Onorbit Navigation Integrator Results for Typical Shuttle Orbits

```
(RASA-r 2-81092) SHOTTLE PROGMAA. ONCRBIT N80-27407
HAVIGATIC& IBTEGRATOR EESULTS FOR TYRICAL
SHOTTLE ORBITS (NASA) 40 p HC AO3/MP A01
                        CSCl 22A Vaclds
                    G3/16 24453
```


Mission Planning and Analysis Division July 1979

n/s^

National Aeronautics and
Space Administration
Lyndon B. Johnson Space Center
Houston. TexasJSC-16011

Shuttle program

ONORBIT NAVIGATION INTEGRATOR RESULTS
FOR TYPICAL SHUTTLE ORBITS

By Oscar W. Olszewski FMS
Mathematical Physics Branch

Approved:

Emil R. Schiesser, Chief Mathematical Physics Branch

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas
July 1979

CONTENTS

Section Page
1.0 SUMMARY 1
2.0 INTRODUCTION 2
3.0 ANALYSIS RESULTS 3
3.1 CASE 1 DATA 3
3.2 CASE 2 DATA 6
3.3 CASE 3 DATA 6
3.4 CASE 4 DATA 7
3.5 CSDL RESULTS 7
4.0 CONCLUSIONS AND RECOMMENDATIONS 8
5.0 REFERENCES 8
APPENDIX A - SUPER G AND SUPER GL EQUATIONS A-1
APPENDIX B - FUNCTIONAL FLOW CHART FOR RK3 ND RK4 B-1
APPENDIX C - FUNCTIONAL FLOW CHART FOR NYSTROM FOURTH-ORDER INTEGRATOR C-1
APPENDIX D - INTEGRATOR COEFFICIENTS D-1
APPENDIX E - ACCELERATION FUNCTION SUBROUTINE E-1
TABLES
Table Page
I INTEGRATOR INITIAL CONDITIONS 9
II CASE 1 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS 10
III CASE 2 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS 11
IV CASE 3 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS 12
v CASE 4 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS 13
VI INTEGRATOR RELATIVE TIMING DATA FOR HP9825 EXECUTION TIME 14
VII CSDL RESULTS 15

FIGURE

Figure

Page
$\begin{array}{ll}\text { Typical super G integrator, position error in meters } \\ & \Delta T=4 \text { seconds } \cdot \text {. }\end{array}$

1.0 SUMMARY

Three types of navigation onorbit numerical integrators were evaluated, and the following results were obtained:
a. Power integrators with no delta-V incorporation, just coasting; i.e., using Taylor series expansion integrators
(1) Super G is slightly better than average G for step sizes of 2 and 4 seconds. (A 1200 -meter error for delta-T $=4$ seconds after 10 revolutions (revs)). Super G is marginal for delta-T $=15$ seconds. Neither are adequate for delta-T ≥ 30 seconds.
(2) Spiffy G shows no improvement over super G.
(3) Super G4 (third order) has slight improvement over super G or spiffy G at steps of 2 and 4 seconds, but is inferior to them for delta-T ≥ 15 seconds.
b. Coasting integrators using the Cowell method of special perturbations
(1) With the exception of Runge-Kutta third order, all third-order (RK or Nystrom) integrators performed rather poorly for delta-T ≥ 15 seconds. The RK3 is a remarkable exception, and it competes favorab̄ly with fourth-order integrators with delta-T up to 60 seconds. (The RK3 error is less than 1000 meters for delta-T $=60$ seconds and 10 revs).
(2) The fourth-order Nystrom integrators performed as well, or slightly better than the RK's but they are a little slower to execite. The Nystrom 4 with Lear's coefficients ((ref. 1) - NLXD4/4) \& -rformed better than all other Nystrom integrators.
(3) All fourth order integrators at delta-T $=2$ seconds had a 0.1 -meter or less error when compared to the KS (ref. 2) reference integrator.
(4) In general, RK4 integrators perform adequately for up to $\Delta T=60$ seconds and 10 revs with errors less than 1200 meters except for RK'42. Degradation occurs rapidly beyond that ΔT with the exception of RKL41 (ref. 1), which is adequate for up to 120 -second time steps.
c. Coasting integrator using the Pines variation of parameter perturbation method.
(1) The Pines formulation with RKG4 (the standard predictor for onorbit navigation, ref. 3) performs excellent for up to 5-minute (300 seconds) time steps (error less than 200 meters for delta-T $=5$ minutes and 10 revs). The 10 -minute time steps may be considered.
(2) The Pines method used more core and executes slower than the Cowell method for a single step. However, for certain applications where longer time steps are permitted, this method is more time efficient.

2.0 INTRODUCTION

This document presents results for using the three onorbit navigation integrators in the onboard software: (a) average G for user parameter propagator (UPP), (b) super G for the onorbit navigation state propagation function, (c) Pines/RKG for the onorbit state prediction function, and (d) other potentially useful RungeKutta and Nystrom integrators for onorbit navigation where an analysis task was performed with typical Shuttle orbits (i.e., 100- to 300-n. mi. altitude and small eccentricities).

The acceleration function for a simulated force model (app. E) included a central force field, $J 2$ gravity terms, and a drag perturbation (ref. if). These were programed into a Hewlett Packard HP9825 desktop calculator (12-digit machine; no double precision). Gravity up to 4×4 (fourth degree-fourth order) was also investigated by CSDL, and its results are included here for completeness.

All oases were run for approximately 10 revs or until position error (RSS) was greater than 100 kilometers.

Integrator step sizes considered were 2, 4, 15, 30, 60, 150, 300, and 600 seconds.

The following integrators were considered in this analysis for total acceleration integration (ref. 1):
a. Series expansion integrators for powered flight:
(1) Average G - second order
(2) Super G - second order (app. A)
(3) Spiffy G - second order (app. A)
(4) Super G4 - third order (app. A)
b. The RK/NYSTROM integrators using the Cowell method for coasting flight:
(5) RK3 - standard Runge-Kutta third order
(6) RKL3 - Lear's coefficient for RK3
(7) NLXD4/3 - Nystrom-Lear coefficient for NXD4/3
(8) NXD4/3 - Nystrom third order
(9) RKG4 - Runge-Kutta-Gill fourth order
(10) RKL41 - Runge-Kutta-Lear fourth order
(11) RKL42 - Runge-Kui ${ }^{+}$-Lear fourth order
(12) RK4 - standard Runge-Kutta fourth order
(13) NLXD4/4 - Nystrom-Lear coefficient fourth order
(14) NXD4/4 - Nystrom fourth order
c. The following variation of parameters for special perturbation was examined for the coasting flight:
(15) Pines/RKG4 (ref. 3)

Three integrator initial conditions (IC) were used for this analysis and are listed in table I. The positions and velocities (in kilometers and $\mathrm{km} / \mathrm{sec}$) listed constitute the state vector at time = zero second. After approximately 10 revolutions ($t=54000$ seconds), the state vector propagated by the reference integrator - a KS (Kustannheimo-Stieffel) formulation (ref. 2) with Runge-Kutta 45 integrator (table I) was compared with the tested integrator. The position difference was RSS (root sum squared) to determine an integrator error for the various integrator steps attempted. The position errors are listed in tables II through V.

Integrators (2) and (15) (super G and Pines/RKG) were also tested by Charles Stark Draper Laboratory (CSDL) personnel in the HAL code environment (ref. 5). The CSDL results basically duplicated the results of tables II to V. In addition, reference 5 provides actual execution time for AP101 (Shuttle onboard computer) in extended precision for 1,5 , and 10 revolutions (revs) of propagation for various step sizes. Some of the data in reference 5 are duplicated in this report.

3.0 ANALYSIS RESULTS

3.1 CASE 1 DATA

For case 1, all 15 integrators were in is ilized with IC 1 and allowed to run for approximately 10 revs (54000 seconds) with state vectors printed at 10 -minute increments. Only J2 grayity perturbation was included in the functional evaluation call to the acceleration function. (Drag was used in case 4 only.) IC\#1, which is a $146-\mathrm{n}$. mi. circular orbit inclined at 30° with the equator, was used as the basic orbit to screen out integrator performance. The integrators that performed well in this environment were further evaluated in cases 2,3 , and 4.

To quickly assess integrator performance, the energy and percent delta energy equations were programed. Although no energy data are presented in this report, it was found that with these parameters, coding errors were detected much sooner than by the normal differencing of state vectors along the reference trajectory. The initial orbit energy ξ_{0} was printed at the beginning of the run and subsequently, delta energy $\Delta \xi$ was printed. For conservative orbits; i.e., no drag or self-induced satellite accelerations like uncoupled RCS thrust, the delta energy must be zero along the trajectory: i.e., energy is conserved. (This is a necessary but insufficient condition that indicates to the user that orbit errors are probably not being introduced by the integration scheme selected.) It was found that with i digits of delta energy printed, integrator
induced errors in the orbit are detected much sooner (in 10 or 20 steps) than they would by differencing the reference state vector with the tested integrator state vector. Therefore, integrator errors could be detected within a few tame steps rather than after a rev of data.

The following formulas were used for energy and delta energy:
$\lambda=\frac{3}{2} \mu K_{J} R_{e}{ }^{2}$
$\Lambda=\lambda\left(\frac{X_{3}{ }^{2}}{R^{5}}-\frac{1}{3 R^{3}}\right)$
$\xi_{i}=\frac{\mu}{R}-\frac{v^{2}}{2}-\Lambda$
$\Delta \xi_{i}=\frac{\xi_{i}-\xi_{0}}{\xi_{0}}$
where
$\xi_{i} \stackrel{\Delta}{=}$ orbit energy at time $=t_{i}$
$\xi_{0} \stackrel{\Delta}{=}$ initial orbit energy at time $=0$
$\mu \stackrel{\Delta}{=}$ Earth gravitational constant $=398601.0 \mathrm{~km} 3 / \mathrm{sec}^{2}$
$R \stackrel{\Delta}{=}$ satellite position vector magnitude, km
$\mathrm{V} \stackrel{\Delta}{=}$ satellite velocity vector magnitude, $\mathrm{km} / \mathrm{sec}$

$\Lambda \triangleq$ potential function

$\lambda \stackrel{\Delta}{=} \mathrm{J} 2$ perturbation constant
$x_{1}, x_{2}, x_{3} \stackrel{\Delta}{=}$ inertial components of satellite position vector,
x_{1} along Earth's equator, x_{3} along Earth's North Pole
$X_{J} \stackrel{\Delta}{=} \mathrm{J} 2$ potential constant $=1.08265 \times 10^{-3}$
Δ
$R_{e}=$ Earth's radius $=6371.22 \mathrm{~km}$
$\Delta \xi_{i} \Delta$ delta energy from time $=0$

Table II shows that the average G integrator performs adequately for steps up to 4 seconds and then degrades rapidly. Super G performs slightly better and is effective up to 15 -second step sizes before collapsing. Spiffy G (app. A) performs almost identically to super G in all cases. As mentioned in section 1.0 , a 1200 meter error (fig. 1) was noted for super G after 10 revs of propagation for 4 -second time steps.

Super G4, developed in appendix A (ref. 6) performed quite well up to 4-second step sizes but degraded quickly for higher steps and was not evaluated further.

The fourth-order Runge-Kuttas used a common fourth-order RK algorithm and only the coefficients were changed for each integrator. Functional flow charts for the third- and fourth-order Runge-Kutta and Nystrom integrators are given in appendixes B and C. All coefficients were obtained from reference 1 and are listed in appendix D.

The functional evaluation subroutine was obtained from reference 7 and is shown in the appendix E flow chart. This flow chart was used by integrators to determine the acceleration vector. Note that only central force field, J2, and drag is used.

All fourth-order Runge Kutta integrators (RKG4, RKL41, RKL42, and RK4) porformed quite well with delta steps up to 60 seconds. The RKL41, a Runge-Kutta integrator with Lear's first set of coefficients performed quite well with della steps up to 150 seconds.

Two third-order Runge-Kutta integrators were tested (a standard RK3 and RKL3 that used the Lear coefficients). The RK3 performed exceptionally well for a third-order integrator and, in fact, performed almost as well or better than the fourth-order Runge-Kutta integrator for delta-T ≤ 60 seconds. The RKL3 did not perform well.

Two fourth-order Nystrom integrators were tested: the NLXD4 and the NXD4. TrMLXD4, which used the Lear coefficients, performed slightly better than the st. dard Nystrom NXD4. In general, the Nystrom integrators performed at least as well as the RK's. However, the algorithm took slightly more time to execute beoause of the extra calculations required in the Nystrom algorithm.

Two third-order Nystrom integrators were tested, and as shown in table II, they performed rather poorly and were quickly discarded (NXD3 and NLXD3).

The last integrator tested was the fourth-order Runge-Kutta-Gill (RKG4) using the Pines variation of parameters formulation technique. The code was obtained directly from the onorbit navigation FSSR (ref. 3). As shown in table II, this formulation and integrator combination performed exceptionally well up to 10minute steps. However, the Pines code is more complex than Cowell's formulation, and as shown in table VI, it does take about five times longer to execute.

Table VI lists the relative time it took for the various algorithms to perform in the HP9825 environment (a fairly accurate but somewhat slow desktop calculator when compared with a typical powerful and much faster machine such as the UNIVAC 1108). It should be noted that the algorithms coded were general purpose and inefficient, specifically in terms of execution time because if a coefficient of zero were encountered, the algorithm operation was still performed. In any case, this table clearly shows that Pines/RKG is not only the most accurate method but also the slowest method tested for a single step. More or less the same relative execution timing data were observed in reference 5 and are reproduced elsewhere in this report.

3.2 CASE 2 DATA

For case 2, the initial condition IC\#2 represented a Skylab reboos rendezvous orbit after the terminal phase finalization (TPF) maneuver. To conserve computer time, some of the small delta step runs were deleted. It was assumed that the trend to higher accuracy for smaller time steps had been established in the case 1 results. Only the average G, super G, spiffy G, RKG4, RKL41, RK3, and the NLXD4 integrators of case 1 were tested for this case.

Results for case 2 were basically the same as for case 1 and are tabulated in table III.

3.3 CASE 3 DATA

Case 3 results are listed in table IV. The IC 3 represented a Skylab insertion orbit of 100 n . mi. circular. Because drag is significant at this altitude, the
integrators of case 2 were tested with the drag perturbation of reference 4 (a simplified atmospheric model) in the acceleration function.

The accuracy results for case 3 were very similar to those of cases 1 and 2. This seems to indicate that drag, if modeled properly in the acceleration functional evaluation used by the integrator, will present no difficulty to the integration scheme used. However, it was noted immediately that the orbit energy and delta energy computations were being affected by the slight acceleration produced by the drag. Therefore, if drag or some other nonconservative force are included in the acceleration model, the value of the energy check in evaluating integrator performance is lost.

3.4 CASE 4 DATA

Case 4 results are given in table V. In essence, this case is ident_rito case 3 except that no drag was included in the evaluation of the accoleration. - me runs with super G4 and Pines/RK6 were added to get more data for this integrator. As with previous cases, the accuracy results were very similar to the other cases. The integrator error differences between cases 3 and 4 (i.e., drag versus no drag) were very minimal. However, the actual position differences after 10 revs were about 30 kilometers (for constant Shuttle surface area) due to the drag.

3.5 CSDL RESULTS

To obta in some performance data for OPS-2 state propagators in HAL code running in AP101 extended precision, CSDL used IC 1 and IC\#2 and propagated them for 10 revs for both the super G and Pines/RKG integrators at various integracor step sizes in their AP101 simulation.

Since the onboard flight code was to be used for this analysis, it was decided that an existing ENCKE-Nystrom formulation would be used as a real world reference test case. This formulation consists of a full double precision with a fourth-order/degree gravity model and an integration step size of 30 seconds. (This was later changed to an 8 degree/order gravity model to determine the differences between a $4 / 4$ and $8 / 8$ gravity). Results are given in reference 5 and they can be summarized as follows:
a. For J2 only (gravity $=2$ order, zero degree), which is what the HP9825 program was formulated to, the differences between the super G and RKG/Pınes were about 1000 meters - basically the same as tables II and V. Reference 5 results can be summarized in table VII. (They can be computed by differencing cases: super G6 and PRKG5; super G6' and PRKG5'.) This same integrator difference is basically observed for cases usi.g higher fidelity gravity models: i.e., super G1 and PRKG1; super Gs and PRKG3; super G5 and PRKG4; and the similar primed cases.
b. Table VII shows that the Pines/RKG, using a 3-minute step size (predictor type operation), performs almost the same as for the 1 -minute step size.

4.0 ONCLUSIONS AND RECOMNENDATIONS

a. The super G integrator is a very simple and effective integrator for 2- and 4 -second time steps. Since IMU delta-V data can be easily incorporated in the integration scheme, its use as the standard onorbit navigation propagator for the maintenance of the current state has been implemented in the onboard navigation software.
b. The Pines variation-of-parameters formulation method with a Runge-Kutta-Gill (RKG) fourth-order integrator method proisces excellent results up to 300second time steps. Onorbit prediction W.uh this method (3- to 5-minute time steps) has been implemented in the onboard onorbit navigation scheme.
c. The Runge-Kutta third order (ref. 1), using Cowell's method, is an excellent general purpose orbit determination integrator for cine steps up to a 60second duration.

5.0 REFERENCES

1. Lear, W. M.: Accuracy and Speed of 38 Self-Starting Integrators. JSC Internal Note 78-FM-39, June 1978.
2. Stiefel, E. L.; and Scheifele, G.: Linear and Reguiar Celestial Mechanics. Julius Springer (Berlin) 1971.
3. Level C GNC FSSR, Part B - Navigation Onorbit. Rockwell SD76-SH-0006C, June 1979.
4. Babb, G. R.; and Besn, W. C.: Analytical Atmospheric Density Model. JSC Memorandum FM5 (75-4), Jan. 1975.
5. Muller E.; and Chu W.: Eerformance of OPS-2 State Propagators in HAL Extended Precision. CiDL Memorandum 10E-79-8, Feb. 8, 1979.
6. Horn M. K.: Super G and Super G4. Meeting handout, Sept. 29, 1978 and revised Nov. 28, 1978.
7. V. R. Bond: Personal communicaition. Oct. 12, 1078.
table I.- mtegrator initial conditions

Param	Onit	Case 1	Case 2	Case 3	Case 4
		$\mathrm{t}_{0}=0.0$			
x_{0}	km	6649.02	-3972.220046	-4192.451762	-4 192.451762
Y_{0}	kII	0	-1 892.121621	4777.342541	4777.342541
z_{0}	km	0	-5000.635973	1636.711626	1636.711626
\dot{x}_{0}	km	0	4.393527408	-4.85227183	-4.35227183
\dot{P}_{0}	kcm/sec	6.705343087	-6.262423238	-2.327477093	-2.327477093
\dot{z}_{0}	km/sec	3.871331637	-1.112883779	-5.64056083	-5.64056083
$\mathrm{H}_{\text {A }}$	kim		284.08	185.05	185.05
$\mathrm{HP}_{\text {P }}$	km		269.85	181.38	181.38
i	deg	30°	49.86°	$49.93{ }^{\circ}$	$49.93{ }^{\circ}$

Final position e $t_{F}=54000 \mathrm{sec}$

		W/0 drag	W/O drag	W drag	W/0 drag
χ_{F}	km	6507.6213	-4 068.7385	-4955.392	-4 968.7873
$\mathbf{Y}_{\mathbf{F}}$	km	1027.5009	-1 666.3453	- 543.481	- 519.5312
Z_{F}	km	895.9049	-5003.6163	-4 263.2106	-4 211.5175

TABLE II.- CASE 1 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS

	[No drag; $i=30^{\circ}$]										
	Delta-T										
Integrator	2 sec	4 sec	15 sec				0 sec		sec	300 sec	600 sec
AVE G	759	3035	42687	170		681	1716				
SUPER G	332.2	1161.1	3360.8	57	526	228	962				
SPIFFY G	332.5	1161.2	3360.8	57	526	228	962				
SUPER G4	22.9	37.2	8857.3	70	776	563	902				
RKG4		. 1	1.1		16.3		227.1	4	558.5	92327.1	
RKL41		. 1	. 1		. 8		. 7		1358.3	50861	
RKL42	. 1	. 1	10.5		244.5		6326	515			
RK4	. 1	. 1	1.8		43.5		1159.7	100			
RK3	. 1	. 3	9.8		66.9		$164 . ?$		411.7		
RKL3	21.3	169.6	8939.8		545.3						
NLXD4		. 1	. 1		1.0		31.7		121.6	103271	
NXD4	. 1	. 1	2.0		34.8		672.1		134.4		
NLXD3	150.7	918.6	17747.1		921.5						
NXD3	390.7	2406.8	48173.5	233							
PINES-RKG4			. 1		. 1		. 1		1.70	33.4	683.9

TABLE III.- CASE 2 INTEGRATOR POSITION ERROR AFTER 10 REVS, METERS
$\left[\begin{array}{l}\text { No drag; } i=49.8^{\circ} \\ \text { Skylab } T P F \\ H_{A}=153.4 \mathrm{n} . \\ H_{P}=145.7 \mathrm{ni} . \\ \hline \text { mi. }\end{array}\right]$

Integrator	2 sec	4 sec	Delta-T				
			15 sec	30 sec	60 sec	150 sec	300 sec
AVE G	752.3	3009.4	42312	169187	675543		
SUPER G	328.7	1149.7	3434.9	55915	783477		
SPIFFY G			3434.9	55915	783477		
RKG4		. 1	1.0	16.0	223.3	4500.5	89065.1
RKL41			. 1	. 8	2.2	1228.4	47179
RK3			. 6	10.8	751.0	91251	
NLXD4			. 1	1.0	30.9	3041.6	160600

table iv.- CASE 3 Integrator position errok apter 10 revs, meters

				$\left[\begin{array}{l} \text { With drag; i }=49.93^{\circ} \\ \text { Skylab insertion } \\ 100-\mathrm{n} . \text { mi. Circular } \end{array}\right]$				
	Integrator	2 sec	4 sec	15 sec	30 sec	60 sec	150 sec	300 sec
	AVE u	782.9	3133.4	44064	176119			
	SUPER G	349.0	1215.4	3044.3	64646	878152		
	SPIFFY G	349.5	1216.3	3044.2	64659	878232		
	RKG4		. 1	1.1	15.4	209.0	3526.5	126550
N	RKL4 1		. 1	. 1	. 8	. 7	1487	54573
	RK3		. 1	3.9	14.8	"37.6	103727	
	NLXD4		. 1	. 1	1.2	35.6	3501.4	115984

table v.- Case 4 intrgerator position error after 10 revi, meters
$\left[\begin{array}{l}\text { No drag; } i=49.93^{\circ} \\ \text { Skylab insertion } \\ 100-n . \text { mi. circular }\end{array}\right]$

Integravor	2 sec		4 snc	15 sec		sec	60 sec	150 sec	300 sec	600 sec	1200 sec
ave g	774.9	3	100.1	43591	174	299	695897				
SUPER G	347.3		207.9	3016.8	64	267.8	871275				
SPIFFY G	347.2	1	208.0	3016.8	64	267.8	871275				
SUPER G4	48.1		269.1								
RKG4			. 1	1.1		17.1	237.7	4427.6	116140		
RKL4 4			. 1	. 2		. 4	7.3	1775.3	59263		
RK3			. 1	3.7		14.3	744.7	103285			
NLXD4			. 1	0		1.0	35.2	3478.7	115263		
PINES-RKG4	"**			. 2		. 1	.1	5.4	122.7	1247.7	42749

TABLE VI.- INTEGRATOR RELATIVE TIMING DATA FOR hP9825 EXECUTION TIME

Integrator (a)	Order	Approximate time, step/sec (b)
Average G	2	0.293
Super G	2	. 320
Spiffy G	2	. 327
Super 64	3	. 643^{c}
RK3	3	. 493
RKL3	3	. 493
NLXD4/3	3	. 527
NXD4/3	4	. $52 ?$
RKG4	4	. 693
RKL4 1	4	. 693
RKL42	4	.693
RK4	4	. 693
NLXD4/4	4	. 720
NXD4	4	.720
Pines	4	3.375

${ }^{\text {a Nonoptimum code could be reduced significantly }}$ for some, especially super G4.
${ }^{\text {b }}$ Including F evaluation J 2 ; no drag.
${ }^{\text {c Inefficient coding by programer. }}$

TABLE VII.- CSDL RESULTS

$\begin{array}{r} \text { Case } \\ \text { no. } \end{array}$	Time, step/sec	$\begin{aligned} & \text { Gravity } \\ & \text { deg } \end{aligned}$	Model order	$\begin{aligned} & \text { IC } \\ & \text { no. } \end{aligned}$	Integrator	Total 1 rev	position 5 revs	error,ft 10 revs
1	4	2	0	1	Super G	2588	13650	35358
3	4	2	0	2	Super G	2593	6064	20807
2	4	4	4	1	Super G	479	2182	3814
4	4	4	4	2	Super G	475	2156	3771
2A	8	4	4	1	Super G	1875	7623	10836
4A	8	4	4	2	Super G	1856	7545	10761
5	60	2	0	1	Pines-RKG	2134	11634	32000
8	60	2	0	2	Pines-RKG	2137	4096	17714
6	60	4	4	1	Pines-RKG	5	160	556
9	60	4	4	2	Pines-RKG	9.5	161	609
7	180	4	4	1	Pines-RKG	19	185	540
10	180	4	4	2	Pines-RKG	33	415	1499
6A	60	4	2	1	Pines-RKG	473	1602	10204
9A	60	4	2	2	Pines-RKG	2655	8248	21888
6B	60	2	2	1	Pines-RKG	390	2751	13322
9B	60	2	2	2	Pines-RKG	2126	5544	16543
2'	4	4	2	1	Super G	156	3469	13383
4'	4	4	2	2	Super G	3117	10193	25060

Note: Truth model for above data used an Encke-Nystrom formulation in full double precision with a fourth-order and degree gravity model and an integration step size of 30 seconds.

TABLE VII.- CSDL RESULTS (Concluded)

Case no.	Time, step/sec	Gravity deg	Model order	$\begin{aligned} & \text { IC } \\ & \text { no. } \end{aligned}$	Integrator	Total 1 rev	position 5 revs	error,ft 10 revs
$2^{\prime \prime}$	4	2	2	1	Super G	413	4698	16424
4"	4	2	2	2	Super G	2592	7559	19780
2A'	8	4	2	1	Super G	1430	8844	20402
$4 A^{\prime}$	8	4	2	2	Super G	4494	15575	32043

Note: Truth model for above data used an Encke-Nystrom formulation in full double precision with a fourth-order and degree gravity model and an integration step size of 30 seconds.

Super G and super G4 algorithms:
a. Compute $F_{0}=F\left(T_{0}, R_{0}, V_{0}\right)$
b. Compute $\mathbf{R}_{1}, \mathbf{V}_{1}$

$$
\begin{aligned}
& R_{1}=R_{0}+V_{0} D T+F_{0} D T^{2} / 2 \\
& V_{1}=V_{0}+F_{0} D T \\
& T_{1}=T_{0}+D T
\end{aligned}
$$

c. Evaluate $F_{1}=F\left(T_{1}, R_{1}, V_{1}\right)$
d. Update $\mathrm{R}_{1}, \mathrm{~V}_{1}$

$$
R_{1}=R_{0}+V_{o} D T+F_{o} D T^{\prime} / 2+A 3 \cdot D T \overline{3} / 6
$$

If super $G \rightarrow G o$ to step (e)

$$
V_{1}=V_{0}+F_{0} D T+A 3 \cdot D T^{2} / 2
$$

Where

$$
A 3 \equiv\left(F_{1}-F_{0}\right) / D T
$$

e. If (Spiffy G or Super $G) \rightarrow$ Relabel $R_{0} \leftarrow R_{1}$

$$
\begin{aligned}
& V_{0} \leftarrow V_{1} \\
& T_{0} \leftarrow T_{1}
\end{aligned}
$$

And go to (a)
f. Evaluate $\mathrm{F}_{1}=\mathrm{F}\left(\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{~V}_{1}\right)$
8. Compute $\mathrm{R}_{2}, \mathrm{~V}_{2}$

$$
\begin{aligned}
& \mathrm{R}_{2}=\mathrm{R}_{1}+\mathrm{V}_{1} \mathrm{DT}+\mathrm{F}_{1} \mathrm{DT}^{2} / 2+\mathrm{A}_{3} \cdot \mathrm{DT}^{3} / 6 \\
& \mathrm{~V}_{2}=\mathrm{V}_{1}+\mathrm{F}_{1} \mathrm{DT}+\mathrm{A} 3 \cdot \frac{\mathrm{DT}^{2}}{2}
\end{aligned}
$$

Where

$$
\begin{aligned}
& A_{3} \equiv \frac{F_{1}-F_{0}}{D T} \\
& T_{2}=T_{0}+2 D T
\end{aligned}
$$

h. Evaluate $F_{2}=F\left(T_{2}, R_{2}, V_{2}\right)$
i. Update R_{2}, V_{2}

$$
\begin{aligned}
& R_{2}=R_{1}+V_{1} D T+F_{1} D T^{2} / 2+A 3 \cdot D T^{3} / 6 \\
& V_{2}=V_{i}+F_{1} D T+A 3 \cdot D T^{2} / 2
\end{aligned}
$$

Where

$$
A 3 \equiv\left(F_{2}-F_{1}\right) / D T
$$

j. Update $F_{2}=F\left(T_{2}, R_{2}, V_{2}\right)$
k. Update $\mathrm{R}_{2}, \mathrm{~V}_{2}$

$$
\begin{aligned}
& R_{2}=R_{1}+V_{1} D T+F_{1} D T^{2} / 2+A 3 \cdot D T^{3} / 6+A 4 \cdot D T^{4} / 24 \\
& V_{2}=V_{1}+F_{1} D T+A 3 \cdot D T^{2} / 2+A 4 \cdot D T^{3} / 6
\end{aligned}
$$

Where

$$
\begin{aligned}
& A 3 \equiv \frac{\left(F_{2}-F_{0}\right)}{2 D T} \\
& A_{4}=\frac{F_{2}-2 F_{1}+F_{0}}{D T^{2}}
\end{aligned}
$$

1. Evaluate $F_{2}=F\left(T_{2}, R_{2}, V_{2}\right)$
m. Relabel

$$
\begin{array}{ll}
& F_{0}+F_{1}, \\
\mathrm{R}_{0}+\mathrm{T}_{1} \\
\text { GOTO (g) } & \mathrm{V}_{2}+\mathrm{V}_{2}, \\
\mathrm{~F}_{1}+\mathrm{F}_{2}, & \mathrm{~T}_{1}+\mathrm{T}_{2}
\end{array}
$$

Derivative a .roximations:

a. Two points $\left(T_{0}, F_{0}\right),\left(T_{1}, F_{1}\right)$ Known

$$
\dot{F}_{1}=\dot{F}_{0}=\frac{F_{1}-F_{0}}{D T}+O(D T)
$$

b. Three points $\left(T_{0}, F_{0}\right),\left(T_{1}, F_{1}\right),\left(T_{2}, F_{2}\right)$ Known

$$
\begin{aligned}
& \dot{F}_{1}=\frac{F_{2}-F_{0}}{2 D T}+O\left(D T^{2}\right) \\
& \ddot{F}_{1}=\frac{F_{2}-2 F_{1}+F_{0}}{D T^{2}}+O\left(D T^{2}\right)
\end{aligned}
$$

The errors (DT) and $\left(D T^{2}\right)$ are due to the derivative approximations. Further errors may be introduced due to errors in F_{0}, F_{1}, or F_{2}.

APPENDIX B
FUNCTIONAL - JW CHART FOR RK3 AND R: 24

Page 1 or 2.

Page 2 of 2.
Figure B1.- Concluded.

Page 1 of 2.

Figure B2.- RK4 functional flow chart.

Figure B2.- Concluded.
rage 2 of 2.

APPENDIX C
FUNCTIONAL FLOWCHART
FOR NYSTROM FOURTH-ORDER INTEGRATOR

Page 1 of 2.

79FM25

APPENDIX D
INTEGRATOR COEFFICIENTS
table di.- integrator coefficients

TARLE D1.- Concluded

RK3	RKL3	NXD3	nLXD3	RK4	RKG4	RKL14	RKL24	NXD4	NLXD4
r33								1/3	5/12
${ }^{34}$								1/3	5/12
${ }^{3} 3$								1/6	1/12

Note: In this study, only $J 2$ is considered (except for reference 5). Therefore, for third order integrators, r_{13} and r_{14} constants are not used. Similarly, for fourth order integrators, r_{13}, r_{14}, and r_{15} constants are not used.

APPENDIX E

ACCELERATION FUNCTION SUBROUTINE

Page 1 of 2
Figure E1.- Acceleration function subroutine.

COMPUTE J2 (OBLATENESS) ACCELERATION:
for $i=1$ to $2 ; A_{J 2 i}=-X_{\text {LTB }} \cdot r_{i} ;$ next i
$A_{J 23}=-X_{\text {LTB }} \cdot r_{3}-X_{\text {LAM }} \cdot 2 \cdot r_{3} \cdot R_{5 I N}$

COMPUTE DRAG ACCELERATION:
$R E=\frac{R_{B}}{\sqrt{\left(1.0+C_{A Y}\left(\frac{r_{3}}{R_{M A G}}\right)^{2}\right.}}$
$Z=\left(R_{M A G}-R_{E}\right) / 0.3048$
$Z_{\text {FUNCT }}=e(-24.2-0.00289 \cdot Z+2605 / 2)$
DRAG $=-0.5 \cdot \rho_{\text {DRN }} \cdot Z_{\text {FUNCT }} \cdot V_{M A G}$
for $i=1$ to $3 ; A_{D i}=$ DRAG $\cdot V_{i} ;$ next i

Note 1: Statr vector units.
$r_{1}, r_{2}, r_{3} \stackrel{\Delta}{=}$ position in $k m$
$v_{1}, v_{2}, v_{3} \stackrel{\Delta}{=}$ velocity in $\mathrm{km} / \mathrm{sec}$

NOTE 2: $r_{3} \triangleq$ position computation along Earth's North Pole.

Page 2 of 2.
Figure E1.- Concluded.

