² MHz	
Q (Spin-Rot., T = 300K) = 101.257	J Max. =	Lin	es Listed = 19
Dipole Moments/Debye:	$\mu_{a} = 0.828$	^µ b =	μc	=
Rot. Const./MHz: A =		B = 250250.2	C	=

a na ser de a la sistema de sistema de la serie de

The experimental data were taken from F. A. Van Dijk and A. Dymanus, 1969, Chem. Phys. Lett. <u>4</u>, 170.

The dipole moment was also reported by these same authors in a later publication, and updated in F. A. Van Dijk and A. Dymanus, 1971, 26th Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, R12, p. 80.

Species Tag: 95001 Page 1	of 1	Version: 1		Date: Feb. 2	1980
Species Name: Bromine Monoxide Bromine - 79 isotope ²¹⁷ 3/2 state 79 BrO		Author: H. M. Pickett			
		Min. Int. = 10^{-9} nm ² MHz		nm ² MHz	
Q (Spin-Rot., T = 300K) = 389	97.60	J Max. = 49	Li	nes Listed =	850
Dipole Moments/Debye: µ _a =	1.765	'b ⁼	۴c	2	
Rot. Const./MHz: A =	B :	= 12830.4	C	=	

The 63 GHz spectrum of BrO is referenced in F. J. Lovas and E. Tiemann, 1974, J. Phys. Chem. Ref. Data <u>3</u>, 653. The other lines were measured at JPL by E. A. Cohen and H. M. Pickett, and a new fit was made which included these lines.

Species Tag: 97001	Page 1 of 1	Version: 1	Date: Feb. 1980	
Species Name: Bromine Monoxide		Author: H. M. Pickett		
Bromine - 81 isotope				
$2 \Pi_{3/2}$ state 81 Br	0	Min. Int. = 1	.0 ⁻⁹ nm ² MHz	
Q (Spin-Rot., T = 300K)	= 3913.9	J Max. = 49	Lines Listed = 850	
Dipole Moments/Deby a: u	a = 1.794	μ = b	μ _c =	
Rot. Const./MHz: A =		B = 12777.08	C =	

The 63 GHz spectrum of BrO is referenced in F. J. Lovas and E. Tiemann, 1974, J. Phys. Chem. Ref. Data $\underline{3}$, 653. The other lines were measured at JPL by E. A. Cohen and H. M. Pickett, and a new fit was made which included these lines.