NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

PHASE I OF THE NEAR TERM HYBRID PASSENGER VEHICLE DEVELOPMENT PROGRAM

(NASA-CR-163224) PHASE 1 OF THE NEAR TERM HYBRID PASSENGER VEHICLE DEVELOPMENT PROGRAM. APPENDIX B: TRADE-OFF STUDIES. VOLUME 2: APPENDICES Final Report (Fiat Research Center) 51 p HC A04/MF A01

N80-28250

Unclas G3/85 22367

FINAL REPORT

APPENDIX B: TRADE-OFF STUDIES

Volume II: Appendices

Prepared for JET PROPULSION LABORATORY

bу

CENTRO RICERCHE FIAT S.p.A.
Orbassano (Turin) - ITALY

The research described in this publication represents the second of the several Tasks of the "Phase I of the Near Term Hybrid Passenger Vehicle Development Program" being carried-on Centro Ricerche FIAT (CRF) on Contract No. 955187 from the Jet Propulsion Laboratory, California Institute of Technology.

Turin, June 15, 1979

This Report, prepared by:

M. Traversi and R. Piccolo of CRF

has been issued in conformance to the following specifications:

JPL Contract No. 955187

Exhibit No. II, Dec. 1, 77

Contract Documentation — Phase 1

Data Requirement Description No. 2

LIST OF CONTENTS

Appendix A.3-1:	"SPEC 78" Computer Simulation Model	page	A.3-1
Appendix A.3-2:	Propulsion System Alternatives	page	A.3-31
Appendix A.3-3:	Load-Acid and Na-S Traction Batteries	page	Λ.3-38
	A.3-3.1 Lead-Acid Batteries	**	A.3-38
	A.3-3.2 Sodiam-Sulphur Batteries	"	A.3-41
Appendix A,3-4:	FIAT Procedures and Regulation for Mass Production		
	Cost Estimates	page	A.3-44

LIST OF TABLES

Table A.3-3.1: Traction Batteries Characteristics p	ge	A	١	3.	. 3	9
---	----	---	---	----	-----	---

LIST OF FIGURES

-		** * * * * * * * * * * * * * * * * * * *		
Figure	A.3-2.1	Hybrid Vehicle Powertrain: Parallel Configuration	page	A.3-32
66	A.3-2.2	Hybrid Vehicle: Parallel Configuration No. 1	+1	A.3-33
"	A.3-2.3	Hybrid Vehicle: Parallel Configuration No. 2	**	A.3-34
44	A.3-2.4	Hybrid Vehicle: Parallel Configuration No. 3	"	A.3-35
"	A.3-2-5	Hybrid Vehicle: Parallel Configuration No. 4	. "	A.3-37
**	A.3-3.1	Maximum Power vs Useable Specific Energy as a		
		Function of Average Power	**	A.3-40
44	A.3-3.2	Power and Voltage as a Function of Discharge		
		Current	44	A,3-42
	A.3-3.3	Energy as a Function of Discharge Current	**	A.3-42
11	A.3-4.1	Vehicle Components Breakdown	ι.	A.3-45

APPENDIX A.3-1 - "SPEC 78" Computer Simulation Model

The mathematic model in the object (SPEC '78) was implemented in 1978 to provide a powerful design tool for the evaluation of performance consumption and emissions of any type of vehicle using any combination of components in the propulsion system.

The model can now simulate the most common propulsion systems but was designed in such a way that the simulation of any new propulsion system can be easily added to the basic program.

The program consists of mathematic simulations of any vehicle component and external environment effects: internal combustion engine, transmission, automatic transmission, differential, rear-axle ratio, electric motors and controls, batteries performances, aerodynamic drag, rolling resistance etc. An appropriate code is used to identify any specific propulsion system consisting of a given configuration made of specific components. A second identification code is used to label the system control logic.

The model, on the basis of input design parameters, calculates the vehicle performance parameters on a time base related to given initial operating condition.

The time base is made of a sequence of discrete time steps cycle points of the simulated mission which can be varied from 1 ms to 1 s.

The traveled distance is then obtained as the integral of the speed vs/ time function.

The program input data consists of vehicle code, propulsion system code and mission parameters. The program output data consists of performance, consumptions and emissions achieved in the mission. The program is also able to show the efficiency breakdown at component level.

The values of any variables under evaluation, if required, can also be given at intervals not longer than 1 second.

The mathematic simulation used by CRF was validated by other calculation methods and experimental data for conventional propulsion, hybrid (1) and electric vehicles.

⁽¹⁾ See Ref. [1], Subsection 1.2, Vol. I.

SPEC 78 - Program Index Table

- 1 Heading
- 2 Configuration block diagram
- 3 Main vehicle parameters
- 4 Lead-Acid batteries map
- 5 Overall batteries data
- 6 Electric motor maximum power characteristics
- 7 Paramaters for electric motor simulation
- 8 Current maximum values
- 9 Magnetization curves map
- 10 Parameters for the internal combustion engine simulation
- 11 Power and torque force characteristics of the internal combustion engine
- 12 Rear-axle ratio
- 13 Minimum values for emissions in different measurement units
- 14 Internal combustion engine consumptions and emissions map
- 15 Torque converter characteristics
- 16 Continuously variable ratio transmission efficency map
- 17 Continuously variable ratio transmission setting data
- 18 Internal combustion engine utilization diagram
- 19 Maximum CVRT input power and torque
- 20 ICE and electric motor reduction gear velocity ratio
- 21 Table of Vehicle performance
- 22 Table of Consumptions on the selected rum
- 23 Table of Emissions during a cycle
- 24 Table of Total energy necessary in one cycle
- 25 Table of Electric energy
- 26 Vehicle acceleration capability instantaneous data
- 27 Instantaneous data for single cycle consumptions
- 28 Instantaneous data for single cycle emissions.

SIMULAZIONE

PRESTAZIONI

ENISSIONI

CONSUNI

THEEL *** nEFIMED CONFIGURATION *** J.C.E.CVRT+COMV....CLUTCH.....RATIG... -54TT.----EL.MOT.----CLUTCH

Coof #331n1

VETTURA JPL "GANMA IBEIDA"

DATI DFL VEICOLD

PESO TRIALE	1710,986	(46)
PESG ANTENTORE.		ε
PESO POSTERIORF	8	ε
ARFA FRONTALE	2.288	(7**5)
COEFFICIENTE DI RESISTENZA AFRODINAMICA	esp.	
PRESSIONE DI GONFIAGGIG ANT	2.121	(KG/CH+CH)
8	2.88	(KG/CH+CH)
CDEFFIFIENTE DI MAGGIOP, RESIST, ROTOL, «ANT»	454	
- POST-	439	
PAGGIO DI BOTOLAMENTO	186.	£
MOMENTO DI INERZIA DI MASSA DELLE RUNTE	.248	(K+H+S+S)
COEFFICIENTE DI ATTRITO	ere.	ι
ALTE72A DEL RAPICENTRO	.572	ε
PASSO DEL VETCOLO	2.719	ε
CODICE OF TRAZIONE.	`-	

PIAND DUDIATO BATTEFIF

AL PYOFAN

STATO DI CARICA . 100.60(X)

TENSIONE	147.849855	145,449501	143,343931	148,639999	139,719999	136,799999	134.879999	137,95009	128,639999	120.0000	A3.34(X)	TENSIONE	45444			EEDSTE OF	SERVICE SEC	183507.77	0.000	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BEARDY YOU	BELEVO - VI	SELBY - 171	66.60(x)		3	186644.041	143,648681	147.168589	137,762048	134.879999
			•								STATO DI CARICA .													STATO DI CARICA .					•		
CORRENTE	#05655	000000 CO	75 000890	606000000000000000000000000000000000000	125.00.00	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		100000000000000000000000000000000000000	275.078868			CORRENTE	388866	25,555559	50,000000	75. 843600	190,000000	125, 988509	150,01000	175.486600	225,298888	250, 586988			CORRENTE						

PENDIMENTO AGGIUNTIVO DI RICARICA...... E 1.FR

RENDIMENTO AGGIUNTIVO DI RICARICA..... BILAR

CAPACITA NOMINALE DELLA BATTERIA.... BIBR.FB (AH)

VALORE INIZIALE CAND..... CAND. CAND....... CAND. CAND.

1

DATE POTGRE ELETTRICO

NUMEPO PINTI DELLA CURVA DI POTENZA MAK

GIRI HOTORF(G/H)

POTENZA MAXICY)

0.000 0.000

DATI COSTRUTTIVI

NUMERO COPPIE POLARI	_
NUMERO CAVE DI ROTORE	5
COSTANTE DI MACCHINA	35
PESISTENTA DI MACCHINA (OHM)	3,6570
CAPUTA DI TENSIONE SPAZZOLE SU COLLETTORE (V)	.0209
HUMERO SPIRE ECCTIAZIONE SPHIE	2,6777
RESISTENZA TOTALE ECCITAZIONE DERIVATA (CHM)	2.5000
NUMERO SPICE ECCITAZIONE DERIVATA DI UN POLO	35,988
SET. DENTI ROT. SOTTO IL POLO PR. (110-2)	365. FPPR
SETTIONE GIOCO ROTORE (M.O.2)	.7172
PESO DENTE ROTORE (KG)	.273
PESS GIOGO ROTORE (KG)	16.7914
SIGHA I PERDITE NEL FERRO	14.5802
SIGNA P PERDITE NEL FERRO	1.250%
FATTORE PEPOTTE PER ISTERESI	19,600
FATTORE BEGOVER BEN BONDENTE DADAGE	1.8548
FATTORE PERDITE PER CORRENTI PARASSITE	1_1864
COFFFICIENTE MAGGINRATIVO PER FORMA DUDA	2.8868
SPESSORE LAMIERINO PACCO INDOTTO (PM)	.3560
PAGGIO COLLETTORF (H)	.7567
PAGGIO ROTGRE (H)	.0875
POTENZA POMINALE (K)	ZARAC PAEA
COFFF. PERNITE ATTRITO SPAZZOLE (W/(M/SEC))	15,46#8
SETTONE DI UNA ESPANSIONE POLARE (P++2)	.0169
FATTORE RETA PERDITE SUPERF. DEI POLY	.3868
FATTORE OF CARTER	1.4878
COEFFIC. PERDITE SUPFRE. DET POLT	2.000
PASSO TRA LE CAVE (M)	.8100
PESISTENZA DI INDUTTO (DMM)	.8172
GRADO PININO	.0172 _papa_
TENSTONE NONTHALE (V)	
CADUTA DI TERSTONE SUS CHOPPER (V)	144.8800
GRADD MAX	2.7576
	1.7868

LIMITI DI CORRENTE E COPPIA

CORRENTE MAY IN TRAZIONE (A)		
CORRENTE MAY IN FRENATURA (A)		250.0000
TENSIONE DI ECCITAZIONE(Y)		-15F.BBBB
COPPIA ALLO SPINTO (KGH)		144.4878
MONFOTO DT THERTIA (K+H+S+S)		23,8858
GIRT MINIMI IN FRENATURA (G/H)		.F14R
GIRT LIMITE PER LA REGOLAZIONE	DELL'EVENTUALE CAMBIO CONTINUO IN FRENATURA	500.0000 2500.0000

A.3-10

OF POOR QUALITY

FLUSSO

AHPERSPIRE

	# # # # # # # # # # # # # # # # # # #
	50.48(A)
	CORRENTE .
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

AHPERSPIRE

FLUSSO

ALTPT DATI RELATIVI AL KOTORE TERHICO

(6/4)	.1788 1CH/S)	i	1.6688 (.ITRI)	,746¢ (r6/11P0)	.0854 (KGohosos)
(F/1) JUUS 648	.1788	7868.6886	1.000	.7466	A 2 2 2 4
GIRI HIMIKI	CGWSHPO MINIMUTE	SORLIA	CILINDRATA	PESO SPECIFICO COMBUSTIBILE	POHENTO DI INEWZIA.

I

Ŀ	-
	4
Ė	له
3	200
:	5
•	۷
ι	u
	J
	ٺ
7 1 190	Š
PILLIT	•
:	
Ξ	•
a	
c	
ā	
۳	•

POTENZA (CV)	9 20 20 20 20 30 30 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30
COPPIA (KG+H)	6 7 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6181 (678)	1898,9098 2999,9099 2509,9096 3909,9090 4009,9990 4009,9990 5909,9990

COPPTA ALLO SPUITO.

6355

5. POOR

PAPPORTO DEL PONTE.

PENDIMENTO .

VALURE WINTER DELLE ENTSCHOL

CO MINIMO	à	37169,672	7
HC HIRIMO		9268.718	2 2
NDM MINIMO		17.285	1. 0.
RAPPORTO APIA RENZINA		13.669	
PAPPORTO HZC		1.658	
PORTATA ARIA-BEN71MA		8.632	H 27
VALORI MINIMI DELLE FHISSIONI			
CO MTMIMO.		317.468	H/9
HC HINIMO, C.		39,223	H/9
NOW HINITION		475 G/H	F/H
RAPPORTO H/C.		1.858	

DATI COUVERTITORE DI COPPIA

PUNTI BELLA CARATTERISTICA DEL CONVERTITORE x.... 18

PROTCE LOCK-HP = 1 CONVERTITORE COM LOCK-UP

SCARRIMENTI	CARATT.CONVFRTITORE	RAPP. ARPLIFICATI DI CAPPI
325	635,80	2.14Fe
56.	645,80	1.976
280	96.239	
5.00°	675,08	1,67% E
8.7	755.00	
860	737 78	5607
5695	765,88	1,2560
200	55.616	5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
610	915,83	6505
500	1135,00	200 C
500.	1239.83	80.00
SEG.	2000	2888
576.	1517,98	35 C C C C C C C C C C C C C C C C C C C
. 050.	1969.69	25 CO.
980,	2459.60	# P P P P P P P P P P P P P P P P P P P
976	2956.40	
5 6 °	3388.98	
800°	46.085.	

VALOPE SCORRIMENTO CORRISP. INS. LOK-UP......

.910

PERDITE

43667

GIRI

TAU .

GIPI

PERDITE

2.0003

PERUITE

FIRI

CURVE NELLE PERDITE

TAU .

DATI CARPIO CONTINIO

Ã.3-18

RAPPINTO MAY.......

ALDPORTG NIT.

.,,,,

SEL MOTORE TERMICO

CAPPR NI RFGNLAZIONE

2mar. (6/"]m) e frield foly

2208. (6/ml4) CIEJ NAX

CHEVA DI FUNZINIANETO

DEL PRINSF TERRICA

rinten of partl a

PGTE-24(CV) COPPIA(FG-F)

F181(6/H)

1996,19 1907,29 20,007,29 20,007,29 20,007,29 20,007,29 20,007,29

ORIGINAL PAGE IS
OF POOR QUALITY

CHEVE AT CLOSELA F FRIELZA THE HISTORY FALL CONTROLLED

(2/a/y) tiel	CAPPTA	Fr42*24 (F4)	U1.3.10.15) - - - - -
ę,	10.50	ë.	Est. Is	· .
77.	00.00	1.5.1	111.	75.27
138	0	2.14	212	¥.1.
234	EV. 0	9.00	acc.	in and an
322	N. 0.	7.57	200.	.235
65.6	8 . s	64.4	947.	. 62.
\$08	E Fr	5.74	200.	PCC.
305	A. F.2	6.62	. 556	eco.
653.	7.74	7.49	Tribe .	247.
670	7,45	E. 0.3	のもれ。	\$ T 7.
914	7.12	9.19	376.	570
1930.	6.76	9.79	.765	769
1174.	6.41	16.36	おおん。	474.
1321.	6.43	11.16	.792	.782
1431.	5,83	12.51	755	954.
176-	5.54	13.66	250	6 F 0 ,
2174.	A. 6.	17.14	1.735	1,000 L
2431.	A.	21.74	1.00.1	1.502
3007	F.33	26.84	\$ E 6	1.1.1
3422	13 Y	31,54	1.000	664.1
3838.	5.75	36.35	3.4°T	# (I
4253	80°4	41.25	1.694	
4560	7.64	45.69	460° 1	
SPAL	5.94	40,24	1.40€	1646° 17
5539	6.46	29.67	44.	1.042

· ULNSKLÜNBA

7460°

PISULTATT DELLE PRESTAZIONY

VELOCITA MAY BARGTUNTA	137,1652	1/14
BAPPARTO CAMBIN ALLA VMAK	•	
GIRI HOTORE TERMICO ALLA VELNCITA! PAR	0.00.000	STR1/HIM
PENDFNZA MAK, SUPEPARILE ALLO SPINTO	36.2194	×
TEMPO WECESSARIO PER RAGGIUNGERE I APP METOI	21,6577	SFC
VELOCITA' RASGIUNTA AI ARR MFTP1	121,4138	x/.x
TEMPO NECESSARIO PER BAGGIUNGEPE I ICHP METRI	46.4630	SEC
velocita' maggiunta ai jopa "ETRI	****	#/23
LIMITI DI SLITTAMENTO		
ACCELEMAZIONE	3.5417	3.5417 2.5.5
PENDENZALORISTORISTORISTORISTORISTORISTORISTORIST	36,1827	

	of 175 US012131	
Property of the contract of th	(22) FEGG.	(2.5)
TEAD THOIRGATH.	. 1 350	3.5 61 ML- 1 350
Cousing Tatal E DI Capandaute	12.5764	(09)
	1.1454	(467] [nvn]
	8.3237	(1/1/2-4)
	12.: 130	(New)
	25.2724	(1.96)
COUSING CON BOTENZA PHSTITIVA	12.5066	(63)
Consumo for enterza na gariva	1,5370	(e ⁴)
A CONTRACTOR OF THE CONTRACTOR	4.25:3	(64)

6.r440 fee)	(12/22) (50/21)	(47) ((4)	(la/e3) \$20°2	.2737 (GO)	[74/E9] y911-1
					2 ····································

Inbefet frechten

• • • • • • • • • • • • • • • • • • • •	•	
(~9~)	* To.1. * Sy	FARBIL SPESS IN FRENETING.
(-y)	F. C. C. E.	
592	377,5514	THE DESTRUCTION OF THE PROPERTY OF THE PROPERT
(45%)	rdes. Leby	FUERFILM CINETIFA DISSON FOILE
		FAST CON FOTF-ZE HEATTVA
	•	
(HUL)	646,2157	FREPRIA GICHIESTA RED DEGISTRATA AFROJKAHICA
(AGr)	4672.17F?	FIRESTA DICHIESTA PED BOTG AMENIA.
(424)	7237,3497	ENFRGIA RIFMIESTA PER ACCELEDAVE IL VEICNLO.
(15.7)	13125,4047	FIREDIA TOTALE FORMITA DAL FOTOSE TEDITOR.
(.67)	12337.5304	Frequit total g piculests alle plote
		ralifou attice the factorial and the factorial a

(1.2.1)	(•94)	(761)	(.5)	(1.1)	••••••
الريادة (دود)	(.yu) would	(424) 4762*	(.9)	(H+F) (F-H)	••••••
s contracted HTT177ateseseseseseseseseseseseseseseseseseses	E.E.T.IB FLFITPICA SCARICATA	Flestia Fletraica Forutta alle Batteole	ENFRORE FLETTER SICESIFETE SECTION OF THE SECTION O	LIVELLO NI CATICA DEILE GATTEFIE (SEGNO-«CARTCA)	

74HC		2.50	2.00	2.08	2.58	2.66	2.5	2.50	2.00	2.46	2.69	2.85	8.00	2.59	2.85	2.58	2.60	2.66	2.98	2.68	2.50	2.98	2.66	2,63	2.05	2.80
*fefc	(4/5)	55.68	117.08	145,00	226.80	275.00	336.93	88.880	443,59	495.69	550.00	895,59	650.88	215.60	773.08	625,03	89.728	938.29	60.00	1943.95	1100.00	1155.60	1212.50	1265.88	1320.88	1375.68
PES	(CA)	1.42	2.81	4.18	5.49	6.77.	6.63	9.22	16.39	11.55	12.78	13.83	14.94	16.83	17.10	16.13	19.13	26.11	21.15	21.59	22.91	23.82	24.72	25,59	26.47	27.44
entse	(CV)	1.57	3.19	4.5°	94.9	7.40	8.89	10.23	11.55	12.65	14,15	15,45	14.71	17.95	19.14	20.37	21,53	22.67	23.78	24.88	25.96	27.:3	28.89	29.13	39.17	31.31
PUCT	(62)	29,	₹s.		4.	. 18	.12	£1.	.17	.10	,21	.23	.25	.27	.29	.31	.33	.36	. S.	. *	~	•	97.		60.	.53
414	((,)	8	ě.	હતું.	6.	53.	90°	58.	46.	96°		& &.	5.	. 91	. 81	٤.			C & .	6.	28.	.63	80.	86.	70.	5
PFun	Ω	38,69	36.02	37.50	37.00	36.47	35.96	35,34	34.89	34,33	33,92	33,56	33,19	32,84	32,48	32,12	31,74	31,36	38,97	39.62	30,28	29.96	29.64	20,34	29.05	56,86
307	(1.55.5)	3.1937	3.1517	3.1141	3.0776	3,6385	3,0011	2.9553	2.9147	2.8796	2.8492	2.8228	2,7937	2,7669	2,7498	2.7122	2.6429	2.6542	2,6241	. 2.5070	2.5701	2.5455	2.5746	2,4965	2.4743	2.4629
012.65	3	, s	. 82	• 0		.15	. 19	.24	.32		.51	.69	.74	, .	1.92	1.18	1.36	1.54	1,74	1.95	2.18	2,47	2,68	2,05	3,23	3,53
;	(3)	80.	11.	.16	.22	.24	.33	.30	. 45	.51	.57	.63	69.	.78	. 82		50	1.03	1.88	1.14	1.21	1.28	1,38	1.42	1:40	1,56
>	(4/47)	. 62	1.25	1.87	2,50	3,12	3.74	4.37	4.99	5,62	6.24	6.87	7:49	9.11	8.74	9.36	9.00	19,61	11.23	11,86	12.44	13,11	13,73	14,35	14.98	15,69

																						fers (feed)	-	Proper Prop	and the		-	* .																	
SFNBIM		6						S.		£.	ë,	ē.	& (Č		2	•	•	•					-	r.	Ē,		K	e.	E (.78	.75	.76	20.	e e	,
PPF65A CAPBID	(CV)			-	16	25	50.	. 47	50.	en.	90.	70°	.72				• •	•	1.00	60.		E 0.	8 0,	6 (C)			5	En.	60	en.	50	n d	E 6				******	••••••	•••••••	••••••	••••••	••••••	••••••	•••••••	
CONSUPA 1ST.	(83)	28.7	216	.231	.266	5	.354	.415	.321	.342	800	. 422	797.		6.0		781	. 626	. 832	.263	.283	.293	242	273	200	8	283	.203	.243	.243	283	764	5 E 6	700	28.3	.263	178.	٠	178-	176.	.178.	176.	7.	.178.	178
fuer, fut,	(104)	9	6.50	15	٠.	'n	500			n i	ر ا	2		້ະ		8			8	'n	•	5	ก			63	25.1	٠,		5	2			8	65.95	85.8	5,815	65. P2	176.89	5,831	82.8 38	196.6	50	65,867	84 BA7
COBAFNTE Battesta	(AHPFGE)								8 3 (R. (,	è		e e	•		6 0 (i e			Ī					E :				5	6	•	2	•		20.	5	2.12	•	
CIRI TEOM.	(5/4]4)	1959.	1289.	=	. 868	1107.	85 P	•	n (5 (Š	1152.	. 0	12	1516	1525	1569	1753	170	1954	766	1964	\$ 6 5 6			1294	1004	1984	700	200	.1884.		766	36	760	766	• • • •						• • • • •	•	
801. TEBH.	(64)	~		2.91	•	1.24	5	200	7.0	2.0	0/-0	10.7	9 6	•	16.59	18.74	12.12	•	~	•	٠, ١	S, (5	•	Ė	•	F (D 0			•		٠		6	ĸ	6	ě.	6 (6 (6 (E .	į
CAPP.	3	2000.		. 93	e e	7.00000		•	2 .		⊷ .) F.	-	1.49136	1,32579	1.36484	1,35169	1.34117	.71162	.71162	71117	7011/	71160	71162	.71162	.71182	.71162	.71162	.71182	71162	71182	71162	.71162	.71182	.71162		-	686	5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	666	# # # # # # # # # # # # # # # # # # #	9 6	LE LE	
6161 90:01E	(6/-141)	۲.	25.	37.	25	69	N. Y		- 4			9 2		200	215	230	245.	268.	275.	282	292	242	9 2 2	200	242	282	2.5	262	282	292	2 8 2	282	282	282	282	2#2	267.	235	201	2	2				2
GIBI FLET.	(nla/y)	59.	179.	257	\$ 1 P	900	200	2//			. :			1694	1724	1010	1936.	2076.	196	255	9 6	0 Y		22.50	2256.	2256.	2256.	2256	2756	6000	2000	2256	2256	2256.	258	256	200	200	250	n .			630	205	129.
FLET.	נכע)	£.	60.	e.	6	5. (5. (2	E 6	50			. G	. E	6	8	6	5	E .,	6 (5	5.0	. e	6	S	6	6 6	ë C	e.	6	s. 6		6		90.	5	٠,	-		7		2	D E		D (
Pot.	(CA)		٠,	'n.	٦,	٦.	•	9.4	, ,	ب م •, 0	J.	} -	. 40			9,2	7	1,0	7.7	ນ໌.	n.×	J. R	, .	, 83	. 87	S,	مل ا	ů,	Ú,	7.4		S	. 17	<u> </u>	a.		2	7	֓֞֜֝֜֜֜֜֝֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֓֓֓֡֓֜֝֡֓֡֓֡֓֜֝֡֓֡֓֡֓֡֓	110	7		<u>ر</u> د	· ·	-
TOO	(CA)	•	Ç.	•	~ (~ /	? <i>!</i>	? .	, ,		7 4	3 K	, ~	~	9	0	Ģ,	5 ,	Ġ,	٦,	٦.	7, -	•		•	٦,	٠,	٦,			1,12	•	-	۳,	-	٦, ۱		3 7	•		η,	. ,	7	- 6	ú
Prt.	(CA)	. i.	65			22 6	⊾ ಕ	36	3 (3 6	3 G	. 6		-	-	\sim	~	•	m •	7	2	7 F	. •	•	F 3	F)	F) 1	n 1	~ *) P	9	•	~	~	77	י כי	2		→ 6				3 6		2
224	(PoSoS)		, 47					į							. 47	7	, 47	, 47	. 47	K C	, d	. 6	6	6.	60.	5 5 •	E (S (5 0	ت و د •.	6	60.		£ .	e .	•	٠,	٠,	٠,	٠.	٠.	•	•	٠.	-
-	(3)		~	, ,	•	ň v	•		• 0	3		• ~	2	•	1	•	~	6 0 (0 6	٠ د	٠ ٥		•	•	vo	^	SC) (э (٠.	• 0	93	•	**	0	•	•		-	- 0	• •					
>	(5)	.2.	6		e.				6	. 5	6	37	.85	22	.79	22	7.7	L .	n 6	20			0	9	0	en .	5	> C	7 0	0	0	00	6. 9.	0	ه د د) (3		6	5	F	•

12 (2 (Bara))

A Constitution

This Appendix provides a description of the Configuration alternatives as presented in our Proposal with the exclusion of the series configuration not even taken into consideration during the Trade-off Studies because of its less fuel-efficient operation.

In all parallel configurations the engine power is applied directly to the drive wheels and the power handled by the reversible electric machine (electric motor-generator) can be added or subtracted as appropriate.

The interconnection between the two machines can be accomplished using various mechanical configurations which have the function of uncoupling or altering the speed ratios with respect to one another and relative to the wheels and can always be represented in the block diagram shown on Figure A.3-2.1, as Subsystems No. 1, 2 and 3.

The simplest layout is shown on Figure A.3-2.2; Subsystem No. 1 merely consists of a clutch, Subsystem No. 2 includes a reduction gear unit between motor and engine, while Subsystem No. 3 is not required.

An improvement of the previous system is shown in Figures A.3-2.3 and A.3-2.4 where a Continuously Variable Ratio Transmission (CVRT) is introduced in Subsystems No. 3 and No. 1 respectively.

Obviously, the introduction of a more complex mechanical component such as the CVRT increases the vehicle cost but significantly improves system performance and efficiency.

The Trade-off Studies must therefore determine whether the cost increase is justified by a significant improvement.

The choice between the two configurations using a CVRT is not significantly tied to economic constraints as much as to the following technical considerations.

In the case of the CVRT placed immediately upstream of the rear axle (Configuration No. 2), all the power supplied to the wheels, which is the sum of thermal and electric power, is handled by the transmission under optimal conditions. The same applies to the braking energy which, thanks to the stepless transmission, may be recovered at rotational speeds corresponding to high motor efficiency. The CVRT, on the other hand, must be capable of handling a higher torque being this requirement associated with a more difficult coupling between the engine and the motor owing to fixed ratio

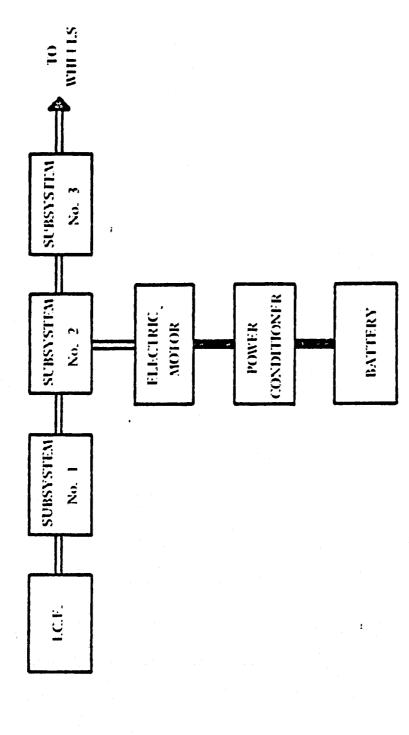


FIG. A.3-2.1 - HYBRID VEHICLE POWERTRAIN: PARALLEL CONFIGURATION

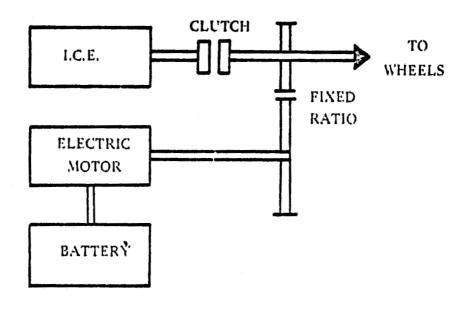


FIG. A.3-2.2 - HYBRID VEHICLE: PARALLEL CONFIGURATION No. 1

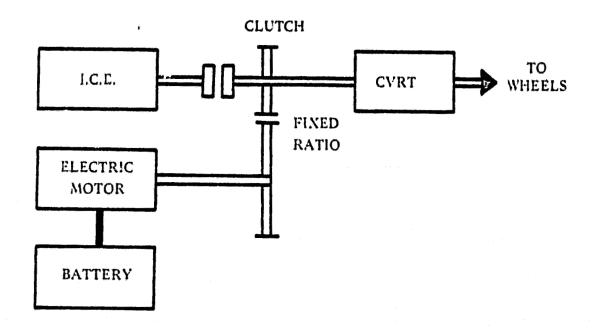


FIG. A.3-2.3 - HYBRID VEHICLE: PARALLEL CONFIGURATION No. 2

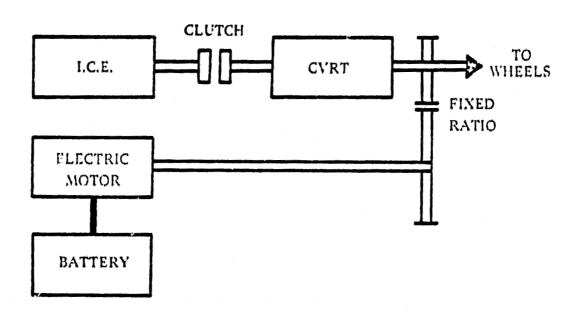


FIG. A.3-2.4 - HYBRID VEHICLE: PARALLEL CONFIGURATION No. 3

existing between the two.

In the case of Configuration No. 3, where the CVRT is placed on the engine output shaft upstream of the fixed ratio, less severe operating conditions and ratings are required for the CVRT while the coupling between the motor and the engine becomes much more flexible and provides therefore the possibility of a wider choice of components. In this case however only the engine power is delivered to the wheels in optimum conditions and the recovery of the braking energy is less efficient occurring at motor rotational speeds imposed by the wheel speed and by the selected fixed ratio.

A variant may be introduced on the three above configurations by introducing a clutch between the motor and the fixed ratio. For the sake of simplicity, since the same clutch could be used in any configuration, only the case where the clutch is introduced in Configuration No. 3 will be considered as shown on Figure A.3-2.5.

The function of this clutch is to isolate the motor from the drive train when only the engine thermal power is used or required so that the energy corresponding to the mechanical loading effect of the electric motor can be saved.

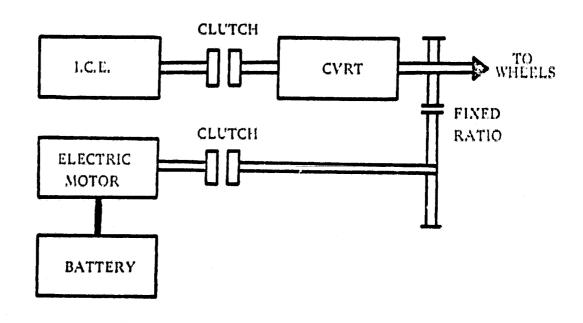


FIG. A.3-2.5 - HYBRID VEHICLE: PARALLEL CONFIGURATION No. 4

APPENDIX A.3-3 - Lead-Acid and Na-S Traction Batteries

The battery and the electric propulsion system of the H.V. will be analyzed in greater details during the preliminary design. This Appendix provides some preliminary assessments on the fundamental characteristics of the only two types of traction batteries that have been evaluated during the Trade-off Studies: Lead-Acid and Sodium-Sulphur. The Lead-Acid type is characterized by a low initial cost, is already available on the market and is susceptable of some technological improvements. The Sodium-Sulphur type offers much higher specific energy but, as a product, it is still under development and therefore, while susceptable of significant technological improvement, its product availability by 1985 has yet to be validated. The main characteristics of the selected batteries are shown in Table A.3-3.1: they can be assumed as representative of the foreseable performance range.

A.3-3.1 Lead-Acid Batteries

The maximum available power at a given time is function of the average discharge power and of the total energy supplied to the load as shown in Fig. A.3-3.1 Assuming vehicle operation in the electric mode only, the vehicle range capability can be calculated as follows. The battery average discharge power is given by

$$\overline{W} = \frac{q \cdot v}{M_h}$$

where:

q is the vehicle average energy consumption

v is the vehicle average speed

Mb is the battery weight

The selected maximum power allows to determine, for a given W, the specific energy (E) supplied by the battery. The vehicle range is then calculated by means of

$$R = \frac{E \cdot M_b}{q}$$

TABLE A.3-3.1
TRACTION BATTERIES CHARACTERISTICS

PARAMETER	LEAD-ACID	SODIUM-SULPHUR
OPEN CIRCUIT VOLTAGE, V	144	144
DISCHARGING VOLTAGE, V	144-110	144.72
CAPACITY (5 h), Ah	100	315
MAX DISCHARGING CURRENT, A	250	450
RECHARGING CURRENT (4 h), A	25	78
CURRENT EFFICIENCY: Ah _{out} /Ah _{in} POWER EFFICIENCY Wh _{out} /Wh _{in}	> 0.9 ≥ 0.7	1 Function of operating conditions
NUMBER OF ELEMENTS	12	432 (12 x 36)
SIZE, mm	775 x 830 x 300	794 x 976 x 400
WEIGHT, kg	300	300
OPERATING TEMPERATURE	ambient	300 - 350 ℃
LIFE CYCLES	400 to 800	300 to 900
MAINTENANCE FREQUENCY, mounths	6	6
COST, S	1,000	3,000
COST OF MAINTENANCE, S/year	80	50

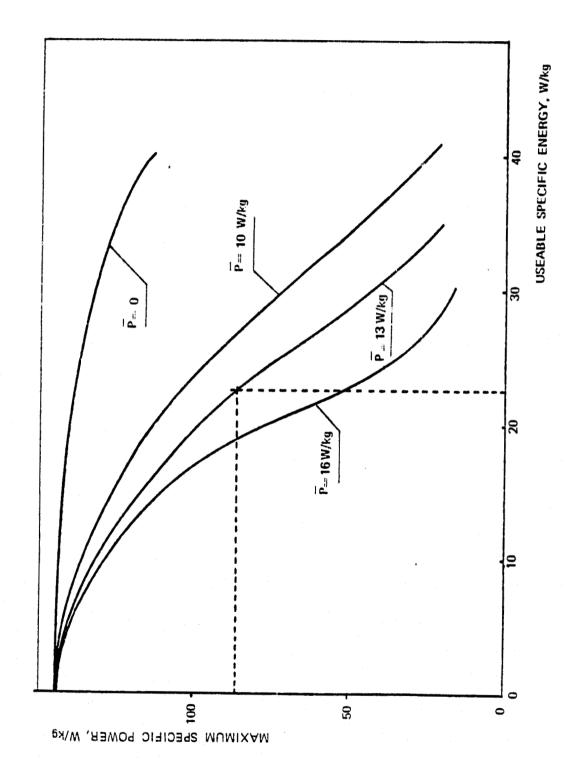


FIG. A.3-3.1 - MAXIMUM POWER VS USLABLE SPECIFIC ENERGY AS A FUNCTION OF AVERAGE POWER

Considering a 5 hour discharge time in a hybrid propulsion system, the maximum energy that can be drawn from the battery corresponds to 80% of the stored energy. For the 1985 Lead-Acid batteries the expected specific energy is about 40 Wh/Kg which, for a 300 Kg, battery, corresponds to a total energy availability of 12 KWh. However, at 30% discharge the available power is much lower than the power at full charge and therefore, to guarantee vehicle performance over the entire operating range, the maximum discharge must be limited to about 50% of the available Ah and the initial maximum power accordingly derated. The 1985 model batteries shall guarantee 400 discharge cycles but, if the specific energy is kept in the 33-36 Wh/Kg, a life-cycle above 800 can be expected.

On the other hand Lead-Acid batteries, at discharge levels below 80% have a rather small internal resistance and provide therefore reasonably high efficiency operation.

A.3-3.2 Sodium-Sulphur Batteries

The power that can be supplied to the load is a simple function of the discharge current (I):

$$W = (V_0 - RI) \cdot I$$

The maximum power available is then:

The state of the s

$$W_{\text{max}} = \left(\frac{V_0}{2}\right)^2 \cdot \frac{1}{R}$$

The total energy available from the batteries can be calculated as a function of the instantaneous discharge current as follows:

$$E = \int (V_0 - RI) \cdot I \cdot dt$$

and is therefore dependent on the vehicle speed vs/ time pattern. Considering a discharge at constant power the total available energy is given by:

$$E = C \cdot V = C \cdot (V_0 - RI)$$

where C is the battery capacity given by C=fI-dt. The power and energy of the battery as a function of the discharge current are shown in Figures A.3-3.2 and A.3-3.3 Assuming a discharge depth of 80%, a life of 300 cycles is expected for Sodium-Sulphur batteries

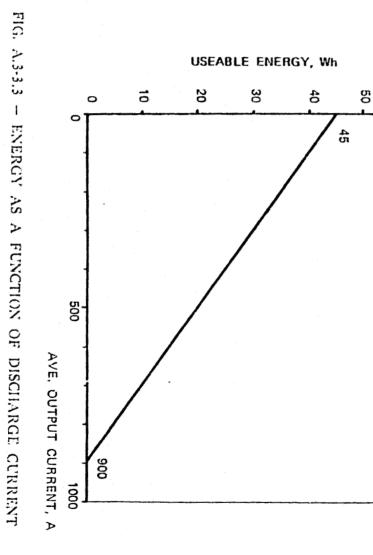


FIG. A.3-3.2 OUTPUT VOLTAGE, V 50 80 40 0 144 450 500 CURRENT, A 900 32 20 မ္မ 6 50 ಠ OUTPUT POWER, kW

POWER AND VOLTAGE AS A FUNCTION OF DISCHARGE CURRENT

presently produced is small series by the Brown Boveri Company. The technology is expected to improve significantly and a 600 cycle life is expected by 1985 which could reach 900 cycles by 1990.

The Sodium-Sulphur battery operates at a temperature between 300 and 350°C. If the temperature falls below the operating range, the β -allumina conductivity drops and all the reagents and reaction by-products solidify. For a 300 kg battery, 10 kWh per day are required to keep the battery at operational temperature, assuming that presently available insulation techniques are used. The battery heating energy is normally provided by the energy dissipated in the battery internal resistance during the charge/discharge cycles. In addition to the charge/discharge life, the Sodium-Sulphur battery also has a limited life in terms of cycles of thermal cooling below the normal operating range. The negative impact of thermal cooling on battery life is much more pronounced if cooling occurs at low charge levels because of damages induced to the ceramic component (β -allumina).

APPENDIX A.3-4 - FIAT Procedures and Regulation for mass production Cost estimates.

This Appendix provides a summary of the FIAT Procedures and Regulations as used by CRF to evaluate the production cost of a new vehicle which a mass production of above 1,000 - 1,500 units/day is planned for. This procedure could not be thoroughly used during the Trade-off Studies due to the limited design definition of the various vehicle components: the actual cost analysis was therefore based on the production cost of actual vehicle parts and components similar to those itemized but not defined at the manufacturing level for the hybrid vehicle conceptual design to be further developed during the Preliminary Design task.

A.3-4-1 Vehicle Breakdown

As a first step all the vehicle parts and components are broken down into four main categories or "assemblies":

- Engine and Transmission
- Chassis
- Body Frame
- Electrical equipment.

For each assembly the vehicle breakdown is further developed throughout the "GROUPS" and "SUBGROUPS" level down to the "COMPONENT" level as shown on Figure 4.3-4.1.

A.3-4.2 Component Cost Analysis

The manufacturing drawings of the various parts, components and subassemblies are analyzed to identify materials characteristics and quality, dimensions, tolerances etc.

The production cost of the UNFINISHED PARTS is first calculated in kL/kg (or \$/kg): the additional costs for FIRST PROCESSING and PARTS FINISHING are then added as appropriate together with the current cost of standard parts from EXTERNAL SUPPLIERS.

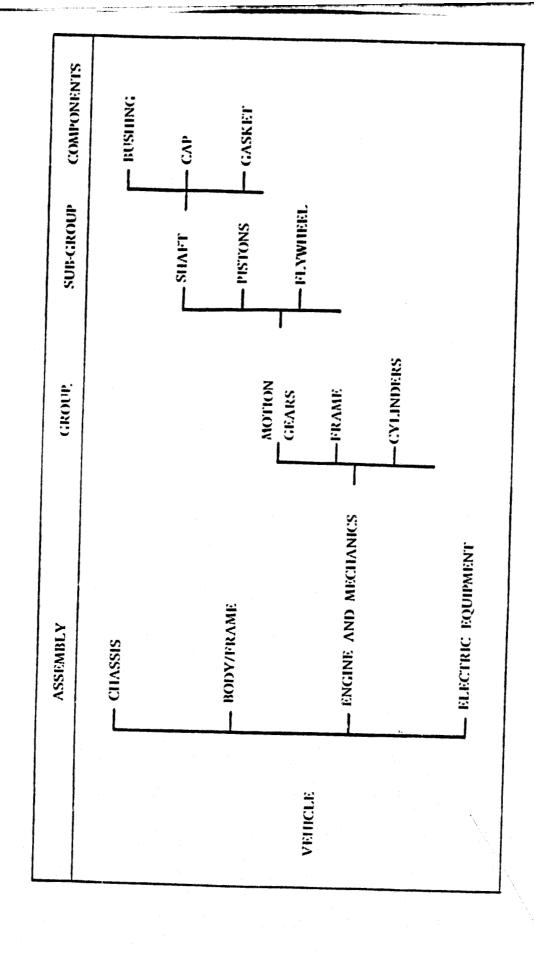


FIG. A.3-4.1 — VEHICLE COMPONENTS BREAKDOWN

A.3-4.3 Labor Cost Analysis

The manufacturing drawings are then analyzed to identify the appropriate production cycles and define the cost effectiveness of production organization to optimize the mix of the following objectives:

- Short manufacturing time
- Minimum manpower
- Simple production and tooling equipment

Based upon the existing production requirements a processing cycle is defined for the various components which includes a list of the machinery and tooling to be used. Processing cycle and assembling times, as well as machine set-up time where appropriate, are identified step by step, so that optimal work sequence and timing could be obtained.

Where small batch productions are appropriate an assessment of the incidence of machine set-up on the total process cycle is made to determine the optimal batch size.

A.3-4.4 Investments

On the basis of the expected cycle times upon evaluation of the effects of machine set-up, rejects, replacement and machinery efficiency, the actual machine load is evaluated for the various parts. As a result the amount of equipment necessary to achieve the required production level and the corresponding value of the investment for assembly lines, machinery, fixtures, gauges and tools can be defined.

The plant size, number of workers and plant related services can therefore be identified leading to the total investment value. The projected construction and tooling machinery cost must be continuously updated using the established relationships with the various contractors and suppliers.

A.3-4.5 Manufacturing Costs

The projected manufacturing times are converted into manufacturing costs according to the projected average hourly labor rates including both direct and overhead manhours.

The expenses resulting from general and specific investments are expressed as appropriate in yearly depreciation costs taking into account expected interest rates.

The total production cost is obtained by adding the total cost of parts materials previously identified.

Based upon the number of vehicles to be produced on a yearly basis the total vehicle cost can be accordingly defined including an estimated additional cost to account for the improvements and design changes to be experienced during or after the first year of production.