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SUMMARY 

The second-degree nonlinear equations of motion for a flexible, twisted, 

nonuniform, horizontal-axis wind turbine blade are developed using Hamilton's 

principle. The derivation of the equations has its basis in the geometric 

nonlinear theory of elasticity, and the final equations are consistent with 

the small deformation approximation in which the elongations and shears are 

negligible compared to unity and the square of the derivative of the 

extensional deformation of the elastic axis is negligible compared to the 

squares of the bending slopes. A mathematical ordering scheme which is 

consistent with the assumption of a slender beam is used to discard some 

higher-order elastic and inertial terms in the second-degree nonlinear 

equations. The blade aerodynamic loading which is employed accounts for both 

wind shear and tower shadow and is obtained from strip theory based on  

quasi-steady approximation of two-dimensional, incompressible, unsteady, 

airfoil theory. The resulting equations have periodic coefficients and are 

suitable for determining the aeroelastic stability and response of large 

horizontal-axis wind turbine blades.
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INTRODUCTION 

The recently renewed efforts in wind power are due to its prospective 

uses as an alternative energy source. As a result of these efforts, several 

wind turbine projects have been initiated by NASA Lewis Research Center as a 

part of the Department of Energy's (DOE) overall wind energy program. To make 

wind energy cost effective, wind turbines substantially larger than the 

existing NOW Mod-0 which has a rotor diameter of 38 meters are being 

studied. However, as the rotor diameter increases, blade flexibility and 

hence susceptibility to aeroelastic instability also increase. Furthermore, 

efficient construction and operation of wind turbines require that the 

vibratory loads and stresses on the rotor as well as on the combined 

rotor-tower system be reduced to the lowest possible levels. Thus, 

aeroelastic and structural dynamic considerations have a direct bearing on the 

manufacture, life, and operation of these large wind turbine systems. 

Although the structural dynamic and aeroelastic technology used to develop 

helicopter rotors appear to be adequate for the development of wind turbine 

machines, this technology has to be transformed from helicopter rotor 

applications to wind power applications, and additional studies have to be 

conducted to determine the effects of the parameters peculiar to wind power 

machines on the aeroelastic and structural dynamic behavior. 

Several aeroelastic considerations are common to both the wind turbine 

and helicopter blades. These include flap-lag-torsion, flap-torsion and 

flap-lag instabilities, stall flutter, and torsional divergence. The wind 

velocity gradient due to the Earth's boundary layer and gravity loads in the 

case of a wind turbine rotor, and forward velocity in the case of a helicopter 

rotor lead to timewise periodic coefficients in the equations of motion. 

Several previous studies have considered the helicopter blade and developed 
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the nonlinear aeroelastic equations of motion. Recently, reference 1, though 

primarily a study of the flap-lag dynamics of rigid articulated helicopter 

rotor blades, contains a cursory examination of the elastic blade. References 

2 and 3 more completely examined the basis of the nonlinear aeroelastic 

equations. In particular, attention was directed at establishing the 

expressions for the nonlinear curvatures and the nonlinear transformation 

matrix between the undeformed and deformed blade coordinates. The resulting 

equations were compared with some of those in the literature. These 

comparisons indicated several descrepancies with the results of reference 3, 

particularly in the nonlinear terms. The reasons for these descrepancies were 

explained in reference 3. 

For wind turbine blades, reference 4 presented a set of nonlinear 

equations of motion. An examination of these equations reveals that reference 

4 fails to obtain several nonlinear elastic and aerodynamic terms which are of 

the same order as those retained. It appears that these terms were not 

obtained in reference 4 for two reasons: (1) an incorrect torsional curvature 

expression and (2) linearizing the resultant transformation matrix between the 

undeformed and deformed blade coordinates while developing nonlinear equations 

of motion. 

Based on the considerations and discussions in references 1 and 21 

reference 5 apparently sought to redevelop the nonlinear equations of 

equilibrium for rotor blades. However, the resulting equations are missing 

several elastic terms which were well established in the literature and some 

nonlinear terms as well. It is interesting that several third-degree 

nonlinear terms were retained. These general equilibrium equations were used 

to study aeroelastic stability of a single wind turbine blade in reference 6 

and a coupled rotor/support system in reference 7. Nonlinear aeroelastic



equations of motion of a single wind turbine blade were also developed in 

reference Busing the Newtonian method. Several nonlinear elastic and 

aerodynamic terms are missing in this reference because of the use of an 

incorrect expression for the torsional curvature and a partial linearization 

of the resultant rotational transformation between the coordinates of the 

undeformed and deformed blade. In view of the differences in the equations 

existing in the literature, it is felt that a comprehensive development of the 

nonlinear aeroelastic equations of motion of an elastic horizontal-axis wind 

turbine blade is required. The basic ingredients of such a development were 

presented in reference 9. This report documents the details of the 

development. 

The derivation of the nonlinear equations of motion herein follows 

essentially along the lines of reference 3. In this reference, the pretwist 

together with control inputs of the blades were combined with the elastic 

twist for simplicity, following a common practice in the helicopter blade 

literature. Physically, the pretwist is present in the blade even before the 

deformations. Thus, this report will include the rotation due to pretwist 

with the control inputs and impose this rotation first while imposing the 

rotational transformations.
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SYMBOLS 

a	 airfoil lift-curve-slope 

A	 cross-sectional area 

Au, Avs Aw	 generalized aerodynamic forces per unit length in X,,Y, z 

directions, respectively 

generalized aerodynamic moment per unit length about 

elastic axis 

b	 number of blades; also blockage factor to account for 

tower shadow 

boundary terms arising from strain energy, kinetic energy, 

gravity, material dancing, and aerodynamic forces, 

respectively 

B 11 82	 section constants 

C	 blade chord 

cd	 airfoil profile drag coefficient 
0 

C(k)	 Theodorsen's circulation function 

C 1 ,C2	 aerodynamic constants 

di(i1,2,...5)	 notation used in writing the virtual work associated with 


material damping in concise form 

D	 airfoil profile drag per unit length 

e	 chorthise offset of mass centroid from elastic axis 

(positive when in front of elastic axis) 

eA	 choraaise distance of area centroid of cross section from 

elastic axis (positive when in front of elastic axis) 

E	 Young's mo&lus 

E*	 coefficient of internal friction in tension



exsey,ez unit vectors along x3, y3, z3 axes, respectively 

eX,ey,ez unit vectors along X, Y, Z axes, respectively 

ex,ey,ez unit vectors along X1, Y1, Z1 axes, respectively 

ex, e lv e c unit vectors along x, r, F axes, respectively 

Fx, Fy, Fz components of aerodynamic forces per unit length in x3, 

Y3, z3 directions, respectively 

Fx, Fr, F components of aerodynamic forces per unit length in x, 

directions, respectively 

components of gravitational forces per unit length in X, 

Y, Z directions, respectively 

FO gravitational moment per unit length about elastic axis 

g gravitational constant 

notation used in writing the gravitational forces 

G shear modulus 

G* coefficient of internal friction in shear 

h vertical velocity of two-dimensional section normal to 

free-stream 

H height of rotor hub center above ground 

IUI IVI IW generalized inertia forces per unit length in X, Y, Z 

directions, respectively 

Iq generalized inertia moment per unit length about elastic 

axis

area moments of inertia about n and ç axes, respectively 

J	 torsional section constant 

k	 reduced frequency
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kA polar radius of gyration of cross-sectional area about 

elastic axis 

kj(i=1,2,.s.6) notation used in writing the variation of kinetic energy 

km polar radius of gyration of cross-sectional mass about 

2	 2	 2 
elastic axis (	 = km	 + km

2 

li,mi,nj direction cosines (i = 1, 2, 3) 

L aerodynamic lift per unit length 

aerodynamic pitching moment per unit length about deformed 
'r

elastic axis 

m mass of blade per unit length 

generalized damping forces 

R length of the blade 

position vector of a point on the elastic axis after 

deformation 

Ro position vector of a point on the elastic axis before 

deformation 

r 1	 - position vector of a point after deformation 

ro position vector of a point before deformation 

B coordinate along the undeformed elastic axis 

Si coordinate along the deformed elastic axis 

sj(i1,2,...10) notation used in writing the variation of the strain 

energy 

T kinetic energy 

TA blade tension due to aerodynamic forces 

TC blade tension due to centrifugal forces 

T blade tension due to gravity
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UR, UT,UP	 radial, tangential, and perpendicular components of 

velocity for blade airfoil section 

U	 resultant of UT and Up 

UF	 radial foreshortening of elastic axis 

u,v,w	 deformation of elastic axis in X, Y, and Z directions, 

respectively 

Ug Vg Wg	 components of gust velocity in X1 , Y1 , Z1 directions 

respectively 

V	 strain energy 

VH	 mean wind velocity at height H 

Vm( xi)	 mean wind velocity at x1 

VX y Z	 aerodynamic velocity vector expressed in X1Y1Z1 coordinate 

axis system 

Vxy3z3	 relative velocity of point on elastic axis expressed in 

x3y3z3 coordinate system 

relative velocity of point on elastic axis expressed in 

xr1t coordinate system 

vi	 induced velocity 

W	 work done by aerodynamic, structural damping, and 

gravitational forces 

WA	 work done by aerodynamic loading 

WD	 work done by structural damping 

W 	 work done by gravitational forces 

XYZ	 coordinate system with the origin at the hub center 

which rotates with blade such that X-axis lies along 

initial undeformed position of the blade elastic 

axis
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X1Y1Z1	 inertial axis system with the origin at hub centerline and 

Z 1-axis normal to the hub plane 

XYz	 hub-fixed axis system rotating about Z 1-axis with 

angular velocity 

X714	 principal axis system obtained by rotating about x0-axis 

with an angle B 

x0y0z0	 blade-fixed axis system at arbitrary point on elastic axis 

before deformation 

x1 1 y1,z1	 coordinates of a point (which was at xr in the undeformed 

blade) in the deformed blade 

x3y3z3	 blade-fixed orthogonal axis system in deformed configura-

tion obtained by rotating xrg; x3-axis is tangent to the 

deformed elastic axis 

[T]	 transformation matrix between 	 and x3y3z3 coordinate 

systems 

[TR]	 transformation matrix between xn4 and XIYIZI coordinate 

systems 

(cjj]	 Green's strain tensor 

a	 airfoil section angle of attack, a = tan1Up/UT 

ax' ayt ct	 notation used in writing the derivative of the 


displacement of a point 

pc	 angle of built-in coning (precone angle) 

01,	 , 0 1	 Eulerian-type rotation angles between xrç and 

X373Z3 

lxx' Yxnf l	 engineering strain components 

6( )	 variation of ( ),

11



small parameter of the order of the bending slopes; the 

airfoil section pitch angle with respect to free-stream 

velocity; extensional component of Green's strain tensor 

on the elastic axis 

tensor strain components 

TI	 sectional coordinate along major principal axis, also 

constant for mean velocity calculations 

sectional coordinate normal to a-axis 

X	 nondimensional coordinate along blade axis, X x/R 

o	 total geometric pitch angle, 0 = 0pt + 

ec	 collective pitch 

opt	 built-in twist (pretwist), positive when leading edge is 

upward 

Xi	 induced flow ratio, Aj 2R = vi 

XM	 inflow ratio, Am R = Vm(xI) 

XH	 inflow ratio, XH R = VH 

Xugs Avgs Awg	 inflow ratios, Aug R = U  sin Wgt Avg R = vg sin Wgt 

A g lR = Wg Si.fl Wgt 

P	 mass density of the blade; also mass density of air 

OxxIaxTIICrx4	 engineering stresses 

angle of twisting deformation about elastic axis, 

positive when leading edge is upward 

blade azimuth angle measured from downward position in the 

direction of rotation 

Po	 angle between mean wind velocity Vm and rotor axis Z1 

3 s, 3 , wz 3	 torsional curvature (total rotation rate about x3-axis) 

and bending curvatures, respectively 
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curvature vector before deformation 

WX 3y3z	 curvature vector after deformation 

W	 angular velocity of xTT coordinate system 

rotational speed of the wind turbine rotor

circulatory aerodynamic term 

)NC	 noncirculatory aerodynamic term 

1T	 denotes transpose of matrix 

a 
time derivative, -- C ) 

at 

a	 a 
space derivative, -- ( ) = -- ( ) 

as	 ax 
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MATHEMATICAL MODEL AND COORDINATE SYSTEMS 

The mathematical model chosen to represent the wind turbine blade 

consists of a straight, slender, variably twisted, nonuniform elastic blade. 

The elastic axis, the mass axis, and the tension axis are taken to be 

noncoincident; the elastic axis and the.feathering axis are assumed coincident 

with the quarter chord of the blade. The effect of warping is assumed to be 

small and is neglected. The generalized aerodynamic forces account for tower 

shadow, wind shear, and gusts, and are calculated from strip theory based on a 

quasi-steady approximation of two-dimensional, incompressible, unsteady, 

airfoil theory. 

Several orthogonal coordinate systems will be employed in the derivation 

of the equations of motion; those which are common to both the dynamic and 

aerodynamic aspects of the derivations are shown in figures 1 to 3. The axis 

system X1Y1Z1 shown in figure 1(a), is fixed in an inertial frame with the 

•origin at the center of the hub. The axis system XYZ, shown in figure 1(b), 

is obtained by rotating X 1Y1 Z1 system about Z1-axis by an angle = t and 

then XgYoZa system about the negative Ye-axis by an angle 8p, the angle of 

built-in coning angle. The point on the cross section through which elastic 

axis passes is given by the intersection of the Y and Z axes. Let x0y0z0 be 

axes fixed to the blade at an arbitrary point on theelastic axis of the blade 

so that before deformation x0y0z0 are parallel to XYZ respectively. The and 

axes (fig. 2) with the origin at the elastic axis of the cross section are 

principal axes and are inclined to the Y and Z axes by an amount 0. The 

geometric pitch angle is given by 0 = Opt +'0c where Opt is the built-in twist 

angle (pretwist) and °c is the collective pitch angle. 

The variables defining the configuration of the deformed blade are shown 

in figure 3. When the blade deforms, the elastic center of an arbitrary 
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section deforms an amount u in the X direction, v in the Y direction, and w in 

the Z direction. The section rotates about the principal axes due to bending 

in addition to twisting an amount about the elastic axis. The final 

position of the triad xiV after deformation is denoted by x3y3z3. 

HAMILTON'S PRINCIPLE 

The equations of motion will be derived using the extended Hamilton's 

principle as in reference 3 in the form 

t 
f 1 (6T - 6v + 6W) dt 	 0 
to 

where

6w = ÔWD + 6Wg + 6WA	 (2) 

In equation (1), T is the kinetic energy, V is the strain energy, and 6w is 

the virtual work done by the damping, gravitational, and aerodynamic forces. 

In the following sections explicit expressions for 6T, 6V, and 6w in terms of 

the variables u, v, w, and and the blade sectional properties will be 

developed.

STRAIN ENERGY 

The expression for the strain energy of the blade in terms of stresses 

and engineering strains is 

1 R 
= -	

"	
xx1xx + axnyxn + axt;Ixi;) dii d dx	

(3)* 
20 A 

where, using Hooke's law,

(1) 

*The coordinates s and x are used interchangeably. 
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Oxx = EYxx 

axTI = GYx	 (4) 

= GYxC 

Assuming small strains, the engineering strains are related to the components 

of the strain tensor according to 

lxx = Lxx 

lX	 = 2L	 (5) 

= 2c 

To develop the explicit expressions for strains, the expressions for the 

curvatures w x3 ,y3 , W and the transformation matrix [T] between the 

coordinate systems 	 and x3y3z3 are required in terms of the variables u, 

V, w, and the blade sectional properties. These expressions are developed 

in Appendix A following the procedure described in reference 2 and are given 

by
V12	 w'2 

Wx = 4'+O' (1 --------)-(v'cosO+w'sinO) 
3	 pt	 2	 2 

(-V 1 sin 0 + W I cos 0)' 

Wy '(cos64sin0)+v''(sin0+4cos8)	 (6) 

= v''(cos 0 - 4 sin 0) +w''(sin 0 + . cos 0) 
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[T] =

'2 '2 
1 - I v'cos 6 + w' sin 0 -v' sin 6 + w' cos 0 

2 2

i1 :(;ICOs6W1in6)2 --

-v'(cos 6 - 4) sin 6) ------------------ 4) - (v'cos6+w'sin6) 

I I

4)2 

-w'(sin 6 + 4) cos 6) - ;-
•(-v'sin6-Fw'cos6) 

I I 

I 

I
I

(-v'sin0-fw'cos6)2 
v'(sin 0 + 4) cos 6) I 1 ----------------

-w'(cos6-4) sin O) i

(7) 

Using equations (6) and (7), the second-degree nonlinear expressions for 

the strains are developed in Appendix B, and are 

2 
YXX =	 (i = u' +	 2 + 2)(_4)... + 0' 4)') - (v'' +W''4))(ncos 0 - 	 sin 8) 

	

2	 pt 

- (w" - v''4))(n sin 0 +	 cos 6)	 (8a) 

lxii = 2 xr =	 [4)' - (v' cos 0 + w' sin 6) (-v' sin 0 + W' cos 0)' 

V' 2	 w'2 
-6' (---+---)]
	

(8b) 

	

pt 2	 2 

= 2c, = n [4)' - (v' cos 0 + w' sin 6) (-v' sin 0 + W I cos 0)' 

v'2w'2 
-6' (--- + --- ) I
	

(8c) 

	

pt 2	 2 

In the above expressions, several higher-order terms have been discarded based 

either on considerations related to the small deformations Level I 

approximation, as discussed in reference 2, or on considerations related to 
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the approximations which can be made because of the assumed slenderness of the 

blade, as discussed in Appendix C. Formal retention of higher-order terms in 

the expression for strain components is not a problem. However, these 

higher-order terms will lead to higher-order elastic terms in the final 

equations of motion. Thus, discarding these higher-order terms in the 

expressions using the considerations of Appendix C simplifies the subsequent 

algebraic manipulations.	 - 

Taking the first variation of V as given in equation (3) and using 

equation (4), yields 

dv =	 E f  Y,6ydfl dr, dx 
0	 A 

+	
G ff (y,dy, +	 dn d dx	 (9) 

0	 A 

Substituting equation (8) into equation (9), taking the variations, and 

integrating over the cross section leads to 

dv	
jR 

(5 1 d 	 +S 
2 6 0 + S3 601 + s45v'' + s5dw' + S 6 601+ 

+ s8 dv'' + s9dw' + s 10 dw'') dx	 (10) 

where

EA Eu' + k2 (4'O' + 1. •2) 
A	 pt 2 

- eA (v" + w'') cos 0 + eA (v'' - w'') sin 01 

= EAeAU' (v" sin 0 - w" cos 0) 

+ EB2(v''O' ' sin 0 - w''Ot 4' cos 0) + v''w''(EI 	 - EI)cos 20 pt	 pt 

+ we ' 2 (EI	 - EI.)sin 0 cos 0 + v' ' 2 (EI	 - EI) sin 0 cos 0 

18



1 
S3 = EAk2u'(O' + 4)') + EB [0' •2+ 0	 (4)'O' + - 

A	 pt	 pt	 pt	 pt 2 

+ EB2 10' (4)v'' - w'')sin 0 - 4)'v'' COB 0 - 4)'w'' sinO 
Pt 

-0'	 (Vet + 4)w'') cos 01 
pt 

84 = EAeAu'(4) sin 0 - cos 0) - EB24)'O' cos 0 
pt 

+ v''[EI(sin2 O + 4) sin 20) + EI	 (cos20 - 4) sin 20)] 

+ w''[(EI	 - EI)(sin 0 cos 0 + 4) cos 20)] 

55 = -EAeAu'(4) COB 0 + sin 0) - EB2 4)'O' sin 0 
pt 

+ v'' [(EI	 - EI)sin 0 cos 0 +	 - EI)cos 201 

+ w'' [EI	 cos26 + EI	 sin20 +	 - EI)sin 20] 

= GJ[4)' + (v'v'' - w'w'') cos 0 sin 0 - v'w'' cos20 

+ w'v'' sjn2 0 + 0' (--- cos 20 - --- cos 20 + v'w' sin 20)] 
pt 2	 2 

87 = GJ4)' (v'' cos 0 sin 0 - w'' cos 2 6 + V , 6, cos 20 + w'O' sin 20) 
pt	 pt 

= GJ4)'(v' cos 0 sin 0 + w' gin20) 

= GJ4)'(-w'' sin 0 cos 0 + v" sin2 0 + v'O' sin 20 - 0' W' cos 20) 
pt	 pt 

8 10 = -GJ4)'(w' cos 0 sin 0 + v' cos20) 

The sectional properties appearing in equation (11) are defined as follows: 

A	 f  dn d 

inn = fJ 2 dn d 

Ak2 = ff 2 + 2) dri d 
A

Ae =

A

= ff n2 dn d 

J = ff	 2 + 2) dri dç (12) 

2 
B1 = ff (n2 + C 2 ) dri dC	 B2 = ff	 +	 dn dç 
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Since the cross section is assumed symmetrical about the fl axis, the 

following integrals are zero: 

ffdnd = 0	 ffndnd = 0 

f 	
(2 + 2) dTj d	 = 0	 (13) 

Integrating equation (10) by parts, the resulting expressions can be put 

in the form

R 
tSV = f (SU 6u + s, ôv + SW 6w + s cS) dx + BV	 (14) 

0 

where the generalized elastic forces S, S, SW, and S, to second-degree, are 

given by 

su.= 

Sv = S'' -5' +5'' 
4	 7	 8 

SW = s 	 +S'' 
5	 9	 10 

S 	 S - 2' - B' 
2	 3	 6 

and the boundary term BV is given by 

BV	 [S 6u + ( S + s )'Sv' + (-s' + s - 
1	 4	 8	 4	 7	 8

IR 
+ (s + s )ôw' + (-a' + s - s' )6w + (s + s )64)1	 (16) 

	

5	 10	 5	 9	 10	 3	 6	 0 

KINETIC ENERGY 

The expression for kinetic energy T is given by 

1	 R	 dr1	 dr1 
T = - f ff p ---	 --- dri d dx	 (17) 

	

2 0A dt	 dt

(15) 
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and its variation, integrated between t0 and t1, is given by 

t 1	 t1	 dr1	 dr1 

	

f	 6T= f	 ff p --- . ô ---- dnddx dt	 (18) 

	

to	 to o	 A dt	 dt 

In the above equation, the absolute velocity of the mass point is dr1/dt and 

is defined by 

dri  
= r1 +xr1	 (19) 

dt 

where w is the angular velocity of the xi coordinate system and ;i is the 

position vector of the mass point expressed in terms of the unit vectors of 

the xn4 system. The angular velocity w is obtained by projecting a along the 

x, ri, and directions and is given by 

=	 pcex + sinO en + 0 cosO
	

(20) 

In the above equation, the precone angle Opc is assumed to be small. The 

position vector r 1 is given by 

r1 = xe + (u - UF)eX
(0 

-	 -	 T) 
+ (v cos 0 + w sin O)e + (-v sin 0 + w cos 0)e + (T) 	 n (21) 

Lc 
Substituting equation (A38) into equation (21), the components of the position 

vector to second-degree are given by 

xl = x+u -UF 

- (v + w')(n cos 0 -	 sin 0) - (w' .- v'4)(ri sin 0 + t cos 0) 

(v' cos 0 + w' sin 0) 2	 2 
Y 1 = v cos 0+w sin 0+(1 -------------------------
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= -v sin 0 + w cos 0	 (22) 

+ [ - (v' cos 0 + w' sin 0)(-v' sin 0 + W I COS 0)) 

(-v 1 sin 0 + w' COS 0)2	 2 
+ (1 - ----------------------- - -- ) 

2	 2 

Differentiating r1 with respect to time according to equation (19), the 

absolute velocity of the mass point is 

dr1	 - 
=	 + z 

1 
a sin 0 - y 1 cosO 2)e x 

dt  

z	 + x 1 cosO 2)e + ( 1 + y1	 - 1 
x 2 sin0)e ^ (Y1	 1 Pc	 Pc	 (23) 

Substituting equations (22) into (23) and the result into equation (18), 

integrating by parts over time where necessary, and then integrating over the 

cross-section, the variation of T can be put in the form 

= 
1R (k1u - k14SUF 

	

+ k2 5v' + k3 5v - k4 5w' - k5 ôw + k5 ) dx	 (24) 

where, consistent with the ordering scheme given in Appendix C, are 

= - mu + 2m2(; - et sin 0) 

+ m 2 (x + u -	 - ev' cos 0 - ew' sin 0) 

- m 22 p (w + e sin 0 + e4 cos 0) + me (v' cos 0 + w' sin 0) 

k2 = m22e4x sin 0 - 2me2; cos 0 - me22 x cos 0 

k3 = m22 (v + e cos 0 - e sin 0) - my + me sin 0 + 

- 2m2(u -	 - e;' cos . 6 - ew' sin 0) 

1(4 m22e$x cos 0 + 2m2e; sin 0 + m22 ex sin 0 
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= w + me cos 0 + 2m pc v + MR OPCX 

k6 = -W I (2m2e; cos 0 + m22 ex cos 0) - m22e$v cos 0 

- mc22 $(k	 - k2 ) cos 2 0 - m2 2 (k2 - k2 ) sin 6 cos 0 
2	 m1	 m2	 in1 

+ mev cos 0 + 2mev'; sin 0 + mr2 2exv' sin 6 

-m 2ev sin 6 + me4w sin 6 + mc2 Ce+x sin 6 

+ 2m2 (e sin 6 u - UF) - (k2 - k2 )v' sin 0 cos 0 
in2 

- w'(k2 sin2 0 + k2 cos2 0)] + mev sin 6 
in2	 ml 

-	 pc' sin 6 - ink 2 4) - m2 8pcex cos 0 

- mew cos 0 - 2m2 pce; cos 0 

The sectional properties appearing in equation (25) are defined as fo1lis: 

m = 11A p dii d
	

me = 1A	
- d 

m12	 = ff p2dndC
	

= ff p2 dr d	 (26) 
in1	 A	 in2	 A 

= k2 +k2 
M	 in1 

From symmetry of the cross-section about the n axis, the following integrals 

have been set to zero: 

f  pç dn d = 0	 f  pnç dii dC = 0	 (27) 
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Since UF is a function of Vt and w', the term involving SUF in equation (24) 

requires separate treatment. Using equation (A16), 'the second term in 

equation (24) can be written in the expanded form 

1R 
k16U  dx = 1R 

k1 
fX 

(w' 6w' + v' 6v') dx] dx	 (28) 
0	 0	 0 

which can be further rewritten as 

1R 
k16UF dx 

= 1R (fR 
k 1 dx) (w'Sw' + v'6v') dx 	 (29) 

Defining the tension TC as 

R 
Tc =k. dx 

equation (29) can be written as 

1X 
k1 6UF dx =
	

(w' 6w' + v' 6v') dx	 (31) 

Integrating equation (24) by parts, the resulting expression can be put in the 

form

=	
(I6u + I,6v + Iw6W + I6) dx + BT	 (32) 

where the generalized inertia forces 'u' 'v' Iw' and I, are given by 

Iu = k

IV = -k' +k + ( Tcv')'	 (33) 
2	 3 

i	 = k' - k + (Tcw')' w	 5 

= k6 

and the boundary term BT by

(30) 

24



R	 R 
BT = (k2 - Tcv' )v	 - (k4 + TcwJ )ów	 (34) 

0	 0 

VIRTUAL WORK DUE TO MATERIAL DAMPING 

The virtual work due to the dissipative forces associated with structural 

(material) damping can be expressed in the form 

SWD	 =	 k	 (35) 
lc=1 

where Q is the generalized damping force associated with the kth dependent 

variable and 6qk is the variation of the kth dependent variable. In the 

present development the generalized damping forces accounting for the 

dissipation of energy due to material damping will be taken to be those 

consistent with the assumption of a material which exhibits a linear 

viscoelastic behavior. This theory assumes that the stresses are linear 

functions of the strains and strain rates. Such a behavior is analogous to a 

spring and a dashpot in parallel, and a model which exhibits such a behavior 

is often termed a Kelvin-Voigt solid in the literature. This model was used 

in reference 3. For the stresses and strains of interest herein, these 

constitutive relations have the form 

T	 = 
xx	 E'	 + E*yxX 

G'	 + G*yx	 (36) 

t t; = Gix?; + G*yX?; 

where E and G. are Young's modulus and the shear modulus, respectively, and E* 

and G* are coefficients which take into account internal damping of the 

material in tension and shear, respectively. The first term on the right hand 
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- 
'xl - (38) 

side of each of equations (36) contributes to the usual elastic strain energy 

and have already been treated in an earlier section. Considering only the 

dissipative terms in equations (36), the virtual work of the structural 

dissipative forces can be written as 

R 
6WD = - f :* ff ;.6y.dn d dx 

o	 A 

R 
- f G ff (1 xnlxii + x Slx ) dn d4 dx	 (37) 

o	 A 

The result given in equation (37) is general. However, because of the lack of 

knowledge as to the distribution of damping, only the direct damping terms are 

generally retained in practice. Thus, off-diagonal terms accounting for 

damping coupling between the dependent variables which arise from equation 

(37) are taken to be zero and only the direct damping terms associated with 

the dependent variables are retained. In addition to adopting this expedient 

in the present development, it will also be assumed that a first approximation 

to the direct damping terms can be obtained by retaining only the linear 

damping terms in the final equations of motion. Thus, it is sufficient to 

retain terms up to only the first-degree in the expressions for the strains. 

To first degree the resulting strain expressions are 

YXX = u' + (n2 + c 2 )4 8 ' - v''(ri cos 0 - t sin 0) - w''(r sin 0 + 4 cos 0) 
pt 

Yxt 

Substituting equations (38) into equation (37), integrating over the cross 

section, and retaining only the linear direct damping terms leads to 

ÔWD = -	 (d16u' + d254' + d 3 45w" + d54')dx	 (39) 
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where

S 
d 1 = 

d2 = E*B10 12 t 
pt 

d3 = E*(I	 cos2 0 + I T,,, sin2 O); 1 '	 (40) 

d4 = Z*(I	 sin2 O + I TITI cos20)sz! 

= G*J4)' 

Integrating equation (39) by parts, the generalized damping forces QD
U V 

QD , and QD become 
w	 4) 

QD	 = a'	 (E*AuS)' 
u	 1 

QD	 -d"	 [E*(I	 cos2 6 + ]:	 sin2O);'']1' 
v	 3 

QD	 -d"	 [E*(I	 sin2 O + i, cos2e),t1]1I 	 (41) 
w	 4 

QD	 = d' + d' = (E*B10'24)')' + (G*J4)t)' 
4)	 2	 5	 pt 

and the boundary term BW becomes 

R	 R	 R	 R 
Bôw =

 
-d1 6u + d3 1 6V - d3 6v'	 + d4 1 6W

D	 0	 0	 0	 0 

R 
- d4 45w'	 - (d2 + d5 )ó$	 (42) 

0	 0 

VIRTUAL WORK DUE TO GRAVITY 

The virtual work due to the gravitational forces of the blade can be 

expressed in the form 

6W  =fR A P  •	 dfl d dx
	

(43) 
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where g is the gravitational acceleration vector. It is obtained by 

projecting the gravity, g, which acts along the X 1 axis as shown in figure 

1(b), along the x, n, and t, and is given by 

g = g [cos 4e,,( - (cos 8 sin 4, + Opcsin 0 cos 

+ (sin 0 sin 'P - 8pc cos 8 cos lp )e t ]	 (44) 

In the above equation the precone angle Opc is assumed small and hence cos 

is replaced by one and sin Opc by Opc. 

The position vector, r 1 of a point on the blade after deformation is 

given by equation (21). Taking the virtual variation of equation (21), 

substituting the result into equation (43), and integrating the result by 

parts, one obtains 

6Wg =
	

(Fgi,óu + Fgc,V + FgtqôW + F g tS+) dx + B g	 (45) 

where

Fg. = g 

FgV	 g+ (TgV') - g 

Fgw = g + (Tgw') - 

F gyA 
= g 

Tg = fR gdx 1  

= mg Cos 

92 = -mg sin 

93 = -mgp0 cos 'P
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94	 mge cos4,(v' sin 0 - w' cos 0) + mge(cos 0 sin 4, 

+ pc sin 0 cos 4,) + mge(sin 0 sin 4, -	 cos 0 cos 4,) 

95	 mge cos 4,(-cos 0 + sin 0) + mge(cos 0 sin 4, 

sin 0 sin 4,) . (v' cos2 0 + w' sin 0 cos 0) 

96 = mge cos 4,(-4, cos 0 + sin 0) + mge(cos 8 sin 4, 

+ Opc sin 0 cos 4,) . (w' sin2 0 + v' sin 0 cos 0)
	

(46) 

The boundary terms B are given by 

R
	

R 
Bg = ( 5 - TgV' )6v	 + ( 6 - TgW')SW
	 (47) 

0
	

0 

It should be pointed out that all the terms of order 0(c 3 ) and higher are 

neglected in the expressions for gravitational forces. 

GENERALIZED AERODYNAMIC FORCES 

The aerodynamic forces will be generated from two-dimensional, 

incompressible, quasi-steady, strip theory in which only the velocity 

components perpendicular to the spanwise axis of the deformed blade (the x 3-

axis) are assumed to influence the aerodynamic loading. In calculating the 

velocity components, the effects of wind shear and tower shadow as well as 

gusts are included. Account is taken of the pulsating free-stream velocity 

V(t) associated with a rotating blade employing Greenberg's extension of 

Theodorsen's unsteady theory (ref. 10) for determining the aerodynamic lift 

and pitching moment acting on the blade. The resulting expressions are 

specialized to the case of quasi-steady flow by setting Theodorsen's 

circulation function to unity. The classical blade element momentum theory 

can be used to calculate the steady flow induced by the rotor. 

In the present application of Greenberg's theory, the airfoil is taken to 

be pivoted in pitch about the aerodynamic center at the quarter chord and to 
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be executing harmonic motions in pitch ((t)) and plunge (h(t)) while immersed 

in a pulsating airstream V(t), as shown in figure 4. The lift and moment 

acting on an elemental section of the blade may be expressed in terms of the 

circulatory and noncirculatory components as 

L = LC+LNC
	 (48) 

M = MC+MNC 

Assuming that the blade elastic axis is coincident with the aerodynamic center 

at the quarter chord, the individual components of equation (48) follow from 

reference 10 and can be written as 

i	 c2	 . 
LNc = ; pa	 (h + VC + VC +	 )	 ( 49a) 

1	 •	 C. 
Lc = - pacV(h + Vc + - c)	 (49b) 

2	 2 

1	 c2 .	 3c" 
MNC=--pac(-) (Vc+h+--c)	 (49c) 

1	 c2 
Mc = - - pac (-) 2Vc	 (49d) 

In the course of arriving at the circulatory terms in equation (49), the 

quasi-steady approximation has been introduced by setting the reduced 

frequency k to zero, in consequence of which Theodorsen's circulation function 

C(k) assumes the value of unity. The noncirculatory lift and moment are 

associated with apparent mass forces and are oftentimes discarded in rotor 

blade applications. Note that Greenberg's modification (i.e., a pulsating 

stream in which V * 0) appears only in the noncirculatory expressions for the 

lift moment. Hence, if one assumes, a priori, that apparent mass forces will 

be neglected, there is no Greenberg's modification. 
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The lifts and moments given in equation (49) mist now be expressed in 

terms of UR, UT, and Up, the radial, tangential, and perpendicular velocity 

components relative to a point on the elastic axis of the airfoil (fig. 5). 

Now the expression in parentheses of equation (49a) for LNC is the downward 

acceleration of the mid-chord point of the airfoil, and the expression in the 

parentheses of equation (49b) for L C is the downward velocity of the 

three-quarter-chord point of the airfoil. Since Up is the relative velocity 

component perpendicular to the quarter-chord, the sectional lift can also be 

written as

1	 C2	 . 
LNC = - pa - (-UP +C)	 (50a) 

1	 C. 
Lc = - pacU (-Up +)	 (50b) 

where V(t), appearing outside the parentheses of equation (49b), has been 

approximated by the resultant of only the tangential and perpendicular 

velocity components and is given by 

V	 U	 u2+u2	 (51) 
T	 P 

As indicated in figure 5, the noncirculatory lift acts normal to the 

section chordline* and the circulatory lift acts normal to the resultant 

velocity U. The profile drag force acts parallel to U and is given by 

*A portion of LNc acts at the 3/4-chord point and another at the 

1/2-chord point. However, the resultant of these two components is shown 

along the z3 axis in figure 5 only for pictorial convenience. 
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1	 CdO 
D = -pac --- U2 

2	 a 

where Cd0 is the (constant) profile drag coefficient. 

The cononents of the aerodynamic forces in the direction of the Y3 and 

z 3 axes are given by 

F3 = -LC sin a - D cos a	 (53a) 

Fz3 =	 cos a + LNC - D sin a	 (53b) 

where, from figure 5, 

SiFt CI = Up/U	 (54) 

cos a = UT/U 

and U is given by equation (51). The aerodynamic force in the x3 direction is 

given by Fx3 and is a profile drag force which is a function of the radial 

velocity coaonent UR. Following usual practice, this force cononent is 

taken to be zero. 

Substituting equations (50), (52), and (54) into equation (53) leads to 

1	 C	 Cdo 
F 3 = - pac (U2 - - UPC - --- UU)	 (55a) 

2	 p 2	 a 

1	 • c.	 c2" Cd0 
Fz3 = - pac (-UPUT + - UT C - - UP + (-) C	 UpU]	 (55b) 

2	 2	 4	 4	 a 

The noncirculatory and circulatory moments in equation (49c) and (49d) can be 

written in terms of UT, Up, U, and c and assume the form 

1	 C2	 •	 .	 3c" 
MNC = - - pac (-) (-Up - Uc + -- c) 	 (56a) 

1	 c2 

	

= - - pac (-) 2Uc
	

(56b) 
2	 4 

from which the total pitching moment Mx3 is given by the s.mt of equations 

(56a) and (56b) as

(52) 
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1	 c2	 .	 . 
Mx3 = - - pac (-) (U - Up + 	 C)	 (57) 

2	 4 8 

The virtual work of the aerodynamic forces can be written as 

6WA =	 ((Fe + PTI
 
11+ 

Fe)	 6R 

+ M 3 [6$ - (v' cos 0 + w' sin 0)(-6v' sin 0 + 6w' cos0)]]dx (58) 

where 45R 1 is the variation of the position vector of a point on the elastic 

axis and is given by 

6R 1	 (6u - 6UF)eX 

+ (6v cos 0 + 6w sin O)e + (-6v sin 0 + 6w cos 0)e	 (59) 

The components of the aerodynamic force vector F, F, and F4 are given by 

1FX 	 10 
FTI= [T]T
	

(60) 

LFCJ	 Fz3J 

where [T] is the rotational transformation matrix which relates the coordinate 

axes of the deformed and undeformed blade and F'x3 has been set to zero. 

Substituting equation (59) into equation (58), and integrating by parts, one 

obtains 

&WA =
	

(A6u + A6v + Aw*Sw + A$6$)dx + 3A	 (61) 

where

Au	 Fx 

AV = F cos 0 - F sin 0 + (TAV')' 

+ [_Mx3 (v cos 0 sine +w' sin20)]' 

33



Aw = FsiflO+FCOsO+(TAW')
	

(62) 

+ [Mx3(vI COB 20 + w' sin 0 cos 0)]' 

A. 

TA 	 LRAudx

RR	 R 

BA = -'rAv' dv 	 - TAW ' SW	 + Mx3 (v' COO + w' sin0)sin06u 
0	 0	 0 

R 
_Mx3 (v I cos 0 + w' sin 0)cos 05w

0 

In order to obtain the explicit expressions for the generalized aerodynamic 

forces, the quantities F 3, Fz3 , and Mx3 must be known in terms of the 

dependent variables u, v, w, and 4, and the geometric pitch angle 0. This 

requires that Up, Up, and c first be obtained in terms of these variables. 

These expressions are developed in Appendix 0, and are given by the equations 

(016) and (020). The expressions for UT and Up in equations (D16) include the 

induced velocity vi which can be calculated using blade element and momentum 

theories. Equations (D16) and (020) in combination with equations (51), (55), 

and (57) are sufficient to obtain the generalized aerodynamic forces from 

equations (60), (61), and (62). 

SUMMARY OF EQUATIONS 

In the previous sections, expressions for ISV, ST, and 6W have been 

obtained. Substituting these expressions and their associated boundary terms 

into equation (1), there results the expression of the form

tj 
f If RN )ôu + ( )6v + ( )6w + C )64] dx + B} dt = 0	 (63) 

t0 0
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For arbitrary admissible variations 6u, iSv, Sw, and 64, the four expressions 

in parentheses must vanish individually as must the assembly boundary terms 

denoted by B. The first condition will yield the four governing nonlinear 

partial differential equations for u, v, w, and $ and the second condition 

gives the associated boundary conditions at the ends of the beam. Since the 

control angle 0c is assumed to be given, the equation associated with the 

control will not appear. The governing equations of motion and boundary 

conditions are summarized below. 

Extension: 

mu - me(v' cos 0 + w' sin 0) - 2mc2 (v - e sin 0) 

- m12 (x + u - UF - ev' cos 0 - ew' sin 0) + m 2 p0 (W + e sin 0 

+ e4 cosO) - {EA[u' + k2 4'0' - eA(v" + +w") cos 0 
A	 pt 

+ eA(4v" - w")sin 01 + E*Au h }' = mg cos 11) + Au	 (64a) 

Chorise bending: 

my - me4 sin 0 - 2m p0w - m22 (v + e cos 0 - eo sin 0) 

- {me( 2x(cos 0 -	 sin 0) + 2; COS 0]1' 

+ 2m2(u -	 - e;' cos 0 - ew' sin 0) 

- ( Tcv ')' - (GJ+(v'' cos 0 sine -w" cos20 

+ V'6 t cos 20 + w'0' sin 20)] ' + {EAeu'(4, sin 0 - cos 0) 
pt	 pt 

- EB2 4,'O' cos 0 + V' t (EI(sin2 0 + 4, sin 20) + EI(cos20 
pt 

-4, sin 20)] +w''[(EI	 -EI1 )(sin 0 cos 0 + 4, cos 20)] 

+ GJ4,'(v' cos 0 sin 0 + w' sin20) + E* (I	 c082 0 + I,. sin20);''}'' 

- (TgV')' + tinge cos 4'(-cos 0 + 4, sin 0) + mge(cos 0 sin 4' 

+ pc sin 0 sin 4i)(v' cos2 0 + w' sin 6 cos 0)] ' = -mg sin 4' + Av (64b) 
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Flapwise bending: 

n.q + me; cos 0 + 2m v - (TCW')' 

- {	 2 x (sinO + 4) COB 0) + 2Qv sin 0]}' 

- (GJ4)'(-w'' sin 0 cos 0 + v'' sjn2 O + V , 6, sin 20 
pt 

- 0' w' COB 26)] ' + {-EAeAU'4 cos 0 + sin 0) 
pt 

- EB24)'0' sin 8 + w'' [EITIrl cos20 + EI 	 sin20 
pt 

+ 4)(EI	 - EI)sjn26] + v'' [(EI	 - EI)sin 0 cos 0 

+ 4)(EI	 - EI)cos 201 - GJ4)'(w' cos 0 sin 0 + v' cos2o)j'' 

+ [E*(I	 sin2 O +	 cos26)%1 ]11 - ( Tgw')'	 (Tcw')'


+ [mge cos (-4) cos 0 + sin 0) + mge(cos 0 sin 

+ Opc sin 8 cos i)(w' sin2 0 + v' sin 0 COB 0) 	 -mg	 COB ) 

- m22 8x + Aw	 (64c) 

Torsion: 

mk2 4) + m 2 4)(k 2 - k2 ) cos 2 0 + me [2 2 (w' cos 0 - v' sin 0) 
m	 m2	 m1 

- (v - 2v) sin 0 + w cos 0] + m1 2e4) (vcos0 - xsin0) 

- 2m2 [e sin 0(u - UF) - (k2 - k2 )v' sin 0 cos 8 
m2	 m1 

- w'(k2 sin2 0 + k2 cos2 0) - e pc (v cos 8 + w sin 0)] 
M2 

+ 2mev(w' cos 0 - v' sin 0) - me4)(v cos 0 + w sin 0) 

- {Ek2 u'(O' + 4)') + EB1 012 of + EB210' (4)v" - w'') sin 0 
A	 pt	 pt	 pt 

- 4)'v'' cos 0 - 4)'w'' sin 0 - O f (v" + 4)w' ')cos 0] + GJ [4)' 
pt 

+ (v'v" - w'w'') COB 0 sin 0 - v'w'' cos2 0 + w'v'' sin20 
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vv2	 W2 
+ 0' (--- cos 20 -	 cos 20 + v'w' sin 26)11' 
pt 2	 2 

+ EAeAU' (v'' sin 0 - w'' cos 0) + E82(v' '0' 4' sin 0 
pt 

- w''O' •' cos 0) + v''w''(EI	 - EI) cos 20 + w''2(EIç 
pt 

- EI)sin 0 cos 0 + v' ' 2 (EI	 - EI)sin 0 cos 0 - EG*J$ 

i2	 , ' +E * B 1 8	 $] - mgecos(v sin 0-w' cos O) 
pt 

- mge$(cos 0 sin 'P +Opc sin 0 cos i ) = mge(sin 0 sin 'P 

- pc cog 0 cos tP) - m 2 pcXe cosO - mcz2 sine cos 0 (k2 - k2 ) +	 (64d) 

	

M2	 mi 

The assembled collection of boundary terms denoted by B is given by 

B = BT_ Bv+B6w+Bg+BA
	 (65) 

and the requirement of the vanishing of the individual variational cononents 

leads to the relations

R 

(i + d1 - Mx3 (v' cos 0 + w' sin 0) sin 01 6u 	 = 0 
0

IR

o 4	 8	
5 - gV' + 

¶3 - TAV' )Sv 
I = 0 (k - TCV' + s' - 57 + 5' + g	 T
I 

R 
(S4 + 8 + d3),Sv I	 = 0 

0 

(-k - TCW' + s' - s + s' + g - T w' + d' - TAW 
4	 5	 9	 10	 6	 g

R 
- M	 (v' cos 0 + w' sin 0) cos 61 6w 	 = 0	 (66) 

o 

R 
( 5 5 +5 10 +d4 )610f

1 	 =0 
0

R 
(53+56+d2+d5)64	 =0 

0
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The tension TC and gravity force T  appearing in equations (64) and (66) are 

given by

R 
Tc = f m[-(u - UF) + e(v' cos 0 + w' sin 8) + 2(v cos 9 

-	 sin 0) 

+ 22 (x+ u UF - ev' cos 0- ew' sin 0) 

-	 (w + e4 cosO + e sinO)] dx	 (67) 

Tg	 mg cos i dx	 (68) 

The terms UF and UF in the expressions for TC given in equation (67) lead to 

third-degree nonlinear terms when TC is substituted into equations (64) and 

(66) and can be discarded. Also, after substitution for Tc in these 

equations, only resulting terms which are consistent with the ordering scheme 

adopted in Appendix C should be retained. Using the results given in 

equations (67) and (68) in combination with the extensional equation of motion 

given in equation (64a) (with danings and Au set to zero), an alternative 

definition for the sum of TC and Tg can be given as 

TC + Tg = EA [U' + 04'6' 
A pt 

- eA (v" + +w'') cos 0 + eA( c v" - w'')sin 01	 (69) 

The underlined terms in equation (64d) are associated with u' and they 

are called as tension-torsion coupling terms. These terms are known to be 

important in some cases (refs. 11 to 13). Also, there is a tension-bending 

term which is doubly underlined in the torsion equation. Some of these terms 

appear to be nonlinear, but they are not because of the relation given by 

equation (69). To simplify the solution of the equation (64), it is a 
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customary practice in the rotor blade literature to eliminate the extensional 

equation. If such practice is followed in the case of wind turbine blade 

solutions, one should substitute for EAU' in equations (64b), (64c), and (64d) 

in terms of Tc + T  from equation (69). Also, after substitution only the 

resulting terms which are consistent with the ordering scheme adopted in 

Appendix C should be retained. 

As stated earlier, the generalized aerodynamic forces A , Av, Aw, and A4> 

are obtained from equations (60), (61), and (62), using equations (D16) and 

(D20) in combination with equations (51), (55), and (56), and retaining the 

terms through second degree in the dependent variables. Because of the 

generality of the present development, these second-degree expressions are 

extremely lengthy and will not be shown. 

CONCLUDING REMARKS 

The second-degree nonlinear aeroelastic equations of motion for a 

flexible, twisted, nonuniform horizontal-axis rotor blade undergoing combined 

flapwise bending, choriise bending, torsion, and extension have been derived 

using Hamilton's principle. The equations have their basis in the geometric 

nonlinear theory of elasticity and are consistent with' -the small deformation 

level of approximation in which elongations and shears (and hence strains) are 

negligible compared to unity. A mathematical ordering scheme which is 

consistent with the assumption of a slender beam was adopted for the purpose 

of systematically discarding elastic and dynamic terms which are higher-order 

in the resultant equations of motion. The expressions for generalized 

aerodynamic forces, which account for windshear, tower shadow, and gusts, are 

left in general second-degree form from which one can obtain the aerodynamic 

forces loading to the order appropriate to any case of interest. A unique 
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feature of this development is the consideration of the pretwist of the blades 

before the elastic deformations which is more realistic than the common 

practice in the most of published work. in which the pretwist is combined 

with the elastic twist.
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APPENDIX A 

NONLINEAR CURVATURES AND COORDINATE SYSTEM TRANSFORMATION 


OF.. TWISTED ELASTIC WIND TURBINE BLADES 

The nonlinear curvature expressions for twisted rotor blades were 

developed in reference 2 in a general manner using the geometric nonlinear 

theory of elasticity. For convenience, this development followed a practice 

which is common in helicopter blade literature, namely the combination of the 

pre-twist with the elastic twist. As a consequence of employing this 

simplification, if warping is considered, axial deformation exists in the 

initial configuration before any deformations are imposed. Such a situation 

would exist if an untwisted blade is twisted and then "frozen" to arrive at 

the pretwisted configuration. Since this situation does not arise in the 

fabrication of either wind turbine blades or helicopter blades, there is no 

axial deformation due to warping in the initial configuration before any 

deformations are imposed. In view of this situation, this Appendix will 

include the rotation due to pretwist with the control inputs and impose this. 

rotation first while imposing the rotational transformations and will develop 

the second-degree nonlinear expressions for the curvature components and for 

the transformation matrix in terms of the variables u, v, w, and $. The 

foreshortening of the blades due to bending is explicitly considered. The 

level of approximation used within the geometric nonlinear theory of 

elasticity is that designated small deformations I in reference 2 in which the 

elongations and shear are negligible compared to unity and the square of the 

first derivative of the extensional deformation on the elastic axis is 

negligible compared to unity and the squares of thebending slopes. 

A schematic representation of the deformed and undeformed blade 

associated with a flap-lag-torsion transformation sequence is shown in figure 
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3. The coordinate axis x is tangential to the elastic axis, and the axes i 

and t are the principal axes of the section before deformation. Since the 

pretwist 0pt is not a constant, the initial curvature of the elastic axis 

before deformation is 

-	 - dOpt	 - 

	

= ex -;-
	

eo 
pt 

where s is the distance measured along the undeformed elastic axis. 

The elastic deformations rotate the triad xrit to X3Y 3Z 3 , and the 

transformation matrix between the two triads can be written as 

1e X3	 le xi	 'l ml nj 

Y3	 =	 [T]	 efl	 = 2 m2 n2 e (2) 

L;z3i m3 fl3

Let the expression for the curvature vector of the deformed elastic axis be 

(*x3y3z 3 = Wx3 ex3 + wy3ey3 + W3e3	 (A3) 

The next step is to find the expressions for the components of the 

curvature vector in terms of the direction cosines ljo, rn1, . . . n3, and the 

blade initial curvature. From equation (A2) one can write 

e 3 = 11 ex+ m 1e +	 (A4) 

Differentiating equation (M) with respect to s and expressing the resulting 

expression along x3y3z 3 axes, one can obtain 

e'	 = (lii i + m1ixi + n1n) e3 
X3

+ [ l ' 12 + m'm2 + n'n2 - 0' (n1m2 - m1n2)]ey3 
pt

(Al) 
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+ [1 13 + flI'1fl3 + fl'fl3 - 0' (nim3 - m 1n3 )] ez3 	 (A5) 
1.	 1	 pt 

Also the identity 

ex3 = Wx3y 3z3 x e,	 (A6) 

leads to 

ex 
3
	 Wz3ey3 - wy3ez 3 	 (A7) 

From the identity 

ey3 = XZ - Wz 3 ex	
(A8) 

one can write 

= e ' . e	 (A8) 
3	 Y3	 3 

Substituting equation (A2) into (A9) and using the orthogonal property of the 

matrix [T], the expression for Wx in terms of direction cosines is 

I	 I	 I 

Wx = 1213 + m2m3 + n2n3 + 11 0 '	 (MO) 
3	 pt 

From equations (A5) and (A7) the expressions for w y
and w are 

WY3 = - 1111 +m 1m3 +X11n3 -:	 1m3 - m1n3)]	 (All) 

Wz	 =11112 + mi	 + nln2 - ' (fl i' - mm2)]	 (Al2) 
3	 pt 

Thus for the expressions for the curvatures in terms of the direction 

cosines and the total section pitch of the blade have been developed. The 

next task is to express the direction cosines in terms of u, v, w, and 4 . To 

this end, the direction cosines are first expressed in terms of the 

Eulerian-type angles 01,	 , and Gi. It was shown in reference 2 that the 
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form of the expressions for the components of the curvature depends on the 

order in which the rotational transformations between the deformed and 

undeformed coordinates are imposed. In the present development, out of the 

six possible rotational transformation sequences which may be employed, a 

flap-lag-torsion rotation sequence will be addressed. For this rotational 

transformation sequence, the rotations are imposed as follows: 

1. A positive rotation 0 1 about the negative Ii axis resulting in 

x1y1z1.

2. A positive rotation tj about z 1 axis resulting in x2y2z2. 

3. A positive rotation 6 1 about x2 axis resulting in x3y3z3. 

The explicit form of the transformation matrix [Ti in terms of the 

Eulerian-type angles 01,	 , and 01 is 

[cos 01 cos ci	 sin ci	 cos Cisin 81 

-sin Ci cos 01 cos 61	 cos Ci cos 61	 cos 01 sin Oi 

[TJ = -sin 01 sin Oi 	 -sin Ci sin 81 cos O 

sin Ci cos 01 sin 01 -cos ci sin Oi	 sin Ci sin al sin 01 

-sin 0 1 cos Oi	 +COS 01 cos 0

(A')) 

The rotation angles ,	 , el are to be expressed in terms of the 

variables u, v, w, 4. To this end, let R 0 and R1 be the position vectors of 

the point 0 and 0' in figure 3, and AR be the displacement of 0. Then,, one 

can write 

Ri =	 + 

where

AR = (u - UF) eX + vey + wez 

and

(Al 4) 

(Al 5) 
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1	 s	 av 2 	 aw2 
UP = - I ((--•) + (--) I ds 

2 o	 as
(A16) 

Using the following relation between the unit vector triads eXeyeZ and e,cefleC 

ex	 e 

ey = e cos 0 - eC sin 0	 (A17) 

eZ =	 sin 0 +	 cos 0 

the expression for AR is 

1R = Cu - UF)eX + (v cos 0 + w sin O)e + (w cos 0 - v sin 0)e 	 (A18) 

Differentiating equation (AiB) with respect to s 

-	 -	 2	 2 
a(R)	 DR	

Cly	 az-	 -	 - 

	

= -- + (ax - -- - -- ) e	 c* 

	

+ re + ae	 (A19) 
as	 as 2 	 2 

where

OLA = U' 

ay = v' cos 0 + w' sin 0	 (A20) 

-v' sin 0 + w' cos 0 

1	 s	 2	 2 
UF = - f (ay +a)ds 2 

Differentiating equation (A14) with respect to s and substituting equation 

(A19) into the resulting expression, the expression for 8R 1 /ds is 

-	 -	 2	 2 
3R1	 DR a 	 cz	 -	 - 

as =	
+ ( a - -; - -;) ex + aye + aze 	 (A21) 

From calculus we have
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DR	 - 
-- = ex	 (A22) 
as 

Substituting equation (A22) into (A21) gives 

-	 2	 2 
aR 1 	 ay az-	 -	 - 

= (1 +- -- -	 ) e, + aye + ae	 (A23) 
as	 2	 2 

The relation between the extensional component of the Green's strain 

tensor . C on the elastic axis and aR1/ds is given by 

	

aR1	 aR1 

C = 1/2 (--- . --- - 1)
	

(A24) 

	

as	 as 

Substituting equation (A23) into (A24), the expression for c reduces to 

2 
ax 

=
	

(A25) 
2 

Invoking small strain assumption that the elongations and shears are small 

compared to unity, equations (A23) and (A25) reduce to 

-	 2	 2 
aR1	 ay	 ct	 - 

= (1 - -- - --) e + aye ,, +
	

(A26) 

If the deformed length of the element ds is ds 1 , the relation, between dsi 

and ds can be written as 

ds 1	 (1 - 2c) 1 "2 ds	 (A28) 

Hence, 

aR1	 -1/2 3R1 

= (1 + 2c)	 ---	 (A29) 
as1	 as 

Also,
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sin ;i =

2 
ay 

cos ;i = 1 - -- (A3 3) 

3R 1	 - 
= ex	 (A30) 

as1	 3 

Invoking small strain assumption and combining equations (A26), (A29), 

and (A30) results in 
2	 2 

- ay a_	 -	 - 
e	 = (1 - -- - --) e + ct2,e + ae	 (A31) 

From equations (A2), (A13), and (A31) one can write 

2	 •2 
ay a 

i i =
 

Cos 1 Cos 1 = 1
2	 2 

ml = sin1 = (A3 2) 

ni	 cos 41 sin 01 = 

Hence,

2 
az 

sin 01 =	 cog 	 = 1 - --
2 

The third rotation angle Oi is due to torsion of the blade and hence is given 

by

01 =	 (A34) 

The expressions for the transformation matrix [T] and for the curvature 

components W 
x3, 

Wy3, W3 are given in terms of the direction cosines in 

equations (A2), (AlO), (All), and (Al2) and those for the direction cosines in 

terms of the rotation angles are given in equation (A13). The rotation angles 

are expressed in terms of axo, c, and az in equations (A33) and (A34) and the 
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expressions for a,, c, and az are given in terms of u, v, w, and in 

equations (A20). Combining equations (MO), (All), (A13), (A33), (A34), and 

.(A20), the second-degree expressions for the curvature components and for the 

transformation matrix can be obtained as 

Wx3 =	 - (v' cos 0 + w' sin 0)(-v' sin 0 + w' cos 0)' 

	

V' 2	 w' 
+ of 0 - --- - ---)


pt	 2	 2 

Y3 = -w" (cos 0 - 4, sin 0) + v" (sin 0 + 4, cos 0) 

w z3 = v'' (cos 0 - 4, sin 0) + w" (sin 0 + 4, cos 0)

(A3 5)

(A36)

(A37) 

v' 2 	 W'2 

	

1 --------	 v' cos 0 + w' sin 0	 -v' sin 0 + w' cos 0 
2	 2 

(v' cos 0 + w' sin 0) 2 
1 -----------------------4, - (v' cos 0 + w') 

4,2 
- --	 •(-v' sin 0 + w' cos 0) 

2

(v' sin e + w' cos 4,) 
----------------

2 
4,2 

2

-v'(cos 0 - 4 sin 0) 

-W' (sin 0 + 4, cos 0) 

V I (sin 0 + 4, cos 0) 

-w' (cos 0 - 4, sin 0)

(A38) 

48



APPENDIX B 

NONLINEAR STRAIN-DISPLACEMENT RELATIONS 

This Appendix will develop second-degree nonlinear expressions for 

strains. To this end, let r0 and r1 be the position vectors before and after 

deformation of an arbitrary mass point on the blade. These vectors can be 

expressed as 

r0 = R0 + fle +	 (Bi) 

	

+ rI;y3 + C;z3	 (B2) 

where sl is the length measured along the deformed elastic axis of the blade. 

The differentials of the above vectors are given by 

dr0 = dse + (dn - r0' de) e + (dç + O' da) eC	 (B3) 
pt	 pt 

dr l = (1 -	 + 4wy ex 3 ) ds1 

+ (dr -	 ds1) e	 + (d + flWx ds1) ez	 (B4) 

where the curvature components w,, w, w are defined in Appendix B. The 

usual practice in solid mechanics is to use the Lagrangian strain tensor which 

is defined by

("d'C

1 
d; 1 . dr1 - dr0 . d;0	 2 [ds dii d] [cjj]	 dii	 (B5) 

J 

Substituting equations (B3), (B4), (A28) into equation (B5) and using the 

relation between the engineering strains and the components of the Lagrangian 

strain given by equation (5), one obtains the following expressions for the 

strain components

49



lxx = Cxx = U' + ( 2 + 2) (___ + 
2	 pt 

- n(v'' cos 0 + W I ' sin 0 + 4> (-v' 1 sin 0 + w'' cos 0)] 

+	 [v'' sin 0 - W I ' cos 0 + 4> (v'' cos 0 + W" Sin 0)] (B6) 

YXTI = 2c,	 = - [4>' - ( v' cos 0 + w' sin 0) 

V' 2	 W'2 
• (-v' sin 0 + W I cos 0)' - 0' C--- + ---fl	 (B7) 

pt 2	 2 

= 2ex4 = n [4>' - (v' cos 0 + W I sin 0) 

V' 2	 w'2 
(-v' sin 0 + w' cos 0)' - 0' C--- + ---)] 	 () 

pt 2	 2 

It should be pointed out that in arriving at the expression given in 

equations (B6), (B7), (B8) several higher-order terms have been discarded 

based either on considerations related to small deformations in which 

elongations and shears are small compared to unity or on considerations 

related to the approximations which can be made because of the slenderness of 

the blade as discussed in Appendix C. Retention of higher order terms in the 

expressions for the strain components is not a problem. However, these higher 

order terms in the strains lead to higher order terms in the final equations 

of motion. Thus, discarding these terms in the resultant strain expressions 

using the considerations of Appedix C simplifies the algebric manipulations. 
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APPENDIX C 

SLENDER BEAM APPROXIMATION AND ATTENDANT ORDERING SCHEME 

The simplifications of the slender beam approximation as applied to the 

derivation of the second-degree nonlinear equations of motion were discussed 

and a mathematical ordering scheme which is compatible with the assumption of 

a slender beam was introduced in reference 3. The same scheme has been used 

in the present report. In this scheme, a slender beam is systematized by 

introducing a parameter C which is taken to be of the same order as the 

nondimensionalized bending displacements v/R and w/R. The order of the 

dependent variables and the geometric quantities appearing in the equations of 

motion of this report are as follows: 

u/R = 0(c2 )	 /R = 0(c)	 ec= 0(1) 

v/R = 0(c)	 /R = 0(c)	 0' = 0(c) 
pt 

w/R = 0(c)	 opc = 0(c) 

• = 0(c)	 x/R = 0(1) 

opt = 0(1) 

Following this ordering scheme, the order of the elastic and inertial 

terms which are retained in the second-degree nonlinear coupled 

flap-lag-axial-torsion equations of motion of this report are given in Table 

Al below.

TABLE Al. - ORDERING SCHEME 

Freedom	 Elastic forces	 Inertial forces 

Bending	 C2 

Torsion	 e5 

Extension	 C3	 C3


The rationale for this scheme was discussed in reference 3. 
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APPENDIX D 

VELOCITY COMPONENTS EXPERIENCED BY BLADE ELEMENT 

The velocity corionents experienced by a blade element are determined by 

considering the contributions from the atmospheric winds, induced velocity, 

and blade dynamic velocity. For a down wind rotor, the tower shadow effect 

will be included. 

The resultant velocities seen by a point on the elastic axis of the blade 

in deformed and the undeformed coordinate systems are related according to 

'"x3y3z3 = [T] Vxnc	 (Dl) 

where, from figure 6, 

X3 f 3Z3 = UReX - UTeY - Upe	 (D2) 

-	 -	 dr1 

and	 = (Va -;")xnc	 (D3) 

The aerodynamic velocity cononents seen by a blade element are shown in 

figure 7. The aerodynamic velocity consists of three components: (1) the 

free stream velocity; (2) the gust velocity; and (3) the induced velocity. 

The free stream velocity profile over a rough terrain is frequently 

approximated by a power-law relation with height, and is given by 

xIn 
Vm (x1)	 VH	 (1 - --) 

H 

where Vm and VH are the mean velocities at x1 and turbine axis respectively 

and H is the height of the center of the hub from ground. This mean velocity, 

Vm is a function of the azimuth angle of the blade since the interference of 

the tower causes a reduction in the velocity when the blade is in the 

vicinity of the tower. In the present development, it is accounted for by 

(D4) 
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introducing a blockage factor b which is less than or equal to 1. Inside the 

tower shadow band defined by the limits 4)1 4) *2 the mean velocity is bVm 

where Vm is defined in equation (D4). The limits * 1 and 4)2 and the blockage 

factor b are to be obtained from either wind tunnel experiments or full scale 

tests. Expanding V(x1 ) in Taylor's series about x1 0 and retaining only up. 

to second-order terms, equation (D4) reduces to 

Am	 AH (1 + C 1X2 - C2X COS 4 + C 1X2 COS 24))	 (D5) 

where

Am = Vm/R 

XI = x cos opc cos 4) = x cos 4) 

C1 = ( y2 - Ti)R2/4H2 

C2 = flR/H	 (D6) 

X = x/R 

XH = VH/R 

The gust velocities are assumed to be harmonic with a frequency w  and 

are represented as 

u  
Aug	 SiflU)gt 

SIR 

Vg 
Avg	 -- SiflWgt 

2R 

wg 
)ggsinWgt 

SIR 

The velocity Vm = Am 2R is inclined to the rotor axis at an angle * 0 as 

shown in figure 7. Resolving this velocity along Y1 and Z I axis, one can 

write

(D7) 
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Vm = bVm sin 4oey1 + bVm COB *Oez1 

	

=SIR (bArn sin lPOey + bArn COB lPoez1 )	 (D8) 

The induced velocity can be calculated using blade element and momentum 

theories and is 

vi = Ai 2R	 (D9) 

Now the aerodynamic velocity can be expressed as 

VXYZ	 QR [ Augex + (bArn sin *0 + Avg)ey 

	

+ (b Arn COS *0 + Awg - Ai)ez]	 (D10) 

This velocity can be expressed in xnC system by the relation 

	

= [TR] VX1y1z1	 (D1 1) 

where the transformation matrix can be written with the aid of the figures 1 

and 2 as

cos *
	

sin 11)	
OPC 

	

COB * Sin 0
	

sin * sin 0	 sin 0 

[TRJ I

	 -Sin * COB 0
	

+ COB i4i COB 0
	

(D12) 

	

cos * cos 0
	

sin i4; cos 0	 cos 0 

	

+sin * sin 0
	

COS 4' sin 0 

The position vector of a point on the elastic axis is 

r1 = (x+u-UF)ex 

+ (v cos 0 + w sin O)e + C-v sin 0 + w cos 0)e 	 (D13) 

The angular velocity of the coordinate system xn4 is given by equation (20). 
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Using equation (D13) in conjunction with equation (20), the dynamic velocity 

of a point on the elastic axis taken with respect to the xflt axis system is 

given by 

dr1	 S 

dt

+ [; cos 0 + w sin 0) - pc (-v sin 0 + w cos 0) 

+ 2 cos 0 (x + u - UF))efl 

+ (v sin 0 + W cog 0 + pc (v cos 0 + w sin 0) 

-	 sin 0 (x + U - UF))e	 (D14) 

Combining equations (Dli), (D12), and (D14) gives the total velocity seen by a 

point on the elastic axis as 

= { 1R ( Aug cos + (b Arn sin *0 + ) vg)sth * 

+ pc (b Am cos *0 + ) g - Xi)) 

- + U + cv}e 

• { 2R (Aug(pc cos	 cos 0 - sin i sin 0) 

• (bArn sin	 + Avg)(pc sin sin 0 + cos ip cog 0) 

+ (b Arn COS *0 + Aqg - Aj)sin 01 

- (v cos 0 + w sin 0) +	 (-v sin 0 + w cog 0)


-cos0 (x+u-UF)}efl 

• { 2R [Aug(pc cos	 cos 0 + sin i sin 0) 

• (b Arn sin	 + Avg)(8pc sin cos 0 - co * sin 0) 

+ (bArn cos * + Awg - Xj)cos 01 

- (-v sin 0 + w cos 0) - 	 (v cos 0 + w sin 0) 

+ 	 sin 0 (x+u - UF)}e
	

(D15) 

The tangential and perpendicular velocity components Up and Up are 


obtained from equations (A38), (Dl), (D2), and (D15) and, to second-degree in 
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the dependent variables, have the form 

UT = -	 cos * + (b Arn sin	 + Avg) sin 

+ 8pc (m cos	 + Awg - Xi)] 

• (v' (cos 0 - 4) sin 0) + w' (sin 0 + 4) cos 0)] 

+ (-U + v) (-v' cos 0 - w' sin 0) 

• R [ Aug (pc COB cos 0 - sin sin 0) 

• (bArn sin o + Avg)(pc sin 4' sin 0 + cos 4' cos 0) 

• (bArn cos *0 + Awg - Xi ) sin 01 

	

(v' cos 0 + w' sin 0)2	 4)2 
• [1 --------------------------

2	 2 

cos 8 + w sin 0) +	 (-v sin 0 + w cos 8) 

(v' cos 0 + w' sin 8)2	 4)2 
- cos 0 Cu - UF)	 X cos 0 [1 --------------------------

2	 2 

+R [ Aug(pc cos * cos 0+ sin * sin 0) 

• (bArn sin 4' + Avg)(8pc sin cos 0 - cos * sin 0) 

+ (b Arn cos *0 + Awg - Xi ) cos 01 

• [4) - (v' cos 0 + w' sin O)(-v' sin 8 + W' cos 0)] 

+ 4) [- (-v sin 0 + W cos 0 - 90pc (v cos 0 + w sin 0) 

+ Q sin 0 (x + u)]}	 (Dl 6a) 

Up =	 {R [ Aug cos * + ( b Arn sin 'Po + Avg) sin 4' 

+	 pc ( b Arn cos 4' +	 'wg -	 At)] 

•	 [v (sin 0 + 4) cos 0) - w'	 (cos 8 - 4) sin 0)] 

+ (-u + 2v) (v' sin 0 - W' cos 0)] 

- OR Rig cos 4' cos 0 - sin 4' sin 0) 

+ (bArn sin 4'	 + Avg)(pc sin 4' sin 0 + cos 4' cos 0)

+ (bAi' cos 4' + A g - Xi) sin 0)4) 

- [-(v cos 0 + wsin 8) +	 (-v sin 0 + sq cos 0)- Q cosO (x+u))4) 
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• QR (Xug(pc COB 4) cos 6 + sin 4) sin 0) 

• (bArn sin 4)0 + Avg)(pc sin 4) cos 0 - cos 4) sin 0) 

+ (bArn COS 4)0 + Awg - Xi) COB 01 

- (-v sin 0 + w COB 0) -	 (v cos 0 + w sin 0) + 9 sin 0 (u - UF) 

Cv' sin 0 + w' cos 0)2 
+ 9 sin 0 x (1 - ---- ---- -- -- ---------- - --)} 	 (D16b) 

2	 2 

The quantity c appearing in equations (51) and (53) is the angular 

velocity of the blade section about the local x3 axis and, consistent with the 

present notation, can be written as x3' It can be regarded as composed of 

two parts: the first part arising from the rigid-body angular velocity of the 

hub in space, the second part arising from the angular velocity associated 

with the elastic deformations. The first contribution due to 11 and is given 

by

1x3	
1

S1 OPC

1 

= [T]	 2 sin 0	 (D17) y3 

Lz	 Cos 6 

Then

v'2	 w'2 
=	 (1  ---- - ---) + w '	 (D18) 

2	 2 

The second part of the angular velocity of blade section can be obtained by 

replacing' by	 , (-v ' sin  +w ' cos 0)' by (-v 1 sin  +w' cos 0); and 

0'pt by ;pt (which is zero) in the expression for the curvature w, given in 

equation (A35). Thus, 

.	 S 

X3
)defortnation	 (V' cos 0 + w' sin 0)(-v' sin 0 + W 1 cos 0) (D19) 

57



Combining equations (D18) and (D19), the total sectional pitching velocity is 

v' 2	 w'2 
(1 - --- - ---) + " 

+	 - (v' cos 0 + w' sin 0)(-v' sin 0 + w' cos 0) 	 (D20) 
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