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ABSTRACT

This paper investigates the effects of using an approximate state transition matrix in orbit estima-
tion. The approximate state transition matrix results when higher order geopotential terms in the
equations of motion are ignored in the formation of the variational equations. Two methods of
orbit estimation were considered: the differential correction procedure (DC) and the extended
Kalman filter (EKF). The system used for the study was the Research & Development version of
the Goddard Trajectory Determination System (R&D GTDS). The effects of the approximation
were analyzed on a number of orbits. These include orbits of various inclinations and semimajor
axes. Other parameters studied include geopotential models and DC arc length.
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introduction

The state trancition matrix plays an important role in orbit
datermination. It relates perturbations in the state at time t to
perturbations in the state at epoch. Rice (4) suggests that divergerice
in orbit estimation methods might be linked to the use of an approximate
state transition matrix. The objective of this project is to study the
effects of approximating variational equations on orbit estimation
methods.

We start with the equation of state:

K=FORE®;) (1)
which represents n-nonlinear simultaneous equaticns. An initial state

vector ‘X(tg)=Xg is associated with (1). The state transition matrix is

described by the matrix differential equation

(i)'-‘-‘ FX(X({'))ch (2)

where B(tg)=1 and Fy(X,t) is a matrix of partiai derivations of F(X,t)
evaluated along a particular trajectory satisfying equation (). s
The force model, F(X,t), used for this study includes perturbations

involving only gravitational harmonics; other perturbations, such as drag,
low thrust, etc., have been ignored. Specifically, the force function Tooks
like

. N o

X=fx@,0)+ 2 2 THKD
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with f{X,t) being the point mass gravitational force caused by the central
Ny ¢

body, Z%J, Sg (X,{:) the perturbation due to the nonsphericity of the
=4 X0

central body. The transcendental functions g?(x,t) are extremely complex

for 173. Based on this force model, equation (2) has the form

b-lh 6,00 ZEZTREN , meN.

Due to the complexity of g§(x,t), the terms g%x(x,t) become very cumbersome.+
The guestion this study addresses can now be stated as: What is the effect
on orbit determination methods when M is strictly less than N even though

the resulting matrix Fy{X,t) is sti11 to be evaluated along a trajectory
satisfying equation {3)? The main objective for setting McN in (4) is a

reduced cost in time and space in programming and evaluating these equations.

Relationship to Orbit Estimation

Orbit estimation is the process of solving for the values of a set of
parameters from the observational model which will minimize the di fference

between a computed and an observed trajectory. The Research Version of the

Goddard Trajectory Determination System (R&D GTDS) uses two methods of orbit

estimation: A classical weighted least squares estimator (differential correction
procedure) and a sequential estimator (Kalman filter).
The observational model 15 a nonlinear regression function of the

state and time:

Yyl = 6% +n (5)

+ Baker in Astrodynamics: Applications & Advanced Topics devotes Appendix E
to "Partial Derivatives of Total Acceleration."
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where n denotes random noise. The system is mx], m being the number of
observations. When least squares estimation is considered, the value of X
which minimizes the weighted sum of the squares of the observational
residuals is sought. The function to be minimized is called the loss

function. It has the form:

Q Q) = [y kel wly - 6K,

(6)
The initial estimate of the state is Xp. Equation {6) will be minimized
when é§$§1=C). Since 35% will be nonlinear, Q(X) is first linearized

by expanding G(X,t) in a truncated Taylor's series about Xp. The lincarized
problem is now solved and the nonlinear problem is solved recursively via a
Newton-Raphson iterative scheme to give the minimum difference between computed
and observed trajectories. This briefly describes the differential correction
process where a "batch" of m observations are processed simultaneously. The
state transition matrix is utilized in the linearization of G(X,t).

The sequential estimator, or filter, handles the problem from a coniinuous
process point of view. Rather than handling the data in batches as in
differential correction, the filter processes new data immediately upon
collection to yield an improved estimate of the state.

In this approach, observations from times tg and tk are used to determine
an estimate of the state residual from a reference trajectory X{(ty) and a
covariance matrix Pg. An observation from time ty4+; is added to this set.
Values of the estimated state at ty4q, i}tk+]), and the covariance matrix at
tg+1s Pk+1» are to be found. The filter used for this study is the Extended
Kalman Filter (EKF) as programmed in R&D GTDS. The EKF corrects the reference

trajectory to the most recent state estimate, which reduces the nonlinearities
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of the original system and is desirable in real-time solution.. In the EKF,

the covariance matrix is propagated via the state transition matrix.

Study Results
This study has attempted to address the questioﬁ of apprq&imate state .
transition matrices by initially investigating a parameter, }, formulated by
Rice (4). Mr. Rice defines a sing1e parameter to monitor théhstatn transition
matrix. He presents a statistical argument to show that the quanu1ty
23234’ EAL ,» where ¢1J is an element of the tran51t1on matr1x @, can be
interpreted as a measure of "error growth rate " R1cé g1ves P( )= GP( )G

as a propagation formula for the covariance matrax where' :

(o) ((T:- :_t_g., ..O.) g
and states that the square root of the trace Ofvpgtj ié commonly used as
a statistical measure of position errors. Hehce,l"

(G- (500" - o (R

/
The signature of R suggested using the GTDS estimators with several parameters
to be varied. These included arc length, geopotential modeling of state

and variational equations, inclination and eccentricity. Being observed

were the signature of R, the convergence/divergén;é'of the estimator, and

the rate of convergence. | |

/ As a starting poiﬁt, three cases discuéséd in Mr. Rice's paper were
compared. Case one used a force model basédlso1e1y on the point mass force

for both the state and state transition métrices, which will be;denoted (JO,JO).

Case two ingluded the "J2" harmoniclterm in both the equafions of state and

the variétiona] equations, denoted {(J2.02), whf]e/case three included the J2

./
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harmonic term in the eguations of state but only the point mass model in the
variational equations, (Jp,Jdp). The comparison of these three cases was
based on a parameter of the state transition matrix and behavior {in terms of
convergence/divergence) of the two estimators in R&D GTDS discussed above.
The first orbit considered was a circular (e=0.0), equatorial (§=0.00)
orbit with semi-major axis a=6550.524 km; this orbit will be referred to as
SATORB1. The EPHEMERIS GENERATION (EPHEM) PROGRAM was used in the caiculation
of the quantity R. EPHEM is used to compute an ephemeris from a given set
of initial conditions and, optionally, will compute the elements of the
state transition matrix by numerically integrating the variational equations
(Eq{4)). Using this option, the quantity R can be printed at any desired
interval. The first results obtained printed the value of R every 5 minutes
for the above-mentioned orbit with the modeling of cases 1, 2, and 3. Over

48 hours, 1ittle difference was observed between the corresponding values of
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R in case 1 (Jg,Jg) and case 2 (Jp,Jp). However, the (Jz,Jy) case was vastly
di fferent. While in cases 1 and 2, R grew almost linearly with time, in case
3, R exhibfted an approximately periodic behavior. Repeating the EPHEM runs
with the same set of initial conditions but a different force model made the
above comparisons even more striking. In this case, a 4x0 geopotential field
was used in the equations of state. When generating the partial derivatives,
4x0, 2x0, and 0x0 force models were used. It is worth repeating at this time that
the matrix of partial derivatives is always to be evaluated along a trajectory
of the full equations of motion. Time histories of R for cases (Jgq,Jd4) and
(d4,02) were very similar to those of cases (Jp,Jp) and @O,JO). Values of R for
(Jg4,90) followed the same oscillating behavior as (Jp,Jp). (See Graph 1.)
These results suggest that when using a model for state with the format of
eq(3), a simplified force model in the variational equations might be acceptable
provided that the "J2" geopotential term is explicitly included.

To test the effects of truncaticn on batch estimation, a 5-day simulated
observation file was generated on tape via the GTDS DATASIM program. Range
and range rate observations were made of SATORB1, where an ephemeris of
SATORB1 was created with Jp included in the state force model. The measurement
standard deviations for range and range rate were 15 meters and 2 cm/sec,
respectively. With a=6550.625 km, e=.00012, i=.0020,0 =b=M=0.0 as an initial
estimate of the state, DC runs were made fer cases (Jp,Jdp) and (J2,dp) over 24
hours. 1In the (J2,J7) case, the DC procedure converged* to the correct solution
in 4 iterations. The (J,,Jp) case diverged.

These runs were repeated over a 6-hour and 12-hour arc. For the (Jp,Jg)
case, 6 hours was the time at which the parameter R reached its maximum and

* The criteria for convergeace of the DC are based on the iterative reduction
of the RMS (square root of the mean square of the observation residuals;

.. = {k (657w 650}~
where A§;=3~5(2) are the obsevvat1on residuals, and m is the number of

observations. When RMSj4) < RMS, » the solution is considered converging.

35



hence the time at which R started to decrease in value. In other words,
for the initial 6 hours, R 1s monotonically increasing which more accurately
reflects the "error growth rate" expected in the state transition matrix.
The period of SATORBT was about 90 minutes, so that a 6-hour arc covers about
4 orbits. When the NC program was used with (J2,Jg) to correct over the 6-hour
arc, it convergad in 9 iterations; the 12-hour correction diverged. In other
words, a short term (where 4xP, P being tha period of the orbit, might be a
guideline for short term) correction might be possible with a point-mass
force model for the variaticnal equations with a loss of speed in convergence.

It has been demonstrated that using an approximate state transition
matrix can be a detriment to the differential correction process. A logicai
question at this point might be "how much, if any, of an approximation to the
variational eguations can be tolerated by the DC?" The behavior ¢of the parameter
R when (Ja,34), (Ja,Jdp) and (34,J0) ephemerides are compared hints that a
truncation is permissible, provided J2 1s explicitly included in the variational
equations. To test this hypothesis, simulated observations were made wilh
SATORBT elements using a 5x5 geopotential field in the equations of motion.
Five DC runs were made with Jp, J2, J%, Jﬁ, and Jg models for the variational
equations and the same initial estimate of the state as mentioned above. The
DC programs converged in 4 iterations for cases (J%,Jg), (Jg,Jg) and (Jg,dg).
Convergence was achieved in 5 iteratiors for the (Jg,dz) case. (Jg,do) diverged.

Table T 1ists PMS values for the last two iterations of these cases as an
5

indication of how 1ittle is lost when a trunciticn frem Js

to Jp for the

variational equations is used.

] I 5 5 0,
Iteration # (92, 32) (92,97) (02,93 (32,3)
4
3 1.1273619 | 1.0687897 | 1.7389176 | =2.189%6022 ., -
4 99626079 | .99626079 139631702 199647488
5 199626083

TABLE 1
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The above runs were all made with a 24-hour arc. The (Jg,do) DC case did
converge in 9 iterations when used for the short (6 hour) term correction.

By looking at a typical term of the matrix of partial derivatives, it becomes
clear that the Jo term dominates the term igz é:ﬂikgii (X,t) . From Baker,
the fo110wing term is the term added to the 2-body partial derivative when
forning 43" for 1=2,3 and K=0:

2 @3- &) +£@B)6-7(2))E)

To begin with, the term Jp is three orders of magnitude larger than Ji, 12 3.
Also, Ji is divided by rl, rapidly decreasing the relative magnfitude of each Jz
term for 1 increasing. In other words, the term J, will reflect the vast
majority of the perturbation due to the asghericity of the earth. Hence, it
is not at all surprising that the terms,%%éE?ﬁSf can be truncated when forming
the partial derivatives without jeopard;;ing convergence in the DC.

Other orbits were used to test the relationship between inclination and
behavior of the DC in the (JZ,JO) case. SATORB2 had initial elements a=6550.524 km,
e=.0, 1=300, Q= w=M=0, A DC program was run for a 24-hour arc with an initial
estimate.of the state as a=6550.624 km, e=.00012, 1=30.0020 and Q=w =M=0.
Again, the (J5,J2) case converged in four iterations and (J,,09) diverged.
Again, using SATORB2 elements with 5x5 geopotential field in the equations of
motibn, a (Jg,dz) DC run over 24 hours will converge in six iterations. These
results support the suggestion that an approximate state transition matrix mi ght
be acceptable provided the Jo potential term is included.

Several more inclinations were tried: 1=600, 1=90C0, §=980, §=1200, At

this point, different results were achieved. The initial orbital elements

used are listed in Table 2. Simulated observations were made for each orbit.
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a e i . w M

SATORB3 6550.524 0 600 0 0 0

SATORB4 6550.524 0 900 0 0 0

SATORBS 6550.524 0 980 0 0 0

SATORB6 6550.524 0 1200 C 0 0
TABLE 2

For the initial estimate of the state in each DC run, the same error

was added to the orbital elements: 100 meters added to the semi-major axis,
eccentricity was increased to .00072, .002°>added to the inclination and no
error added too 0 and M. Rapid convergence occured for all (Jz,J2) DC

runs. With computed observations based on an ephemeris of SATORB3, the

(J2,J0) DC run showed a definite trend toward convergence. After 12 iterations,
the current state was given as a=6550.257, e~0(-6), 1=60.00003°, {n+w+4)=7200,
DC runs based on simulated observations of SATORB4, SATORB5, and SATORB6 were

also converging in the (J2,Jp) case, though at a slower rate than SATORB3.

The results are summarized in Table 3.

Value of State

No. of

Iterations a e i
SATORB4 20 6550.534 .4578x10-4 | 89.99754
SATORB5 27 6550.525 .2398x107% | 98.00005
SATORB6 24 6550.252 .6327x10°6 | 120.0

TABLE 3
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Table 4 compares the RMS value for various iterations for SATORB3, 4,

5, and 6 (Jz,Jg). This serves as a monitor for the rates of convergence.

RMS Values (Jz'Jo)

Iteration # SATORB3 SATORB4 SATORBS . SATORB6
1 2084.7695 2261.6206 1766.1576 2307.2376
6 74.458092 1175.0753 742.93831 103.57066
12 57.808147 521.06515 1260.84572 112.82074
TABLE 4

T - i 2
5 =sing

As one might expect, since cos ¥ =|cos | and sin
the RMS values are most similar for 1=60° and i=1209, (SATORB3 and SATORB6).
In these two cases, the first 12 iterations alternated between converging and
diverging, with large decreases of RMS value in convergent iterations.

(This accounts for RMS1, 7 RMS. in SATORB6. )

In order to examine the sensitivity to inclination, it is helpful to

look at first order perturbations. In Methods of Orbit Determination, Escobal

devotes a chapter to "Secular Perturbations," where the term secular describes
variations "associated with a steady nonscillatory, continuous drift of an
element from the adopted epoch value."* He represents the perturbing potential
as AzZ-V  where §& fs the potential due to an aspherical earth and V is the
potential of a spherical earth. He segregates from A those terms which

will contribute secular variations in the elements and arrives at

A Y
A=pnld % @P-Lsinid] (7)
where k2m=nZa3. Note that this is a first order expression in Jp and for the

sake of this analysis, the Jj, 1) 3, terms have been neglected. Little is lost

* Escobal, P.R., 1965, p. 362.
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by neglecting Jq, i7 3 as the J3 term is approximately 10 orders of magnitude
smaller than the J, term and the relative magnitude of Ji and Jp becomes even
more drastic for 17 3. Expression (7) is than averaged over one revolution,
resulting in:

- o T Ny L e

A*<ien B T (- 3 -1 sin &)

(8)

Using this as the perturbing function due to J2, it is easy to see that the
secular effect of Jp is eliminated in the equations of motion when i=54.70
(since 1/3-1/2 sin? 54.70=0). 1In other words, at this specific inclination,
the satellite, in a secular sense, perceives the earth as approximately (i.e.,
to first order J2) spherical.

With the aid of the above model for the perturbing function, Escobal
develops the following equations representing the gradual drift of the classical
elements from their adopted epoch values. Note that only .o ;w0 and M experience
this drift and a, e and i are taken to be constant. (It might be worthwhile to
state again that this is only a first order secular perturbation theory.)
Anomalistic mean motion: ‘

B el 192 200702 sied)
Mean Anomaly:

M= Mo +0 (£-€0)
Longitude of the ascending Node:

= De- (212;; s R (£-to)

Argument of Perigee:
s wor G L2-£5in?i0) 7 G o)
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Between these critical inclinations of 54.70 and 125.30, the rate of the
secular variations of the elements is smaller than outside of this region.
This accounts for convergence in the DC procedure with (JZ,JO) modeling
for orbits with inclinations between 54° and 125°.

To conclude the differential correction section of this study, two wore
orbits were considered. These orbits were elliptical with a greater
semi-major axis. Simulated observations were made of these orbits. The

initial states are given in Table 5.

a e i e | w M

SATORB7 7278. 360 . 0 0 0 0

SATORBS 9357.89143 .3 0 0 0 0
TABLE 5

A Jarger value for a will decrease the effect of J2 which is readily seen in
equation (8). However, the effect ofldz is not absent from these two orbits
and the graph of the parameter R with (Jg,JO) modeling suggests that the DC
procedure will have trouble converging over a 24 hour arc, which it indeed does.
But the period of SATORB7 and 8 is increased to 103 minutes and 150 minutes,
respectively. Because of its period, it is not surprising that SATORB8 converges
in 11 iterations over a 12-hour span with the (Jy,Jg) modeling. With SATORB7,
P=103 minutes so that 7 hours (a 4xP) should be a reasonable time arc in the
(J2,3p) DC. When a 6-hour arc is used, the (Jp,Jdp) DC converges to SATORB7
elements in 11 iterations with rapidly decreasing RMS values. With a 12-hour
arc, convergence was still not achieved after 30 iterations.

The results obtained using the FILTER as an orbit estimator are more
“difficult to exaﬁine than the results from the DC. As input to thevFILTER

program, the user supplies an initial estimate of the state along with an
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initial estimate of the covariance matrix.* The a priori covariance
matrix contains the state standard deviation and correlations, hence
points the filter in the right direction.

For this study, the obscervational residuals were used to monitor
filter performance, with decreasing residuals within a pass and modestly
larger residuals appearing after a data gap indicating convergence. The
arc length used in the filter portion of this study was 18 hours.

When testing the effect of approximating the state transition matrix
in the filter, only the SATORBI orbit was used. With i=0.0° and e=0.0,
this orbit is particularly susceptible to perturbations due to the earth's
Jo nonsphericity. As will be demonstrated below, the filter has an added
dimension of sensitivity, that being the a priori covariance matrix. Because
of this and time constraints, the use of the filter was restricted to this
orbit.

The first offset imposed on the state was the same as that used for
the DC: 4 a=100m,4e=.00012,4i=.0020,v =0=M=0.0. With this offset,
the cartesian elements at ty are x=6549.8379 km, y=2z=0.0 km, ;=0 km/sec,
}=7.801531422 km/sec and 2=-.0002723 km/sec. At tg, the true cartesian elements
are x=6550.524 km, y=2=0.0 km, x=z=0.0 km/sec and y=7.8006548 km/sec. Four
different a priori covariance matrices were tried in the filter with this
initial state estimate. A1l four covariance matrices were diagonal, implying
there was no correlation among the errors in the state estimate. The first
covariance matrix exactly reflected the errors in the state:
* The DC procedure has an a priori covariance matrix default value of

infinite magnitude so that its inverse is the null matrix. In the DC

procedure it is this inverse which is an additive term to the loss function
(eq(6)); however, it has been omitted in eq(6) as it is the null matrix.
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(v x=.68!un,€5;6}:.1 x 10-4 km, 0= 1 x 10-4 km/sec,cr}=.87 x 103 km/sec
and 07,=.27 x 1073 kn/sec.
The results obtained for (J2,Jp) and (Jp,Jdp) were very similar, both cases
converging. Table 6 below 1ists, for the last 6 passes, the largest
residual in meters within a pass for both cases:
Pass Mumber

19 20 21 22 23 24

{(92,3g) max l0-C| 23 20 29 21 19 31
(J2,3,) max |0-C| 31 43 22 27 21 30
TABLE 6

These results change greatly when a different a priori covariance
matrix is used. With Oy=0y=.1 km,07;=.01 km and 03=0y=05=.1 x 1074 kn/sec,
the (J2,dp) case failed to converge. This covariance matrix fails to
recognize the error in the § component ,ay=.00087 km/sec, so that the actual error
iny is 87 times larger than is reflected in the standard deviation associated
with it: 0“y=.1 x 10~4 km/sec. The largest residual in the last 6 passes is
listed below. Note that the (J2,Jdp) case fares much better than (J2,9p) and
is considered converging.

Pass Number

19 20 21 22 23 24

(35,d0) max | 0~C| 997 | 1151 | 1184 | 1094 | 1250 | 982
(3p,J2) max 10-C| B 72| 2 58 | 45 | 81
TABLE 7

If the standard deviation of y is increased to 0" y=.00004 so that Ay is

approximately 20 times larger than is reflected in the standard deviation,
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the (JZ,JQ) case responds a little better. However, it is not considered
converging. The residuals during the first 9 hours suggest the filter

has a handle on the correct state. The next 9 hours shows increasing

residuals as the filter drifts away from the possible steady state.

Lastly, the standard deviation of } was increased again to 0'y=.00015 or 5 times
smaller than the error on y. Here the (JZ,JO) case did as well as the

(J2,J7) case. Table 8 summarizes the results for O y=.0004 and

07 y=.00015, with 0= 6‘y=.‘!,°_z=.01,0~>’<=¢i=.1 X 10_4.

Pass Number

19 20 21 22 23 24

6y =,00004 km/sec

(J2,3g) max 10-C! 190 | 226 | 230 | 220 | 242 | 227

(J9,d2) max )} 0-C} ' 28 39 22 28 12 A

€% =.00015 km/sec

(J2,dg) max | 0-C} 32 23 31 33 29 47

(35,37) max {0-CY 28 | 37 23 28 14 38
TABLE 8

Although these results are far from conclusive, some inferences can
be drawn from them. It has been demonstrated that for this case the filter
responds well with an approximate state transition matrix provided the a
priori covariance matrix refiects the state errors within five standard deviations.
The test cases used for this study suggest that when the error is between 20

and 90 times larger than the standard deviation, the (JZ,JO) case fails, yet
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the (J2,J2) case is able to reach a steady state solution. This suggests

that when the a priori covariance matrix is considered an accurate indication
of the state error, truncated variational equations might not harm the per-
formance of the filter. On the other hand, when the initial covariance matrix
somewhat inaccurately reflects the state error, the full partial derivatives
are needed to help steer the filter toward steady state. (The term "somewhat"
is used here as a precaution; a totally inaccurate a priori covariance matrix
can easily cause a (Jp,Jp) filter case to diverge.) This sensitivity to the
initial covariance matrix makes it di fficult to draw conclusions regarding

the filter's performance as a function of the state transition matrix.

Conclusions

This paper has attempted to evaluate the effects of an approximate
state transition matrix on the differential correction procedure and the
filter procedure as used for orbit estimation. The DC results fall into
four categories: the effects due to (1) extent of the approximation,
(2) orbital inclination, (3) Tength of time arc, and (4) orbital
eccentricity. Coinciding with these categories is the behavior of the
parameter R= &%%fbé}% . R can be used to "predict" convergence/divergence
in the DC and its behavior suggested these four categories as meaningful
avenues to investigate. When using a force model for the state which
includes the J) harmonic term, it has been shown that it is a safe practice
to approximate the variational equations provided that the J2 term is
included. When this approximation is made, the DC process will still

converge as it would with the full variational equations with only a
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negligible loss of speed. A total truncation of the harmonic terms in
the variational equations will, in general, cause divergence in the OC.
One exception to this is orbits with inclinations between 54.7° and 125.3°
In this range of inclination, the effect of the nonsphericity of the earth
is minimized. Here (J2,Jg) DC cases will converge but so sTowly that
the truncation might, in practice, be undesirabie

The oscillatory signature of R when the most drastic truncation is
made suggests the possibility of short term differential corrections. The
maximum value of R tends to occur after four periods of the orbit. Hence an
arc length of four times the orbital period becomes a reasonable guideline
for short term corrections. In this arc length, convergence is achieved but
speed of convergence again becomes the trade-off for the truncation. As thne
orbital period lengthens with greater semi-major axis, so does the time
arc over which the (Jp,Jg) case converges in the DC procedure.

With the filter as an estimator, less conclusive results are found.
The effect of a truncation in the variational equations on filter performance
was highly correlated to the initial covariance matrix. When the a priori
covariance matrix was a good indication (within 5 standard deviations) of
the actual error imposed on the state, 1ittle difference was seen in the convergent
behavior of the filter for the (Jp,J2) and (Jp,Jp) cases. However, when the
accuracy of the a priori covariance matrix is relaxed, the (JZ’JO) case showed
divergence in the cases tested. Furthermore, when the accuracy of the a priori
covariance matrix is completely Tost, neither the (Jp,Jg) nor the (Jp,Jp) case

will converge.
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The results obtained in the filter section of this paper leave another
set of questions open. It was assumed that using the Tow altitude, circular
equatorial orbit where the perturbations due to the nonsphericity of the earth
are most proncunced would be a good orbit to test the effects of truncated
variational equations in the filter. This appears to be a valid assumption
in view of the analysis mentioned above based on equations (7) and (8).
However, other sets of orbital elements could be tested in order to help
determine the limits of accuracy needed in the a priori covariance matrix
when using an approximate state transition matrix. Also, this study was
restricted to variations in(YH . Certainly many othey variations could be
tested, although this starts to drift away from the original intent of the
study. Also, is there a Tevel of state noise which might be used to help
compensate for the use of an approximate state transition matrix?

In general, this study could be expanded to nonpotential accelerations
such as drag and solar radiation pressure. What, then, would be the effect
¢f including a nonpotential acceleration in the equations of motion but
excluding it in the variational equations?

Lastly, the stabiiity properties of the state transition matrix is
a question of interest. Does the solution to the variational equations
exhibit one type of stability for the (Jz,Jz) modeling which is different
from (J2,J0) modeling?

Although many questions remain open, it is hoped that this study
sheds some 1ight on the appropriateness of state transition matrix

approximations.
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