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schord

svertical airfoil displacement
treduced frequency
sperpendicular to the surface
¢ time

¢ X axis

¢ v axis

scoefficient of 1lift

tcoefficient of moment at the first quarter
tcoefficlient of pressure
tmix:d operator of finite difference

s fun@edional

tMach number

ssurface

teffect period

tvelocity

tvelocity of the wall

tangle of the wall with direction x
tangle

sspecific heat ratio

:sinusoidal oscillation amplitude (degrees)
trelative density

tfinite difference operator

ssmall quantity

tcoefficient of the nonlinear term
tdensity

tcontrol surface rate
tperturbation potential
tsoscillation frequency
tcirculation

svelocity potential

sphase

speriodic time function

sdegrees

Indices:

;, NG ot B B =Ra

oy

sunsteady

tx axis index

1y axis index

slift

smoment or mean

ttime index or perpendicular direction
tin time

tin direction y

tin direction x

21ift

tintermediary value
scontrol surface
tcritical value
tnonperturbed flow value
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TRANSONIC SMALL DISTURBANCES EQUATION APPLIED TO THE SOLUTION
OF TWO-DIMENSIONAL NONSTEADY FLOWS

M, Couston, J.,J, Angélini, P, Mulak

SUMMARY [325%

Transonic nonsteady flows are of large practical interest,
Aeroelastic instability prediction, control configured vehicle (CCV)
techniques or rotary wings in forward flight are some examples justi=
fying the effort undertaken at ONERA, in the theoretical and experi-
mental fields in order to improve the knowledge of these problems,

This paper is devoted to the numerical solution of these problems
under the potential flow hypothesis, The use of an alternating direc-
tion implicit (ACIL) scheme allows the efficient resolution of the two

dimensional transonic small perturbations equation,

As a first step, numerical solutions based on the low frequency
assumption are compared to results provided by the linear Doublet-
Lattice-method, Then it is shown that the higher order time derivatives
can be taken into account, resulting in an extension of the domain of

validity of the calculations toward higher frequencies,

A second step is the comparison of nonlinear results with exper-
iments and calculations by other methods, It shows that the present
method can be used to solve complex nonsteady aerodynamic problems
including the determination of the shock wave movements, The compari-
son with experiments is affected by viscosity effects and wind tunnel
wall interferences, but shows that the unsteady boundary layer acts

mainly on the modulus of the unsteady aerodynamic coefficientcs,

I - INTRODUCTION [326

The determination of unsteady flow characteristics is highly sig-
nificant for such problems as the aeroelastic instabilities of wings,

the performance of rotary wings in forward flight., Current methods

*Numbers in the margin indicate pagination in the foreign text,
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of calculation applied are based on linear formulations (1ifting lime,
Doublet-Lattice, sss) no excursion in the transonic domain is thus
possible, since the shock waves produce very large nonlinearities.
This seriously limits the possihbilities of prediction and fully justi=-
fies the efforts undertaken at ONERA, in the theoretical and experi-
mental fields in order to improve the understanding of unsteady tran-

sonic problems,

A possible approach to these problems is the solution of the so-
called Euler conservation equations (mass, momentum and energy). This
approach was selected by Magnus and Yoshihara (1, 2) or Lerat and Sides
(3, 4). The results are catisfactory, but the calculation time is
excessive for practical applications, These methods are based on the
hyperbolic characteristic of unsteady equations and use an explicit

method of the problem, The explicit method of solution requires the con-

sideration of the Courant-Friedrichs-Lewy stability criterion (C.,F.L.).

This criterion is translated by a time quantification, with an extremely

small time interval, compared to that required to describe the un-
steady effect correctly, which explains the long calculation time, An
interesting way to alleviate this problem is to construct an implicit
scheme, Even though the Euler equations are not suited for the impli-
cit calculation, Beam and Warming (5) & Steger (6) have studied this
possibility, although the improvements made are still modest,

More recently, an alternating direction implicit scheme (A,D.I.)
has been suggested by Ballhaus et ale. (7, 8). This method has been
applied to the small transonic perturbations equation under the as-
sumption of small frequencies, The scheme used is similar to that
developed by Douglas and Gunn (9) to solve the heat equation. A
linear stability analysis demonstrates that this technique is uncondi=-
tionally stable (7). The calculation time is thus more more favorable,
particularly at low frequencies where it is 100:1 faster than the
explicit method of the Euler equations,

The implicit, small perturbations approach is selected in this
paper. This choice is based mainly on the concern to save calculation




time, It is in fact necessary to investigate applications composed
of numerous parametric scannlngs (Mach, reduced frequency, angle,
control surface deflection...), or to consider a subsequent three-
dimensional development with reasonable operating costs, Special
attention is focused on the small perturbations formulation and the
related boundary conditions, The possibility of easing the low fre-
quency constraints by introducing higher order time derivatives is
also demonstrated, The calculation of flows around various airfoils
shows that it is possible to obtain valuable results for relatively
thick airfoils, The i.uportanse of wall and viscous effects is ualso
clearly brought to light during the comparisons of calculations and

experiments,

II - DERIVATION OF THE SMALL PERTURBATICNS EQUATION

IX.1 - SMALL FORMULATION AND FUNCTIONAL APPROACH

The traditional Duderley-von Karman form of the small transonic
perturbations equation is the subject of some criticism, Accordingly,
empirical or semiempirical laws have been introduced to "adjust" the 1327
resultsy refer to Ballhaus (10) or Krupp (11). Based on a formulation
preserving the conservation equation characteristic, a modified equa-
tion has been suggested for the steady case, The approach to the pro-
blem, which is presented here, makes it possible to obtain similar
corrections, but more reliable ones, Furthermore, this approach has
been'expanded further than that in reference (12), as it establishes a
direct relationship between the pressure coefficient, the conservation

equétion and the boundary conditions,

In the case of potential flows, the Euler equations are reduced

to the equation of continuity:

S 2 .
k”-}«dw [;grad r})]-:() (l)

where : is a function of | provided by the Bernouilli relationship:

-
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where the magnitudes characterizing the flow, space and time ;...
X, ¥y t respectively, are normalized by =:,.¢l,,c ¢ and w'l, where
parameter k stands for the reduced frequency (ke U, u

Related to the boundary condition (3), equations (1) and (2)
present the problem of unsteady flows at velocity potential,

Y] , i
- w "&n (X, Y, {} (3)

where W, is the standard velocity of the airfoil,

If we consider only the periodic flow solution in time and with
a small amplitude and if the continuity equation is expressed in the
weak form, for an arbitrary and periodic function ; , by considering
that :iy 1is given by the Bernouilli relationship, the problem be-

comes:
{' 2l nl
|

[EER N

iz o]
v [k | + div (5 grad,;’:)J dx dy dt e
{

v 5 -
i
— l m{ .?'}[ U W"J g e
v tn
T (4)

e ‘ {‘;('\'I }'! O) I;’(-"l YI T)"".:(xl .Vl Q)Id“‘ dy : (,'
¥airfoil
Regardless of . , the solution of the problem now contains both

the continuity equation (first term of equation (h)) and the space
and time boundary conditions (respectively by the second and third
terms of (4)). Let us point out that the continuity equation repre-
sents a divergence in the time spaée. To convart (5) and apply the

Green-Ostrogradsky theorem, we replace (4) by (6).

PREGEDING PAGE BLAHK NOT FMgp 'l ) !




SR

SV A s divie A) AL crad s

‘S‘J'JQ . ( 5 )

. .3 [ ']
.

L
, a i de iy edt e

Y tX' Y ooy

AF3 +

§
l d,'(i i

Y ( 6 )

R

*airfodldl

The first member of (6) represents the ateaux differential (8)
of a functional (9) which is connected in the steady state to the
Bateman variational principle (12), The problem now becomes:

oy a

mj £ W, dS s 0 (7)
’ * *airfoil

Al (1;)) .on

A

where the Gateaux derivative 3u) 1is defined as follows:

L 4 np b= L = 27)
ALL) = ! i ’ LT . (8)
2n -t

Since the functional L(§} is the integral on the entire space=
time domain of the pressure coefficient

v oy

‘ C ()< dydl ( [P =1
T (e re : k
pli b e dxdy (9)

[ J i 1

b(‘/))M:J

with .7 provided by the relationship (2).

We thus see that the problem presented by equation (7) is in the
weak form equivalent to the initial problem, but the continuity equa-
tion and the boundary conditions are regrouped, Accordingly, it is
possible to relate a continuity equation and modified boundary condi-
tions to any approximation of the functional (hence of the pressure
coefficient); this procedure will be followed in the next paragraph,

IT.2 = APPROXIMATION IN THE DIRECTION OF SMALL PERTURBATIONS

As long as we focus on small perturbations of a uniform flow, it

is practical to introduce the perturbation potential -, The Bern=

ouilli relationship therefore makes it possible to express ;v by using¢:
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We thus have the following expression:
:=u(141;fx (11a)
is a small quantity. A serios expansion gives:
. re 1 e .
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LRSS R TP (T

We can thus truncate this series by considering the respective order
of all derivatives by a similar approach, such as the Miles approach
(14). This is even easier here sincs# we have only the first derivae
tives, Reference (15) would consider the low frequency case, l.e.

R N L (12)

where : is the perturbation parameter, In order to extend the ex-
pansion validity toward higher frequencies, we assume here:

oy oL (13)

By truncating the expansion of ., with the order & the function-~
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al is expressed as follows:
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where the quantity between the brackets represents the pressure coef- /328

ficient approximated in the direction n the small transonic pexrtur-
bations, The last term of this quantifty is +that whi h is produced
when proceeding from the low frequency approximation (12) to that of
the high frequencies,(13). Based on the approximation of the func~-
tional, itis now possible to define an equation and the related boun-
dary conditions,

II.3 = SMALL UNSTEADY TRANSONIC PERTURBATIONS EQUATION

From the weak formulation of the problem and the functional
approach, we have shown in paragraph II,] that there was an equiva-
lence between the initial problem (continuity equation, plus bound=
ary condition) and the equation (7). By evaluating the Gateaux der-
ivative from the approached functional (14), it is possible to re=
construct an approz#ied continuity equationg

e "

£y . £ * .
K Mz : -+ ekige, ‘ = !.(1 e, M%") cesd ‘ ' ]
! X

¢1° txet
1
(2% 7 ";’/? ( 5)
rit" ‘{‘f)"‘
withs : ;
Yo [l DM 48 (1 M) (16)

The main difference between equation (15) and the traditional
equation of small perturbations lies in the value of coefficient
defined in (16). In the traditional form of the small perturbations,
Miles (14) finds for . the value (17) which corresponds to the tra-
ditional form (called the Guderley=von Karman formula in the steady
case), Krupp (11) and Ballhaus (10) correct this equation by using
respectively (18) or (19). The value of m corresponding to (19) is
a function of the shock intensity, values smaller than m = 1,75 are
considered in (10).

Miles  [14], \m =2 an
Krupp (U] Aa= (v - MY m = 1,15 8}
Rallhaus [10]) (.m = { shock )
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In oxrdexr to bring to lighi the importance of . let us point out
that the "critieonl veloedty" ..+.. s Which reduces the coefficient
of the second uerivative to zero in x, equation (15), is a direct
function of 3., This critical velocity, which passes equation (15)
from subsonic to supersonic, is presented in figure 1 for different
assumptions on .. It may be noted that the traditional formula (17)
is corrected, which goes in the same direction as equation (18), but
without using empirical considorations., Moreover, form (16) is ident-
ical to that of reference (12).

For low frequencies (12), the first term of equation (15)
disappears and the equation used by Ballhaus (7,8) or the author (15)
is obtained, IEquation (15) reestablishes the possibility of the
double wave system, recessive and progressive, which degenerates at
low frequencies (12) into a single recessive wave,

IT.4 = BOUNDARY CONDITION ON THE ATIRFOLL

As we have already shown from the approximated functional (14)
it is possible to obtain an approached continuity equation in the
direction of small perturbations (15), but at the same time we are
defining the boundary condition which must be expressed on the airfoil,
This boundary condition related to the equation is:

Yy X AV

i?afh[l+(ywnﬁiﬁ$~lpvy:—kmﬁﬁj (20)
rﬁi:[ ” b n"e]
+ b 1w M% e kMY e
iy ¢ L

We must compare it to the traditional formula, reference (14), which

isse
tp ih th
k

i‘ymt'X* it (21)

where h(x,t) is the function describing the geometry of the airfoil,
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Fige 1 = Critical Velocity

trailing edge,

It may be emphasized that
the additional terms introduced
by the present approach are as

small as the

pexrturbations, but

must not be omitted 1f thore is come-
patibility between the equation

of the small
bations (15)
conditions,

see that the
in (20) make

transonic pertur=
and the boundary
Latoer on, we shall
additional terms
it easier to pre=

dict the leading edge which is
always a critical place for sol=-

ving the =mall transonic per=

turbations equation,

IIl.5 = SLIP=STREAM POTENTIAL SHIFT

In the solution of the vel-
ocity potontial problem, we must
define the potential displace=
ment (or circulation) through the slip-stream which develops ut the

For the small perturbations, the slip-stream equation

is expressed on a horizontal cut and must represent the pressure coef-

ficient continuity.

Accordingly, for the small transonic perturba=-

1329

tions equation at low frequencies, we generally consider that the pres-
sure equation is given by (22a); hence, the potential iisplacement

must satisfy 22b,
of the x axis, but only of time (22b).

& ¢
f 4
=3

2 X
o1
=00 e P31,
(X

= 0

This neans that the circulation

\

is not a function

(22a)

(221b)

11
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This assumption, which is selected Ly Ballhaus (8), for example,
may be considered as too marrow to the extent that it is the same as
assuming that the circulation moves at an infinite velocity, By ro=
calling that the functional (14) represents the integral of the pres-
sure coefficient, the compatibility between the equation and the
slip=stream must be ensured by assuming the continuity of this ap-
proached value CP. The equation thus obtained is quite a bit more
complex and lends itself poorly to the subsequent numerical calcula-
tion, A partial improvement of (22) may be easily introduced, by
keeping the first two terms of the of the pressure coefficient expan=
sion, which is the same as expressing (zja). We thus obtain a hyper=
holic equation on ' (23b), which translates the circulation velocity
transfor of the nonperturbed fluid (per unit for normalization).

¢ .1’,o+t', - (23&)

G W4 [ 4

L R e Ty (23b)
23b

Hence, even though (23) is approached, it may be considered as a
better approximation than (22); in fact, we know that for the full
potential, the circulation moves at the local fluid velocity and not
at an infinite velocity. We shall see on a few examples, in linear
cases, the differences generated by using (22) or (23).

IIT - NUMERICAL SCHEME

The solution of the small transonic perturbations equation (15)
is obtained by an extension of the alternating direction implicit
scheme (A.D.I.) described by Ballhaus (7, 8)., Equation (15) is split
into two equations by introducing an intermediate variable Z; this
makes it possible to investigate the term of the second derivative in
time in a centered manner, The guantification of the two intervals

n and (n4 1 A ensures the linearization of the problem:

.
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The variable z™*! is therefore eliminated (24a) by using (24b);
the linear and two-dimensional problem on -%'! which results is
factorizedby an approximation in two steps: the first step depends
on the unkown™ according to x alone, the second step depends on the
unkown .:+: according to y alone (since the solution is made upstream
to downstream). The complete solution is presented in the following

form:
=step in x IET 7 CN A I .
X (’e, K ';‘l.k) =
At At ‘ PR
| PR Y ok )w"' b4l [RLNY]
C D () R Ay et
kMU kL 1
K ‘ . | . -~ a 1 .
-step in y . \(“wlbﬁﬂ"“hx)LEWVQmi“Wﬁ) (251
. 1 " ?k . l
-calculation step EARIE N A N et T
of Z d .\f (25(,')

& is the operator of the derivative decentered backward, wkich

ensures the upstream to downstream solution,

Dxx is a mixed operator similar to that of Murman (16) which
ensures the stability in the supersonic zones by a backward decenter-
ing and which preserves the conservat'ion by a special investigation of

the sonic¢ points and shock points.,

A is the operator of the second derivative centered in y
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which introduces the boundary conditiopns of the walls in the problem,

Let us note that the main interest of scheme (25a and b) lies in
the fact that it does not generate three or four diagonal matrices;
the matrices may be solved effectively by factorizing them into the
product of a subdiagonal and superdiagonal matrix. The step cor=
responding to (25c) is there only to calculate the intermediary var-

iable which is brought to light peint by point.

Figure 2 presents the type of meshing used for the calculation,
The number of nodes of the domain is generally about 5,000; about 100
points are placed on the cut, which in the approximation of the small
perturbations, is the line which represents the airfoil. The meshing
is drawn along a geometric progression when we move back from the
airfoil; the boundaries are thus fax enough to avoid interfering wave
reflections, The lower and higher boundary conditions correspond
to the impervious and immobile walls which may be placed at an arbi-
trary distance., The downstream condition translates in an approached

manner the presence nf an isobar,

The calculation times for the numerical solution are reascnably
short; hence for periodic effects, approximately 6 mn of CII-IRIS 80
per oscillation cycle (or about 1.5 mn UNIVAC 1,1110 or 15 s of CDC
7,600) must be counted.

IV = LINEAR CALCULATIONS

At the present time, unstuvady aerodyanamic calculations are
mainly performed by using linear methods, We may thus show the pos=-
sibilities offered by this algorithm in the linear case, L.e. by
doing 7.=0 in equation (15). Our results are therefore directly
comparable to the Doublet-Lattice-~Method developed at the ONERA from
works by Albano and Rodden (17).




T s

~pim— -

ABOVE  $:=0

e 1 - -
i
|
S i‘ T - /330
UPSTREAM [ i~ i . i m e et wnd - DOWNSTREAM
A " ’} 3 A
1/ . AW ”*%f. T
=0 O T e S o ¢ -1
N DO 1 0 1 g g
. Tl , It 9.0
i ] P
! ' r ! i i
R il
S 1 N S
| . ! f R ’é
R LN EERE N
-“N"”’W
BELOW 9,0
—~em— Cut (where boundary condition 15 or 15 applies)
e Above
Slip=stream Below
Fig, 2 - Calculation Domain
iac A Figures 3 to 6 are placed

0
g 6 ?
2 . -
- Bty T
S 2
: '\
S ¢ 536 08 T8
@ ) .
O]

I

1

. %;6'

- 40 ;,‘f“

® ¢ @ nLuNtfIn
—— RERT- F P - I
[SEELAL PRIt SR Wl S I SR S

—— 4

Fige 3 = Pressure Distribution
on a flat plate with o¢scillating
control surface (linear equation)

in the linear framework, but
under the low fregencies as=
sumption, which means that
the second time derivative in
equation (15) is omitted.

All of these figures present
the modulus and the phase of
the unsteady pressure coeffi-
Fig-

ures 3 and 4 correspond to a

cient on a flat plate,

flap osc¢cillation for two redu=
duced frequency values, The
influence of the circulation
on the pressure coefficient
modulus may be noted, parti=-
cularly for the lowest fre=
quency (fige. 3). If the fre=
quency is increased, the
trailing edge is mainly affect=
ed, Comparison with the Doub-
let-Lattice~Method shows ‘that

15
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the prediction is better 1if the circulation is transported at the
nonperturbed fluid wvelocity rather than at an infinite velocity,

Hence, equation (23) will be selected, Figures 5 and 6 relate to two
other motions: a pitching around a front quarter and a surging. Agree=
ment with the Doublet=Lattice method is excellent and confirms that

for frequencies of this order the term of the second derivative versus
time is negligible, This i1s not always the case, Figure 7 presents
the case of pitching of a flat plate in a wind tunnel at a reduced
frequency k = 2, It is clearly obvious that the solution of the
complete equation (15) (annotated here H.F,) gives a better result

if the second time derivative term is omitted (annotated here BoFs)oe

In fact, the agreement is practically perfect for the unsteady pressure
coefficient phase between the H,F, equation and the Doublet~Lattice
Method, whereas the assumption of B,F, introduces errors in excess of
one hundred degress. As for the modulus, even though the improvement
is obvious, it appears to be moderately underevaluated in comparison
with the Doublets-Lattice~Method., This difference, probably introduced
by the approached factorization of the equation, is a small sum asg much
as the reduced frequency k = 2 is characteristic of the maximum re-
duced frequencies found physically on the actual wings. The complete
equation (15) is therefore preferred to the low frequencies equation
(15) to the extent that its domain of application is wider and its

calculation times are of approximately the same order,

V = NONLINEAR CALCULATIONS [333

The nonlinear calculations will be concerned with two NACA air-
foils and one supercritical airfoil developed by Aérospatiale. The
first airfoil, the NACA 64 A C06, has been selected because with only
6% relative density and a small leading edge radius, it corresponds
well to the small perturbations assumptions, Moreover, measurements,
Tijdeman (20) and calculations, Magnus and Yoshihara (1, 2, 18, 19);
Ballhaus (8, 21) or Ehlers (22), are available for comparisons to be
made, The second airfoil, the NACA 0012, has a larger relative den-
sity and a less favorable leading edge; the results may be compared to
those found by Lerat and Sides (3,4). The third airfoil, the RA 16 SC 1
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Figure 4 = Pressure distri=-
bution on a flat plate with
oscillating control surface
(1inear equation),
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at Aérospatiale, is a dense ($s 16%) but supercritical airfoil,

ONERA has fitted it with an oscillating control surface and a series
of two=dimensional unsteady tests in the Modane S3 wind tunnel have

provided extensive experimental information (see Grenon and Thers:
23, 24) which we may attempt to utilize,

NACA 64A006

Figure 8 presents the pressure distribution along the chord in

the steady state for a Mach number n, .08 Comparison with Mage=

nus and Yoshihara calculations is satisfactory, It should be pointed

out that two small perturbations calculations are presented which dif-

fer by the boundary condition., These two calculations show that the

behavior at the leading edge is better when equation (20) is used, In
fact, the traditional form (21)
‘'shows an anomaly at the leading
edge, this situation is well-

’ known in the traditional approach,

see Ballhaus (10), for example,

G . Equation (21) thus appears to be

Afﬁwh\ﬁ a better choice for the investi=-

gation of the leading edge than
the traditional form, It should
not be concluded that all pro=-
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control surface motion in the
presence of shock waves is il
lustrated by figure 9, The lat-
Fig. 8 - Steady Pressure ter presents theoretical and

M experimental values of the
. = 0,875, 7o O,
, modulus and of the first har-

monic phase of the pressure
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coefficient normalized by the displacement, The agreement between the
results of the present method and those of Magnus (19) is relatively
good; tests by Tijdeman (20), on the other hand, give quite different
results, This 1is especially obvious in the shock region where the
pressure coefficient modulus is distinctly overevaluated by the cal=
culation, Magnus (19) suggests that we are in the presence of a vis-
cous effect, but his semiempirical viscous corrections in the shock
region have not brought a satisfactory solution to the problem, It

is thus probable that it is a wind tunnel wall effect of perforated
walls located at a chord and one=half from the airfoil in this case,
It should be emphasized that the satisfactory comparison between the
P,P,Te and the Euler equations is encouraging, especially if we consi=-
der that the calculation time here is about one hundred times shorter,

We currently know that in aeroelasticity the calculations of
fluctuations make use only of linear methods: behavior in time is as-
sumed to be harmonic, Figures 9 to 11l show why this approximation is
is no longer correct in the transonic state. 1In fact, figure 9, the
modulus of the first harmonic of the pressure coefficient has
a maximum between 50 and 60% of the chord, this maximum is substan-
tially larger than the logarithmic characteristic of the crest (75%
of the chord) and is related only to the shock wave displacement,

Any linear calculation will necessarily result in a distribution sim-
ilar to that of figures 3 and 4 and will therfore not be representa-
tive of the problem, Figure 10 shows how the effect, which controls
the shock wave displacements, is nonlinear; in fact for two oscilla-
ting amplitudes of the control surface, we obtain two quite different
results for the pressure coefficient modulus (normalized by the dis~
placement), Likewise, whereas the control surface oscillates sinu-
soidally, the response of the pressure coefficient is of higher ocrder har-
monics as is shown on figure 11, The transonic state thus brings into
doubt the validity of the basic assumption of a fluctuation calculation,
i.e, its linearity, and that of the harmonic time behavior which re=-
sults, These pessimistic conclusions may be alleviated if we

consider the integrated values of the unsteady aerodynamic forces
(F,A.I.). For these values, the linear and harmonic behavior assump=

tion gives acceptable results for fluctuation calculations ag is shown
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on table I for calculations made on this airfoil,

‘!
|
3
1
1
]

NACA 0012

The NACA 0012 is a relatively dense airfoil (12% relative density), ,;
hence, it is profitable to compare our results with those found by the ;
explicit solution of the Fuler equations in the integral form develop= 3
ed at the ONERA by Lerat and Sides (4),

The steady Cp for a zero angle and M, - 08 figure 12, presents
a comparison of the two shock methods; the shock is approximately in
the same position and the observable differences are small, Based on
this steady state, we have introduced a sinusoidal control surface
motion with an amplitude of 1° at a reduced frequency k = 0,5, The
periodic state (on the airfoil) is established in three to four cycles,
figure 13 presents the pressure distribution during the 4th cycle (eve
(every 45°). It is easy to check out the good periodicity by noticing
that a phaso shift of 180° brings about a permutaion between the top
and bottom of the airfoil, The shock wave displacement is distinctj
it shows here a type A ("sindusoidal") motion described by Tijdeman
(20) from wind tunnel tests. The wave shock screen effect shown on
figure 12 is obvious; it may be observed that the front of the airfoil
receives only very small pressure variationsj; these variations are [222
caused by waves passing around the supersonic sone, We are now in
the presence of an essentially different subsonic effect where lin=-
ear theories are applicable, TIigure 14 compares the 1lift coefficient
paths during the cycle, which were found by the two methods; if the ph
phase agreement is good, the intensities differ by about 30%, a dif
ference which is difficuj? to attribute to the steady field, It may
be observed on figure 13, for kt = 0° or 180°, a large phase shift of

the shock motion versus the control surface oscillation (whiph is then
in the wind bed) occurs; thiéhts the phase shift responsiblé for the
largest portion of the unsteady lift., Accordingly, if thé amplitude

of the shock wave displacement i, different between thg/two methods,

the unsteady 1ift will be affecte&» Pigure 15 presen%s the chord
position (on one side of the airfoi;{ of the shock wave during the cycle,
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prassure coefficient with osci~-

llating control surface, Evolution

T J of the lift
NACA 64 A 006 Airfoilh coeffioient

e 1,50 AL ORYA k0,304

?fay e We see that the displacement
» C t“*"' >>>> ;: i allowed by the Buler equations
* M, =08 & r " method has a larger amplitude

' R which explains the difference

4[;;;;%%i:jjw’ in level in the unsteady 1ift

o e PET e ELLER 1] evaluation, This difference

e e AR still cannot be explained; we

Fige 15 =~ Shock displacement on do not know if it should be

lower surface, NACA 0012 Airfoil attributed to the potential

flow assumption, to the small perturbations approximation or to an

inadequately precise numerical solution of one of the two methods,.

The respective calculation times between the two methods are in
a ratio 1 to 65 in favor of the P,P,T,, which emphasizes the advan-
tage of the method, especially if a three-dimensional extension is

considered,
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Based on the preceding remarks regarding the NACA 64 A 006 air-

foil, we shall keep in mind that the wall effects :in the transonic 1335

state make any comparison difficult, As for the tests made on this

airfoll, a few posisive points should be emphasized; the level of
the airflow (normalized by the airfoild chord) is higher, the cri=

tical Mach is smaller, which should assist in minimizing the blocking

effects even though the airfoil is denser, Turthermore, some tests

have been conducted witu a guided airflow (solid walls) in order to
tacilitate theoretical comparisons; in fact, it is not easy to take
perforated walls into account by calculation, Accordingly, we shall
make our comparisons on the basis of these tests, with the calculation

taking the wind tunnel walls into account,

The calculated and measured
steady pressure coeffilcients are
ITTIPRT ReLd 2t e presented in figure 16, It may
b A MR Saedem . be noted that the calculation and
wwzfz’. Ve ‘ : tests are different for the con-
B trol surface deflection, This
deflection difference makes it
! possible to simulate part of the
' viscous effects by replacing the
‘ ) shock in a position near the tests,.
. vt If th s precantion is mot taken,
- “““>\TT the shock wave is located at 85%
* RN from the chord and its intensity
more than doubles., The control
i Mo 0.3 . S surface is oscillated sinusoidally
0 around this average deflection and
L we obtain the periodic evolution
presented on figure 1l7. Once
again, it is the shock wave which
most actively participates at the
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Cp steady. Adirfoil in guided
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25




Dot i

e T T T g T

chord, It reaches its highest upstream position with a phase shift

of about 90° compared to the maximum deflection of the control sur-
facej the delay is relatively in good agreement with observations made
in reference (23, 24) for this reduced frequency. Figure 18 shows the

1

Figure 17 = Pressure distribution during oscillation cycle of the
control surface m,: 073 w00 4. 225 ~(t) -10sin (k) k - 0,333 <« 0,25,
first harmonic (normalized and

) “ "/
P
O A
Koo 3! phase modulus) of the upper sur-
{‘.‘ L A H :’
; face pressure coefficient, It

may be noted that if the shock is
carefully (by mean deflection of

~
P E
., poabo
a O .
e FE A the control surface) replaced in
! Jood
; o g its experimental situation, we
, o have a goud agreement on the

It is obvious that the

o pr . e
j oo Mﬁawn;pun phases,
| e y ul, 85 R
wh von Z&&Q; 4 shock controls the effect, for
e Gy TR P e if we take the Doublet=lLattice=
f '—'% - T ; ey ‘;.';""‘LO.-'; LI ". =
P EPEETLY B Method into consideration, the
vJﬁJ? <’ ”/_j ;, phases are very different. It
e e is quite obvious that the modules
gy T on figure 18 are considerably
.coof TFige 18 = Pirst harmonic of
the P,P,T, upper surface Cp N . N
and tests in guided airflow, ORIGINAL PAGE 15
OF POOR QUALILY
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overevaluated (more than 50¢% over most of the chord); it is if we had
an "effective apmlitude" of control surface motion of 0,65° instead
of 1°, This occurance is not characteristic of transonic flowsj in
fact, it may be noted in the reference (25) that even in subsonic
flows for this airfoil, we have an equivalent loss of performance be=-
tween the theory without boundary layer and the tests or a theory with
boundary layer, Unless this loss in performance is estimated empir-
ically or semi-empirically, it appears necessary to introduce a bound-
ary layer idealized fluid coupling, as if it seems possible to pre~
dict the phases on the basis of steady tests and a nonviscous unsteady
calculation, the modulus depends even more on viscous effects, This
is what we may observe in table IX where the P,P,T calculation (guided
airflow) gives a correct esti-

Adrfoilra 15 5 1 nj‘ ¢ é Cra ] mate of the phases of the une
T steady aerodyanmic forces, which
S v ' ' is obviously overevaluated in
f;?ts»fagﬁﬁ')2£Z§j;izx:?i::1gz the modulus, A P,P,T, calcu=
pRY. wmﬁ)g 197 3,57 — 3.8 149 = A4 lation in infinite field, while
Tousle M gy Lagg 02 s carefully replacing the shock
’ : l in its experimental position
TABLE IT \ 0
a-guided airflow, b-infinite field (% 1) provides very similar

Comparison of tests and calculations Tesults to those of the guided
for the unsteady lift and moment " airflow calculation, We can

thus state that if the wall

effects are not negligible,

since the control surface has
to be turned by 1,25° to have the same shock position, the effect on
the unsteady coefficients (at this frequency) is mainly related to the
displacements of the shock wave and not to the wave reflections on

the wind tunnel walls,

Table I1 also shows the calculation values by the Doublet«Lattice=
Method, If the phase differences in figure 18 are more than 100° in
some places, they become substantiallybreduced after integration; on
the other hand, the modules are of the same order as those obtained

by the small transonic perturbations calculation, This is relatively

/335
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surprising, since the Doublet=Jlattice~Method corresponds to a calcu=
lation of a flat plate wihtout angle (and of course, without shock).

It may be noted that the calculation = experiment comparisons
have been made only for control surface effects, and the calculation
of fluctuations also involve surging and pltching motions, From the
point of view of the P,P,T, calculaiion, these motions do not present
any special problems, but they would be less sensitive to viscous
effects, In the examples considered here, the control surface is in

fact heavily loaded, which facilitates separations, whereas on the
rest of the airfoil, the viscous effects are more limited, The ex=
perimental and theoretical stvdy of these two overall airfoil motions
could make it possible to evaluate to what extent the use of a super=
eritical airfoil improves or damages the characteristics of a wing
fluctuation,

VI.= CONCLUSIONS

In the research for an effective tool to solve the unsteady nad /339
two=dimensional transonic flows, the approximation of small pertur-
bations is of interest. In fact, it allows a rather effective numer=
ical solution based on an alternating direction implicit scheme, The
initial limitations have been partially removed by establishing a

functional approximation which relates the pressure coefficient to the
equation of continuity and the boundary conditions, as well as by eas-
ing part of the constraints on the reduced frequency, without hinder=-
ing the efficliency of the numezrical solution,

Comparisons in the linear domain, in the presence of shock waves,
with more sophisticated methods of calculation, such as the Euler type,

are very encouraging, The calculations times are, in fact, up to 100

times faster, whereas the results coincide relatively well,
Comparison with wind tunnel tests, if it is more difficult, calls

for a few remarks, It appears that the phase of the occurances is

rather sensitive to the steady pressure field (and especially to the

29
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position of the shock waves, whereas the modulus of unsteady aero=
dyanmic forces depends on viscous effects (with an equilvalent steady
pressure field). Accordingly, it seems necessary to take these last
effects into account by preventing the wviscous calculation from bur-
doning the coupling calculation, It is in fact desirable to take the
boundary layer effects into account, and it is equally important to
move to a three~dimensional calculation, the calculation times of

which must remain reasonable,

This paper was submitted on July 23, 1979.
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