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ABSTRACT

A relaxation method is demonstrated which reliably solves the nonlinear two-point-boundary-value

problem which arises when optimal control theory is applied to determination of large angle

maneuvers of flexible spacecraft. The basic ideas are summarized and several idealized maneuvers

are determined. The emphasis is upon demonstrating the basic ideas and practical aspects of the
methodology. References are cited, particularly Turner's dissertation which presents detailed

formulations and more general applications.
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Discussion of Figures

With reference to Figure 1, we employ the method of assumed modes to obtain a set of ordinary
differential equations which govern deflections and rotations. The form of the equations of motion

are given in Figure 2. Note the high dimensionality and the variability of the coefficient matrix.

Note that solution for the acceleration coordinates is required in order to integrate motion as a
function of time, and in order to apply optimal control theory.

Figure 3 displays a partitioned algorithm which efficiently determines the inverse of the high-

dimensioned, configuration-variable coefficient matrix. Consistent with this partitioning algorithm,
we consider in Figure 4 an algorithm for obtaining partial derivatives of the inverted coefficient

matrix with respect to deflection coordinates (required in the optimal control algorithm).

Figure 5 summarizes the state and co-state differential equations which follow from Pontryagin's
principle as the necessary conditions satisfied by optimal (minimum quadratic cost) maneuvers.
Observe that the initial and final states are generally known, but the initial and final co-states are

usually unknown. Thus, as usual, a nonlinear two point boundary value problem (TPBVP) has
resulted. Notice the quadratic angular velocity nonlinearity due to "rotational stiffness."

In Figure 6, we summarize an imbedding/relaxation approach which has proven a reliable approach
for solving TPBVP's of the above structure. In essence, a one parameter (o0 family of problems is

constructed that one special member (c_= 0) has an analytical solution, while another member

(a = 1) is the true problem of interest. By relaxing a through a sequence of increasing values
0 _<c_i <_ l, we can extrapolate arbitrarily good initial or final co-state estimates (by adjusting the
a-increment) from previous converged solutions, thereby allowing efficient differential corrections

to isolate accurate co-states corresponding to each o_. Typically, only 4 or 5a i values are actually
required to reach the desired a = 1 solution. This method and related methods are developed and
applied to several examples in Reference 3.

Considering now a specific configuration, we refer to Figure 7. The four identical cantilevered

appendages are mounted in the same plane to the rigid central hub. We neglect the hub radius

in any equation in which it appears divided by the appendage length. Referring to Figure 8, we
restrict attention to pure spin rotations and antisymmetric deflections, consistent with spin-up,
spin-down, and rest-to-rest maneuvers with the configuration initially and finally undeformed. We
consider only the case of torques applied to the hub.

Table 1 describes seven maneuver calculations, corresponding to three sets of maneuver boundary
conditions and four different dynamical models. These cases are selected to demonstrate the

effects of rotational stiffening and to show that the relaxation method can handle both high
dimensionality and nonlinearities.

Figures 9a - c display the angle of rotation, angular rate and torque for the case 1 maneuver (rigid
appendages). For comparison, Figures 10a - c display the same variables for cases 2L and 2N of

flexible appendages, assuming a 1 mode expansion. It is of interest to note that the flexibility
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effects are large indeed. The flexible case torque oscillates anti-symmetrically about the rigid case

torque, the desired final angle and angular rate are achieved and the modal amplitude (and its de-

rivative) are simultaneously driven to zero. It is interesting that the linear and nonlinear solutions
were identical, to graphical accuracy, due to the small deflections and velocities of this particular
maneuver.

Figure 11a - d and 12a - d display angle of rotation, torque history, and amplitudes of the first two

modes for cases 3L and 3N, respectively. The maneuver is an extremely rapid spinup from rest to

0.5 rad/sec in 60 sec. The linear (3L) and nonlinear (3N) solutions differ significantly, but the

linear solution retains the general shape and amplitudes differ by less than 10% throughout most of
the motion.

Figure 13a - g display the angle of rotation, angular rate, torque, and the first four modal amplitudes
for case 4L (a rest-to-rest maneuver through a 360 ° rotation). These results simply show that,

indeed, the large rigid rotations and vibration suppression of several degrees of freedom are deter-
mined.

We offer the following significant conclusions:

• An Optimal Control Formulation is Presented for General 3 Dimensional Maneuvers of a
Class of FIexible Satellites

• A Partitioning Method is Introduced to Invert the Rotational-Vibrational Equations of

Motion for Acceleration Coordinates and to Obtain the Adjoint Equations

• An Imbedding/Relaxation Process if Demonstrated for Solution of the Two-Point-Boundary-
Value Problem.

• Numerical Studies Indicate that Practical Algorithms Result from these Developments
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THE METHOD OF ASSUMED MODES 

T h e  d e f l e c t i o n  o f  t h e  j t h  f l e x i b l e  m e m b e r  is m o d e l e d  a s  

a r e  p r e s c r i b e d .  As minimuin r e q u i r e m e n t s ,  t h e y  m u s t  

Â be l i n e a r l y  i n d e p e n d e n t  

* s a t i s f y  u, v ,  w ' s  g e o m e t r i c  boundary c o n d i t i o n s  

T h e  a m p l i t u d e  f u n c t i o n s  c o n s t i t u t e  t h e  con<( igu /~a . t i on  vec/to^i 

T h e  amplitude's play t h e  role o f  d i s c r e t e  g e n e r a l i z e d  c o o r -  

dinates. 

Figure  1 



ROTATIONAL/ LECTIONALEQNSOFMOTION

DYNAMICSOF FLEXIBLESATELLITES

{_} = [F(O)I{_} (i)

[J(n)]{_} = -[HT]{n} + {f(o,m,q,G,t)} + {u} (2)

[M]{n} = -[H]{_} + {g(0,_,q,q,t)} (3)

Combine (2) & (3)

Note

[H] & [M] are constant

[JO_)] = [Jo ] + [JD(_)] , IIJDII < < llJoll (typically)

Inertia of Inertia varia-

undeformed tions due to

vehicle deformations

A problem:

We need eqns of motion in the state space form x = F(x,u,t),

but

(i) The coefficient matrix of (4) is variable

(ii) Its dimensions may be several hundred

Figure 2
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PARTITIONED/PERTURBATIONINVERSIONOFTHE

OOEFFICIEI4Tr TRIX

I i HT -I

CI.l • C2

Name the submatrices: ---

oDOOOt'OOO _*eOooo

C2] " C22/ M

The Cij can be expresseddirectlyas a functionof J, M, H as:

Form l Form 2
-I

j-l . j-l HT HT M-l
Cll C2l (J - H)

C22 (M - H j-I HT)"l M-I M-I H C2_

C2I -C22 H j-I -M-I H Cll

For direct numericalcalculations,Form 2 is preferredsince

(i) (J - HT M-I H) is a 3 x 3 matrix

(ii) M _s generallydiagonallydominant (an identitymatrix if one first
solvesan eigenvalueproblem - Note M is positive-definitesymmetric)

Figure 3
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CERTAIr_EQUI,_DPARTIALDERIVATIVES& _IVTODETE_IINE_

Rotational/Vibrational Equations of Motion

___(_)

or, in inverted form

l -- _o_I- -
t'" =- I_ t

Note

T

n_ = {nI n2 ... nn}

,od°ter.i._{_-_[,o.rw
,,q--l_=

from which

or

M--I = __-i . , i=l,2,...,n

where

_J(n_)! ]

= - @-_-i : 0

l_-q/= "o i o

Figure 4
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FORMULATIONOFTHEOPTIMALCONTROLPROBLEM

STATE VARIABLES

_l: {0}, _2: {n}, _3: {_}' x4: {_}

STATE DIFFERENTIAL EQUATIONS

_1 : [F(xI)] {_3 } = £I(_1 ' -' _3' -' -' -)

_2° _ : £2( -, -, -, _4, -, -)

l{q}) _4(_1 ' _2' _3' _4' _' t) = l_(_i,t)

Find _u(t) generating a trajectory initiating at xi(to), terminating at xi(tf),

which minimizes the function

] = 1 tf 4 T xi)d tt/ (urw u+ Y.Nwii
O i:2

HAMILTONIAN
I

4 4
l T _T

i=2 i:l

PONTRYAGIN'S NECESSARY CONDITIONS
lil I i m

Co-state Equations

: _H__i(_l' "" _4;A .... A; u, t)_i

Optimal Control

Minimize H at each instant with respect to admissible _(t), this

yields _ : U(Xl, .., _4; _i' "'' _' t)

Figure 5
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IMBEDDINC_REIAXATIONMEII_ODFORSOLVING

TWO-POINTBOUNDARYVALUEPROBLEM

Define merged vector
T

z -={x_ ___}

The coupled state and costate differentialequationsare then

Z = [A]Z+ _{all nonlinearterms}

I II II 11

• Typically,we know_x(to) and_x(tf),but not __(to),__(tf).

• For m= O, we can solve for _(to) exactly.

• By taking sufficientlysmall a-increments,we can use converged_{to) from

neighboringoptimal solutionsto initiatesuccessiveapproximationswith
arbit_u_rily good sta_t.ing estimate_ for the unknown_(to).

• Typically,only 5 to lO intermediatea-valuesare required a practical
algorithmresults.

Figure 6
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FIGURE7 UNDEFORMEDSTRUCTURE

FIGURE8 ANTISYMMETRICDEFORMATION
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TABLE I DESCRIPTION OF TEST CASE MANEUVERS

Case # Qualitative Description # of Modes (N) 6° _o Of 8f Wuu Wss

(RAD) (RADISEC) (RAD) (RADISEC)

Rigid Appendages

i Rest-to-Rest Maneuver 0 0 0 0.i 0 1.0 [0]

tf = 14.221 see.

Ll_tear Kinematics

2L Rest-to-Rest Maneuver i 0 0 0.I 0 1.0 [I]

tf = 2_/_ I = 14.221 see

Nonlinear Kinematics

2N Rest-to-Rest Maneuver 1 0 0 0.I 0 1.0 _I]

tf = 2_/_ 1 = 14.221 sec

bo

4_ 3L Linear Kinematics

Spinup Maneuver 2 0 0 2_ 0.5 1.0 [I]

tf = 60 sec

Nonlinear Kinematics

3N Spinup Maneuver 2 0 0 2_ 0.5 1.0 If]

tf = 60 see

Linear Kinematics

4L Rest-to-Rest Maneuver 4 0 0 _ O 1.0 [I]

tf = 60 sec

Nonlinear Kinematics

4N Rest-to-Rest _neuver 4 0 0 _ 0 1.0 [i]

t_ = 60 secr




