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NONLINEAR AEROELASTIC EQUATIONS OF -MOTION OF TWISTED, NONUNIFORM, FLEXIBLE

HORIZONTAL-AXIS WIND TURBINE BLADES

by
Krishna Rao V. Kaza
The University of Toledo

Toledo, Ohio 43606

SUMMARY

The second-degree nonlinear equations of motion for a flexible, twisted,
nonuniform,‘horizontal—axis wind turbine blade are developed using Hamilton's
principle. The derivation of ﬁhe equations has its basis in the geometric
nonlinear theory of elasticity, a?d the final equations are consistent with
the smail déformatioﬁ approximation in whi;h the eiongations and ;hears aré
negligible compared to unity and the square of the derivative of the
extensional deformation of the elastic axis is negligible compared to the
squares of the bending slopes. A mathematical ordering séheme which ié
consistent with the assumption of a slender beam is used.to_discard some
higher-order elastic and inertial terms in the second-degree nonlinear
equations. Thé blade aerodynémic loading which is employed accounts for both
wind shear and tower shadow and is obtained from stfip theory based on a
quasi-steady'approximation of two-dimensional, incompressibie, unsteady,
airfoil theory. The resulting equatiqﬂs have periodic coefficients and are
suitable for determining the aeroelastic étability and response of large

horizontal-axis wind turbine blades.



INTRODUCTION

The recently renewed efforts in wind power are due to its prospective
uses as an alternative enéigy source. As a result of these efforts, several
wind turbine projects have been initiated by NASA Lewis Research Center as a
part of the Department of Energy's (DOE) overall wind energy program. To make
wind enerqy cost effective, wind turbines substantially larger than the
existing 100kW Mod-0 which has a rotor diameter of 38 meters are being
studied. However, as the rotor diameter increases, blade flexibility and
hence susceptibility to aeroelastic instability also ;ncrease. Furthermore,
efficient construction and operation of wind turbines require that the
vibratory loads and stresses on the rotor as well as on the combined
rééor-towér system be reducea to the lowest possible lev;ls. Thus,
5é¥6elastic and structural dynamic considerations have a direct bearing on the
manufactuie, life, and operation of these large wind turbine systems.

Although the structural dynamic and aeroelastic technology used to develop
helicoptér rotdrs appear to be adequate for the developmént of wind turbine.
machines, this technology has to be transformed from helicopter rotor
applications to wind power applications, and additional studies have to be
conduéted‘to determine the effects of the parameters peculiar to wind power
machines on the aeroelastic and structural dynamic behavior,

Several aeroelastic considerations are common to both the wihd turbine
and helicopter blades. These include flap-lag-torsion, flap—-torsion and
flap-lag instabiiities, stali flutter, and torsional divefgence. The wind
velocity gradient due to the Earth's boundary layer and gravity loads in the
case of a wind turbine rotor, and forward velocity in the case of a helicopter
rotor lead to timewise periodic coefficients in the equations of motion.

Several previous studies have considered the helicopter blade and developed



the nonlinear aeroelastic equations of motion. Recently, reference 1, though
primarily a study of the flap-lag dynamics of rigid articulated helicopter
rotor blades, contains a cursory examination of the elastic blade. References
2 and 3 more completely examined the basis of the nonlinear aeroelastic
equations. In particular, attention was directed at establishing the
expressions for the nonlinear curvatures and the nonlinear transformation
matrix between ?he undeformed and deformed blade coordinates. The resulting
equation were compared with some of those in the literature. These
comparisons indicated several descrepancies with the results of reference 3,
particularly in the nonlinear terms. The reasons for these descrépancies_were
explained in reference 3.

For wind turbine blades, reference 4 presented a set of nonlinear
equations of motion. An examination of these equations reveals that referencé_ '
4 fails to obtain several nonlinear elastic and aerodynamic terms which are of
the same order as those retained. It appears that these terms were not
obtained in reference 4 for two reasons: (1) an incorrect torsional curvature
expression and (2) linearizing the resultant transformation matrix between the
undeformed and deformed blade coordinatesvwhile developing nonlinear equations
of motion.

Based on the considerations and discussions in references 1 and 2,
reference 5 apparently sought to redevelop the nonlinéar equations of
equilibrium for rotor blades. However, the resulting equations are missing
several elastic terms which were well established in the literature and some
nonlinear terms as well. It is interesting that several third-degree
nonlinear terms were retaingd. These general equilibrium equationé were used
to study aeroelastic stability of a single wind turbine blade in reference 6

and a coupled rotor/support system in reference 7. Nonlinear aeroelastic



equations of motion of a single wind turbine blade were also developed in
reference 8 using the Newtonian method. Several nonlinear elastic and
aerodynamic terms are missing in this refgrence because of the use of an
incorrect expression for the torsional curvature and a partial linearization
of the resultant rotational transformation between the coordinates of the
undeformed and deformed blade. In view of thé differences in the equations
existing in the literature, it is felt that a comprehensive developmenﬁ of the
nonlinear aeroelastic equations of motion of an elastic horizontal-axis wind
turbine blade is required. The basic ingredients of’such a development were
presented in reference 9.. This report documents the details of the
development.

The derivation of the nonlinear equations of motion herein follows

essentially along the lines of reference 3. 1In this reference, the pretwist

. together with control inputs of the blades were combined with the elastic

twist for simplicity, following a common practice in the helidoptér blade
literature. Physically, the pretwist is present in the blade even before the
deformations. Thué, this report will include the.rotation due to pretwist
with the control inputs and impose this rotation first while imposing the

rotational transformations.
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SYMBOLS

airfoil lift-éurve-slope

cross—-sectional area

generalized aerodynamic forces per unit length in X, Y, 2
directions, respectively

generalized aerodynamic moment per unit length about
elastic axis

number of blades; also blockage factor to account for
tower shadow

boundary terms arising from strain energy, kinetic energy,
gravity, material damping, and aerodynamic forces,
respectively

section constants

blade chord

airfoil profile drag coefficient

Theodorsen's circulation function

aerodynamic constants

notation used in writing the virtual work associated with
material damping in concise form

airfoil profile drag per unit length

chordwise offset of mass centroid from elastic axis
(positive when in front of élastic axis)

chordwise distance of area centroid of cross section from
elastic axis (positive when in front of elastic axis)

Young's modulus

coefficient of internal friction in tension
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H
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unit vectors along x3, y3, 23 axes, respectively
unit vectors along X, Y, Z axes, respectively
unit vectors along X4, Y1, 21 axes, respectively

unit vectors along x, n, I axes, respebtively

components of aerodynamic forces per unit length in X3,
Y3, z3 directions, respectively

components of aerodynamic forces per unit length in x,
N, ¢ directions, respective;y

components of gravitational forces per unit length in X,
Y, Z directions, respectively

gravitational moment-per unit length about elastic axis

gravitational constant

notation used in writing the gravitational forces

shear modulus

coefficient of internal friction in shear

vertical velocity of two-dimensional section normal to
free-stream

height of rotor hub center above ground

generalized inertia forces per unit length in X, Y, 2
directions, respectively

generalized inertia moment per unit length about elastic
axis

area moments of inertia about n and ¢ axes, respectively

torsional section constant

reduced frequency



ka

ki(i=1,2,0006)

km

1ij,my,ng

M,My,M
l¢lx3

81

Si(i=1,2,o.010)

polar radius of gyration of cross-sectional area about
elastic axis

notation used in writing the variation of kinetic energy

polar radius of gyration of cross-sectional mass about

2 2 2
elastic axis (ky = km1 + kp )
2

direction cosines (i = 1, 2, 3)

aerodynamic lift per unit length

aerodynamic pitching moment per unit length about deformed
elastic axis

mass of blade per unit length

generalized damping forces

length of the blade

position vector of a point on the elastic axis after
deformation

position vector of a point on the elastic axis before
deformation

position vector of a point after deformation

position vector of a point before deformation

coordinate along the undeformed elastic axis

coordinate élong the deformed elastic axis

notation used in writing the variation of the strain
enerqgy

kinetic energy

blade tension due to aerodynamic forces

blade tension due to centrifugal forces

blade tension due to gravity



Uﬁ,UT,UP : radial, tangential, and perpendicular components of

velocity for blade airfoil section

U resultant of Up and Up

Up radial foreshortening of elastic axis

u,v,w deformation of elastic axis in X, Y, and Z directions,
respectively

UgsVgeVig components of gust velocity in Xy, Yy, 21 directions
respectively |

\4 sﬁrain enerqy

Vg mean wind velocity at height H

Vn(x1) | mean wind velocity at X1

GkIYIZI aerodynamic velocity vector expressed in XyYrZp coordinate

axis system
Ve Y%y relative velocity of point on elastic axis expressed in
3

x3y3z3 coordinate system

VxnC relative velocity og point on elastic axis expressed in
xng coordinate gystem

vi induced velocity

W work done bg aerodynamic, structural damping, and
gravitational forces

Wa work done by aerodynamic loading

Wp work done by structural damping

wg work done by grévitational forces

XYZ coordinate system wigh the origin at the hub center

which rotates with blade such that X-axis lies along
initial undeformed position of the blade elastic

axis

10



X1Y¥121

XQYQZq

xng

X0Y0Z0

X1:,¥1:21

X3Y323

(T]

[TR]

lei4]

Oxr Oys Gy

Bpc

811 1, e1

Yxxr Yxnl Yxc

8C )

inertial axis system with the origin at hub centerline and
Zi-axis normal to the hub plane

hub-fixed axis system rotating about Zi—-axis with
angular velocity @

principal axis system obtained by rotating about xp-axis
with an angle 6

blade-fixed axis system at arbitrary poiﬁt on elastic axié
before deformation

coordinates of a point (which was at xnf in the undeformed
blade) in the deformed blade

blade-fixed orthogonal axis system in deformed configura-
tion obtained by rotating xng; x3—-axis is tangent to the
deformed elastic axis

transformation matrix between xnf and x3y3z3 coordinate
systems

transformation matrix between xnf{ and Xy¥1Zy coordinate
systems

Green's strain tensor

airfoll section angle of attack, a = tan’1Up/UT

notation used in writing the derivative of the
displacement of a point

angle of built-in coning (precone angle)

Eulerian-type rotation angles between xnf and
X3Y3z3

engineering strain components

variation of ( l

11
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Oxxr %%ns 9xg

¢

Yo

w W
X300y 4002y

small parameter of the order of the bending slopes; the
airfoil section pitch angle with respect to free-stream
velocity; extensional component of Green's strain tensor
on the elastic axis

tensor strain components

sectional coordinate along major principal axis; also
constant for mean velocity calculations

sectional coordinate normai to n-axis

nondimensional coordinate along blade axis, x = x/R

total geometr}c pitch angle, 06 = ept + 64

collective pitch

built-in twist (pretwist), positive when leading edge is
upward

induced flow ratio, A{OR = vy

inflow ratio, AR = Vp(x1)

inflow ratio, AZiR = vy
inflow ratios, AygfiR = ug sin wgt; AvéﬂR = vg sin wgt;
Xwg fiR = Wg sin wgt
mass density of the blade; also mass density of air
engineering stresses
angle of twisting deformation about elastic axis,
positive when leading edge is upward
blade azimuth angle measured from downward position in the
direction of rotation
angle between mean wind velocity Vj, and rotor axis 2g

torsional curvature (total rotation rate about x3~axis)

and bending curvatures, respectively

12



;gn; curvature vector before deformation

“x3y3z3 curvature vector after deformation
; angular velocity of xnf coordinate system
1) rotational speed of the wind turbine rotor
( e circulatory aerodynamic term
( Ine noncirculatory aerodynamic term
[ 17T denotes transpose of matrix
(') time derivative, 3- ()
at
() space‘derivative, == () ===()
9s ax

13



MATHEMATICAL MODEL AND COORDINATE SYSTEMS

The mathematical model chosen to represent the wind turbine blade
consists of a straight, slender, variably twisted, nonuniform elastic blade.
The elastic axis, the mass axis, and the tension axis are taken to be
noncoincident; the elastic axis and the. feathering axis are assumed coincident
with the quarter chord of the bléde. The effect of warping is assumed to be
small and is neglected. The generalized aerodynamic forces account for tower
shadow, wind shear, and gusts, and are calculated from strip theory based on a
quasi-steady approximation of two-dimensional, incompressible, unsteady,
airfoil theory.

Several orthogonal coordinate systemé will be employed in the derivation
of the equations of motion; those which are common to both the dynamic and
aerodynamic aspects of the derivations are shown in figures 1 to 3. The axis
system X1YyZy shown in figure 1(a), is fixed in an inertial frame with the
origin at the center of the Hub. The axls system XYz, shown in figure 1(b),
is obtained by rotating X1¥1Zy system about Zr-axis by an angle y = Qt and
then XqY0Zq system about the negative Yg-axis by an angle Bpcs the angle of
built-in coning angle. The point on the cross section through which elastic
axis passes is given by the intersection of the Y and Z axes. Let XoYoZo be
axes fixed to the blade at an arbitrary point on the elastic axis of the blade
so that before deformation x,v,z, are parallel to XYZ respectively. The n and
§ axes (fig. 2) with the origin at the elastic axis of the cross section are
érincipal axes and are inclined to the Y and Z axes by an amount 6. The
geometric pitch angle is given by 6 = Opt + ‘Oc where Opt is the built-in twist
angle (pretwist) and 6, is the collective pitch angle.

The variables defining the configuration of the deformed Blade are shown

in figure 3. When the blade deforms, the elastic center of an arbitrary

14



section deforms an amount u in the X direction, v in the Y direction, and w in
the Z direction. The section rotates about the principal axes due to bending
in addition to twisting an amount ¢ about the elastic axis. The final

position of the triad xni after deformation is denoted by x3y3z3.
HAMILTON'S PRINCIPLE

The equations of motion will be derived using the extended Hamilton's

principle as in reference 3 in the form

& .
J 1 (6T -6v+éw)ae = o0 (1)
to

where
w = O&Wp + SWy + 6Wp (2)

In equation (1), T is the kinetic energy, V is the strain énergy, and 6w is
the virtual work done by the damping, gravitational, and aerodynamic forces.
In the following sections explicit expressions for 6T, 8V, and 6W in terms of
the variables u, v, w, and ¢ and the blade sectional properties will be

developed.
STRAIN ENERGY

The expression for the strain energy of the blade in terms of stresses

and engineering strains is

V =

R
IO fA (OxxYxx + OxnYxn + OxgYxg) dn df dx (3)

N j -

where, using Hooke's law,

*The coordinates s and x are used interchangeably.

15



Oxx = EYxx

Oxn GYxn (4)

Assuming small strains, the engineering strains are related to the components

of the strain tensor according to

Yxx = Exx
Yxn = Zexn (5)
Yxc = 2€xc

To develop the explicit expressions for strains, the expressions for the
curvatures wx3, wy3, wz3 and the transformation matrix [T] between the
coordinate systems xni and x3y3z3 are required in terms of the variables u,
v, w,’¢ ana the blade sectional properties. These expressions are developed

in Appendix A following the procedure described in reference 2 and are given

by
'2 |2
. v w
Wy = ¢' + 0! (1 = === = ==e ) - (v' cos 6 + w' gin 9)
3 pt 2 2

¢ (=v' gin 0 + w' cos 9)!

“w''(cos 6 - ¢ sin 0) + v'"(sin 0 + ¢ cos 8) (6)

. Jf

€
N
|

v''(cos 6 - ¢ sin 0) + w''(sin 6 + ¢ cos 8)

16



V'2 wlz

2 2

1 = m—m— - - l v'cos O + w' sin 6

-7' 8in 0 + w' cos ©

-v'{cos 6 = ¢ sin 6)

1 -~ (v'cose+w'sine)2

¢ = (v'cosB+w'sinf)

-w'(cos 68 - ¢ sin 6)

t
t
i
t
!
i
I 2 '
| |
~ | ¢? '
(r] = -w'(sin 6 + ¢ cos 8) | T 7 : «(-v'8inf+w'cosb)
| .
] A '
' 3
I =¢ | (~v'sin6+w'cosb )2
v'(sin 6 + ¢ cos 6) | | - 5
‘ i
| Fo¢?
| i
|

2

(7)

Using equations (6) and (7), the second-degree nonlinear expressions for

the strains are developed in Appendix B, and are

¢2
Yex = €xx = u' + (n2 + ;2)(5- + 6't¢') - (v'' +w''¢)(ncos 6 - ¢ sin 6)
P
- (w'' = v''$)(n sin 8 + ¢ cos 6) (8a)
Yxn 24 = =T [¢* = (v' cos O + w' 8in B8) (-v' sin O + w' cos 0)'
v'2 w'?
-6' (=== + ===)] (8b)
pt 2 2 - :
Yxz = 26xg = N [¢' = (v' cos 0 +w' 8in 68) (~-v' sin 6 + w' cos 6)'
v'2 w'2
=0' (===t ===)] (8¢c)
- pt 2 2

In the above expressions, several higher-order terms have been discarded based

either on considerations‘related to the small deformations Level I

approximation, as discussed in reference 2, or on considerations related to

17



-the approximations which can be made because of the assumed slenderness oflthe
blade, as discussed in Appendix C. Formal retention of higher-order terms in
the expression for strain components is not a problem. However, these
higher-order terms will lead to higher-order elastic terms in the final
equations of motion.» Thus, discarding these higher-order terms in the
expressions using the considerations of Appendix C simplifies the subsequent
algebraic manipulations.

Taking the first variation of V as given in equation (3) and using

equation (4), yields

v = [ &[] YxxSVxxdn A dx
0 A .
+ IR G ff (YxnSYxn + YxCGYx;) dn dg dx (9)
0 A

Substituting equation (8) into equation (9), taking the variations, and

integrating over the cross section leads to

8V = fR (s16u' + 326¢ + 536¢' + 546v" + 356w" + 566¢' + s76v'
0

+ SBGV" + sgsw' + 8106W") dx (10)
where

1
8y = EA [u' + k2 (¢'0' + - ¢|2)
A pt 2

~ep (v'' + ¢w'') cos 6 + ey (¢v'' = w'') gin 6]
Sy = ERepu'(v'' sin 6 - w'' cos 6)
+ EB (v''0' ¢' sin 6 - w''8' ¢' cos 6) + v''w''(EI,, - EInn)cos 20
2170 ¢ ! 44 n

+ W"Z(EI;C = EIyp)sin 6 cos 6 + v"z(EInn - EICC) sin 9 cos 6

18



w

pt

h : S : o 1
= EAk2ul(el + ¢') + EBq [©° ¢|2 +0' (¢'0' + - ¢l2)]
A pt pt pt 2

+ EBo[0' (¢v'' = w'')8in O =~ ¢'v'' cos 6 ~ ¢'w'' sin 6

pt

-8' (v'' + ¢w'') cos 6]
pt .

4 = ERepu'(¢ sin 0 - cos 8) =~ EB2¢'8't cos 8
p

+ v"[EInn(sinze + ¢ sin 20) + El g (cos26 - ¢ sin 20)]

+ w''[(EIzr = EIpp)(sin 0 cos & + ¢ cos 26)]

Sg = =EAepu'’(¢ cos 6 + sin 6) = EBZ¢'9;t sin @
+ V" [(EICC - EInn)Sin 0 cos 6 + ¢(EICC - EInn)COS 29]
4 w''[EIy, cos28 + EI.; sin20 + ¢(EI;; - EIp,)sin 26]
Sg =GJ[¢' + (v'V'' = w'w'') cos 6 sin 6 ~ v'w"' cos20
v'2 w'2
+ w'v'' 8in20 + 0' (=== cos 20 - === cos 20 + v'w' sin 20)]
pt 2 2
S =GJ¢' (v'' cos 6 sin 6 ~ w"' cos20 + v'0' cos 20 + w'8' sin 26)

pt

8g =GJ¢'(v' cos 6 gin 6 + w' s1n28)

89 =GJ¢'(-w'' sin 6 cos O + v'' s8in20 + v'9"'

pt

10 = =GJ¢'(w' cos 8 sin 6 + v' cos26)

pt

pt

sin 20 - 6' w' cos 20)

The sectional properties appearing in equation (11) are defined as follows:

A = [[ana

Inn = ff CZ dn dg

Ak: = [/ (n?2 +¢2) an a

2
By = [[ (n?2+¢?) anag

Re = an d
. [ nan a

Irg = [/ n?2an a

J = [[ (n?+¢2) an &

By = [[ n(nZ+¢2) an 4

19

(12)



Since the cross section is assumed symmetrical about the n axis, the
following integrals are zero:

[[fgana = o J/ngana = o

[l e (n2 +z2)anag = o (13)

Integrating equation (10) by parts, the resulting expressions can be put
in the form

R
§V = [ (S, 8u+ Sy 8v+ Sy, 6w+ Sy 6¢) dx + By (14)
0

where the generalized elastic forces Sur Sys Sys and S¢, to second-degree, are

given by
Sy = -s;
Sy = s'' -sg' +s'! (15)
4 7 8 ’

S = g'' = g' + g"!

v 5 9 10
Sy = s =—-8' -18'

¢ 2 3 6

and the boundary term By is given by

By = [8 Su+ (s + 8 )6V + (=g" + g - g')ov
4 8 4 7

) R
+ (s +s8 )ow' + (-8' +8 ~8' )w+ (8 + 8 )6¢]l (16)
5 10 5 9 10 3 6 0

KINETIC ENERGY

The expression for kinetic energy T is given by

dr4 drq

1 R :
T = - [ [[p === ===andg ax (17)
2 0 A dt dt

20



and its variation, integrated between tg and t4, is given by

t1q tq drq d;1
[ er= | fR J[ p === .8 --—-an dg ax 4t (18)

In the above equation, the absolute velocity of the mass point is drq¢/dt and

is defined by

drq - - -
-—- = rq + W xry (19)
dt

where w is the angular velocity of the xni coordinate system and rq is the
position vector of the mass point expressed in terms of the unit vectors of
the xnf system. The angular velocity w is obtained by projecting { along the

x, N, and ¢ directions and is given by
w = Qchex + @ sinb en + Q cos® er (20)

In the above equation, the precone angle ch is assumed to be small. The

position vector rq is given by

1 = xeyx + (u - Upley

H 1

- T
+ (v cos 6 + w sin O)ey + (~v sin 0 + w cos G)ec + [T] n 2(21)
9
Substituting equation (A38) into equation (21), the components of the position

vector to second-degree are given by

1=X+U"UF
-(v' +w'd)(ncos 6 -~ sin B) - (w' - v'¢)(n sin O + ¢ cos 6)
(v' cos 8 +w' sin 0)2  ¢2
Yy = vcos 6 +wsin 6 + [1 -~ —- " - 5-] n-zé

21



-v gin 6 + w cos O (22)

-—h
[}

+ [¢p = (v*' cos 6 + w' sin 6)(~-v' sin B + w' cos 0)] n
(-v' sin 6 + w' cos 6)2 $2
+ [1 - - -]z

2 2

Differentiating rq with respect to time according to equation (19), the
absolute velocity of the mass point is
drq . -
e = (%, + 2,2 8in 6 - vy,  cosbB e
at 1 1 1 X

+ (¥q " z1QBPc + X, cosf Q)en + (z1 + y1Qch - x19 sine)ec (23)

Substituting equations (22) into (23) and the result into equation (18),
integrating by parts over time where necessary, and then integrating over the

cross—gection, the variation of T can be put in the form
st = [ (kjSu -k SU
0 .

+ k26v' + 336v -k, ow' - kgdw + keS¢) dx v (24)

where, consistent with the ordering scheme given in Appendix C, are

ky = -mu + 2mi(v - e® sin 0)
+mR2 (x +u-Up - ev' cos 6 - ew' sin 0)

- mﬂzspc (w+e sin 6 + ep cos 8) + me (v' cos § + w' sin 0)

mQ2e¢x sin 6 - 2me9; cos 6 - me2 x cos 6

[\M]
]

mR2(v + e cos 0 -.e¢ gin 0) = mv + me ¢ sin 6 + 2mﬂch;

w
1

- 2mQ(u - ﬁp - ev' cos 6 - ew' sin 6)

ky = m2e¢x cos 6 + 2mRev sin 6 + mR2 ex sin O
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mw + me ¢ cos 6 + 2milB,. v+ mﬂzspcx

~
[l

()}
1l

- (Zer; cos 6 + mR? ex cos 6) - m92e¢v cos O

2
- m@2¢(ky, - k2 ) cos 2 6 - mR2(k2 - k2 ) sin 6 cos O
2 m m m

+ me¢v cos O + 2mflev'v sin 0 + mQ2exv' sin 6

-mQ2ev sin 6 + me¢w sin 6 + m928PCe¢x sin ©
+ 2mQ fe sin 6 u - 6F) - (k2 -~ %2 )v' sin 6 cos 6
m2 m1
- v.v'(k2 sin2 6 + k2 cos2 0)] + mev sin 6
m2 mq

- ZmQche& gin 6 - mki ¢ - szchex cos 0

- mew cos & - 2miB,.ev cos 6

The sectional properties appearing in equation (25) are defined as follows:

= dn d = dn 4
m ffA p an dc me IIA PN an dz
mk2 = [[ p2anac 0 m2 = [[ pn?an & (26)
mq A my A
k2 = k2 + k2
m mq my

From symmetry of the cross—-section about the n axis, the following integrals

have been set to zero:

J[ et ana = o J[ongana = o (27)
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Since Up is a function of v' and w', the term involving dUp in equation (24)
requires separate treatment. Using equation (A16), the second term in

equation (24) can be written in the expanded form

fR.k16UF dx = IR k1 [fx (w'dw' + v'Sv') dx] dx (28)
0 0 0

which can be further rewritten as

fR k16UF dx = fR (fR ky dx) (w'w' + v'év') dx (29)
0 0 X

Defining the tension Ty as
R
Te = I" x, ax (30)
X

equation (29) can be written as

x R '

[T k80, dx = [T T, (w'ow' + v'Ev') ax (31)

0 0
Integrating equation (24) by parts, the resulting expression can be put in the

1

form

8T = fR (Iy6u + I 8v + I bw + I¢6¢) dx + Bp (32)
0 _

where the generalized inertia forces I,, I,, Iy, and I¢ are given by

1, = k4 = -

u 1 o

I, = =k' +k_ + (Tcv'")' (33)
2 3

I = k' - k + (T~w')?

A 4 5 C

16 = kg

and the boundary term Bp by

24



o _ R _ R . ,
BT = (kz - TCV')GV . - (k4 + TCW')GW . (34)

VIRTUAL WORK DUE TO MATERIAL DAMPING

The virtual work due to the dissipative forces associated with structural

(material) damping can be expressed in the form
w, = % o, Sy (35)

Qhere anis the éeneralized damping force associated with the xth dependent
vériable and qu is thé variation of the kth dependent variable. In the
presént development thé generalized damping forces accounting for the
dissipation of'energy due to material damping will be taken to be thosé |
conﬁiééenﬁ wiﬁh tﬁe‘assumption of a material which exhibits a linear
viscoélastic behavior; This théory assumeé fhat the stresses are linear
functions of the strains and strain rates. Such a behavior is anaiogous to a
spring and a dashpot inAparaliel, and a model which exhibits such a behavior
is often termed é Kelvin—Vbigt solid in the literature. This model was used
in reference 3. 'For tﬁe stressés and strains of interest herein;.these

constitutive relations have the form
Txx = EY#x + E*§xx
Txn = GYgpn *+ G*?xn . (36)
g = Gfxg * G

where E and G are Young's modulus and the shear modulus, respectively, and E*
and G* are coefficients which take into account internal damping of the

material‘in tension and shear, respectively. The first term on the right hand
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side of each of equations (36) contributes to the usual elastic strain energy
and have already been treated in an earlier section. Considering only the
dissipative terms in equations (36), the virtual work of the structural

dissipative forces can be written as

R .
Sy = = [ E* [[ YxxO¥xx an dg ax
0 A
R . L]
- g G* HAv (Y xn8Yxn + Yxz8Yxz) dn a¢ dax (37)

The result given in equation (37) is general. However, because of the lack of
knowledge as to the distribution of damping, only the direct damping terms are
generally retained in practicé. Thus, off-diagonal terms accounting for
damping coupling between the dependent variables which arise from equation
(37) aré taken to be zero and.only the direét damping terms associated with
the dependent variables ére retained. IQ addition to adopting this expedient
in the present development, it will also be assumed that a first approximation
>to the direct damping terms can be obtained by retaining only the l;near
damping terms in the final equations of motion. Thus, it is sufficient to
retain terms up to only the first-degree in the expressions for the strains.

To first degree the resulting strain expressions are

Yx = u' + (n2 + C2)¢'9' -v''"(nNcos 6~ sin 6) ~w''(n s8in 6 + § cos 6)
4 - pt

Yxn = 54 : ' (38)

Yx; = ’ﬂ¢'

Substituting equations (38) into equation;(37), integrating over the cross

section, and retaining only the linear direct dampihg terms leads to

SWp = - fR (d48u’ + d6¢"' + dzéw" + dg6¢')dx (39)
0
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where

d1 = E*A&'>
d2 = E*B1el2 %l
pt
dy = E*(Iy; cos20 + Ip, sinZ0)v'" (40)

d4 = E*(Ipg 8in26 + Inn coszﬁ)&"
d5 = G*J;'
Integrating equation (39) by parts, the generalized damping forces Qp , Qp .
u v

Qp  and Qp become
w ¢

op = d' = (E*mu')’
u 1

QDV = -d;' = - [E*(ICC cos28 + Inn sinze);"]"

@p = -a)' = - [E%(Igg sin?0 + Ing cos20)w' '] (41)
w

Q = ' +4d' = (E*B406'2¢")' + (G*J.')'
Py 2 s ! ¢

and the boundary term Bgy becomes
D

R . VIR , R
Bgw = -d16u + d3 Sv - d3§v + d4 Gw,
D 0 0 0 0
, R ‘R
- d46w l - (d2 + d5)5¢ ' (42)
0 0 :

VIRTUAL WORK DUE TO GRAVITY

The virtual work due to the gravitational forces of the blade can be

expressed in the form

. ) ) .
swg = fjA pg « Or, dn dg dx . (43)
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where g is the gravitational acceleration vector. It is obtained by
projecting the gravity, g, which acts along the Xy axis as shown in figure

1(b), along the x, n, and g, and is given by

g =g [cos ng = (cos 6 sin y + By sin 6 cos w);n

+ (sin O sin ¢ - ch cos 6 cos ¢)ec] (44)
In the above equation the precone angle ch is assumed small and hence cos ch
is replaced by one and sin Byo by ch;

The position vector, rq4 of a point on the blade after deformation is
given by equation (21). Taking the virtual variation of equation (21),
substituting the result into equation (43), and integrating the result by

parts, one obtains

6wg = ({R (FguGu + ngsv + Fgwaw + Fg¢6¢) dx + Bg (45)
where

Fqu = 91

Fgv = g+ (Tgv') - g

x
99 = mg cos V¥
9 = -mg sin ¥

Q
w
]

-mgBpc cos Y
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94 = mge cosy(v' sin 6 - w' cos 6) + mge¢d(cos 6 sin ¢
+ ch gin 8 cos y) + mge(sin 6 sin Y - ch cos 6 cos ¥)
9y = mge cos Y(-cos 6 + ¢ sin 6) + mge(cos 6 sin ¥
+Bpc 8in 6 sin ¥) . (v! cos20 + w' sin 6 cos 6)
Jdg = mge cos Y(-¢ cos 6 + sin 0) + mge(cos 6 sin
+ Bpc 8in 0 cos P) . (w' 8in20 + v' sin 6 cos 0) (46)
The boundary terms By are given by

R R
B, = (95 - Tgv')Gv + (9g - Tgw')Gw (47)

g
0 0
It should be pointed out that all the terms of order 0(e3) ana higher are

neglected in the expressions for gravitational forces.
GENERALIZED AERODYNAMIC FORCES

The aerodynamic forces will be generated from two~-dimensional,
incompréssible, quasi-steady, strip theory in which only the velocity
components perpendicular to the spanwise axis of the deformed blade (the x3-
axis) are assumed to influence the aerodynamic loading. In calculating the
velocity components, the effects of wind shear and tower shadow as well as
gusts are included. Account is taken of the pulsating free—stream velocity
V(t) associated with a rotating blade employing Greenberg's extension of
Theodorsen's unsteady theory (ref. 10) for determining the aerodynamic 1lift
and pitching moment acting on the blade. The resulting expressions are
specialized to the case of quasi-steady flow by setting Theodorsen's
circulation function to unity. The classical blade element momentum theory
can be used to calculate the steady flow induced by the rotor.

In the present application of Greenberg's theory, the airfoil is taken to

be pivoted in pitch about the aeradynamic center at the quarter chord and to
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be executing harmonic motions in pitch (e(t)) and plunge (ﬁ(t)) while immersed
in a pulsating airstream V(t), as shown in figure 4. The 1lift and moment
acting on an elemental section of the blade may be expressed in terms of the
circulatory and noncirculatory components as

L = Lg + Lyc _ (48)

M = Mg+ Myc
Assuming that the blade elastic axis is coincident with the aerodynamic center
at the quarter chord, the individual components of equation (48) follow from

reference 10 and can be written as

LN o (49a)
= = pa=--(h+Ve +Ve + - ¢ : a
Inc = 7 P2 7 1"
1 . C o
Lo = 5 pacV(h + Ve + 5 €) (49Db)
1 c2 . 3¢ " -
Myc = = = pac (=) (Ve + h + == g) (49¢c) |
2 4 : 8
1 c 2 .
Mo = - ; pac (Z) 2Ve (494)

In the course of arriving at the circulatory terms in equation (49), the
quasi-steady approximation has been introduced by setting the reduced
ffequency k to zero, in consequence of which Theodorsen's circulation function
C(k) assumes the value of unity. The noncirculatory lift and moment are
associated with apparent mass forcés and are oftentimes discarded in rotor
blade applications. Note that Greenberg's modification (i.e., a pulsating
stream in which 6 # 0) appears only in the noncirculatory expressions for the
1ift moment. Hence, if one assumes, a priori, that apparent mass forces will

be neglected, there is no Greenberg's modification.

30



The 1lifts and moments given in equation (49) must now be expressed in
terms of Ug, Up, and Up, the radial, tangential, and perpendicular velocity
components relative to a point on the elastic axis of the airfoil (fig. 5).
Now the expression in parentheses of equation (49a) for Lyc is the downward
acceleration of the mid-chord point of the airfoil, and the expression in the
parentheses of equation (49b) for Lgc is the downward velocity of the
three-quarter-chord point of the airfoil. Since Up is the relative velocity
component perpendicular to the quarter-chord, the sectional 1lift can also be

written as

[o . o]
= -pa=- (=Up + - €) (50a)
e = P27 RPTG
1 C e ’
Lo = 5 pacU (~Up + ; €) (50Db)

where V(t), appearing outside the parentheses of equation (49b), has been
approximated by the resultant of only the tangential and perpendicular

velocity components and is given by

v =u= U02+0y2 (51)
T P

As indicated in figure 5, the noncirculatory lift acts normal to the
section chordline* and the circulatory lift acts normal to the resultant

velocity U. The profile drag force acts parallel to U and is given by

iKportion of Lyc acts at the 3/4-chord point and another at the
1/2-chord point. However, the resultant of these two components is shown

along the z3 axis in figure 5 only for pictorial convenience.
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1 Ca, :
D = - pac --=- U2 (52)
2 a

where cd° is the (constant) profile drag coefficient.

The components of the aerodynamic forces in the direétion of the y3 and
z3 axes are given by

Fy3 = -Lgc sin a - D cos a - (53a$

Fz3 = Lo cos a +Lyc -~ D sin a (53b)
where, from figﬁre S,

sin a = Up/U (54)

cos a = Up/U
and U is given by equation (51). The aerodynamic force in the x3 direction is
given by Fx3 and is a profile drag force which is a function of the radial
velocity component Ur. Following usuallpractice, this force component is
taken to be zero.

Substituting equations (50), (52), and (54) into equation (53) leads to

F 1 [o4 . cdo ) (
y = = pac (U¢ = = Upg = === UqnU 55a)
3 2 p 2 F a T |
1 C . C o C 2 - Cdo
Fz3 = = pac [-UpUqp + = UpE = = UP + (=) € = === UpU] (55b)
2 2 4 4 a '

The noncirculatory and circulatory moments in equation (49¢) and (494) can be

written in terms of Up, Up, U, and € and assume the form

1 (c)z ( . . 3c ")
M = = = pac (- -Up = Ue + == ¢ (56a)
NC 2 4 P 8
1 c 2 .
Mo = = = pac (=) 2Ue (56b)
2 4 ~

from which the total pitching moment Mx3 is given by the sum of equations

(56a) and (56b) as
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1 (c)2 ( . . 3c ")
= - - - Ue - U - € . 57
Myxs > pac 2 P+ (57)

The virtual work of the aerodynamic forces can be written as
Wy = gR [(Fyex + Fpep + Frer) ° 6Rg
+ Mys [8¢ = (v' cos 6 + w' sin 6)(~6v' sin 6 + 6w’ cos6)]ldx (58)

where §Rq is the variation of the position vector of a point on the elastic

axis and is given by

SRy = (Su - dUpley

+ (8v cos 9 + 8w sin e)en + (=6v gin 8 + éw cos B)ec (59)

The components of the aerodynamic force vector Fy, Fy, and Fr are given by

Fy 0
Fn = [7)T Fys (60)
F; FZ

where [T] is the rotational transformation matrix which relates the coordinate
axes of the deformed and undeformed blade and Fx3 has been set to zero.

' Substituting equation (59) into equation (58), and integrating by parts, one B ‘

-obtains

Swy = ({R (Aydu + Aydv + Aydw + Ayd¢)ax + By (61)
where

Ay = Fy

Ay = Fpcos 6 -Fg sin 0 + (Tav")'

+ [Mx3(v' cos 6 sin 6 + w' sin26)]’
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A; = Fpsin 6 + Fg cos e + (TAw')' _ (62)

+ Mxz(v’ cos28 + w' sin 6 cos 6)]'

A¢ = MX3
Tp = fR A, dx
X
R R R
By = -Tpv'Sv ~ TpW'Sw + Mx3(v' cosf + w' sin6)sin6éu
0 lo 0
R

Mx3(v' cos 6 + w' sin 8)cos 6dw

0

In order to obtain the explicit expressions for the generalized aerodynamic
forces, the éuantities Fys, Fz3, and Mx3 must be known in terms of the
dependent variables u, Q, w, and ¢, and the geometric pitch angle 6. This
requires that Up, Up, and € first be obtained in terms of these variables.
These expressions are developed in Appendix D, and are given by the gquations

(D16) and (D20). The expressions for Up and Up in equations (D16) include the

induced velocity vj which can be calculated using blade element and momentum

theories. Equations (D16) and (D20) in combination with equations (51), (55),

and (57) are sufficient to obtain the generalized aerodynamic forces from

equations (60), (61), and (62).
SUMMARY OF EQUATIONS

In the previous secﬁions, expressions for 6V, 8T, and W have been
obtained. Substituting these expressions and their associated boundary terms

into equation (1), there results the expression of the form

“t1 R
J U )su+ ()8v+ ( I6w+ ( )6¢] ax + B} 4t = 0 (63)
tp O
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For arbitrary admissible variations 6u, év, 6w, and 8¢, the four expressions
in parentheses must vanish individually as must the assembly boundary tefms
denoted by Bs The first condition will yield the four governing nonlinear
partial differential equations for u, v, w, and ¢ and the second condition
gives the associated boundary conditions at the ends of the beam. Since the
control angle 6, is assumed to be given, the equation associated with the
control will not appear. The governing equations of motion and boundary
conditions are summarized below.

Extension:

m - me(v' cos 6 + w' sin 6) - 2mQ (; - e$ sin 0)

-md2 (x+u~-Up - ev' cos 6 - ew' sin 0) + mﬂzch (w+ e sin 0
+ e} cos®) - {EA[u' + k2 ¢'6't - ea(v" + ¢w") cos O
A p

+ ep(¢v" - w")sin 6] + E¥Au'}' = mng cos ¢y + Ay (64a)
Chordwise bendings

mv - me¢ sin 6 - 2m98pc; ~-mR2 (v+ e cos 6 - ep sin 6)
- {me[92x(cos 6 - ¢ sin 6) + 2Qv cos 61}
+ 2mQ(u - 6F - ev' cos 8 = ew' sin 6)

(Tev')' = [GI¢(v'' cos B sin 8 - w'' cos26

+v'0' cos 20 + w'0' sin 26)]' + {EAepu'(¢ sin 6 - cos 0)
pt pt

EB2¢'9't cos 6 + v''! [EInn(sinZG + ¢ sin 20) + EI;;(cosze
p

¢ sin 20)] + w''[(EI gy ~ EIyp)(sin 6 cos 6 + ¢ cos 20)]

+ GJ¢'(v' cos 6 8in O + w' sin20) + E*(I;C cos26 + Inn sinze);"}"

(Tgv')' + [mge cos Y(-=cos 6 + ¢ sin 6) + mge(cos 6 sin ¥

+ Bpc sin 6 sin P)(v' cos2 6 + w' sin 6 cos 8)]' = -mg sin y + Ay (64D)
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+

+

+

+

+

Flapwise bending:

e -

m + med cos 6 + ZmQch; - (Tew")'

{me [Q2 x (sinb + ¢ cos 8) + 20v sin 6]}

[GT$'"(-w'" 3in 6 cos 6 + v'' g8in26 + v'0' sin 20
pt

e'tw' cos 20)]' + {-ERepu'(¢ cos 6 + sin 6)
p

EBZ¢'9't sin 6 + w'' [EIyy cos?9 + Elr sin2@

p

$(EIzr = EInpn)sin26] + v'! [(EI;z - EIpp)sin 8 cos ©
¢(EI;§ = EIpp)cos 28] - GI¢'(w' cos 6 sin 6 + v° cos20)} "

[E*(I;C sin26 + Inn cosze);"]" - (Tgw')‘ = (Tew')'

[mge cos Y(-¢ cos 6 + sin O) + mge(cos 6 sin Y

+ ch sin 6 cos Y)(w' 8in20 + v' sin 0 cos 6)]' = mgBpe cos ¢

mﬂzﬁpcx + Ay

Torsion:

mk 2 ¢ + m92¢(k2 -~ %2 ) cos 2 9 + me [92(w' cos O - v' sin 0)
m

m mq

(v - 92v) sin 6 + w cos 0] + mﬂze¢ (vcos® - prcsine)

2n? [e sin 6(& - 6F) - (k2 =~ k2 );? sin 0 cos 6
my mq

w'(k2 8in? 0 + k2 cos2 6) - eBy (v cos 6 + w sin 6)]
mp mq

2m9e;(w' cos 6 - v' 8in 0) - me¢(v cos 8 + w gin 6)

{EAk2 u'(6' + ¢') +EBq 0'2 ¢' + EBy(8' (¢v'' = w'') sin 6
A pt pt pt

¢'v'' cos 6 - ¢'w'' sin 6 - 8" (v'' + ¢w'")cos 0] + GJ (¢!
pt

(v'v'' = w'w'') cos B sin 8 - v'w'' cos20 + w'v'' gin26
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V'2 w!2
4+ 8" (=== cos 20 - === cos 20 + v'w' sin 26)]}"'
pt 2 2

+

EAepu'(v'' sin 6 - w'' cos 6) + EBa(v''6' ¢' sin 6 -
pt

w''0' ¢' cos 0) + v''w'' (Bl - Elnp) cos 26 + w"z(EIC;
pt

EInn)sin 6 cos 8 + v''2(EIy, - EI z)sin 0 cos 8 - [G*7¢"

+

E*B19'2 @']' - mge cos Y(v' sin 6 - w' cos 0)
pt
mged(cos 6 sin § + By sin 0 cos ) = mge(sin 8 sin ¢

- ch cos 6 cos y) - mQZchxe cosb - mR2 ginb cos O (k2 = k2 ) + M¢ (644) -
m2 mq

The assembled collection of boundary terms denoted by B is given by

B = Bp = By + BGWb + Bg + Bp (65)

and the requirement of the vanishing of the individual variational components

leads to the relations

R
[84 + 44 = Mx3 (v' cos 6 + w' sin 6) sin 8] Su =0
0
R
(k =Tev' +8' - 57 +38' + - Tqv' + d' = Tpv')év = 0
2 °C a 717 % 795779 3 A 0

R
(S4v+ 58 + d3)6v| = 0

0
[k = Tew' +8' -8 +8' +g ~Tw' + 3" = Tpaw

a € 5 9 10 6 9 a A
R
- Mx (v' cos 6 + w' sin 6) cos 6] &w = 0 (66)
3 0

R
(85 + 849 + d4)6w' =0

0

R
(83 + Sg + dy + d5)6¢} =0
0
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The tension T¢ and gravity force Tg appearing in equations (64) and (66) are
given by

R .
Tc = [ ml[~(u - Up) + e(v' cos 6 + w' sin 6) + 20(v cos 6
x
- % sin 6)
+ 02 (x +u - Up - ev' cos 6 - ew' sin 0)

- Qzﬁpc (w + ep cosb + e ginh)] dx (67)

Tq = fR mg cos Y dx ' ' (68)
x

The terms Up and Up in the expressions for Te given in equation (67) lead to
third-degree nonlinear terms when Tq is suﬁstituted into equations (64) and
(66) and can be discarded. Also, after substitution for Te in these
equations, only resulting terms which are consistent with the ordering schemé
adopted in Appendix é should be retained. Using the results given in
equations (67) and (68) in combination with the extensional equation of motion
given in equation (64a) (with dampings and A, set to zero), an alﬁernative
definition for the sum of T and Tg can be given as

Tc + Tg = EA [u' + kiqs'e;t

-ep (v'' + ¢w'') cos 6 + ep(¢v'' = w'")gin 6] (69)

The underlined terms in equation (64d) are associated with u' and they
are called as tension-torsion coupling terms. These terms are known to be
important in some cases (refs. 11 to 13). Also, there is a tension-bending
term which is doubly underlined in the torsion equation. Some of these terms
appear to be nonlinear, but they are not because of the relation given by

equation (69). To simplify the solution of the equation (64), it 1is a
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customary practice in the rotor blade literature to eliminate the extensional
equation. If such practicé is followed in the case of wind turbine blade
solutions, one should substitute for EAu' in equations (64b), (64c), and (644)
in terms of Tq + Tq from equation (69). Also, after substitution only the
resulting terms which are consistent with the ordering scheme adopted in
Appendix C should be retained.

As stated earlier, the generalized aerodynamic forces A,, Ay, Ay, and A¢
are obtained from equations (60), (61), and (62), using equations (D16) and
(D20) in combination with equations (51), (55), and (56), and retaining the
terms through second degree in the dependent variables. Because of the
generality of the present development, these second-degree expressions are

extremely lengthy and will not be shown.
CONCLUDING REMARKS

The second-~degree nonlinear aeroelastic equations of motion for a
flexible, twisted, nonuniform horizontal-axis rotor blade undergoing combined
flapwise bending, chordwise bending, torsion, and extension have been derived
using Hamilton's principle. The equations have tﬁeir basis in the geometric
nonlinear theory of elasticity and are consistent with the small deformation
level of approximation in which elongations and shears (and hence strains) are
negligible compared to unity. A mathematical ordering scheme which is
consistent with the assumption of a slender beam was adopted for the purpose
of systematically discarding elastic and dynamic terms which are higher—order
in the resultant equations of motion. The expressions for generalized
aerodynamic forces, which account for windshear, tower shadow, and qusts, are
left in general second-~degree form from which one can obtain the aerodynamic

forces loading to the order appropriate to any case of interest. A unique
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feature of this development is the consideration of the pretwist of the blades
before the elastic deformations which is more realistic than the common

pfactice in the most of published work. in which the pretwist is combined

with the elastic twist.
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APPENDIX A
NONLINEAR CURVATURES AND COORDINATE SYSTEM TRANSFORMATION

OF. TWISTED ELASTIC WIND TURBINE BLADES,

The nonlinear curvature expressions for twisted rotor blades were
devéloped in reference 2 in a general manner using the geoﬁetric nonlinear
theory of elasticity. For convenience, this development followed a practice
which is common in helicopter blade literature; namely fhe'combination of the
pre-twist with the eléstic twist. BAs a consequence of empioying tﬁis
simplification, if warping is considered, axial deformation exiéts in the |
initial configuration béfore any deformations are imposede Such a situation
~would exist if an untwisted blade is twisted and then "frozen" to arrive at
the pretwisted configuration. Since this situation does not afise in the
fabrication of either wind turbine blades or heliqogter blades, there is no
axial deformation.due to warping in the initial configuration before any
deformétions are imposed. Iﬁ view of‘thislsituat;on, this Appendix will
include the rotation due to pretwist with the control inputs and imppge this
rotation first while imposing the rotational transformations and will develop
the second-degree nonlineér expressions for the curvature éomponents and for..
the transformation matrix in terms éf the variables u, v, w, and ¢. The
foreshortening of the blades due to bending is explicitly'coﬁsidered. The
level of approximation used within the geometric nonlinear theory of
elasticity is that designated small deformations I in reference 2 in which the
elongations and shear are negligible compared to unit} and the square of the
first derivative of the extensional deformation on the elastic axis is
negligible compared to unity and the squares of the.bending slopes.

A schematic rgpresentation of the deformed and undeformed blade

associated with a flap~lag-torsion transformation sequence is shown in figure
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3. The coordinate axis x is tangential to the elastic axis, and the axes n
and 7 are the principal axes of the section before deformation. Since the
pretwist O,y is not a constant, the initial curvature of the elastic axis

before deformation is

3 e — - — - 3
xng x ds x pt -

where s is the distance measured along the undeformed elastic axis.
The elastic deformations rotate the triad xnf to ¥3Y32Z3, and the

transformation matrix between the two triads can be written as

- N - ™ — o
€xs3 s 14 mq nq ex
< Cy3 ? = [T] { ®n > = 1y my ny ®n (a2)
\.€z3./ - eC) 15 m3 n3 ®
- —

Let the expression for the curvature vector of the deformed elastic axis be
“x3y3z3 = “x3 ®x3 + Uy3®y3 + Y23%z3 (a3)

The next step is to find the expressions for the componenis of the
curvature vector in terms of the direction cosines 19, my, « o & n3, and the

blade initial curvature. From equation (A2) one can write

ex3 = 14%x + m¢®n + n4€g 4 (n4)
Differentiating equation (A4) with respect to s and expressing the resulting

expression along X3y32z3 axes, one can obtain
e'. = (111; + m1m; + n1n;) €x3

+ [1'13 + m'my + n'ny = 8' (nqmy - mqny)ley3
1 1 1 pt
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+ [1'13 + m'm3 + n'n3 - 6' (nqm3 - mqn3)]®z3 (AS5)
-1 S 1 pt . :

Also the identity

e = W X e ' (a6)
X3 X3Y 325 X3
leads to
e = W, e - Wy, e . (A7)
X3 237Y3 Y3723

From the identity

e = W, e - W, e (A8)
Y3 X3 23 237%3

one can write
Wy = e o ey (a8)

Substituting equation (A2) into (A9) and using the orthogonal property of the
matrix [T], the expression for “x3 in terms of direction cosines is
L} L | ]

w = 1l9l3 + mom3y + nony + 140°' (A10)
X 243 23 2n3 1
3 pt

From equations (A5) and (A7) the expressions for wy3'and wz3 are

Y, - [1413 + mqym3 + nqnj3 -'B;t(n1m3 - mqn3)] (a11)

€
]

(1413 + mqmy + nqngy = 6' (nqmy - mqny)] (A12)
pt

€
N
]

Thus fof the expressions for the curvatures in terms of the direction
cosines and the total section pitch of the blade have been developed. The
next task is to express the direction cosines in terms of u, v, w, and ¢; To
this ;nd, the direction cosines are first expressed in terms of the

Eulerian-type angles 84, L4, and 6¢q. It was shown in reference 2 that the
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form of the expressions for the components of the curvature depends on the

order in which the rotational transformations between the deformed and

undeformed coordinates are imposed.

In the present development, out of the

six possible rotational transformation sequences which may be employed, a

flap-lag-torsion rotation sequence will be addressed. For this rotational

transformation sequence, the rotations are imposed as follows:

1. A positive rotation B4 about the negative n axis resulting in

X1Y1Z1.

2,- A positive rotation L4 about zj axis resulting in x3y2z3.

3. A positive rotation 04 about x5 axis resulting in x3y3z3.

The explicit form of the transformation matrix [T] in terms of the

Eulerian-type angles B1, %9, and 084

cos B4 cos [q sin

-sin §4 cos By cos 09 cos

,[}D =| -sin B¢ sin 04

sin §q cos Bq sin 09 ~cos

L:sin By cos 04

The rotation angles 71, 81, 04
variables u, v, w, ¢ To this end,
the point 0 and 0' in fiqure 3, and

can write

Ry

R0+AR
where

AR (u - Up) ex + vey + weg

and

is
z1 cos g1sin B4 ]
Cq cos 64 cos Bq sin 04
-sin ¢4 sin B4 cos 04
4 sin 04 sin T4 sin B4 sin 04
“+cos By cos 64

(AI3)
are to be expressed in terms of the

let Ry and R4 be the position vectors of

AR be the displacement of 0. Then, one

(A14)

(A15)
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L PO (A16)
Up = - —=) +(==) 14 A
F 2 0 as 38 s .

Using the following relation between the unit vector triads exeyey and exener

ex = ey
ey = ep cos 6 - er sin 6 (a17)
ez = € 8in 6 + €, cos 6

the expression for AR is

AR = (u - Upley + (v cos 6 + w s8in O)ey + (w cos 6 - v sin B)eg (a18)

Differentiating equation (A18) with respect to s

2 2

3(AR) 3R o o - B -

-5;—- = 5; + (ay - -; - -; ) ex + ayen + ager (A19)
where

O = u

oy = v' cos 6 + w' sin 6 ‘ (A20)

"oy = =v' sin 6 + w' cos B

s 2 2
| oy + az) as
0

Up

fl

N =

Differentiéting equation (A14) with respect to s and substituting equation

(A19) into the resulting expression, the expression for 3R4q/ds is

- - 2 2
3R1 o9R Ay -

=+ (G = == = ==) ey + + A21
3s 3s G T T3 T TR Sx T OGyen T dzeg (az1)

- =

From calculus we have
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3R } |
- = ey : (A22)
ds

Substituting equation (A22) into (A21) gives

2 2

351 O.y Qz - - -
_— = (1 + - == - -=) e, + ayen + a,e (A23)
aa Oy > 2 Sx Gyen z°g

The relation between the extensional component of the Green's strain

tensor € on the elastic axis and 9R¢q/ds 1is given by

dRy  3Rj
€ = 1/2 (=== o === -=1) (A24)
9s 9s

Substituting equation (A23) into (A24), the expression for € reduces to

2
Ox

Invoking small strain assumption that the elongations and shears are small

comparéd to unity, equations (A23) and (A25) redﬁce to

2 2

9R4 Oy Oy - - -
=== (1 = == = ==) e, + aye, + azey (A26)
ds - 2 2 x 7 %yen z

If the deformed length of the element ds is ds4, the relation between dsq

and ds can be written as

‘ 1/2

| : ds1 = (1 - 2¢) / ds (a28)
i Hence,

| 9Rq -1/2 9Rq

| -—— = (1 + 2¢€) -— (A29)
j 9sq ds '

Also,
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3R1 -
- —1 e

- : -+ . (A30)
984 X3

InQdking small strain assumption and combining equations (A26), (a29), °

and (A30) results in

2 2
- ay - - - : .
e = (1 = == = ==) ex + ayen + aze (A31)
%3 2 2 %% T %en T 0z8g

From equations (A2), (A13), and (A31) one can write

2 2
az
ly = cos Bycos g = 1 = == = ==
1 1 1 5 2
my = sin gy = ay (A32)
nqy = cos {9 8in B4 = aqy
Hence,
2
Gz
sin By = a, cos B9 = 1 - 5-
2
in g 8z 1 4 (A33)
sin = co = - == ,
1 | Oy 1 2 |

The third rotation angle 04 is due to torsion of the blade and hence is given
by

8y = ¢ | (A34)

The expressions for the transformation matrix [T] and for the curvature
components Yx3, Wyj, Wz3 are given in terms of the direction cosines in
equations (A2), (A10), (A11), and (A12) and those for the direction cosines ip
terms of the rotation angles are éiven in equation (A13). The rotation angles

are expressed in terms of ay, @y, and a; in equations (A33) and (A34) and the
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expressions for a,, Oy s and a; are glven in terms of u, v, w, and ¢ in
equations (A20)., Combining equations (a10), (A11), (A13), (A33), (A34), and
(A20), the second-degree expressions for the curvature components and for the

transformation matrix can be obtained as

W3 = ¢'" = (v' cos 6 + w' sin 6)(-v' sin 6 + w' cos 6)'
v'2 w'2
+8' (1 = === = omm) (a35)
pt 2 2
Wyy = —w'' (cos 0 - ¢ sin 6) + v'' (sin B + ¢ cos 6) (A36)
Wza = v'' (cos 6 - ¢ sin 6) + w'' (sin 6 + ¢ cos 6) (A37)
[ V'2 w'2 ]
1 - —5- - ~£- v' cos 6 + w' sin © -v' 8in 6 + w' cos 6
2
(v' cos 6 + w' sin 0) »
-v'{cos 0 = ¢ sin 0) 1 = == ; ---------- ¢ = (v' cos 6 +w')
[i] = 1=-w'(sin 6 + ¢ cos 6) - —; e(=v* 8in 0 + w' cos 6)
_ (v' sin 6 + w' coOS8 5)2
v' (sin © + ¢ cos 6) —¢ 1 = e
: 2
-w' (cos B - ¢ sin 0) ' ¢2
| 2

(A38)
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APPENDIX B
NONLINEAR STRAIN-DISPLACEMENT RELATIONS
This Appendix will develop second-degree nonlinear expressions for

strains. To this end, let rg and rq4 be the position vectors before and after

deformation of an arbitrary mass point on the blade. These vectors can be

expressed as

rg = Rg + nep + Ceg (B1)

T4 Ry(sq) + ney3 + Ceyz

(B2)
3 B

where sq is the length measured along the deformed elastic axis of the blade.

The differentials of the above vectors are given by

drg = dsey + (dn - £0' ds) ep + (47 + nb' ds) e (B3)
pt pt

dr (1 - nw; + ¢ e, ) ds
1 z, my3 Xy 1

+ (dn - me3 dsq) ;y3 + (dg + nmx3 ds1q) ;z3 (B4)
where the curvature components (nx3, wy3, wz3 are defined in Appendix B. The
usual practice in solid mechanics is to use the Lagrangian strain tensor which
is defined by
ds

drq « drq = drg . drg = 2 [ds dn az) [eij] dan ) (B5)
) ac

Substituting equations (B3), (B4), (A28) into equation (B5) and using the
relation between the engineering strains and the components of the Lagrangian
strain given by equation (5), one obtains the following expressions for the

strain components
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¢|2
Yex = Exx = u' + (0% +g2) (=== + ¢* 0" )
2 pt
-nlv'" cos 8 +w'' 8in 6 + ¢ (=v'' 8in 6 + w'"' cos 0)]

+ 7 [v''s8in 6 =w'' cos 6 + ¢ (v'' cos 6 + w'' sin 6)] (B6)

Yxn = 28xn = % [¢" = (v' cos 8 + w' sin 0)
12 w|2
e(=v' sin 6 + w' cos 0)' = 8' (=== + ===)] (B7)
. pt 2 2

Yxg = 26xg = T [¢' = (v' cos 8 + w' sin 0)
. V;Z w'2 .
(=v' sin 0 + w* cos 0) = 8' (=== + -==)] ' (B8)

pt 2

It should be pointed out that in arriving at the expression given in
equations (B6), (B7), (B8) several higher-order terms have been discarded
based either on considerations related to small deformations in which
elongations and shears are small compared to unity or on considerations
related to the approximations which can be made because of the slenderness of
the blade as discussed in Appendix C. Retention of higher order terms in the
expressions for the strain components is not a problem. However, these higher
order terms in the strains lead to higher order terms in the final equations
of motion. Thus, discarding these terms in the resultant stfain expressions

using the considerations of Appedix C simplifies the algebric manipulations.
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APPENDIX C
SLENDER BEAM APPROXIMATION AND ATTENDANT ORDERING SCHEME

The simplifications of the slender beam approximation as applied to the
derivation of the second-degree nonlinear equations of motion were discussed
and a mathematical ordering scheme which is compatible with the assumption oﬁ
a slender beam was introduced in reference 3. The same scheme has been used
in the present report. In this scheme, a slender beam is systematized by
introducing a parameter € which is taken to be of the same order as the
nondimensionalized bending displacements v/R and w/R. The order of the
dependent variables and the geometric quantities appearing in the equations of

motion of this report are as follows:

u/R = 0(e?) /R = 0(¢) 8 = 0(1)
v/R = 0(g) Z/R = 0(g) 6' = 0(¢)
W/R = o(e) ch = 0(8)
¢ = o0(e) x/R = 0(1)

Ot = 0(1)

Following this ordering scheme, the order of the elastic and inertial
terms which are retained in the second-degree nonlinear coupled

flap-lag-axial~torsion equations of motion of this report are given in Table

A1 below.
TABLE A1, - ORDERING SCHEME
Freedom Elastic forces Inertial forces
Bending et g2
Torsion €5 e3
Extension e3 3

The rationale for this scheme was discussed in reference 3.
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APPENDIX D
VELOCITY COMPONENTS EXPERIENCED BY BLADE ELEMENT
The velocity components experienced by a blade element are determined by
considering the contributions from the atmospheric winds, induced velocity,
and blade dynamic velocity. For a down wind rotor, the tower shadow effect
will be included.
The resultant velocities seen by a point on the elastic axis of the blade

in deformed and the undeformed coordinate systems are related according to

\'4 Tl Vv (p1)
. x3y3z3 | XNng .

where, from figure 6,

\' = Uge = Upe - Upe (D2)
x3y3z3 R X3 T Yq P z4
- - drq
and Vypr = (Vg - ;;-)ch (D3)

The aerodynamic velocity components seen by a blade element are shown in
figure 7. The aerodynamic velocity congists of three components: (1) the
free stream velocity; (2) the gust velocity; and (3) the induced.velocity.
The free stream velocity profile over a rough terrain is frequently
approximated by a power-law relation with height, and is given by

: Xy N :

Vo (x1) = Vg (1 - g-) (D4)
where V, and Vg are the mean velocities at x;y and turbine axis respectively
and H is the height of the center of the hub from gfound. This mean velocity,
Vp is a function of the azimuth angle of the blade since the interference of
the tower causes a reduction in the velocity when the blade is in the

vicinity of the tower. In the present development, it is accounted for by
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introducing a blockage factor b which is less than or equal to 1. Inside tﬁe
tower shadow band defined by the limits yq < y < Yy the mean velocity is bV
where V, is defined in equation (D4). The limits Y¢ and Y3 and the blockage
factor b are to be obtained from either wind tunnel experiments or full scale
tests. Expanding V(xy) in Taylor's series about xy = 0 and retaining only up .

to second-order terms, equation (D4) reduces to

Ap = Ag (1 + C1x2 - Cyx cos ¢ + C1x2 cos 2¢) . (D5)
where

dp = Vp/SR

X = x cos Bpg cos Yy = x cos Y

cy = (n2 - n)RZ2/4H2

Ca = nR/H (D6)

X = x/R

)\H = VH/QR

The qust velocities are assumed to be harmonic with a frequency Wy and
are represented as
Ug

-= g8in w4t
R

[l

Mg

Vg

Avg = == 8in wgt : : (D7)
QR :

Ayg = i sin w4t
- g

g QR
The velocity Vy = ApfiR is inclined to the rotor axis at an angle yq as
shown in figure 7. Resolving this velocity along Y; and Zy axis, one can

write
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bVy sin woeyI + bVp, cos WQeZI

QR (bAy sin woeYI + by cos ¢oezI) (D8)

The induced velocity can be calculated using blade element and momentum
theories and is
vy = AiQR (D9)

Now the aerodynamic velocity can be expressed as

v = R [Mggex_ + (bAg sin Yo + Ayge
XIYIZI ugexI m Yo vg YI

+ (bAy cos Yo + Ayg - Ai)ezI] (D10)

This velocity can be expressed in xnf system by the relation

Vxng = [TR] VxIstzI _ (D11)

where the transformation matrix can be written with the aid of the figures 1

j and 2 as
| ) -
j cos sin ¢ ch
j -ch cos Y sin 6 -ch sin ¢ sin 6 sin 6
? [?RJ = |- -sin § cos 0 + cos ¥ cos 0 (D12)
1 ~Bpc cos § cos 6 ~Bpc 8in Y cos 6 cos 8
L +gin ¢ 8in O -cos y sin 6
: .

The position vector of a point on the elastic axis is

r{ = (x+ u-Upley

+ (v cos 6 + w gin Ole, + (-v sin 8 + w cos B)ec (D13)

The angular velocity of the coordinate system xnf is given by equation (20).
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Using equation (D13) in conjunction with equation (20), the dynamic velocity

of a point on the elastic axis taken with respect to the xnf axis system is

given by
dr4 R -
a;- = (u - Up - Qv)ey

[; cos 0 + & sin 6) - Qch (-v 8in 6 + w cos 0)

R cos 6 (x + u - Up)ley

+

-+

+ [-; gin 6 + & cos O + Qch (v cos 6 + w sin 9)

Q sin 6 (x + u - Up)le, : (D14)

Combining equations (D11), (D12), and (D14) gives the total velocity seen by a

point on the elastic axis as

Venz = {QR[Aug cos Y + (bAp sin Yg + Ayg)sin y

+

. . -
u + Up + Qvley

+

{QR[Aug(-ch cos Y cos & = sin Y sin 0)

+

(bAp sin Yo + Ayg)(=Bpc 8in ¢ sin 6 + cos § cos 0)

+ (bAp cos Yo + Ayg ~ Ai)sin 6]

- (¥ cos 8 +w sin 6) + QB¢ (-v sin 8 + w cos 0)

- Qcos 6 (x +u - UF)};n

+ {Qk[kug(-ch cos P cos 6 + sin ¢ sin 6)

+ (bAy sin Yg + Ayg) (=Bpc sin Y cos 6 - cos ¢ sin 6)

+ (bAy cos Yo + Ayg = Ay)cos 6]

- (-; sin 6 + w cos 6) - Bpe (v cos 6 + w sin 6)

+Qsin 8 (x + u - Uple, | (D15)
The tangential and perpendicular velocity components Up and Up are

obtained from equations (A38), (D1), (D2), and (D15) and, to second~degree in
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the dependent variables, have the form

UT=

+

{-QR[Aug cos ¥ + (bAp sin Yg + Ayg) sin §

Bpc (bAp cos Yo + Aig = M)

[v' (cos 6 = ¢ sin 8) + w' (sin 6 + ¢ cos 6)]

(-4 + Qv) (-v' cos 6 - w' sin 6)

QR[Aug (=Bpc cos ¢ cos 6 ~ sin ¢ sin 9)

(bAp sin Yo + Ayg)(=Bpe sin § sin 8 + cos § cos 6)
(bAp cos Yo + Ayg = Ay) sin 6]

(v' cos 8 + w' sin 0)2 ¢2

[ - == = 2]

2 2

(; cos 6 + Q sin 08) + QBPC (=v 8in 6 + w cos 6)

(v' cos 6 + w' sin 6)2 ¢2
2 cos & (u-Up) -~ Q% cos 6 [1 - : - ==]
2 2

R [Aug(-ch cos Y cos © + gin Y sin 0)

(bAy sin Yg + Ayg) (-Bpc sin ¢ cos 8 - cos ¢ sin 6)
(bAy cos Yo + Ayg = Aj) cos 6]

[¢p = (v' cos 6 + w' gin 0)(-v' sin 6 + w' cos 6)]

¢ [~ (~v sin 6 + w cos 6 - fBpe (v cos 8 + w sin 0)

R sin 6 (x + u)l} ' _ _ (D16a)

{ar [Aug cos ¥ + (bAy sin Yo + Ayg) sin ¢

Bpc (bAy cos Yo + Mag = A1)l

[v'! (sin 8 + ¢ cos 0) = w' (cos 6 ~ ¢ sin 8)]

(-a + 2v) (v' sin 6 - w' cos 8)]

fIR [Aug (=Bpc c08 Y cos 6 = sin Y sin 6)

(bAp sin Yo + Ayg) (~Bpe sin ¢ sin 8 + cos ¢y cos 9)
(bAp cos Yo + Ayg — Ay) sin 61¢

[-(v'cos o + w.sin 0) + Qch (-v 8in 0 + w cos 6)- Q cosH (x+u)l¢
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+

QR [Aygy(=Bpc cos § cos 0 + sin ¢ sin 8)

+ (bAy sin yg + Avg)(-ch sin Y cos 6 - cos Y sin 0)

+

(bAy cos Yo + Ayg = Ai) cos 6]

- (-v 8in 8 + w cos 8) - Bpc (v cos 6 +w 8in 6) + & sin 6 (u - Up)

(v' sin 6 + w' cos 9)2 ¢2
+ Qsin 6 x (1 - 5 - --2-)} (D16Db)

The quantity é appearing in equations (51) and (53) is the angular
velocity of the blade section about the local x3 axis and, consistent with the
present notation, can be written as éx3° It can be regarded as composed of
two parts: the first part arising from the rigid-body angular velocity of the
hub in space, the second part arising from the angular velocity assoclated

with the elastic deformations. The first contribution due to @ and is given

by
.. r
ex3. Qch T
ﬂ € = [T] 4 Q sin 6 > (D17)
Y3
Léz \_Q cos 6.
3 g -
Then
. V'2 woZ
Ex, = 8Bpg (1 = === = ===) + &' p18)
*3 pe 2 2 o

The second part of the angular velocity of blade section can be obtained by
replacing ¢' by ¢., (=v' sin 6 + w' cos 0)' by (~-v' sin 6 + w' cos 9): and
vat by épt (which is zero) in the expression for the curvature “x3 given in

equation (A35). Thus,

(éxa)deformation = $ = (v' cos 8 + w' 8in 0)(~v' 8in 6 + w' cos 6). {D19)
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Combining equations (D18) and (D19), the total sectional pitching velocity is

. v'z wl2
e(=¢e = QBye (1 = === = ===) + Quw'
xy) pe 2 2
+ % - (v cos 8 +w' sin 0)(-v' sin 6 + w' cos 8) (D20)
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Figure 3. - Schematic representation of
undeformed and deformed blade (section pitch
angle, 6, not shown).
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Figure 6. - Relative velocity components at
blade cross section. ,
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16.

Abstract

The second-degree nonlinear equations of motion for a flexible, twisted, nonuniform, horizontal-

axis wind turbine blade are developed using Hamilton's principle. The derivation of the equa-
tions has its basis in the geometric nonlinear theory of elasticity, and the final equations are
consistent with the small deformation approximation in which the elongétions and shears are
negligible compared to unity and the square of the derivative of the extensional deformation of
the elastic axis is negligible compared to the squares of the bending slopes. A mathematical
ordering scheme which is consistent with the assumption of a slender beam is used to discard
some higher-order elastic and inertial terms in the second-degree nonlinear equations. The
blade aerodynamic loading which is employed accounts for both wind shear and tower shadow
and is obtained from strip theory based on a quasi-steady approximation of two-dimensional,
incompressible, unsteady, airfoil theory. The resulting equations have periodic coefficients
and are suitable for determining the aeroelastic stability and response of large horizontal-axis
wind turbine blades. '

17.

Key Words (Suggested by Author(s}) 18. Distribution Statement
Wind turbine blades Unclassified - unlimited

Aeroelasticity STAR Category 44
Rotor dynamics DOE Category UC-60
Equations of motion

18.

Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price’
Unclassified Unclassified

* For sale by the National Technical Information Service, Springfield, Virginia 22161




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74



