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ABSTRAf3 

A very long baseline interferometry (VLBI)-laser intercomparison experiment is planned for the 
“Iron Triangle” consisting of the stations at Haystack, Owens Valley, and Ft. Davis. The improve- 
ments in the variances of the estimable parameters resulting from the addition of the stations at the 
National Radio Astronomy Observatory (NRAO), Green Bank (Greenbelt, in the laser case), and 
Goldstone is examined by means of a least squares covariance analysis assuming only random obser- 
vational errors and disregarding systematic effects. (The latter are clearly aided by additional base- 
line observations.) 

The usefulness of a substitute station at Richmond, Florida, is also examined with the idea of im- 
proving the accuracy of polar motion. Although this station is not in operation, it would be possible 
to use a portable laser and VLBI antenna at this site during the intercomparison experiment. 

In the case of VLBI, a covariance analysis is performed on multi-baseline configurations. The 
parameters examined include baseline related quantities, quasar declinations, quasar right ascension 
differences, and Earth rotation parameters including polar motion. The variances of these param- 
eters are calculated and compared among the various station configurations. 

Laser range observations to LAGEOS are simulated, and the variances of the recovered baselines are 
examined. For the purpose of establishing a lower bound on the achievable baseline standard devi- 
ations independent of dynamical errors and assumptions, the laser observations were also analyzed 
in the geometric mode. 

Although the absolute numbers recovered for the variances are not meaningful in themselves, their 
relative improvements within each of the two systems are instructive in planning for the intercom- 
parison experiments. 
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INTRODUCTION 

In anticipation of the upcoming VLBI-laser intercomparison experiments scheduled for 1979-1980, 
simulations were performed to determine the suitability of the proposed station locations. The 
criterion was a comparison among the possible station configurations of the standard deviations of 
baseline and Earth rotation parameters estimated from a least squares covariance analysis, Only the 
relative magnitudes of the standard deviations were addressed in the analysis. Thus, only random 
errors were assumed and no provision was made for systematic effects. 

The “Iron Triangle,” consisting of the stations at Westford (Haystack), Massachusetts, Owens 
Valley, California, and Ft. Davis, Texas, was regarded as the basic structure of the proposed network 
with options to incorporate either the Goldstone, California, or Green Bank, West Virginia, station 
or both. In addition, it was decided to include the Richmond, Florida, station in the analysis since 
it offered more North-South separation and therefore could strengthen the geometry of the net- 
work especially in the recovery of Earth rotation parameters. Although the station is not in opera- 
tion as yet (it is part of the proposed Polar-motion Analysis by Radio Interferometric Surveying 
(Polaris) triangle), it would be possible to use a portable antenna at the site if its addition was found 
to be worthwhile. The effect of adding the more precise STALAS laser at Greenbelt was also 
considered, 

The VLBI and laser simulations were done independently. Obviously, no absolute comparison of 
the numerical results is possible. 

MATHEMATICAL MODEL 

VLBI 

The mathematical model for the time delay “observable” can be written as the inner product of the 
baseline vector in an Earth-fixed system, and the quasar unit vector rotated from an inertial system 
into the Earth-fixed frame. The observable, denoted by d, is the product of the time delay and the 
speed of light, and can be expressed in a simplified manner, suitable for this type of analysis, as 
follows: 

d = -[ AXi AY, AZ, 

where 

r 
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AXi, AYi, AZi are the coordinate differences of the ith baseline in an Earth-fixed system 

are the true right ascension and declination of the kth quasar, respectively 
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is the Greenwich Apparent Sidereal Time (GAST) 

8 = 0, + Wd [TAI - (TAI - UTl)] 

=8,+Wd [TAI-(TAI-Al)-(Al -UTC) 

- (UTC - UTl),,B + K + rit] + Eq. E. 

tj, qj 

Eq. E. 

AI 

TAl 

UTC 

UT1 

wd 

80 

is the equation of the equinoxes 

atomic time 

international atomic time 

coordinated universal time 

observed universal time corrected for polar motion 

conversion factor from universal to sidereal time 

GAST at initial epoch 

the components of polar motion that relate the true celestial pole to 
the terrestrial pole 

The estimable parameters whose. standard deviations were estimated in these simulations were the 
following: 

A. Quasar parameters 

1. Quasar declinations: 6, 
2. Quasar right ascension differences: o!k - 01, where a0 is the adopted right ascension of a 

low declination quasar, defining the origin of the right ascensions. 

B. Earth rotation parameters 

1. Polar motion component differences: ~j - El, ‘7j - ~1. The interval of observations (24 
hours) was divided into four steps of 6 hours duration. The average values of the first step 
El, ql are adopted; e.g., they can be taken from other sources (Bureau International de 
1’Heure (BIH)). The remaining steps were 6-hour averages referred to these initial values. 
For the purpose of our simulations, t1 = r)l = 0. 

2. Earth rotation variation parameters: ? and Kj - K~, where K and i are the first two terms 
of a polynomial that models the variations in the Earth rotation rate as given by TAI - 
UT1 in the previous expansion for GAST. The i rate parameter was taken as constant 
over the period of observations. The Kj - K~ earth rotation variation difference parameter 
was also represented by a step function. The third component of Earth rotation was de- 
fined by adopting a value for the first step, K~. The remaining steps were 6-hour averages 
referred to the fixed initial value. The K~ value can be obtained from the BIH, but for the 
purposes of our simulation K~ = 0. 
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C. Baseline related parameters 

1. 7i, Ci, (Ti. The baseline components AXi, AYi, AZi are nonestimable quantities being affec- 
ted by errors in (Y,, “I, tI, VI described above. The differential relationships between 
these parameters are as follows; 

d7i = dAxi + AYi (da, - dKI) - AZid5I 

dci = dAYi - A% (da, - dKI) + AZidrll 

dUi = dAZi -t- AXid~I - AYidqI 

The subscript i refers to the ith baseline. 

2. Baseline distances, Qi. These are estimable parameters. 

This completes the list of estimable parameters whose total number is given by: 

3i + (3 Cj - 1) + 1) + (2k - 1) = 3i + 3j + 2k - 3 

i = number of baselines 
j = number of steps 
k = number of quasars 

A least squares covariance analysis was used to estimate the standard deviations of the parameters. 
These are obtained from the diagonal elements of the inverted normal matrix (the variance- 
covariance matrix) which is independent of observations. Its values depend on the geometry, the 
observation schedule, and the anticipated observational noise. 

The normal matrix N is derived from the well-known formula 

N = A= PA 

where A represents the partial derivative matrix, AT its transpose, and P the weight matrix of obser- 
vables, in this case the time delays. When observing simultaneously from more than two stations, 
for instance on a triangle, the time delay measurements are correlated and this must be included in 
the off-diagonal elements of the variance-covariance matrix of the observables, Sib, where 

ao2 being the a priori variance of unit weight. On a triangle (and similarly on any closed figure), 
when observing simultaneously, only two sets of time delays (out of a possible three) should be 
used. The actual observations are registered on tapes located at the three sites. The time delay is a 
quasi-observable being derived by cross-correlating the tapes at a later time. Denoting the time 
delay between stations i, j as rij, it follows from the mathematical model that r12 + ~23 + 731 = 0. 
Therefore, after choosing any two combinations of time delays, the third combination will be 
linearly dependent on the other two and thus does not provide new information. Naturally, for any 
choice of two tapes, the estimated standard deviations of parameters should be identical. However, 
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if the correlations between the time delay “observables” are not included in the Zb matrix, this 
will not be the case. The weight matrix of observables is diagonal in this case, and the result is three 
sets of estimated standard deviations instead of one. 

Using our simplified model and assuming that all time delays are “observed” with equal noise, it is 
easy to construct the ZLb matrix. In triangle l-2-3, the time delays can be written as 

r12 = t, - t, 

‘23 = t, - t2 

T31 = t, - t, 

the differences in the arrival times of a given segment of a wavefront at the two antennas. An error 
propagation is done using the first two time delays from above to determine ZLl,. 

The complete variance-covariance matrix ZLb is composed of 2 x 2 full blocks along the main dia- 
gonal, and zeros elsewhere, for each set of observations at a particular epoch, in the following 
manner: 

zz Lb = 

L 

2 -1 
-1 2 

0 

0 
2 -1 

-1 2 

2 -1 
-1 2 

- 

This matrix is inverted and scaled according to the assumed observational noise to arrive at the ap- 
propriate P matrix. 

In the “real world,” the ZLb matrix will be more difficult to derive, but our tests show that unless 
the true correlations are known, the results may be very misleading. 

LASER 

In this simple simulation study, the only quantitie; which were allowed to adjust were the station 
positions 6, the initial satellite state-vector [w, i 5 IT, and the coordinates of the pole g, 71. The 
brief presentation of the mathematical model that follows is ‘given in an Earth-fixed coordinate 
system neglecting the effects of nutation and precession. In compact form, the error equation is as 
follows: 

ap . 



440 RADIO INTERFEROMETRY 

where poi denotes the ith observed range, pCi the corresponding prediction based on an approxi- 
mate set of parameters Pj. Based on the above general equation and the aforementioned set of 
parameters, the linearized observation equation is the following: 

(PO - Pc)i = r aS? - - 
1 =- 

Pi 

-(x - U)TdU + (X - U)T [R3(8)i 0] i;’ 

iif 

L 

ax 
L 
axcl 

a2 

a%, 

r 
+ [X,U3 -X3Ur j X3U2 -X2U3 ] - Vi 

In the above, the angle 8 denotes the GAST at the epoch of observation and B0 refers to the initial 
epoch; Vi denotes the random error in the observation. The results presented here are based on a 
fixed polar motion model; E and q were not considered as parameters. 

SIMULATION PROCEDURE 

VLBI 

The selection of a quasar observation schedule was guided by two considerations: 

l that a quasar be observable simultaneously (maximum zenith distance of 80”) from all 
stations at a chosen epoch of observation. 

0 that the final quasar schedule, over the 24-hour period of the simulations, be evenly dis- 
tributed in right ascensions and declinations in order to achieve a strong geometry and to 
provide good recovery for low and high quasar declination-dependent parameters. Since 
the geometry of the experiments shifts by about only 4 minutes every 24 hours, it was 
decided that a day of observations would adequately encompass the entire geometry of the 
problem. 

In order to simulate real observing conditions, it was decided to observe a quasar every 10 minutes 
simultaneously from all stations involved in a particular experiment. Although a typical time delay 
“observation” requires 3 to 5 minutes, a longer period was taken in order to allow time for antenna 
slewing and switching of tapes. The observational noise was assumed to be 0.1 nanosecond (3 cm). 

LASER 

For the laser experiments, the observables were simulated ranges to the satellite LAGEOS with a 
nominal noise level of 10 cm. The observational period was 7 days during which 22 passes were 
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co-observed by all stations. The simulations were performed in two modes: in the dynamic mode 
involving a short arc solution, and in the geometric mode run for the purpose of recovering standard 
deviations independent of orbital effects and assumptions. It is recognized that the inherent restric- 
tion of having simultaneous observations from at least four distant stations makes this mode 
impractical. The laser results presented are based on the directly estimable baseline distances as ob- 
tained from the short-arc solutions. 

RESULTS AND CONCLUSIONS 

The various experiments were compared on the basis of the estimated standard deviations of base- 
line (VLBI and laser) and Earth rotation parameters (VLBI only). However, since the baseline 
components depend to a certain extent on the coordinate system definition as described earlier, 
the directly estimable baseline lengths were used as a basis for comparison. As of this time, we have 
not completed our simulations estimating the recovery of pole coordinates from laser observations. 

VLBI 

The VLBI results using the assumed correlations are summarized in table 1. Experiment 1 using the 
tapes from the Iron Triangle configuration is the basis of comparison. In experiments 24, the ef- 
fects of the addition of either Green Bank, Goldstone, or Richmond are examined. In experiment 
5, the effect of adding both Green Bank and Goldstone to the basic configuration is listed. The 
columns headed by IMPRV give the improvement in the estimated standard deviations of an experi- 
ment relative to experiment 1. 

Experiments 2 and 3 show improvements on the order of 5 to 10 percent over experiment 1. How- 
ever, the addition of the Richmond station results in improvements of about 25 to 35 percent. 
Especially apparent is the improvement in the An parameter, because of the significant North-South 
separation of the Westford and Richmond stations. The closeness of the Green Bank and Goldstone 
stations to the Iron Triangle configuration implies that the effect of these stations is the same as 
would be expected from increasing the number of observations in the Iron Triangle itself. Obvi- 
ously, there is a limit to the number of observations over a given interval of time that can be made 
especially for the earth rotation parameters which are time dependent. In any case, these stations 
do not substantially improve the recovery of the parameters of interest. In fact, as seen in experi- 
ment 5, the addition of both Goldstone and Green Bank has less effect on the results than the addi- 
tion of Richmond alone in experiment 4. Thus, it can be concluded that only Richmond would 
significantly improve the basic configuration, as expected. Naturally, another station providing a 
similarly favorable geometry such as in Alaska could provide similarly improved results. 

LASER 

Table 2 summarizes the laser experiments and gives the improvement of average relative precisions 
of the three baselines of the Iron Triangle (Ll). In each column (L2 - L6) the results of adding 
stations to the Iron Triangle are listed. The numbers in parentheses are the total number of ranges 
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Standard of 
Comparison 
Iron Triangle: 

Ll* 
(39 69) 

Total 
Improvement % 

Over Ll 

Improvement. % 
Due to Increase 
of Observations 

Improvement % 
Due to Network 

Extension 

Table 2 
LASER: Improvement of Average Relative Precisions 

L2 
GB, GS, RM 

(7843) 

35.6 

28.9 

6.7 

I 
1 
1 

L3 L4 L4A 
GB,GS GB GB (3cm) 
(6522) (5337) (5337) 

21.6 13.0 44.6 

L5 L6 
RM 

(5290) (5Z4) 

25.9 11.6 

22.0 13.8 13.8 13.4 12.3 

-0.4 -0.8 30.8 12.6 -0.7 

Experiment 1 

* Ll average baseline precision: 1.7 x 10 
-e 

for each experiment. The first row shows the percent improvement for each solution due to the 
combined effect of adding more stations and, therefore, at the same time, increasing the number of 
observations. The second row gives the percent increase due simply to the increase in the number 
of observations. Note that in the VLBI experiments only the equivalent of the first row was pre- 
sented since in that case the numbers in the second row would be less meaningful. The difference 
of the first two rows in the laser table, depicted in the last row, indicates the net improvement due 
to network geometry only. 

As can be seen from experiment L4A, the addition of the high quality laser at Greenbelt provides 
the most dramatic improvement, about 3 1 percent, even though Greenbelt is not part of the Iron 
Triangle. This is due to the improvement of the LAGEOS orbit from the Greenbelt STALAS 
observations. 

The addition of the proposed Richmond station in experiment LS gives the best improvement, 
about 13 percent, when all stations have a laser of the same precision such as MOBLAS. In fact, 
the addition of all three stations to the Iron Triangle in experiment L2 gives poorer results than the 
addition of Richmond alone, or a similarly located station. This is due to the fact that Green Bank 
and Goldstone introduce six new unknowns to the adjustment which are not compensated for by 
improved geometry. 

As can be seen by the negative percentages in experiments L3, L4, and L6, the addition of Green- 
belt with the MOBLAS precision, or Goldstone, or both provides no improvement. Although not 
presented here, the results from the geometric mode solutions lead to identical conclusions. 
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SUMMARY 

Examining the results, we suggest that the STALAS laser at Greenbelt definitely be part of the inter- 
comparison experiments as it is already planned, or of any other experiment. The Richmond site or 
a similarly suitable one should be considered as a useful addition to the Iron Triangle. From the 
point of view of random errors, the station at Goldstone or the VLBI at Green Bank is not consid- 
ered particularly useful. At this time, the study on the effect of systematic errors on both VLBI 
and laser is not complete. In some cases, these systematic errors may be of great importance in de- 
ciding on a particular station configuration as opposed to purely geometric considerations. The 
elimination of systematic errors is likely to be aided by redundant baseline observations. Other fac- 
tors may also be considered, such as antenna parameters. Finally, we would like to stress the impor- 
tance of working as much as possible with estimable parameters such as baseline distances and 
including the VLBI observation correlations between simultaneously “observed” time delays in a 
multi-baseline configuration. Neglecting these correlations results in a different set of estimated 
standard deviations from each possible baseline combination. These estimates are generally overly 
optimistic compared to the unique set obtained using proper correlations. 
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