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ANNOTATIONS

c	 :chord
h	 ;vertical airfoil displacement
k :reduced frequency
n :perpendicular to the surface
t	 s time
x	 s x axi s
y	 y axis
C1 :coefficient of lift

CM :coefficient of moment at the first quarter

C 
	 :coefficient of pressure

vxx :mix-, :d operator of finite difference

L	 : funettional
M :Mach number
S	 :surface
T	 :effect period
U	 :velocity
W	 :velocity of the wall
x :angle of the wall with direction x
7	 :angle

:specific heat ratio
:sinusoidal oscillation amplitude (degrees)
:relative density
:finite difference operator
:small quantity
:coefficient of the nonlinear term

P	 :density
:control surface rate

4 :perturbation potential
o, :oscillation frequency
^ :circulation

:velocity potential
:phase
:periodic time function

101 :degrees

Indices:

i	 :unsteady
j	 :x axis index
k :y axis index
1	 :lift
M :moment or mean
n :time index or perpendicular direction
t	 :in time
y :in direction y
x	 :in direction x
Z	 :lift

:intermediary value
g	 :control surface

:critical value
r^ :nonperturbed flow value

ii
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TRANSONIC SMALL DISTURBANCES EQUATION APPLIED TO THE SOLUTION
OF TWO-DXMENSIONAL NONSTEADY FLOWS

f	 M. Couston t J.J. Angelini, P. Mulak
O.N.E.R.A.

SUr
	 2r*

Transonic nonsteady flows are of large practical interest.

Aeroelastic instability prediction, control configured vehicle (CCV)

techniques or rotary wings in forward flight are some examples justi-

fying the effort undertaken at ONERA, in the theoretiwal and experi-

mental fields in order to improve the knowledge of these problems.

This paper is devoted to the numerical solution of these problems

under the potential flow hypothesis. The use of an alternating direc-

tion implicit(ACI) scheme allows the efficient resolution of the two

dimensional transonic small perturbations equation.

As a first step, numerical solutions based on the low frequency

assumption are compared to results provided by the linear Doublet-

Lattice-method. Then it is shown that the higher order time derivatives

can be taken into account, resulting in an extension of the domain of

validity of the calculations toward higher frequencies.

A second step is the comparison of nonlinear results with exper-

iments and calculations by other methods. It shows that the present

method can be used to solve complex nonsteady aerodynamic problems

including the determination of the shock wave movements. 	 The compari-

son with experiments is affected by viscosity effects and wind tunnel

wall interferences, but shows that the unsteady boundary layer acts

mainly on the modulus of the unsteady aerodynamic coefficients.

I - INTRODUCTION	 26

The determination of unsteady flow characteristics is highly sig-

nificant for such problems as the aeroelastic instabilities of wings,

the performance of rotary wings in forward flight. Current methods

*Numbers in the margin indicate pagination in the foreign text.
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of calculation applied are based on linear formulations (lifting liner

Doublet-Latticep ...); no excursion in the transonic domain is thus

possiblep since the shock waves produce very large nonlinearities.

This seriously limits the possibilities of prediction and fully justi-
fies the efforts undertaken at ONERA, in the theoretical and experi-
mental fields in order to improve the understanding of unsteady tran-

sonic problems.

A possible approach to these problems is the solution of the so-

called Euler conservation equations (massy momentum and energy. This

approach Was selected by Magnus and Yoshihara (l, 2) or Lerat and Sides

(3 t 4). The results are atisfactory # but the calculation time is
excessive for practical applications. These methods are based on the

hyperbolic characteristic of unsteady equations and use an explicit

method of the problem. The explicit method of solution requires the con-

sideration of the Courant-Friedrichs-Levy stability criterion (C.F.L.).

This criterion is translated by a time quantifications with an extremely

small time intervals compared to that required to describe the un-

steady effect correctly t which explains the long calculation time. An
interesting way to alleviate this problem is to construct an implicit

scheme. Even though the Euler equations are not suited for the impli-

cit calculations Beam and Warming (5) & Steger (6) have studied this
possibility, although the improvements made are still modest.

More recentlyp an alternating direction implicit scheme (A.D.I.)

has been suggested by Ballhaus et al. (7 9 8). This method has been
applied to the small transonic perturbations equation under the as-

sumption of small frequencies. The scheme used is similar to that

developed by Douglas and Gunn (9) to solve the heat equation. A
linear stability analysis demonstrates that this technique is uncondi-

tionally stable (7)• The calculation time is thus more more favorable.
particularly at low frequencies where it is 100:1 faster than the

explicit method of the Euler equations.

The implicity small perturbations approach is selected in this

paper. This choice is based mainly on the concern to save calculation

I

}
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time. It is in fact necessary to investigate applications composed

of numerous parametric scannIngs (Mach, reduced frequency, angle,

control surface deflection...), or to consider a subsequent three-

dimensional development with reasonable operating costs. Special

attention is focused on the small perturbations formulation and the

related boundary conditions. The possibility of easing the low fre-

quency constraints by introducing higher order time derivatives is

also demonstrated. The calculation of flows around various airfoils

shows that it is possible to obtain valuable results for relatively

thick airfoils, The i•, portanea of wall and viscous effects is also
clearly brought to Light during the comparisons of calculations and

experiments.

11 - DERIVATION OF THE SMALL PERTURBATIONS EQUATION

11.1 - SMALL FORMULATION AND FUNCTIONAL APPROACH

The traditional Duc3erley-von Karman form of the small transonic

perturbations equation is the subject of some criticism. Accordingly,

empirical or semiempirical laws have been introduced to "adjust" the

results; refer to Ballhaus (10) or Krupp (11). Based on. a formulation

preserving the conservation equation characteristicq a modified equa-

tion has been suggested for the steady case. The approach to the pro-

blem, which is presented here, makes it possible to obtain similar

corrections, but more reliable ones. Furthermore ' this approach has

been'expanded further than that in reference (12), as it establishes a

direct relationship between the pressure coefficient, the conservation

equation and the boundary conditions.

In the case of potential flowsp the Euler equations are reduced

to the equation of continuity:

i^
k	 + div I., grad"(J) l = 0	 / 1

where is a function of q) provided by the Bernouilli relationship:

3



r i	 ai

(2)

where the magnitudes characterizing the flowp space and time -__•,

x t yr t respectivelyp are normalized by	 ,_ elf ,. c, c and w-1 , where

parameter k stands for the reduced frequency tk ,:c u,.

Related to the boundary condition (3), equations (1) and (2)

present the problem of unsteady flows at velocity potentialp

n	
W, (X. b, III	

l )s

where 9, is the standard velocity of the airfoil.

If we consider only the periodic flow solution in time and with

a small amplitude and if the continuity equation is expressed in the

weak form, for an arbitrary and periodic function -t v by considering

that .t;,',1 is given by the Bernouilli relationshipp the problem be-

comes:

^

i:
k ' 4 div ( gra^t,,5)^ dx d y dl ^-

ik

_r r ,tti
(it.,'^ r	 W1114;ci E

(4)

	

—	 (x, y, 0) f,(. y, T)-- »(x, y, 0)1 dx dy = 0.

*airfoil

	

Regardless of	 the solution of the problem now contains both

the continuity equation (first term of equation (4)) and the space

and ttine boundary conditions (respectively by the second and third

terms of (4)). Let us point out that the continuity equation repre-

sents a divergence in the time space. To convort (5) and apply the

Green-Ostrogradsky theorems we replace (4) by (6).

r^':w E rPv4t^^t ^; tx L?LANIX NOT FILMED

6

s



t
r

d1v ^T ., ciiv t A)	 h ..,:tad r.

k	 `

fx 'Y r Y

*airfoil

The first member of (6) represents the ateaux differential (8)
of a functional (9) which is connected in the steady state to the
Bateman variational principle (12). The problem now becomes:

,^ 1• ^^;^} • , ^^ tit ^	 it ^}. 
t'^ir dS' 

c^ (}	
(# 1

`'	 *	 *airfoil

where the Gateaux derivative RL((/j) is defined as follows:

Since the functional L(^Jr) is the integral on the entire space-

time domain of the pressure coefficient

11 (0)	 cly (J't fdxdyd
J 	 za

(9)

with ;'r((")) 	 provided by the relationship (2)

We thus see that the problem presented by equation (7) is in the
weak form equivalent to the initial problem, but the continuity equa-

tion and the boundary conditions are regrouped. Accordinglyp it is

possible to relate a continuity equation and modified boundary condi-

tions to any approximation of the functional. (hence of the pressure

coefficient); this procedure will be followed in the next paragraph,

II.2 - APPROXIMATION IN THE DIRECTION OF SMALL PERTURBATIONS

As long as we focus on small perturbations of a uniform flows it

is practical to introduce the perturbation potential y, The Bern-

ouilli relationship therefore makes it possible to express rY by using;:

7
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We thus have the following expression:

	

r^ tt	 J)	 (lla

is a small quantity. ;A serios expansion givess

.	 *	 (11b

We can thus truncate this series by considering the respective order

of all derivatives by a similar approach f such as the Miles approach
(14). Thi s is even easier here sinca we have only the first deriva-

tives. Reference (15) would consider the low frequency cas e, i.e.:

where c is the perturbation parameter. In order to extend the ex-

pansion validity toward higher frequencies, we assume here:

By truncating the expansion of 	 with the order w3 the function-

al is expressed as follows:

,.	 ) J I" ^ t	rxrt
1-_ ^^ { 2

1	 t x .^ 2 

r y,1 
._

I)N2 #3 2 ^^	 ^^, ^ t M, r'x i

kw n^ r ^^ :, a	
(14)j Xdydt

it

(12)

C1^)
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(17)
(18)
(1`^)

)

9
,,

IKupp	 1111(1 r ( •! 1)114",'. ! n — 1,75
Dallhaus 1101)	 m - f shock

i^_

where the quantity between the brackets represents the pressure coef . 2
ficient approximated in the directi.om. OV the small transonic pox+tur-
bations. The last term of this quantity is 'chat wh;i h is produced

when proceeding from the low frequency approximataLon (12) to that of

the high frequenaes.(13)6 Based on the approximation of the func-

tional p it is now possible to define an equation and the related boun-

dary conditions.

SI.3 - SMALL UNSTEADY TRANSONIC PER,TURBk..CIONS EQU;ATXON

From the weak formulation of the problem and the functional

approach, we have shown in paragraph XI,1 that there was an equiva-

lence between the initial Problem (continuity equationp plus bound-

ary condition) and the equation (7). By evaluating the Gateaux der-

ivative from the approached functional (14) r it is possible to re-

construct an approa,l4,ed continuity equation:

k2 M2	 uktd 	 '- (1	 llt^	 _.:.
tt"	 ( Xft	 (x	 (15

^
n	 ,

rX"	 V 3

with: ) - I(Y	 1) M%, 4'3 (1- Alll '	 111 	 (16)

The main difference between equation (15) and the traditional

equation of small perturbations lies in the value of coefficient ).

defined in (16). In the traditional form of the small perturbationsq

Miles (14) finds for x the value ( 1 7) which corresponds to the tra-
ditional form (called the Guderley-von Karman formula in the steady

case). Krupp (11) and Bal.l.haus (10) correct this equation by using

respectively (18) or (19). The value of m corresponding to (19) is

a function of the shock intensityp values smaller than m = 1.75 are

considered in (10).



+ k
;y	 ix	 it (21)

In order to bring to light the importance ► of	 let us point out
that the "critica.l velocity" s,, i3 	 f which reduces the coefficient
of the second derivative to zero in x t equation (15)r is a direct

function of	 This critical velocity, which passes equation (15)

from subsonic to supersonic # is presented in figure l for different

assumptions on :. It may be noted that the traditional formula (17)

is correctedp which goes in the sane direction as equation (18) 9 but

without using empirical considorations. Moreoverp form (16) is ident-

ical to that of reference (12).

For low frequencies (12), the first term of equation (15)
disappears and the equation used by Ballhaus (70) or the author ; (1 5 )

is obtained. Equation (15) reestablishes the possibility of the

double wave system, recessive and progressives which degenerates at

low frequencies (12) into a single recessive wave.

I1. I1, - BOUNDARY CONDITION ON THE AIRFOIL

As we have already shown from the approximated functional (14)

it is possible to obtain an approached continuity equation in the

direction of small perturbations (15), but at the same time we are

defining the boundary condition which must be expressed on the airfoils

This boundary condition related to the equation is:

i ,
e	 ch	 i	 r i	 i

^1 

	 (20)
i y	 ix	 i r	 2 i ,Yr 	 r't

+ k	 1 .. M .
	 }: Ill.,;

it	 [X	 it

We must compare it to the traditional formulae reference (14) 9 which

is:

where h(xpt) is the function describing the geometry of the airfoil.

10



lr^

t:^t	 r

1

,+

Y

s:

3

r

a

!f j`

^	 x

3
.a

a

i	 i	 {

4

n

! 4

It may be emphasized that

th* additional terms introduced

by the present approach are as

small as the perturbations p but

must not be omitted if theme in com-

patibility betweon the equation

of the s quall transonic pertu:r-
bationa (15) and the boundary

conditions, Lator on, we shall

see that the additional terms

in (20) make it +easier to pre-

dict the leading edge which is

always a critical place for sol-

ving the == ;pall transonic per-

turbations equation.

TT. - SLIP-STREAA POTENTIAL SHTk+`'T

±1

Pig. 1 - Critical Velocity

	

	 In the solution of the vel-

ocity potential problemp we must

define the Potential displace-

ment (or circulation) through the slip-stream which,develops _Lt the

trailing edge. For the small perturbations t the slip-stream equation

is expressed on a horizontal cut and must represent the pressure coef-

ficient continuity. Accordinglyp for the small transonic perturba-	 32

tions equation at low frequenciesv we generally consider that the pres-

sure equation is given by (22a)i hence, the potential :lisplacement

must satisfy 22b. This means that the circulation I - is not a funct:4on

of the x axis , but only of time (22b)o

(22a)

(22b)

11
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k[ IT,

	 ,,e

a	 1(	 tx
(23a)

3

1

ig

I

This assumption, which is selected. by Ballhaus ( 8) r for example,

may be considered as too narrow to the extent that it is the same as

assuming that the circulation moves at an infinite velocity. By rs-

calling that the functional (14) represents the integral of the Ares-?,
i<

sure coefficientp the compatibility between the equation and the

slip-stream must be ensured by assuming the continuity of this ap-

proached value C . The equation thus obtained is quite a bit more
p

complex and lends itself poorly to the subsequent numerical calcula-

tion. A partial improvement of (22) may be easily introduced, by

keeping the first two terms of the of the pressure coefficient expan-

sion, which is the same as expressing (2)a). We thus obtain a hyper-

bolic equation on 1" (23b), which translates the circulation velocity

transfor of the nonperturbed fluid (per unit for normalization).

k	 = 0,	 ?	 FKx, r},
r ix	

(23b)

Hence, even though ( 23) is approached, it may be considered as a

better approximation than ( 22); in fact, we know that for the full

poteutial, the circulation moves at the local fluid velocity and not

at an infinite velocity. We shall see on a few examples, in linear

cases, the differences generated by using (22) or (23).

III - NUMERICAL SCHEME

The solution of the small transonic perturbations equation (15)

is obtained by an extension of the alternating direction implicit

scheme (A.D.I.) described by Ballhaus (7 9 8). Equation (15) is split

into two equations by introducing an intermediate variable Z; this

makes it possible to investigate the term of the second derivative in

time in a centered manner. The quantification of the two intervals

n and i ^, .-t. 1^ 1r	 ensures the linearization of the problems

12
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The variable Zn+l is therefore eliminated (24a) by using (24b);

the linear and two-dimensional problem on 1111 Which results is

factorizedby an approximation in two steps: the first step depends
on the unsown- according to x alone, the second step depends on the

unkown a' according to y alone (since the solution is made upstream

to downstream). The complete solution is presented in the following

form:

step in x	
"'k .4

	 k	 r^
.}..ix4i k

	

At	 at L,kh1

	

n	 ^^rin	 ^^,r;,11

+t '1 ,rk +	 .1 t

„	 "
., k lV9 I I k	 n}	 1	 n s l	 n—stop in y	 ^"'x 4*/r ^zu^rl.k^^T^+'}•9'1,^^x,f: °'^'LkJ	 (^^t')

	

^t	 at	 U

t.	 2k_calculation step 	 63,... ,r (r ) zk 
1

of z 

r' is the operator of the derivative decentered backward, which

ensures the upstream to downstream solution.

Dxx is a mixed operator similar to that of Murman (16) which

ensures the stability in the supersonic zones by a backward decenter-

ing and which preserves the conservat yon by a special investigation of

the sonic points and shock points.

;4F is the operator of the second derivative centered in y

13



which introduces the boundary conditions of the walls in the problem.

Lot us note that the main interest of scheme (25a and b) lies in

the fact that it does not generate three or four diagonal matrices;

the matrices may be solved effectively by factorizing them into the

product of a subdiagonal and superdiagonal matrix. The step cor-

responding to (25c) is there only to calculate the intermediary var-

iable which is brought to light point by point.

Figure 2 presents the type of meshing used for the calculation.

The number of nodes of the domain is generally about 5,000; about 100

points are placed, on the cut, which in the approximation of the small

perturbations, is the line which represents the airfoil. The meshing

is drawn along a geometric progression when we move back from the

airfoil,! the boundaries are thus fax • enough to avoid interfering wave

reflections. The lower and higher boundary conditions correspond

to the impervious and immobile walls which may be placed at an arbi-

trary distance. The downstream condition translates in an approached

manner the presence of an isobar.

The calculation times for the numerical solution are reasonably

short; hence for periodic effects, approximately 6 mn of 011-IRIS 80

per oscillation cycle (or about 1.5 mn UNIVAC 1,1110 or 15 s of CDC

7,600) must be counted.

IV - LINEAR CALCULATIONS

At the present tame, unstoady aerodyanamic calculations are

mainly performed by using linear methods. We may thus show the pos-

sibilities offered by this algorithm in the linear case, ^w.e, by

doing ),--o in equation (15). Our results are therefore directly

comparable to the Doublet-Lattice-Method developed at the ONERN from

works by Albano and Rodden (17).

14
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Fig. 3 - Pressure Distribution
on a flat plate with oscillating
control surface (linear equation)

Figures 3 to 6 are placed

in the linear frameworks but

under the low fregencies as-

sumptiong, which means that

the second time derivative in

equation (15) is omitted.

All of these figures present

the modulus and the phase of

the unsteady pressure coeffi-

cient on a flat plate. Fig-

ures 3 and 4 correspond to a

flap oscillation for two redu-

duced frequency values. The

influence of the circulation

on the pressure coefficient

modulus may be noted, parti-

cularly for the lowest fre-

quency (fig. 3). If the fre-

quency is increasedp the

trailing edge is mainly affect-

ed. Comparison with the Doub-

let-Lattice-Method shows that

15



the prediction is better if the circulation is transported at the

r_onperturbed fluid velocity rather than at an infinite velocity,

Hence, equation (23) will be selected. Figures 5 and 6 relate to two
other motions: a pitching around a front quarter and a surging. Agree-

ment with the Doublet-Lattice method is excellent and confirms that

for frequencies of this order the term of the second derivative versus

time is negligible. This is not always the case. Figure 7 presents

the case of pitching of a flat plate in a wand tunnel at a reduced

frequency k = 2. It is clearly obv3.ous that the solution of the

complete equation (15) (annotated here H.F.) gives a better result

if the second time derivative term is omitted (annotated hero B.F.).

In fact, the agreement is practically perfect for the unsteady pressure

coefficient phase between the H.F. equation and the Doublets-Lattice

Methodq whereas the assumption of B.F. introduces errors in excess of

one hundred degress. As for the modulus } even though the improvement

is obvious, it appears to be moderately underevaluated in comparison

with the Doublets-Lattice-Method. This difference, probably introduced

by the approached factorization of the equation, is a small sum as much

as the reduced frequency k = 2 is characteristic of the maximum re-

duced frequencies found physically on the actual wings. The complete

equation (15) is therefore preferred to the low frequencies equation

(15) to the extent that its domain of application is wider and its

calculation times are of approximately the same order.

V - NONLINEAR CALCULATIONS
	

LM

The nonlinear calculations will be concerned with two NACA air-

foils and one supercritical airfoil developed by Aerospatiale. The

first airfoil, the NACA 64 A 006 9 has been selected because with only

6% relative density and a small leading edge radius, it corresponds

well to the small perturbations assumptions. Moreover, measurements,

Tijdeman (20) and calculations, Magnus and Yoshihara (lp 2 9 18 9 19);

Ballhaus (8, 21) or Ehlers (22)_, are available for comparisons to be

made. The second airfoil, the NACA 0012 9 has a larger relative den-

sity and a less favorable leading edge; the results may be compared to

those found by Lerat and Sides (3 1 4). The third airfoil, the RA 16 SC 1

a.	 C1^+^	 rg^	 °.^1	 t,^f	 s	
C'kp^ rm^ w

.. :. ta. 't C'. k ' a 4r' b	 't ^^ a 5:	
r
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Figure 4 - Pressure distri.	 Figure 5 - Pressure distri-
bution on a flat plate with	 button on a pitching flat
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at Adrospatiale, is a dense	 0, 161%) 	but supercritical airfoil.
ONERA has fitted it with an oscillating control surface and a series

of two-dimensional unsteady testa in the Modane S 3 wind tunnel have

provided extensive experimental information (see Grenon and Therst

2 .3v 24) which we may attempt to utilize.

NACA 64A006

Figure 8 presents the pressure distribution along the chord in

the steady state for a Mach number M, ;0,876. ­	 Comparison with Mag-

nus and Yoshihara calculations is satisfactory. It should be pointed

out that two small perturbations calculations are presented which dif-

fer by the boundary condition. These two calculations show that the

behavior at the leading edge is better when equation (20) is used. In

facts the traditional form (21)

shows an anomaly at the leading

edge, this situation is well-

known in the traditional approach,
Cp	 see Ballhaus(10) for example.

I

b'6	 C	 Equation (21) thus appears to be

A.

Rrar
cctGt. ?o

Fig. 8 - Steady Pressure

0,375, >	 V.,

19 -0

a better choice for the investi-

gation of the leading edge than

the traditional form. It should

not be concluded that all pro-

blems are eliminated in this

region; in factp small pertur-

bations will always be wrong

near a stop point.

The unsteady case of a

control surface motion in the

presence of shock waves is il-

lustrated by figure 9. The lat-

ter presents theoretical and

experimental values of the

modulus and of the first har-

monic phase of the pressure

...'.j
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coefficient normalized by the displacement, The agreement between the

results of the present method and those of Magnus (19) is relatively
good; tests by Tijdeman (20), on the other hand, give quite different

results, This is especially obvious in the shock region where the

pressure coefficient modulus is distinctly overevaluated by the cal-
culation, Magnus (19) suggests that we are in the presence of a vis-

cous effect, but his semiempirical viscous corrections in the shock

region have not brought a satisfactory solution to the problem. It

is thus probable that it is a wind tunnel wall effect of perforated

walls located at a chord and one-half from the airfoil in this case.

It should be emphasized that the satisfactory comparison between the

P.P.T. and the Euler equations is encouragingg especially if we consi-

der that the calculation time here is about one hundred times shorter.

We currently know that in aearoelasticity the calculations of

fluctuations make use only of linear methods: behavior in time is as-
sumed to be harmonic. Figures 9 to 11 show why this approximation is
is no longer correct In the transonic state. In fact, figure 9 9 the
modulus of the first harmonic of the pressure coefficient has

a maximum between 50 and 60f of the chordo this maximum is substan-

tially larger than the logarithmic characteristic of the crest (70
of the chord) and is related only to the shock wave displacement.

Any linear calculation will necessarily result in a distribution sim-

ilar to that of figures 3 and 4 and will therfore not be representa-
tive of the problem, Figure 10 shows how the effect 9 which controls

the shock wave di.splacementsp is nonlinear; in fact for two oscilla-

ting amplitudes of the control surfaces we obtain two quite different

results for the pressure coefficient modulus (normalized by the dis-

placement). Likewisep whereas the control surface oscillates sinu-

soidally t the response of the pressure coefficient is of higher order har-

monics as is shown on figure 11. The transonic state thus brings into

doubt the validity of the basic assumption of a fluctuation calculations

i.e. its linearity t and that of the harmonic time behavior which re-

sults. These pessimistic conclusions may be alleviated if we

consider the integrated values of the unsteady aerodynamic forces

(F.A.I.). For these values, the linear and harmonic behavior assump-

tion gives acceptable results for fluctuation calculations as is shown

20
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( First harmoni.cT. M, * : 0,854,	 k - 0,358.

P,P.7.	 4o1" sin (k t),
Flagnus,	 k	 0,358.("Mors.	 M,	 0.654.
T 1i,')('man.

`ABLE I - Harmonicity and
linearity of unsteady aero-
dynamic forces.

n" t amplitude	 motion 1	 0 ,5 1,0 1,5

' lst har- ;
Madul `

monic	 ) , 3,51 ' .51 3,50
^r4 11'haxo ?	 44" . — 44" — 44"

3 rd har ..	 M.dul^,_-
.	 0.010 010	 3 I^0.0-22

I .st har — 
^MQdut .^	 1,74

_
(	 1,74	 i

)

1.72
Cn^R (1'hasQ

«
15 5" i 6"

3 rd har.	 Modu I .' 0,006 0,006 0,010
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on table I for calculations made on this airfoils

NACA 0012

The NACA 0012 is a relatively dense airfoil (12% relative density)r

hence # it is profitable to compare our results with those found by the

explicit solution of the Buler equations in the integral form develop-

ed at the ONETtA by Lerat and Sides (4)0

The steady C  for a zero angle and M 0A figure 12p presents

a comparison of the two shock methods; the shock is approximately in

the same position and the observable differences are small.. Based on

this steady stater we have introduced a sinusoidal control surface

motion with an amplitude of 1 0 at a reduced frequency k 0.5. The

periodic state (on the airfoil) is established in three to four cyclesr

figure 13 presents the pressure distribution during the 4th cycle (eve

(every 45 0 ). It is easy to check out the good periodicity by noticing
that a phase shift of 180 0 brings about a permutaion between the top

and bottom of the airfoil. The shock wave displacement is distinct;

it shows here a type A ("sindusoidal") motion described by Tijdeman

(20) from wind tunnel. tests. The wave shock screen effect shown on

figure 12 is obvious; it may be observed that the front of the airfoil

receives only very small pressure variations; these variations are 	 L=
caused by waves passing around the supersonic Bone. We are now in

the presence of an essentially different subsonic effect where lin-

ear theories are applicable. ]Ugure 1 4 compares the lift coefficient

paths during the cycler which were found by the two methods; if bhe ph

phase agreement is goody the intensities differ by about 30%j a dif-

ference which is difficu,1: to attribute to the steady field. It may

be observed on figure 13 r for kt = 0 0 or 180 0 p a: large phase shift of

the shock motion versus the control surface oscillation (which is then

in the wind bed) occurs; this is the phase shift responsible for the

largest portion of the unsteady lift. Accordingly # if t'be amplitude

of the shock wave displacement it, different between thf,"two methods,

the unsteady lift will be affocted. Figure 15 presen ts the chord

position (on one side of the airfo3.1,,^) of the shock wave during the cycle.
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Evolution of the lift
coefficient

1 ^,
We see that the displacement

`..2_..- allowed by the ^`'uler equations

f ., 'J. 9	 k .	 0, 5	 d . 0, 25. method has a larger amplitude

which explains the difference
- -n/-.r-^i`

in level, in the unsteady lift
.. ^a ,r r	 ^ti. t rt ^'Ea r 	 l evaluation.	 This difference

0--.t/
_ ...._.	 . _w

^rE..
`- still cannot be explained; wen	

I f

Fig. 1 5 - Shock displacement on do not know if it should be
lower surface.	 NACA 0012 Airfoil attributed to the potential

flow assumption to the small perturbations approximation or to an

inadequately precise numerical solution of one of the two methods.

The respective calculation times between the two methods are in

a ratio 1 to 65 in Favor of the P.P.T. 9 which emphasizes the advan..

tage of the methodq especially if a three-dimensional, extension is

considered.
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Adrospsatiale RA 16 SC 1

Biased on the preceding remarks regarding the NA.CA 64 A 006 air-
foilo we shall keep in mind that the wall effects in the transonic

state make any comparison difficult, As for the tests made on this

airfoil, a, few positrive points should be emphasized; the level, of
the airflow (normalized by the airfoild chord.) is higherp the cri-

tical Mach is smaller, which should assist in minimizing the blocking

effects even though the airfoil is denser. Furthermore # some tests

have been conducted witiA a guided airflow (solid walls) in order to

facilitate theoretical comparisons; in facts it is not easy to take

perforated walls into account by calculation, Aocordingly, we shah,

make our comparisons on the basis of these teats, with the calculation

taking the wind tunnel walls into account.

E	 ..,	 ; PPT

4, (3

4

5

t
r

° ^
IF

}^l0^^^^}L,,a
1

+^'y

t r.+q ^ ^^... 
j r

are

Figure 1 6

Op steady. Airfoil in guided
airflow

The calculated and measured

steady pressure coefficients are

presented in figure 16, It may
be noted that the calculation and

tests are different for the con.

trol surface deflection. This

deflection difference makes it

possible to simulate part of tho

viscous effects by replacing the

shock in a position near the tests.

If th s precaution is not taken,

the shock wave is located at $5%

from the chord and its intensity

more than doubles. The control

surface is oscillated sinusoidally

around this average deflection and

we obtain the periodic evolution

presented on figure 17. Once

again, it is the shock wave which

most actively participates at the
unsteady evolutions, as it is di g'-

placed on more than 10%. of the
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chord. It reaches its highest upstream position with a phase shift

of about 90 0 compared to the maximum deflection of the control sur-
face; the delay is relatively in good agreement with observations made

in reference (23, 2 11) for this reduced frequency. Figure 18 shows the

Figure 17 - Pressure distribution during oscillation cycle of the
control surface	 hi,	 0,73 , 00 3, : 2,25 *{ t ) - i^'sirr (k t) k t 0,333 - : t 0,25.

26.
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"........	 ,.

Fig. 18 - first harmonic of
the P.P.T. upper surface Cp
and tests in guided airflow.

first harmonic (normalized and

phase modulus) of the upper sur-

face pressure coefficient. It

may be noted that if the shock is

carefully ( by mean deflection of

the control surface) replaced in

its experimental si.tuationp we

have a gotd agreement on the

phases. It is obvious that the

shock controls the effect $ for

if we take the Doublet-Lattice-

Method into consideration, the

phases are very different. It

is quite obvious that the modules

on figure 18 are considerably

OF POOL QiJALi°i`Y



overevaluated (more than 50c over most of the chord); it is if we had

an "affective apmlitude" of control surface motion of 0.65 0 instead L

of 10 . This occurance is not characteristic of transonic flows; in

factp it may be noted in the reference (25) that even in subsonic

flows for this airfoil, we have an equivalent loser of performance be-

tween the theory without boundary layer and the tests or a theory with

boundary layer. Unless this loss in performance is estimated empir-

ically or semi-empiricallyp it appears necessary to introduce a bound-

ary layer idealized fluid eouplingp as if it seems possible to pre-

dict the phases on the basis of steady testis and a nonviscous unsteady

calculationg the modulus depends even more on viscous effects. This

is what we may observe in table :Cl where the P.P.T calculation (guided

airflow) gives a correct esti-•

Airfoi:LRA 1G SC ^
C,	 mate of the phases of the un-

«

	

	 steady aerodyanmic forcesq which

is obviously overevaluated in
Tests	 a	 1 0,5 2.31 — 41.3 0,77 — b.2

the modulus. A P.P.T. Galcu-1'.P,T,	 C4rriG^.	 1 2.25 3,77 — 51,4, 1,26'— 10,3

F' nT	 i°itan„	 j ^°	 3 ,s	 31.8 1.19	
.

 4 .11
lation in infinite fieldp while

c^uub^rc	 b ^" r ° i^ 1	 3.37 22,7 -1.02` b.7	 carefully replacing the shockk	 y	 p	 g
In its experimental position

TABLE 11
	 verya-guided airflows b-infinite field 	(4, 10). provides 	 s i mil.ar

Comparison of tests and calculations results to those of the guided

	

for the unsteady lift and moment 	 airflow calculation. We can

thus state that if the wall

effects are not negligibley

since the control surface has

to be turned by 1.25 0 to have the same shock positionp the effect on

the unsteady coefficients (at this frequency) is mainly related to the

displacements of the shock wave and not to the wave reflections on

the wind tunnel walls.

Table 11 also shows the calculation values by the Doublet-Lattice-

Method. If the phase differences in figure 18 are more than 100 0 in

fsome placesp they become substantiallybreduced after integration; on

the other handy the modules are of the same order as those obtained

by the small transonic perturbations calculation. This is relatively

27

r<



♦ 	 t

kt. r,

I	 ♦

1	 kt„t3r,

r

i

I

r

^

1
I	 ♦,

t	 ^♦

r ♦ r

it

1	
kt nt80°

^.

1

L 1

cp/2

1 I

1 t 1	
ti`

1	 ' 1j

1 ``y'r 1	
+ '^'

jkt:90', kt= 2251 .
.4,t

0, G,	 h,:	 r C.-	 per	 0,	 Uu^.	 Ct^. i
Rech. Adrosp, _.. n” }979 .5. Septembre-Octo5ro

ORIGINAL PAGE IS
28

OF POOR QUALITY

,^'.i;.+w^. .,	 ^;1:; r,+	 ,i!r1.S,f'1^!'Ri"'4B^^^ 
st'rJ"N'e-.'fir .,.T	 ^.."^.%.	 «^"^..$.1':$".^"^"^°"°n'""'..WaF4:'^A.`A*?S^Y'^'^anw.•.,r«n.... 	 _... _. ..,,,^..,...-^	 t



surprisingp since the Doublet-Lattice-Method corresponds to a calcu-

lation of a flat plate wihtout angle (and of coursep without shock .

It may be noted that the calculation - experiment comparisons

have been made only for control surface effectsq and the calculation

of fluctuations also involve surging and pitching motions. From the

point of view of the P.P.T, calculations these motions do not present

any special problems, but they would be less sensitive to viscous

effects. In the examples considered herep the control surface is in

fact heavily loaded t which facilitates separations t whereas on the

rest of the airfoils the viscous effects are more limited. The ex-

perimental and theoretical stvdy of these two overall airfoil motions

could make it possible to evaluate to what extent the use of a super-

critical airfoil improves or damages the characteristics of a wing

fluctuation.

VI.- CONCLUSIONS

In the research for an effective tool to solve the unsteady nad 133.9

two-dimensional transonic flows t the approximation of small pertur-

bations is of interest. In factq it allows a rather effective numer-

ical solution based on an alternating direction implicit scheme. The

:initial limitations have been partially removed by establishing a

functional approximation which relates the pressure coefficient to the

equation of continuity and the boundary conditionsq as well as by eas-

ing part of the constraints on the reduced frequencyp without hinder-

ing the efficiency of the numerical solution.

Comparisons in the linear domain # in the presence of shock wavesp

with more sophisticated methods of calculations such as the Euler type,

are very encouraging. The calculations times arep in facto up to 100

times fasterp whereas the results coincide relatively well.

Comparison with wind tunnel tests, if it is more difficult, calls

for a few remarks. It appears that the phase of the occurances is
rather sensitive to the steady pressure field (and especially to the

29



position of the stxock wavesy whereas the modulus of unsteady aero-
dyanmic forces depends on viscous effects (with an equivalent steady
pressure field). Accordingly t it seems necessary to take these last
effects into account by preventing the viscous calculation from bur-

doning the coupling calculation. It is in fact desirable to take the
boundary layer effects into accounts and it is equally important to

move to a three-dimensional calculations the calculation times of

which must remain reasonable.

This paper was submitted on July 23, 1979.
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