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CALL TO SESSION

Dr. Arthur McCoubrey
National Bureau of Standards

DR. MCCOUBREY: I am Art McCoubrey. I am the Chairman of the Technical

Program Committee of PTTI, this year. It is my duty to call to session

this meeting of PTTI. So it is my pleasure to call to order this meeting
of the llth Annual PTTI. And having done that, I am going to introduce

to you the General Chairman of PTTI. He is head of the Space Applications
Branch of NRL, Roger Easton.

DR. EASTON: Thank you Arthur. Now for welcoming remarks, we will hear

from the Acting Director of the Goddard Space Flight Center, Mr. Robert
Smylle.





WELCOME ADDRESS

Mr. Robert Smylle
Acting Director of the

Goddard Space Flight Center

On behalf of the Goddard Space Flight Center, I would llke to welcome

all of the delegates here and the people coming to this conference to
the Center. I understand that this is the llth such conference that

has been held on this subject, although the name has changed a little

bit over the years for various reasons. It is a very important activity

to the Goddard Space Flight Center because of the work that we are

engaged in and the need for increased capability in the area of precise

time and time interval. I was glad to see that the speaker called it

"PTTI" because it is really a mouthful to say that whole acronym out all
at once.

One of the things that happens when you come here and invite me to speak

is that you get a few words about the Goddard Space Flight Center because

it has been my view that people coming from around the world and around

the country get stuck in an auditorium or a conference room somewhere

for several days and go away and say that they have been to the Goddard

Space Flight Center but they really don't know anything about the place

except what they saw as they walked across the campus and into the

auditorium. So I would like to spend Just a couple of minutes telling

you what Goddard is and what we do and why it is that the kinds of

things you consider here over the next three days are important to us.

And I think that if you can find the time and want to get around the

Center and see some of the things going on here that there may be ways

that we could arrange to do that.
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OPENING COMMENTS

Rear Admiral Henry D. Arnold
Vice Commander

Naval Electronic Systems Command

INTRODUCTION BY DR. EASTON

Admiral Arnold is a native of Tulsa, Oklahoma. He graduated from

the Naval Academy in June, 1950, which put him just beyond where he

would not have been in the academy when President Carter was there. He

has served in numerous Naval assignments. He is a Naval aviator. He

saw service in Korea. He was Commander of Air Wing Ii, Executive

Assistant to the Assistant Secretary of the Navy for R&D, Commanding

Officer of the Naval Air Station at Whidbey Island, Commander, 13th

Naval District, and Director, Tactical Air Surface and Electronic War-

fare Development. He was Commander, Medium Attack Tactical Electronic

Warfare Wing.

His decorations include the Silver Star, the Legion of Merit, Distin-

guished Flying Cross, Bronze Star, Air Medals, Presidential Unlt Cita-

tion, Navy Unit Commendation, and the Navy Commendation Medal.

It is a great pleasure to introduce Rear Admiral Duff Arnold.

ADMIRAL ARNOLD:

Well I don't know about that introduction where being in the class of

'50 relative to Jimmy Carter stands in my repertoire there, but I would

like to welcome you to this PTTI Conference and let you know that we in

NAVELEX are very happy to be co-sponsors of this kind of a gathering.

Certainly my recent experience goes a long way in heartily endorsing the

theme of this conference. That is, let's think about the user when we

start putting these devices together. I know in this very exotic age

of electronic capability, digital computations and measurements devices

that we are able to very precisely come up with what is going on and

keep track of things. Based upon my experience as an A-4 driver, I

used to believe that you knew what time it was and you knew where you

were and everything was in order - you were going to be able to get to

the target in good shape. If either one of those things were getting

out of synch though, the probability of hitting your CEP was very poor.

We have come a long way since the old seat of the pants flying by map

in those days, but this morning, I toured most of this part of Maryland

trying to find the Goddard Space Lab based upon the map that I had. I
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I am still not a very good navigator, I guess. I did know what time it

was though and I arranged to be here on time. That was a positive re-
sult.

I would like to re-echo though that the user is the important person on

the military side. We have got to think about the user when we put black

boxes together. When they get out in the fleet and have to go through

the rigors of the operational environment, they must stand up, be main-
tainable and be available when time and time interval are needed.

You may recall Gordon Smith being here last year kicking this thing off

and I would like to bring you the latest chapter in the saga of Mr.

Clock, who you all know and remember was the cesium clock that we had

to get first-class transportation for on the airlines because that was
the only place that adequate power was available for this long, around

the world junket he was making to calibrate our VERDIN System.

Well, the latest is, that one year later Mr. Clock has had a very healthy

trip. He has made it all the way around, drinking electrons all the way

while his partner has been having martinis for two.

Again, I hope you have a very fruitful meeting. I noticed some very

imteresting subjects on the agenda. I am sorry that I can't spend the
time out here to be with you for the entire meeting, but again let me

say that NAVELEX is happy to be able to sponsor this kind of a get-
together. It is at this kind of a get-together where coordination and

cooperation can occur thai we discover a multiplying effect which is

far-reaching and will enhance our posture as time goes on.

Thank you very much. Have a very good meeting.



OPENING COMMENTS

Captain Raymond A. Vohden

Superintendent, U. S. Naval Observatory

CAPT VOHDEN: Mr. Chairman, Ladies and Gentlemen: Although time is

fabricated at the U. S. Naval Observatory, I have not yet been provided

with enough of it in my first two months as Superintendent. As a
result, I stand here before you knowing very little about the subject

you are about to discuss. But one thing I have learned already:

Dr. Winkler has told me that because our time is precise time, there

are precisely 5,529,600 precise seconds in 64 days, and he just

cannot provide any more for me. If it had been January now, he

would have given me one extra second on D_ecember 31-- the leap second.

Now 5 i/2 million seconds seem a lot to any layman like me. Imagine

my consternation when I found that Dr. Winkler counts time in nano-

seconds, and that I have already used up 5 1/2 times 1015 or 5 1/2

kilo-tera-nanoseconds. A frightening thoughtl

A famous astronomer, Ejnar Hertzsprung, once said: "We don't know

what data astronomers want in the next twenty years, but we are sure

that they want it with much greater accuracy." While this quote

addressed astronomers' needs, it could equally well refer to the

DoD. Requirements for precise time in some current applications or

in systems now in the definition stage quote precision of 5 to i0

nanoseconds. The best portable clock trips occasionally reach that

precision, but the platform clock that was synchronized with the Naval

Observatory Master Clock this way will not retain its synchronization

very long. Consequently, as DoD manager of PTTI, the Observatory is

continuously looking for means to improve time transfer and make
the U. S. Master Clock more accurate and conveniently available. The

GPS time will be directly traceable to the Naval Observatory, so that
in another five years we might expect i0 nanosecond precision anywhere

around the globe-- provided timing capability is available in the GPS

receivers or special time receivers, such as the one now undergoing

acceptance testing by the Naval Observatory.

But with the famous astronomer, "we are sure that DoD-- and others--

will want time with much greater accuracy" in the future. Perhaps

we don't know why they might want it, but time transfer capability

of 1 nanosecond or better is a requirement we can be almost sure

will be with us in the late eighties or early nineties-- and perhaps

earlier. This is a challenge for the Naval Observatory. On the one
hand, there is no platform requirement now, while on the other hand

it will take many years to develop such a capability. Moreover, as

we have found all too often, the user simply assumes that the Naval

Observatory can provide whatever accuracy is needed. And although

I came to the observatory with an exalted view of the capabilities

of the staff, I have come to realize that Dr. Winkler is actually a



human being just like you and me, who needs lead-time in order to
be there when he is needed.

It is for these reasons that the U. S. Naval Observatory is attempting

to obtain funding for experiments in Laser time transfer via satellite

(the highest precision technology in existence and in principle), for

very-long-baseline interferometry, and for highest precision time-

keeping in general.

Upgrading of the master clock is in progress. We hope in five

years to be able to guarantee 1 nanosecond real-time precision, a
first step toward the sub-nanosecond master clock we expect will be

required in the nineties.

But enough about plans. The Annual PTTI Applications and Planning

Meeting, has, I understand, become an important forum for the PTTI

community to look at the state of the art, to elaborate needs, and
to look into the future. I have noted many papers on time transfer

in this meeting starting today. Navigation is rapidly becoming again

a time-ordered discipline, requiring a world-wide synchronized

time distribution system.

In wishing you a successful meeting, may I express confidence that
out of meetings such as this one may grow a collaboration which

avoids, after initial experimentation, the danger of a multitude of

competing systems, to the detriment both of the user and the

taxpayer.

May the next 58 tera-nanoseconds (= 16 hours of talks) be a success_

Thank you.

8



SESSION I

PTTI REQUIREMENTS, APPLICATIONS AND PLANS

Dr. Gemot M. R. Winkler, Chairman

Naval Observatory





THE JOINT TACTICAL INFORMATION DISTRIBUTION

SYSTEM- DESCRIPTION OF SYSTEMS OPERATION

AND TIMING REQUIREMENTS

J. Sonsini

Electronics Systems Division

Hanscom Air Force Base, Massachusetts

(PAPER NOT AVAILABLE FOR PUBLICATION)
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qUESTIONS AND ANSWERS

QUESTION:

How do you protect from inputs from two different master terminals?

MR. S0NSlNI:

There is only one master terminal per network. We use one master
terminal and if that one goes out then the next higher order of

hierarchy would take over the master function. If more than one
took over then the first time that the second terminal that took

over heard the first one transmitting, he would immediately go
back to a non-master mode. So within line of sight there would

only be one master terminal.

DR. STOVER:

What if you would move from one network to another? For example,
what if one aircraft would move from one network to the next net-

work and if the two networks weren't alike that could create a

problem. You didn't mention anything about trying to tie your
network to Observatory time.

MR. SONSINI:

• Currently, that would be a problem. Two non-lnterllnked networks
would not be synchronized and a plane flying from one network to

the other would have to resynchronize in the second network. That

is why I mentioned both tying JTIDS in with the GPS or the contin-
uous clock for all terminals which would maintain prime synchro-

nization as an absolute time quality.

DR. WINKLER:

You mentioned frequency hopping in that frequency range, in UHF.

Is that done phase coherenly or is coherence lost?

MR. SONSINI:

I think you lost me.

DR. WINKLER:

Well, when you hop frequency, you can do it in two ways. You can
modulate your carrier frequency generator, and if you do that,

then phase coherence will be maintained. Or, you can switch be-
tween different oscillators and then they may not necessarily be

phase coherent.

12



MR. SONSINI:

It is a single oscillator, a large termination of local oscillators
and mixers and the same local oscillators are used for all fre-
quencies.
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SUGGESTEDATTRIBUTES FOR TIMING IN A DIGITAL DCS

Harris A. Stover
Defense Communications Engineering Center

1860 Wiehle Avenue
Reston, Virginia 22090

Telephone: (703) 437-2316

ABSTRACT

Sometime in the future, the Defense Communications System
(DCS) will predominately employ digital techniques. To be
effective, such a system, which employs time division multi-
plexing of digital signals, must include a system timing
capability. This follows because the time relationship of
each particular pulse to the other pulses in the same
sequential stream is fundamental to interpreting the infor-
mation contained in each pulse. This time relationship
determines the assignment of a particular bit to a particular
use and a particular meaning. The loss of proper timing can
cause all received information to be meaningless--a totally
unacceptable condition. Thus, timing is a function of major
importance in a digital military communications system
(particularly if encrypted). Fortunately, correct timing is
not difficult to achieve in a simple point-to-point digital
communications system, and many approaches can provide at
least a minimal timing capability in even the most complex
digital communications systems. However, some of these
approaches are unacceptable for the DCS, and the remaining
ones have various degrees of acceptability.

To determine the value and effectiveness of the different
approaches in satisfying the needs of the DCS, a set of
desired attributes is needed against which they can be
evaluated. This paper presents a set of suggested attributes
for a timing capability for the DCS which must be capable of
supporting full-scale warfare in addition to peacetime needs.
Reasons for each attribute are given.

INTRODUCTION

Although this paper which is devoted to needed characteristics for a
particular application of timing technology might seem a little out
of place among the many technical papers presented here, this is a
"Planning and Applications" meeting, and this paper is intended to
call attention to some important applications considerations for
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timing* capability needed by a digital Defense Communications System
(DCS). Requisites of a specific application are often equally as
important as technical items and sometimes more so. For good planning,
both technical factors and their specific application must be con-
sidered in determining a course of action. In previous annual
meetings, technical possibilities for synchronizing a digital DCS have
been discussed, so that it should be understood that providing the
attributes suggested in this paper for timing in a digital DCS

• [1,2,3,4] is technically and economically practical. However, the
requisites of the specific application probably have not been
adequately considered in those previous papers. In particular, they
did not demonstrate an adequate appreciation for the differences
between the needs of peacetime civilian digital communications net-
works and worldwide military networks, such as the DCS, which are
needed for support of any full-scale war. The suggested attributes
presented here for timing in a digital DCS are offered for consider-
ation as fundamental needs for such a system. It is believed that as
new equipments are developed and procured, with proper planning these
attributes can be provided quite economically and numerous problems
avoided.

BACKGROUND

It is generally accepted that for the types of communications
provided by the DCS, the advantages of digital systems over analog
systems are almost overwhelming [5]. Therefore, it is expected that
sometime in the future, the DCS will predominately employ digital
techniques. Such a digital communications system requires a timing
(synchronization) function in order to be effective. The time
relationship of each particular pulse to other pulses in the same
sequential stream is fundamental to interpreting the information
contained in the pulses. If time division multiplexing is used, this
time relationship determines to whom the information belongs and also _
what it means; i.e., particular time slots are assigned for particular
purposes.

* Note: The word timing is used here in the general sense which
includes synchronizing as a special case. It implies a wide variety
of related meanings including: (a) scheduling; (b) making coincident
in time or causing to occur in unison; (c) setting the tempo or
regulating the speed; (d) ascertaining the length of time or period
during which an action, process, condition or the like continues; (e)
causing an action to occur at a desired instant relative to some

other action or event; (f) producing a desired relative motion
between objects; (g) causing to occur after a particular time delay;
or (h) determining the moment of an event.
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In analog communications systems, noise or small errors in either
signal amplitude or frequency can cause undesirable but usually
acceptable signal degradation, and the same can be said for isolated
errors in a digital communications system. However, the loss of
proper timing in a digital system can be catastrophic, causing all
received information to be meaningless -- a totally unacceptable
situation. This characteristic makes the timing/synchronization
function one of the most important functions in a digital communi-
cations system. Fortunately, correct timing is not difficult to
achieve in a simple point-to-point communications system, and there
are many different approaches that can provide at least a minimal
timing capability for even the most complex digital communications
systems [1,2]. However, some of these approaches are unacceptable for
application in the DCSand those remaining have various degrees of
desirability. A set of desired attributes is needed against which the
different approaches to timing can be evaluated. This paper offers
a suggested set of such attributes and explains their importance to
the DCS.

One of the most fundamental changes that is going on in the DoD
community is the change in perception of the DCSfrom that of a
peacetime system to a communications system capable of supporting full-
scale war [5]. In developing desired attributes for the timing/
synchronization of a digital DCS, is is assumed that the DCSwill not
only transition from analog to digital, but also to a network capable
of supporting full-scale war. The major difference between a
communications system designed for peacetime and one designed for
wartime is the need for survivability of sufficient communications
capability to make our military forces effective. Survival of the
timing function in a digital communications network is essential to
survival of the communications function. It can also be highly
desirable to have an acceptable timing capability available even when
the communications function is not available. One reason is that the
timing function can be useful for establishing or reestablishing the
communications function. For example, the length of time required
to acquire synchronization of a spread spectrum signal that is being
jammed, depends on the size of the search window. An acquisition
search window of a few milliseconds might require a thousand times
longer to acquire synchronization than a window of only a few micro-
seconds. This capability (accuracy of a few microseconds) is already
used in the DSCSto permit the acquisition of spread spectrum signals
within a reasonable period of time in a jamming environment.

In the past, problems have occurred in the timing relationship
between different digital communications networks that werenot
originally engineered to communicate with one another. In some cases,
these problems were overcome by the addition of variable storage
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buffersand adequateclocks to controlthem, while in other cases
modificationof equipmentsmight also be required. Even after these
correctivemeasures, it might sometimesbe necessaryto interrupt
trafficto reset the variablestoragebuffers. It is not always
possible,at the time of equipmentdevelopment,to predictjust what
system interfaceswill be requiredduring the lifetimeof an equipment.
Therefore,design of the equipmentto meet a minimumtiming compati-
bility standard is highly desirablefor avoidingfuture problems. Such
a timing compatibilitystandardshould be developedto follow a well-
developedDCS timing plan. This DCS timing plan should satisfya set
of desiredDCS timing system attributessuch as those presentedand
discussedin this paper.

DESIREDTIMING SYSTEM ATTRIBUTES

In this section,a set of suggestedtiming system attributesfor a
digital DCS are presented,followingwhich the importanceof each
attributeis discussed. Parts of the discussionof some of the
attributespresentedearly on will also apply to attributesthat
follow. This is particularlytrue of the discussionof the first
attribute.

Time and frequencYreferenceinformationutilizedin applicable
Federal Government telecommunications facilities and systems shall ba
referenced to (known in terms of)_the existing standards of time an_
frequency maintained by. the U.S. Naval Observatory, UTC (USNO), or
the National Bureau of Standards, UTC (NBS)_

Discussion: This is a direct quote from FED-STD-IO02, and it is
DoD policy to comply with Federal Standards. However, different
people have chosen to interpret this standard in different ways. The
following discussion will illustrate the need for using a standard
timing reference and should help to bring out a desirable
interpretation of the first attribute as applied to a digital DCS.

Can you imagine trying to make connection at a busy airport, such as
Chicago's O'Hare, if each airline used only its own clocks, and clock
time for each airline was different from that of the other airlines?
At the least, it would cause considerable unnecessary inconvenience.
A century ago, that was the situation that existed in some large
railroad stations. You could set your pocket watch to any one of a
number of clocks on the station wall, each indicating the official
time for its associated railroad line. Problems with this are
obvious, but the railroads were heavily criticized when they adopted
a standard railroad time in 1883. Standard time slowly gained
popularity, and in 1918 congress passed the Standard Time Act. The
advantage of standard time for planning interconnecting flights when
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using modern air travel is quite obvious. Crossing time zones can
cause problems to travelers in keeping track of which time zone applies
to their present location. These time zone problems are sometimes
alleviated for both travelers and long distance electromagnetic
communications by using a worldwide time standard such as coordinated
universal time (UTC).

The problems of scheduling the transfer of bits of information from
one transmission link to another, where each bit must be made to
coincide with its assigned time slot, are somewhat similar to those
of transferring passengers from one airline to another. Each is made
simpler by well planned and well maintained traffic schedules.
However, a major node of the digital communications network will
typically handle many millions of bits each second, and the bits travel
between nodes at speeds' up to 186,000 miles per second (3 xlO Exp
8 m/s). As with the passenger trains, although it is not necessary
that all clocks read the same (bits can be stored in buffers just as
passengers can be stored in depots), it is obviously highly desirable;
and whereas tolerances of a few minutes were acceptable for the rail-
roads, tolerances of a few microseconds are desirable for a high
capacity digital communications network. Corrective action for an
information bit that misses its assigned time slot might be even more
difficult than corrective action for a passenger who misses an
assigned aircraft flight. Unlike the airline passenger, a single
communications bit that misses its time slot assignment is likely to
cause those that follow to miss theirs also.

Whenever a new communications system is planned, the system planners
seem to quicklyarrive at the conclusionthat it is only importantto
providesynchronismwithin their own system -- that they don't have
to worry about other systemsthat are being planned. Doesn'tthat
sound like those old railroadswhere each had its own time? Like the
railroads, each can be made towork, but also like the railroads,
taken together they present problems that can easily be avoided by
using a standard time system.

In the past, this country's largest telephone company has provided for
its own digital synchronization needs as it saw those needs, and
interfacing companies had to accept timing from that company.
Although that policy has not changed, present planning is to
eventually reference that company's atomic clocks to the National
Bureau of Standards. What is wrong with an approach where one
telephone company provides a timing reference for all of the others?
First, there are two U.S. Government organizations charged with
keeping standards of time and frequency - the National Bureau of
Standards and the Naval Observatory. Master clock time at each of
these organizations is in close agreement with Coordinated Universal
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Time as determined by the Bureau International de l'Heure, to which
both of these U.S. Government organizations contribute timing
information. Second, although smaller U.S. telephone companies might
be willing to accept their timing reference from the largest U.S.
telephone company, the likelihood of this occurring internationally is
much smaller -- an international time standard should be used. Third,
as now being implemented by the telephone company, their synchron-
ization system permits time delays to accumulate as the timing
information is passed through the system, and in some cases individual
local clock errors also can accumulate through long tandem connections.
This means that clocks in different parts of the network have some-
what different time (or phase), although clocks at adjacent nodes are
within acceptable (bufferable) tolerances. Although this is quite
satisfactory for civilian digital communications, it is quite likely
that it could not be tolerated by some future military systems. The
functional division between digital communications and computation by
digital computer is becoming less distinct, as well as that between
communications and navigation or position location. For these
relationships to be mutually beneficial, all should be based on
common time standards. From a wide variety of viewpoints, the digital
networks of the DCS should fully comply with a restrictive inter-
pretation of FED-STD-IO02.

Timing tolerances (clock errors) at major nodes of diqital DCS net-
works should be specified in time or continuous phase (not modulo
360 deqrees) rather than frequency.

Discussion: Relating this to the previous example of making
connections between flights at busy airports, it is not enough to
have the clocks for all airlines running at the same rate, but they
should also indicate nearly the same time. In digital communications,
the timing/synchronization system is used for assigning individual
communications pulses to specific time slots. For this to be
effective, tolerances should be established on the location (in time
or phase) of the time slot and also on the arrival time (or phase) of
the assigned pulse. Received bits should be retimed by temporarily
storing them in variable storage buffers from which they are removed
at the proper time as determined by the local clock. If the local
clock pulse is not at exactly the right time, it will be either early
or late by a certain phase angle at the pulse repetition rate; or,
alternatively, early or late by a certain amount of time (in micro-
seconds). A timing tolerance stated in microseconds is normalized,
which makes it convenient to apply to any of a large number of data
rates likely to be encountered throughout the communications system.
The size of the variable storage buffer determines the ability to
accommodate early or late arrival of pulses relative to the local
clock. The phase (or time) tolerances of the local clocks and the
bit rate of the communications stream along with expected variations
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in signal path delays determine the necessary size of the buffers.

There is no simple way that these timing errors (the ones of basic
significance to the digital communications timing system) can be
stated as frequency errors (Hertz) or fractional frequency errors.
However, because of the relationship between phase angle and frequency
(frequency is the time derivitive of phase angle), the phase angle
error at any time can be determined from an initial phase angle error
plus the time integral of the frequency error from the time of the
initial phase error to the time of the measurement of interest. In
order for the phase angle (or time) error to be bounded, the average
frequencyerror must be zero. Any nonzeroaveragefrequencyerror
will eventuallyresult in an unacceptablephase error; i.e., it will
eventuallyrequireinterruptionof the communicationstrafficto reset
the variablestoragebuffersto preventthem from either emptyingor
overflowing. If the allowablephase (or time) tolerancehas been
specified,averagefrequencyerrors that will permitthat toleranceto
be maintainedfor a specifictime can be determined. In general,
relativelyhigh errors can be accepted in the pulse rate for a short
period of time. As an example,assume that the pulse frequencyin a
systemwhich initiallyhas no phase error, is l percentlow over a
period of five pulses,and then is l percenthigh for the following
five pulses. After the first five pulses,there will be a phase
(or time) error equal to 5 percentof the pulse period -- a normally
acceptablevalue -- and after the second five pulses (a total of ten
pulses)the error will be zero again. Now as a furtherexample,
assume that the frequencyhad been high for five billionpulses
insteadof only five pulses and then low for another five billion
pulses. Then, if the maximum phase (or time) error were not to
exceed 5 percentof the pulse period,the frequencyerror could only
be one billionthof l percent. In both examples,the phase (or time)
error is the item of predominant-i_terest,and the frequencyerror is
of interestonly becauseof its relationshipto the phase (or time)
error.

The timing/synchronizationfunctionin the DCS shouldnot be solely
dependenton the continuedoperationof any particularnetworknode,
transmissionlink, or facilityexternal to the network.

Discussion: Since nodes of the DCS and the transmissionlinks inter-
connectingthem are subjectto enemy destructionor electromagnetic
jammingattack,it is obviouslydesirableto constructthe timing
system to minimizethe impact that the loss of any link or node, or
any combinationof links and nodes,would have on the timing function
for the survivingportionsof the network. No specificnodes or links
in the networkshould have such individualimportanceto the network
timing functionthat a successfulenemy attack on them would seriously
degradethe networktiming. No specificpartsof the timing system
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either within or external to the communications network should appear
to be particularly attractive targets to an enemy. This implies that
control of the timing system should be distributed rather than
centralized.

Following the loss ofLany node or transmission link of significance to
the timing function, either through failure or enemy action, the
timing system for the DCS should automatically reorganize itself.

Discussion: For any communications network timing approach, there is
either some optimum hierarchy of the links and nodes, or some optimum
set of parameters for providing a stable system, or both. When links
or nodes of the network are lost, adjustments to the networks (which
might include partitioning or reconfiguration) should be made to assure
that degradation of the timing function is acceptably minimized. In
civilian peacetime systems, where the need for such adjustments only
results from occasional equipment failures or rare acts of nature, it
is acceptable to manually make the necessary adjustments, and
necessary repairs to the failed equipment could be expected to be made
promptly. However, in a wartime situation, extensive damage to the
military communications system due to enemy action might simul-
taneously occur in many widely separated areas. The maintenance and
repair function might be intentionally or unintentionally impeded by
enemy action. Access to areas where repairs are needed might be
severely restricted, and required skilled personnel might not be
available when needed. Therefore, the timing/synchronization system
for a military communications system should be highly automated. In
particular, the reorganization of the timing system following the loss
of any link or node of the communications system should be totally
automatic; and by attribute number 3, it should also be distributed
rather than centralized.

So lonq as any communication link to a node survives, it should be
capable of supporting the timing function.

Discussion: Unlike a civilian communications system where failures
in the timing system can be expected to be random and infrequent,
sudden massive destruction of many parts of the wartime military
communications system can be expected over a short period of time.
Whereas a couple of backup paths would be quite adequate to assure
timing at a particular node in the peacetime civilian system, it
might not be unusual to lose all but one communications link to a
major node (or even several nodes) in a wartime military system.
Since it is not possible to assure which link might remain intact
following such an attack, every link must be capable of supporting
the timing function.

A node temporarily disconnected from the network should have the
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timinq capability to rapidly reenter the network -- including
capability for rapid synchronization of spread spectrum signals in a
jamming environment.

Discussion: Under jamming conditions, the length of time required to
test a given timing relationship to determine whether or not it is in
synchronization is greatly increased. If 1 second of sampling time is
required to make a decision between being in synchronization or out of
synchronization for each I0 nanoseconds change in timing, an
uncertainty window of I0 microseconds could require a total of I000
seconds to search. If correct synchronization were not found the
first time through, the window would have to be searched again.
Obviously, the amount of search time required depends upon the design
of the system and the environment in which it must function, but it
is desirable to maintain a small search window for acquiring or
reacquiring synchronization in a military communications system which
is subject to enemy jamming. In addition to speeding up the
synchronization process for spread spectrum equipment, good system
timing can also be used to speed the synchronization of multiplexing
and cryptographic equipment. This reduces the amount of time the
equipment is out of synchronization following signal outages, thereby
minimizing the loss of communications traffic.

To the extent practicable_ disturbances in the clocks at individual
nodes of the networkshould be prevented from propagating to other
nodes of the network.

Discussion: Errors in local clocks as a result of disturbances at
remote clocks propagating to the local clocks use up a portion of
the available phase tolerance at the local node and make it more
susceptable to loss of synchronization from other causes. This
includes an overall reduction in the stability of the timing system
making it less capable of accommodating signal fades and other
transmission disturbances. This attribute is particularly important
if the disturbances occurs just prior to the time a node enters a
backup free-running mode of operation where an induced frequency error
will be integrated overa long period of time producing a very large
phase error. This attribute provides increased resistance to enemy
attack and perturbations.

A normally operatinq timing system should not require interruption of
traffic solely for resetting variable storaqe buffers to accommodate
errors in uncoordinated system clocks.

Discussion: Planners of several civilian digital communications
systems in North America considered the use of accurate free-running
clocks with provision for occasional interruption of traffic to reset
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variable storage buffers [6]. All of these system planners rejected
this appooach because they felt that it would be unacceptable to their
customers. It is even less desirable in a military system where
there are additional functions, such as encryption and spread spectrum
transmisssion, which require synchronization. The worldwide nature of
a military network prevents use of a low traffic night time period
for such interruptions because the sun never sets on such a worldwide
network.

Capabiliy to reset variable storage buffers with minimum interruption
of traffic should be provided in order to permit continued communi-
cations by. operating in _ free-running mode whenever means for clnck
coordination is not available.

Discussion: This is a last ditch backup mode of operation to permit
continued communications (although degraded because of required
interruptions) if all means of clock coordination should be lost
while at least one communications link is otherwise intact. In a
well designed system, it should be a very rare occasion when this mode
of operation would be required, but it would be shortsighted not to
provide this capability. The timing system should not be permitted
to be the sole reason for communicationsnot being available. This
attributecould be very importantfor the very rare occasionswhen
it is needed,becausethis could be a period of time when continued
communicationsis of utmost importance.

Systematicself-monitoringof the timingfunctionshould be provided.

The timing functionin a digitalDCS is expectedto be veryreliable.
• Under normaloperatingconditions,undisturbedby hostilities,

failureswill occur very rarely. Under these conditions,it will be
very difficultto maintainwell trained,experiencedpersonnelfor
servicingfailuresto the timing system. Becauseof this, it is
importantthat the timing system provideautomaticself-monitoring
and fault diagnosis. It is desirablethat such monitoringincludethe
monitoringof the actual timing functionin additionto normal power-
supply voltagemeasurementsand signal level measurements. Many
types of failuresthat can affect the operationof a timing system
can only be detectedby monitoringthe actual timing function, It is
also importantto detect pendingtiming failureslong before any
interruptionsto communicationstrafficoccur. Trend informationand
automaticstatisticalevaluationof systematicself-monitoringof the
timing functioncan be used to automaticallyprovideearly detection
of problemsand self-diagnosisof their causes. This informationcan
then be used to automaticallyindicatethe needed correctiveaction.

Optionswith potentialimportancefor satisfyingfuture timinq
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requirementsshould not be precludedwithoutgood reason.

It is a common occurrencethat inadequateplanningfor future needs
finallyresults in a situationrequiringeither (1) a very large
expenditureof funds or (2) forgoing.theservice. When it arises,
this situationalways seems to be unexpectedbecauseit was not
includedin the originalplanning. Sometimesthe capabilitycould
have been providedat no extra costat the time of originalequipment
development,and nearly always at a small fractionof the cost for
retrofitafter the equipmentis fielded. It is difficultto predict
at the time of equipmentdevelopmentall of its applicationsduring
its lifetime. Therefore,it is very desirableto leave open all
options that might make it possibleto satisfythose unpredicted
applicationsas they arise, unless this resultsin some significant
penalty,e.g., significantadditionalcosts.

SUMMARY

A setjofdesirableattributesfor timing in the digitalDCS has been
suggested. The suggestedattributesprovidefor keepingthe major
nodes of the DCS within acceptablephase tolerancesof one another
by coordinatingall of their phaseswith the standardprovidedby the
U.S. Naval Observatory(UTC (USNO))or the NationalBureau of
Standards(UTC (NBS))whenevereither is available. If UTC is not
available,a particularclock within the network is automatically
selectedas a referencefor the rest of the network. Survivability
of the networkis furtherenhanced by: (1) assuringthat it is not
dependenton any one point of centralizedor concentratedvulner-
abilityto enemy action, (2) providingadequateautomationto
accomplishmost correctiveactions (otherthan equipmentrepair or
replacement)withoutmanual intervention,(3) assuringthat timing
coordinationis availableat any node so long as there remainsone
functioningcommunicationslink to that node, and (4) providinga
backupmode for degradedoperationof any node that finds its ability
to coordinateits clock has been lost for any reason. Any improve-
ment in stabilityand accuracythroughimprovedclock disciplining
procedureswill furtherenhancea system'scapabilityto provideall
of these attributesunder all conditionslikelyto occur in a full-
scale war.
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qUESTIONS AND ANSWERS

MR. CHI:

I would like to make a comment. Particularly I like your example

of the illustration of comparison between people and bits, that is

in terms of the requirements between the railroad for the timing

and digital communications. I think it was very well illustrated.

We talk about the requirements for time, but the fact that you

have illustrated it and gave us a very simple example in such a

way that most people can understand what it is. Thank you.

DR. STOVER:

The railroads had a hard time, you know, getting standard time

across. We are having that same kind of a problem.

DR. WINKLER:

Maybe I should say a few things, particularly about your items 7

and ii, which struck me as very important and very general.

Seven has been, if I remember correctly, that means should be

provided to prevent the disturbances of a single clock to propa-
gate throughout the system. Now that is something which is, of

course, important, not only for your particular application, it
is essential to all timekeeping. And what does one do in order to

prevent that?

And now, it appears to me that the approach which is usually

taken is to just straight average and this is something which has

been criticized by several people, the last one, which impressed

me most, was an article which I read two years ago in "Die Klein-
Hallbacher Berichte", the German URSI reports about the falacies
of using the mean as the best estimator in cases of disturbances

which are not at all Gaussian and may not be right in time cor-

relation. And in that article, the great advantage of using the

median was discussed, that in fact the median, the central point

of all incoming time reports which a model point would get from

its surrounding points would be a completely insensitive esti-

mator to any individual disturbance. A clock could go any

arbitrary amount off and by taking the median instead of the mean,
you are safe. It would not be affected at all and I wanted to

point that out, that in filtering, in selecting routines to re-
Ject such outlyers, the assumption of the normal distribution is

an incorrect one because as we deal with digital systems, digital
systems are usually outrageously wrong and not Gaussian distri-
buted.
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And ii, the importance of satisfying future requirements.

That strikes me as something of even greater generality.

DR. STOVER:

It is even harder to get examples of.

DR. WINKLER:

That we so often find the role of management defined as -- These

people must think that management must have something to do with

monocles t0 restrict people's choices in the future, while in

fact good management ought to enlarge the choices which the future

generations have. And I think excellent technical management

would be one which keeps wide open all these future choices in-
stead of restricting them in too short-sighted a view. And that,

again, is an overriding generality.

QUESTION:

I too have had access to some of the German publications and

especially when you are talking about different types of weapons

which may be releasing electromagnetic radiation which could
affect large numbers of clocks in an area, but the aspect of going

to the median also bothers me because there may not be a discrete

median. There is a range for which there is a set of values can

be the median, so how do you try to solve this problem of large-

scale, propagation disturbances with large numbers of clocks being

simultaneously disturbed with the ionosphere beingdisturbed and
which all would masquerade and it is the same. I think that is a

very major problem in tying everything together.

DR. STOVER:

Well, one of the things that I had in mind at the time that I
wrote that was one of the systems that has been very highly dis-

cussed in the communications literature for timing for digital

communications systems is the so-called "mutual system", in which
all the clocks in the whole communications network effect each

other, so that the whole system can float around, so to speak,

with bulges here and bulges there as far as the error is concerned

and everything effects each other. And one flaw in one clock will

effect all the other clocks. That was the thing I was really

trying to rule out when I wrote that statement. And my preference

is to tie everything to UTC, as was stated in the very first one

which is a Federal Standard. But as you read that Federal
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Standard, different people can interpret it differently, when it

says it is traceable to the Naval Observatory, some people will

say that it has some frequency that is traceable to the Naval
Observatory, while I would like to say time or phase which is

stated in one of the later ones. And some people will say that
the accuracy with which that frequency needs to be traced to the

Observatory is not really very great. Now I disagree with both
of those statements as you can tell, and think that we should

accurately, in phase, in time, clock the DCS, because it is a war-

time system.

DR. WINKLEK:

I agree very much and I think that agrees with general principles

which have been mentioned recently by Professor Becker. Is he

here? Would he like to say something about that?

DR. BECKER:

I will address it in my paper later.

DR. KAHAN:

Have these attributes that you have listed been accepted and imple-

mented within the DCS system?

DR. STOVER:

No. This is the first time that they have been presented as a

group, as a desirable. We have to get them accepted. You know

how the military works. When you tell somebody you have a re-

quirement, they want to know which directive from the Joint Chiefs

state it as being a requirement. So you have to beat on these
things a long time before they can be stated as being requirements.

So that is why we are calling them "desirable attributes".

QUESTION:

You mentioned item 7 here as non-propagation of errors. Do either

one of you have any suggestions as how one might implement the
desirable attributes?

DR. STOVER:

Well, the thing I had in mind, of course, was the types of things

that I have presented at previous meetings here. I am biased
there, of course, and so if you would read the proceedings from

the year before last you would get an excellent idea of what I
would consider an outlineof how to do that.
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IMPACT OF IMPROVEDCLOCKSAND OSCILLATORS ON
COMMUNICATIONSAND NAVIGATION SYSTEMS

(Special Report)

Samuel R. Stein
Frequency and Time Standards Group

National Bureau of Standards
Boulder, CO 80303

(303) 499-1000, ext. 3277

In September of this year, the National Bureau of Standards held a
Workshop in the Washington D.C. area which addressed the role of
clocks and oscillators in large scale systems, particularly communicat-
ions and navigation. The ultimate purpose of this Workshop was to
do two things: first, to provide research and development people in
government, at universities and in companies with adequate information
to appropriately direct their research activities towards the real
needs for clock and oscillator improvements; second, to determine
whether or not there are any ways in which existing oscillators and
clocks could servesystems better than they are doing now. The
Workshop took place over a period of three-days, with several techni-
cal papers and two panel sessions which were instrumental in determin-
ing the state of opinion in this field. Hany government agencies
and private companies were represented. I am not going to repeat

the technical details. Instead, I would like to present a distillation
of the ideas and concepts; some of the ideas are my own, but many came
from other participants.

There are two generic alternatives to obtaining timing informa-
tion in a distributed system - the use of independent clocks or the
use of coordination. This paper will not address this choice at all,
but will concentrate on systems which use clocks. For military systems
in particular and in many cases for civilian systems, there are reasons
to choose solutions based on precise clocks or oscillators. Low error
rate in digital communications, anti-jam characteristics and fast sig-
nal acquisition all require very precise timing information. Surviv-
ability and independence depend upon a priori knowledge that comes
from having precision clocks in the system and that is not available
to unauthorized persons. Independent operation of system elements
protects the system from human error and various disasters.
Finally, there is often fallout resulting from the inclusion of
clocks and oscillators in a system. For example, having a very
precise oscillator on a satellite permits improved determination of
the orbit of that satellite. This technique is being applied today
in the GPS system and may be applied in the future to many satellite
systems if the satellites carry low cost but high precision clocks.

Contribution of the National Bureau of Standards.
Not subject to copyright.
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In a paper presented at the last PTTI conference, two basic
mechanisms were suggested for achieving improved systems; better
clocks and system redesign could lead to improved performance or
different operational procedures and system redesign could lead to
relaxed clock dependence. The conclusion which I reached as a
result of the Workshop is that the real deficiency from which we
suffer today is a lack of effective and efficient utilization of
existing resources. Engineers today, particularly systems engineers,
will often go a long long way to avoid using clocks in their systems.
The JTIDS system is probably a good example of that. The operator
needs to enter his time with approximately 6 second precision.
Doing better does not save any time in acquiring utilization of the
system. Typical requirements to satisfy the position location,
identification and the information distribution aspects of the

system Tan be accomplished with oscillator precisions in the I0 "_ to
the I0- range, orders of magnitude below what is available today. I
am going to discuss why this situation occurs and then how to opti-
mize the use of available devices to achieve the required perform-
ance and reliability and how the specification of oscillators
affects our ability to accomplish this at minimum cost. We will
consider the traps of applying false economic considerations and the
problem of functional duplication where many subsystems provide the
same attributes and none provide the reliability and the redundancy
that is necessary. There was a near unanimous agreement that more
development is needed on two fundamentally different varieties of
clocks. We will review the state of the industry and its capability
of providing these requirements.

There is a large gap between what is being produced and the
state-of-the-art, i.e., what has been achieved in the laboratory
under ideal conditions. One of the things that we'd like to be able
to do, of course, is to purchase large numbers of these best units.
The idea may be a little bit controversial but I believe there
really is no large problem with regard to the ultimate performance
capability, i.e., the noise floor of our existing technology; combi-
nations of hydrogen, rubidium, and cesium standards have been demon-
strated to provide pretty much all that most people need at the
present time. However, there are significant areas of deficiency
relating to operating standards in the field. The turn-on time, the
environmental sensitivity and the radiation resistance of our current
standards simply do not satisfy systems designers. Many systems,

SEEK-TALK and JTIDS for example, would like _ have oscillators with
any where from a part in I0 J to a part in I0 precision and accu-

racy that turn on in 30 seconds. Operationally, they _ usingoscillators that turn on in 40 minutes at the part in level.
Commercial manufactureT_ have published results of oscillators that
accomplish parts in I0 TM repeatability in five minutes. So there is
a large discrepancy. System functions are also pushed onto the
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clock with unenviable results. Manufacturers are asked to provide
output at frequencies such as 5,10,10.23,5.115,9.116 and 4.016 MHz.
They are also asked to provide high degrees of setability and tuna-
bility which are essentially system functions.

The first area that I would like to talk about is probably the
most important one, reliability. It is something that we pay lip
service to, something we worry about after the fact. One of the
major concerns expressed in the Workshop was what can we do today to
plan for reliability in our future developments? The performance
which we need exists; the reliability that we want is only going to
come from more experience with the very standards that we currently
have. We make the mistake of constantly trying to push the state-
of-the-art and push the performance of our standards with the same
devices that are supposed to produce high reliability and a long
lifetime. The only way we are going to find the problems in clocks
and oscillators and solve them is to produce hundreds of these
devices, and get them out into field operation so that the design
flaws which are built-in can become known. Otherwise there will be
a wide variety of circuits and features in supposedly high reliabili-
ty devices that have only been produced two or three times. The

strategy which I recommend is that we invest our money in buying
large numbers of identical clocks. This will help generate a guaran-
teed market for the companies that produce the clocks and will en-
courage the needed engineering and development investment in the
clocks. This approach would be costly, but not as costly as the
failure of important systems. Another consideration that we
should take into account is that the various attributes which we
assign to a clock are not independent. For example, if we want
super performance from a device then we are going to have to pay
for that performance in a variety of areas, in reliability and
cost for example.

The use of custom made devices is another significant problem
area. We tend to set goals for our system clocks which are either
the best results we know of or, worse, something a little bit better.
We ask the small R&D company to develop a few units with that perform-
ance but also having custom features that match our system require-
ments - our frequency, size, configuration, power, weight, and
warmup time. But custom units in general perform worse than standard
off-the-shelf-units. Not only that, the process of producing a
customized product ties up the technical capability of the small
company which is then not available to do the advanced develop-
ment needed to get better performance. This scenario is
probably true even in the case of the most trivial changes
because the risks of making these changes are high.

We do a further disservice by not paying enough attention to
the whole problem of specification. The process of specification is
unique to each system application and cannot be done in a genera-
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lized fashion. We should always use the ultimate criterion;
if the system is to provide timing, then the specification should be
in terms of the maximum time deviation permitted for the duration of
the mission or experiment. Systematics are particularly important to
specify correctly. Several kinds of modeling can be done, but most
often, modeling is unsuccessful in removing systematics. The princ-
iple reason is that the systematic effects of the clocks often have
the same functional dependences as the systematics from other parts
of the system. The GPS program is a good example of that.
Quadratic systematics in the clock are inseparable from similar
phenomena in the orbit.

Our specifications are often unreasonable. We sometimes specify
a much better device than is needed because we know it is producible,
but that runs up the cost and prevents the manufacturer from
trading off that performance against some other important criterion.
One has an obligation to specify the true system performance require-
ments rather than anticipate unforseen eventualities. Once the
specifications of a system are fixed, the performance of the system
clock or oscillator is determined. A different system design might not
require the same oscillator performance .but once the requirements
are set one is forced to pay for the unnecessarily difficult specifi-
cations. A related problem is the totally ingrained notion of many
engineers that they know the value of the clock in their system
a priori, based upon the final price of the system. I think this
a priori "knowledge" of the value of the clock is grossly in error.
For example, quartz oscillators look rather simple. They are small
devices; the best of them cost only a few thousand dollars. Systems
engineers sometimes don't comprehend that the state-of-the-art
quartz oscillator is splitting a resonance line to a part per million.
This is mostly a science, but partially an art. It is not a situa-
tion where additional engineering effort is going to produce a
fundamental decrease in the cost. As another example, l'd like to
talk briefly about possibilities for a very inexpensive GPS receiver.
The performance achieved in the GPS system is interesting for commerc-
ial applications. The clear acquisition signal has more power than
the P code and it may become available on both the LI and L_ frequenc-
ies. People are talking about two-printed-circuit-b6ard receivers
that will sell for $2,000 and cost less than $I,000 dollars to

produce. In this context, the value assigned t_ithe clocks is $150
and the performance requirement is a part in !0 stability for
hundreds of seconds. It is probably impossible to produce such a
device with today's technology.

The development costs of custom clocks and oscillators are
usually not recoverable by sales of a large number of units. In
fact, the small, high technology companies that serve the custom
product market run the risk of developing new devices which, if
they have large profit potential, may attract other companies to
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compete for the market. In addition, specifying state-of-the-art
performance in a system diminishes the possibility that there will
be significant economies due to large scale production. Super high
performance is achieved by a process of measurement, testing and
selection and these processes are labor intensive. In fact, they
are essentially an impediment to ever producing large numbers of
super high performance clocks. We need to recognize that research
and development for new products will have to be paid for by the
government or by the systems developer.

In order to improve productivity, it would be beneficial to
separate the problem of making a device that works from the problem
of making it in a cost effective manner. The engineers and scientists
who have to produce new developments should not have the added

burden of doing it inexpensively. I have seen this policy applied in
the solar power conversion industry and it appears to be very success-
ful. We ought to increase the utilization of standard components in
a variety of systems. One aircraft could eventually carry operation-
al JTIDS, SEEK-TALK and GPS receivers. Right now, because of the
differing specifications those will all contain independent frequency
standards. There is no reason why they could not all run from a
single distribution unit. In fact, there is an advantage because of
the redundancy resulting from using an ensemble of standards.

There was a consensus of opinion at the Workshop that there are
three types of standards requiring more development. The first is a
special purpose standard. Various systems stress different attributes

which can be combined9in a single device. The JTIDS system needs fast
warmup. A part in I0 accuracy satisfies all functions of that sys-
tem. The _EK-TALK program is princpally interested in achieving a
part in I0" accuracy with fast warmup. For GPS user equipment,
stability is important in commercial applications which observe sate-

llites sequentially. Spread spectrum communication systems need _ar
zero bit errorl_ates which requires in the vicinity of part of I0 v
to parts in I0 stability. The second type of standard needing fur-
ther _velopment is the very, very high stability oscillator. Parts
in I0" and better performance have been achieved, but the devices
are not field deployable and are not sufficiently reliable. This
kind of performance is needed for times up to a week in order to
increase calibration intervals, to speed up measurements, to allow
the use of higher frequencies in our communications systems, and to
make better use of station keeping satellites in TDMA systems.

What is the state of research and development that is supposed
to produce these results? Crystals, cesium, rubidium and hydrogen
are all old technologies. We are existing off the developments of
the past, but there are many new ideas. In fact there is a plethora
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of new ideas, only a few of which may be superior to the existing
concepts. We must carefully analyze this situation, and put our
research and development resources in the direction of devices that
really have potential for replacing or adding to the existing concepts.
Advanced development is in a worse state. Whereas, the civilian and
the military funding agencies spend a fairly large amount of money
on basic research, there is not much funding for advanced development.
Private companies are tied up producing the customized devices
required by systems engineers. Bell Telephone which was spending
millions per year on crystal research is now out of the field,
having satisfied their own needs for the foreseeable future.
Organizations like the USAERADCOMare shrinking in size, no longer
providing the advanced development that they were doing at the end
of the second world war. This problem is exacerbated by the fact
that the development of the standard up to the preproduction model
is far more costly than the initial laboratory demonstration. Even
if the new clocks and oscillators needed by our systems in the near
future are developed we will not easily be able to manufacture them.
The manufacturing capability that is needed is considerable. The
uti!ity type standards will be required in quantities greater than
ten thousand units, and they can't be created overnight. It will
probably take years and cost millions of dollars to establish that
kind of production facility. We've even lost some of the facilities
that we had. Our crystal capabilities have gone overseas for the
most part; the entire commercial industry to Japan and 50% of the
precision capability is gone. There is only one source of precision
crystals in this country marketing resonators without osci.l!ators
and the quality of the quartz that is available has deteriorated
markedly since 1970.

Finally, there is also a problem of system implementation. We all
share this problem; we get caught up in developing new things.
That's where most of the credit lies. We are so caught up in develop-
ing new things that good devices already developed are often not
implemented. The new technologies never get to mature. On the
other hand, technologies that are out in the field aren't replaced.
Some are 40 years old and they are not only mature they are senile'.
It is necessary to separate the problems of research and production.
We have to be satisfied with using devices that perform well, even if
next year's device will"perform better. We have to get those devices
out into systems and we have to concentrate on the research and
development that will produce new devices for the future. Systems
engineers should worry about systems problems. It will continue to
debilitate clock research efforts to continue considering things like

output frequency, power level, tunability and other system attributes
to be problems for the clock designer to solve.
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QUESTIONS AND ANSWERS

DR. WINKLER:

Thank you very much, Sam, for your very thoughtful remarks. Maybe

a little pessimistic, but it is certainly better to face the issues

and I wonder whether we have any comments to that?

MR. VESSOT, Smithsonian Astrophysical Observatory

I think one thing that has been perhaps overlooked is that the

technology that has led us to the successes we have made, have

rarely come from an intention to develop a clock. If you look in

the past, I suspect that the pendulum had nothing to do with the

clock when its properties were first observed, and going a little
more recently, the discovery of Cate's electricity had _othing to

do with crystal oscillators. Ramsey, I am sure, didn't design his

Ramsey Structure with the idea of making a clock. He was out to

resolve some spectral lines. And the masers and lasers, I am sure,
weren't motivated by clocks.

I guess what I am saying is that you can pour an awful lot of

effort into directed research and get nowhere and I think what the

country is lacking is the general outlook of undirected research

in the hopes that technology can ensue that will benefit somewhere;

but I really feel very uncomfortable about the attitude of, "Let's

go and direct our fundamental research in a given direction".

Applications nearly always arise from availability of technology,

but requirements or needs don't always result in improved tech-

nology. And I think the main plea we might make is to hope that

our support for fundamental research in the country will not be

throttled back, and it isusually the first thing that is throt-

tled back in a situation of a tight economy.

DR. STEIN:

I think you raised an extremely important point, Bob, and I didn't

mean to imply that that wasn't true. I think it is very true.

However, I was trying to elucidate some of the problems we have

in accomplishing the transition from once you have identified a

new technique, a new physical process, whatever it is, to then the

implementation of a working clock, something like ion storage,

cooled ions, lasers, are identified. They can be thought out very

carefully. In many cases they are not thought out very carefully

and we can identify, I think, where to best place development
dollars.
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DR. MCCOUBREY:

I agree with the remarks that Bob Vessot said, drawing attention
to the declining support for the research that underlies these

technologies that are important. I think there is another consi-

deration also, which seems to me to apply in the case of the clocks,

which have been important system components for many many years.

I think that there has been less planning and less support for the

design qualification and advanced development. I think you had

your finger on it, Sam, when you pointed out the cost of advanced
development to bring these things to a point of usefulness. It

seems to me, for example, that in the case of other system compo-
nents, for example, power plants and propulsion systems, or control

systems, flight control systems, that there is a much greater amount

of planning given to the refinement of the system and the qualifi-

cation of the system beyond the development of the fundamental con-

cepts in order to get components that are reliable. And I think

one only has to look at the propulsion systems that are available
and even the flight control systems now. Probably there are other

components also.

DR WINKLER:

It is my impression that what is really at the root of what we are

discussing here are two components. Number one, we have to ask

ourselves well what are all these people doing now, whichwe would

like to see working on the things which Sam Stein has mentioned,

what are they doing? Well, they are gone? No. They are certainly
still doing something and I think we may be overlooking the tre-

mendous impact which we still have to see, which we still can, in

fact, can expect coming from LSI technologies, from microcomputers,

digital electronics, in other words. That impact has not yet come

in the field of, certainly, of high precision frequency control.

But it will; and it will change the scene radically, I think.

And number two, I think we are suffering, in fact, not from

a syndrome of undermanagement or mismanagement but from over-

management. It is a question of-- Well, I see a great deal of

sympathy in the audience to what I say and I feel very strongly

about it, that if we would devote all these energies which are

being spent today in trying to split up things exactly into cer-

tain bins, 6.1, .2, .3, .4, .5, and to decide exactly what should

be done and what should be done here. We are overdoing things.

That is really what Bob Vessot has meant, that we cannot specify

in such detail the future. It is impossible. We have to allow

a certain degree of freedom, of liberty. If we do away with it,

if we become completely enslaved to superplanning I think we will

be in serious trouble in these advanced R&D concepts. There have
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been many examples cited that none of the real great breakthroughs
which have been made, would be possible today. They would all be

declined as outrageous requests for funding. All of them. Einstein

would never be permitted to work on such crazy things in the Patent

Office. I think that management was very poor which allowed him to

do that. And the story of penicillin and of many other discoveries,

in fact, even the laser, if you go really to it, all of that was

accomplished because at that time there still existed a certain

degree of lack of definition. The bean counters didn't really
know too well the details. Today they know everything and I think

that is the real problem.

DR. STEIN:

May I defend myself?

DR. WINKLER:

No, but I was going to ask for more questions, and if we have no

more question, then I think that we will adjourn.

There is one item which was brought up by Dr. Walls Just

in discussion which refers somewhat to thelast paper by Dr.

Stein and I feel that it is a very important point and that

is he urges users of clocks or those who specify clock_, do
not deviate from the standard operating frequencywhichshould

be 5 megahertz. The reason is that there is a considerable

technology available and a considerable production experience

and the point applied very much that if you specify something
different, you also specify additional troubles and it is much

better to specify low-noise frequency translators which are
more within the state of the art in production capability using

our new technologies as compared with odd frequency, output

frequencies for frequency standards.
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_UESTIONS AND ANSWERS

DR. STEIN:

On your last slide you showed time synchronization requirements
that varied in the i0 to the minus 14 to i0 to the minus 15 and I

was wondering where the frequency stability requirement for i0 to
the minus 15 comes from? For what applications?

DR. SYDNOR:

There are differences as we have seen in the past between require-

ments, desires, and needs. And this is probably the minimum that

the frequency, the time synchronization people will accept. The

three parts in i0 to the 16th is what they need to get the resid-
uals down to a level where they are not bothering their solutions

too greatly. At this point the major error source is the fre-

quency standard as I understand it.

DR. STOVER:

What concerns me is whether you are putting one of these block

diagrams at each station or is that the one at the Jet Propulsion
Lab?

DR. SYDNOR:

This is at each station. At least at each of the major stations.

Some of the minor stations have a somewhat reduced set of blocks

in the block diagrams.

DR. STOVER:

You showed a present requirement of Observatory or Bureau of
Standards time as being 50 microseconds and your next was Just a

few nanoseconds. There are three orders of magnitude difference

there. Why is that?

DR. SYDNOR:

There is a difference there between the precision that we need to

synchronize our various stations and the precision that we need to
know absolute time, epoch. And if you look at the i0 nanoseconds,

that is an internal problem. While on that same slide the need to

know epoch time was llke I00 nanoseconds in the same timeframe.

And it is true that between now and five years from now there are

three orders of magnitude difference, but right now we are working
on that other one. And we have some results which you will hear

later about how well we are doing.
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QUESTION:

You mentioned going exclusively to the 36-bit NASA code. Is this

something that is absolutely going to happen and if so, what would
be the earliest possible time in years?

DR. SYDNOR:

Well it is not absolutely going to happen. This is something

that we are considering at the moment. With this great number of

codes, expecially with the binary codes with the 50 lines going
out all of the places, it is prone to a lot of failure. We would

like to standardize our equipment so we don't have the spares and

the maintenance problems, and simplify everything. We think it
will happen. If it does happen, it will be 5 years downstream.
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SATELLITE TIME TRANSFERVIA TDRSS
ANDAPPLICATIONS

Andrew R. Chi
NASAGoddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

In the early 1980's NASAwill enter a new era of space program, i.e.,
space transportation through Space Shuttle. It will have a new large
scale space communication system for satellite tracking and data
transmission knownas the Tracking and Data Relay Satellite System
(TDRSS). With two geosynchronous relay satellites TDRSScan provide nearly
worldwide coverage for communication between all near orbiting satellites
and the satellite control center at Goddard Space Flight Center. Each
future NASAsatellite will carry a TDRSStransponder with which the
satellite can communicate through a TDRSto the ground station at White
Sands, NewMexico. It is using this system that the ground station
master clock time signal can be transmitted to the near earth orbiting
satellite in which a clock may be maintained independently to the
accuracy required by the experimenters. This paper presents the satellite
time transfer terminal design concept and the application of the time
signal in autonomously operated spacecraft clock. Some pertinent TDRSS
parameters and corrections for the propagation delay measurement as well
as the time code used to transfer the time signal will be given.

INTRODUCTION

The use of satellites for time transfer began soon after the first
artificial satellite was placed in orbit. This was because the concept
as well as the instrumentation design was simple. It was done as an
experiment to demonstrate the capability in precision over long range
and the favorable geometrical configuration for the signal to propagate
through the medium. In comparison with the terrestrial propagated
signal, the signal transmitted from or transponded by a satellite is
relatively independent of the propagation medium. The stated precisions
by investigators in the last two decades using different carrier
frequencies, techniques, and satellites shows orders of magnitude of
improvement, ranging from microseconds to nanoseconds, over the conven-
tional techniques. Although the capability of precision time transfer
using a satellite has been amply demonstrated, the limitation of further
improvement still lies on the ability to measure the signal path delay.
At present, this limitation is about 30 centimeters or l nanosecond.
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Fortunately, the technology for the time generation and dissemina-
tion has been ahead of or at least in pace with the requirements [I].
As independence for timekeeping becomes an essential requirement
for on-board navigation and spacecraft autonomy [2] satellite time
transferbecomesa technologythat is needed for immediateapplication.
In this paper, I shall describe a particularsatellitesystem through
which clock time can be transferredfrom the ground to the users in
satellitesin near earth orbit or on the ground. The satellitesystem
is called the Trackingand Data Relay SatelliteSystem (TDRSS)[3].

TDRSS

The TDRSS is a new large scale space communicationsystem to be shared
betweengovernmentand commercialuse. It is a new NASA trackingand
data acquisitionand communicationsystem. It also providesadditional
capabilityfor growing communicationtraffic in the privatesector.
The system consistsof 4 geosynchronousrelay satellites. The first
two are for NASA, the third (the advancedWeststar)is for commercial
use, and the fourth is a common spare. The system conceptis shown in
FigureI. It is representedby the two NASA geosynchronousrelay
satellites,130° apart in longitude,and a ground terminallocated at
White Sands, New Mexico. The systemwill be capableof tracking,
transmittingdata to, and receivingdata from user spacecraftover at
least 85 percentof the user orbit. The ground terminalat White Sands,
New Mexico is shown in Figure 2.

The satellitedesign is shown in Figure 3. Each satellitegene-
rates 1700 watts of electricalpower from its solar arrays and trans-
mits and receivesin 3 frequencybands (S, C, and K) from 6 antennas,
3 of which are steerable. The weight is 2132 kilograms(4700 pounds)
and the size is 17 meters (57 feet) from tip to tip. The satellite
will be launchedby the Space Shuttlein 1981 and 1982 and will have
a lifetimeof lO years.

The steerableS and Ku-Band,4.9 meter antennas,are used to
providecommunicationservicefor the single access (SA) users, and the
S-band antenna array is used to providecommunicationservice for the
multipleaccess (MA) users. The steerableK-band,2.0 meter antenna,
is for the forwardand return communicationlinks betweenspace (TDRS)
and the ground terminal. The two TDRS can supportup to 4 S-band or
K-band single access users (SSA or KSA) and up to 20 MA users.

The advantageof such a space communicationsystem [4] can be
seen in the next two figures. Figure4 shows the presentNASA track-
ing and acquisitionnetwork. There are 14 ground stationslocated
throughoutthe world. Figure5 shows the post TDRSS NASA tracking
data acquisitionand communicationsnetwork. It shows 8 ground stations
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including the Bermuda station to provide only the launch support.
There is a 50 percent reduction in the number of the ground stations
which also serves the deep space probes and the highly eliptical orbit
satellites.

SATELLITETIME TRANSFERUSINGTDRSS

A user configuration of a satellite time transfer system using a
TDRSis shown in Figure 6. A master clock is located at the White
Sands ground terminal. The user may be mobile, fixed on the ground
or in a satellite. The master clock is calibrated via a TDRSto a
national time standard such as the National Bureau of Standards (NBS)
or the U.S. Naval Observatory (USNO), since the NBSand USNOtime scales
can be related to each other and to the Bureau International de l'Heure.
The user's modes may be MA, SSA, or KSA, and the carrier frequencies
for each mode are shown in the table in Figure 6. The satellite cover-
age for the time users at 5° and I0 ° elevation viewing angles for TDRSS
at 41° west and 171° west is shown in Figure 7.

CONCEPTOF OPERATION

The philosophy of operation is directed toward automation, that
is the clock time will be transferred from the White Sands terminal
via a TDRSto a user satellite by a commandsent from the Project
Operations Control Center (POCC) at Goddard, Greenbelt, MD. The propa-
gation delaymay be measured by a two-way time transfer technique or
maybe calculated based on the position information of the ground terminal
and tne two predicted satellite positions, if the calculated delay
accuracy meets the time accuracy requirement. The received time signal
in the user satellite is measured relative to the on-board clock by a
time interval unit. After correction for the signal propagation path
delay, the clock error is transmitted via the TDRSto the ground for
monitoring and verification. The satellite clock is free running up to
a pre-set maximumclock error at which time, by on-board computer program
action, a step time or a step frequency correction is made. Should the
correction be deleted, a commandsignal is needed to override the
automatic clock correction. After such a command, a new value of the
maximumclock error must be re-set if the automatic clock correction
feature is to be maintained.

A functional block diagram of the ground station time transfer
terminal is shown in Figure 8. The time signal data is divided into
two parts. One part contains the grouped parallel binary time code
(PB5) [5] which is transmitted as data through telemetry. Only the
time unit in the time code that is larger than the propagation path
delay is of significance. Thus it is called the coarse time. The
other part contains a time epoch sequenced pseudo random noise (PN)
code [6] which is transmitted through the range channel or the forward
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link. It has an ambiguity time of 85 milliseconds. It is to this time
data that the propagation path delay corrections must be applied. The
data processor is shown at the extreme right of Figure 8. The step
time and step frequency corrections are used to maintain the ground
station clock to that of a national time standard.

The functional block diagram of a satellite clock system [7] is
shown in Figure 9. It is identical to the ground station terminal.
The only exception is the Global Positioning System (GPS) receiver.
This feature is designed for a user satellite either to use the GPS
time signal or to compare the time signals of the GPSand TDRSStime
transfer systems.

TDRSSPARAMETERS

For detailed TDRSSparameters, signal characteristics and service
capabilities, the readers are referred to the TDRSSUsers' Guide which
is available on request [8]. Somepertinent TDRSSparameters to
satellite time transfers are given in Figures I0 and II.

TIME SIGNAL CORRECTIONSUSINGTWOWAYTIME TRANSFERVIA A SYNCHRONOUS
SATELLITE

In a two-way time transfer using a geosynchronous satellite, the
propagation path delay can be approximated as shown in the upper part
of Figure 12. This two-way delay is 46 milliseconds (ms). For
simplicity of operation, the PN code period is considered to be longer
than the two-way path delay, i.e. 46 ms. Thus 85 ms ambiguity is used
for the PN code.

In a satellite-to-satellite time transfer, the relative satellite
motion of the two satellites must be considered. Based on past data,
the doppler motion for all satellites falls in the range of 6 to 8 KM/S
which is equivalent to about 20 to 27 ps/s rate. If the correction for
doppler motion is made for I/4 of a second, the residual error is 5 to
7 ps, as shown in the lower table of Figure 12. If the same correct-
ion time of I/4 of a second is applied for satellite motion in a

geosynchronous orbit, the residual error is only 17 to 34 ns.

The propagation delay corrections due to the composite atmospheric
medium depends on the assumed atmospheric model, season, and geograph-
ical locations. Using the example worked out by David Levine [9] in
1970, as shown in Figure 13, the maximumerror is 65 ns at 8 GHz and
70 ns at 2 GHz if the atmospheric correction is not made.
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ONEWAYTIME TRANSFEROPTION

For most space science users in the 1980's, the timing requirements
are in the range of I0 to I000 microseconds. To meet these needs, one-way
time transfer via a TDRSis an attractive option. This is particularly
true if the user satellite can navigate on-board to achieve one kilo-
meter position accuracy. This is based on the capability of TDRSSorbit
and position data which can be provided in near real-time as shown in
Figure 14. Obviously, this service can be provided to a larger number
of users through the multiple access mode.

SUMMARY

TDRSScan be used after 1982 as an operational service to transfer
precisetime by two-way or one-way technique. Using the two-way tech-
nique to measure the propagation path delay, the precision of time
transfer, without corrections, can be of the order of hundreds of nano-
seconds and with correction to the order of nanoseconds. The precision
of one-way time transfer technique is limited by the accuracy of the
path delay calculations. This is generally in the order of microseconds.

Potential applications in addition to serving the satellite users
are for time comparison among navigation system clocks and the national
laboratory primary clocks and for cross-calibration of other equally
precise time transfer systems.

As in any system design, the accomplishment is the accumulated
results of many research and development programs. The author expresses
his appreciation without giving the names of those who have contributed
to the satellite time transfer technology.
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Figure 1. System Concept of the Tracking and Data Relay Satellites (TDRS)
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Figure 2. TDRSS Ground Station Communication Terminal, White Sands, New Mexico
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Figure 3. Antenna Design of the Tracking and Data Relay Satellite
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Figure 6. User Configuration of Satellite Time Transfer Using a TDRS
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Figure 8. A Functional Block Diagram of the Ground Station Time Transfer Terminal
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MA SSA KSA

RF (MHz)
FORWARD 2106.4 2025-2120 13775
RETURN 2287.5 2200-2300 15003

NO. OF RF LINKS
FORWARD 2 4 4
RETURN 20 2 2

BANDWIDTH (MHz)
BW (3db) 6 20 50

IF NO Y ES YES

CHIP RATE
FORWARD 3iF 31F • 31F

221 x 96 221 x 96 1469 x 96

RETURN* 31F R 31F R 31F R
240 x 96 240 x 96 1600 x 96

DATA RATE 0.1-10kb/s 0.1-300kb/s 1kb/s-25Mb/s
=

• FR IS THE DOPPLER COMPENSATED FREQUENCY RECEIVED BY THE USER.

Figure 10. Pertinent TDRSS Parameters

COMMAND RANGE

PN CODE LENGTH 210-1 (210-1)28

CHIP PERIOD (APPROX.) 332 ns 332 ns

RESOLUTION 3.3 ns 3.3 ns

AMBIGUITY PERIOD 333 #s 85 ms

ACQUISATION TIME (sec)
MA 20 10

SSA 20 10
KSA 4 2

Figure 11. Pertinent TDRSS Parameters
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1. TIME AMBIGUITY CONSIDERATION

R2-RR2_- + e = (6'61752 + 1) R2e

= 6.6926 Re

t 2 = R2 = 142.385 ms

C

t 1 = R1-R e = 119.514 ms

C

R2

t2-t 1 = 22.871 ms 23 ms

TIME AMBIGUITY •2(t2-t 1) = 46 ms

Re = 6378.175 km
C = 299792.5 km/s

300 km/mS

= 300 m/u s

= 30 cm/ns

2. PREDICTABLE OR MEASURABLE DOPPLER CORRECTIONS
DUE TO SATELLITE MOTION

RANGE OF DOPPLER CORRECTIONS*"

DOPPLER RATE 0.5 SEC. 1/4 SEC.

ALL SAT, 6-8 km/s 20-27 us/s 10-14 us 5-7 us

SYN SAT,* 20-40 m/s 67-133 ns/s 34-67 n$ 17-34 ns

• MAXIMUM VALUES

*" UNCERTAINTY IS MUCH LESS THAN THE KNOWN CORRECTION

Figure 12. Ambiguity Consideration and Propagation Delay Corrections

3. TOTAL COMPOSITE ATMOSPHERIC CORRECTIONS* PROPAGATION DELAYS

A t (ns)

FREQUENCY ELECTION DENSITY

(GHz)
1 x 10 _- 4x 105 1.6x 106

8 28 37 65

2 30 40 70

*BASED ON A TOTAL COMPOSITE ATMOSPHERE FROM THE SURFACE OF THE

EARTH TO 5000 km ALTITUDE WITH A TYPICAL CONTRIBUTION FROM THE

LOWER ATMOSPHERE MODELLED AFTER THAT ABOVE BARROW, ALASKA IN

MAY. (SEE PROPAGATION DELAY IN THE ATMOSPHERE BY D.M. LeVINE

GSFC DOCUMENT X-521-70-404, NOVEMBER 1970.)

Figure 13. Ambiguity Consideration and Propagation Delay Corrections
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1. TDRSS ORBIT AND POSITION DATA CAN BE PROVIDED TO ONE-WAY

USERS, BASED ON"

NO. OF GROUND STATIONS 7

POSITION ACCURACY OF GROUND STATIONS 200 m

RANGE ACCURACY 7 m

FREQ OF ORBI_T_DETERMINATION ONCE PER DAY
O_

ACCURACY OF ORBIT DETERMINATION 200 m

SATELLITE POSITION DATA OBTAINABLE HOURS

2. BASED ON PREDICTED POSITION OF TDRS, USER CAN USE ONE-WAY
TIME TRANSFER OPTION IF HE KNOWS HIS POSITION TO REMOVE
THE RANGE DELAY.

Figure 14. One-Way Satellite Time Transfer Option and Accuracy



QUESTIONS AND ANSWERS

QUESTION:

The time codes which are used for the receivers, is this a stan-

dard code now or is it one you are proposing?

MR. CHI:

The time code is in the process of being reviewed by NASA and

also by outside users. It is a power-binary time code, grouped-

power-binary time code, which is under review and most likely will

be in use for the spacecraft clock system. As I described before

there is a truncated Julian date number with four digits and five

digits for seconds of day and three digits for the milllseconds

of seconds and so on. The total is 64 bits. That is an eight-

bit, byte, R-entered code.

It is presented elsewhere so I did not want to repeat that

code. If you are interested in it, I may have a copy of it and I
would be happy to give it to you.

DR. KAHAN:

Can you compare this to transient rates on the GPS system? What

is the difference in this case between the capabilities that this

would provide and what one can get through their transient regular
GPS receiver?

MR. CHI:

Obviously you can, provided of course you have the receiving ter-

minal. For instance, I could suggest to have one of our terminals,

which normally would be placed, for instance in Boulder, Colorado,

that same type receiver can be placed into wherever time is wanted
to be compared. For instance a monitoring station for our GPS if
one wants to do that. You can receive the time from White Sands

Station which will be synchronized to NBS.

Of course you can do it for all the monitoring stations that
you wish. It is the same idea as for the primary time labora-
tories.

DR. WINKLER:

I think the comparison he asked for is the decision on that.
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MR. CHI:

Oh, you use two-way propagation to measure the propagation delays.
The method is to measure precisely the propagation delay time.

Once you have the delay you can subtract the delay out. This
could be to order the nanoseconds. It depends on the type of

corrections one applies.



TIMING AND FREQUENCY CONSIDERATIONS
IN THE WORLDWIDE TESTING OF A

SPREAD SPECTRUM COMMUNICATION SYSTEM

D. G. Woodring, S. A. Nichols, Naval Research Laboratory, Washington,

D.C. and Roger Swanson, Air Force Avionics Laboratory, Wright-Patterson

Air Force Base, Dayton, Ohio

ABSTRACT

During 1978 and 1979, an Air Force C-135 test aircraft was

flown to various locations in the North and South Atlantic

and Pacific Oceans for satellite communications experiments

by AFAL. A part of the equipment to be tested on the air-

craft was the SEACOM spread spectrum modem developed for NRL

by Raytheon.

Test results achieved in the program will be presented. •

The SEACOM modem operated at X band frequency from the air-

craft via the DSCS II satellite to a ground station

located at NRL. This modem incorporated the concepts of wide

bandwidths, autonomous operation, high frequency multipli-

cation factor and design-to-cost. For data to be phased suc-

cessfully, it was necessary to maintain independent time and

frequency accuracy over relatively long periods of time (up
to two weeks) on the aircraft and at NRL.

To achieve this goal, two Efratom atomic frequency standards

were used. One of these has been in service at NRL since

1973. One standard was used as a portable clock and the other

was used as the modem frequency standard.

This paper will discuss the performance of these frequency

standards as used in the spread spectrum modem, including

the effects of high relative velocity, synchronization and

the effects of the frequency standards on data performance.

The aircraft environment, which includes extremes of temper-

ature, as well as long periods of shutdown followed by

rapid warmup requirements, will also be discussed. The

limitations of maintained time in remote locations such as

Thule, Greenland, Ascension Island, Lima, Peru, Hawaii and

Dayton, Ohio will also be addressed.
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INTRODUCTION

The Naval Research Laboratory and the Air Force Avionics Laboratory are

engaged in various programs to improve long range military communi-
cations via satellite.

A joint test program was undertaken in 1978 to evaluate the perform-

ance of the SHF/EHF Advanced Communications (SEACOM) modem developed

by Raytheon for NRL. This project was made part of an on-going com-

prehensive Air Force program for developing and testing advanced com-

munications systems for airborne applications.

TEST PROGRAM DESCRIPTION

The SEACOM modem is a frequency hopped, spread spectrum system capable

of data rates of either 75 or 2400 bps. The system provides half

duplex operation at either SHF or EHF with an additional output at an

IF frequency of 700 MHz. A detailed description of these equipments

can be found in reference i. The modem was integrated with a_
Air Force experimental dual band SATCOM terminal (AN/ASC-28) aboard a

C-135. Figure 1 shows the test configuration. Two additional modems,

at NRL's field site in Waldorf, Maryland, were integrated with either of

the two amplifier/antenna configurations shown. The satellite used was 3
one of the Defense Satellite Communications Systems Phase II Satellites

which was in synchronous orbit over the Atlantic Ocean.

One of the major objectives of this test program was to maintain and

acquire time to an accuracy sufficient for two remote terminals to

synchronize the spread spectrum waveform. The purpose of the joint test

was to determine the performance of the SEACOM modem under various

propagation and flight conditions.

A series of tests were run at NRL's Waldorf field site via the DSCS II

satellite; first back to NRL to establish the baseline performance

characteristics and then to the aircraft on the ground and in the air in

a variety of high dynamic, multipath and elevation angle tests. These

tests were conducted with a military aircraft operating out of various

U. S. Air Force bases and foreign commercial airports. This paper will

describe the techniques that were tried, their relative effectiveness

and will also offer some suggestions for future testing.

MODEM TIMING CONSIDERATIONS

The signalling structure of the modem is shown in Figure 2. All timing

and data is divided into 4 second frames. Once every 4 seconds during a

transmission a 409 millisecond synchronization preamble consisting of a

repeated 80 chip psuedo, random sequence is inserted into the data

stream. This preamble is used by the receiving modem to adjust its own

timing to that of the incoming signal prior to data demodulation.
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The waveform requires that this timing be accurate to within 50 nano-

seconds. This accuracy is achieved by adjusting the time of a locally

generated replica of the preamble in i00 nanosecond steps until the

signals match up or correlate. The number of steps employed is deter-

mined by the assumed maximum time error due to unknown range between the

two terminals and drift between respective terminal clocks. For ship-

board application, for which the SEACOM system was designed, this maximum

error was specified as _ 1 millisecond. This requires a search of

approximately 20,000 steps which are processed within the 1/2 second

duration of the preamble. If the initial time error is gre_ter than
1 msec. synchronization cannot be achieved by this process A

description of how this initial clock accuracy of 1 msec. was accomp-
lished is now explained.

The sources of time used for local operations were the Naval Observatory
(via microwave link to Waldorf) and Loran C at Wright-Patterson Air

5
Force Base. An experiment was also made with a GOES satellite receiver

(unfortunately the receiver was not available during most of the testing).
The GOES receiver had the capability of acquiring a satellite broadcast

time signal within two minutes after turn on. If the range to the

satellite is known, this unit will provide timing with 1 msec accuracy.

In a test at Wright-Patterson, the timing of this signal varied between

220 _sec and 260 _sec with respect to Loran C over a two day period.

The aircraft in this test program is a C-135 shown in figure 3 operated

by the 4950th Air Test Wing. Power is normally not applied to the

aircraft except for specified periods (of 4 hours or less) of ground
testing or during flights. Access to the aircraft was via either a

cargo hatch or a crew entrance ladder as shown in figure 4. The crew

entrance ladder is the normal mode of entry to the aircraft. This modem

was designed for shipboarduse where power outages would be infrequent

and relatively brief. The battery in the integral frequency standard

was used to keep power on the clock circuitry to provide a "hot" turn

on. The modem on the test aircraft was turned off overnight and during

stopovers. Since the on-board battery power was not designed for such

long outages, portable clocks were generally used to reset the time.

PORTABLE CLOCK

For overseas operations, time was maintained with a portable clock which

was carried off the aircraft during stopovers. Figure 5 shows a typical

overseas operation which illustrates the environment that the portable

clock must survive for a successful experiment. It should be noted that

the post flight battery operation is critical in that the clock must be

removed from the aircraft by the experimenter who must then find a

primary power source in an unfamiliar environment before the batteries

discharge. Typically on overseas flights there are many operational,

legal and bureaucratic details to be looked after before the experi-

mentor can find prime power. It was typically very difficult to locate
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a local source of precise time within the restrictions of limited

stopover time, complicated logistics due to usage of crew buses and

difficulty in determining precise time availability in advance. These

comments apply both to U. S. Air Force bases and to overseas cities that
were visited.

One other source of time that was used when possible was a time signal

from the Lincoln Laboratory LES 8 satellite which was in synchronous

orbit over the Pacific Ocean.

OPERATIONAL RESULTS

Figure 6 shows the flight path of a two week trip in September 1978.

The trip started at Wright-Patterson Air Force Base on 12 September and

returned home on 26 September. An Efratom Rubidium frequency standard

was carried as a portable clock and time was successfully maintained

during this trip. Figure 7 shows the specifics of the trip and the

highlights of the portable clock log. The clock was set at Wright-

Patterson using Loran C just prior to takeoff. This trip was typical of

several in the test program. Various legs of the flight provided low

elevation angles, high elevation angles, high relative velocity and a

high multipath environment. Successful synchronization was achieved in

these environments. The trip log shows a check with NASA at Ascension

Island which was typical of attempts to verify the operation of the

portable clock at stopovers. It took half a day of negotiations to

obtain a ride to the NASA site (on the other side of the island).

Figure 8 shows the main building at the site, which housed an HP Cesium

Standard that was estimated to be within 25 _sec of UTC. Based upon

known aging characteristics (figure 7) of the SEACOM portable clock,

the SEACOM time was known to be within i0 _sec of UTC. Figure 6 also

indicates a power disruption at Rio caused by a blown fuse when the

portable clock was inadvertantly plugged in the wrong outlet. In Lima,
Peru the aircraft was in range of the LES 8 satellite for the first time

and a time check was possible which showed a time offset consistent with

the drift rate measured on 7 September.

A number of clock synchronization techniques were attempted during the

course of this program and they are listed in figure 9. The "Hot Turn-

On" was the method of timekeeping intended by the manufacturer whereby

the time was maintained by the battery in the integral frequency

standard for short (less than 3 hours) power turn offs. A second

technique was the use of a second clock with a compatible time code.
Time could be transferred by connecting a cable between the two clocks.

However, existing portable clocks usually do not have time code gener-

ators. These portable clocks can be used by manually entering the time

via thumbwheel switches and synchronizing with a 1 PPS signal. If the

accuracy of the portable clock was in doubt, a manual search could be

made by offsetting the "range" control which can be varied in 500 Km/HR

(2 msec) steps. This method could be very tedious and time consuming
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since only one trial can be made during each 4 second frame. During the

test program, a UHF satellite communications channel was available to

relay test procedures and instructions. A "coarse" time calibration was

occasionally used by having one operator "mark" his own time while the

other noted his time. This technique was successful only when a precise

1 PPS signal was available. For local operation, it was occasionally

possible to use a line-of-sight radio to a phone patch for the same

technique. A feature designed into the modem, but never made opera-

tional, was for the transmitting modem to broadcast its own time code.

The receive modem could then automatically acquire this time and reset
its own clock.

RECOMMENDATIONS

A number of potential improvements to the SEACOM design could be imple-

mented for operational military airborne satellite communications as

shown in figure i0. The broadcast time of day could be a part of the
network control that would broadcast a time code on a communications

channel. This technique places the burden of synchronization on the

transmitting source. The second approach provides the receiving

operator with an optional mode that would permit a wide time search if

synchronization were not achieved. This mode of operation is widely

used in military communications networks and is generally referred to

as a "net entry" mode, which is used by terminals which are entering the

network for the first time or have had an extended outage. For example,

a span of 1 second could be searched in 3 minutes with the existing

equipment. A third technique would be to use a waveform that would be

more tolerant of time offsets. Reduction of the PN rate would reduce

the required synchronization time, allowing a larger initial time error

to be accommodated in the short synchronization time. The last concept

is more generalized and expanded in figure Ii. This concept is pri-

marily for test and evaluation efforts. The ideal portable clock would

be capable of being carried in one hand across an aircraft parking area

as well as up and down crew access ladders. It would be capable of

operating on prime power anywhere in the world with automatic switching

and tolerate the long delays between power down and access to prime

power. It would interface with a serial or parallel time code "buss"

(the specific type being determined by the system) and have the capa-

bility to measure the difference between an external 1 PPS signal and

its own 1 PPS signal. Controls and indicators would be kept to an

absolute minimum, particularly on the front panel. Reliability and

price are also important considerations.
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Figure 5. SEACOM Waveform: Time Slot Structure

71



u.s,,_iR_FORC_/
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g L_R FLIGHT
400 HZ A/C POWER

I

EMERGENCY _ATTERY PACK 2L_

60 HZ GROUNb POWER | 46 fir }/L--
II

FLIGHT TIME - 9 HOURS

LAND-TAXI 20 MINUTES

POST FLIGHT HAINT, DEBRIEFj WAIT FOR BUS - ]Dour 30 MINUTES

(USUALLY RO POWERCART]

P_US,_I_E TO BASE OPERATIONS - 15 TO 20 MINUTES

GETTING PERMISSION TO LEAVE STANDARD- 10 MINUTES

GETTING ADAPTDRS, PLUGGING IN - 5 MINUTEE

TOTAL GROUND"rl_E - _6 DOURS

Figure 5. Typical Overseas RON
Operation for Rubidium

Standard

THULE

WRIGHT

7 SEP _RIO_T-DATTEOSO_ AFp _I_ = .3,7xJO-l_

_O ]_ SEp LEAVE _RIGHT-PATTERSON SET _p

_ SEP LEAVE ENGLAND

J,_ SEP ASCENSION ISLAND CHECK w]l. ,/ASA

22 SEP RIO DE JAEIRO, DRAZIL POWER DISRUPTION

26 SEP LIMA, PERU -68 .SEC TO LES 3

D' ....... Figure 7. Atlantic TDY Trip Log
September 1978

Figure 6. Overseas Test Flight Path
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Figure 8. NASA ST DN Station at Ascension Island



• HOT TURN ON • BROADCAST TIME-OF-DAY MODE

, HARDWIRE PATCHFROM CO-LOCATED CLOCK • SPECIAL INITIAL SYNCHRONIZATION MODE TO COVER

GREATER TIME UNCERTAINTY (_± ½ SECOND CAN BE

• CARRY ON OF PORTABLE STANDARD FROM REMOTE CLOCK SEARCHED IN 3 MIN)

• TIME SEARCH VIA RANGE INPUT THUMBWHEEL SWITCHES • REDUCED PN RATE ON WAVEFORM TO REDUCE REQUIRED

ACCURACY AND SHORTEN SYNCHRONIZATION TIME FOR

• TIME COUNTDOWN VIA UHF SATCON A GIVEN TIME ERROR

• TIME COUNTDOWN VIA PHONE FATCH • "IDEAL" PORTABLE CLOCK

• _ROADCAST TIME-OF-DAY _IoDE(NoT OPERATIONAL) Figure 10. Potential Improvements

Figure 9. Initial Synchronization

Techniques (In Order of Increasing

Difficulty/Reliability)

WEIGHT <30 LBS PER ITEM

PRIMEPOWER 110/230V±20_
50- 400Hz
AUTOMATIC SELECTION

STANDBYPOWER 4 HRS @ AMB, TEMP

OUTPUTS 1PPS
5MHz
"BUSS" TIMECoDE

INPUTS 1PPS
"BUSS" TIME CODE

DISPLAY DAY, HR, MIN, SEC

(IPPS)

INDICATORS ABSOLUTE MINIMUM

CONTROLS ABSOLUTE MINIMUM

(NONE ON OUTSIDE FRONT COVER)

Figure 11. The "Ideal" Portable Clock
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QUESTIONS AND ANSWERS

D_ STEIN:

I think there are several programs which require just such a device

as your ideal portable clock. And I believe such a device is being

procured for the MECON program. Is there any cooperation between
these different groups?

DR. NICHOLS:

I would say no. Raytheonis currently building a SHF satellite
communications terminal for airborne uses and they are developing

a portable clock for that. And I had an opportunity to go to the

design review a couple of weeks ago and that portable clock was

developed-- and I think that was why I put my ideal portable clock

ideas up, because they developed it out of their own experience

without going to the community at large and I think they are going

to have problems with that clock. It has too many bells and
whistles on it and they tried to make it do too many things and

when they get it in the field it is just not going to work. That

was my experience that the more things that could go wrong, when

you get out there in these remote locations, the more that do go
wrong.

MR. CHARLES GAMBEL, Air Force Metrology Center

And you said you made these tests in 1978?

DR. NICHOLS:

Yes.

MR. GAMBEL:

You said you didn't have any time in Thule, Greenland--

DR. NICHOLS:

Now, you have to remember that I am in an operational situation.

I am in an airplane that is coming into a strange location and we

go into the operations center, and, you know, time could be avail-
able next door, but the question is, do I know about it. And this

is a problem too. Does the left hand know what the right hand is

doing. You are going to say time was available in Thule.
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MR. GAMBEL:

Yes. Time was available at Thule to i0 microseconds, and also was

available in Hawaii. I just couldn't understand why it wasn't
made available to you.

DR. NICHOLS:

Well, in Hawaii we went to PMEL and all the guy had was a WWVH

receiver. It is probably another case of, maybe in another

building someone had better time, but asking at the operations

center, which is the people we dealt with as a transient air-
craft, that was what we had to work with.

MR. GAMBEL:

Okay. Thank you.

DR. FRED WALLS, National Bureau of Standards

Let me again reiterate a plea for commonality in cooperation so
that one ends up with standardized building blocks of a common

frequency. And the reason for that is something that you have

pointed out, several other people have pointed out, and that is

survivability and reliability. If you produce a clock, a porta-

ble clock, a clock that goes in JTIDS, CTOC, or whatever, the

experience has been until you make many of those things, perhaps
as many as a hundred, the reliability is going to be low. And

so if you have several of these, perhaps in different sets, that

are all in the same frequency, they can act as reliability buf-
fers for you, so if you have a failure in one you can use the

frequency of one in another, and you get a great deal more ex-

perience so that you have many, many units deployed in the field
and we can learn some of the deslgn flaws and hardware flaws in
these.

DR. NICHOLS:

I guess that fairly well summarizes what I was trying to do; the
main point of my presentation.

MR. KAHAN:

Just to reiterate what Dr. Stein was mentioning, a clock, if you

argue ideal conditions is being developed and further beginning
with the cesium, especially for the EC-135 to go up the full

ladder, up and down, that is the exact application it is being
developed for.
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DR. NICHOLS:

It would appear that Raytheon isn't aware of that--

MR. KAHAN:

No.

DR. NICHOLS:

--because that is not the approach they are taking.

MR. KAHAN:

I don't know about the Raytheon clock and I am not aware of that,

but a cesium clock is being developed for the EC-135, portable,

less than 30 pounds and all the attributes that you listed.

MR. BILL PICKSTON, Ford Aerospace Communication Corporation

I would llke to know who is developing that clock?

MR. KA}L4_:

It was reported on at the Atlantic City conference last summer

by Frequency Electronics.
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LIMITATIONS ON LONG-TERM STABILITY AND

ACCURACY IN ATOMIC CLOCKS*

D. J. Wineland
National Bureau of Standards

Boulder, Colorado

ABSTRACT

The limits to accuracy and long-term stability in

present atomic clocks are examined. In order to achieve

a significant increase in performance, it appears that

the limitations must be attacked on a fundamental level.

For instance, the problem of residual first-order and

second-order Doppler shifts has for many years been

approached by asking how we can better measure these

shifts. A more fundamental approach might be to ask how

we can significantly lower the velocity of the atoms.

An attempt will be made to put recent proposals for new

frequency standards into perspective. The advantages

and disadvantages of frequency standards based on such

ideas as laser transitions, single atoms, and atom

cooling are examined. In addition, the applicability of

some of these new techniques to existing standards is

discussed.

*Supported in part by the Air Force Office of Scientific

Research.
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INTRODUCTION

This paper attempts to answer the question: "What new ideas can

lead to fundamental improvements in atomic frequency standards?"

Since my answer can't be totally objective, what follows is vulner-

able to criticism; nevertheless, it will be useful to examine some

of these new ideas and speculate on what they might lead to.

This paper is no___tta survey of all new ideas for frequency stan-

dards; rather, some of these new ideas are used as examples to

illustrate general areas in which fundamental problems might be

attacked. Also, one will notice that the application of some of

these ideas are impractical at the present time for a field usable

standard, but most could be realized in a laboratory so that they

may have more immediate application to a "primary" standard.

To make the problem somewhat more tractable, it will be assumed

that the important question to ask is how to improve accuracy and

that the improved long-term stability will naturally follow if the

accuracy can be improved. I contend that this is generally true

if not pushed too far; for example, if a way were found to drasti-

cally reduce wall shift, spin exchange shift, second-order Doppler

shift, etc. in the H-maser then the fluctuations of these effects

(which limit long-term stability) will also be reduced. We must

also of course assume that we can improve the signal-to-noise

so that the anticipated accuracy increase can be measured in a

reasonable length of time.

In any case, the approach will be to ask not how we can better

measure those effects in atomic clocks which limit their accuracy

and long-term stability, but how we can get rid of them.
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Later we will briefly ask what new ideas are likely to improve

atomic clocks based on hydrogen, rubidium and cesium. More impor-

tantly, it will be interesting to look at other ideas for "atomic"

clocks. First, however, it is useful to reexamine the ground

rules--that is, what features do we really want in a frequency

standard?

BASICS OF ATOMIC FREQUENCY STANDARDS

The requirements for making a good frequency standard are fairly

simple[I]:

(1) it must be reproducible, and

(2) it must be "reasonably usable," in the sense that it should

have an output frequency easily used in measurements.

The first requirement implies that bulk devices (such as quartz

crystal resonators, macroscopic rigid rotors, or superconducting

cavity oscillators) are undesirable, because the frequency depends

on parameters, such as size, that are difficult to control. This I

shortcoming does not, however, rule out the use of these devices

as calibrated "flywheels" (i.e., free running, stable clocks).

Atomic (or molecular) resonances provide the necessary reproduci-

bility; one derives a "standard" frequency _o in terms of the

energy difference between two states of the atom with energies El

and E2 by the relation h_° = E2 - El where h is Planck's constant.

To ensure reproducibility between different observations, the

measured frequency is usually referred to the value that would be

obtained in free space; consequently, various corrections are

necessary to take account of environmental factors, such as mag-

netic fields. The problem then reduces to correcting for the
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various perturbations to the measured frequency. Our task in this

paper is to ask how we can significantly reduce (or adequately

resolve) these perturbations.

Of course, perturbations at some level will always exist so we

will also ask how we can reduce their influence. In many cases,

the perturbations to the measured resonance frequency are propor-

tional to Q_I where Q = _o/A_, and A_ is the width (in frequency

units) of the energy difference measured at the half power points;

therefore a high Q is desirable. Also, all measurements are

limited in precision by various sources of noise. The fractional

frequency stability Oy(1) relates to Q and signal-to-noise by

 y(1)~ Q

where S/N(_) is the signal-to-noise ratio as a function of aver-

aging time z.

Satisfying the second requirement depends on technological limita-

tions and may rule out some interesting frequency-standard possi-

bilities. The output of the device (i.e., the operating frequency)

must be convenient for general application. At the present time,

this rules out for example, the use of certain transitions that

can be observed at very high frequencies such as those in nuclei.

Although the Q of these M_ssbauer transitions can be as high as

I01s,[2] they are not generally usable because neither frequency

nor wavelengths can be accurately measured in the gamma-ray region.

In general, we can say that if we have a frequency standard which

operates at a frequency Vo' we must be able to divide this frequen-

, cy down (or multiply up a reference oscillator for comparison) in

order to use the standard as a clock-- that is, provide timing
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signals. (We note however, that the use of the standard as a clock

is not needed in some applications; for example, the gravitational

red shift was first measured intercomparing the frequencies of two

spatially separated samples using M6ssbauer transitions. [2])

We can summarize our criteria for a good general frequency stan-

dard as:

(a) S/N large.

(b) Q large.

(c) Small perturbations to the frequency.

(d) Must be able to measure frequency.

\

REALIZATION OF THE CRITERIA

We, of course, quickly learn that it is not easy to satisfy all

these criteria simultaneously. Some of the reasons for this are

fundamental, some are practical.

The resolution and Q is fundamentally limited by the Heisenber9

uncertainty relation on time and energy:

AEAt 9 _/2.

Thus, for a single atom, if we have a time At to measure the

energy-level difference E2 - EI, the measurement will be uncertain

by at least an amount AE. Specifically, At may arise from the

time of flight (transit time) of an atom through the apparatus, or

from the lifetime of the atom in one or both of its energy states.
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The uncertainty relation yields a fractional uncertainty in energy

of &E/(E 2 - EI) = Q_I. We can, of course, make AE small by making

At large; this may be accomplished by slowing down the atoms as

much as possible or by confining them. Unfortunately, the process

of confinement causes perturbations such as the wall shift in the

H-maser and buffer gas shifts as in the Rb frequency standard.

Also, there is often a trade-off between signal-to-noise and Q.

Extremely high Q does not guarantee a good frequency standard

because, if the signal-to-noise ratio is small, it may take an

impractical length of time to realize the accuracy. Conversely,

we can increase S/N at the expense of Q, as in gas cell standards,

where S/N can be increased by increasing number, but we also

increase perturbations due to atom-atom collisions.

An important category of perturbations which exists in all frequen-

cy standards to varying degrees is that of Doppler shifts. Doppler

effects are related to the particular method of confinement. They

represent perhaps the most important problem limiting the accuracy

and resolution of existing or proposed frequency standards. In

the usual way we can say that if an absorber of radiation moves

relative to the source, the observed resonance frequency is shift-

ed to the value

~ + _._ _ 1 2+ o
Wabs = w0 _ Wo

where the velocity v and wave vector _ are measured relative to

the source and M is the atomic mass. The first-order Doppler

shift (_._), the "second-order" Doppler shift, ((v/c) 2) and the

recoil shift (the last term) can be understood in terms of conser-

vation of energy and momentum in the absorption process. The
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so-called "second-order" Doppler shift is merely the relativistic

time-dilation factor resulting from the movement of the atom

relative to the apparatus. Its effect is small but important,

particularly if we are talking about improving the state of the

art. We can describe the first-order shift in terms of time

dependence of a plane electromagnetic wave as seen by an atom. We

have for the electric field

_(x,t) = _o sin (_ • _ - wt + 9)

where x is the atom position, _ is the field wave vector

= 0), and q_ is an arbitrary phase factor. If x = v t thenx

_(t) = _o sin [(_ • _vx - w)t + 9]

and the particle sees a sinusoidally varying field of frequency

w" = w - _ • _x" If uncompensated, the result is the familiar

Doppler broadening because, typically, the atoms in a sample have

a Maxwellian velocity distribution leading to a distribution of w"

values. If one observes the full Doppler width, then the Q of the

transition is limited to about 106 for room-temperature samples.

If the particle is confined within dimensions I_I <k-I (the so-

called "Dicke regime,,.)L3]rthe resonance spectrum has a sharp

central feature with natural width (Fig. 1).

This technique is of course used in the H-maser and Rb gas cell

frequency standards and accounts for the negligible first-order

Doppler effects. However, the price we have paid to avoid the

first-order Doppler effect is the frequency shifts due to con-

finement (collision shifts).
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To avoid the perturbing effects of confinement, a common approach

is to use atomic beams. The most successful approach to avoid the

first-order Doppler effect in this case is to make the atoms

interact with the radiation in two, phase-coherent, spatially

separated interaction regions. In each interaction region, the

condition _._ At <~ I is satisfied--where Wt is now the transitx

time through one of the interaction regions. However, the Q is

now determined by the much longer transit time between inter-

action regions. This-principle is the basis of Ramsey's separated

oscillatory field technique[4] which is used in all commercial and

laboratory cesium clocks. Because it uses an atomic beam, the

cesium device is free of the confining shifts, but suffers from

residual first-order Doppler shifts due to the presence of run-

ning-wave components in the interaction cavities. This inability

to obtain pure standing waves generally affects all of the "sub-

Doppler" techniques where there is a net velocity associated with

the atoms. Thus, we have a tradeoff between the confinement

techniques, which "eliminate" first-order Doppler shifts but

introduce perturbations due to the confinement, and the "free"-

atom techniques, which have no confinement perturbation but intro-

duce Doppler shifts. Moreover, all of the techniques, including

those employing Dicke narrowing, suffer from the "second-order"

Doppler shift because the atoms have a non-zero motion. Thus, if

we hope to fundamentally improve the performance of frequency

standards, we must address the question of Doppler shifts.

PRESENT LIMITS ON COMMON FREQUENCY STANDARDS

The limitations on accuracy and stability for present day frequen-

cy standards will be discussed more completely in another paper

for this meeting by F. L. Walls. However, we briefly list the

limitations and some possible cures.
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Beam Devices (Cesium)

The dominant limitation appears to be due to cavity phase shift,

which is a form of residual first-order Doppler effect. To first-

order this effect can be measured by reversing the beam direction.

It can be hulled [5] if measured periodically; however, exact beam

retrace is required. This difficulty, along with the problem that

the phase shift has a spatial dependence across the cross-section

of the beam,L6]r makes it difficult to deal with. The retrace

problem and the problem of a spatially distributed phase shift

are, in principle, eliminated if superconducting cavities are

used.[7] These problems are substantially suppressed if an axial-

ly symmetric beam of small cross-section is used,L5]"_ if a two-

frequency interrogation method is used,[8] or if optical pumping

state selection and detection is used.[8] Although the two-fre-

quency method results in a degradation of Q by a factor of about

3, it has the advantage in possible commercial application in that

beam reversal is not required to null the phase shift.[9] It

would seem that more work needs to be invested to study these

types of problems; a testament to this is the as yet unexplained

frequency shift sometimes observed in cesium beam standards when

the C field is reversed.[5'6'10'11]

Gas Cell Storage Devices (Hydrogen and Rubidium)

The fundamental limitations on accuracy appears to be due to our

inability to measure the confinement shifts in the devices. For

hydrogen, one might argue that the limit on long-term stability is

due to cavity mistuning, but as this problem becomes solved by

spin-exchange tuning[12] or cavity interrogating methods,[13] then

the problem of the wall shift becomes more important. The varia-
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ble volume[14'15'16] or "large box''[17]techniques are appealing,

but have a problem in that the surfaces for both bulb configura-

tions are not exactly the same.

The problems with the rubidium buffer gas standard are generically

the same, although it suffers from incomplete spatial averaging.[18]

If coated cells are used to combat this problem,[18] wall shifts

become important. The problems associated with light shifts can

be attacked using pulsing[19] or perhaps diode laser sources.

NEW IDEAS FOR FUNDAMENTAL IMPROVEMENTS

This section attempts to highlight new ideas which may bring about

fundamental improvements in atomic frequency standards. The

selection of topics in this section is, of course, somewhat arbi-

trary, but hopefully is representative of those methods which may

be applicable in the not-too-distant future. With some of these

ideas it may be difficult to envisage a practical device, let

alone a commercial device; however, if one has faith in the ad-

vancement of the general technology, they may in the future become

quite practical.

A. Cold Atoms

The advantage of using "cold" or low velocity atoms has been

realized for quite some time. Not only is the interaction time of

atoms increased--thereby increasing Q in a fundamental way, but

the problem of second-order and residual first-order Doppler

shifts are attacked in a fundamental way. The possibility of

using very slow atomic beams was investigated as early as 1953 by

Zacharias in his "Fountain" experiment.[20] In principle, only
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the very slow atoms from an effusive source were selected by

gravity. Unfortunately, the number of slow atoms available was

too small to be useful. Since that time, various attempts have

been made to produce slow atoms, but with very limited success.

Some of the more recent experiments are mentioned here.

I. Cold Hydrogen: Very recently, hydrogen storage devices

have been operated at cryogenic temperatures.[21'22'23'24]

In the experiments of Crampton et.al.,[21] the storage bulb

was coated with solid H2 at 4.2K and although their experi-

ments showed a rather large phase shift per collision

(m - 0.3 rad), this work may prove to be very useful in

studies of the general problem. Moreover, a similar device

might be used to generate a cold beam of polarized atomic

hydrogen in other frequency standard schemes. In the work of

Vessot et.al. ,[22] maser oscillation was achieved down to 25K

and Q's of ~2 x 109 were observed at 50K using a surface of

tetrafluoromethane. Aside from the reduction in second-order

Doppler shifts, low temperature H-storage devices have the

following possible advantages:

a. Thermal noise is substantially reduced.[23'25]

This affects the intrinsic maser stability and can also

reduce the additive white phase noise, which is external

to the maser.

b. Spin exchange collision rates are reduced by about

two orders of magnitude.[23'25] Hence, the maser could

operate with higher line Q at increased flux. At higher

flux, the power could be increased[25] or the maser

operated with lower cavity Q,[23] thus reducing cavity

pulling.
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c. Mechanical rigidity should be more easily maintained

at low temperatures[23'25] resulting in more stable

cavity pulling, etc.

Investigations will continue to search for wall coatings

(perhaps frozen inert gases) which will give stable surfaces

with small wall shift. Such investigations may hopefully

give very good results in the future.

2. Laser Cooling: Aside from the interesting results obtain-

ed with hydrogen, there have been many attempts to make

cryogenic beam sources for other atoms, but temperatures

below about 50K have been difficult to achieve. In 1975,

independent proposals were made to cool down a gas of neutral

atoms[26] or ions bound in an electromagnetic trap[27] using

radiation pressure. Since then, substantial cooling (<O.5K)

has been achieved for bound ions[28] and although only very

limited atomic beam cooling has yet been obtained,[29] the

potential for substantial cooling exists.

For free atoms or weakly bound ions (motional vibration

frequency << optical transition linewidth), the cooling

process is explained[30] by simply considering conservation

of momentum and energy in a photon scattering event. If we

average over the possible directions of reemission, we can

find the average kinetic energy change per scattering event

to be[30]

AK.E.(atom) = _ • _ + 2R (1)

where R is the "recoil" energy R = (i_k)2/2M,_ is the photon
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wave vector and _ is the atomic velocity before the scatter-

ing event. Since the scattering process is resonant, we can

tune our light source (laser) below the atomic rest frequency,

so that the atoms absorb only when they move toward the

laser. Thus, we can make _ • _ <-2R and the atoms lose

kinetic energy. Qualitatively, the atom's motion is retarded

when it moves toward the laser because it receives a momentum

kick in a direction opposite to _ for each scattering event.

This cooling process makes the possibility of stored ion

frequency standards more attractive (see below), but a prac-

tical scheme for producing a slow atomic beam of adequate

flux has not yet been demonstrated. Nevertheless, the possi-

bility[30] of very low temperatures (< 10-3 to 10-4 K for

strongly allowed transitions, less for weakly allowed transi-

tions) makes this an attractive area of investigation.

B. Optical Traps

In the last few years, a fair number of papers have been written

about the possibility of trapping neutral atoms in near-resonant

light fields.[31] More recently, the dipole forces necessary for

optical trapping have been demonstrated by a group at Bell

Labs.[32] Such trapping is very attractive because atoms could be

trapped in "cells" of a standing wave light field of dimensions

_/2. Hence, the potential confinement is extremely tight, i.e.,

the atoms would be well localized. The main disadvantage of this

method for spectroscopy appears to be that in order to provide

trapping, an optical transition must be driven at near saturation.

Hence, any transition that might be interesting enough to provide

a frequency standard would be broadened by the laser and also
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subject to substantial light shifts. It would seem that the cure

for this problem would be to turn off the "trapping" laser while

the frequency standard transition is investigated. However, even

if the theoretical limit[30'31] on laser radiation pressure cooling

could be obtained, the velocity is still rather high (for Na atoms

~ 30 cm/sec) and the atoms would diffuse away from thev min

trapping region while the trapping fields are off.

Even if a way around these difficulties is not found, the optical

traps might be incorporated with laser cooling to provide a cold

beam source. For example, the optical trap might be in the form

of a tube (focused Gaussian laser beam) in which the atom could be

laser cooled and then allowed to escape from one end. As yet, a

practical scheme for this has not been suggested.

C. Stored Ions

The possibility of obtaining very high resolution spectroscopy

with ions stored in electromagnetic traps had been realized very

early by Dehmelt and was developed in the early stages by him and

his co-workers.[33] Since that time, the radio-frequency (r.f.)

trap has been developed to give rather encouraging numbers for an

optically pumped ion standard. Noteworthy are the experiments of

Major and Werth on mercury, which have been extended by others.[34]

This device uses optical pumping--double resonance (pumping from a

lamp) to detect the ground state hyperfine resonance in 199Hg+
_I

(_40 GHz) and gives estimated stabilities near _y(Z) ~ 10-12 _ _.
This success has prompted at least one commercial company to

investigate the feasibility of such a standard.
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The development of ion-storage frequency standards has been slowed

somewhat because:

(1) The number of ions that can be stored is very small

(typically a maximum of about 106 for a trap with _lcm

dimensions). This, coupled with the problem of the

relatively low intensity of light from lamp sources for

optical pumping and detection, has made resonance sig-

nals fairly weak.

(2) The presence of significant second-order Doppler shifts

in experiments with traps (particularly r.f. traps) has

been recognized for some time. Although one has various

ways of measuring the velocity distribution,[35] this

problem poses a serious limitation.

It may now be possible to overcome these limitations by using

tunable lasers. By using a laser for optical pumping and detec-

tion, rather remarkable signals can be obtained. This is evi-

denced in two experiments[28]:

(1) In the NBS experiments on Mg+, the scattered photons
+

from only about 500 Mg ions stored in a Penning trap

were observed with a signal to background of about 100.

In this same experiment, the count rate was about

25,000/sec, while the net detection efficiency was only

about 3 x 10-s. This could be increased by 2 orders of

magnitude in future designs.

(2) More dramatically, in the experiments at Heidelberg, a

single Ba+ ion contained in a miniture r.f. trap was

photographed with good contrast.
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In both of these experiments, the ions were laser cooled to sub-

stantially less than I K, hence the second-order Doppler shift

was greatly suppressed.

Other advantages occur if one uses a laser in an ion storage

experiment:

(I) Extremely weak optical pumping processes can be realiz-

ed. This was demonstrated in the experiments at NBS

where 25Mg+ was pumped into the (Mj = -½, MI = -s/2)

ground state. Although many absorption-reemission

cycles are required for this pumping to occur, this is

acceptable since the ions remain in__thetrap essentially

indefinitely, and laser intensities can nearly saturate

the optical transition.

(2) Transitions in double resonance experiments can be

detected with nearly unit efficiency. In the experi-

ments at NBS, the ions were caught in an optical trap

(to be distinguished from spatial optical traps describ-

ed earlier). That is, the ions were optically excited

from a particular ground state level to a particular

excited state level and (by selection rules) were forced

to fall back into the original ground state level (this

process can be repeated at very high rates). Thus, if

we can arrange to drive a microwave transition (which

will be, say, our frequency standard transition) that

populates (or depopulates) the lower optical level, then

we can produce (or exclude) many scattered optical

photons for each ion that has made a microwave transi-

tion.[36] This process allows one to compensate for the
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loss in collection efficiency due, for example, to small

solid angle or small quantum efficiency in the photon

detector so that we can effectively detect atoms with

unit efficiency (The ability to achieve many scattered

photons for one microwave photon was realized in ref.

36, but the S/N was incorrectly over-estimated). For

example, if we can trap 106 ions, then the signal-to-

noise in the detection process can be about 103 , even

though we may collect only about 1% of the total scat-

tered photons.

It is useful to briefly compare the r.f. and Penning traps for

possible frequency standard application. As is often pointed out,

the r.f. trap has the potential advantage that magnetic fields are

not required so that magnetic field induced frequency shifts do

not pose a problem. However, this apparent difficulty can be

overcome in the Penning trap by working at field extremum

points.[36'37] A disadvantage of the r.f. trap not shared by the

Penning trap is the effect of r.f. heating. Although not totally

understood, it has prevented cold temperatures from being achieved

except for very small numbers of ions. A possible disadvantage of

the Penning trap is that the ions are in an unstable equilibrium

in the trap; whereas, for the r.f. trap, the orbits are stable.

This problem appears to have been overcome in recent experiments

however, and indefinite confinement in a Penning trap should be

possible.[38] At this point, it is unclear which type of trap

will ultimately be better and more experiments are needed to

decide this question. Perhaps a more important question to be

addressed in the immediate future is how to get better optical

sources for pumping and detection at the required frequencies.

Simple schemes[39] are difficult to come by, but this difficulty
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can be partially overcome by finding narrow band sources farther

in the u.v.(< 210nm).

Nevertheless, ion trap derived standards are extremely attractive

because they satisfy the confinement problem without causing

significant perturbations (essentially indefinite confinement

appears possible--implying no first-order Doppler shifts and

confinement shifts are estimated to be below tO-IS). In this

regard, they may be unique and deserve more attention in the

future.

D. Laser Standards

With high probability, the frequency and time standards of the

future will be based on optical transitions in atoms or molecules.

This conjecture relies mainly on the idea that in a given system,

if the lifetime of the transition remains reasonably fixed due to ,

relaxation, transit time, etc., then the Q of the transition

scales with frequency. However, before laser standards are real-

ized, some crucial obstacles must be overcome. These problems are

addressed below (see also a detailed review of precision, stable

lasers by J. Hall[40]).

In contemplating laser standards, one first must realize that we

are likely to be more susceptible to first-order Doppler shift

since the wavelength of the radiation is so small; i.e., the Dicke

criterion is harder to realize. However, the confinement criter-

ion can be relaxed in important ways.

When we cannot meet the condition I_I << k-i, there is still the

possibility of obtaining the same effect if we can satisfy the
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more general condition _-_ At _I, where At is the transit time ofX

the atom through the apparatus. This is the general condition

that must be met in a molecular beam apparatus. It allows for

saturated absorption ("Lamb-dip") spectroscopy where atoms satis-

fying this condition are preferentially detected. Qualitatively,

in this case, the detected atoms traverse the apparatus in a

direction nearly normal to the traveling-wave propagation direc-

tion, and, therefore, the spatial phase change of the field exper-

ienced by the atoms is less than one radian.

The confinement problem has a rather unique solution, in the form

of Doppler-free, two-photon spectroscopy. Here the atom interacts

with counter-propagating plane waves of frequency Vo/2. The atom

can resonantly absorb two photons simultaneously, one of frequency

i/2Vo(1 + _-k/c)^from one of the running waves and one with frequen-

cy I/2_o(1 - _-k/c) from the counterrunning wave. The total

energy from the two photons is hVo, independent of the atomic

velocity (to first order). Important applications exist in the

optical region, [41] but the technique may be limited in accuracy

by dynamic Stark shifts resulting from the required intense light
field.

Therefore, the problem of first-order Doppler shifts can be solved,

but as is true in the case of microwave frequency standards,

residual first-order Doppler shifts can occur.[40] Moreover, the

second-order Doppler shift remains unchanged.

As of now, rather impressive performance has been achieved with

laser standards. For example,[40] methane stabilized He-Ne lasers

have been used to probe external methane resonances using satura-

tion spectroscopy with Q > 1011 and stabilities Of 10-14. However,

99



the velocity distribution of the interrogated molecules is diffi-

cult to evaluate and accuracy capabilities better than 10-13 will

be difficult to achieve. In an experiment using a dye laser to

observe saturated absorption resonances in an atomic Ca beam,[42]

line Q's greater than 1011 were observed; however, a primary

limitation in accuracy in this experiment, as well as those on

CH4, was the uncertainty in the second-order Doppler shift.

Therefore, we note that possible laser standards must be attacked

on a similar front as the microwave standards--that is, how can we

reduce the Doppler shifts? Certainly some of the same cooling

techniques as mentioned previously can be used; in addition, the

use of ions stored in a trap will have the advantage of long

confinement time with small perturbations.

Before such laser standards can be realized, we must solve two

other basic problems:

(I) Stable laser sources must be found. As in the microwave

case, the local oscillators used in optical frequency

standards must have the required short-term stability or

the desired accuracy will not be realized in a reason-

able length of time. At present, some gas-discharge

lasers meet this requirementL4o]"_ , however, these lasers

are very limited in tuning and therefore only in rare

instances have a frequency which coincides with a trans-

ition in a molecule or atom that might give a frequency

standard. Dye, diode, and color center lasers give the

desired tunability; however, this wide tunability and

fluctuations in the dye medium, for example, make them

far less stable. Nevertheless, superior stabilization

schemes and perhaps new lasers will undoubtedly be found
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and the problem of (local-oscillator) short-term stabil-

ity will be solved.

(2) If one desires to use a frequency standard as a time

standard, one must in effect be able to count cycles of

the oscillation. Phase-coherent measurements are at

present very difficult to carry out at frequencies above

about 100 GHz. However, by using harmonic mixing tech-

niques in a boot strap fashion, [43] laser frequencies

have now been compared to the cesium hyperfine frequency.

This has so far only been done in a non phase-coherent

way in a frequency synthesis chain such as that of ref.

43 shown in Fig 2. Accuracies of intercomparison are

near the 10-i° level. In order for an optical frequency

standard to provide time, phase-coherence would have to

be included at each step in this chain. This seems to be

a fairly complicated (although achievable) proposition

even if somewhat more simplified chains [43] are realized.

In dealing with this problem, one should of course

recall that there are other uses of frequency standards

than providing time. For example, some very interesting

tests of gravitational effects can be examined [40'44]

using optical frequency standards, if all that is requir-

ed is to intercompare two optical frequencies--a task

which is trivial compared to providing time. However,

the time problem is very important and a solution to the

frequency synthesis problem should be sought. A concep-

tually simple but unproven scheme [45] might be able to

accomplish one-step frequency division from optical

frequencies to microwave frequencies.
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E. Single Atom (Ion) Frequency Standards

The idea of using a single atom is, of course, very appealing

since, if suitably confined, it can be isolated from the perturbing

influence of other atoms. Dehmelt was the first to suggest such

an idea. [46] He proposed to use an optical transition in T_+

(i s ___ 3p transition @ 202 nm Q _ 1014 ) in an r.f. trap. The0 0

additonal advantage of using a single ion confined to the center

of an electromagnetic trap is that combined with laser cooling, it

should be possible to closely satisfy the Dicke criterion in the

optical region on an essentially unperturbed atom. Other possi-

bilities exist, such as the B+ ion, whose structure is shown in

Fig. 3. This ion is also interesting because the fine structure

transitions with Q _ 1011 could provide a possible standard where

the frequencies are fairly easily measured with state of the art

precision. (This experiment could also of course be performed on a
¢

cloud of ions in a trap).

The primary drawback to using a single ion (or perhaps a single

neutral atom in an optical trap) is that the S/N is rather poor.

Therefore, single ion standards would seem to be more viable at

very high frequencies where the Q can be quite high. Since the

perturbations between many cold ions in an electromagnetic trap

can be very small anyway, the use of a single ion may only be a

philosophical advantage if one uses longer wavelengths. Of course,

only the future will tell!
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FIGURE I. Part A shows the situation when the atoms are unbound

and the resonance feature has the full Doppler width A_D _ (v/c)_o.

When the atom is confined to dimensions less than the wavelength,

the Doppler profile is suppressed and the central feature has the

natural width A_. This condition is most easily realized in the

microwave region of the spectrum.
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FIGURE 2. Synthesis "chain" used at NBS[43] to measure visible
laser frequency.
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FIGURE 3. Energy level scheme of singly ionized Boron showing

energy separations of interest.
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qUESTIONS AND ANSWERS

DR. VESSOT:

Just a couple of comments. First, I think, I might remind you that

the idea of running a cold clock came from Zacharias in 1958 and

1959, and I know because I was sweating bullets trying to get a
cesium maser to work. And Zak had the idea, which I think is an

excellent one. Remember that fountain experiment which did not

work because of no slow atoms, he thought the idea might have been

to buffer these gases to a slow velocity. So he took a beam of

cesium and ran it into a cavity at 2 kelvins, where we had a buffer
gas of helium. It didn't work. We looked for i0 to the minus 18

watts and didn't find any. But I think it was the germ of the idea

of going to low temperatures.

The other thing is that, it is a minor point, but I thought I

would bring it up, in that Blomberg, Madison, and I have gotten to

25 kelvins to make the maser oscillate and the importance of that

is, it is not just a question of how close can you get, but I

think we are getting close to another threhold and that is super-

conductivity. And if we can use superconducting effects for

magnetic shields and perhaps improve a bit the Q of the cavity,
which is really a very minor point, because you don't want any at

those temperatures, but at least improve the power transfer, the

RF power. There are some marvelously useful properties there that
I think can be exciting.

QUESTION:

There was quite a bit of published work on a heat clock using
magnesium that was done in Italy by a man named Luria, and three

papers were published and then it suddenly disappeared. And I

would like to know what happened? It seemed very promising.

DR WINELAND:

Okay. I think you are talking about the infrared, rather high

microwave transitions in the finite structure of magnesium? Okay.
I don't know the status of that work at present. I know, for

example, that Strumia was working on it. Dr. Leschiutta may want
to comment on that.

DR. LESCHIUTTA:

Yes, thank you. The problem is dissipation after they have made
the magnesium beam, we ran into serious problems in order to obtain

enough microwaves at the right frequency. We made a synthesis of
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the frequency but with a power level not sufficient in order to
detect the transition. This was the major problem.

And second, the work was stopped in the last year because,

I must confess, the people who were working on that magnesium stan-
dard left. We hope to resume that work but at the moment the work

is stopped. Thank you very much.

DR. WINELAND:

Let me also add that there is another group working on that, at

least one other group, and that is -- I am afraid I don't know the

leader, but at least the guy who is really doing the work, or at

least part of the work is Bill Bloomberg at Lincoln Labs. And they,

for example, are using Schotky diodes to mix and generate milli-
meter waves to interrogate, for example, just those transitions.

I know they are thinking about magnesium. But I don't know the
status of that work.

QUESTION:

But that is not a beam though.

DR. WINELAND:

At present it is not, but I know they are thinking about beams for
the future. The idea is the same.

MR. HARRY PETERS:

I thought I would mention in relation to hydrogen, there was some

work at Goddard Space Flight Center about five years ago with a

hydrogen beam device where nice resonances in a real device were
obtained with atoms which were at i0 degrees kelvin. These used a

source similar to a hydrogen maser source but which was cooled with

liquid nitrogen and low velocity atoms were selected from that. I
think it still has possibilities.

DR. WINELAND:

Yes, Harry. I apologize. I am aware of that work. I tried to

uniformly slight the various fields. I had trouble covering the
different ideas but I am aware of that work and I apologize for

not being able really to cover some of those other interesting
things.
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THE PERFORMANCE OF PRIMARY Cs BEAM CLOCKS USING

QUADRUPOLE AND HEXAPOLE DEFLECTION SYSTEMS.

CONSEQUENCES FOR TIME KEEPING

Gerhard Becker

Physikalisch'Technische Bundesanstalt

D-33 Braunschweig, Federal Republic of Germany

ABSTRACT

Since 1978 the time-and-frequency standard

CSl of the Physikalisch-Technische Bundes-

anstalt (PTB) has operated continuously as

a "primary clock". Its uncertainty (7.10 -15 )

is considerably smaller than that of the

other existing primary standards. CSI is

equipped with a combination of quadrupole

and hexapole magnets and uses a longitudinal

C-field. Consequences of utilizing primary

clocks of this quality for the generation of
the International Atomic Time Scale TAI are

discussed.

INTRODUCTION

In contrast to the other existing primary time and frequency

standards the Cs standard cSI of the Physikalisch-Technische

Bundesanstalt (PTB) is equipped with a two-dimensional beam

deflection system and a longitudinal C-field. Details of the

construction and the performance can be found in /I, 2, 3, 4/.

Uncertainty evaluations were published in 1969 /5/, 1974 /6/

and 1979 /7/. Measurements of the frequency of the Interna-

tional Atomic Time Scale TAI carried out since 1969 with CSI

have revealed for the first time a rather strong frequency

deviation from nominal and a frequency drift of TAI of about

-1.10 -13 per year /8/.
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-15
In 1974 the uncertainty of CSI was evaluated at 26.10

using the beam reversal method and selecting slow atoms

in the beam. Since it was thought at that time that unknown

frequency shifting effects might exist, the uncertainty of
-13

CSI was settled at 1.5.10 (I_). In the course of further

experimental and theoretical investigations /3, 4, 9/ it

was possible to gradually reduce the uncertainty. The 1979

evaluation /7/ resulted in an uncertainty of 7.10-15(I_)
-15

and an instability of 4.10 , both values based on a

measurement time of 80 d (Table I).

CSI is one of the three standards used for the "steering" of

the TAI frequency. The other standards have been developed

at the National Research Council (NRC), Canada, /10/ (the

I_ uncertainty of the standard CsV being 53.10 -15 ) and at

the National Bureau of Standards (NBS), USA, /11/ (the I_

uncertainty of the standard NBS-6 being 85.10-15).

Since July 1978 CSl has operated continuously as a "primary

clock". The NRC standard has operated continuously since

1975 /12/. The NBS performs about one TAI frequency cali-

bration with reference to NBS-6 per year.

The quality of CSI is based on the following:

a. principal advantages of the

quadrupole/hexapole beam deflection

and a longitudinal C-field

b. specific technical design of CSl

c. operating practice of CSI
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Principal qualities of Cs beam standards with

a quadrupole/hexapole deflection system

Holloway and Lacey proposed a flop-in Cs beam standard with

hexapole magnets, a coaxial resonator and a ring detector

/13/. The realization of a coaxial resonator with an inter-

action length of about 0.8 m failed at the PTB. Little chance

was given for the usefulness of a flop-in ring detector in

combination with an analyser hexapole magnet. In /14/ it is '

shown that a conical quadrupole analyser magnet in combination

with a ring detector is preferable. Nevertheless, in view of

the relatively large ring detector surface necessary the

flop-out system with a point detector on the axis is preferred

at the PTB. We have had no experience with a double dipole

flop-in analyser magnet as proposed by Kartaschoff /15/.

Figure I shows the basic arrangement of the standard CSI. In

the following, it is assumed that the functioning principle

is known. The characteristic qualities of this arrangement

will be discussed.

I. Beam deflection system

The dimensions of the quadrupole/hexapole deflection system

used as the polarizer and analyser are given in /4/. It se-

lects atoms with an average velocity of 92,7 m/s (in a rela-

tively narrow velocity range of about 7_ from the atoms leav-

ing the oven with a modified Maxwell-Boltzmann velocity

distribution (Fig.2 and Fig.3). The temperature of the se-

lected atoms is about 65 K. Due to the small velocity and

velocity range, the first and second order Doppler shifts

are small. In dipole system standards, velocity ranges of,

e.g., 30 to 50% are used. Phase difference's between the end

resonators cannot be completely avoided. Changes of the HF

radiation then produce changes of the frequency ("power
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shift") which, of course, are smaller for small velocity

ranges in the beam.

The conclusion that a device using only a small velocity ran-

ge is disadvantageous because of "wasting" atoms is unjusti-

fied /4/. The aperture of the beam optics for quadrupole and

hexapole magnets is much larger than that of a dipole system.

As shown in /3/ and /4/ the velocity range in the beam is

larger for a hexapole polarizer than for a quadrupole pola-

rizer assuming comparable dimensioning of the magnets. If,

e.g., for simplicity of construction, only one magnet is

used, either hexapole or quadrupole, in many cases, the

quadrupole magnet will be advantageous. Its velocity range

decreases with decreasing magnetic field.

A long interaction length necessitates a very precise deflec-

tion of the atoms in the polarizer. This means that the shape

of the pole tips should be as close as possible to ideal.

In the interest of a high beam intensity in relation to the

Cs consumption, the beam source diameter d has to be rather

small. A single channel with d_= 0.1 mm and a length of some

tenths of mm is used in CSl. It is necessarY to operate the

oven at a rather high temperature (160 to 180°C) in order to

achieve an adequate Cs beam. This means that the relative

content of atoms with the desired velocity referred to the total

flux is less favourable than in the case of dipole devices

whose oven temperature is only of the order of I00°C. The

directivity factor _ of the CSl beam source is rather low

under the conditions described. On the other hand, the large

aperture angle of the polarizer system limits the admissible

_-factor to a value which in practical cases will be

below 10.
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2. Phase distribution in the end resonators

The CSI uncertainty evaluation of 1974 /6/ already took into
-5

account the existence of a phase gradient (of about 1.6.10

rad/mm) in the end resonators perpendicular to the beam

direction. For the uncertainty estimation it was assumed

that the beam paths for both beam directions might differ

by a few tenths of mm. In the evaluation of 1979 /7/, the

frequency uncertainty due to the phase distribution in the

end resonators is the largest contribution to the total

uncertainty.

Obviously, this most important uncertainty can be reduced

by reducing the beam diameter and by proper alignment. CSl

uses a beam diameter of 3 mm. In dipole devices beam widths

of about 10 mm and more are used. Hence, it can be expected

that the problem of the phase distribution is less severe

by a factor of about 3 for CSI.

In the dipole system, the actual phase difference between

the end resonators is dependent rather strongly on the HF

radiation power: increasing, e.g., the radiation favours

faster atoms at different trajectories to contribute to the

signal. This results in a specific power-dependent frequency

shift dueto the phase distribution. Not only is the velo-

city range in the quadrupole/hexapole system much smaller,

but the velocity distribution across the beam has also a

rotational symmetry cancelling the power-dependent phase

difference between the end resonators to the first approxi-

mation. Taking this into account it is supposed that, alto-

gether, the phase distribution problem is more severe by a

factor of 3 in the dipole device than in the CSI device.
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3. Magnetic C-field

The magnetic shielding of CSl consists of three concentric

Mu metal cylinders with a wall thickness of 5 mm each. The

longitudinal magnetic field H produced on the axis by a

solenoid has been measured with a magnetometer. Neglecting

the measured difference between _2 and H 2 produces an error

-17
of 1.10 only.

As a primary clock, csi operates with H = 4A/m. Due to the

following reasons, operation with such a low field is feasible

without overlapping of the adjacent transitions: These reso-

nances are relatively small due to the low beam velocity and,

additionally, due to the long interaction length in the Rabi

field; the atoms pass the waveguide in its longer diameter.

Furthermore, the HF exitation amplitude for the atoms passing

the waveguide is a sinusoidal and not a rectangular function

as in the case of a design with a transverse C-field. If

necessary, H could be reduced even further. It is not

necessary to apply HF excitation below optimum radiation.

The shielding factor in the direction of the axis of a

shielding cylinder is smaller than that perpendicular to

the axis. This may be a basic disadvantage of devices with

longitudinal C-field.

In order to avoid Majorana transitions between the different

Zeeman levels, longitudinal "guiding fields" are used be-

tween the deflection magnets and the magnetic screening.

4. Detector

The surface necessary of a hot wire detector located at the
2

focal point of the analyser may be as small as 0.1 mm /4/.

This allows a considerable reduction of the Cs background

flux.
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5. Signal-to-noise ratio

It may be of interest to compare the Cs beam flux on the

detector, ND, for a quadrupole/hexapole system (4P/6P) with

that of a dipole system (2P). Using a formula for ND(4P/6P)

derived in /4/ in the case of a standard such as CS1 and de-

scribing the dipole system by a rectilinear beam of velocity

v and a velocity range _v(2P) results in:

ND (4P/6P) r0-rCD I v _(4P/6P)
_8° .--0

ND (2P) d k jv (2P) X(2P)

for beams with the same cross section and with the same

average velocity v. r0 (I .5 mm) is the radius of the beam,

rCD(0.4 mm) is the radius of the central disc according to

Fig. 1. k (1.8) is a constant characterizing the deflection

/4/, _(4P/6P) (about 2) is the directivity factor of the

beam source and 9((2P) is that of the dipole device. Values

for CSI are given in parentheses. With a multi-channel

source _(2P) = 50 may perhaps be achievable. Assuming

_v(2P)/v = I/3 results in

ND (4P/6P)
--6

ND (2P)

The superiority of the 4P/6P system is lowered by a factor

of 2 if in the 2P system both hyperfine levels are used. An

additional reduction of the signal-to-noise ratio occurs

due to the flop-out operation and the less favourable oven

temperature of the 4P/6P System under discussion• There

seems to be no fundamental difference between the two

systems with respect to the S/N ratio.
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Specific technical design and operating practice of CSl

In the following, information concerning the specific design

and operation of CSI which is not related to the two-dimensional

beam deflection, is reviewed from the papers referred to.

Beam reversal is performed every 6 weeks (= 42 d). Each

calibration interval of 80 d contains both beam directions of

almost the same durations. The oven chamber (containing the

oven and the polarizer) and the detector chamber (containing

the analyser and the detector) are directly exchanged.'This

method ensures the application of the same beam in both beam

directions. Operation of CSl can be continued I h later

after beam reversal.

The multiple line-width modulation method /3, 4, 9/ is applied

on a routine basis. The application of this method is favoured

by the specific form of the Ramsey resonance shown in Fig.3.

So-called "full evaluations" of the primary standards are

performed at the NBS and the NRC from time to time, e.g.,

every year. The operating practice used at the PTB consists

of an almost continuous supervision of all important opera-

tional parameters. Further information on the operating

practice can be found in /7/.

Measurements with the standard CSI

Fig.4 shows a frequency comparison between the Canadian

standard NRC:CsV and the standard PTB:CSI. The standard
-14

deviation of independent measurements is about 6.10 .

Since it contains contributions from propagation changes of

the LORAN-C links, this result of a 4-year-comparison is

considered to be very satisfactory.
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Frequency measurements of some time scales including the free

time scale EAL of the BIH from which TAI is derived by fre-

quency corrections (steering) are shown in Fig.5. Seasonal

frequency changes of free time scales produced with industri-

al Cs clocks can be seen from the measurements with CSI since

1969. An analysis of the free time scale of the PTB revealed
-14

seasonal frequency changes with an amplitude of 4.10 /7/.

It is estimated at the PTB that a change of the environmen-

tal temperature of +I K may cause a frequency change of

about -1.10 -13 However the clocks differ in their behavi-

our. Measurements of the temperature coefficient of an

industrial Cs clock performed in Japan /16/ resulted in a

value as small as -0.2.10-13/K.

Fig. 6 shows a time comparison between the Canadian and the

German primary clock. The slope of the regression line indi-

cates that the frequency of the standard NRC:CsV is higher

by about 4.10 -14 which is within the uncertainty limits

claimed.

The deviations _t of the measured time differences from the I

regression line are primarily due to time transfer changes of

the LORAN-C link between North America and Europe. _t has a

standard deviation of about 160 ns. This is an unexpectedly

small value since it is based on four LORAN-C time compari-

sons: one each at the NRC and the PTB and two performed by

the USNO. Time comparison results using the NTS-I and NTS-2

satellites had a considerably larger standard deviation /17/.

To the first approximation _t represents the fluctuations of

the USNO time comparisons with the Norwegian Sea LORAN-C

Chain (LC/7970) published in /18/. The interpretation of TAI

as consisting of two components is justified, a North Ameri-

can one and a European one, fluctuating against each other by_t.
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Since the clocks of North America and of Europe contribute

almost to the same amount to TAI, about 50% of a change of

at should appear on the European component of TAI and, with

the opposite sign, on the North American component of TAI*.

This can be seen from Fig.7 showing a comparison of TAI with

the time scales of the Canadian primary clock CsV and the

German clock CSI, using the data published by the BIH in its

Circ. D (curves A). In most cases the fluctuations of the cur-

ves A have in fact opposite signs; the amount of the TAI chan-

ges with respect to the primary clocks is, however, not quite

the same for both curves: the fluctuations of the North Ameri-

can TAI component are by about 50% stronger. Applying 40% of

_t as a correction to the European TAI and 60% of _t as a cor-

rection to the North American TAI results in the curves B

which are much smoother: the _t corrected TAI has a better fre-

quency stability; the splitting of TAI into two components is

reduced.

Fig. 6 shows that _t may have a systematic deviation from the

average over a few months. The deviation between October 1978

and February 1979 is probably a seasonal effect. A consequence

of a systematic change of _t with time is that determinations

of the TAI frequency in North America and in Europe result in

two different values, even when the standards used, do not

differ. As shown in Fig.8 the frequencies (80 d averages) of

the two TAI components may differ by as much as 7.10 -14. The

standard deviation between the two TAI components for 80 d
-14

frequency averages in the interval investigated is 3.5.10
-14

and 4.3.10 for 60 d averages.

* The existence of this "mirror effect" of the fluctuations

has, as far as the author remembers, already been mentioned

by Granveaud (BIH) at the CIC 1974.
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With regard to the steering of TAI, the effect of the TAI

frequency splitting is not negligible. It is also important

to understand the reasons for possibly divergent TAI cali-

bration results in order to be able to develop confidence

in the capabilities of primary clocks that is necessary if

allowing them to assume greater influence within the inter-

national time-keeping system.

Due to the (assumed) seasonal fluctuation of _t erroneous

seasonal frequency fluctuations on time scales of the other

continent are observed. The rules for applying the _t cor-

rections are as follows:

For a comparison of a North American (NA) time scale with a

European (EU) time scale:

(TA(NA)-TA(EU))corr.= (TAI-TA(EU)) - (TAI-TA(NA)) - _t.

Circ.D Circ. D

For time scale comparisons with TAI:

In Europe:

(TAI-TA(EU))corr. = (TAI-TA(EU)) - PA'_t

Circ. D.

In North America:

(TAI-TA(NA))corr. = (TAI-TA(NA)) + pE._t

Circ. D

PE is the relative European weight, and PA is the relative

North American weight. By definition PE + PA = I.

PE = 0.6 (and correspondingly PA = 0.4) seems to fit best

up to now. In principle, the TAI data published by the BIH

in the Circ.D could already include the propagation correc-

tions.

Fig.9 and 10 show some _t-corrected measurements. It should
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be noted that TA(NBS) is not a free time scale but a steered

one. The comparison with TA(NBS) suffers from additional

link fluctuations.

Due to the noise on the _t corrections optimum smoothness of

the curves is sometimes observed if only 50 to 80% of the

corrections are applied.

Future role of primary clocks

A few years ago it was thought that the calibration of the

TAI frequency with a primary standard (with an assumed cali-

bration uncertainty of about 1.10 -13 ) necessitates not much

more than one measurement a year considering that the EAL
-13

frequency drift turns out to be less than 1.10 per year.

The situation has since changed: the calibration uncertainty

is now about 1.10 -14 (utilizing the propagation corrections

made available by primary clocks) and the newly detected sea-

sonal effects of the EAL frequency are larger than the cali-

bration uncertainty by about a factor of 10. As a result, it

can be said that the information available from a continuous-

ly running standard is of considerably more value than that

of a standard which is switched on only once a year.

The present international time system necessitates a great

deal of effort (e.g., daily LORAN-C time comparison measure-

ments) to keep its synchronism to a few tenths of a micro-

second. Two primary clocks with a maximum instability of e.g.,

5.10 -15 over unlimited time intervals require comparisons

only very rarely for the synchronization uncertainty quoted,

e.g., once a year. This may be of importance for countries

which have no access to TAI and UTC when LORAN-C is not

available.
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At present there are only two primary clocks, though a num-

ber of laboratories throughout the world are dealing with

the construction of Cs clocks. Since it appears that in the

future too, the number of primary clocks will increase only

very slowly the question arises as to how to make the best

use of existing primary clocks for the establishment of TAI.

It should be realized that the accuracy and stability of the

time scale of a primary clock (assuming the performance dis-

cussed in this paper) is much superior to that of EAL or TAI.

At its meeting in 1979 the CCDS "Working Group on the Stee-

ring of TAI" discussed the question of whether TAI could be

based totally on the primary clocks of the NRC and PTB. A

decision of this kind cannot be taken by the Working Group

but only by the CCDS. Nevertheless, this proposal is an indi-

cation of the interesting development which lies ahead of us.

The PTB is in favour of this proposal. We believe that a

solution can be found to combine the superiority of the pri-

mary clocks with the operational reliability of the present

TAI system.

With respect to steering methods /19/, primarily three types

of steering can be distinguished: !

I. Correction of a TAI frequency departure from

nominal; "accuracy steering"

2. Correction of the TAI frequency in order to

compensate a frequency change which has
occurred; "stability steering"

3. Correction of the TAI frequency in order to keep
approximate time synchronism of TAI with the

time of a superior clock or clock ensemble;

"time steering"
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The first method has been in operation since 1977. Due to the

delays caused by the time necessary for the computation of

EAL and the evaluation of the TAI frequency calibrations, the

necessary frequency corrections are applied rather late. The

TAI frequency may have changed meanwhile. A frequency correc-

tion is only justified if the departure from nominal is out-

side the I_ uncertainty limit of the calibration. In the

case of a systematic frequency drift of TAI this causes a

systematic frequency deviation of about I_ from the primary

standards as well as an increasing time difference with them.

For the second method only the stability and not the accuracy

of a contributing standard is important. Stability steering

in the form of a correction applied later is not in use. It

is more reasonable to incorporate the standard in the clock

ensemble as the basis for the computation of EAL. The present

ALGOS computation method of the BIH limits the weight of a

contributing clock to 100. The total weight of the clocks is

at present about 5500. Since the stability of EAL is signi-

ficantly smaller than that of a primary clock, the clock

should receive an ALGOS weight which is significantly higher

than 5500.

The opinion has been expressed that the weight given to a

primary clock could be determined with ALGOS. This, however,

is not possible, because the weight given to a clock is, in

principle, derived from the instability of the clock as

measured by the rest of the clock ensemble. It is, of course,

impossible to measure the instability of a very stable clock

using unstable clocks.

When ALGOS was established, the specialists thought that a

new type of clock could be given a specific upper limit

weight to be determined from s£atistics based on a suffi-
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ciently large number of these clocks. There are not enough

primary clocks, of course, to apply this principle to them.

Objections have been expressed to giving the primary clocks

a high ALGOS weight because this could result in discouraging

those contributing to TAI with industrial standards. The ad-

vantage of having the primary clocks included in the ALGOS

computation with a high weight would be that they would

immediately contribute to the stability, whereas all steering

methods with later corrections cannot prevent the fluctu-

ations due to the control system. A possible compromise would

be to start with a primary clock weight of, e.g., 500 and to

increase the weight later when sufficient experience has been

gained. A reasonable weight would presumably stimulate the

work on primary clocks. The present ALGOS weight for primary

clocks is only 100.

If those operating primary clocks derived their UTC(i) from

their primary clock at the same rate, UTC(i) would drift

away from UTC(BIH) when the first two steering methods are

applied. To maintain approximate agreement_between UTC(i)

and UTC(BIH) the quality of UTC(i) could either be decreased

and steered to conform with UTC(BIH) or the TAI frequency

could be steered to avoid an increasing departure of UTC(BIH)

from the UTC(i) produced by primary clocks. This latter

method is what has been called "time steering". In the case

of several slowly diverging primary clock time scales, TAI

could be adjusted to follow their time average.

At its 1979 meeting, the CCDS Working Group requested the

BIH to steer TAI in a way that would avoid a systematic

time departure from the primary clocks. This corresponds to

a time steering method.
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It seems that in the future, we shall see primary clocks

greatly influencing international time keeping, resulting

in a reduction of the principal role of the industrial

Cs clocks in some cases. The practical role of these clocks

will certainly not be reduced, as they ensure the accessibi-

lity to TAI. Concerning the role of the metrological insti-

tutes operating primary clocks, it should be noted that it

is quite normal that a comparatively small number of them

ensures the availability of the reference standards of

international metrology.
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Table I*

Relative uncertainty and instability of the standard CSI

of the PTB in continuous operation, based on 80 d average

Relative Relative

Parameter uncertainty instability
-15 -15

10 10

Resonator phase difference (5 (5

Beam path (9 + (3

Beam velocity (0.1 (0.1

Second order Doppler shift (0.4 + (0.1

Resonator detuning (I + (0..I

Magnetic field strength (I (1

Magnetic field inhomogeneity (0.1 + (0.1

HF sidebands 50 Hz (1.3 + (I

Adjacent transitions (I + (0.1

Demodulator (I + (I

Shot noise 2 2

Square root of the sum

of squares (10.8 ( 6.4

Sum of the amounts (21.9 (13.5

I _ value ** 6.5 4.0

+Contributions to the systematic uncertainty

Translation from /7/

The I_ value is achieved according to an evaluation

method published by Wagner /20/ and recommended by PTB:

upper limit values of uncertainty contributions are

divided by,resulting in an estimation of a 1_ value
of these contributions.
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RM. A.M.

0 l_.___JHF H HF L_.J.....--.--"

CD L

Fig. l-Basic arrangement of the primary Cs standard of the
PTB. P.M polarizer, A.M. analyser, both consisting of a

combination of quadrupole and hexapol e magnet, O, oven;

F, detector; L, interaction length (0.8 m) ; CD, central

disc as beam stop; HF, high frequency field; H, static

magnetic field, both in beam direction. The dotted lines
refer to the beam trajectory in case of resonance

1.0 -

I 05

L
0.0 , L , , I ' '- .. ..... 1

0 50 100 _m 150S

V ---

Fig. 2-Velocity distribution in the atomic beam of CSl
evaluated from the resonance curve Fig.3; intensity I in

arbitrary units. The average velocity is now 93 m/s, lower
than shown in the graph
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Fig. 3-CSI resonance curve; line width 59 Hz

F = F(NRC'C5V) - F(PTB:C51)
I_ I I I I

XlP1-13

-K i L I I
197K 1975 1977 1978 1979

Fig. 4-Relative frequency difference F (80d averages) between
the standards NRC:CsV and PTB:CSI with reference to sea

level. Since the beginning of the continuous operation of

CSI in 1978, sliding averages are shown, in steps of 10d
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Fig. 5-Frequency measurements of some time scales TA(i) and
of EAL with the standard PTB:CSI. F refers to the French

time scale and RGO to that of the Royal Greenwich Observa-

tory. Seasonal effects of different sizes can be seen

3

IJ.S T(NRC'CSV) - T(PTB:C51) + C

RI "1 I I I Iil s n ' I o i I n L I

El ,::1IB I1 I?J 1 ;' 3 LI _ 5 7 B q 10
1978 I 1979

Fig. 6-Time difference _T (plus an arbitrary constant C)
between the standards NRC:CsV and PTB:CSI (with reference

to sea level) evaluated using the Circ.D data of the BIH.

The departure _t from the regression line has a standard
deviation of 160 ns
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Fig. 7-The curves A show the time difference _AT between TAI
and the time T(NRC:CsV) and T(PTB:CS1) respectively, using
the Circ. D data. Applying the propagation correction results

in the curves B. A European weight of 60% and a North American

weight of 40% of _t was chosen for the corrections. An arbit-
rary additive constant C is chosen to seperate the curves

[X 10-13 F(TAI) - F( PTB: CS1)

0 X X

[] xX xXX X

/ m Xm_N

-,

--2 I I I I i I I I i I I

10 II 12 I I" 2 3 4 E 5 7 B1978 1979

Fig. 8-Measurement of the TAI frequency (80d sliding aver-
ages in steps of 10d) with the standard PTB:CSl. Crosses:

no _t correction; squares: correction is 100% of _t;
solid line: correction is 40% of __t
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Fig. 9-Time difference _T of the time scale TA(USNO) (with
rate corrections and arbitrary additive constants) from the

time scales T(PTB:CSI) and TAI respectively. Curves A

without _t correction; curves B with _t correction

5[

IZS TA(NBS)-T(PTB : CS1)

AT Z

I ,

I I i I I I I I I I I I = I !

Et 9 IH 11 121 I 2 3 '-t 5[ 5 7 Et 9
1978 11979

Fig. 10-Time difference _T of the time scale TA(NBS) (with
rate corrections and arbitrary additive constants) from the

time scales T(PTB:CSl) and TAI respectively. Curves A

without _t correction; curves B with At correction
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_UESTIONS AND ANSWERS

MR. CHI:
/

Dr. Becket, I noticed in your final vu-graph you showed the time

difference of about 2 microseconds for about 400 days, that is

between PTB and NRC, which represents about 5 nanoseconds per day

of 5 parts, i0 to the 14th. Is that systematic?

DR. BECKER:

This is in fact at present the difference between the two standards

and it is within the uncertainty limits which are claimed by both
institutes.

MR. CHI:

I have one more question. That is, in the other comparison of time

when they use the Loran-C, there seemed to be a high peak, perhaps
it is due to seasonal variation. In the case of comparison between

NRC and PTB there is just a systematic straight line. How was that

comparison made?

DR. BECKER:

You mean this one here?

MR. CHI:

In the systematic there is no peak. In the others, like NBS and
NRC, there is always a peak on the comparison.

DR. BECKER:

Yes. This is Loran-C.

MR. CHI:

How about the first one. How is that measured? The one before

that?

DR. BECKER:

The one before? Loran-C. The other one, from bulletins. That

means I took the weekly bulletins which I get from Canada and
from Dr. Winkler from the USNO and our own. And only one day

is taken out. The specific day is every i0 days at one point
and I took down these data.
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MR. CHI:

There is no solution?

DR. BECKER:

If you take just the results which are published for that specific

date then it looks llke that. It is interesting to see that they
are similar in type. That means maybe there is some kind of typi-

cal weather which changes slowly. It should be a temperature
problem I think.

DR. FRED WALLS, National Bureau of Standards

Could I see the vu-graph showing the relative uncertainties and

instabilities? I had a question about that.

DR. BECKER:

Can we have the slide once more?

DR. WALLS:

Two questions. One, under the relative uncertainty, under beam
path you have 9 times i0 to the minus 15th. This is an estimate

or a calculation of what the maximum uncertainty might be?

DR. BECKER:

This value is achieved in the following way. The theoretical con-

sideration estimated the phase gradient to be expected and calcu-

lated the frequency change per millimeter, shifting beam per milli-

meter. Then, we did a beam shifting, an actual beam shifting and

tired to verify this estimation and as it turned out it was the

same order and so we relied on our knowledge and in this case I

simply chose .3 millimeter, i0 percent of the beam. I hhlnk it is
better but just because we didn't know it, then we chose .3
millimeter.

DR. WALLS:

I see. For statistical things, maybe dividing by the square root

of 3 might be appropriate but for a systematic thing such as the

beam path to quote a one sigma value less than the uncertainty
there perhaps is a problem.

But let us talk about the relative instability, the column

there on the right. These are, again, estimated rather than
measured, is that true?
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DR. BECKER:

Estimated. Yes.

DR. WALL:

When you compare against your commercial cesiums in your time scale,

what kind of stabilities do you measure between season one and

your--

DR. BECKER:

This is the value which is of interest. This is shot noise. We

are using .3 grams here and there is an instability in a second of

about 5.5 parts in i0 to the minus 12th.

DR. WALL:

So that it takes about 25 to 40 days in order to average down to

that 6 or 7 times I0 to the minus 15 on both your standard and

against maybe commercial standards. So that is a very long time
to make a claim of stabilities of 4 or 5 or 6 times i0 to the minus

15 and to then base an estimate of weighting for TAI on a calcu-

lated stability rather than a measured one, I think, is quite risky.

DR. BECKER:

The method of evaluating an instability is up to the scientist. If

he can measure it, the better. But if he cannot measure it because

he has no comparable device, he is allowed to estimate it in the

same way as he is allowed, and this is done also at NBS, to estimate

the uncertainity. This is the same type of procedure.

By the way, this is a conservative estimation, more or less.

Consider please that for commercial clocks the instability is much
smaller than the so-called uncertainty. The same could also be for

other clocks. But you can be quite sure that the instability is

certainly not larger than the uncertainty is. As you see it is
only a factor of two here taken. There is no other method of

evaluating the instability by theoretical considerations.

Of course you have these things here, magnetic field strength.

Well, this is based on regular measurements of the magnetic field

and for 80 days we have ii such measurements and you know how they
fluctuate and this is not an estimated but a measured quantity.

DR. COSTAIN:

Dr. Becket, do you have any contribution from the power dependents?

In other words your excitation power?
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DR. BECKER:

This specific feature, the reason it is not in, the power shift is

not an isolated effect and cannot be listed here. You have to go
down to the roots of the physical behavior.

QUESTION:

Should it not be possible to use a long time running hydrogen maser

which does exist, they run for hundreds of hours. You could use

that maser as a direct method of measuring the changes that you

have for instance due to beam path reversal and that would not re-

quire any estimates. You could really measure it.

DR. BECKER:

We are going to compare our hydrogen maser directly with this

cesium. It is just going to be made. Yes. And as far as possibly
we will try to measure what is possible.

DR. MICHEL GRANVEAUD, Bureau International de l'Heure

I would have two comments. The first one is about the annual term

and I think we have to make the difference between the local time

scale and the international one. It seems that in the case of PTB,
for example, the local time scale of PTB it has some annual terms

and this annual term can come only from the atomic clocks themselves

or from the algorithm that is used. In the case of the interna-

tional time scale, we have furthermore the transmissions using
Loran-C.

My second comment is about the use of the difference in our

cesium-5, minus ceslum-l. Can I see the vu-graph?

DR. BECKER:

Let me first refer to the first question. In fact, if you refer
to our time scale TA, is it?

DR. GRANVEAUD:

No. I refer to TA(PTB).

DR. BECKER:

Oh, TA(PTB). Those have a seasonal term yes.

DR. GRANVEAUD:

Please?
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DR. BECKER:

Have a seasonal term, yes.

DR. GRANVEAUD:

And about the second comment? I was thinking of the differences
in our cesium-5 minus ceslum-l.

DR. BECKER:

Frequency or time?

DR. GRANVEAUD:

The curve. The plateau we saw.

DR. BECKER:

Yes. Frequency or time? Time difference?

DR. GRANVEAUD:

Time differences.

DR. BECKER:

Time differences. Das war das systematlschen, wissen Sie, mlt
dem drien kurven. This one?

DR. GRANVEAUD:

Yes. And we think that it could be a bit dangerous to use the

smoothing of the data in our cesium-5 minus PTB ceslum-1, and it

is better to use, when available, satellite data. As you can see

there is a smaller frequency difference between the smoothing line
and the satelllte results.

DR. BECKER:

Yes. You are absolutely right. I said to the first approximation.

If you have these data available then it is the best as you are

doing, and have written me in your letter, that a combination of
both informations is profitable, to use satellite data and these

measurements of the standards. You are right.

DR. DAVID ALLEN, National Bureau of Standards

One note of clarification. I suspect there are many here who don't

know what a weight of 5,500 means. The mixlmum amount a clock can
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receive in the international time scale is the weight of i00,

currently, in the ALGOS algorithm, and 5,500 means the total

accumulated weight of all the clocks. And when Dr. Becker says

that the weight of primary standards would be equivalent to all

of those, he means to the total accumulated weight of 5,500 of all

the clocks. In other words, if you look at the uncertainty

associated with his error budget there that would be the resulting
calculation.

The other point I would make is that a lot of the graphs

that we see, especially those for NBS, as Dr. Becker pointed out,

the Loran path across the NBS/Boulder is a significant problem in

our communicating time and frequency to international atomic time.

We are aware of that and are working strongly toward curing that
problem. And as long as we use Loran-C we will be limited and so

a lot of the data that we saw in his presentation is an analysis

of Loran-C, not of primary standard.
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THE LASSO EXPERIMENT

Bernard Serene (EUROPEAN SPACE AGENCY), Toulouse,

Pierre Albertinoli (CENTRE NATIONAL D'ETUDES SPATIALES), Toulouse

ABSTRACT

The LASSO experiment is an approach towards an

internationally coordinated technical assessment

of a system which promises to provide a synchro-

nisation of clocks bound to time and frequency

standard laboratories, with an accuracy of one

nanosecond using existing or near ground-based

laser stations via a geostationary satellite
(SIRIO-2).

The purpose of this paper is twofold; to present

the LASSO mission and the principle of the overall

experiment, and to underline the system performance

and the technical details concerning :

- on-board equipment,

- ground segment,

- operational configuration.

To conclude, we will show the future prospects of

the LASSO experiment together with possible imple-
mentations.

i. INTRODUCTION

The permanent long baseline clock synchronisation presents many scien-

tific and practical interests. From a scientific point of view, the

standa_of frequency or the very accurate synchronisation between

clocks allows a correlation of phenomena in the same scale of frequen-

cy or time to be performed. The demand for greater accuracy has led

to an improvement of the measurement of time and frequency by a factor

of at least 108 over the past century. While the limiting accuracies

are still confined to research laboratories and institutes dealing

with time and frequency standards, commercial and scientific users

are not far behind in their requirements :

- Digital communication i0 _s

- International telephone communication I _s

- Earth-based navigation i _s

- Deep-space navigation 20 ns

- Radio-astronomy Ins

- Geodesy 1

- Relativity as accurate

- Astronomy as possible
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Applications and research already planned for the next decade will

require nanosecond accuracy of better. Present users of time and fre-

quency information have access to a variety of services and techniques

for disseminating this information. These include the well-known high

and low frequency broadcast services operated by many different

Administrations throughout the world, portable clock methods, the use

of television transmissions, and satellite techniques (Table 2).

TABLE 1 : METHODS CURRENTLY USED FOR TIME SYNCHRONISATION

Method Accuracy Remarks

Very long baseline inter- ins Slow, expensive ground

ferometry (VLB) using stations

pulsars

TV-type transmission via 10 ns Requires a wideband spa-

satellite cecraft transponder

Symphonie B 20 ns Requires two-way trans-
ponder

Portable clocks 30 ns Slow

Timation-3 i00 ns Military

Loran-C 300 ns Accuracy limited by

propagation phenomena

Although available services can satisfy many of the present userneeds

in science and application, an increasing need is developing for ser-

vices which are required to provide improved accuracy, coverage and

reliability. For example, the rapid growth of technology as applied

to such areas as precise navigation, high-precision geodetic position

determination, multiple-access digital communication and metrology

results in a need for intercontinental time synchronisation and compa-
rison down to the nanosecond.

While existing services are undoubtedly capable of some improvements,

experience with a number of spacecraft - albeit ones that were not

specifically designed for dedicated timing missions - indicates that

satellite techniques appear to be the best choice for meeting future

requirements in the subnanosecond range. Following a proposal presen-

ted at the 1972 COSPAR meeting in Madrid, the European Space Agency

accepted a proposal from the "Bureau International de l'Heure" (BIH)

to implement an experimental space mission and decided to launch a

payload package, LASSO (La___serS_ynchronisation from S__tationary Orbit)on
the SIRIO-2 spacecraft.
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The objective of LASSO is to provide a repeatable, near-realtime

method of long distance synchronisation with the nanosecond accuracy

for a reasonable price to meet the above requirement.

2. THE LASSO MISSION OBJECTIVES

The mission objectives, backed up by a number of time and frequency

standard laboratories, is to provide intercontinental synchronisation

of clocks with an accuracy of one nanosecond or better, and is to be

considered as an important approach towards an internationally coor-

dinated technical assessment of such a system.

The mission will thus allow the establishment of an improved interna-

tional network of reference clocks synchronised between themselves and

with the_nternationally adopted Atomic T__ime scale (IAT).

It will also impact on other practical applications, such as the trac-

king of deep space mission spacecraft, the dissemination of standard

time and frequency signals to many users, and future generations of

space navigation and telecommunication systems.

The LASSO/SIRIO-2 experiment is designed to employ laser techniques and

is not only a significant breakthrough in synchronisation techniques

but is also a unique opportunity to compare the performance of laser

and microwave time synchronisation methods insofar as microwave timing

results have become available from the Italian SIRIO-I time synchroni-

sation experiment started in 1978. Thus, two candidate techniques will

be compared on the basis of identical link geometry and satellite type.

3. THE EXPERIMENT

3.1. Principle

The LASSO experiment is based on laser stations emitting, at a pre-

defined time, monochromatic light impulses which are directed towards

a geosynchronous spacecraft (figure I).

On-board the spacecraft :

- an array of retro-reflectors sends back a fraction of the received

signal to the originating laser stations;

- an electronic device detects and time tags the arrival of laser

pulses.

Each station measures the two-way travel time of the emitted laser

pulses and computes the one-way travel time between station and space-

craft, taking into account the station's geographical coordinates,

the spacecraft position and the Earth rotation.
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The difference between the clocks, which provide the timereference

for each of the laser stations, is deducted from the data coming from

the spacecraft and the stations (figure 2).

LASER PHOTO-OETEC TORS

SIRIO-_ SPACECRAFT _ LASER RETRO-REFLECTORS

S(AI ION I S_AI_ IUN

Figure 1. Schematic Diagram of LASSO Experiment

VISIBILITY OF TH£

I' RETRO-R_LECTO_S'1I
I I

I I I _ H' _ SP_,CECRAFT
, , , t . , _1 '1 i I lit

I ;i / l TIME SCAI.Em I

I I

I I
I I

I I

'V,V STATION I

* ]I
_ J _,, [HR J' ' TZMeSC,Le_;){io, ,, _T..o..
I i HZ I £ I _t' I I°_,"-+-I-'I' T,.E_--._E1 '.,,v,.l j- .! I.T,,VE_

TIME i TIME 2

Figure 2. Time Scale Comparison
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Consequently, for two stations we have :

D21 (H2 _ HD) + (T2 - TI)

where : D21 = Time difference between the clocks of stations 2 and i.

H I and H2 = Departure time of laser pulses fromD D
stations 1 and 2.

T 1 and T2 = Travel time between stations and spacecraft

HR - HD
with T = + e

2

i and H2
HS S = Arrival times on-board the spacecraft of the

laser pulses from stations i and 2.

H I and H2 = Return time of laser pulses from stations i and 2R R

e = Corrective factor depending on station and satellite

positions.

The formula becomes finally :
H 2 _ H I H 2 _ H I

D21 = (D 2 D) (R 2 R) _ S1+ + le2 - e I) - (H - H )

3.2. Performance

Error Analysis

Using the above formula, the global error is :

AD = AH D + AH R + 2Ae + 2AH S

with : AH D : error on the departure time

AH R : error on the return time

de : error on the corrective factor

AH S : error on the arrival time on-board the spacecraft.

The error budget is detailed in table 2 for three different numbers

of measurements (I, 15 and 30). In addition, all the laser firing
times are in a time window of less than i00 msec.
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TABLE 2

NUMBER OF MEASUREMENTS

ANALYSIS OF ERROR FACTORS

1 15 30

.Accuracy of cesium clock < i0-II + i psec _ i pseci_ i pseci

.Short term stability < 2.10 -11 7 2 psec Negligible

H .Chronometer resolution 0. i nsec + 50 psec + 50 psec!+ 50 psec

.Detection system 0.i nsec _ i00 psec _ 26 psec _ 18 psec

AH D ....< + 153 psec + 77 psec + 69 pse¢

.Accuracy of cesium clock < i0-II + 2 psec + 2 psec + 2 pse¢
-ii

.Short term stability _ 2.10 _ 4 psec _ i psec _ i pseci

HR .Chronometer resolution 0. i nsec _ 50 psec!_ 50 psec _ 50 psec

.Detection system i nsec _i000 psec _ 258 pseci_ 183 psec

AH < +1056 psec + 311 psec + 236 psecR ....

.Spacecraft position _ I km

.Station position _ 50 km

ae < + 40 psec + 40 psec + 40 psec

.u S O accuracy _ < 10-9 + I00 psec + I00 psec + I00 psec

.U S O stability < i0-I0 + i0 psec + 3 psec + 2 psec

Hsi.Chronometer resolution 0.I nsec _ 50 psec _ 50 psec _ 50 psec

.Detection I nsec _i000 psec _ 258 psec_ 183 psec

AH S _ _i160 psec _ 411 psec _ 335 psec

D AD = AH D + AH R + 2Ae + 2AH s ....< + 3.6 nsec + 1.3 nsec + i nsec

U.S.O. : Ultra Stable Oscillator
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Liaison Budget

Considering the two planned positions in orbit of the spacecraft (25°W

and 20°E), the parameters of the on-board equipment and the assumed

characteristics of a certain number of laser stations, we have used

different algorithms to compute :

- P which is the power density received by the spacecraft,r

j TA
P = K-- .

r T 4 82 D2

using the following unit :

J (Joule) emitted energy

T (nsec) pulse width

@ (second of arc) beam divergence

D (km) distanqe station - spacecraft

1/cosz
T A = (0.7) atmospheric transmission coefficient

(z = zenithal distance)

K = 0.7 coefficient of energy distribution

The formula becomes :

P (mW/cm 2) = 3.79 1012 J 1 i T

r T @2 D 2 A

- N_ which is the mean value of photons received by the photo-detector

Nd

Nd -- A s with :(photons/nsec) = T = Pr op h_c '

A = 2.25 gain of optical detection
op

s = 0.2 mm 2 photodiode sensitive surface

IR = 694.3 nm (Ruby)

IN = 532.0 nm (Neodyme)

h = 6.6256 10-34 J.sec

c = 2.998 108 m/sec

consequently :

_ IkR = 15730

N d = k Pr IkN 12050
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- S/N which is the signal to noise ratio,

S 2
-- = C.P
N r

with C being a coefficient depending on the optics, the photodiode

noise and preamplifier noise.

(_)dB = 20 lOgl0 Pr + i0 lOgl0C ,

where i0 log10C = 32 for Ruby and = 26 for Neodyme.

- N which is the number of photo-electrons collected at the lasere
station using the Fournet formula :

Ne = E . TR 1 R . TR 2 . D

photons emitted bywhere E = KJ --
hc the laser station

T
A travel effect

TR 1 =
( _ . @ 105 D)2 station - spacecraft

4 "180 3600

retro-reflectors

R = Rcc Zf (Gi) effect

R = 0.75 (coefficient of reflection)cc

Zf (Gi) = 14 (minimum efficacy)

TA travel effect
TR 2 = 0.328 --

D 2 spacecraft - station

D = A T p station detection
r effect

A(cm 2) is the receiving surface of the telescope,

T is the transmission coefficient of the telescoper

optics (Tr = 0.8 without interferential filter,
o

and 0.4 with interferential filter of 3A),

p is the quantum efficacy of the P.M. (20% for

Ruby and 25% for Neodyme).

All the computed values are reported in table 3, where the nominal

value of the laser beam divergence @ has been considered equal to
15 seconds of arc.
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STATIONS CHARACTERISTICS 25 ° W 20 ° E

Laser Ener Pulse Tales P N. S/N N P N. S/N N
r _ e r o e

GEOGRAPHICAL LOCATION _pe gy Dura cope

tion Aper

ture Photon/ Photo Photon/ Photo

_oule nsec cm roW/ca2 nsec dB electron roW/ca2 nsec dB electron

CAGLIARI (Italia) R I 5 50 1.18 18560 33 4 1.42 22340 35 6
r

DIONYSOS (Greece) R 4 15 45 1.18 18560 33 7 1.96 30830 38 20

GRASSE (France) R 15 10 100 8.40 132130 50 211 9.84 154780 52 290

GRASSE (Lune) (France) R 6 2 154 16.80 264260 57 200 19.70 309880 58 275 I_

KOOTWIJK (Holland) R 3 4 50 3.40 53480 43 7 4.03 63390 44 I0

_TSAHOVI (Finland) R I 20 63 0.06 944 8 0.2 0.20 3150 18 3

SAN FERNANDO (Spain) R 3 6 60 3.55 55840 43 24 3.36 52850 43 22

WETTZELL (Germany) N 0.25 0.2 60 5.0 60250 40 0.4 6.83 82300 43 0.8

ZIMMERWALD (Switzerland) R 5 17 50 1.52 23910 36 15 1.81 28470 37 21

AREQUIPA (SAO) (Perou) R 6 15 50 2.38 37440 40 24 OUT OF VISIBILITY

NATAL (SAO) (Braz_l) R 6 15 50 3.6{ 56790 43 55 2.0 31460 38 17

WASHINGTON (USA) N 0.25 2 50 0.48 5780 20 0.4 OUT OF VISIBILITY

WASHINCIDN (USA) Mob.las. 1.3 R 0.75 5 50 0.58 9120 27 1.2 OUT OF VISIBILITY

WASHINGTON (USA) Mob. las. 4.8 N 0.25 5 75 0.19 2290 12 0.9 OUT OF VISIBILITY

WASHINGTON (SAO) (USA) R 6 15 50 1.54 24220 36 10 OUT OF VISIBILITY



4. THE EQUIPMENT

4.1. General Description of the Spacecraft

A cross-section of the SIRIO-2 satellite is shown in figure 3. It

consists of a drum-shaped central body covered with solar cells, on

top of which is mounted a mechanically despun S-Band antenna. The

apogee boost motor, which is to be retained after burn, protrudes from

the bottom of the spacecraft. While the directional S-Band antenna

supports a Meteorological Data Dissemination (MDD) function aDd trans-

mits the housekeeping telemetry, the omnidirectional turnstile antenna

serves telecommand, ranging and back-up telemetry functions in the VHF.

As the satellite is to be spin-stabilised at 90 rpm and will act as an

inertial gyroscope, attitude re-orientation is achieved by torque-indu-

ced precession of the spin axis using axial micro-propulsion thrusters

in a pulsed firing mode. North-South stationkeeping is performed by

the same thrusters.in a continuous firing mode, while a pair of radial

thrusters allows the satellite to be displaced in an East-West sense.
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The monopropellant hydrazine fuel is contained in four symmetrically

located spherical tanks. The telemetered readings from on-board
infrared earth and V-slit sun sensors are used to determine the

satellite's attitude in space. The satellite is powered by the solar

cells and by a battery sustaining a minimum load configuration during

eclipse transits.

The LASSO payload is comprised of retro-reflectors, photodetectors

for sensing ruby and neodyme laser pulses, and an ultra stable oscil-

lator/counter to time-tag the arrival of the pulses. These time-tags

will be encoded in time-division multiplex with spacecraft house-

keeping information before transmission to the ground.

The overall block diagram is given in figure 4.

The industrial effort for the SIRIO-2 project is led by the Compagnia

Nazionale Aerospaziale (CNA) in Rome.

,i

ULTRA STABLE

OSCILLATOR

5 MHZ

OPTICS SFNSORS

0 • 69uM

CLOCK

CHRONOMETER

I ,,-'-- MEMORY SCIENTIFIC

0. 53uM | DATA
HOUSEKEEPIN

DETECTION

_.Z///'t''mi't 12_OUSEKEEP I NG>

..... CONVERTER •

<///// RETRO-RE L CTOR Ik,ELECOMMANO<//_'// PANEL , , Ik_

I////

Figure 4: LASSO Equipment Block Diagram
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The figure 5 gives the simplified industrial organisation of the

SIRIO-2 programme.

I EUROPEAN SPACE AGENCY

EARTH OBSERVATION PROGRAMME OFFICE

SIRIO-2 PROGRAttME

PROJECT MANAGER : P. BERLIN

LASSO PAYLOAD & : B. SERENE
HI SS ION MANAGER

, I
1 , I

I !
C.N.AEROSPAZIALE

C.N.E.S. |

LASSO OPERATIONAL | SIRIO-2 PROJECT

PHASE STUDY |
__. PROJECT MANAGER : M,SCIIIAVONJ

I I
i II i

J C,N,E,S, SELENIA

J LASSO PAYt.OAD
HOD PAYLOAD

J *ROJECT MGR: P.ALBERTINOLI

i i
= I J I J
I S.N,I.A.S. C.N.E.S./

, ""° J
J RE1RO- I I DETECTIO.I ELECT.TESll I OPTICAL I

REF"ECTORSII DA,AT,O,I EQT.I I TEST EQ,.I
I i
I = I

I

Figure 5 : Industrial Organisation

4.2. Details of the On-board LASSO Equipment

Retro-reflectors

The retro-reflector panel is an assembly of 98 aluminised corner

cubes which are held by a mechanical structure thermally coated and

decoupled from the spacecraft (figure 6). The panel, which is mounted

on the launch interface adaptor and aligned with the field of view of

the photo-detectors, has the following characteristics :

- weight : 2,5 kg
- dimensions : 155 mm x 340 mm x 35 mm

- minimum global efficacy : 14.

Each corner cube presents a diameter of 20 mm, with a reflection
factor of more than 75%.

156



............... • :r I

I

Figure 6. Mechanical Detail of the
Retro-Reflectors

Photo-detection

The detection box is located on the main platform near the skin of

the spacecraft and views through an aperture in the solar panels.

This unit detects laser pulses and converts them into electrical

signals which are transferred to the time-tagging unit.

The block diagram given on figure 7 shows :

- the optics (one for each laser type) including interferential

filter, focusing lens and the avalanche photodiode,

- the broadband pre-amplifier (i GHz),

- the threshold amplifier with the AGC system.
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Figure 7 : Photo-detection Block Diagram

The main characteristics of the unit are :

O

- interferential filter bandwidth : i00 A

- optical incident angle : + I0 deg

- minimum detectable power density

. ruby : 0.25 mW/cm 2

. neodyme : 0.50 mW/cm 2

- false detection - < one per minute

- non detection probability of a laser pulse : < I/I00m

Time Tagging

The time tagging unit, which is time-synchronised by an ultra-stable

oscillator, clocks in the pulses coming from the detection unit.

The time events are buffered in a memory before being sampled and

transferred to the ground via the spacecraft telemetry. The block

diagram given on figure 8 shows :

- the ultra stable oscillator (USO)

- the clock counter (clock of minutes)

- the chronometer (0. I nsec)

- the memory (i kbits)
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Figure 8, "Datation"

Block Diagram

The main characteristics of this subsystem are :

USO

nominal frequency 4.804434 MHz

AF I0-i0
short term stability (I00 msec) _ (-7) _ i.

AF 10

medium term stability (3 days) [ _-( ! 5.10-

Clock and Chronometer

chronometer resolution _ i00 psec

dead time < 200 _sec1

time tag encoding 42 binary digits
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The overall statistical accuracy (over I00 couples of events) on the

elapsed time between two events in the same time window of 70 msec

will be better than 0.5 msec.

5. THE GROUND SEGMENT

The LASSO experiment consists of a space and a ground segment with the

aim of obtaining a very high-precision synchronisation between remote

clocks at intercontinental distances and will be used in a pre-opera-

tional mission in order to demonstrate the validity of the LASSO

concept and overall performance.

In addition, the laser stations should fulfil a certain number of

requirements to participate in the LASSO experiment.

The modes of operation described here are only tentative and should

be frozen at the beginning of 1980.

5.1. Mission Duration and Duty Control

A total duration of two years for the LASSO mission is planned, with

two positions in orbit : 25°W and 20°E.

During its useful life in orbit, the LASSO experiment will perform

"working sessions" with an average duration of one hour per day.

There will be no technological constraints on the time of the day

when one or more sessions will be performed.

5.2. Mode of Operation

Each daily working session comprises 2 periods :

Ist period : synchronisation of laser pulses

Synchronisation of pulse transmission of each station participating

in the session with respect to the rotation of the spacecraft, and

to other stations.

2nd period : time measurements

Due to LASSO on-board equipment, laser pulses of the various opera-

ting laser stations must arrive at the spacecraft with the time

distribution shown on figure 9.
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Figure 9 : LASSO Operation Mode

Each sequence of measurements lasts approximately 6 seconds (bound to

the minimum pulse rate of laser stations).

In each sequence a certain time slot of 5.10 -3 sec. is reserved for the

arrival of the laser pulse from a given laser station to the spacecraft

(this figure is bound by the accuracy of the time of departure of the

pulse from the station and by the accuracy of the computation of the

time of transit of light from the station to the spacecraft).

Successive sequences differ one from the others since not all of the

laser stations send pulses at each sequence. This permits ground

processing by pattern recognition techniques to eventually discard

false pulses detected by the on-board equipment.

Presently another mode of operation is investigated : the asynchrone

mode.

Following each daily working session, measurements made by spacecraft

equipment and laser stations are used for data processing. Currently,

several data processing modes are under study, and before final imple-

mentation, the different principal investigators will be consulted.

5.3. Laser Stations Requirements

Localisation

Because of the necessity to correct the transit time of light from

the laser station to the spacecraft, the laser station should be

located in a common earth reference frame with an accuracy of :

- latitude : + i0" (or + 300 m)

- longitude : + i0" (or + 300 m)
- altitude : + 50 m
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Performance

Two conditions are imposed on laser station characteristics :

- one by the satellite detector and retro-reflector characteris-

tics,

- one by the laser station detector system.

Conditions for detection on-board the spacecraft :

In order to have sufficient energy flux to be detected on-board the

spacecraft, the laser station must deliver a sufficient energy in a

sufficiently narrow beam during a maximum time.

- If (J) is the total energy of the light in the beam during one pulse

of the laser station in Joules,

(T) is the equivalent pulse duration in nanoseconds,

(@) is the laser station beam divergence in second of arc,

- and considering the link budget from the laser station to the space-

craft, and the sensitivity of the detectors on-board thesatellite,

the laser station should satisfy the performance relationship shown

in table 4 below :

TABLE 4

BEAM DIVERGENCE IN SECOND OF ARC
DISTANCE

ELEVATION

STATION S/C RUBY LASER NEODYME LASER

J 1/2 j 1/2
90 ° 35786 km G i 128 (_) G i 86 (_)

1/2 1/2

55 ° 36780 km 0 _ 120 ( ) Q 2 80 (_)

1/2 1/2

25 ° 39070 km 0 _< 92 (_)= @ _< 62 (_)T

1/2 i/2J
0 < 69 (--) 0 < 46 (_)15 ° 40061 km

I T I T

Conditions for detection of return-pulse by the laser station :

In order to detect the return pulse with the retro-reflectors on-board

of SIRIO-2 spacecraft (544 cm 2 of surface, reflexion coefficient=0.75,

efficacy = 14), the laser station should :
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(a) transmit with sufficient energy J in a sufficiently narrow beam G,

(b) collect the light reflected by the spacecraft in order to get a

sufficient number of photons on the laser station detectors.

If A (in square centimeters) is the effective area of the telescope

used to collect the light,

T R is the transmission factor of the telescope,

J (in Joule) is the energy of the laser flash,

Q (in second of arc) is the beam divergence,

N is the number of photons collected by the telescope equipment,

and considering the link budgets from the laser station and

back to the laser station of reflection on the spacecraft,

the laser station should satisfy the relationship shown in table 5
below :

TABLE 5

NUMBER OF PHOTONS RECEIVED
DISTANCE

ELEVATION •
STATION S/C

RUBY LASER NEODYME LASER

90 ° 35876 km N = 13 _ (TRA) N = I0 _ (TRA)

J (T_) N = 8 J (TRA)55° 36780km N = I0_-_ _-_

25 ° 39070 km N = 3 G-_ (TRA) N = 3 G--_ (TRA)

J (TRA) N =0.8 J (TRA)15° 40061km N = i V

The number of photo-electrons detected is :

Ne = N. p

Q = (quantum efficacy of photo-multiplier).
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Minimum beam divergence

A sufficient beam divergence is necessary for the laser station in

order to ensure that the pulse arrives at the satellite, taking into

account small errors in the satellite position (known within _ i km).

Then the laser stations must have a beam divergence of :

0 > I0" + 2 x (angular error of tracking)

Performance of time-measurement devices in the laser stations

- Laser stations participating in the LASSO experiment should permit

synchronisation with a standardised time of their zone (ex. IAT ...)

by the terrestrial means on a daily basis with a precision of about
a few microseconds.

Maximum error on the synchronisation between two laser stations

participating in the LASSO experiment should be less than i milli-

second before measurements by LASSO.

- Each pulse-transmitted by the laser station should be able to be pre-

programmed at TO. If T1 is the real time at which the laser pulse

was transmitted, one should have :

(TO - TI) < i millisecond.

T1 should be measured with an accuracy of + 0.i nanosecond,
• i V!

"a posterlorl .

- If T2 is the time of arrival of the pulse back from the satellite,

it should be measured with an accuracy of + 1 nanosecond. Maximum

time elapsed from start to return of a given pulse :

270 msec > T2 - TI.

6. THE OPERATIONAL ORGANISATION

The overall possible organisation for the two-year period of LASSO

operationas is given on figure i0.

This diagram shows the inter-relations between four important bodies :

- The Scientific Community and the laser stations,

- The LASSO experimenters and users team (LEUT),

- The LASSO Coordination Centre (LCC),

- The SIRIO-2 Operations Control Centre (SIOCC).
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Figure i0: Possible Organization of LASSO Operations

/_/ SIRIO-2

SATELLITE

LASER LINKS

O P E RATIONS

CONTROL

CENTRE

(SIOCC)

N

It "n • L A SSO L ASSO
i •
' _, EXPERIMENTERS

_ _ COORDINATION
• _ AND

I NVE STIGATORS % CENTRE _ ---Ib
USERS

l I 1 _' TEAM
C I E N T I FI C C O MM U N ITY _ (LCC)



The Scientific Community, supported by laser stations, will submit

to the LEUT their reply to the announcement of opportunity. After

evaluation, principal investigators will be appointed and will become

members of the LEUT for the duration of the proposed experiment.

The LEUT, attached to the ESA project group, is in charge of the

international coordination of the LASSO experiment and the establish-

ment of the utilisation schedule for the two-year life time of SIRIO-2.

During the experiment phase selection, the LEUT is a nucleus of

experts and will be enlarged afterwards by all the principal investi-

gators.

The LCC, which is the key point between laser stations, SIOCC and

LEUT, has the primary tasks to :

- exchange information with SIOCC (orbit parameters, spin phase and

speed, telemetry data),

- compute laser firing times,

- exchange information with laser stations (pointing angles, firing

times, time events, data),

- select the operational mode (synchrone, asynchrone, one way, ...),

- pre-process scientific data and ensure the dissemination,

- create and run the data bank,

- perform special data processing (on request).

The SIOCC is in charge of the spacecraft control and monitoring during

two years under ESA's responsibility. In the frame of LASSO, SIOCC

will be intrusted with :

- performing VHF ranging,

- providing attitude and orbit data for spin phase and speed

computation,

- decoding of TM format to extract LASSO data,

- sending necessary LASSO telecommands,

- monitoring housekeeping information.
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7. FUTURE PROSPECTS

In collaboration with CNES, the ESA project group will perform some

preliminary investigations to evaluate the possibility of embarking

equipment on board European spacecraft with the goal of achieving a

0. I nsec synchronisation accuracy.

This evolution of LASSO might include :

- a three-axis stabilised spacecraft on geosynchronous or low polar

orbits,

- a centrofd detection system, self-adjustable, for laser pulse width

from 50 psec to 25 nsec, with faster photodiodes,

- a digital chronometer with i0 psec resolution,

- possibly a space-qualified rubidium or cesium standard on board.

8. CONCLUSION

The LASSO experiment on-board the SIRIO-2 spacecraft aims at proving

possibility to synchronise clocks over intercontinental distances

by means of laser stations.

The pioneering aspect of this first experiment, the small amount of

space and power available on-board, and the very tight schedule

(18 months), have led us to maintain, for the design of the on-board

equipment, relatively simple technical solutions.

In addition, the fact that SIRIO-2 is spin stabilised requires the

laser stations firing times to be synchronised with the rotation of

the spacecraft. This aspect makes the operational use of the system

more complicated; however we are examining the possibility of using

an asynchrone mode, and even a one way mode.

Taking into account the studies performed by CNES on the LASSO

experiment and the results we have had during the testing of the

breadboards, a certain number of improvements has led us to consider

a second generation of LASSO.

- o0o -
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QUESTIONS AND ANSWERS

DR. CARROLL ALLEY, University of Maryland

There are several things that those of us who are planning to

participate in this experiment need to know a little more detail
about. One would be an explicate value for the differential

scattering cross section for the corner reflector array. Are you

able to provide that at the present time?

DR. SERENE:

Not really. Actually, tests of the reflector are ongoing at CNES

and each corner cube will be tested and all we can say is it is a

bad one, which has a very bad, well, equivalent defraction pupil

will be rejected, but I can give you actually only value. The
only thing I can say, we ought to get a higher efficacy and to

overpass the figure of 14 we gave in this presentation.

DR. ALLEY:

Yes. It is not 14. What is the actual cross section of individual
corner reflectors? Circular reflectors?

DR. SERENE:

(Nods affirmatively.)

DR. ALLEY:

What diameter?

DR. SERENE:

Twenty millimeter. I think it is 20 millimeter diameter, the

corner cube with a circular section, yes?

DR. ALLEY:

The second question. I have some concern about achieving even a

nanosecond precision without some form of constant tracking dis-

crimination for the received electrical signals. We have discussed

this question before. Is there any possibility of including that

kind of equipment on this first go?
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DR. SERENE:

No. As I mentioned to you previously also, we are actually on a

certain time schedule which is quite tight. We have to load the

spacecraft. We are not the only passenger on-board and it will be

the subject of LASSO number two on board of another spacecraft.

DR. ALLEY:

And one more. What will be the actual, with respect to receiver,

area, including these additional objects that you have mentioned
and what is the actual threshold of detection in terms of energy

or photons for the detector?

DR. SERENE:

The threshold has been evaluated in terms of photon by something

llke 3,900 for Ruby and 2,050 for Neodyme I think. We have fixed
the threshold because the threshold actually has been fixed to

20 dB as you have seen on the table for the different laser sta-

tions. Yes that is right. The number of photons per nanosecond
riding up the detection element at the threshold is 3,900 photons

per nanosecond arriving for Ruby lasers and 2,500 for Neodyme
lasers.

DR. ALLEY:

What is the actual resolution of the on-board event timer?

DR. SERENE:

The actual-- The official one or the measured one?

DR. ALLEY:

The resolution. Can you resolve down to a tenth of a nanosecond
or is it one nanosecond?

DR. SERENE:

Actually, I was two weeks ago in Paris where is Marcel Darseau

and the breadboard was giving on the chronometer 50 picosecond

for an average of 300 measurements. It is a statistical value.

DR. ALLEY:

What is the standard deviation of that? Do you know?
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DR. SERENE:

Not really, because actually we are waiting for the last Hewlett-

Packard counter to be able to perform a more accurate one because
we are at the limit of the test equipment. The breadboard is

looking better than all test equipment actually available, except
this latest Hewlett-Packard counter.
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SOMEIMPLICATIONS OF RECIPROCITY FOR

TWO-WAYCLOCK SYNCHRONIZATION*

James L. Jespersen
National Bureau of Standards

Boulder, Colorado

ABSTRACT

Two common methods for synchronizing remote clocks are

called one-way and two-way. Both of these methods, when

operated in the traditional fashion are subject to a

number of difficulties related to propagation perturban-

ces. This paper points out however, that under certain

circumstances, these difficulties can be circumvented

for the two-way scheme. This possibility is explored

theoretically, in some detail, with respect to the

Loran-C navigation system.

*Contribution of the National Bureau of Standards, not subject to

copyright in the United States.

171



INTRODUCTION

Radio signals are commonly employed to compare clocks at remote

locations. The two most commonly used schemes are called "one-way"

and "two-way." In the one-way scheme a signal is transmitted from

location A, where clock A is located, to location B where clock B

is located. The time, tAB, it takes the signal to travel from A

to B depends upon the signal path distance, d, between A and B and

upon the average signal speed, s, over the path. Or in simple

mathematical terms

tAB = d/s. I)

To accurately compare the clocks it is necessary to know tAB. Al-

though l) is mathematically simple its determination in the "real

world" can be very difficult. There are a number of reasons for

this. First, the signal may not travel a "line-of-sight" path

between A and B. If the signal, for example, is ionospherically

propagated the actual signal path is a complex function of the

distribution of electrons in the ionosphere. Second, the signal

speed may change along the path. Again, in the ionosphere, the

signal speed is a function of electron distribution. Third, the

signal may change its shape during propagation. This means that

the point on the signal wave form that is "tagged" as the time

reference point as the signal leaves A may be "washed out" by the

time the signal arrives at B. Fourth, it is necessary to accur-

ately know the geographic locations of A and B.

The first three factors are usually discussed in terms of:

l) homogeneity of the medium;

2) isotropy of the medium;

and 3) frequency dependence of the medium (dispersion).

As mentioned earlier the ionosphere is not homogeneous because its
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electron density changes with height, which leads to non-constant

signal speed and to complicated signal paths. Furthermore, the

propagation medium may be non-homogenous in the sense that it

contains irregularities which scatter the signal. Thus, although

only one signal is transmitted from A, several signals may arrive

at B via several different paths.

Because of the presence of the earth's magnetic field, the iono-

sphere is also non-isotropic for radio waves. In general, this

means that the signal speed and the attenuation of the signal

depend upon direction of propagation. Finally, for radio waves,

the ionosphere is frequency dependent because the signal speed

depends upon signal frequency. This effect is usually referred to

as frequency dispersion of the signal. All three of these factors

lead to shape distortion of the signal, illustrated schematically:

I
Sommerfeld [1] and others have considered dispersion in considerable

detail. These treatments are highly mathematical, and I shall

only briefly sketch the main results of these investigations.

First, some very small part of the signal travels with the speed

of light independent of the dispersive properties of the medium.

This part of the signal called the "Sommerfeld precursor" is quite

weak and oscillates very rapidly. A short time later the "Brillouin

precursor" arrives with greater amplitude and longer duration.

Finally, depending upon the structure of the transmitted signal

and upon the detailed dispersive properties of the medium, the

signal settles into some steady state value. The Sommerfeld and

Brillouin precursors have been experimentally verified in the

laboratory at micro-wave frequencies, k2]" although to my knowledge

no one has investigated the possibility of using them in timing

and navigation systems.
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TWO-WAYMEASUREMENTS

To avoid some of the difficulties discussed in previous paragraphs,

it is sometimes easier and perhaps even necessary to measure tAB
when one wants to make a clock comparison. Usually a "two-way

scheme" is employed to measure tAB in the following way. As in
the one-way method, a signal is transmitted from A which arrives

some time later at B. At the instant the signal arrives at B (or

after some known delay time), it is returned to A. To determine

the round trip path delay between A and B, an observer at A notes

the transmission and reception times of the signal at A with

respect to the clock at A. If the propagation medium is isotropic,

then path delay reciprocity can be assumed; that is, the path

delay from A to B equals the path delay from B to A. Thus, tAB =
(roupd trip delay)/2.

This approach alleviates two problems. First, it is not necessary

to know the geographic positions of A and B, and second, it is not

necessary to know average signal speed. The disadvantage is that

transmitting and receiving equipment are required at both ends of

the path. There may also be a problem due to dispersion. If the

signal arriving at B is a distorted version of the one transmitted

from A, then it is no longer clear when the time reference point

has arrived at B so it can be "reflected" to A. Similarily, the

signal traveling from B to A will be distorted so there is again

the problem of determining signal arrival time at A.

The problem of signal shape distortion can be considered from a

somewhat different point of view. As stated above, if reciprocity

holds and if there is no signal shape distortion, then the observer

at A, using the two-way method, can determine the one-way path

delay tAB from A to B. The concept of signal delay, tAB, involves
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the notion of average signal speeds and path distance (as shown

explicitly by equation l). The two-way measurement only provides

tAB, that is, it only provides the ratio of distance d to speed s.

If either d or s is known by some independent means then the

other quantity can be determined.

Consider the case now where there is some definite known path

distance d, say a line of sight path, but there is dispersion

along the path so that a distorted signal arrives at B and the

return signal also arrives distorted at A. In this case, tAB

cannot be measured, so no meaningful value can be assigned to s,

even though d is known. We could say that the notion of signal

speed or "group" velocity, as it is usually called, has failed.

In a similar fashion suppose that there is not dispersion, but

there are many irregularities in the path which scatter the signal

so that although only one signal is transmitted from A, many

overlapping but similarly shaped signals arrive at B. Again the

composite signal at B is a distorted version of the one that left

A, so that no meaningful arrival time can be assigned. For this

case, s has a definite value (assuming isotropy), but d is not

meaningful since no single path is involved. If a single path can

be isolated (e.g. the Loran-C ground-wave signal), then the problem

can be resolved.

Suppose now that tAB cannot be meaningfully determined by the

two-way method, either because of signal shape distortion or

because of a multitude of paths.,or perhaps both. Are either one

of these conditions sufficient to destroy the utility of the

two-way scheme? That is, is the notion of definite path delay,

tAB, and definite average group velocity, s, necessary for the

two-way scheme to work?
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Let's consider the following situation. The propagation medium

between A and B is both dispersive and non-homogeneous, but iso-

tropic. That is, the signals propagating between A and B are both

dispersed and scattered identically in both directions because of

isotropy. Suppose similary shaped signals are launched simulta-

neously from A and B. The signals arriving at A and B will have

identical shapes, though very different from the transmitted

shapes, and further, both signals, since they were launched simul-

taneously, will fluctuate in amplitude and phase identically as a

function of time at A and B. If the signals are not launched

simultaneously (and if the propagation medium remains constant

with time), then the two signals arriving at A and B will still be

identically shaped, but displaced in arrival time by an amount

that is just equal to the difference in launch times of the two

signals.

Thus, all that is required to compare the clocks at A and B is to

determine the amount of time displacement of the two signals in

spite of the fact that the notions of group velocity and definite

path delay have no meaning. Thus, isotropy (with the two-way

scheme) is the only condition required to compare clocks. Homo-

geneity and dispersionless media are not required.

This fact does not seem to have been explicitly pointed out before,

perhaps because of the intimate association between timing and

navigation systems where the notion of path delay is critical.

In summary then, if the medium is despersionless, isotropic and

homogeneous, the notion of path delay can be employed and the

two-way scheme may be employed in the usual way_ However, if the

medium is dispersive and non-homogeneous, the two-way scheme can

still be used if the received signals at the two ends of the path
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are brought together to determine their difference in arrival

time. In fact, we might say that bringing the records together is

the extra price we must pay to remove the dispersion and non-homo-

geneityproblems.

A practical implementation of this procedure would be to sample,

at high rate, and store on magnetic tape, the amplitudes of the

two received signals as a function of time with respect to the

clocks at A and B. The tapes could then be brought together and

lag cross-correlated to determine the clock offsets.

LORAN-C

Loran-C is the backbone of the system for international clock com-

parisons. Loran-C has the advantage that its signals are pulsed

so that ground wave and sky-wave signals can be separated if the

observer is sufficiently close to the Loran-C transmitter. However,

at distances beyond several thousand kilometers, the ground wave

weakens relative to the sky wave signal and the difference in

arrival time between the sky and ground wave signals becomes small

so that it is difficult to separate them. Even at distances where

the separation can be made, international clock comparisons are

compromised by the fact that the ground wave delay is subject to

an annual variation with a magnitude of about one microsecond at

sites as far removed as the NBS time scale in Boulder, Colorado.[3]

The discussion in this paper suggests that more accurate clock

comparisons could be made if Loran-C were employed in a two-way

mode. First of all, variations in path delay (annual or otherwise)

cancel out. Second, it is not necessary to separate the ground

and sky waves if the cross-correlation technique is utilized.

Third, the Loran-C sky wave has been detected at distances exceeding
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5 thousand kilometers,[4] so it would not be necessary to "bridge"

large distances by intercomparing observations of Loran-C signals

which were all within "groundwave" distance of each other. Fourth,

to improve signal to noise, the signals could be averaged for long

periods of time at both ends of the path, since signal path delay

variations have no effect on the cross-correlation determination

of clock offset.

Strictly speaking, for the two-way measurements, the observers at

both ends of the path should be co-located with the transmitting

antennas at A and B, but as a practical matter, this is not possible.

However, other measurements[5] suggest that the observer could be

as far as a few kilometers from the transmitting antenna before

any significant difference forward and return in the propagation

paths developed. Another difficulty related to being near the

transmitter antennas, is that the transmitter signals might inter-

fere with one's ability to receive distant Loran-C signals.

However, because of the short pulse width of the signals, it

appears[6] that gating procedures can be developed which will

solve this problem.

The primary point that remains inquestion is the degree of an

isotropy for Loran-C sky-wave signals. As stated earlier, the

presence of the earth's magnetic field in the ionosphere makes it

anisoptropic. Using a procedure developed by Johler,[7] some

preliminary calculations have been made to determine the degree of

anisotropy for Loran-C sky waves. Table I shows the results of

these calculations for both local noon and local midnight at the

mid-point of the path. When the observer is far enough from the

transmitter station so that the signals reflect from the ionosphere

at grazing incidence, i.e., at or exceeding 2000 kilometers, the

table shows during the daytime that the path delay non-reciprocity
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at I00 kHz is 49 nanoseconds for east-west propagation and 3

nanoseconds for north-south propagation. At night, the non-reci-

procity amounts to 190 nanoseconds for east-west propagation.

Other related calculations [8] suggest that one can always expect a

greater non-reciprocity at night.

Based on these results for grazing incidence, if the non-reciproc-

ity component of the I00 kHz signal delay is ignored, the error in

the two-way clock comparison would be half the total non-reciproc-

ity or about 25 nanoseconds.

Of course these calculations depend upon a particular model of the

ionosphere. However, as long as the signals reflect from the

ionosphere at grazing incidence, I do not anticpate that the

degree of non-reciprocity will be particularly sensitive to the

details of the ionospheric model. [9]

The table also shows that as the observer's distance to the Loran-C

transmitter decreases the degree of non-reciprocity increases.

This is probably due to the fact that, at shorter distances, the

signal penetrates more deeply into the ionosphere during the

reflection process, so that the signal path through the non-iso-

tropic portion of the total path between A and B increases. My

preliminary conclusion from these calculations is that two-way

Loran-C comparisons should be made during the daytime over dis-

tances large enough for grazing incidence to hold.

It should be emphasized that these calculations apply only to the

lO0 kHz Fourier component of the Loran-C pulse. To determine in

detail what happens to the entire pulse during propagation, re-

quires making similar calculations for all of the significant
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Fourier components of the pulse and then adding up these compon-

ents with the proper phases at the observer's location. In addi-

tion, the degree of attenuation of the amplitudes of the Fourier

components during propagation is also a function of Fourier fre-

quency and propagation directions. Therefore, a complete analysis

of what happens to the Loran-C pulse during propagation must take

into account both amplitude and phase delay variations as a func-

tion of direction and Fourier frequency.

'The advantage of such an analysis is that the full energy in the

pulse at all Fourier components can be used. Such calculations

are now under way and will be reported in a later paper.

As a final point, since the procedures discussed here imply that

clocks comparisons in the tens of nanoseconds range be accomplished,

relativity effects cannot be ignored. For example, in the east-west

direction at 40° Lat., over a distance of about 4000 kilometers,

non-reciprocity due to relativistic effects amounts to about lO

nanoseconds.[I0]
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TABLE I
THEORETICAL CALCULATIONS OF NON-RECIPROCITY

LOCAL TIME OF DAY
DISTANCE AT MID-POINT OF PATH NON-RECIPROCITY
KILOMETERS DIRECTION FREQUENCY HOURS NANOSECONDS

2000 EAST-WEST 100 kHz 0 190

...... 12 49

1500 .... 0 285

Qo 1000 .... 0 360

...... 12 67

800 .... 0 458

...... 12 86

700 .... 0 427

...... 12 129

600 .... 12 343

2000 NORTH-SOUTH "" 12 3



QUESTIONS AND ANSWERS

DR. STEIN:

Any questions?

DR. VICTOR REINHARDT, Goddard Space Flight Center

What practical method do you propose to compare the two signals?
What correlation scheme do you think would be best for Loran-C
signals?

DR. 3ESPERSON:

I think-- We have been considering several things. One of them is

to maybe do something like the VLBI people do, put something on
tape so we can bring the tapes together and do a lag cross cor-
relation scheme between them.

So, we haven't gone into great detail yet, but some scheme
of that sort.

DR. REINHARDT:

You then propose to look at the analog signals rather than measure

the phase at zero crossing?

DR. JESPERSON:

What I would like to do is sample at a very high rate so we could

get the whole signal. Then once we have got it we can do anything
to it. We can Fourier analyze it and say pick out the i00 kilo-

hertz component and look at the phased bit, and we can pick out

all the other Fourier components and we can see then, in detail,
how those components are matching up to our theoretical notions

as to what should happen.

DR. REINHARDT:

Thank you.

DR. LESCHIUTTA, IEN, Turin, Italy

Thank you. The Loran-C is usually a one-way system, but in one

case it is a two-way system. I refer to use made by the Loran-C
station to control each other making reception time with the

pulses coming from the other stations participating in the same
network. And I am wondering if you think that if the data were
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available, it would be available, I mean, in order to correct or

to compensate some of the problems found across the Atlantic Ocean
in order to correlate the clocks from both sides of the ocean?

DR. JESPERSON:

Yes. That is obviously one of the things that we are thinking

about here that instead of using the ground wave over a number of

short hops to span the Atlantic Ocean, in fact, one could use a

one-hop sky wave essentially. Yes. That is one of the impli-

cations, I hope, of the work we are doing. As I say, it hopefully

does away with some of the seasonal problems too, because whatever

the seasonal part is, it disappears because you are not looking at

the ground wave and even if there is some seasonal effect in the

ionosphere, that also drops out.
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EVOLUTION OF THE INTERNATIONAL ATOMIC TIME TA.I
r

COMPUTATION

Michel Granveaud

Bureau International de l'Heure - Paris (France)

ABSTRACT

The International Atomic Time TAI is a worldwide

time reference. Its computation has changed during

the last i0 years. Further changes would essentially

depend on the improvement of the atomic clocks.

The International Atomic Time TAI as computed by the Bureau

International de l'Heure (BIH) is a worldwide time reference offi-

cially adopted in 1971 [1] . It has been made available for the scien-
tific community for Z4 years. The time signals transmit Univer-

sal Time Coordinated UTC which is closely related to TAI. The TAI

computation has involved atomic clocks, comparisons between the

clocks and mathematical algorithms. It is intended to outline the

main recent changes concerning the above three points and to have a

look to some future possibilities of computing TAI.

Atomic clocks

The computation of TAI has been performed from the data of cesium
clocks*. Some significant modifications, quantitative as well as

qualitative, must be noted in the devices involved in it over the

last decade as shown by the Figure i. In 1962, about 45 commercial

cesium clocks entered this computation, all of them being manufac-

tured by the Hewlett-Packard company-models 5060A and 5061A-. The

Hewlett-Packard option 4 clocks were introduced into the TAI clocks
ensemble at the end of 1972. Then the introduction of the 0scilloquartz

, Data from other devices with cesium comparable performances

could be used.
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cesiums -model0SA 3200- led to an interesting deverslflcation of this

ensemble. Nowadays, in 1979, TAI is composed of about a hundred

cesium clocks. On the other part, three laboratory cesium clocks

have been used in the computation of TAI: the NRC-CsV of the
National Research Council since May 1975 [2], the NBS-4 of the

National Bureau of Standards since the end of 1975 [3] and more re-

cently the PTB-CSI of the Physlkalisch-Technlsche Budesanstalt [4].

These clocks offer at the same time * very good stability for sam-

ple times up to several months and excellent accuracy.

Time intercomparisons between clocks

The time intercomparisons between distant clocks play an important

role in the computation of TAI. In 1979, as i0 years before, the

LORAN system ensures the connection between the clocks of various

laboratories ; so the international time TAI appears strongly depen-

dent on the qualities and defects of this system. The LORAN trans-

missions delays change with respect to time and they have to be

calibrated from time to time by the clock transportations results.

The US Naval Observatory carries out most of these transportations,

especially between America and Europe ; it allows to limit the

inaccuracy of the LORAN time comparisons down to about i micro-

second, the precision being of the order of 300 nanoseconds or

better. Many experimental time intercomparisons were performed

during the last decade using satellites [5]. The NTS campaign

results [6] showed interesting promises for the Global Positioning
System; an inaccuracy of less than I00 nanoseconds is expected.
Some precise time comparisons were performed between 2 or 3 labo-

ratories through the satellites ATS-I [7], Hermes and Symphonle

[8]; precisions up to a few nanoseconds were obtained on a regu-

lar basis. As soon as precise time comparison results via a
satellite system are routinely available, they will be used to
compute the TAI.

Computation of TAI

From 1969 till 1979, the TAI computation was concerned with two

main concept changes. The first one took place in 1973 as a conse-

*The NBS-4 works either as a clock or as a frequency standard.
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quence of the 197Z Consultative Committee for the Definition of the

Second (CCDS) meeting. A new TAI algorithm was implemented

where each clock participates with a weight which is a function of

its past and present frequency* . On a practical point of view, the

mean frequency of each clock over a two-month interval is compu-

ted with respect to TAI ; and the weight of a clock is proportional

to the reciprocal of the variance of 6 mean frequencies : it takes

into account the changes of frequency or, generally speaking, the

short term instability of the clock. The other change is concerned

with the accuracy concept. The laboratory cesium standards give

the best realization of the Sl (International System) second. Their im-

provement has been quite remarkable during the last decade; in 1976,

their accuracy capability was of the order of i x 10-13 or better

and three laboratory cesium standards at NBS, NRC and PTB agreed

that the frequency of TAI was too high by I0 -12 The International

Astronomical Union, in 1976, recommended that the TAI frequency

be corrected by exactly - i0 x 10 -13 on 1977 January I. This adjust-

ment was made and was the first direct input of the laboratory stan-
dards on TAI.

-13
Taking into account the uncertainty of I x i0 of the laboratory

standards and the possible change of the TAI frequency by 1 to

2 x 10 -13 per year (already observed) if TAI is solely based on

commercial cesium clocks, one comes to the conclusion that rather

frequent adjustments of the TAI frequency could be required in order

to avoid significant errors. It was recognized that a frequency
steering by frequent small adjustments (of the same order as the

variations which can be expected from random noise) were better

than noticeable corrections at less frequent intervals. The imple-

mentation of the steering was recommended by the Consultative

Comnaittee for the Definition of the Second in April 1977 and it was

immediately put into effect.

The current computation of TAI results from these concepts and is

carried out in two steps as shown by the Figure 2. The first step

introduces the short term stability concept. The algorithm ALGOS

computes a "free" time scale from the data of the cesium clocks

running independe,ltly from each other. The second step introduces

the accuracy concept. Starting from the laboratory cesium standards

*the term frequency is used instead of normalized frequency
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a frequency reference is obtained through the algorithm A. The

inaccuracy of the "free" time scale is measured with respect to

the reference and is partially corrected through a defined procedu-

re. The correction of the inaccuracy leads to an improvement of the

long term stability. The choice of the correction procedure is im-

portant to avoid any stability deterioration of the "free" time scale.

From now on

A worldwide time reference must be a) available for the users - b)

reliable so that it is not upset or stopped by any local incident -

c) stable for any sample times, i.e. uniform - d) accurate with

respect to the SI second. The fulfillment of these qualities is

strongly dependent on the clocks which are or could be involved in

the TAI computation.

The current situation is given by the Figure 3. A hundred commer-

cial cesium clocks contribute mostly to the availability, reliability

and short term stability while the accuracy and long term stability

are ensured by the 3 laboratory cesium clocks and 1 laboratory

cesium standard. Development of new laboratory cesium clocks,

such as the NRC-CsVI ones, is in progress. They are the first

metrological devices for specific time purposes featuring stability

and accuracy qualities. It could be imagined that a new situation for

the TAI computation would arise when a large enough number -may be

6? - of such units would be running in various laboratories. It
would be wise to utilize these devices to fulfill the stability and

accuracy qualities as shown by the Figure 4. The commercial cesium

clocks would ensure the availability and the reliability of TAI.

Another potential situation would appear if some clocks were deve-

loped whose stability in a limited range of sample times would

be better than that of the cesium clocks -it could be, for example,

H-masers (passive) _]-. In this case, the qualities of availability

reliability, stability and accuracy would be fulfilled by three various

kinds of clocks: commercial cesiums, superstable clocks and labo-

ratory cesiums as Figure 5 indicates. There would be a clear
similitude between this last situation and the current one.
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The TAI results from the combination of the data of atomic clocks

and/or standards. In the past decade, two changes occurred coming

first from the algorithm itself and then from the introduction of the

laboratory cesium standards data. Different modifications are

possible in the future.
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QUESTIONS AND ANSWERS

DR. STEIN:

You made the distinction between, I think, what you called the

laboratory cesium standard and, a laboratory cesium clock. Is

that intended to represent the difference between a device which
runs all of the time and a device which runs only a small fraction

of the time?

DR. GRANVEAUD:

Yes.

DR. STEIN:

In that case I think it is probably important to add to your view
of the future the fact that the kinds of developments that are

going on right now in the cesium standard area will result in
devices with full accuracy that is achieved without any inter-

ruption in the operation.

DR. GRANVEAUD:

Yes.
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HYDROGEN MASER IMPLEMENTATION IN THE DEEP SPACE NETWORK

AT THE JET PROPULSION LABORATORY

Paul F. Kuhnle

Jet Propulsion Laboratory, Pasadena, California

ABSTRACT

Hydrogen masers (H-masers) are the most stable frequency

standards in use today within the sampling intervals (T)

from i00 to 104 seconds. The Jet Propulsion Laboratory

(JPL) employs hydrogen maser frequency standards in a

variety of fixed and mobile applications, ranging from

the 64-meter Deep Space Network stations to the 9-meter

Astronomical Radio Interferometric Earth Surveying (ARIES)
stations.

This paper describes the Frequency Standard Test Labora-

tory (FSTL) developed and implemented by JPL. This test

laboratory has the capability to measure the frequency

stability of five frequency standards including environ-

mental parameters. Nine frequency standards may be
evaluated simultaneously upon completion of the current

instrumentation expansion program. Frequency stability
measurements and environmental data on five H-masers are

presented.

JPL is continuing hydrogen maser implementation plans by

evaluating new H-maser designs for use during the 1980s.

INTRODUCTION

JPL supplies hydrogen masers as the prime frequency standard for naviga-

tion to the outer planets and for Very Long Baseline Interferometer

(VLBI) experiments in both fixed and mobile ground stations. JPL has

instrumented a Frequency Standard Test Laboratory to evaluate and test

H-masers, other frequency standard types and reference frequency dis-

tribution equipment during development and prior to implementation in

the user's facility. Selected representative test data recorded during
the past two years is included in this report.

Hydrogen Masers at JPL

H-maser users at JPL have been using prototype and experimental H-masers

for approximately i0 years for VLBI experiments and selected spacecraft
tracking functions. In 1978, JPL formally installed one H-maser at each

of the Deep Space Network (DSN) 64-meter tracking stations at Goldstone,
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California and Madrid, Spain. A JPL DSN-type H-maser had previously been

installed and has been in use at the DSN 64-meter tracking station near

Canberra, Australia since 1976. In addition, JPL has operating H-masers

at one DSN 26-meter tracking station at Goldstone, Owens Valley Radio-

metric Observatory (OVRO) and the ARIES mobile ground station. Three
H-masers are retained at the JPL Pasadena complex. Two of these are ref-

erence masers in the test laboratory; the third is used as the DSN spare

and by the ARIES geophysical mobile ground station.

Currently JPL has a total of eight H-masers in continuous use. These

have been supplied by two well-known manufacturers and JPL. There
are three Smithsonian Astrophysical Observatory (SAO) model VLG-10B

H-masers which were supplied to JPL by the NASA Marshall Space Flight

Center. The NASA Goddard Space Flight Center (GSFC) has loaned JPL one

model NX H-maser and has, until recently, supplied JPL with three model
NP H-masers.

JPL has three of the DSN type and one prototype H-maser in use at this

time. Figure i tabulates the location, manufacturer, model and serial
number of each H-maser in use by JPL today.

Some Selected Test Data Results to Date

JPL established a Frequency Standard Test Laboratory at the Pasadena,

California complex and subsequently tested five H-masers between May 1978

and April 1979. These five are currently in use as shown in Figure i.
The units tested were JPL model DSN, serial numbers 2 and 3 and SAO model

VLG-IOB, serial numbers P5, P6, and P7.

The tests scheduled were considered to describe fully the necessary

operating parameters of each H-maser. Additional parameters were usually

recorded to assist in diagnostics or help explain the erroneous behavior

of a desired parameter. The desired parameters recorded during these

test programs were frequency stability versus sampling time (Allan vari-

ance) and frequency shift versus the environmental parameters of temper-
ature, barometric pressure and the Earth's magnetic field.

Temperature tests were conducted on the five H-masers for step frequency

shift in the temperature range of 21 to 29°C and then repeated from 29°C

to 21°C. A step change in temperature usually causes the frequency to

start shifting in less than one hour and it will continue to shift for

approximately 40 hours with an exponential decay. The temperature
coefficient for each H-maser tested is tabulated in Fig. 2. Of the

environmental parameters, temperature presents the greatest frequency

stability perturbation. It is not uncommon to experience room tempera-
ture fluctuations of I to 2°C in a diurnal or longer time period,

resulting in a 1-2 x 10-13 frequency shift. At the 64-meter tracking

stations, the H-masers are in separate temperature-controlled rooms.
These rooms are controlled to the nearest 0.1°C, thereby minimizing the
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problem and reducing the temperature-dependent frequency shift to

typically i x 10-14 .

Response to changes in the local barometric pressure was tested on the

same H-masers. The test chamber pressure was increased by 6 inches of

water and after approximately one hour decreased to minus 6 inches of

water, relative to the starting ambient pressure. Because the frequency

shift responses are instantaneous, the pressure differential must only

be maintained long enough to determine the resultant frequency shift.
The barometric pressure coefficient for the five H-masers is tabulated

in Fig. 2. The resultant barometric pressure data shows that four of the

five H-masers exhibit approximately the same frequency shift for an

incremental pressure change. The exception is model VLG-10B Number P6

which exhibited an excessive frequency stability fluctuation during test.

This H-maser at Goldstone has not always responded to storm barometric
pressure fluctuations. It is planned to schedule a barometric pressure

retest on this unit when sufficient H-masers are available to temporarily

remove this unit from the field. A typical barometric pressure shift at

Goldstone is approximately 0.3 inch Hg. The resultant frequency shift of
the other four H-masers would be approximately 1 x 10-14 .

Frequency shift response to static magnetic field disturbances was mea-

sured on the five H-masers. The results are tabulated in Fig. 2. The
resultant normalized frequency shift per gauss is i to 5 x 10-12 for

four of the five H-masers. Magnetic field perturbations in the test

laboratory are typically less than one milligauss under controlled oper-
ating conditions of minimal movement of ferrous materials. The measured

magnetic field perturbations are typically five milligauss at the

H-maser installation location within the 64-meter tracking stations. The

resultant predicted frequency shift during these disturbances would be
typically a maximum of i x 10-14. The fifth unit (JPL-DSN2) was several

times more sensitive to magnetic field than the other four H-masers

tested. Following these tests, this H-maser was installed in a moly-

permalloy magnetic shield box, which improved the shielding factor by a
minimum of i00 or a predicted magnetic field coefficient of 1.4 x 10-13

per gauss.

A selected sample of Allan variance curves for four of the five H-masers

tested since June 1978 is shown in Fig. 3.

The sampling times (T) of less than approximately 1000 seconds are con-

trolled by the signal-to-noise ratio. Each manufacturer designs H-masers

to operate within a desired output power range. The JPL model DSN
H-maser's nominal output power is approximately -87 to -89 dBm. The SAO

model VLG-10B H-maser output power range is approximately -95 to -I00
dBm. Therefore the data between the two SAO H-masers measured in June

1978 is approximately as expected. Later tests have used one SAO H-maser

compared against one JPL H-maser.
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Measurements at sampling times greater than i000 seconds depict a

degradation of frequency stability. This is due to "systematics," which
is a combination of environmental effects and oscillator aging. In this

set of specific cases,lthe curves peak at the sampling time of 20,000

seconds (approximately six hours), the 1/4 diurnal temperature cycle.
Note that two of four curves exhibit this effect. The other conclusion

is that all of these H-masers, except possibly SAO serial number P6, are

aging. Since installation, P6 has been nearly continuously compared
against a cesium beam frequency standard bank traceable to NBS. There is

no indication versus this bank that this H-maser is aging. The curve
between serial numbers P5 and P6 in June 1978 indicates that the aging is

considerably less than all the other H-masers tested. JPL H-maser DSN-3
is not shown on this curve, but the approximate same slope is apparent

as with all H-masers except P6. Note that the frequency stability curves

exhibit a broad "bright line" (degradation hump) on two curves for sam-

pling times between i00 and 800 seconds. This is caused by the cooling

cycling rate of the building air conditioner. The lower dotted-line curve

was recorded during November 1979 after the FSTL temperature control was

improved. This is discussed later in this report.

Figure 4 again shows the Allan variance versus sampling time curve in

Fig. 3. This plot has the measurement error bars and number of data

samples available written beside each bar. In this case, where the num-

ber of samples is not shown, the number is greater than 51. Since all

sampling times are simultaneously recorded, the number of samples

increases as the sampling time decreases.

Frequency Standard Test Laboratory

A Frequency Standard Test Laboratory (FSTL) installation was initiated

in August 1977 at the Pasadena complex to determine the operational per-
formance of H-masers. An isolated building was obtained and is located

at one end of the "Mesa" antenna range above and behind the Laboratory.

This location was chosen because it is isolated from man-made distur-

bances of the Earth's magnetic field and has sufficient floor space for

five H-masers and all instrumentation required at this time. Figure 5 is

a view of this building with the Angeles National Forest in the back-

ground. The floor plan of this 700-square-foot building (Fig. 6) depicts
the location of H-masers, environmental chamber and instrumentation.

This laboratory is now equipped with instrumentation to simultaneously
measure 12 channels of Allan variance and 12 continuous recording chan-

nels of long-term frequency shift.

Figure 7 is a block diagram of a single channel of this frequency

stability measurement equipment. Figure 8 is a block diagram of the test

configuration for comparing the frequency of three H-masers using three
sets of the instrumentation shown in Fig. 7. Local barometric pressure,

room and equipment temperature and Earth's magnetic field disturbances

are continuously recorded as ancillary data to the frequency stability
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measurements. Instrumentation is available to record frequency standard

anomalies as required. Several examples are: vacion pump current, oven

heater temperatures and cavity tuning bias voltage.

Figure 9 is a photograph of the instrumentation room, which contains

nine electronic instrument cabinets. The equipment description is as

follows, from left to right: (i) cabinets 1 and 2 are for environmental

and anomaly measurements; (2) cabinet 3 is for general spectral and

waveform analyses; cabinet 4 contains the RF reference isolation ampli-

fiers, mixers and zero crossing detectors shown in Fig. 7; cabinets 5

through 8 each contain three channels of frequency stability measurement

and recording equipment, and cabinet 9 contains general instrumentation,

a rubidium frequency standard and two spare H-maser receiver crystal
VCO's.

A combined temperature and barometric pressure chamber was designed and

fabricated by JPL with non-magnetic materials to prevent distorting and

attenuating the Earth's magnetic field around the H-maser. A separate

connected heat exchanger preconditions the chamber air temperature for

barometric pressure and temperature tests.

A 7-foot-diameter double axially concentric Helmholtz coil is used to

generate static perturbations of the Earth's magnetic field. Generally,

these coils are mounted around the environmental chamber to expedite the

schedule on separately measuring H-maser frequency shift versus tempera-

ture and magnetic field. The environmental chamber and Helmholtz coil

are shown in the far right corner of Fig. i0.

Standby AC power was installed to prevent power loss to the test labora-

tory. This equipment consists of a 4.5-kVA uninterrupti_le power supply
(UPS) and a 30-kVA automatic starting generator. All frequency standards
and critical instrumentation requiring power without interruption are

connected to the UPS. The balance of the instrumentation, UPS input

power and most of the air conditioning equipment is connected to the

generator during primary power outages.

H-maser test results between May 1978 and April 1979 showed that both

the laboratory temperature environment and instrumentation required

improvement for future test programs to determine the prospective

improved long-term frequency stability performance. These revisions are

now completed. Subsequent tests show the new computer floor plenum air

temperature to be stable to within 0.1°C peak to peak and the room 5
feet above the floor to 0.5°C peak to peak. The previous air condition-

ing system controlled the room from i to 3°C peak to peak for diurnal
and longer time periods, depending on the outside weather conditions.

An Allan variance test recorded during November 1979 showed considerable

stability improvement using the same two H-masers previously recorded in

April 1979. Compare the two curves dated April 1979 and November 1979 in

Fig. 3. Note that at the Allan variance at 2 x 104 seconds sampling time

201



(T) the "bright line" peak is not evident and the overall noise at

sampling times greater than i000 seconds is much lower. Room temperature

control is conSidered to be the major factor in this improvement.

Additions and improvements to the instrumentation expanded the Allan

variance and long-term frequency shift measurement capability to 12

channels. Additional recording instrumentation to continuously measure

equipment temperature, magnetic field and room humidity has been added.
This is sufficient instrumentation to simultaneously measure the stabil-

ity of five H-masers as shown in Fig. ii.

Frequency shift versus barometric pressure increments have been diffi-

cult to measure in the past. It is expected that newer H-maser designs

will exhibit even less barometric pressure sensitivity; therefore the
environmental chamber has been strengthened to double the barometric

pressure stimulus range to ±12 inches of water relative to the local

barometric pressure.

It is intended to further improve the laboratory environment and instru-

mentation to meet the requirements from development and research of

future frequency standards. Instrumentation improvements being con-

sidered and studied at this time are computerized automation of the data

acquisition on a continuous basis, control of the test chamber humidity

during environmental tests, and dual difference detection for frequency

stability measurements of non-offsettable frequency standards.

Present Test Programs

JPL plans to continue use of the FSTL in the future to give frequency

standard research and support to the JPL-operated Deep Space Tracking
Station Network and other JPL-operated fixed and mobile ground stations.

An important task scheduled to start in December 1979 is the NASA-JPL
program to evaluate the operating performance characteristics of two

recently designed H-masers. These are the SAO Model VLG-IIB and the
GSFC Model NR.

Maintenance, repair and retest of all H-masers currently in field use by

JPL is a continuing high priority project. The FSTL has done and will

continue to do requalification after repair and diagnostics on non-

obvious failures prior to repair. The FSTL has been and will continue to

be scheduled to test other types of frequency standards (e.g., cesium

beam), active reference frequency cable stabilizer equipment, frequency

multipliers and synthesizers.

Recently the Laboratory scheduled and completed a series of tests on one

superconducting cavity stable oscillator (SCSO) manufactured by Stanford

University and purchased by Caltech. This was part of the JPL research

program to evaluate new types of reference oscillators.
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LOCATION MANUFACTURER MODEL SERIALNUMBER

DSS14 GOLDSTONE, CA SAO VLG 10 B P6
DSS63 MADRID, SPAIN SAO VLG 10 B P7

DSS43 CANBERJ_,AUSTRALIA JPL DSN 1
DSS13 GOLDSTONE, CA JPL PROTOTYPE P2

OVRO BISHOP, CA GSFC N× 2
ARIES JPL SAO VLG 10 B P5

FSTL,JPL JPL DSN 2

FSTL,JPL JPL DSN 3

MANUFACTURERCODE

GSFC: GODDARD SPACEFLIGHTCENTER

SAO: SMITHSONIAN ASTROPHYSICAL
OBSERVATORY

JPL: JET PROPULSIONLABORATORY

Fig. i. JPL H-Maser Deployment
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Fig. 2. H-Maser Environmental Parameters
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10-13 I _ I I

10-14 -- _4

10-15 _

10"16 ] I I I

10 102 103 104 102 106

"r (SECONDS)

Fig. 4. Allan Variance vs. Sampling Time, with Error Bars
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Fig. 5. JPL Frequency Standard Test Laboratory

 D IEEESFICHAMBER _ E3

J FLOOR SPACE = 700 square feet

E ELECTRONIC INSTRUMENTATION
S SIGNAL CONDITIONING INSTRUMENTATION
F FREQUENCY STABILITY INSTRUMENTATION
H HYDROGEN MASER

Fig. 6. Frequency Standard Test Laboratory Floor Plan
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DETECTOR
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RECORDER

Fig. 7. Frequency Stability Instrumentation Block Diagram
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NOTES:

(1) fo : 100 MHz
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i} DATA _-" RECORDI NG
ACQUISITION

Fig. 8. Test Configuration for Stability

Comparison of Three H-Masers
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Fig. 9. Instrumentation Room Containing All
Measurement Instrumentation
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Fig. i0. Frequency Standard Room with Space on Right Side for H-Masers

in Test and Environmental Chamber at Far Right
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Fig. ii. Test Configuration for Stability
Comparison of Five H-Masers
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TIME DISSEMINATION - AN UPDATE

Kenneth Putkovich, U.S. Naval Observatory

Abstract

The original intent of this paper was to provide

test results of the time transfers using a new

Global Positioning System (GPS) Time Transfer Unit

(TTU) developed for the U. S. Naval Observatory

(USNO) by Stanford Telecommunications, Inc. (STI).
As the TTU was not available for extensive

testing at the USNO, only preliminary data were
available at the time of the PTTI meeting. The

scope of the paper was then changed to include

several new developments in hardware and addi-

tions to services provided by the USNO in time

dissemination in addition to reporting on results
of time transfers utilizing the TTU and a new

small portable atomic clock.

INTRODUCTION

The Precise Time and Time Interval Branch of the Time Serv-

ice Division of the USNO is responsible for all of the

hardware used in the monitoring and controlling of PTTI

dissemination systems both local and worldwide. Included

in this is the responsibility to publish and distribute

the data gathered in a timely manner. In order to accom-
plish this within the constraints of limited available re-

sources, the USNO relies heavily on the ingenuity and in-

terest of specialists in the electronics industry to pro-

vide instruments that satisfy our stringent requirements.
This paper provides a description of improvements that are

being made to expand and enhance user services, a descrip- i

tion of what is planned to improve the internal acquisition

and reduction of data at USNO, a brief overview of new prod-

ucts that have become available due to USNO requirements
and the initial results of tests conducted to determine the

performance of two new time dissemination devices. These

improvements provide the means to significantly improve
time dissemination in a number of areas.

DATA AND SERVICES

In the past year or so several new or improved time data
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distribution services have been implemented. In the coming

year plans call for several more significant additions.

The Telephone Time Service [(202) 254-4950 or Autovon 294-

4950] was inaugerated just prior to the 1978 PTTI Meeting.

Since then over 750,000 calls have been logged on the sys-

tem. System availability has been approximately 99.7%

over that period. Modifications were made to increase the

message length from one fifteen second cycle to four, thus

making the service available for a full minute per call.
Ten telephone trunk lines are installed so overloads are

infrequent and occur only at times of high interest, i.e.

Daylight Saving to Standard Time, leap seconds, etc. The

system provides direct access to the USNO Master Clock.

Fail-safe operation is provided by requiring that the digi-

tal input signals from separate reference clock systems be
coincident to within a few microseconds before allowing

calls to be answered. Any discrepancy which would result
in an incorrect announcement causes the system to go off-

line until the problem is corrected. The message consists i
of a one pulse per second tick (5 cycles of i000 Hz) and a

voice announcement and tone to identify particular seconds
of both Coordinated Universal Time (UTC) and local time in

the Eastern U.S. Time Zone. To prevent distortion due to

interference, the voice announcement is blanked for a short

period, during which, the tick occurs. Three simultaneous,
fifteen second announcements, spaced at five-second inter-

vals, are continuously on line and provide a caller access

to an announcement within five seconds of his call being

answered. The precision obtainable by measuring the time
of arrival of the tick is on the order of one millisecond.

Measurements of this signal, made in Switzerland by Dr.

Peter Kartaschoff, showed delays of 55 milliseconds via
cable and 251 milliseconds via satellite. Users utilizing

multi-hop satellite links would have to exercise care in

making measurements as delays of a half second or more

could be experienced.

Timing coverage on the Loran_C system has been extended

with the synchronization of two new chains, U.S. Northeast
Coast (9960) and U.S. Southeast Coast (7980). The creation
of two new chains from the combination of the stations of
the now defunct U.S. East Coast Chain (9930) with five new

stations has resulted in an increase in both coverage area

and signal strength and, in many areas, gives users a num-

ber of signals to chose from.

The reconfiguration of the East Coast Chain also resulted

in the loss of the Cape Race, Newfoundland station as a
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dual-rated tie point for monitoring the North Atlantic

chain performance. To alleviate this situation, the Ob-

servatory will install a monitor Station at the Keflavik,

Iceland SATCOM terminal to perform measurements on the

North Atlantic and Norwegian Sea chains via the dual-rated
station at Sandur, Iceland. Time transfers via SATCOM to

Fort Detrick, Maryland and from there to the Observatory

via TV Line I0 will provide the data necessary to accurate-
ly determine the timing performance of the two chains.

Loran-C timing coverage will be further enhanced and ex-

panded with the addition of the Great Lakes chain early in

1980 and the East Coast of Canada chain later that year.

The use of Earth satellites for time transfer and dissemi-

nation has always been of great interest to the Observa-

tory. In addition to the routine operational use of SAT-

COM, Observatory personnel have been actively involved in

nearly every satellite time transfer experiment performed

(Telstar, Relay, Moon Bounce, ATS, Timation, Symphonie,

etc.). Current efforts are centered around the Navy Navi-
gation Satellite System, known as NNSS or Transit, and the
Global Positioning System (GPS).

Although the Transit system has been in operation and avail-

able since the early 60's and the system's capabilities for

precise time have been voiced by a number of proponents for

a number of years, only recently, with the introduction of

a commercially available Transit timing receiver, has the

use of Transit time become realistic. The Observatory has

published Transit timing information for a number of years
in its Series 17, Transit Satellite Report. In recent

years an effort has been made to improve the quality of the
timing data available by seeking improvements in the satel-

lite control procedures and by improving monitoring capa-
bilities to allow the publication of data recovered from

the satellite transmissions. The present generation of

satellites (Oscars) provide a timing capability in the ±25

microsecond region with global coverage on a daily basis.

We hope that improved control procedures could reduce this

to less than ±10 microseconds for the Oscar satellites and

to ±i microsecond for the new generation of satellites
(Nova), two of which are scheduled for launch in 1980. Un-

fortunately, efforts to improve control procedures have

been unsuccessful to date. The Observatory will continue

its efforts in this area and is currently engaged in up-

grading its monitoring capability to allow the daily pub-
lication of more useful and timely information on all

satellites in view from Washington.
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The GPS, when fully operational, will have the timing capa-

bility of worldwide coverage on a continuous basis to a
level of better than ±100 nanoseconds. Present proposals

call for GPS time to be derived directly from the USNO

Master Clock by means of a full GPS monitor station located

at the Observatory in Washington. Monitoring by independent

receivers will provide information for publication. The

results of preliminary testing of the first receiver de-

signed specifically for GPS timing will be presented later

in the paper.

Another area in which the Observatory is currently engaged

is the provision of access to Time Service data to users
via a direct telecommunications link to our computers.

This would provide real time availability of much of the

data collected by the Observatory to any user who had a

compatible modem and terminal.

COMPUTER HARDWARE AND SOFTWARE

The leading role that the Time Service Division has played
in the development of automated systems for the collection

and analysis of timekeeping information has continued and

has become a major part of the Division's efforts. The now

obsolete, but still operational, computer (IBM 1800) that

is the mainstay of our automated system is being phased out

and gradually replaced by two new minicomputers (IBM Series
1 and HP i000). The integration of the new machines and

the upgrading of the measurement system has turned out to

be quite challenging. It is hoped that the two new ma-
chines, coupled to an IBM 4341 via a data communications

link, will provide the improved performance, greater capac-

ity and versatility and real time accessibility to data
that is required. It is envisioned that the system will be

able to accept data via a number of media (teletype, tele-

phone, paper and magnetic tape, etc.) and will be able to

output the processed information in printed form in several
variations, electronically via telephone or teletype, in

graphic form such as charts and view-graphs, on CRT termi-
nals and so on.

The internal techniques and hardware for controlling the

Master Clock system have been modified and refined to the

point where the computer routinely adjusts the reference

systems through a phase microstepper to a resolution of
±i x 10 -14 This is accomplished through a fail-safe in-

terface designed and built at the Observatory. The pro-

grams for system control, the algorithms used in data anal-

ysis and the clock modeling techniques used in the predic-
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tion process were also developed at the Observatory.

Work is also proceeding in two related areas. The first is

a multiplexer for controlling the multilayered, coaxial

switch system used for data collection on the Observatory

grounds. When implemented, this will allow several com-

puters and terminals to access any clock or data source as

necessary. Access will be prioritized and the systems con-

figured to extend the redundancy presently built into the

clock system to the data collection system. Thesecond is

the development and implementation of computer controlled

remote measurement systems which can be accessed via dial-

up telephone lines. A pilot system has been installed in

the Fort Detrick, Maryland SATCOM terminal as a test-bed.

The system is based on IEEE-488-1975 compatible equipment

operated by an HP 1000 computer over an autodialed, switch-
ed commercial line at 1200 baud.

SYSTEM HARDWARE

In the area of system hardware, the Time Service Division

operates under a philosophy of utilizing off-the-shelf,

commercially available equipment to as great extent as pos-
sible. If a product does not exist to fill a particular

requirement, an attempt is made to interest a manufacturer

in designing what is required and adding it to his product
line. _n house developments are limited to items which

can't be economically procured by any other means. In the

past several years there have been a number of requirements

generated by the Observatory that are now being satisfied

by off-the-shelf products whose origins can be traced to
the Observatory. The following is a brief description of

the more significant of these, includingmention of spe-
cific characteristics which make them unique.

The first five instruments (designed by Mr. Leonard Shepard

of ILC/Data Devices Corp.) are a direct outgrowth of re-

quirements which developed over the last few years as a

result of a general increase in the use of PTTI, an in-

crease in the capability and sophistication of the user

community and the availability of higher quality clock sys-

tems. As the stability of frequency standards improved and

clock modelling improved, the need for improving the control

mechanism at the frequency standard output become apparent.
As a result, a new phase microstepper was developed which

increased the range of operation from ±i x 10 -8 to ±i x 10 -7
at the low end and from ±i x 10 -14 to ±i x 10 -17 at the

high end, reduced the size of the phase steps from i0
nanoseconds to 1 picosecond and reduced instabilities to
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less than 500 picoseconds for a laboratory environment.

This instrument is currently undergoing testing and should

be in production early in 1980.

With the advent of measurement systems with subnanosecond

resolution, the need to develop more well-defined and sta-

ble one pulse per second signals from the highly stable
frequency standards came into existence. This need was

satisfied with the clock/divider shown in Figure i. It

provides four independently buffered 50-ohm outputs (with
port to port delay variations of less than 1 nanosecond)

having rise times of less than 4 nanoseconds, jitters of
less than 50 picoseconds and stabilities of better than 20

picoseconds per degree Celsius. In addition, a BCD output,
a high visibility LED display and an audible tick are also
provided.

As an adjunct to the above units, a pulse distribution am-

plifier (Figure 2), utilizing the same output circuits as

the clock/divider, is available in configurations of up to
20 channels per unit. This allows the distribution of

highly stable, isolated pulses over a large area without

fear of system degradation due to line loading or other in-
advertent interference.

Until recently, commercially available TV Line I0 time dis-

semination equipment suffered from a common fault. Tele-

vision receivers designed for home use were used to recover

the transmitted signal. The chief problems were due to the

low quality of the components (compared to laboratory grade

equipment) and the resultant instability and reliability.
The TV Line i0 system offers an inherent capability for
local time dissemination in the tens of nanoseconds under

certain circumstances. In order to achieve this capability
an instrument grade receiver (Figure 3) was designed and

built. Utilizing these receivers, results well below 50

nanoseconds have been achieved. Efforts are currently under

way to stabilize local TV transmissions using modified ver-

sions of the receivers to generate the required sync sig-
nals at the transmitter and thus achieve a stability below
the 10 nanosecond level.

Time dissemination requires the ability to make high reso-
lotion, precise time interval measurements. Time interval

counters used on portable clock trips have additional con-

straints in size and weight requirements. The most de-

sirable situation is that of high resolution in a small

package. After several unsuccessful procurement attempts,

a counter designed specifically for portable clock appli-
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cations has been built (Figure 4). The counter is contain-

ed in a package 1.75 inches high and 9 inches wide and

weighs four pounds. It has a built-in digital voltmeter

for setting the trigger levels, has a single shot resolu-

tion of I0 nanoseconds and an averaging resolution of 1
nanosecond.

TIME DISSEMINATION HARDWARE

The final two items, which have become available only in

the last f@w months after several years of development,
are a small portable atomic clock and a GPS Time Tranfer

Unit. Both are the result of requirements and support

generated at the Observatory. As a large part of the Time
Service Division's mission is concerned with the dissemina-

tion of PTTI, more efficient and accurate means of time

transfer are of vital interest and a continuous effort is

made to improve operations in these areas. Over the past
twelve years the Observatory has conducted portable clock

operations that have resulted in the synchronization of

of between i00 and 200 clocks yearly on a worldwide basis.

The cost per clock synchronized can be anywhere between

$500 and $1000 and three to four man-days of effort. Be-

cause of their size and weight, portable clocks presently

in use pose logisitical problems and require special han-

dling to prevent injury to personnel handling them. Ways

to reduce the physical and financial burden of these trips
are constantly being sought.

The small portable cesium clock shown in Figure 5 is a

product of Frequency and Time Systems, Inc., and it should

have a significant impact on portable clock operations.

BeiNg slightly larger than a normal briefcase and weighing

less than fifty pounds, it can be handled by one person and
carried under most commercial aircraft seats. This makes

possible an immediate cost reduction due to the elimination
of the need for a seat for the clock and will allow the

elimination of a second clock carrier on certain trips.

As the clock has seven to eight hours of internal battery

capability and provisions for operation from 115/230 VAC,

50 to 400 Hz, and 12 VDC it can operate in the same power

environment as the larger clocks. The performance of the
clock was recently evaluated on a seven-day trip to Cali-

fornia. Two portable clocks were transported by auto and

aircraft to a number of locations in and between Los Angeles

and San Francisco. One was the small portable (designated
FTS PC i01) and the other was a large portable (designated
HP PC 1452). HP PC 1452 consisted of a Hewlett-Packard

high performance cesium clock and standby power supply, a
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combination that has given outstanding service for many

years. At each site visited, measurements were made using
both clocks. The results of these measurements are shown

in Figure 6. The end points of the lines are measurements

made at the Observatory at the beginning and end of the

trip. The lines are interpolated estimates of clock per-
formance during the trip. The data points plotted are the

measurements made during the trip. If HP PC 1452 is as-

sumed to be perfect and all the error assigned to FTS PC

i01, we would assign the maximum deviation of approximately

50 nanoseconds to FTS PC 101. Since this is certainly not

the case and since a curve fitted through the data points
would be within 25 nanoseconds of the interpolation, the

performance of the FTS PC I01 can be described as outstand-

ing, well within the error one normally experiences on ex-
tended trips. The positive bias of the data indicates

non-linear performance on the part of one or both clocks or

some measurement error in the endpoint measurements. Ef-

forts will be made to evaluate performance more fully in
months to come.

The reason for this portable clock trip was to test a GPS/

TTU at Stanford Telecommunications, Inc., Sunnyvale, Cali-

fornia. The TTU was developed and built for the Observa-

tory with funding from the Naval Electronic Systems Com-
mand. The GPS/TTU is intended to be a te_t-bed from which

the timing performance of the present GP_ phase can be
evaluated, a monitor receiver from which operational GPS
time dissemination can be carried out on an experimental

basis, and a system prototype which-will provide the in-

formation necessary to develop the next generation of GPS

timing receivers.

The GPS/TTU is illustrated in the block diagram of Figure 7

and the photographs of Figures 8 and 9. The system consists
of an antenna, preamplifier, receiver, processor, time in-
terval counter, CRT terminal and power supply. After the

equipment is powered up, the operating system and applica-

tion programs are loaded in from magnetic tape cassettes

and the time of day set. Execution of the application pro-

gram begins with selection of various options for system

operation and data collection, processing and recording.

Data base parameters, such the geodetic location of the re-

ceiver, receiver delay and UTC-GPS time offset are entered

from a tape or via the keyboard. The satellite acquisition
procedure is then initiated by setting in the satellite

identification number and an estimate of the expected dop-

pler. Once initialized the system automatically acquires
and tracks the selected satellite and records the data.
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The receiver utilizes the C/A code on the L1 carrier fre-

quency. The data from the C/A code is used to determine the

satellite position and to estimate the time of arrival of

the satellite subframe epoch. The estimate is corrected

for ionospheric, tropospheric and relativistic errors and

compared with the actual time of arrival as recorded by
the counter. The difference between the actual time and

the estimate is the difference between the local clock and

the satellite clock. This process is repeated and data re-
corded for every six-second message received while the sat-

ellite is in view and the receiver is tracking.

The evaluation of TTU performance consisted of establishing
the difference between GPS and UTC utilizing a high perfor-

mance portable clock and then using the same clock as the

input to the TTU and measuring the same quantity utilizing

the satellites. The evaluation was performed during the
period from November 14 to 19, 1979. Portable clock HP PC

1452 and FTS PC 101 were transported to the GPS Master Con-

trol Station (MCS) at Vandenberg AFB, to the contractor's

plant in Sunnyvale, back to the MCS and then back to Sunny-
vale. At each location measurements were made. The results

of these measurements are shown in Figure i0. The data are
presented with all clock biases and offsets removed and

represent the actual measured differences between the GPS
clock at the MCS and that same clock measured via the sat-

ellites. The two data points designated with an X are GPS

time as defined by the atomic clock at the Vandenberg MCS

receiver site. The circles and triangles are satellite
values measured using the TTU in Sunnyvale. All data re-
ceived via the satellite fall well within the ±i00 nano-

second limits established in the system specification.

CONCLUSION

This paper has provided a brief description of some of the

improvements that are being made in the generation and dis-

semination of PTTI at the U. S. Naval Observatory. De-

tails on some of the newer hardware developed for this
purpose were presented. Data from tests of two of the

more significant items, a small portable clock with per-

formance approaching that of larger units and a GPS Time

Transfer Unit capable of time transfers to an accuracy of

less than i00 nanoseconds, were also given.

221



m

MODEL 6459

Figure 1. High Stability Clock/Divider
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Figure 2. Pulse Distribution Amplifier
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Figure 3. Precision TV Line 10 Receiver
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Figure 4. Small Time Interval Counter
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Figure 5. Portable Atomic Clock
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Figure 8. GPS/TTU System (Less Antenna)
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Figure 9. GPS/TTU Console and Display
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QUESTIONS AND ANSWERS

MR. MYRON PLEASURE, Consultant Physicist, New York

In December of last year there was a paper published in "Physical

Review Letters". It was a feature paper by a Professor Cohen of

the University of Pennsylvania in which he suggested using your

time dissemination methods from satellites and coordinating it

with ground measurements which he said were easy, though they are

not, and then you could use that to check the Einstein special

relativity theory of what errors you would expect due to the satel-

lite motion. Now, have you done any estimates of this yet? How

well is it-- He has an approximate theory only. It was in the
"Physical Review Letters".

DR. PUTKOVICH:

Could I defer the answer to Dr. Winkler here?

DR. WINKLER:

The corrections due to the general relativity are incorporated in

the calculations or the algorithms which are used in the STI

receiver. With all of that, you should have no visible effects if

you put in your coordinates of the station, the receiver algorithm

will take into account the relativity effects. There are some

higher order effects which are incorporated in the second order
corrections for the satellite clock so that the motion of the

satellite itself is accounted for.

But in general the whole subject of relativity as it effects

the GPS system has been reviewed repeatedly, the last time in a

conference or a workshop organized by Dave Allan at the NBS which

produced a report of that. And in the judgment of that group_

also there were minor discrepancies found in various reports, but

the effects seemed to be taken account in the existing algorithms.

Thank you.

MR. RAULL0 J. MCCONAHY, APL/JHU

We have a program at our laboratory that can use your timing re-

covery from GPS and I was wondering if you could give us a little

more information about when you plan to disseminate those and how.
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DR. PUTKOVICH:

We will be taking delivery of our GPS time transfer unit in, I
would say, two to three weeks and we will have an initial testing

period, but I would hope that sometime in January we would be

able to start publishing differences between the USNO master clock

and the received signal from the spacecraft that are now up there,
the four GPS satellites.

MR. MCCONAHY:

Then you will be doing all four? The clocks on some of them are

not too good, like GPS-2, for example.

DR. PUTKOVlCH:

That is why we only took these two. We took the two best satel-

lites that were recommended and operated on those two. But we

will take a look at it and if the data is reasonable, I don't see

any reason why we can't publish it. It is just a matter of sched-

uling people to take the passes at the proper time. If it gets to

be too big of a burden we may have to make some choices as to what

we publish. But initially I would hope that we could look at all
four of them.

MR. MCCONAHY:

Could it be possible to request you to do passes on a given day

for example?

DR. PUTKOVICH:

I don't see why not. If it is at 2:00 or 3:00 in the morning you

will have problems getting me in there to do it, but I may be able

to find somebody that is willing.

MR. MCCONAHY:

Yes. Our need is Just periodic and we need it on a specific day.

DR. PUTKOVICH:

We have done that with TRANSIT with some people and there should

be no reason why we can't do it with GPS.
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MR. MCCONAHY:

Now another question is why did you choose the CA code rather than

the P code to do your timing?

DR. PUTKOVICH:

I had nothing to do with that choice. I think that is a code that

more than likely will be available other than the P code. I think

Dr. Winkler can also give you more insight in that.

DR. WINKLER:

Cost. Because of the type of receiver we were looking at, and

the possibility of using the existing equipment for a stationary

location in contrast to an option on a type of navigation equip-

ment which would have to look at four satellites and possibly use
two frequencies for this purpose would be inherently more expen-
sive.

MR. MCCONAHY:

Yes. But you could correct for the ionosphere.

DR. WINKLER:

We want a simple clock and that means that by confining yourself

to Just one frequency in CA code, a one megahertz code, it would

be easier and less costly to decode. It is possible to obtain a

time transfer which will satisfy all current operational criteria.

MR. MCCONAHY:

Thank you.
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TIME TRANSFER WITH THE NAVSTAR

GLOBAL POSITIONING SYSTEM

Ben Roth (DMAHTC/SAMSO/YEUP), William Klepczynski and R.

Glenn Hall (U. S. Naval Observatory)

ABSTRACT

The Navstar Global Positioning System (GPS) is a

space-based, radio positioning, navigation system

which was authorized for development by DoD in De-

cember, 1973. The system will provide extremely

accurate, three dimensional position and velocity

information, together with system time, to suita-
bly equipped users anywhere on or near the earth.

Concept validation field tests were completed in
the Spring of 1979. One of the objectives of

these tests was to evaluate the performance by

measuring the precision and accuracy of the
transfer of GPS time to the static user.

INTRODUCTION

The Navstar Global Positioning System (GPS) is a space-based,

Radio Frequency (RF), Navigation System that provides ex-

tremely accurate, three-dimensional position, velocity and

system time information to properly equipped users anywhere
on or near the earth. It is a Joint Services Program, man-

aged by the Air Force, with deputies from the Navy, Army,
Marines, Defense Mapping Agency, Coast Guard and NATO.

Concept validation, Phase I of the program, was completed

in the summer of 1979. This phase of the program included

extensive testing that was conducted at Yuma Proving
Grounds (YPG), Ariz. The objectives of these tests were to

address a variety of operational and technical issues which

characterize the performance of the system. One of these

issues was the ability of GPS to provide a properly equipped
user with accurate system time.

Objectives

The objectives of the Phase I Navstar GPS Time Transfer

Tests were: to evaluate the performance, to measure the

precision and accuracy of the transfer of GPS time to the

static user and to develop a base of information that would
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support and expediate the United States Naval Observatory's

(USNO's) efforts to develop and evaluate specialized user

equipment to exhibit the operational GPS's precision timing
characteristics.

System Descriptio n

GPS comprises three distinct segments: (i) the Control Seg-
ment (CS), (2) the Space Segment (SS), and (3) the User Seg-

ment (US). An inherent design property of the system is its

precise and internally accurate time.

The CS comprises Monitor Stations (MS) and the Master Con-
trol Station (MCS) that are all very closely related in

time (within a few nanoseconds). For the Phase I GPS there
were four MS located at Guam, Hawaii, Alaska and Vandenberg

Air Force Base, Calif., with the MCS at the same location

as the Vandenberg MS. The function of the CS is to monitor
the SS (GPS satellites) via measures of pseudorange, delta

range (integrated Doppler) and satellite health. This in-
formation is processed in near real-time by the MCS to pro-
vide best estimates of each GPS satellite's ephemerides and

clock performance. Using these estimates, very accurate

predictions of the satellites' ephemerides and clock models

are generated and uploaded to the satellites daily by the
MCS.

The SS of the operational GPS comprises 24 satellites whose

orbits are nearly circular, with 12-hour period and radii

of 20,200 kilometers. These satellites will be configured
into three equally spaced orbit planes that are inclined

63 degrees from the earth's equatorial plane. There will

be eight equally spaced satellites in each plane. This

configuration will provide continuous visibility to at
least four satellites from any place on or near the earth.

Each satellite will carry a system of redundant, high pre-

cision and highly predictable time and frequency standards.
These standards will be used to generate the RF spread

spectrum, Pseudo Random Noise (PRN), signals to the user

segment. For the Phase I GPS there were four development
model satellites that were equipped with redundant, pre-

cision, rubidium time and frequency standards, in orbit,

for testing. These satellites were configured in opera-
tional orbit slots so that testers at YPG were able to ob-

serve them simultaneously for up to 1.5 hours per day.

Just prior to this visibility at YPG, the satellites were

uploaded with the newest ephemerides and clock prediction

models by the MCS. In addition, if required, the satel-
lites' standards were adjusted in phase and/or frequency so
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that they provided the user segment with the necessary co-
herent navigation signals that are processed by the user

equipment to obtain position, velocity and system time.

The user segment comprises a variety of User Equipments
(UE's) and their associated host vehicles. The UE's are

sets which are composed of PRN receivers and data proces-

sors. These sets are designed to meet the specialized

operational requirements of the user which are generally
characterized by the dynamics of the host vehicle. For the

Phase I GPS there were four classes of UE: (i) high dynam-

ic sets for fighter/bomber applications, (2) low dynamic

sets for air transport applications, (3) low cost prototype
sets for commercial aviation applications, and (4) man-ve-

hicle sets for ground applications. In general, these sets
all perform the navigation mission of GPS in the same man-

ner. The receiver obtains measurements of pseudorange and
delta range (integrated Doppler) to four satellites. These

measurements are handed over to the data processor which

computes the user's position, velocity and time, using a
Kalman filtering technique. The rate of these measure-

ments/computations is related to the dynamics of the host
vehicle.

Test Description

The data for time transfer testing were collected in con-

junction with static (point) positioning tests. These

tests were conducted from January through March 1979 at

YPG, Ariz. by Defense Mapping Agency personnel using the
Mobile Test Van (MTV).

The MTV is a one-ton step van which provides an approved
operational environment for an electronics pallet which !

contains a high dynamics user equipment (Magnavox X-Set)

and instrumentation to monitor and record user equipment

performance, measurements and navigation solutions. The

X-Set comprises a four-channel, dual-frequency receiver,

power supply and battery pack, navigation data processor

(NAV DP), Control Display Unit (CDU), preamplifier and om-
nidirectional (volute) antenna. The instrumentation com-

prises a data processor, input/output extender, nine-track

tape recorder with buffer forematter, cassette tape trans-

port (memory loader), engineering display (CRT) unit and

engineering control (keyboard) unit, power supply, power
distribution unit, line filter, high performance cesium beam

time/frequency standard with power supply and IRIG time code

generator. Figure 1 provides a block diagram of the X-Set/
Instrumentation.
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The GPS satellites continuously broadcast PRN RF (L-band)

signals at 1575.42 (LI) and 1227.60 (L2) MHz. Essentially,

the process is as follows: the carrier frequency is com-

bined with the PRN code and the low rate data stream, which

contains the satellite's ephemerides and clock model to

produce a modulated carrier frequency. To measure the

range from the user to a satellite, the X-Set internally

generates a PRN code which is identical to that of the
satellite. This code is shifted until it is correlated

with the received code and the amount that it is shifted

can be interpreted as the difference in time between the
X-Set's clock and that of the satellite. If the two clocks

are synchronized, this time difference is the range to the

satellite from the user, when multiplied by the speed of

light and corrected for atmospheric effects. In reality,

the two clocks are never synchronized exactly. This situa-

tion produces a pseudorange measurement which can be ex-

pressed by the following equation:

R = R + cAt a + CAto, (i)

where

= pseudorange measurement from the user to the
satellite,

R = true range from the user to the satellite,

c = speed of light,

At a = propagation delays due to the atmosphere,

At o = the user's clock offset from the satellite
clock.

The X-Set's receiver is a four-channel, two-freqeuncy unit
which is implemented with internal process control software

(firmware). The receiver is integrated with a high speed

navigation data processor to provide a high dynamic user

with navigation solutions at a 1.7 second rate. These so-
lutions are obtained by processing the simultaneous meas-

urements of pseudorange and include a first order ionos-

pheric correction, 0.5 second duration delta ranges to
four satellites, and a Kalman filter estimation process
whose eight element state vector contains three dimensional

position and velocity, and user clock offset and rate. In

the context of the static user, the Kalman filter is cued

so that the velocity state only reflects the noise of the

delta range measurements. To clarify this process, the
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determination of position and user clock offset can be

determined in general mathematical terms as follows:

Ri = R i + cat o, (2)

where

i = 1,...,4 and identifies measurements to the four

satellites,

Ri = [(Xu - Xi )2 + (Yu - Yi )2 + Zu - Zi )2]½ are the
true ranges from the user at Xu, Yu, Zu to the

four satellites at Xi, Yi, Zi,

Ri = the X-Set's simultaneous measurements of pseudo-
range to the four satellites,

At 0 = the user's clock offset from satellite's
clocks. Notice, this assumes that all of the

satellites' clocks are synchronized. In real-

ity, the satellites' clocks are not exactly

synchronized in terms of their pulse trains but

the broadcast navigation messages contain the

predicted clock models that are generated by

the MCS, which mathematically synchronize the
satellite clocks to the GPS Master clock, which

resides in the Vandenberg MS. In the X-Set's

computational process, the pseudorange measure-
ments are corrected with these clock models

prior to their entry into the estimation pro-

cess so that one must solve for only the common
clock offset.

In the above system of four equations there are four un-
knowns to be determined: three for the user's position

(Xu, Yu, Zu) and one for the user's clock offset (Ato).

Notice that the satellites' positions (Xi, Yi, Zi) are pro-
vided via the broadcasted navigation message-which contains

the predicted ephemerides that are generated by the MCS.

For the testing, real time solutions of the user's clock

offset were obtained as a part of the navigation solution.

In addition, postprocessed solutions of the clock offset

were obtained by assuming the users' position and this

results in a one equation system with one unknown.

In order to maximize the precision of the pseudorange
measurements and to provide a test configuration which

would support time transfer tests, the X-Set was imple-

mented as follows: the receiver's oscillator was syn-
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chronized in a phaselock loop to the 5 MHz output of the

instrumentation's cesium standard via a hardware upgrade

in the receiver, and the receiver's clock phase was syn-

chronized to the one pulse per second (PPS) output of the

cesium standard by implementing specialized navigation

software. This use of the cesium standard actually makes

it the receiver's clock. Thus, the internally generated

PRN code is equally or more precise than the satellite

generated code.

To provide an independent monitor for the cesium and system

redundancy, two addit0nal cesium standards were installed
in the MTV and the three cesium standards were integrated

into an ensemble which was monitored hourly using a com-

puter controlled time interval counter which measured the
difference in time between the one pulse per second outputs
of the cesium standards. These differences were automati-

cally recorded on magnetic tape in a small cassette. The
instrumentation cesium standard was considered the master

for all testing. Figure 2 illustrates the timing ensemble.

The test site at YPG was located in the immediate vicinity

of the Inverted Range Control Center (IRCC) and the antenna

was precisely referenced to a permanent survey station

mark. The position of the mark was determined in the WGS
72 earth centered/earth fixed coordinate system by the De-

fense Mapping Agency (DMA), using precise conventional and

Geoceiver-Transit satellite surveys. The MS's have been

positioned in the WGS 72 system by DMA, using the same
methods, and their locations form the reference frame for
GPS. Given the above, it is clear that we can use the

position of the station mark as the user's position to im-

plement the single satellite time transfer.

Up to this point, time transfer has not been defined ex-

plicitly, but it is now possible to provide this defini-
tion. Time transfer is the process whereby GPS time is
transferred to a user's clock. In these tests, the trans-

fer of time is to the instrumentation's high performance,

cesium, time/frequency standard. To realize the transfer,

the navigation (real-time) solution of the user's clock
offset, error in clock phase (ECP), is applied to the

user's clock time so that, effectively, the user's clock

is in synchronization with GPS time. In the case of the
postprocessed solution, the clock offset is determined and

applied to the user's clock time to provide a GPS time
scale for the user's clock.
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Results

For the time transfer tests, the time reference was pro-

vided by the United States Naval Observatory flying clock

trips, which established the difference in time between
the GPS Master Clock at the Vandenberg MS and the MTV clock
ensemble.

During the period from early January to early March 1979,

the USNO flying clock made five trips from Washington DC to

YPG and Vandenberg. Each of these trips consisted of fly-

ing a high performance, cesium beam, time/frequency stand-
ard and time interval counter from the USNO, Washington,

D. C. to YPG, to the Vandenberg MS to YPG and back to Wash-

ington in approximately two days. Prior to the clock's de-
parture and after its return to Washington, it was calibra-

ted with the USNO ensemble of more than 20 high performance
cesium standards. When the clock was at YPG and the MS,

the time interval counter was used to measure the time

difference between the flying clock and the local clock.
The calibrations and the time difference measurements

were processed at USNO to provide the relationship between

the clocks at the Vandenberg MS, YPG, and the USNO. Figure

3 and Table I provide the results for these flying clocks.

For the period of 1 February through 1 March 1979, real
time, time transfer, test data were collected at YPG. Dur-

ing this period, 14 days of data were collected. Each day's
data consisted of approximately six samples which were

collected over 20-minute time periods after the satellites

were uploaded by the MCS with appropriate ephemerides and
clock models. Each sample was the real time, Kalman Filter

solution of the error in the X-Set's clock phase. This

error in clock phase (ECP) is the difference between the

user's local time and GPS time, and in this case the user's

local time is obtained from the MTV instrumentation's high

performance, cesium, time/frequency standard. To obtain

values for the accuracy and precision of real time, time

transfer, the ECP was compared with the accepted true dif-

ference in time between the MTV and GPS as determined by

the flying clock and USNO's analysis of the MTV clock en-

semble data. Before the comparisons were made, the ECP was

corrected for hardware delays. These delays are due to the

length of the X-Set's receiver calibration cable and to the
difference between the six-second pulse offset of the Van-

denberg MS and that of the MTV X-Set receiver from their

respective time/frequency standards' one pulse per second
references. The values for these delays are listed and

explained in Appendix A and B. Table II contains the ECP/
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USNO comparisons.

To provide additional checks of the time transfer and to

look at the case in which the user's position is known, the

MTV magnetic data tapes containing the pseudorange measure-
ments, satellite broadcast ephemerides and Kalman Filter

solutions for February 5-7 were post processed by the Aero-

space Corporation. The results of these efforts are pre-
sented below.

Case I is a four satellite solution of the ECP which used

the broadcast ephemerides/clock models and the Geoceiver/

Transit determined WGS 72 position of the X-Set's antenna.

The ECP was determined by differencing the measured pseudo-
ranges and the given ranges and then fitting these differ-

ences to a second order polynomial with a constant (bias)

term, drift term and aging term. This polynomial was then
used to generate the ECP for the same times that real time

ECP data were obtained during MTV operations.

Date Polynomial: Ao + A1.(t-to) + A2.(t-to) 2

Ao = 8952.753 mtrs

5 Feb 79 A I =-0.00042236 mtrs/sec

A 2 = 0.00000023 mtrs/sec 2
to = 50519.25 sec

Time Real-Time Post Processed Real-Post

(sec) ECP (mtrs) ECP (mtrs) (mtrs)

50700 8951 8952.684 -1.684

50820 8951 8952.647 -1.647

51000 8952 8952.603 -0.603

51300 8954 8952.563 +1.437
51600 8951 8952.565 -1.565

51900 8949 8952.608 -3.608

Mn -1.278

(-4 nanoseconds)

S 1.652
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Date Polynomial:

6 Feb 79 Ao + At. (t-to) + A2. (t-to) z
Ao = 8991.612 mtrs

AI = 0.00376515 mtrs/sec

A2 = 0.00000042 mtrs/sec z
to = 52256.48 sec

Time Real-Time _ Post Processed Real-Post

(sec) ECP (mtrs) ECP (mtrs) (mtrs)

!j

52500 8992 8990.963 +1.037

52800 8991 8990.901 +1.099

53100 8990 8991.652 -1.652

53400 8991 8993.219 -2.216

Mn -0.433

(-i nanosecond)
S 1.749

Date Polynomial: Ao + A_. (t-to) + Az" (t-to) 2
Ao = 9042.962 mtrs

7 Feb 79 Az = 0.00148212 mtrs/sec

A2 = 0.00000042 mtrs/sec 2
to = 50509.02 sec

Time Real-Time Post Processed Real-Post

(sec) ECP (mtrs) ECP (mtrs) (mtrs)

50700 9044 9043.260 0.740

51000 9044 9043.791 0.209
51300 9044 9044.397 -0.397

51600 9041 9045.079 -4.079

51900 9040 9045.836 -5.836

52200 9040 9046.669 -6.669
52500 9040 9047.598 -7.578

-3.373

Mn (-ii nanoseconds)

S 3.505

Case II, is a single satellite (Navstar 4/PRN Code 8) so-
lution which was obtained using the same technique as in
Case I.
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Date Polynomial: Ao + Al" (t-to) + A2- (t-to) 2
Ao = 9044.438 mtrs

7 Feb 79 A l = 0.00162105 mtrs/sec

A 2 = 0.00000003 mtrs/sec 2
to = 50449.12 sec

Time Real-Time Post Processed ECP (mtrs) Real-Post (mtrs)

(sec) ECP (mtrs) 4 Satellite 1 Satellite 1 Satellite

50700 9044 9043.260 9044.847 -0.847

51000 9044 9043.791 9045.340 -1.340

51300 9044 9044.397 9045.839 -1.839

51600 9041 9045.079 9046.304 -5.304

51900 9040 9046.836 9046.853 -6.853

52200 9040 9046.669 9047.368 -7.368

52500 9040 9047.578 9047.889 -7.889

-4.491

Mn (-15 nanoseconds)

S 3.063

Case III, is a combined solution of the three days' data

from Case I. In this case, Aerospace Corporation gener-

ated post flight empherides and satellite clock models for

the four satellites by post processing MS measurement data,
which covered the period of 29 January to 12 February.

These ephemerides and clock models were then processed

with the MTV measurements in a batch, least squares process

which provided solutions for the MTV's position, clock

offset and rate. In addition, solutions were obtained by

using the MTV measurements without applying first order,
ionospheric corrections.

Date & Time Real-Time Post Processed Real-Post

(sec) ECP (mtrs) ECP (mtrs) (mtrs)

5 Feb @ 51000 8952 8953.4 (8961.4") -1.4

6 Feb @ 52500 8992 8993.4 (9000.o*) -1.4

7 Feb @ 51000 9044 9044.9 (9050.9*) -0.9

*These are the ECPs determined without using the ist order
ionospheric ocrrections.

Review of the Results

The Case I data verify the real time solution data and in-

dicate only marginal (approximately i0 nanoseconds) im-

provement is obtained when the pseudoranging data is post
processed.
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The single satellite results illustrated in Case II and

and ECPs determined without ionospheric corrections in

Case III provide an indication that a single satellite

time transfer without ionospheric correction would deqrade

the result by approximately 30 nanoseconds, depending on
the individual satellites' broadcast ephemeris and clock

model quality.

The Case III data indicate that processing with post fit

ephemerides does not significantly improve the real time

results except in terms of confirmation and greater sta-

tistical significance due to the amount of data employed
to obtain the results, that is, the confidence level is

greatly increased.

Conclusions

The comparisons of the real time and post processed ECPs

show that GPS will be able to provide better than 20 nano-

second time transfers in real time, but the real £ime ECPs

which were corrected for X-Set synchronization errors and
calibration delay line errors indicate that there are hard-

ware delays which must be accounted for if the user actually
is to obtain a physical transfer of time in terms of his

UE's clock output pulse. In this context, tests are now in

progress that have been designed to address the delay issues
so that the Phase II GPS UE will provide the user with a

time transfer capability that is more in conformance with

the system's real capability which has been demonstrated

via the real time/post proccessed ECP comparisons.
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Table I

USNO Master Clock - MTV Clock

ii January to 1 March 1979

The offsets are determined from USNO's adjustment of fly-

ing clock trip and MTV timing ensemble data.

Date Time Offset (_s)

1 Feb 1445 -8.210

2 Feb 1425 -8.298

3 Feb 1355 -8.366

5 Feb 1412 -8.482

6 Feb 1442 -8.535

7 Feb 1420 -8.591

8 Feb 1425 -8.646

9 Feb 1415 -8.705

12 Feb 1318 -8.890

13 Feb 1328 -8.951

15 Feb 1310 -9.078

21 Feb 1252 -9.452

28 Feb 1220 -10.014

1 Mar 1212 -10.086
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Table II

Time Transfer at Yuma Proving Ground AZ

Mobile Test Van w/Magnavox X-Set

all data in nanoseconds

Correc- USNO ECP'-

Date Time (UT) ECP tion ECP' TRt TRt

1 Feb 1430-1500 (7) 29351±3 177 29528 29596 -68

2 Feb 1345-1505 (8) 29505±13 211 29716 29741 -25

3 Feb 1345-1405 (i0) 29579±5 165 29744 29866 -122

5 Feb 1400-1425 (7) 29859±5 185 30044 30094 -50

6 Feb 1435-1450 (4) 29991±3 161 301S_ 30203 -51

7 Feb 1400-1440 (9) 30160±6 219 30379 30315 +64

8 Feb 1420-1430 (3) 30193±5 185 30378 30425 -47

9 Feb 1400-1430 (7) 30338±7 205 30543 30539 +4

12 Feb 1300-1335 (8) 30708±6 197 30905 30886 +19

13 Feb 1320-1335 (4) 30808±8 197 31005 31001 +4

15 Feb 1300-1320 (5) 30959±4 241 31100 31234 -134
21 Feb 1240-1305 (6) 31750±7 161 31911 31917 -6

28 Feb 1205-1235 (7) 32700±3 163 32863 32825 +38

1 Mar 1200-1225 (6) 32784±3 163 32947 32945 +2

iT±me Reference

* these are the number of samples obtained during the time period.
ECP, is the mean of samples and is characterized by its standard de-
viation.

Corrections are derived from the material presented in Appendix A and
B.

ECP' is the ECP with corrections applied.

USNO Time Reference, these values were obtained from the data presented
in figure 3 and Table I.

ECP'-Time Reference are the errors in the time transfer.

Analysis, investigations of clock trips, timing ensemble and the syn-
chronization suggest that the quality of each test is ±50 nanoseconds
(one sigma). The mean of the 14 tests: -27 ± 56 nanoseconds confirms

this and suggests that the major source of error is the nominal value

of 170 nanoseconds of VMS synchronization delay.
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Appendix A

MTV X-Set

Calibration Delay

Y
PREAMP I

T
RF CALIBRATION CABLE = 117 Nanoseconds

I measured with

time interval

counter

l, RECEIVER I

The X-Set's calibration procedure sends a signal out via

a cable to its preamplifier and back to the receiver via
the RF cable. The receiver measures the time it takes

and the equivalent range is subtracted from the pseudo-

range measurements. This results in a measurement which

is too short by the length of the calibration cable delay

time. The calibration cable's delay was measured several

times with a two-nanosecond resolution, time interval

counter and found to be 117 nanoseconds. This delay is a

plus correction and is added to the ECPs. Notice, MS's

correct the pseudoranging for this effect so this timing

bias is not introduced into the SS. Further, the MTV's

X-Set does not correct for this because the navigation

solution is transparent to common timing biases and navi-

gation was the primary test goal of the set.
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APPENDIX B

X-Set Synchronization Delay

The X-Set's clock is synchronized to an external 1 PPS

with software control of hardware. The procedure is as

follows: the operator inputs the time which will be set via

the CDU plus an estimate of the reference clock's (MTV Mas-

ter Clock) offset from GPS time; this sets a gate in the
receiver and the X-Set's cIock to the time while freezing

the epoch update of the clock; just prior to the Master

Clock's epoch (i PPS) of the set time the operator imple-

ments the time set with a CDU input command, which tells
the receiver that the next 1 PPS it sees will be the syn-

chronization pulse; when the receiver sees the 1 PPS at

the gate it starts the epoch update of its clock carrying

the set time. To determine the quality of the MTV syn-
chronization, the difference between the reference 1 PPS

and the X-Set's clock output pulse were measured during
each test with a two nanosecond resolution time interval

counter. Notice, the MS's use X-Sets for data collection
and their clocks are set to an external reference. In the

case of the VMS, this is accomplished similarly to the MTV
while the other MS clocks are set from the MCS via the sat-

ellites. For the time transfer test it is important to
know the offsets of the VMS and MTV synchronizations. In

the case of the VMS, a nominal value of 170 nanoseconds has

been determined. For the MTV, measurements were obtained

and are listed on the following page.

1
MASTER X-SET

CLOCK RECEIVER

CLOCK PULSE

i PPS every 6 seconds

. I ! I I i J I I I I i ! J I I J

TIME INTERVAL I t I

A A A

A = X-Set's pulse lag
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Notice, if the VMS and MTV synchronzation errors w_re
equal, the errors would cancel. In this case, the VMS at
170 nanoseconds and the MTV at a lower level introduce a

bias in the time transfer. The effect of this bias is to

make the ECP smaller as the MTV clock is slightly ahead of
the VMS clock. To correct for this, the measurements of

the MTV synchronization error for each test are subtracted
from VMS nominal value and the resultant value is added to

the ECP. In terms of the VMS nominal value, we can char-

acterize its quality by the statistics provided by the MTV

measurements, which give us a nominal value of 170 ± 25

nanoseconds (one sigma).
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Table B. 1

Differences between Cesium 1 PPS and X-Set (Serial #12)
6 second pulse after synchronization. Measurements were

obtained with the HP 5345A Time Interval Counter (2 nano-
second resolution).

Value Value

Date (nanoseconds) Date (nanoseconds)

1 Feb 79 ii0 1 Mar 79 124

2 Feb 79 76 2 Mar 79 140

3 Feb 79 122 5 Mar 79 i00

5 Feb 79 102 6 Mar 79 114

6 Feb 79 126 9 Mar 79 138

7 Feb 79 68 12 Mar 79 94

8 Feb 79 102 13 Mar 79 132

9 Feb 79 82 14 Mar 79 54

12 Feb 79 90 15 Mar 79 134

13 Feb 79 90 16 Mar 79 124

14 Feb 79 140 19 Mar 79 140

15 Feb 79 146 20 Mar 79 92

16 Feb 79 112 22 Mar 79 90

19 Feb 79 86 23 Mar 79 134

20 Feb 79 66

21 Feb 79 126

_8 Feb 79 124

Mn = 109 ± 25 31 samples

3o = (34, 184) all values
within this interval
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Precise Time and Time Interval (PTTI) Measurements
From The

Navigation Technology Satellites and the GPS NAVSTAR-4 Satellite

J.A. Buisson, T.B. McCaskill, O.J. Oaks, M.M. Jeffries, S.B. Stebbins

Naval Research Laboratory, Washington, D.C.

ABSTRACT

Since the launch of the first NTS spacecraft in 1974,

international time transfer experiments have been per-

formed as part of the concept validation phase of the

Global Positioning System (GPS). Time Transfer results

from both NTS-I and NTS-2 will be presented, including
recent measurements from receivers located in South

America, Germany, Japan and the United States. A time
link to the DOD Master clock allows submicrosecond

intercomparison of UTC(USNO,MCI) with clocks in the

respective countries via the NTS link. Work is pro-

gressing toward a retrofit conversion of existing NTS
receivers (located at NASA and foreign observatories)
into GPS time transfer receivers.

Initial results will be presented on the long term
rubidium frequency stability as measured from the GPS

NAVSTAR-4 space vehicle (SV). Analysis has been per-

formed for sample times varying from one to ten days.
Using a 154 day data span starting on day 36, 1979,
data was collected from the four GPS Monitor Stations

(MS) located at Vandenberg, Guam, Alaska, and Hawaii.

A time domain estimate for the NAVSTAR-4 SV clock off-

set is obtained for each SV pass over the GPS monitor

sites, using a smoothed reference ephemeris, with _

corrections for ionospheric delay, tropospheric delay,
earth rotation and relativistic effects. Conversion

from the time domain to the frequency domain is made

using the two-sample Allan Variance; sigma-tau plots
are used to identify the noise processes. Estimates of

flicker and white frequency noise for the NAVSTAR-4

rubidium frequency standard are obtained. The contri-

bution of the reference ground clocks and other error

sources to the frequency stability estimates are
discussed.
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INTRODUCTION

The Navigation Technology satellites (NTS), developed by the U.S.

Naval Research Laboratory (NRL), have provide_ _n_orbit test vehicles
for the basic satellite navigation technology ' ' currently used in
the NAVSTAR Global Positioning System _ (GPS). Two satellites, TIMATION

I and TIMATION II, were flown in 1967 and 1969 to demonstrate the con-

cept of _s_ng synchronized c_o_ks to provide time-ranging for time
transfer ' and navigational ' purposes. Navigation Technology

Satellite One (NTS-I), flown in 1974, introduced a _bidium atomic
clock and NTS-2 (Figure i), flown in 1977, a cesium clock. These

spacecraft have demonstrated (Figure 2) a two order of magnitude

improvement in timing precision from 300 ns in 1967 to a current value
of near 3 ns!

Measurements froml_TS-I and NTS-2 will be presented that demonstrate

the ti_ transfer capability, frequency offset and frequency sta-
bility of the spacecraft clock. Measurements from NAVSTAR-4 (Figure

3) will be presented that estimate the long term frequency stability
of the rubidium frequency standard from the pseudo range measurements.
Time transfer results for the Hawaii, Guam and Alaska monitor sites

have been made using the Vandenberg monitor site as the central
station. These time transfer measurements are further processed to

estimate the frequency stability of the Hawaii, Guam and Alaska clocks.

PTTI MEASUREMENTS

Two different types of time interval measuring techniques are used to

obtain the results reported in this paper. The first is a sidetone

ranging technique in which a set of tones is generated in the space-

craft, and then modulated onto the carrier; the receiver 13'14 synthe-
sizes the same set of sidetones and after detection and down con-

version, compares the phase of the received tones to the phase of the

synthesized tones. The set of phase difference measurements is then
combined to produce observed range with progressively better reso-

lution. Figure 2 presents th_5timing precision obtained as a function
of time. The best precision was less than 5 ns with a resolution of

1.5 ns employing a 6.4 MHz sidetone.

A spread spectrum technique, first demonstrated on NTS-2 in 1977, is

used for the Phase II_AVSTAR spacecraft. This ranging signal is
comprised of two PRN _ (pseudo random noise) codes, biphase modulated
on the carrier frequency. A short 1.023 MHz C/A (coarse/acquisition)

code is used for acquisition and a long 10.23 MHz P (precise) code is

used fo_7resolving range to at least 1.5 ns (46 cm). A navigation
message _ is also modulated onto the signal and is available upon

acquisiton of the C/A code. Information exists in this message which
enables acquisition of the P code. It also contains satellite ephemeris
and health information.
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Measurements of spacecraft doppler can be obtained by tracking the

received carrier signal for a fixed amount of time or by counting a

fixed number of cycles. The received frequency is mixed with standard

frequencies generated coherently from the user's frequency standard.

The respective difference frequency then enters a phase locked track-

ing filter. Measurements of doppler obtained from the PRN signal,

called delta pseudo range, are taken every 6 seconds.

NTS Tracking Network

Figure (4) presents the four station network employed for tracking

the NTS spacecraft. The limits of visibility for the Chesapeake Bay

Division of NRL (CBD), Panama, Australia and England tracking

stations are depicted by the Symbols C,P,A and E, respectively.

Reference to Figure (4) shows that the Panama station could track

for 12 consecutive hours, or one complete revolution of the 2 rev/day

NTS-2 orbit. This four station network provided 97% coverage of the

NTS-2 orbit, averaged over one day.

Ground station timing was provided by cesium clocks which were inter-

compared with other cesium clocks. Timing at the England NTS tracking
station was coordinated with GMT and in Australia with the Division

of National Mapping. The CBD tracking station had portable clock and

TV links to the U.S. Naval Observatory DOD Master Clock. This

arrangement provided control and timing checks for the time trans-

ferred by satellite.

Frequency Synchronization Results

Frequency tuning results from the first 150 days of NTS-2 operation

are presented in Figure 5. For the first segment, beginning at launch

on June 23, 1977, the transmitted frequencies were derived from the

quartz oscillator subsystem of one of the two on-board cesium

frequency standards. Using time difference measurements from the NTS

network, the frequency offset with respect to UTC(USNO,MCI) was

estimated. The quartz frequency was then tuned close to the cesium

resonance frequency. The.quartz frequency was then passively locked
to the (nominal) cesium resonance at 9192 MHz.

The cesium resonators, which are primary standards, were expected to

provide an absolute frequency reference to i part in 10(12) while at

rest on the earth's surface. The cesium frequency, in orbit, was

expected to be influenced by the relativistic clock 18 effect, which

is (nominal prediction) 445 parts in 10(12) for the GPS constellation.
The frequency offset of each frequency standard was measured with

respect to the DOD Master Clock before launch. The second segment

presents the results of on-orbit estimation of the frequency offset,
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which caused a (nominal) accumulation of time difference of 38,500

ns/day. By comparison of the theoretical and measured frequency
offset, the Einstein relativistic clock effect was verified to less

than one-half percent (0.5%).

Verification of this relativistic clock effect has resulted in a two

part correction for GPS. The first part of this correction is

obtained by (hardware) offsetting the transmitted frequency by

445ppi0(12). This hardware correction accounts for more than 99.6% of
the relativistic effect. The remainder of the correction is provided

by software, with the necessary coefficients included in the navi-

gation message.

Time Transfer Theory

Time transfer via satellite (Fig 6) is accomplished by measuring

the time difference, beginning with the reference clock, for each

of the time links and combining the results. Four links are necessary

for GPS operation. These links are:

(a) From DOD Master Clock to Master Control Station (MCS)

(b) RF link from MCS to each GPS SV

(c) SV clock update

(d) SV to user RF link

These four links, and subsets thereof, have been used to analyze

time transfer, navigation, SV clock and frequency stability, and

orbital accuracy for GPS.

The link from the DOD Master Clock, which is denoted as UTC(USNO,MCI),

has been demonstrated via portable clock and a TV time link to the

NRL CBD (Chesapeake Bay Division) station. Measurements are then made
at CBD to the NTS satellites for the second link. The third "link" is

that of the satellite clock maintaining and carrying forward in time

its measured offset with respect to the DOD Master Clock, through the
CBD link. The fourth link is made by the user who makes the RF

measurement to one or more satellites. Each satellite is synchronized,

by combination of hardware and software, to a common time reference.

A GPS user who takes four simultaneous pseudo-range measurements to

four GPS satellites can then use his assumed position and information

in the navigation message to calculate four time transfer values. If
the four time transfer values agree, his position is correct. If the

four time transfers disagree, the four parameters (t, x, y and z) can

be solved for simultaneously. Calculation of the time transfer value
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first requires a coarse time synchronization of the user's receiver

to GPS time, as maintained by the satellite clock. The satellite

ephemeris, which is a function of GPS time, can then be used to

calculate the geometrical range from the satellite to the user's

assumed position. Corrections must be applied for antenna and equip-

ment delays, the effects of ionospheric delay, tropospheric delay

and earth rotation during the signal propagation time. The time
transfer to the DOD Master Clock is obtained by a software correction
which combines the offset of each GPS satellite clock with a rela-

tivity correction. This software correction is small because each GPS

satellite clock is kept in near synchronization using an atomic

frequency standard and most of the relativistic clock effect is hard-
ware corrected.

The user's frequency offset and three dimensional velocity can be

solved with four delta pseudo-range measurements to four GPS

satellites. Alternately, frequency offset and three dimensional

velocity can be obtained using a sequence of time transfers and

successive x,y,z position estimates.

NTS Time Transfer Results

Time transfer techniques were first demonstrated by NRL in the

formative development of GP$;2_Yu aircraft in 1964, by satellite
in 1967 and on a worldwide 19' basis in 1978 to the submicrosecond

level of accuracy. Figure 7 tabulates a summary of those results from

a six nation campaign as compared with portable clock measurements

from USNO. The average accuracy obtained was 60 ns. The primary source

• of error was the lack of an ionosphere delay correction.

Recent time transfer results from South America, Japan 21 and

Germany (Figures 8 through 13) complement and confirm the previous

time transfer results. These figures present continuous satellite

time tran_results over a period of about 150 days through day 190,

1979. The entire worldwide net of stations participating since 1978
yields a history of worldwide submicrosecond satellite time transfer

for the last two years.

Figure 14 presents time transfer to the NTS Panama Station over a i00

day span. During the first segment, NTS-I was used to transfer time

without the aid of an ionospheric correction. The last segment

presents the NTS-2 results which had the benefit of an ionospheric

correction and a cesium clock in the satellite. Figure 15 presents
an ii day segment of NTS-2 time transfer data. The 9 ns precision of

these measurements indicates the potential of GPS to transfer time.
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Long Term Frequency Stability

The Allan Variance was adopted by the IEEE as the recommended measure

of frequency stability. Reference 22 presents a theoretical develop-

ment which results in a relationship between the expected value Of

the standard deviation of the frequency fluctuations, for any finite

number of data samples, and the infinite time _erage of the standard
deviation. Eq (i) presents the Allan Variance expression for M
frequency samples with the sample period, T , equal to the sampling

time, _.

! M-I

y2(2 -- _mq (i) _ , _) = i _ iyk+ I _ ykl 2M-I k=l
2

The average frequency values yk are calculated from pairs of clock
offsets, At, separated by sample time, T, as given by

Eq (2) Yk = A tk+ I - At k

The clock offset is not directly observable from a pseudo range

measurement; other variables must be measured or estimated. Figure 16

presents smoothed pseudo-range measurements that are evaluated

at the Time of Closest Approach (TCA) of NAVSTAR-4 to the Vandenberg

MS on daY2¼77, _979. Figure 17 presents the Long Term Frequency
Stability Analysis Flowchart which outlines the steps required to

obtain estimates of G y(2, T ) for the NAVSTAR-4 rubidium clock. Pseudo
range and delta pseudo range measurements, taken between NAVSTAR-4

and each Monitor Site, are transmitted to the Vandenberg Master

Control Station (MCS) and are processed in real time to keep track

of the NAVSTAR-4 clock and ephemeris. The measurements are collected

and sent daily 25 to the Naval Surface Weapons Center (NSWC); once

per week a reference ephemeris is calculated using the delta pseudo-
range measurements in the CELEST 26 orbit deterimination program.

Copies of the reference ephemeris are then transmitted to the Master

Control Station, NRL and other GPS users. NRL then calculates the

NAVSTAR-4 clock offset at the TCA for each monitor site pass, using

the reference ephemeris and a smoothed value of pseudo range. This

smoothed value of pseudo range, named SRTAP, is obtained from a 15

minute segment of 6 second pseudo-range and delta pseudo-range

measurements which are used to sequentially estimate coefficients

of a cubic equation. Corrections are applied for equipment delays,

ionosphere, tropospheric delay, earth rotation and a small relativity
correction. The significant effects which are not corrected are

spacecraft orbit, clock offset and random effects remaining in the
measurement.
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The clock offset is estimated using the reference ephemeris and the

a coefficient from the cubic coefficients (a , a_, a , a3) whicho ± 2 '
are reevaluated every 15 minutes of the NAVST_-4 pass. For a typical
6 hour pass, this procedure results in 24 values of clock offset;
a subset of these values is used to estimate the clock offset at TCA.

Figures 18 through 21 depict the actual amount of information col-

lected from each MS. Reference to Figure 18 presents 90 days (from

day 036, 1979 through day 126, 1979) of observations from the

Vandenberg MS. Figures 22 through 25 present the NAVSTAR-4 ground

track, as observed at each MS on 4 Mar 1979.

Reference to Figure 22 shows that NAVSTAR-4 rose above the horizon

at 2350 UTC on 3 Mar 1979 and set at 0410 on 4 Mar 1979. Consequently,
NAVSTAR-4 could be observed for a maximum of 4 hours (h) and 20

minutes (m) for the first pass. The second pass is longer, with a

pass duration of 5h 20m. In Figure 22 the dots along the SV ground

track are placed at i0 minute intervals; the short bars perpendicular
to the ground track are placed at 1 hour intervals. The TCA for each

pass occurs approximately mid-way in the pass; the clock offset is

calculated at this time. Reference to Figure 24 for the Guam MS shows

that NAVSTAR-4 has only one pass each day, with a possible maximum

pass time of 9h 50m. Reference to Figures 22 through 25 shows that
the tracking network can track NAVSTAR-4 for as much as 66% Of the

time, averaged over the 2 rev/day orbit.

The SV pass time is a critical parameter in the orbit estimation;

the _ p (integrated pseudo range rate) reference trajectory orbit

estimation assumes that the frequency offset (between the monitor

site clock and the SV clock) will be constant for sample times

varying from T = 0.ii days (Figure 23, Hawaii MS, second pass) to

= 0.41 days (Figure 24, Guam MS). Reference trajectory calculations

are made one per week, using data collected for 7 days. The four

monitor sites collect (typically) 49 passes per week, 7 passes from

the Guam MS and 14 passes each from Vandenberg, Hawaii and Alaska.

The clock offset calculation at TCA produces a result that is

independent of (small) along track orbit errors. This can be seen by
reference to Figure 16; the pseudo range rate is zero at TCA. A

similar statement applies for (small) normal to the orbit track
errors. Radial (between the SV and the user) orbit errors behave

differently; they look exactly like clock errors. Therefore,

the capability of this technique to give significant o (2_)
estimates depends on the orbit smoothing to separate o_bit errors

from clock errors. The satellite dynamics have been extensively

modeled; hence, the results are ultimately determined by the quality

of the observations which are obtained by measurements between the
spacecraft clock and the monitor site clocks.
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NAVSTAR-4 Rubidium Frequency Stability Results

The clock offsets from the Vandenberg MS for a 90 day span are

presented in Figure 26. During this time span, the clock offset
of NAVSTAR-4 was within 100_s of the Vandenberg MS clock, except

for a short time near day 055 when the cesium standard was activated.

Two other clock resets are present, one near day 095 and another

near day 118. The clock offsets for the other three monitor
sites exhibit more frequent receiver resets.

The frequency stability of the NAVSTAR-4 rubidium frequency standard,

referenced to the Vandenberg MS, is presente_ in Figure 27 for sample
times from 1 to I0 days. A value of 6.1 xl0- 3 was measured for • = 1

day. The frequency stability remains constant for up to T= 4 days,

followed by an increase in frequency instability. Thesel_esults were
not corrected for aging rate, which averaged -8.7 x i0- /day for the

154 day span. Aging rate corrections were applied to each data

segment and the _ (2,_) was recalculated; the frequency stability

with respect to thg Vandenberg MS is presented in Figure 28.

For T = 1 day, _y(2,T) = 6.1 x 10-13; "

for T = i0 days, O (2,T) = 2.4 x 10-13 .
Y

Frequency stability calculations were made for all four monitor sites;
the results are presented in Figure 29. The influence of aging rate,

which is quite evident in the Vandenberg MS measurements, is not as

apparent in the Hawaii, Guam and Alaska monitor site data. Aging rate
corrections were applied; the results are presented in Figure 30.
These measurements indicate a constant trend for _ = 1 day to

= 6 days, followed by an abrupt change for _ = 7 days.

The frequency stability values from each monitor site were averaged;
the four station average is presented in Figure 31 with no aging

correction. Figure 32 presents the four-station frequency stability

corrected for aging rate.

The four station average frequency stability for

Oy(2, 1 day) = 9.1 x 10-13 .

The peak departure of any monitor site average from the four station

average is indicated by the error bars. The frequency stability

improves up to T = 4 days, followed by an increase with an apparent

change in slope for 5 _ T _ 9 days. The flicker floor is reached at

= 9 days, with _y(2, 9 days) = 2.5 x i0-_. The coefficient for
white frequency noise is estimated to be (8.3 x i0-13)/_ , for

I<T< 9 days. Other factors are present in the data with the most

notable being the change in _ y(2,_) slope for T__ 5 days.
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NAVSTAR-4 Time Transfer Results

Time transfer calculations for the three remote GPS monitor sites

(Hawaii, Guam and Alaska) were made using the Vandenberg MS as the

central station. The Vandenberg MS clock was linked to

UTC(USNO,MCI) 27 by a series of portable clock trips. The SRTAP

pseudorange measurements were used to obtain monitor station clock

offsets with respect to NAVSTAR-4; the Vandenberg MS pseudo-range
measurements were used to obtain the NAVSTAR-4 clock and clock rate

values. Measurements were available from day 036, 1979 through Day
189, 1979, a 154 day time span. The internal receiver delay was not

available; a value of zero was assumed.

Time transfer results from the Hawaii MS are presented in Figure 33

for a 25 day time span with an epoch of day 175, 1979. A time transfer

value of 75031.121 usec was obtained for day 175 with a slope of

-4.80ppi0(12) and a noise level of 17 ns. Each point in Figure 33,

denoted by the symbol "X", was obtained using smoothed values for
each of the four links involved in time transfer. The time transfer

is given as the clock difference (UTC(USNO,MCI) - UTC(HAWAII)) which

includes a i leap second correction since GPS time is not reset for

leap seconds. The average frequency offset computed over the entire

154 day span was [-4.05 + 0.41]pp10(12).

Time transfer results from the Guam MS are presented in Figure 34
for a 25 day time span with an epoch of Day 070, 1979. A time transfer

value of 65660.025 usec was obtained for Day 070 with a slope of
4.24ppi0(12) and a noise level of 72 ns. Inspection of Figure 34 shows

an effect is present that increases the noise level of the Guam MS

time transfers when compared to the Hawaii MS time transfers. The

average frequency offset, computed over the 154 day span, was

[4.73 + 0.14]pp10(12).

Time transfer results from the Alaska MS are presented in Figure 35

for a 20 day time span with an epoch of Day 162, 1979. A time

transfer value of 69314.634 usec was obtained for Day 162 with a

slope of -0.56ppi0(12) and a noise level of 55 ns. The average

frequency computed over the 154 day span was [-0.14 + 0.11]ppl0(12).

Further analysis indicates that the Alaska MS time transfer values

change by 75 ns every 12 hours. Reference to the ground track (Figure

25) illustrates that this change corresponds to successive NAVSTAR-4

passes over the Alaska MS. This 75 ns change is responsible for the
increased (55 ns for Alaska MS) noise level as compared to the Hawaii
MS noise level of 17 ns.

The remote monitor site offsets, determined via NAVSTAR-4, vary from
65 ms to 75 ms. These values indicate that the remote monitor site
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clock offsets approximate the 65 to 85 ms delay required for the

signal to propagate from NAVSTAR-4 to the surface of the earth,

assuming that the internal delay is small with respect to 85 ms

(85,000,000 ns).

The monitor site frequency offsets for the Guam MS and the Hawaii

MS differ from those expected of the cesium standards. The ground

station cesium frequency standard manufacturer quotes an absolute

frequency reference of 7pp10(12); however, user experience indicates
that this is a conservative value. The difference frequency between

the Guam MS and the Hawaii MS of 8.8ppi0(12) is slightly larger than

the expected value.

Remote Monitor Site Frequency Stability

The time transfer results were further analyzed by calculating the

frequency stability of each remote MS (Hawaii, Guam and Alaska) cesium

frequency standard, as determined through the time transfer measure-
ments. This procedure involves all four links, similar to those given

in Figure 6. Due to the relative position of the four monitor sites,
the NAVSTAR-4 clock was required for an update of no more than 2

hours. In these calculations, the clock update time was from TCA at

Vandenberg MS to TCA at each monitor site. This procedure involves
NAVSTAR-4 clock and the orbital trajectory for a segment equal to the

arc of the orbit traversed during the clock update time. Hence, the

y(2, _) values computed via time transfer are sensitive to the short
term stability of the NAVSTAR-4 clock and the difference in radial
orbit error over a fraction of a revolution.

The frequency stability of the Guam MS cesium frequency standard, as
determined by NAVSTAR-4 time transfer, is presented in Figure 36 for

sample time varying f_m T = i to i0 days. For T = i day, a value of
.(2,T ) = 1.0 x I0- was measured. The measured f_quency

stability decreases to a value of _y(2,T) = 3.4 x i0" for • = 5
days. For _ = 6 through % = 9 days, a significant increase occurs; a

peak value of i.i x i0-Iz was measured at T = 8 days.

The frequency stability of the Alaska MS cesium standard is presented

in Figure 37. For T = i day, a value of Ov(2,_ ) = 7.9 x 10-13 was
measured. A behavior similar to the Guam MS _esults (Figure 36) was

noted with a peak value occurring at T= 7 days. The results for _= 3

days are less significant than the results from the Guam MS. A shorter
arc of the orbit was required; also, more equipment resets resulted

in a smaller sample.

The frequency stability of the Hawaii MS cesium frequency standard are
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presented in Figure 38. For

= i day, a value of _y(2,T) = 6.7 x 10-13
T

was measured. An increase in _ y(2,T) which is less than that observed
at the Guam MS, occurs for T= 5 days. The results from the Hawaii MS
are the best of the three remote monitor sites.

The_ (2,._) values for Guam MS reach a maximum at _ = 8 days of

i.i xYl0-IZ. The Alaska MS _(2, _) reach a relative maximum at

T = 7 days; Hawaii shows an i_creased frequency Oy(2,T) value at
T = 5 days as shown in Figure 37 and 38 respectively.

Two factors were considered as possible causes of this increased

frequency instability. The first factor is the seven day reference

trajectory orbit fit spans. A total of 22 seven day orbits were made

during the 154 day data span. The time transfer results from Guam (see

Figure 34) indicate small changes from the average slope that corres-

pond exactly with the seven day orbit fit spans. The second factor

considered was the once-per-week P code resets for the pseudo
i 28

random code transm tter . If this was the^factor it would have- 2
appeared at the same amplitude (i.i x i0 ) for the single station

y(2, T ) results presented in Figures 27-32. It is therefore
concluded that "orbit mismatch" is present for the longer sample

times, of five days or more.

The average value of the O$!2 _) valu_ for the Hawaii, Guam and
Alaska frequency standards _o _.8 x I0- for T = I day. This value

is considerably larger than the expected frequency stability for _e
HP5061A, Opt 004 standards. However, it is close to the 9.1 x i0 _

value measured for the NAVSTAR-4 rubidium frequency standard. These

results indicate that NAVSTAR-4 rubidium is slightly less stable than

the average remote MS frequency stability, as measured by time
transfer.

CONCLUSIONS

o Worldwide time transfer to the major time standards laboratories

has been demonstrated with NTS-1 for the past two years. The

average accuracy achieved was 60 ns. Ionospheric delay was the

most significant uncorrected error source.

o A time transfer precision of 9 ns has been demonstrated for an

Ii day span with the NTS-2 spacecraft using a cesium clock and a
first order ionospheric delay correction.
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o The NAVSTAR-4 rubidium frequency standard has a measured

frequency stability, with aging corrected, of

y(2, i day) = 9.1 x 10-13

y(2, _ ) = 8.3 x 10-13/_T I < _ < 9 days

y(2, 9 days) = 2.5 x 10-13

referenced to a smoothed reference ephemeris calculated over 22

seven day orbits using delta pseudo-range measurements. For

> 5 days a change in the = (2,T) versus T curve is present
whic-h correlates with the orbi_ fit span.

o Time transfer to the three remote monitor sites indicates

clock offsets near 65 to 85 ms. Time transfer noise levels of

17 to 55 ns were measured for the reported data span over a

154 day observed data span.

o The frequency stability of the three remote GPS monitor sites

has been calculated for i< _ < i0 days using NAVSTAR-4 time
transfer results with the--Vandenberg MS as the central

station, linked by portable clock to UTC(USNO,MCI). These

measurements indicate a seven day orbital effect.

o Comparison of the on-orbit frequency stability of a rubidium

frequency standard versus a cesium f_quency standard
indicates O (2, 1 day) = 9.1 x i0- for rubidium and

. (2,1 day) y= 3.7 x 10-13 for cesium as presented in figure
39_ details of which are in reference 12.

NRL, along with other agencies and contractors, is continuing

development of advanced cesium and hydrogen maser frequency

standards for use in future GPS spacecraft. Other proposed work

includes a study to investigate the seven day orbit effect.
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QUESTIONS AND ANSWERS

DR. VESSOT:

Are the rubidium data drift corrected in that instance?

DR. MCCASKILL:

Yes sir. The data are corrected for aging rate.

DR. ALLEY:

Could you say a few more words on just how the data will be ex-

tracted and did you use the full Kalman filtering process of the

GPS code to get this?

DR. MCCASKILL:

The Kalman filter was not used at all. This was all done in a so-

called post processing, batch type of mode. In the batch type of

mode we used a week's worth of observation. If you had two passes

per day from each station, you would have eight, you would have

seven, because Guam only took one, so you would have around 50

complete passes, satellite passes of NAVSTAR-4 in order to esti-

mate the orbit. So it is batch processing and it did not involve
the on-line use of the Kalman filter.

MR. PLEASURE:

Are these algorithms for general relativity corrections, are they

published in your literature or not?

DR. MCCASKILL:

As Dr. Winkler mentioned earlier, there was a workshop, I believe

headed up by Dr. Dave Allan, who is here, on the relativity ef-
fects that would have to 5e accounted for for GPS and I know that

the results are published. I do not know the availability of

them. You might check with either Dr. Allan or Dr. Winkler to

find out about the availability.

QUESTION:

Since when are they available?

DR. WINKLER:

They have been published.

281





TIME RECOVERYMEASUREMENTSUSING

OPERATIONALGOESAND TRANSIT SATELLITES*

R. E. Beehler, D. D. Davis, J. V. Cateora,
A. J. Clements, J. A. Barnes and E. M_ndez-Qui_ones

National Bureau of Standards
Boulder, Colorado

ABSTRACT

Users with requirements for timing signals available

over wide geographical areas that are accurately refer-

enced to UTC(NBS) or UTC(USNO) can conveniently access

either of two operational satellite systems. Two geo-

stationary GOES(Geostationary Operational Environmental

Satellite) satellites located at 75° and 135° W longitude

provide a continuous NBS-referenced time code to the

Western hemisphere, including large portions of the

Atlantic and _Pacific Ocean areas. Five operational

TRANSIT satellites provide timing signals referenced to

UTC(USNO) from low-altitude polar orbits, resulting in

worldwide coverage on a non-continuous basis. Conven-

ient, fully automatic, microprocessor-based commercial

receivers are now available for use with both satellite

systems.

Results of regular monitoring of both the GOES and

TRANSIT timing signals over a number of months at NBS,

Boulder, CO are presented. The TRANSIT results include

an analysis of how received timing accuracy and stabil-

ity are affected by: (I) averaging over varying numbers

* Contribution of the National Bureau of Standards, not subject to
copyright in the U.S.
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of satellite passes; (2) averaging over different com-

binations of the 5 available satellites; (3) using

several independent receivers of the same type; and (4)

application of [TRANSIT-UTC(USNO)] published corrections

to the received data. Based on monitoring experience to

date at NBS, some pros and cons of using each of the

available operational systems are discussed.

Updated information on recent improvements incorporated

into the GOES time code generation and monitoring system

at Wallops Island, VA is also included.

INTRODUCTION

Time transfer techniques using satellites are being investigated

in one form or another by almost every major timing laboratory in

the world. While much of the work reported on to-date has dealt

with highly successful, experimental time transfers among inter-

national laboratories at the highest attainable accuracy levels,

there are also very real needs for the more general dissemination

of reliable timing signals at more modest accuracy levels in the

l-lO0 Ns range. Currently, there are two major satellite-based

systems which offer such timing capabilities to general users on

an operational basis. These are the U.S. Navy's TRANSIT satellite

navigation system, also referred to as the "Navy Navigation Satel-

.lite System," and the Dept. of Commerce's GOES System, which is an

acronym for "Geostationary Operational Environmental Satellites."

Relatively low-cost timing receivers are available commercially

for use with either of these operational satellite systems. The

National Bureau of Standards has been systematically monitoring

and evaluating both the TRANSIT and GOES timing capabilities over

a period of about 8 months. The approach has been to use only
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commercially available receivers, treating them essentially as a

"black box" with a l pulse-per-second output that is analyzed and

evaluated as a timing reference with respect to the UTC(NBS) time

scale.

TIME DISSEMINATION RESULTS VIA TRANSIT*

There are currently 5 operational TRANSIT satellites providing

timing signals in a one-way mode from nearly circular, polar

orbits.(1) With this satellite configuration a user at a particu-

lar location has access to the TRANSIT signal for about 15 minutes

each time one of the satellites flies over within range. Coverage

is therefore worldwide, although at any particular location inter-

vals between successive satellite passes might range anywhere from

a few minutes to several hours. The TRANSIT signal format contains

a fiducial time marker each 2 minutes derived from an on-board

crystal oscillator and satellite ephemeris information that can be

processed by the receiver to compute the path delay from satellite

to user for each 2-minute interval. The receivers used in the NBS

measurements, priced at about $12,000 each, automatically acquire

the 400 MHz TRANSIT signals, compute the path delays, and correct

the output l pps to be on-time with respect to the satellite

clock.(2) Since the satellite clocks are carefully monitored and

controlled by the Navy Astronautics group and the U.S. Naval

Observatory, the receiver output can provide an excellent local

representation of UTC(USNO).

The block diagram in Figure l indicates the way in which the

commercial TRANSIT receivers available to NBS for these evalua-

*This work was supported by the Naval Electronics Systems Command

under CCG Contract #79-142.
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tions were used. Although these particular receivers include

capabilities for averaging over any number of satellite passes

from l to lOO and for selectively deleting one or more of the 5

operating satellites from the ensemble used to correct the output

l pps, NBS chose to use a multi-channel data logger to accumulate

data separately from each successful satellite pass. For each

pass data were recorded providing a measurement of the TRANSIT

receiver l pps relative to UTC(NBS), identification numbers for

the particular satellite and receiver involved, the amount of

correction computed and applied by the receiver, the date and

time of correction, and the standard deviation of the individual

2-minute points as supplied by the receiver. After the fact the

data file was completed by adding a "TRANSIT clock-UTC(USNO)"

correction as published by USNO and the elevation angle for each

pass. These data were then analyzed in various ways to show the

dependence on the particular satellite ensemble used, the number

of passes averaged, the particular receivers used, the application

of the USNO corrections, and satellite elevation angle.

In all cases TRANSIT measurements deviating by more the I00 ps

from UTC(NBS) were discarded.

Dependence on Satellite Ensemble

Figures 2-6 present the received TRANSIT data from each of the 5

operational satellites separately for the 8-month period of the

measurements. In each case, each plotted point is the average of

5 successfully received satellite passes (normally, there are

about 2 satellite passes per day for each satellite). Also, on

each plot are tabulated the mean values and standard deviations

applicable to smaller time segments of the 8-month period.
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UTC(NBS) is used as the reference, but since NBS and USNO differed

by only 2 ps during this period plots in terms of UTC(USNO) would

differ only by that amount. Satellite #120, the oldest of the

current group, consistently had the highest offset of about +30

ps. #130, also one of the oldest TRANSIT's, was offset by only

-0.5 ps. Similarly, #140 was offset by about +14 Ns on the aver-

age, #19O by +3 ps, and the newest satellite, #200, by -2.8 ps.

The standard deviations of the 5-pass averages ranged between 8

and 18 ps for the 5 satellites. Figure 7 also shows the long-term

behavior of each satellite over _he 8-month period, where each

plotted point in this case is an average over 60 days. It is

apparent that for best accuracy with respect to either NBS or USNO

during this period satellite #120, and possibly also #140, could

have been excluded from the ensemble. This effect is shown in

Figure 8 where the solid line refers to the complete 5-satellite

ensemble, averaging 20 passes per point in this case, while the

dashed line is the _esult if #120 is excluded. The ensemble mean

offsets are about 8 ps including all satellites and 4 Ns with #120

excluded.

Dependence on Number of Satellite Passes Averaged

Figures 9-11 illustrate how the measurement precision varies with

the number of satellite passes averaged. As mentioned previously,

the receiver can be easily set to average anywhere from l to lOO

passes automatically. In the first case for illustration (Figure

9) all satellite passes are used and each plotted point is the

average of 5 such passes successfully processed by the receiver.

Since typically about II good passes per day were received in

Boulder, this average corresponds to about one-half day. The

standard deviation of the 5-pass averages is about 9 Ns. By

comparison, a plot of 3D-pass averages (Figure lO) corresponding
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to about 3-day averages, shows that the standard deviation im-

proves to about 5 ps. When all of the data are analyzed in more

detail, the plot in Figure II of standard deviation vs. the number

of passes averaged results. One might interpret this as a depen-

dence on the number of passes averaged, N, that varies as N-½ down

to a "flicker floor" level of about 3 ps for N = 50 passes. The

standard deviation for a single pass is about 20 ps.

Dependence on the Particular Receivers Used

o

Although two independent, co-located receivers observing the same

satellite pass occasionally disagreed by more than 50 ps, their

long-term agreement was excellent. Figure 12 compares two differ-

ent receivers based on 30-pass averages. The tabulated mean

values in the plot show that 50-60 day averages agreed to within

better than 3 ps for these receivers.

Dependence on USNO Published Corrections

Figure 13 illustrates the effect of correcting the observed data

by applying the "TRANSIT-UTC(USNO)" corrections from USNO's Time

Service Announcement Series 17. Data from all 5 satellites are

included and each point is an average over lO pWsses, or about l

day. The dashed curve has the USNO corrections applied while the

solid curve is the uncorrected output of the receiver. One reason

that its hard to distinguish the two separate curves is that the

means are essentially identical-in fact, applying the USNO correc-

tions for this data sample actually moves the ensemble average

farther away from UTC(USNO) by about a microsecond. From the

tabulated standard deviations at the bottom of the plot, however,
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it can be seen that applying the USNO corrections to the measure-

ments does seem to reduce the standard deviation of the lO-pass

averages by about 20%.

Dependence on Satellite Elevation Angle

The TRANSIT data were also analyzed for any correlation between

the elevation angle of a pass and the scatter of the measurements.

There was no significant correlation, which is probably not too

surprising since the TRANSIT receiver automatically rejects any

satellite pass corresponding to elevation angles of less than lO°.

Using TRANSITTiming Signals to Control a Cesium Clock

Using the months of accumulated TRANSIT monitoring data as a

starting point, one of the authors (JAB) developed a procedure for

steering a cesium clock with the TRANSIT satellite signals in such

a way as to realize a time accuracy of at least 20 ps at any time.

The study involved (I) data analysis; (2) the development of

computer models to simulate the performance of the satellite-re-

ceiver combination and cesium clocks; and (3) devising and testing

different control _Igorithms using computer simulation.

The recommended algorithm is to use a TRANSIT timing receiver set

to accept all TRANSIT satellites except #120. The receiver should

be set to reject points in error by more than 150 ps and average

for about one week. This should require averaging about 80 indi-

vidual passes. Once per week an operator compares the cesium

clock with the TRANSIT timing receiver output (i.e., the week's

average) pulse using a time interval counter. If the ticks are

within ± I0 ps, the operator makes no changes. If the time dif-

ference exceeds the ± I0 ps tolerance, then the cesium clock
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output is shifted exactly I0 ps toward the output of the TRANSIT

receiver. No use is made of the USNO published corrections.

While it is recognized that it is risky to extrapolate years into

the future based on only six months of satellite data, still this

data provides a reasonable basis to design a control algorithm.

Assuming no deterioration in the operation of the satellites the

models used should reasonably account for long-term trends in the

clocks. The expected Performance is an RMS time error of the

cesium clock of about 7 ps, with less than a I% probability of

exceeding ± 20 ps error relative to UTC. On the average, the

cesium clock will be reset every two months.

TIME DISSEMINATION RESULTS VIA GOES

In contrast to TRANSIT with its 5 polar-orbiting satellites, the

GOES system employs two operational geostationary satellites,

backed-up by at least one in-orbit spare. The GOES satellites,

designated GOES/East and GOES/West, are positioned over the equator

at 75° and 135° W. longitude, respectively.(3) From these loca-

tions they provide continuous coverage to most of the western

hemisphere as indicated in Figure 14. Although.their primary

mission for NOAA involves the collection of large quantities of

environmental data from many kinds of sensing platforms, the GOES

signal format transmitted from satellite to Earth at 468 MHz also

includes a digital time code generated and controlled by the

National Bureau of Standards' equipment at the satellite control

facility in Wallops Island, VA. In addition to complete time-of-

year information referenced to NBS the transmitted code also

contains satellite position predictions updated each 4 minutes,

generated in Boulder from orbital elements supplied periodically
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by NOAA and NASA tracking facilities. A two-way, dial-up tele-

phone data link between Boulder and Wallops Island allows NBS to

send updated position predictions and clock control commands to

the automated system and to receive back on demand Loran-C and TV

monitoring data and equipment status indicators.

Commercial GOEStime code receivers are currently available in two

basic versions, aimed at different accuracy levels. The more

sophisticated type was used for most of the measurements being

reported here. As in the TRANSIT case, it is microprocessor-based,

enabling it to decode the satellite position data, compute the

appropriate source-to-user path delay, and adjust its I pps output

signal to be "on-time" with respect to the NBS-controlled atomic

clock system at Wallops Island. Its base price is about $4,000.

A second receiver version used for some of the measurements ignores

the satellite position data in the code and simply provides a time

display and output _iming signals usable at the ± 1 ms level at a

cost of about $2,000.

The GOES data to be discussed here resulted from monitoring the

received timing signals in Boulder from both the GOES/East and

GOES/West satellites, and recording the difference between the

receiver I pps outputs and the UTC(NBS) time scale. During the

full 8-month period occupied by the TRANSIT measurements, single

measurements of UTC(NBS)-GOES/East and UTC(NBS)-GOES/West at a

specified time each day were recorded. For a more limited 45-day

period measurements of lO00-second averages were also recorded

continuously from both satellites.
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Medium-term (I000 seconds) GOESPerformance

Figure 15 displays the lOOO-second averages as received from

GOES/East over a 45-day period. The Y-axis ranges from 0-I000 Vs

so that essentially all of the several thousand data points - good

and bad, can be included. (For comparison it should be kept in

mind that the TRANSIT data plots discussed earlier excluded all

outliers beyond ± lOO Vs.) Figure 15 has at least 3 distinctive

features. The first is the rather random sprinkling of outlier

measurements with values mainly between the baseline at about 50

Vs and something like 500 Vs. ,At first it was assumed that these

points correspond to offsets of the receiver l pps that occured

during periods of land-mobile radio interference in the local

Boulder/Denver metropolitan area. Since the GOES frequency allo-

ications near 468 MHz used for the NBS time code are coincident

with communication frequencies assigned to the land-mobile service

in the U.S., a significant potential for interference in large

urban areas exists. During some such interference conditions our

GOES timing receivers tended to go "out-of-lock" fairly often.

According to the receiver manufacturer, however, such large offsets

in the presence of noise are not normal and rather indicate a

malfunction in the calculator circuitry which computes the path

delay correction. Apparently this symptom has been observed on

some other early models of this receiver. At least one of the NBS

receivers with this symptom has been subsequently modified by the

manufacturer with encouraging results.

The second distinctive feature of the plot in Figure 15 is the

pronounced diurnal variations with an amplitude varying from

nearly zero up to about 30 Vs. These variations are likely due to

small imperfections either in the complex computer program used to

compute the 4-minute updates of the satellite positions or in the
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orbital elements. The changes in amplitude that obviously occur

from time to time are generally correlated with new sets of posi- ,,

tion predictions and are believed to reflect the varying quality

of satellite orbital elements supplied to NBS. The third notice-

able feature of this plot is the generally flat trend of the

GOES/East average baseline over the 45-day period in spite of the

interference effects and orbital,element problems.

Figure 16 is the corresponding data for the GOES/West received

time code. Again we see frequent outliers, diurnal variations

which do not seem to be correlated with those on GOES/East, and a

somewhat greater long-term variation amounting to about 50 Ms

relative to UTC(NBS). Such variations are most likely due to

imperfect orbital elements. Note the almost total absence of

outliers during the first lO days. Since the local interference

conditions presumably weren't that much better, one possible

explanation is that the receiver calculator circuitry was opera-

ting properly only during this period. In the next two figures an

ARIMA-model filtering technique has been used to reject many of

the obvious outliers and the remaining data points are plotted on

an expanded 0 to 100 Ms scale. The GOES/East filtered data in

Figure 17 show a fairly constant average value to within about 15

Ms over the 45 days. The GOES/West measurements in Figure 18 when

filtered show about the same magnitude of diurnal variations but a

larger systematic variation of the mean.

GOES Performance Averaged Over One Day

Figure 19 shows the improvement obtained by averaging the GOES/East

filtered measurements over I day. The resulting daily means have

a standard deviation of about 6 Ns.
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Long-term GOES Performance

w

Figures 20-22 display some longer-term, once-per-day measurements

during an 8-month period. Each point in this case is essentially

just an instantaneous measurement of the receiver lpps vs. UTC(NBS)

as recorded at 0000 UT each day. Such individual measurements

are, of course, rather sensitive to local interference conditions.

In the case of GOES/East (Figure 20) it's apparent that a shift of

about 50 Ms in the mean value occured sometime in April, 1979, but

in general the average has been stable to within about ± 50 Ms

overall. Interestingly, the GOES/ West data in Figure 21 also

shows about a 50 Ms shift at about the same time, and at present

there is no clear explanation for this observation. As often

seems to happen in such cases, an unrelated gap in the recorded

data occura_ed at about that time that prevented pinpointing the

shift more exactly. Aside from these few anomolies, however, the

plots indicate that the long-term stability can be as good as ± lO

Ms for many months.

Figure 22 is again based only on single, daily measurements of

UTC(NBS)-GOES/West at 0000 UT. It differs from all the preceding

ones in that these measurements are made with the simpler version

GOES receiver that does not use the position information to compen-

sate for path delay. Its output l pps rather fluctuates as the

actual path delay changes due to various satellite motions. Note

that the Y-axis in this case extends from 0 to 2 ms. The reason

that the received signal ends up within 2 ms of UTC(NBS) even

without any delay correction is that the time code as transmitted

from Wallops Island is advanced by exactly 260 ms, which makes the

signal arrive at the user's location nearly on time. This simpler

receiver can provide a timing reference stable to a few tenths of

a millisecond relative to a fixed mean delay bias that can be
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calibrated out of the measurement. This bias for GOES/West is

about 1.5 ms for the Boulder location. For many applicationsthis

level of accuracymay be sufficientand offers a reducedreceiver

cost of about $2,000.

RecentImprovementsin GOES Time Code GenerationSystem

Very recently,the NBS time code generationand controlequipment

has been replacedwith an upgradedsystemthatprovidesthe improve-

ments listed in Figure 23. As a result, it can be expectedthat

the GOES time code will be even more reliable in the futureand

will show improved stabilityrelativeto UTC(NBS), both at the

trasmitter and the receiver ends of the NBS-to-user-link.The

preliminarydata from the upgradedsystemsuggeststhat the Wallops

Island clocks can be maintained within a few microsecondsof

UTC(NBS)indefinitely.

CONCLUSION

To conclude, Figure 24 summarizes some of the more important

advantages,as NBS sees them, of the TRANSITand GOES time dissem-

inationsystems. The first group of advantagesapply equallywell

to both these systems. In terms of long-termcontinuityit may be

worth noting that new, improvedTRANSIT and GOES satellitesare

scheduled for launch during the next year and there is every

indicationthat both systems will be around for many years. In

addition to these general advantages each system offers some

special, more-uniquefeatures. For TRANSITthe coverage from the

polar-orbitingsatellites is global, clearly of great importance

for some applications. Because the TRANSIT signals operate at

different frequenciesthan GOES, they are not subject to the

land-mobileinterferenceproblems. Based on the 8 months of data
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monitored at NBS, received TRANSIT signals, when averaged over an

appropriate satellite constellation, can provide a highly-accurate

local time reference with respect to UTC(USNO) at the better-

than-25 Ns level. Finally, the use of 5 operational satellites

provides excellent service reliability. In the case of the GOES

time code coverage is only hemispheric rather than global, but the

signals are available continuously within this area. The code

provides complete time-of-year information at two different ac-

curacy levels, so that users have an option to accept lower accu-

racy with a cost savings of several thousand dollars per receiver.

Even the full-accuracy user can find GOES highly cost-effective at

a receiver cost of less than $5,000.
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GOES TIME CODE SYSTEM IMPROVEMENTS
AT WALLOPS ISLAND, VA

• SATELLITE- POSITION PREDICTIONS UPDATED EACH 4 MINUTES

• TRIPLE- REDUNDANCY TIME - CODE - GENERATION SYSTEM

• HIGHER RESOLUTION POSITION PREDICTIONS

• IMPROVED MONITORING CAPABILITIES

• COMPLETE SYSTEM STATUS AVAILABLE ON DEMAND TO
NBS/BOULDER VIA DIAL- UP LINK

• CAPABILITY FOR IMPROVED CONTROL OF CLOCKS

Figure 23

ADVANTAGES APPLICABLE TO BOTH TRANSIT & GOES

• RELIABLE TIME SIGNALS

• PROVIDES 100 ,u,s-OR- BETTER LINK TO USNO & NBS

• EXTENSIVE COVERAGE AREAS

• LONG- TERM CONTINUITY

• AUTOMATIC COMMERCIAL RECEIVERS AVAILABLE

• MINIMAL ANTENNA REQUIREMENTS

SPECIAL ADVANTAGES : TRANSIT SPECIAL ADVANTAGES : GOES

• GLOBAL COVERAGE "CONTINUOUS AVAILABILITY IN COVERAGE AREA

• INSENSITIVE TO LAND- MOBILE INTERFERENCE • COMPLETE TIME. OF- YEAR INFORMATION

• CAN PROVIDE <25/_s LINK TO USNO • RECEIVER COST <$ 5,000

• FIVE OPERATIONAL SATELLITES " + 1 MS OPTION AVAILABLE FOR <$ 2,000

Figure 24
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qUESTIONS AND ANSWERS

DR. LESCHIUTTA:

The paper is open to discussion, but before I open the discussion

I would llke to make a remark that in the European Space Agency

there is a satellite named METEOSAT. This satellite is making

basically the same work as the GOES satellite and there are some
work in order to see if it could be possible to include a code

very similar to the code of GOES satellite in one of the channels

of the METEOSAT satellite. This is Just as a general remark.

DR. GILLES MISSOUT, Quebec-Hydro

I have some comments about your measurement on GOES satellite. We

have three clocks from one year ago now and also one improved
model and we observed the same trouble as you and after receiving

the new model we have the same trouble and we opened the black box

and made measurement on it and we found most of the problem re-

lated to the RF filter, which has a rejection of only 50 dB In-
stead of 90 dB we found on most mobile radios, commercial models.

And we observed, by example, in Montreal, each time the signal

from any radio mobile, even one or two megahertz apart comes with

a value higher by 50 dB of the signal, the receiver saturates and
doesn't work.

DR. BEEHLER:

Thank you very much. This is very interesting.

DR. MISSOUT:

One other point. We are waiting for a special filter having 90 dB,
to install it and see what happens.

MR. RUEGER, APL/JHU

I wanted to compliment Roger Beehler on such a very thorough exam-

ination of the TRANSIT program for timing. I do want to point out

to the rest of the audience that the specifications and require-

ments on that program start out at around a i0 millisecond require-

ment and we were so much better than the requirements that these

applications are now possible.

As a matter of fact, about one year ago, the requirements on

the system were altered so that it is now required to keep the
TRANSIT satellite time within 200 microseconds of UTC. And with

this effort and the new commercial receivers we expect to try
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harder to keep the satellites still nearer to UTC time. They are
ground controllable, so that some of the time excursions indicated

were a part of the process of how the control is performed. In

loading the satellite each 12 hours in the uploadlng cycle, if the

loading is unsuccessful, we have a little quirk in the current
satellites that they will put an extra I0 microseconds in their

time error each time an extra load is attempted to get error-free
uploads. This is why you will see these up and down excursions
in quantas of i0 microseconds.

But I do believe the receivers, that you are evaluating do
have time resolution limitations of about 7 microseconds because

they are looking at a signal wi=h a modulation rate of 50 Hz.

Thank you.

DR. BEEHLER:

Dr. Winkler?

DR. WINKLER:

I would also llke to make some comments because in contrast to the

GOES, which is more or less entirely under your control and where

corrections can be introduced simply, the case with TRANSIT is

exactly the opposite. It is a very large system and this brings

me to the question of the corrections which are being published in
Serles-17, and the comment is prompted by the very poor correlation

of the corrections which we publish and your observations at a dif-
ferent site.

Now, the corrections which we publish are not based on any

measurements made at the Observatory as Series-17 says at the top.
They are data which we receive from NAVASTROGRU, and I think on
the basis of your investigations and also on the basis of what Ken

Putkovich already has mentioned, I would llke to tentatively say

that maybe we should discontinue these Serles-17s altogether. I

think an improvement of some 20 percent in this caper is not worth-
while to go to the trouble. Really what that reflects is the cor-

relation between what is the total set of monitor sets, all four

monitor sets together, see, with what you see at a different time

of day. And that correlation is very poor.

I think, however, that it may be more useful to the users to
replace the present Serles-17 with what Ken has mentioned with

measurements, selected measurements, maybe only on the basis of

the satellites, made in Washington and possibly at other sites.

I think the correlations between these observations would probably
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be greater. Would you have any comments to this proposal, to do

away with the present Series-17 altogether, and instead, publish-

ing measurements which are made at NAVOBS and possibly one other

site for selected satellites at some given standard time of day?

DR. BEEHLER:

Well that certainly makes much sense to me. I think the thing to

focus on, at least as a result of our data, is that even without

these corrections and using a constellation that is averaging

over more than one satellite, you certainly treat it as a black

box and come out with a time reference that is very, very close

to UTC/USNO, so I certainly think that would be a step forward.

MR. RUEGER:

I would like to respond a bit to the correction problem. Roger,

did you, in the using of the data corrections of Bulletin-17,

interpolate linearly or some other means between the times you

observed and the times the corrections were applied?

DR. BEEHLER:

Yes, it was simply a linear interpolation.

MR. RUEGER:

I do want to point out that the time at which the Boulder Labora-

tory can see the satellites is the poorest in the cycle of the

renewal of time in the satellite. It is just before we reinJect
or at about the time of reinJection of the satellite and this is

the poorest place in the world so maybe your data are on the

pessimistic side of actual performance.

DR. BEEHLER:

To each his own.
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ABSTRACT

The paper describes the results of a prelimin-
ary experiment of T/F dissemination via the Medium-

Scale Broadcasting Satellite for Experimental Pur-
poses (BSE) and those of the international time

transfer experiment via the Navigation Technology
Satellite (NTS-I).

(I) The preliminary T/F dissemination experi-
ments have been made using the BSE, which has the

down-link of 12 GHz and the up-link of 14 GHz. The

measured short-term stability of the received TV

sub-carrier frequency is as good as in the terres-

trial TV broadcasting, e.g., Oy (I0 sec)=3xl0 -II.
In order to establish the technique of the doppler

shift canceling, the phase control servo including

the satellite link, the pre-compensating frequency

control using the measured values or using the
orbital data of the satellite are tested. The

amount of the residual doppler shift at the control

station can be reduced to the order of i part in

1012 or less by use of the first and the second

methods. The method using the orbit data is ex-

pected to give a control capability of a few parts

in I0 II. Thus, the maximum value of the doppler

shift at the farther-most place of the country is

estimated to _e ±2 x 10-10 without any correction.

As to the time comparison, the experiment is now

proceeding.

(2) The experiment of the international time
comparison via the NTS-I had been made for about

one year since October 1978, by the support of the
GSFC of NASA and the NRL. The data of time dif-

ference between UTC(USNO) and UTC(RRL) are in good
agreement with those via the portable clock of the

USNO. By applying the correction for ionospheric

delay using the model developed by Bent, the stand-
ard deviation of the data can be reduced to about
one-half.
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i. T/F dissemination via broadcasting satellite

The sub-carrier frequency and the synchronizing pulses in the ter-

restrial TV broadcasting have been widely used for precise T/F compari-

sons for more than ten years. But the change of the delay time has been

occasionally observed in the time comparison between two places remotely
located from each other, because of the changes of the relay route, the re-

peater and the transmitter characteristics and others. This difficulty
will be removed by use of a broadcasting geostationary satellite,because

uniform high accuracy in the time comparison can be expected all over

the service area, if the variation of the propagation time mostly due to
that of satellite position around the geostationary orbit--Doppler effec_

can be precisely estimated and controlled [i].

Plan of T/F dissemination via BSE

The Medium-Scale Broadcasting Satellite for Experimental Purpose

(BSE) was launched in April, 1978 to obtain the technical data necessary
for establishing the future operational domestic satellite broadcasting

system. The data of BSE spacecraft and the link budget (typical measured

values) are given in Tables 1 and 2, respectively [2]. The satellite

antenna has a suitable radiation pattern for providing high quality color

TV broadcasting services to the whole Japan territory. Fig. 1 shows the

BSE antenna radiation pattern (see Table 2) and places relevant to the

plan of T/F dissemination. The value of 41.2 dB of the SN ratio in Table

2 corresponds to the TV picture quality of "Grade 4 (Good)" in the "5-

grade assessment", which has been confirmed by the field tests with the

receiving antenna of 1.6 m in diameter and a simple frequency converter
(12 GHz to UHF). The tests with the receiving antennas of 0.75m and im

in diameter have been made, too, showing the values of the "Grade" be-

tween "3 (Fair)" and "4", which correspond to comparativly high values of

field intensity (approximately between 45 and 60 dB, 0 dB=l pV/m) in the

terrestrial TV broadcasting. Thus the T/F comparison can be made by just
adding the small size receiving antenna, whose diameter is 1 meter or

less,and the simple frequency converter to the apparatus for the compar_
son via the terrestrial broadcasting.

To establish the technique of controlling the doppler effect and

then to evaluate the accuracy of T/F dissemination, a countrywide exper_

ment using BSE is planing to be made in 1980. At the RRL Headquarters in

Koganei, the received sub-carrier and the pulse are measured with respect

to the RRL master clock. The measured difference in time and frequency
is the amount of control to be applied to the TV signals being trans-

mitted from the transmitting station at Kashima to the BSE satellite.

Thus the time as well as frequency of the subcarrier and synchronizing

pulses are made synchronized with the UTC(RRL) as received in Koganei

and its vicinity.
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A transportable receiving station and a few simple receiving stations

remotely located from Tokyo area are supposed to make the frequency/time
measurement of the received subcarrier and synchronizing pulses with re-
spect to their own cesium clocks.

Besides, a time transfer experiment has been planned, where displays
of the standard time will be obtained by use of the time code inserted in

the vertical blanking intervals of the TV signals.

Results of preliminary experiment
I

(a) Frequency stability as received:The short-term frequency sta-

bility of the received color subcarrier from the BSE is given in Fig. 2.
The measurement was made on the output signal of 3.58 MHz from the TV

synchronizing generator with the composite video signal from the simple
receiving system with an antenna of 1 meter in diameter. As seen in the

Figure, the values of 3_4 x I0-II and about 4 x 10-12 are obtained for

the averaging times of i0 and i00 sec. respectively, which enables'
general users to make precise frequency calibration in a short time. The

values of Oy(T) are a little better than those in a terrestrial TV broad-

casting, the field strength of which is as high as 70 dB, which fact can

be well understood from the foregoing discussion on the TV signal quali_.

(b) Doppler shift; In order to enable the frequency calibration

to be very accurate, it is essential to minimize the doppler shift. So
the measurement of the doppler shift of the received color subcarrier

from BSE was made at Koganei, using rubidium and cesium standards at

Kashima and Koganei, respectively, which were synchronized in frequency
to 1 x 10-12 via terrestrial TV signals.

An example of results of the measurement is shown in Fig. 3. Curve
a gives measured doppler values at Koganei (dots), together with calcu'

lated ones at Kashima (solid line), by use of the predicted values of
the satellite orbit. The doppler shift amounts to about + 1 x 10-8 be-
fore the maneuver and decreases to ± 2 x 10-9 after it. The curves b

and c show respectively the values of doppler shift, relative to the

value at Kashima, at Wakkanai and Okinawa, the farther-most locations in

the country (Fig. 1). These two curves show the amounts of variation of

± 2 x i0-I0, which means that it is possible to distribute standard fre-

quency with the accuracy better than ± 2 x i0-I0 everywhere in the

country without any correction if the transmitted frequency is controlled
so as to cancel the doppler shift as received in Tokyo area.

In order to cancel the doppler shift, the following three methods
were tested:

(i) phase control servo including the satellite link,

(2) pre-compensating frequency control using the measured values,
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(3) pre-compensating frequency control using the orbital data.

Fig. 4 shows the block diagram of the experiments for these methods.

In the first method, the phase-locked loop of the first order consists of
the transmitter, the receiver, the BSE satellite and the VCXO. In the

second and third methods, a calculator-controlled phase shifter pre-

compensates the sub-carrier frequency to be transmitted by an amount of

the estimated doppler shift using either the orbital data or the measured

values. The phase recordings of the transmitted and the received sub-

carrier are made on Recorder Nos. i and 2, respectively, with reference

to the cesium frequency standard.

(c) Results of phase control servo; An example of the results on

the first method are given in Fig. 5. As shown in Fig. 5 (a), the fre-

quency departure of the transmitted sub-carrier, which is almost the same

as the inverse of the satellite doppler shift, showed abnormally large
values of about ± i x 10-8 , because the routine maneuver could not be done

at an appropriate opportunity by some reasons. In fact, the doppler

shift was reduced to within ± 2 x 10-9 by the maneuver made a few'days

after that time. Fig. 5 (b) shows the doppler shift measured at Koganei

in the same period of Fig. 5 (a) when the phase-locked loop was closed
at the Kashima transmitting station. The peak values are a few parts in

i0 II, even in such an unfavorable condition of the satellite position
control. The phase record of received sub-carrier with respect to the

cesium standard at Kashima station in given in Fig. 5 (c), in addition

to that of i00 kHz signal, which is coherent to the transmitted sub-

carrier. The maximum value of the residual frequency error in this case

can be estimated to be 2 x 10-13 , taking account of the maximum rate of

frequency change of about 7 x 10-13/sec. in Fig. 5 (a) and the round trip

delay of about 0.3 see. via the satellite. In so far as seen on the
record of 3.58 MHz, no phase variations larger than 3 ns could be ob-
served.

(d) Result of pre-compensatlng control using measured values; The

frequency measurements of the received sub-carrier are made at the trans-

mitting station every I00 seconds. The fittings of polynominal of the

second-order are made successively, each time using the past 20 data.

The extrapolated value followed by the last measurement is used as the

mean offset frequency to be transmitted for the next i00 seconds. The

plot of Fig. 6 (a) shows the frequency departure of the transmitted fre-

quency for 18 hours. Fig. 6 (b) shows the difference between the measu-

red and the predicted values, of which standard deviation and mean value

are 4.6 x 10-12 and -4.7 x 10-14 , respectively. The value of standard

deviation is almost the same as that of short term stability of

_y(100 sec.)=4 x 10-12 shown in Fig. 2, which means that the precision
of the prediction in frequency is nearly limited by the short-term
instability of the received signals. Fig. 6 (c) shows an example of the

phase records of the received sub-carrier frequency and the transmitted

frequency with respect to the Cs standard. The very small ripple on the
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record of 3.58 MHz is due to the difference between the mean offset values

and the instantaneous doppler frequency change, and this can be easily
reduced, if necessary, by shortening the offset period. The small amounts

of drift and variation may be the integrated phase errors due to the fre-

quency instability of received signal and the predicted value.

(e) Pre-compensating frequency control using orbital data; To make
certain the accuracy of prediction of the doppler shift in the third

method using the orbital data of the BSE, the frequency comparison was

made between the sub-carrier received at Koganei and the computer-

controlled sub-carrier which is offsetted by the predicted doppler shift

obtained from the orbit calculation taking account of the: solar light
pressure. The observed difference was within ± 3 x i0-II for the period
of one day.

2. International time comparison via NTS-1

The time comparison experiment via NTS-I has been made at theRRL

for about one year since October, 1978. The measurements were made with

respect to UTC(RRL) by use of Time Transfer Receiver developed by the
NASA. The weekly and final values of the time difference between the

USNO and the RRL, UTC(USNO)-UTC(RRL), were calculated by the NRL.

The precision and accuracy of the result was almost the same as

those reported at the past PTTI meetings by the NRL and other institutes.

It is thought, however, that a fairly large effect of the ionospheric
delay may be included in the data, because the measurements for this

period were made only at the carrier frequency of 335 MHz. As it is

difficult to know the actual total electron content at the time of every

measurement, the corrections of the ionospheric delay to the measurements

both at the NRL and the RRL is examined using the first-order algorithm
[4].

In this algorithm, the average monthly diurnal change of time delay

at any location, as a function of local time of day, has been represented

by a simple positive cosine wave dependence for day time, with an addi-

tional constant term for night time. The amplitude, phase and period of

cosine model and the constant term are the functions of geomagnetic
latitude, season and solar activity.

An example of application of this algorithm is shown in Fig. 7 for
4 months from January to April, 1979. Fig. 7 (a) shows the final data

calculated by the NRL, of which standard diviation' from the fitting line

is 0.53 _s. Fig. 7 (b) shows the corrected data for ionospheric time
delay calculated by the algorithm, of which standard deviation is 0.34 _s.

Thus fairly good improvement of the result was made in precision, and
also in accuracy with respect to the USNO portable clock data.
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Conclusion

The preliminary experiments mainly for precision frequency distri-

bution via the BSE satellite were made and some techniques of the doppler
shift compensating methods were studied. The results showed that the

doppler shift at one point can be canceled to the order of 10-12 . The

experiments for time dissemination is now being planned to be held in
1980.
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Table i BSE Spacecraft Summary

i. Satellite location IIO°E (±0.i °) on geostationary orbit
2. Life 3 years

3. Physical configuration Rectangular solid (box type) with deployable
solar array panel)

Width 1.3 m
Height 3.1 m
Length 9.0 m (including deployed solar

array panel)

4. Weight 350 kg (at the beginning of life on
geostationary orbit)

5. Electrical power source
780 W (at the end of life)

of solar panel

6. Size of solar array
panel 1.5m x 3m (two sheets)

7. Attitude stabilization Zero-momentum 3-axis stabilization using
three momentum wheels

8. Communications
Frequency Receiving (up link) : 14 GHz

Transmitting (down link) : 12 GHz

Capacity Two FM color TV channels (Bandwidth : 25 MHz
each)

Output power i00 watts/channel

Table 2 BSE Link budget

Up-link(Main Station)

Main Station E.I.R.P. (dBm/ch) 112.2

Free Space loss (dB) -207.4

Rx. antenna gain (dB) 38.1

Noise Power (dBm/25 MHz) -92.9

Up-link _/H (dB) 35.8

Down-link Main Mainland Remote
Service area station islands

Antenna of Rx0 (m) 13.0 1.6 4.5

Tx. power (dBm/ch) 50.0

Tx. feeder loss (dB) -1.7

TE. antenna gain (dB) 37.6 37.0 28.0

Free space loss (dB) -205.9 -205.8 -205.4

Rx. antenna gain (dB) 61.9 43.0 53.5

Rcved carrier power (dBm) -58.1 -77.5 -75.6

Noise power (dBm/25 MHz) -96.4 -97.3 -96.6

Down-link C/N (dB) 38.3 19.8 21.0

Total C/N (dB) 33.9 19.7 20.9

TV signal quality

FM improvement factor (dB) 18.6

Emphasis improvement factor(dB) 2.9

Unweighted S/N (dB) 55.4 41.2 42.4
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ONE WAY TIMETRANSFER VIA METEOSAT

CAPABLE OF 30 NS ACCURACY

Klemens Nottarp, Wolfgang Schl_ter

Institut f_r Angewandte Geod_sie (IfAG/Abt.ll DGFI)

and Sonderforschungsbereich 78-Satellitengeod_sie

der TU-M_nchen

Frankfurt/M, Federal Republic of Germany

Udo H_bner

Physikalische Technische Bundesanstalt (PTB)

Braunschweig, Federal Republic of Germany

ABSTRACT

A pilot project under joint development of

the Institut f_r Angewandte Geod_sie (IfAG)

and Physikalische Technische Bundesanstalt

(PTB) supported by the European Space Opera-

tion Center (ESOC) makes use of the METEOSAT

ranging signal, available every 3 hours for

about 1.5 minutes. The phase of the ranging

signal is measured against the second pulses

of the station clocks. A system study shows

that the accuracy obtainable could be in the

order of 30 ns. The receiver unit consists

of a 2 m diameter fixed antenna, a low noise

broadband receiver and a phase tracker and

demodulator, the overall costs will be less

than $ 20 OOO US.
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Operations Center (ESOC) at Darmstadt, Federal Republic of

Germany of which Gerhardus W. J. DREWES, ENNO E. LIJPHART

and Sigmar PALLASCHKE cooperated in the system design des-

cribed in this paper and which has agreed to cooperate in

the execution of the experiment, notably in the receiver

system development and in providing the satellite orbit data.

2. GENERAL REMARKS

Precise measurements for geodetic applications using space

techniques such as laser ranging to artificial satellites

or to the moon, very long baseline interferometry (VLBI)

and Doppler observations require precise time and time inter-

val measurements. Therefore the local clocks of the obser-

vation stations must be linked to a coordinated time scale

such as UTC with high accuracy. The laser ranging technique

which meanwhile achieved time interval measurements with an

accuracy of better than i00 ps (-i - 2 cm) /5/ requires a

real time determination of the epoch of the range-observa-

tions within a global frame better than 1 _s /3/. As within

short time routinely no time-transfer of high accuracy could

be performed, except portable clock trips /1/, which are la-

borious, time-consuming and expensive, or time transfer via TV

/I/ which could not be applied between Wettzell (IfAG) and

Braunschweig due to the large separation and the non-existen-

ce of a common transmitter, the local clocks have to extra

polate the timescale within the desired accuracy up to the

moment of observations. This procedure requires that the lo-

cal clocks must be synchronised several days before to a high

performance coordinated timescale of a time laboratory with

an accuracy of better than 100 ns.

In Cooperation between the Physikalische Technische Bundes-

anstalt (PTB), the European Space Operation Centre (ESOC)
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and the Institut fur Angewandte Geod_sie (IfAG) it is plan_

ned to carry out a oneway _time transfer via the geostationary

satellite METEOSAT /2/. The accuracy could be expected to

be better than 50 ns. As the position of METEOSAT is about

0° latitude and 0° longitude the application area is limited

and the accuracy of the procedure is dependent on the loca-

tion of the participating stations.

For this paper the procedure of the time transfer is discussed

and an error budget for the transfer between Wettzell and

Braunschweig is estimated.

3. PROCEDURE OF THE TIME TRANSFER

The principle of the procedure is similar to that used for

TV-time transfers with the main-difference that the transmit-

ter is located in a satellite. The main problem in one way

time transmissions from a satellite is the accuracy with

which its position must be known. A geostationary satellite

offers the advantage of small relative movements but normal-

ly the mission requirements do not include a very accurate

orbit determination. An exception in this field is the satel-

lite METEOSAT of which the 2-point-ranging system allows

orbit determination to the order of iOO m accuracy. A dis-

advantage is the long distance to the satellite which causes

the received signal to be rather weak (in comparison to a TV

signal). However, a special format of the timing signal

allows averaging it for long periods of time and thus to

reach the high accuracy in time coordination required. In-

vestigation of the different transmissions from the satellite

resulted in the conclusion that the "ranging signal" should

be the best for the time transfer. The carrier frequency of

the ranging signal is 1.691 G Hz phase-modulated with a
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160 kHz sinewave. For the resolution of ambiguity of the zero-

point crossings an additional pseudo-random-noise of 20 k

bit/s (1000 bit Code; period 50 ms) synchronous with the 160

kHz-frequency is modulated onto the carrier (both signals

are derived from a local atomic standarD. Every three hours

for a period of 1.5 minutes the ranging signal is transmit-

ted from the ESA-ground station at Michelstadt (Fed. Rep. of

Germany) for orbit determination of METEOSAT. For our appli-

cation this ranging signal is also received at the ground

stations Wettzell (W) and Braunschweig (B) after being trans-

pondered by the satellite (figure 1).

For the time comparison the 160 kHz signal will be used. As

the duration of one period is 6.25 _s it is necessary to

synchronise the clocks undergoing comparison within half of

the duration (of 3.125 _s) in order to identify the zero-

point-crossings without decoding the pseudo-random noise. At

the stations the time interval T between the local second

pulses and the subsequent zeropoint crossing of the received

160 kHz-signal has to be measured. The time difference 6 of

two participating clocks, here the institutions in Wettzell

(W) and Braunschweig (B), can be derived from figure 1 and

2. It has to be distinguished between the two situations (a)

and (b) of figure 2 characterised by the fact of perhaps one

unknown period P of the 160 kHz signal. The ambiguity of

that one period can be resolved if the time difference bet-

ween "B" and "W" is known to better than half the period

P. From figure 2 the following formula can be derived:

8 + TW + TSB - WSW = TB + n P,

with

Tw,TB: measured time interval between the second pulse and
the subsequent zeropoin_-crossing of the 160 kHz
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signals at Wettzell (W), resp. Braunschweig (B),

•SW,TSB: propagation delay between the satellite and Wettzell,

resp. Braunschweig, derived from the coordinates of

the satellite and the earth station.

n : integral number of periods P = 6.25 _s contained in

the difference of the propagation delays (TSB - _SW ).

"N" (figure 2) characterises one positive zeropoint-crossing

of the 160 kHz signal transmitted at one point of time by

the satellite and received by the earth stations at differ-

ent points Of time.

4. THE RECEIVING STATION

Figure 3 shows the block diagram of the receiving station.

The RF- and IF-portion of the receiver is of low noise phase

compensated, broadband design mounted in a weatherproof box

on the rear side of the antenna. The technical design of

that part of the receiver which extracts the 160 kHz tone

from the 70 MHz - intermediate frequency is closely related

to the design of the receiver ESOC is using for ranging.

The phase lock loop (PLL) for the 160 kHz tone at ESOC is

designed with a natural frequency of 15 Hz. With the signal

to noise ratio of 61.2 dB.Hz (table i), estimated for a 2 m

diameter parabolic antenna that PLL causes a timing jitter

of 14 ns RMS. However, in view of the scheduled correlation

with the second pulses of atomic clocks a reduction to 2 ns

appears attractive and will not create technological prob-

lems. The overall cost of the receiving station is expected

to be less than $ 20 000 US.

5. ERROR ESTIMATION

333



5.1 Random timing error of the ranging signal

As mentioned in chapter 3 the estimation of the signal to

noise ratio leads, up to now, to about 14 ns RMS timing

jitter. As during a period of 90 s up to 90 measurements

will be available and about 90 values for 6 (chapter 2) will

be calculated the average of all will decrease the mentioned

timing error of 14 ns for a single measurement to less than

2 ns, provided that the correlation between the data is as

small as expected.

As the measurements are performed with different zeropoint-

crossings of the 160 kHz signal (figure 2) there may occur

the influence of the oscillator noise. As the 160 kHz tone

is derived by local atomic frequency standards, it is expec-

ted that the influence is less than the other random noise

contributions. If it is recognised in the first experiments

that the noise is too strong, it will he,simply omitted by

identifying and using the same zeropoint-crossing ("N", fi-

gure 2).

5.2 Positioning errors

From the geometrical point of view errors in the coordinates

of the stations and of the satellite will influence the

accuracy. With the Doppler technique point-positioning for

the observation stations and for the METEOSAT-tracking sta-

tion with an accuracy of i m is possible. The position of

METEOSAT will be known with an accuracy of the order of

about i00 m. However, it should be kept in mind that the

orbit determination is an order of magnitude better than

the METEOSAT-mission requires and it is not self evident to

be obtainable on follow-on spacecraft.
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Expressing the range-differences AS = C (_SB - TSW) in terms
of coordinates of the station and of the satellite the dif-

ferentiation of that expression permits the estimation of

the influence of these inaccuracies. Assuming random errors

the following formulae yield the estimations

a) for errors in the groundstation positions

P1P2 : d + l

mA6 S 1 S2
i:1

b) for errors in the satellite position

sa, i 3 xi (S i - S 2) - S2x i + S 1 • sa,2

mA6 : c SI.S 2 dxi

with

PI

x. : coordinates of the first groundstationi

P_
x. : coordinates of the second groundstation
i

Sat

x. : coordinates of the satellitel

S 1 : range from station 1 to the satellite

S 2 : range from station 2 to the satellite

dx. : errors in coordinates.
1
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Inserting approximations for the coordinates of the stations

(B and W) and the satellite position the geometrical influen-

ce is of the order of 5 ns from the observation stations and

5 ns from the satellite. In the period from 5th to 15 th No-

vember a Doppler campaign including the participating stations

and moreover some of the European time laboratories has been

carried out with the objective of computing precise station

coordinates.

5.3 lonospheric refraction

The uncertainty due to the ionospheric refraction will be

very small. The total influence of the ionosphere for a fre-

quency of about 1.7 G Hz observed with an elevation of 30 °

is about 3 m. With the aid of an ionospheric refraction model

this effect will partly be corrected in the computation

of the propagation delays _SW and TSB. As it can be assumed
that the influence in Wettzell and Braunschweig is similar

the ionospheric effect can be neglected. It amounts to less

than 1 ns.

5.4 Tropospheric refraction

The largest uncertainty will be due to tropospheric refrac-

tion as'the meteorological conditions in Wettzell and Braun-

schweig can be expected to be different. In a study per-

formed by "Stanford Telecommunications INC" /4/ for the pro-

duction of the GPS-receiver for time transfers, the uncer-

tainty due to the ionosphere and to the troposphere together

was estimated to be 30 ns for a frequency of 1.575 G Hz. As

the carrier frequency of 1.691 G Hz differs little from the

GPS-frequencies, 30 ns for refraction can be assumed for

this project. The influence of the ionosphere (~ 10 ns) is
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to be subtracted thus only about 25 ns have to be taken in-

to account for the tropospheric refraction.

5.5 Uncertainty due to the groundreceivers

The receivers used at the various sites should be identical

in thoir IF-conception. Since this excludes the use of

narrow filters in the signal (tone) path a stability require-

ment of 10 ns is expected to be feasible. Initially, and

also at regular intervals it is possible to calibrate the

receiving equipments at the ESA ground station where the re-

ceived signal is much less contained with noise because it

has a 15 m antenna. No influence can be expected to result

from different temperatures at the stations between the high

frequency part of the antenna and the preamplifier. The

other parts of the receiver will be installed in a room, if

possible with air conditioning, so that_this influence

should not be more than 5 ns. The total uncertainty should

be less than 15 ns.

5.6 Error budget-Summary

Table 2 summarises the errors of the previous chapters.

Assumming random influence of the estimated errors an

accuracy of about 30 ns for a time transfer during a ranging

period could be expected. As the measurements could be done

every 3 hours (8 times per day) further averaging over a day

probably leads to the total uncertainty of 20 ns for a daily

tAme'transfer.
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1. Carrier frequencies 1691.00 MHz

2. Worst case effective radiated power 18.10 dBW

3. On board received signal to noise

power density ratio 74.63 dB.Hz

4. Atmospheric loss (at _ 30° ground

antenna elevation) 0.07 dB

5. Ground antenna feed and cabling loss 0.10 dB

6. System noise : - cosmic noise 8K

- low noise amplifier, F=2.5 dB 233.5K

- atmospheric + cabling loss (0.17 dB) 11.5K

- Sidelobes, illuminating earth 15K

- TOTAL 268K 24.28 dBK

7. Propagation loss ( i
d 2) d=39.000 km 162.81 dB4_

8. Receiver input power for a 2 m para-

bolic antenna with 50% efficiency -142.92 dBW

9. Gain of above antenna at 1961 MHz 27.97 dB

10. Received signal to noise power densi-

ty ratio, ignoring retransmitted up-

link noise 61.4 dB.Hz

11. Overall signal to noise density

ratio (from 3 and i0) 61.2 dB.Hz

12. Modulation loss -7 dB

13. PLL Bandwidth 20.0 dB.Hz

14. Signal to noise ratio in the PLL 34.2 dB

15. Jitter 14 mrad.

16. RMS timing error 14 ns

Table 1, Estimation of the overall signal to noise density ratio.
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uncertainty in ns

1. random timing error 2

2. position of the ground station 5

3. position of the satellite 5

4. ionosphere

5. troposphere 25

6. ground receiver 15

_ 30 ns

_i = 50 ns.

Table 2, error budget

• ' METEOSAT_
o

ESOC ,"
Michelstadt , "",

Wett zell Braunschweig

figure I, scheme of the time transfer
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QUESTIONS AND ANSWERS

MR. PLEASURE:

You assumed random--

DR. SCHLUETER:

Yes.

MR. PLEASURE:

But have you made a spectrum analysis of the frequency given?

DR. SCHLUETER:

No, we assumed it. We assumed random errors.

MR. PLEASURE:

Yes. Well the standard technique is, for chemical engineering and

most other types of engineering is to put a spectrum analyzer on

it and you may find that you have got 60 cycle hum from nearby

motors or something and if that is the case you are going to be in

a larger error and then you have less than you were projecting.

DR. SCHLUETER:

Well this is a project we proposed that we have not yet experiences
with it.

DR. BARTHOLOMEW:

In your error budget you showed 25 nanoseconds for a tropo un-

certainty. That looks a little bit large to me. I didn't realize
that.

DR. SCHLUETER:

If it isn't too large it is better for the error projections.
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TIME DISSEMINATION IN THE HYDRO QUEBEC NETWORK

G. Missout, W. Le Francois, and Louis La Roche

Institut de Recherche Hydro Quebec

Varennes, P.Q., Canada

ABSTRACT

The ever increasing complexity of electrical networks

combined with the increasing cost of power losses dur-
ing a network failure has led public utilities to be-

come equipped with more powerful and precise tools for

pinpointing the causes of such a fault. Hydro Quebec
has developped and is now using a time dissemination

system which uses a modified IRIG B code transmitted
on its own telecommunication network. The reasons

for using such a system and the way it was carried
out are discrete.

INTRODUCTION

After a fault occurs on a network it is at times difficult to reconsti-

tute the chain of events without a means of precisely dating each one

of these events. In fact when the fault is straightforward (the fall

of a transmission line or bursting of a transformer) the cause and thus

the remedy is easy to establish. In a lot of cases however the situa-

tion is not nearly so clear which leaves the analyst with a series of

events which all took place within a few seconds or less (opening of a

circuit breaker, alternator trigger off etc.) without him being able to

determine precisely the cause or origin of these events.

The precise dating of each event has proved to be an effective tool in

eliminating any doubt in those cases. Indeed the fact of being able to
reconstitute the order of events allows to recover the origin and thus

the cause of trouble to be pinpointed.

In practice each transport substation must therefore have the same time

everywhere. The accuracy required is in the order of i ms or better.

Several tests with WWVB have proven that such exact timing could not be

obtained, not to mention the fact that in the north east of Quebec and

in Labrador the VLF station Rugby (united Kingdom) interferes with that
of WWVB.
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HYDRO QUEBEC IRIG B SYSTEM

Hydro-Quebec has thus decided to synchronise its clocks using an IRIG B

code transmitted on its own telephone network.

BINARY " 0 " BINARY " 1 " MARKER

Code " CC " l_"--'_
___J I

0 mS

-1-

CODES

FIGURE 1

At first a 2 KHz carrier {Figure i) (IRIG B2) was used in order to ob-
tain a spectrum better centered within the telephonic band (300 Hz -

3 KHz). Closed loop measurements (go and return on the same telephone

channel) have shown an excellent stability with this system (variations

of less than 100 Us over 728 miles - Montreal Churchill). However mea-

surements between two points (go only) have shown that it is impossible

to use such a method directly. In fact it was noticed that the phase

of the 2 KHz signal varied in a random fashion giving a variation of

± 500 Us of the local hour as compared to the master clock and worse

yet, that a normal decoder could not read the code about 20% of the
time.

After a study it was discovered that this problem was related to the

use of SSB in the FDM microwave system.
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Cos (_t+_ l) Cos (,_t + _?)

cos at SSB ¥ = am ¢1] Pass

De_ec tor FJIter

Modulator

r

TRANSHITER RECEIVER _ a__m_my cos (ctt + qb1 - '92)
2

IN Cos at

OUT Cos (a + A¢) A¢ = ¢1 - ¢2

QUADRATURE DISTORTION

FIGURE 2

If we split the IRIG B signal in a Fourier Series, each component

follows the equations of Figure 2. If A_ is the phase difference be-

tween the two local oscillators of the FDM transmitter and receiver,

the component will have a phase shift equal to A_. The resultant from

all these components gives a signal which can be deformed, inverted
etc.

It was noticed that in a going and returning signal the error in the

going signal is almost exactly corrected by the return error; thus the

idea originated of simulating a return locally. For that purpose it

was necessary to add a I KHz pilot to the IRIG B2 code which is in
phase with the 2 KHz carrier of the B2 code giving IRIG B4 code

(Figure l).

If locally at the arrival we split the signal by filtering its i KHz

and 2 KHz components, each one will have a phase error of A_. By mul-

tiplying the i KHz component we obtain a 2 KHz signal with a phase er-
ror of 2 A_ which there locally shows a phase difference A_ between

the two 2 KHz signals.
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ir41ssBI ProductIiir2Recelved Modulator Detector Reject Corrected

Phase I Hz_ 2Shifter er I

E_

Generator Detector

!

Corrector Bloc Schematlc

FIGURE 3

This particularity allows a corrector to be developped as seen on the
Figures 3 and 4. This apparatus introduces the error - A_ which now

gives us a convenient signal.

Corrector

FIGURE 4
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The r e c o n s t i t u t i o n  of a n  IRIG B l  s i g n a l  ( c a r r i e r  a t  1 KHz) i s  then  as- 
sured by i ts  a l l i e d  c i r c u i t r y  (Figure 5) .  

Local D i s t r i b u t o r  

FIGURE 5 

The appa ra tus  a l s o  inco rpora t e s  p r o t e c t i o n  a t  i t s  inpu t  and output  
which i s  necessary  i n s i d e  a  h igh  v o l t a g e  subs t a t ion .  

Seve ra l  measurements made i n  t h e  Montreal reg ion  and between Montreal 
and 7 I s l a n d  have shown t h e  q u a l i t y  of t h e  obta ined  r e s u l t s  (Figure 6 ) .  

The method of measurements employed i s  shown on Figure  7. 

The master c lock  used i s  a rubidium c lock  loca t ed  i n  Montreal. The ac- 
curacy of t h e  measuring c lock  i s  assured  by a  LORAN C r ece ive r .  
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Hydro-Quebec is presently installing a system based on a centralized

master clock. A small number of slave clocks placed in some key areas j

of the network limits the number of necessary links by avoiding to join

all the points to the master clock and also assures a permanent time
code distribution in ease of a link break between the master clock and

a slave clock (Figure 8).

In Jarry Station we plan to have 3 clocks with an automatic Switch over

based on a majority decision. One of the 3 clocks should be synchro-

nized by GOES Satellite.

_MA IRIG B4

JARRY "I IRIG B1

HYDRO _UEBEC TIME CODE GENERATION

FIGURE 8
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QUESTIONS AND ANSWERS

DR. BARTHOLOMEW:

I would only observe that Hydro-Quebec, as a public utility, is

not totally pre-occupled with fuel cost adjustments as some of
our locals are.
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TIME CODED DISTRIBUTION VIA BROADCASTING STATIONS

S. Leschiutta, V. Pettiti

Ystituto Elettrotecnico Nazionale, Torino, Italy
E. Detoma (I)

Bendix Field Engineering Corporation, Columbia, Naryland

ABSTRACT

The distribution of standard time signals via _

and FM broadcasting stations presents the distinct

advantages to offer a wide area coverage and to
allow the use of inexpensive receivers, but the

signals are radiated a limited number of times

per day, are not usually available during the

night and no full and automatic synchronization

of a remote clock is Dossible.

As an attempt to overcome some of these problems,
a time coded signal, with a complete date infor-

mation, is diffused by the YEN, via the national

broadcasting networks iu Italy,

These signals are radiated by some 120 A_d and a-

bout 3000 F_ and TV itransmitters around the coun-
try.

Yn such a way, a time-ordered system with an ac-

curacy of a couple of milliseconds is easily a-
chieved.

INTRODUCTION

A national metrological Laboratory has to satisfy the requi-

rements of many classes of users; it is also sometimes notice-

able the tendency to concentrate the efforts on the primary

metrology or on the most accurate or precise comparison sys-

tems, disregarding consequently the "low-precision" dissemi-
nation.

(I) The work was performed when the author was at YEN.
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The aim of this paper is to illustrate how some of the latter

problems are solved at the Istituto Elettrotecnico Nazionale

(IEN), the Laboratory entrusted with the Time and frequency
metrology in Italy.

In the following section some news is given about the so-

called low-accuracy users and the requirements thereof. The

third section deals with some dissemination systems all using

the radio and television broadcasting stations, whereas the
fourth section is devoted to a new time-code service intro-

duced in the Country. Finally, in the last section some ap-

plications of the new code are outlined.

Medium to Low-Accuracy Users and their requirements

The larger set of the end-users of a national time and fre-

quency dissemination service seems to be interested in know-

ing the time with accuracies between I s and I ms, and the

frequency with a relative accuracy between 10 -6 and 10-9.

Some data about the classes of users and their requirements

are to be found in a CCIR report (ref. I), that is based on

an enquiry performed by the National Bureau of Standards.

A similar analysis, albeit not so wide, was performed in

Italy, only among technical and scientific users, giving
similar results. But it turned out that for these users the

most stringent requirements were not on the accuracy but in

the format and the general characteristics of the signal that
should:

- provide a complete date information,
- allow the use of automatic systems,

- be available on continuous basis, in order to avoid a local

clock and,
- be available everywhere in the Country an adequate and

stable signal-to-noise ratio.

In designing a new dissemination system, one is moreover con-
fronted with some CCIR Recommendations (ref. 2) asking to

use, as far as possible, the existing radio facilities, for

obvious spectrum conservation reasons. On this line, some
services (ref. 3) or proposals (ref. 4) were illustrated in

recent years.
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Some frequency and time dissemination systems via the broad-
casting stations

In Italy there is one broadcasting Authority, the Radio Audi-
zioni Italiane (RAI), with a network of microwave links con-

necting the major Studios, located in Rome, with all the _,
FM and TV broadcasting transmitters.

The standard time signals of the IEN are sent via a radio
link to the above mentioned Studios to be hence distributed
to the various transmitters.

At the moment about 120 A_ transmitters operating in the NF
bands and3500 FN or TV transmitters operating in the VHF and
UHF bands are linked to a common time source.

The standard time and frequency services via the RAI broad-
casting transmitters are listed in Table I; some more services

are under study or development.

As regards the standard Time signals, service I is a time sig-
nal, depicted in fig. I, and distributed since the year 1942;
this signal is radiated about 30 times per day. Service 2 is

the new time code signal, to be described in what follows and

attached to service I. For the standard frequency dissemina-
tion, service 3 consists in the frequency stabilization of the
carrier of an A_ transmitter, located in North Italy and cov-
ering with its surface wave great part of the country during

the day. The carrier at 900 kHz is obtained by synthesis from
a rubidium standard and the corrections thereof are printed

as a daily value, in a monthly instalment appearing on the
review "Alta Frequenza".

The RAI, service 4, sends a standard frequency subcarrier at

16_3 kHz along the microwave links serving the FM transmit-
ters.

This subcarrier is used in order to stabilize the frequency
of the A_ transmitters and to practice the so-called "preci-
sion frequency offset" between the carriers of some co-channel
TV transmitters. The subcarrier can be easily extracted from

any FM receiver and can be used in a number of well known
techniques.

353



The new code

With reference to fig. 2 the new coded signal is sent along
with the previous time signal at the second 52, and consists

of an Audio-Frequency-Shift-Keying 1248+ code, whose charac-

teristics are depicted in fig. 3, along with a sample infor-
mation. The format and the AFSK frequencies were the result

of a trade off between the time allotted (not more than one

second), the information to be transmitted (32 bits), the
bandwidths that are available on the AM receivers, the pleas-

antness to the ear, the compatibility with some existing de-

coders 0f the previous time signal, and so on, In order to

enhance the"smoothness" of the signal, no phase jumps occur
in the switching between the two frequencies.

In fig. 3, the presence of two "parity bits" at positions 16

and 31 can be noticed; the possibility to decode only one

part of information, e.g. hours and minutes, is thus given.

The bit at position 15 tells whether the "day-light saving
time" is used in the Country or not.

Fig. 4 shows the set-up of the clocks and related instrumen-

tation used in order to generate and to monitor the new ser-

vice, whereas in fig. 5 a general view of the time-scale room

is given.

As regards the decoding of the signal a number of approaches

can be followed. In some receivers-decoders/developed at the
IEN Laboratories the following criteria were followed for the

time signal of fig. I: check of the frequency, of the length

of the pulses, of the length of intervals, of the blank at

second 59. For the new coded signal (fig. 3), tests are per-

formed on: frequency, identification pulses, total number of

pulses, parity checks.

For the date code, a correct decoding was observed with a

signal-to-noise ratio of 8 dB in simulated tests performed by

the addition of white noise to the signal. It must be taken

into account that the BCD code can immediately follow speech

or music, no silent interval being insured before the code.

On the other hand at the 0utput of a typical FM receiver the

S/N ratio exceeds usually 40 dB.
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Final remarks

Between the abovementioned requirements for a general-purpose
time signal, the code described provides the date information,
suits the automatic decoders, allows a good coverage of the
Country, but fails the round-the-clock availability.

Consequently the receiver-decoder must be fitted, with one of
the inexpensive quartz-clock modules now available.

The quality of the quartz depends obviously on the allowed
departure of the local clock at the end of the maximum inter-
val in which no time signals are radiated. One of the receiver-
decoders available on the market not only sets the clock but
tells how to correct the frequency of the local clock whenever
the number of corrections exceeds a preset value. In other op-
tions, the drift of the local standard can be removed via a

servo; after a few days of operation, the error is of the or-
der of a few units of 10-9.

As regards the time dissemination, the precision is of the
order of one-two milliseconds. The propagation delay depends

on the path of the signal, between Turin-Rome and the inter-
ested transmitters. These delays reach a maximum of about
15 ms and are fairly constant, since in the radio links car-

rying the voice programs no reroutings are usually performed.
For some applications, such as the study of the dynamic be-
haviour of the power network, the propagation delays were mea-
sured with a portable clock within one millisecond.

Work supported by the Consiglio Nazionale delle Ricerche of
Italy.
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TABLE I

Service RAI stations Type of service Availability

all _Z, FN, TV time signal + 30 times/dayI transmitters voice announc.

all AM, FM, TV
2 date code 30 times/daytransmitters

stabilized
3 one AM station continuous

carrier

all the FM standard

4 stations sub-carrier 18 hours/day
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Figure 1. Time Schedule of the Old IEN Signal Radiated by the Italian Radio Company
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Figure 2. The New IEN Time Signal with a Complete Date Coded Information
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QUESTIONS AND ANSWERS

DR. BARTHOLOMEW:

We are being very economical of our time. Does anybody have any

questions for the professor? How big a demand are you having for
that day of the week time code?

DR. LESCHIUTTA:

Yes. Just to give you an idea, we have received about, when we

made an inquiry three years ago, about 2,000 different people

asking the day of the week. Those are, it is funny, are coming

from banks or from supermarkets, from very, very strange peoples.

I don't know the reason why they need exactly also the day of

the week, but this happens. So we were asked especially to insert
also this information.

QUESTION:

Could you give an estimate of how inexpensive and reliable you
expect the timing equipment will be?

DR. LESCHIUTTA:

Yes. At the moment the equipment we are seeing is on the order

of $1,500 dollars but this is development equipment. The problem

is this one: you can buy a very inexpensive frequency modulation
receiver, this is not the problem, $20 or $30 dollars, it depends

upon the class of the receiver; or perhaps more, in the region of
$200 dollars if you want a receiver with the sort of control on

your selector. And the decoder itself is about 4-5 IC's, can be
done, and the rest is the display. So I think that that kind can

come out with the price on the order between $300 and $500 dollars,
just to give you an idea.
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VOICE ANNOUNCEMENTSOF TIME: A NEWAPPROACH_

J. Jespersen, G. Kamas, and M. Weiss
National Bureau of Standards

Boulder, Colorado

ABSTRACT

A recent survey by NBS reveals that the voice time

announcements provided by radio stations WWVand WWVH

are used more often than any other features of the time

signals. It is the purpose of this paper to describe

some recent NBS work aimed at exploring a different

technique for generating voice time announcements. The

idea is simply this--a time code from any source, such as

those broadcast by WWV, WWVH, WWVB, CHU, or the GOES

satellite is translated electronically into a voice

announcement. This approach is attractive for several

reasons. (I) In many areas voice time announcements are

weak and noisy and it is difficult to understand them.

In addition, there may be interference from other

"standard time broadcast" stations. It is often easy,

under such conditions, to detect and error correct a

time code. The "cleaned-up" time code is then electron-

ically converted into a noisefree voice announcement.

(2) Normal time broadcasts provide voice announcements

only at regular intervals of timesuch as every minute.

With the code-voice conversion technique, a voice an-

nouncement is available on demand. (3) Any time code

signal maybe used. Thus, the GOESsatellite which

*Contribution of the National Bureau of Standards, not

subject to copyright in the United States.
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broadcasts only a time code, can be made to "appear" to

provide voice time announcements. (4) The same time

code may be converted into one or more languages at the

receiver. This may be important for solving "the problem"

of what language or languages should be broadcast from a

standard time satellite broadcast. That is, it may not

be necessary to broadcast any voice announcement in any

language from the satellite--only a code--and the re-

ceiver would contain the option to select the language

desired.

NBS has developed equipment to convert time codes from

several different sources into voice announcements.

Although the emphasis in this development work was

intended to demonstrate technical feasibility, rapid

progress in the production of commercial electronic

voice generation units will, no doubt, make the approach

suggested here feasible both technically and

economically in the near future.

INTRODUCTION

One of the most useful and popular services offered by the NBS is

the shortwave time and frequency broadcasts from radio stations

WWV (Fort Collins, Colorado) and WWVH (Kauai, Hawaii). Over the

years these broadcasts have evolved from a simple service used

primarily for frequency calibration, to today's signals which

provide time and frequency information by codes and voice. A

recent survey [1] reveals that the voice time announcements are

used more than any other feature of the signal. It is the purpose

of this paper to describe some recent work in the NBS Time and

Frequency Division which is aimed at exploring a different
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technique for providing voice time announcements. This approach,

made more attractive by recent advances in solid state electronics,

seems ideally suited for time broadcasts. The idea is simply

this--a time code from any source, such as those broadcast by WWV

and WWVH is translated, by electronic means, into a voice time

announcement (See Fig. l). Thus, although the input time infor-

mation is in the form of a code, the output is a voice announce-

ment. One advantage of this approach is that any coded time

signal can be converted into voice. There are other implications,

as we shall see in the next section.

PROBLEMS WITH PRESENT VOICE TIME BROADCASTS

Many time services, particularly those in the shortwave ranges,

have difficulties. First, in many areas, signals are weak and

noisy and it is hard to understand the announcement. Second,

there are many world wide standard time broadcast stations oper-

ating at the same frequency, e.g., lO MHz, so that a particular

location may experience interference. Third, because of compe-

tition for radio spectrum space, pressures to reduce the bandwidth

now allocated for standard time broadcasts may develop.[2j_ Any

such bandwidth reduction will tend to make the voice announcements

even less clear, particularly if the present double-side-band,.AM

modulation (DSBAM) techniques are retained. Fourth, the need for

voice time announcements is world wide, so announcements must be

provided in many different languages, and in some cases in more

than one language by a single stations. For example, the Canadian

Standard Time signal station, CHU, broadcasts both English and

French. Fifth, time voice announcements are available only at

regular intervals of time. For example, WWV and WWVH provide

voice announcements only on the minute. This means the user

cannot obtain voice announcements on demand. The time-code-to-
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voice conversion approach discussed in this paper addresses these

five problem areas.

ADVANTAGESOF TIME-CODE-TO-VOICE CONVERSIONAPPROACH

In regions where voice reception is difficult, the human mind is

usually the best and only "integrator" availabe to extract the

voice announcement from noisy, fading signals. Although it is

possible, in principle, to construct electronic devices to inte-

grate voice signals it is not easy or cheap. Although many stan-

dard time stations broadcast at several frequencies simultaneously,

there are many times when no static-free signal is available.

Compared to integrating voice signals, integrating a coded signal

is relatively easy. Most time signals are coded in a straight-

forward way. As an example, the time codes carried by WWV and

WWVH are a modified version of the IRIG-H format. Data is broad-

cast on a lO0 Hz subcarrier at a one-pulse-per-second rate. The

time frame is one minute long and each frame containes minute,

hour and day information as well as the "UTI correction", which is

used primarily by navigators for celestial navigation. In the

presence of noise, errors in this code can be detected by simply

comparing several successive "decodes" of the signal. If, for

example, three "decodes" step along in the proper time sequence,

it can be assumed that the time code is being correctly decoded.

If, on the other hand, there is a "misstep", the time code signal

output can be made to "flywheel", on the receiver's internal

clock, until there are successive, correct decodes.
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INTERSTATION INTERFERENCE

The problem of interference between standard time broadcast stations

operating at the same carrier frequency is serious and continues

to grow as more stations start up in different parts of the world. [3]

Various solutions have been considered. One is to stagger the

carrier frequencies at 4 kHz intervals within the allocated band

The bandwidth for these stations is ± I0 kHz at the standard

broadcast frequencies of 15, 20, and 25 MHz and ± 5 kHz at frequen-

cies 2.5, 5 and I0 MHz. The difficulty with this suggestion is

that those stations assigned frequencies near either end of the

allocated band would have to change from DSBAMto some other form

of modulation to avoid "spilling" over into adjacent radio spectrum

reserved for other purposes. In addition, some experiments have

been conducted with these staggered allocations and there is still

serious distortion due to interstation interference in commonly
used shortwave receivers.

An alternative would be to have each standard time station broad-

cast a time code signal which is located in the time-frequency

domain so that it can be selected without interference from other

stations. As a simple illustration, suppose there are ten stan-

dard time broadcasts which might potentially interfere with each

other, all operating at a nominal I0 MHz carrier frequency. We

could imagine a I0 second segment, say, out of each minute during

which each station broadcasts a time code for 1 second, or less,

while the other nine stations are off the air. Each station

broadcasts in turn throughout the I0 second sequence and the

process is repeated throughout each minute. Such a routine would

require time coordination among the participating stations, but

this should not be difficult in view of the fact that these sta-

tions maintain time to within at least l ms of UTC.
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A specific example of a code that could be used is one that is now

being broadcast over the Canadian standard time station, CHU. A

complete message is 0.365 seconds long and contains day_ hour,

minute, and second information--repeated twice for error checking.

The code employs the standard commercial 300 baud FSK system with

tones at 2025 and 2225 Hz. Since the message is short it does not

interfere with the "seconds" ticks provided by CHU.

The time sharing scheme suggested here (or some variation on it)

would provide interference-free time code signals part of the time

out of each minute, and thus has some utility. But such a time-

shared code coupled with a code-voice conversion unit could provide

interference-free voice time announcements.

The time sharing scheme discussed here is not the only possi-

bility. Frequency division multiplexing could also be employed.

That is, each standard time broadcast station would be assigned a

unique frequency in which to broadcast its time code, and other

stations would be excluded from this spectral region. One of the

difficulties with this approach is that if any aspect of the

communication channel is non-linear then new frequencies will be

generated which may spill over into adjacent channels. Thus, the

spacing between adjacent channels would have to be increased to

avoid overlapping signals.

A final example is spread spectrum techniques, which have the

advantage that they minimize effects of nonlinear elements in the

transmission channel (along with some other advantages) at the

cost of a more complex receiver. While the time and frequency

sharing schemes discussed in the previous paragraphs are widely

employed and are essentially self explanatory, spread spectrum

techniques may be less well known to the reader. Appendix I is a
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rather elementary treatment of spread spectrum as it might apply

to several standard time broadcast stations operating at the same

frequency, fc"

SPECTRUM CONSERVATION

The radio spectrum is a scarce natural resource and pressures to

use it efficiently mount steadily. As pointed out, a voice time

announcement uses considerably more bandwidth than is required to

transmit the actual information content of the message. Thus an

obvious advantage of a time-code-to-voice conversion approach is

that the communication channel requirements are more in accord

with actual information content of the message. Note there is

presently an international allocation for the broadcast of time.

from a satellite. This allocation is ± 50 kHz wide and is center-

ed at 400.I MHz. Becuase of the worldwide need for voice time

announcements and the large area covered by satellites a difficult

question is raised: "What language or languages should be broad-

cast from the satellite?" In addition, there is a continuing

worldwide need for improved time accuracy, beyond the accuracies

shortwave broadcasts can provide. This means that a certain part

of the allocated satellite band must be reserved for providing a

signal whose time of arrival at the receiver can be measured

precisely--the more precise this measurement the greater the

signal bandwidth required for a given measurement interval. If

the allocated band is used up by numerous voice announcements in a

number of different languages, the ability to provide accurate

time from a satellite is severely compromised. Aside from this

technical difficulty is the political problem of deciding which

languages to broadcast. If a code-voice conversion approach is

adopted, the satellite decoder could be made to speak any language.

The political problem is avoided and maximum bandwidth is available
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to design a signal which can provide high accuracy time signals.

TIME ON DEMAND

Finally, the code-voice conversion approach allows the user to

obtain a voice announcement on demand. He does not have to wait

for the next voice announcement to "come up" in the time signal

format. Although we have been discussing this feature with primary

reference to the standard time broadcasts, it has potential appli-

cation in other areas. For example, it is technically possible to

insert, unobtrusively, time coded information into almost any kind

of broadcast signal, e.g., AM, FM, and TV. In principle, all

existing broadcast facilities are potential candidates to provide

voice time announcements on demand.

One might wonder, why go to the trouble to convert the time code

to a voice announcement? Why not simply display the time visually

with LEDLs or perhaps use the code to keep an analog wall clock on

time. Certainly in many cases this is desirable. On the other

hand, there are many instances when people are processing several

different information inputs at once. An airplane pilot may be

scanning his instrument panel while he is listening to a voice

announcement of the time, or perhaps watching his altimeter reading.

Also, voice signals can be heard around corners while visual

displays must be within line of sight of the viewer. In any case,

for whatever reasons, the NBS survey clearly shows that the most

desired feature of the standard time broadcasts is the voice

announcements.
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DESCRIPTION OF NBS TESTS

Basically, two different speech compression schemes have been in-

vestigated for time-code-to-voice conversion: waveform coding and

source coding. In waveform coding a facsimile of the original

acoustical signal form is retained. An example of waveform coding

is to simply sample the acoustic signal at some specified rate,

such as 32 k bits/sec, and store the bits in some memory device.

To reproduce speech the process is reversed. The bits are read

out of memory into a D/A converter which produces a replica of the

original waveform. The degree to which the replicated waveform

resembles the original waveform depends, of course, upon the

sampling rate: the higher the sampling rate, the better the

resemblence. Although this is conceptually a straightforward

process, there are other related techniques which are easier to

implement and which retain the same degree of fidelity, but use

lower sampling rates. One such technique, called continuously

variable slope delta (CVSD) encoding, was employed in the present

tests. We shall describe this technique more thoroughly a little

later.

The other technique, source coding, does not reproduce a replica

of the original acoustical signal. When this technique is applied

to speech it is called voice coding and the devices which perform

the codings are generically termed "vocoders". The essential idea

behind vocoding is that a model of the human voice system is

created electronically or mechanically. A mechanical model might

consist of a bellows, a vibrating reed, accoustical resonators

resembling the mouth cavity, and so forth. This machine could be

operated somewhat along the lines of a player piano to produce

speech. The actual data required to generate speech with this

machine is simply whatever data needs to be stored on the "piano
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roll" Sophisticated electronic versions of this machine can

produce intelligible speech with data rates as low as a few kilo-

bits or less per second, although the speech sounds artificial. .

Sophisticated versions of the waveform coding technique, discussed

earlier, succeed with rates as low as 5 k bits/sec or so, but

speaker recognition is difficult at these rates. For time annouce-

ments speaker recognition is not important, but of course, intel-

ligibility is essential.

A primary goal of waveform or source coding is, of course, to

remove redundancies in the acoustic waveform so that channel

communication requirements can be reduced, or in our application,

to keep memory requirements in the time-code-to-voice conversion

unit to a minumum. In the general case one would like to be able

to send any arbitrary message. Here some arbitrary acoustic

signal is coded (source or waveform) to remove redundancies.

Since most real communication channels are subject to noise and

other problems which introduce errors, the output of the acoustic

coder will usually be recoded (channel encoded) to minimize errors

introduced in the communication channel. That is, extra bits of

information will be added to the data stream for error correction

and detection. Thus, the acoustic coder removes redundancies and

the channel coder introduces them again, but in a way that is

designed to minimize errors introduced by the channel.

In the case of time signals it is not necessary to send arbitrary

messages. A time signal message can be assembled in English from

about 30 words: one, two, three, four, minutes, hours,

seconds, etc. Thus there is no need to initially code a voice

announcement of time. The signal can originate as a code. We

could at this point, if we wished, introduce extra bits of infor-

mation for error detection and correction. But, because time
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codes are by their very nature quite redundant, this redundancY in

itself may be sufficient to overcome channel distortion.

The limited vocabulary also simplifies requirements at the receiver.

The memory necessary at the time-code-to-voice conversion receiver

need only be sufficient to store 30 words or so of vocabulary. In

the next two sections we describe the use of both source and

waveform coding to minimize memory requirements at the receiver.

DESCRIPTION OF NBS WAVEFORM CODER TESTS

This system consists of a receiver (WWVB, GOES Satellite, etc.),

an A/D converter and storage system, an internal Crystal oscil-

lator clock and a processor. The processor performs several

functions after receiving a time code from some source. First the

processor sets its internal clock only after receiving three

consecutive successful decodes. At this juncture the processor

turns on the "Time Valid" light. The internal clock is accurate

to I/2 second in 30 minutes so that if 3 consecutive successful

decodes are not obtained at least once every 30 minutes the "Time

Valid light" goes off and the system will not output a voice

announcement.

When time is requested, the processor decides which words, stored

in the Read-Only-Memory (ROM), need to be assembled to provide the

correct voice time announcement. These words are then converted

to analog by the A/D converter. The voice announces time for

begins lO seconds after the initial request concluding with an

"on-time" audio tone.

The A/D converter is a continuously variable slope delta (CVSD)

modulator which samples the analog signal at 57.6 kbits/second.
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The output of the converter is a string of O's and l's which

indicate increases or decreases in the analog voltage. These bits

are stored in memory. The amount of increase or decrease, of the

slope, reflected by these numbers, depends upon the past history.

At the beginning of a waveform the slope is always some fixed

value. After 3 consecutive increases or decreases the slope is

increased until the coded digitized output steps over the top, or

under the bottom of the analog waveform (see Fig. 2).

When a voice announcement is requested, the CVSD turns the O's and

l's back into an analog signal using exactly the same algorithm.

At 57.6 kilo-bits/sec individual speakers are recognizable..

The necessary vocabulary and the tone have been digitized previous-

ly with the same CVSD modulator and stored in ROM. The vocabulary

is: the digits "one", "two", , "nine"; the words "twenty",

"thirty", "forty", "fifty"; the word "teen", with special pre-

ambles, "fif", "thir", "fort"(for 14), and "ninet"(for 19); the

single-use words, "zero", "ten", "eleven", and "twelve"; and,

finally, the words for the beginning message, "National", "Bureau",

"of Standards' Time". The memory required for the words and tone

is 91,968 bytes or 735,744 bits. The digits are used both individ-

ually and as post-ambles for "twenty" through "fifty". In addition,

"six", "seven", and "eight" are used as pre-ambles for "teen".

Recording the words requires great care in maintaining a constant

level, a continuous cadence, and a flat intonation so the different

word "pieces" meld smoothly. It is important to carefully deter-

mine pause-time between words, and to notice that the "four" in

"fourteen" and the "nine" in "nineteen" are different from the

single digit sounds in creating natural sounding speech.
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DESCRIPTION OF NBS VOCODERTESTS

As explained, the vocoder type of voice recording and reproduction

depends on having prerecorded sound segments in the computer

memory. Usually these sounds are simply the necessary parts of

words that can be selectively joined by software to make a word.

An example illustrates the problem of trying to form words in this

manner. Using the common word "you", the programmer looks through

the recorded options available in his set of sounds. After trying

a number of combinations with various durations (long, short, etc)

' the programmer settles on EEUUU as best representing the spoken

word "you".

Experience with voice generation in this manner soon leads to a

rather extensive list of sounds with slight variations. A large

list is necessary so that the final word sound is acceptable.

Since pauses and sound duration are usually programmable, the

number of possible combinations is very great.

This leads to the problems of using a Vocoder technique. The

final sound is only as good as the programmer's ability and patience

allows. Even if a single word is acceptable in quality, the

following word may not sound acceptable when used in conjunction

with the first. This problem plus the general one of being unable

to completely overcome the machine-like sound of vocoders helped

in making the decision to use a straightforward waveform digitizer

for natural sounding words.

The NBS tests of a vocoder type of word generator used a commercial

voice synthesizer. This was a proprietary instrument that had

many variations of a single sound. The results did improve as the

programming was altered after listening tests, but the final
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output was felt to be unacceptable due to its machine-like sound

qualities. Some thought was given to finding a very experienced

programmer. Several companies that deal with such devices do

offer to provide programs. This is apparently based on their

experience and on having gained a repertory of words. This ap-

proach was considered, but rejected on the basis of cost and

quality of the finished work.

Worth mentioning is the ability of listeners to adapt to slightly

unfamiliar sounds. Listeners are almost always able to understand

the spoken text after only a few practice sessions. The first

time is hardest and it was felt that many users of a talking clock

would be first time users, i.e. for a telephone time of day service.

Given such a comprehensive list of available sounds, any language

can be output from the vocoder. Russian and French words were

easily synthesized.

EXISTING CODED TIME SIGNALS

Throughout the world there are a number of coded time signals. We

have already mentioned WWV, WWVH, CHU, and WWVB which was the time

signal source for the NBS tests described in the previous two

sections. Perhaps one of the best candidates for the time-code-to-

voice conversion approach is the NBS satellite time code. This

code is provided by two geostationary, meteorological data col-

lection satellites (the GOES satellites) operated by NOAA. A time

code is included as part of a satellite interrogation signal which

is used to communicate with remote data collection devices. The

time signal, which contains day, hour, minute, and second informa-

tion allows the meteorological data to be tagged in time. But

anyone within the coverage area can obtain the time signals
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with receivers now commercially available. As shown in Fig. 3,

the signals cover essentially the entire western hemisphere. The

signal frequencies are near 469 MHz so they are not subject to the

kinds of problems that plague broadcasts in the shortwave band:

fading, interstation interference, etc. Thus a voice conversion

unit driven by a GOES time signal would provide voice time announce-

ments which are at least an order of magnitude more reliable than

those now available from standard broadcasts in the shortwave

band.

CONCLUSIONS

The tests discussed in this paper were primarily undertaken to

demonstrate the utility of a code-voice conversion approach to

time announcements. This approach leads to gains in a number of

areas such as spectrum conservation, clear voice announcements in

the presence of noise, and voice announcements on command and in

any language. It was not our intent to design a device with

minimum complexity, although this is obviously an important goal

if the system is to be economically feasible. When the tests were

first initiated components costs were in the hundreds of dollars.

But devices are now coming on the market, in the $I0 or less

range, providing several hundred words of vocabulary. This is

more than adequate for time announcements which typically require

a 30 word vocabulary. It seems apparent then that in the not too

distant future a time-code-to-voice conversion approach to time

announcements is entirely feasible.
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APPENDIX I

Consider stations broadcasting signals sl(t), s2(t), s3(t).

.Sn(t). Quite generally, the desired signal from the jth station
is:

sj(t) = Aj(t)cos(2 fct + ¢jt)

where Aj(t) represents amplitude and ¢j(t), angle modulation.

Before broadcasting, sj(t), it is multiplied by a time function

gj(t) which has the property of spreading the original signal

sj(t) over a bandwidth considerably greater than the original.
Each standard time broadcast station would be assigned a unique

gj(t). Now suppose we are located in an area where all n signals

can be detected and we wish to extract, say, st(t) from the others.

If we multiply the incoming composite signal by gl(t) we obtain:

gl(t)2s1(t) +

gl(t)g2(t)s2(t) + glg3s2(t) + gl(t)g3(t)s3(t) +

gl(t)gn(t)Sn(t).

If the gj(t) signals have the property that gj(t)gj(t) = I and

gj(t)gk(t) = O, then the only output of the multiplier is sl(t),
the wanted signal, while all others are supressed.

As a final point, we have assumed that all n signals entering

the multiplier are spread at the transmitter by some function

gj(t), which in actual practice will probably not be the case.
But even here, unspread or cw type signals will be spread by the

multiplier gj(t) at the receiver, so that spread spectrum tech-
nique still yields an advantage.[4]
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CODE TO VOICE

TIME CODE CONVERTER VOICE
ANNOUNCEMENT

Figure 1. Code to Voice Converter

Figure 2. This Figure Demonstrates How the Magnitude of the Converter Output
is Related to the Slope of the Waveform
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FIG. 3. Coverage of the GOESSatellite.



QUESTIONS AND ANSWERS

QUESTION:

• Does this work and tell all about time in any language or is that
in it?

DR. JESPERSON:

I think about any language. You need to record the numbers i, 2,
3, so that you can say, "One two hours, zero three minutes, one
five seconds".

QUESTION:

Will that do it? Is that true?

DR. JESPERSON:

I am not claiming that is true, but I think the point I am trying

to make is let us suppose it is i00 words in some language. Even

at that, I think with the price that these so-called talking de-

vices are going to be, it is not going to make a lot of difference
whether it is 30 words or i00 words.

For example, the weather forecast, it looks llke it is going

to take about 200 words, in English, to assemble the kind of

weather forecast that the Weather Bureau normally puts out.

Yes?

QUESTION:

One problem that you might mention with the $30 dollar vocoders
are in fact that due to its linear position it is not a high-

quality sound recording.

DR. JESPERSON:

Right. I think this is one of the questions that I think has to

be sort of cleared up and I don't know how you do this exactly

except to try it. I think it boils down to the question of what
is more important in a time announcement or a weather forecast,

is it being able to recognize somebody's voice or is it making

certain the information gets there? I would tend to think that

the people who really have need of this information would be more

concerned about getting the information rather than being worried
about whether they could recognize whose voice it was or even
whether it sounds a little bit mechanical or not.

382



QUESTION:

Do you want to limit it to that?

DR. JESPERSON:

That is true. We are aware of that.

QUESTION:

We found that that is not true at all. We want it to sound pretty

good.

DR. JESPERSON:

As I say, this technology is very rapidly changing. There are

very sophisticated algorithms being produced. You mentioned

linear predictive coding. Again, talking to some of the people

who are working actively in this area, they think in the not too

distant future they are going to come up with some very natural
sounding devices that will he very low-cost.

They tell me that we are going to start seeing these things

in consumer products fairly soon. You know, your oven tells you
that the roast is done and there is going to be.a huge market for

these things.
\

QUESTION:

They are even going to be able to give lectures.

QUESTION:

I just wondered if you were aware of the FAA program in Washington

where they are now giving weather reports via the phone by Just

pushbutton entry on the phone. I believe that is underway on

phones.

DR. JESPERSON:

No, I wasn't aware of that.

QUESTION:

And you can Just put in any three digit code for an airport and
receive a computer talking to you, giving you the weather at that

airport.
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DR. JESPERSON:

And this is assembled from a vocabulary of words? No, I wasn't

aware of that.

QUESTION:

It was initiated, I believe, approximately 6 mon£hs ago.

DR. JESPERSON:

Do you know, does the National Weather Service know about that?

QUESTION:

I wouldn't be surprised if they didn't.

DR. JESPERSON:

I won't comment on that.

QUESTION:

The National Weather Service knows about this thing_ and they will

need to build several thousand of these touch tone things for some

of these facilities that are--

DR. JESPERSON:

How are those stored? On tape or something?

QUESTION:

Stored on magnetic tape forsavings. Anybodythat likes that

though will find out that the Weather Bureau will not really llke
it.

DR. JESPERSON:

Thank you_
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ABSTRACT

The availability of French-German satellite Symphonie,

coupled with the increasing demand on accuracy and

coverage by the Indian users, provided an opportunity

to carry out time transfer experiments with satellite,

thus to enable us to have some gainful experience on

the merits and demerits of different possible modes

of time transfer via satellite. We report some of these

observations and analysis in this paper.

A simultaneous two-way clock synchronization experiment

between three Earth stations, New Delhi (DES), Ahmedabad

(AES) and Madras (MES) was performed and improvements

over the technique earlier attempted in India, where
transmit/receive roles of the two stations were alternated

at regular intervals, were studied.

The National Physical Laboratory, New Delhi (NPL) has

been disseminating standard time and frequency signals,

under the call sign "ATA," at three carrier frequencies,

5, i0 and 15 MHz. To study the improvements over the

existing HF broadcast, a similar time format as used in
HF "ATA" transmissions was disseminated via satellite

Symphonie and was studied at DES, AES, MES and the mobile

terminal TRACT located at Calcutta. The Time signals
via these two modes (HF and satellite) were critically

monitored at AES and analysed.

This time format was later modified to include the

additional information about time of the day in year,

month, day, hour, minute and second as well as DUTI in
BCD code and was disseminated via the satellite from DES.

These signals were decoded, displayed and studied at DES,

AES, MES and with TRACT at Calcutta, thus covering a very

large cross-section of India.

Some preliminary work on time transfer via TV using direct

satellite broadcast, is also reported. These Studies,

which yielded encouraging results, will be useful when dif-
ferent TV stations are linked via Indian satellite INSAT.
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INTRODUCTION

In this paper we report a study of time dissemination over India, using French--

German satellite Symphonie which was parked over equator at 49 ° East Longitude

and was made available to India for two years, from June 1977 to June 1979, for

doing telecommunication experiments. Three satellite Earth stations at Delhi

(DES), Ahmedabad (AES), Madras (MES) and the Transportable Remote Area Com-
munication Terminal (TRACT), stationed at Calcutta during the period of the

experiments, participated in the experiments. In view of the vastness of the

country and the Indian Space Programme, where an experimental satellite Ariane

Passenger Payload Experiment (APPLE) and an Indian National Satellite (INSAT)
are to be launched in 1980 and 1981 respectively, the aim of these experiments

was to make preliminary studies on various time dissemination techniques via

satellite which will provide helpful inputs and generate the desired expertise
for the ultimate use of these by the Indian satellites APPLE and INSAT. These

experimental studies were carried out during January - June 1979 period.

The experiments described in this paper include: simultaneous two-way clock

synchronization between Delhi and Ahmedabad, Delhi and Madras and nearly
(I) three-way alternate transmit/receive clock synchronizationsimul taneou s

experiments between Delhi, Ahmedabad and Madras; time dissemination, both in

standard high frequency broadcast format (ATA) and time of the day coded

format, and its studies and evaluation at Delhi, Ahmedabad, Madras and TRACT

(Calcutta) ; and time dissemination usingdirect television broadcast via
satellite.

SIMULTANEOUS TWO-WAY CLOCK SYNCHRONIZATION BETWEEN DELHI AND AHMEDABAD/MADRAS

AND A NEAR SIMULTANEOUS (1) THREE-WAY CLOCK SYNCHRONIZATION BETWEEN DELHI/

AHMEDABAD/MADRAS.

A block diagram of the experimental setup is shown in Figure i. An experiment

on clock synchronization where the transmit/receive roles of the two partici-

pating stations were alternated at regular intervals was reported from this

group in the tenth PTTI meeting (1) last year. This limitation arose because
out of the two C-band transponders aboard Symphonie, only one was made available

for Indian Telecommunication Experiments. This, however, introduced uncer-

tainties due to the satellite motion as extrapolations were needed to account

for the satellite drift. A typical Symphonie range curve over the duration

of 24 hours is shown in Figure 2. The straight line represents the range from

satellite to AES and the dotted line represents the range from satellite to
DES.

In view of these limitations, the interface units and modulator/demodulator

systems at the Earth stations were modified to accommodate simultaneous two-

way transmission within the available bandwidth of +I0 MHz of the 70 MHz inter-

mediate frequency. Bandpass filters centered at 70 _z and 61 _z with band-
widths of +i.i MHz were used for the simultaneous two-way transmissions.

At Ahmedabad (AES), i PPS was modulated on the 70 MHz intermediate frequency.
This 70 MHz was converted to 61 MHz using a 70 to 61 MHz frequency translator.

This 61 MHz was up-converted to 6 GHz and transmitted to satellite. At Delhi

(DES) the signal was received at 4 GHz, down-converted to 61 _z and again
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converted to 70 MHz, using a 61 to 70 MHz frequency translator. It was de-
modulated to extract i PPS. At DES the i PPS transmission was done at 70 MHz

modulation, as normal, up-converted to 6 GHz and transmitted to satellite.

At AES, this signal was received at 4 GHz, down-converted to 70 _{z and then

demodulated after passing through 70 _z +i.I _z bandpass filter to eliminate
the reflected signal at 61 _{z.

There were, however, some inherent limitations in this mode of clock synchro-
nization. Only a limited bandwidth (+I.i _4z) was available for each way

of transmission and thus some advantage gained in simultaneous mode of trans-

mission was lost due to sacrifice in the risetime. Also the 1 PPS amplitude

was reduced to 0.5 volt as the 1 volt peak amplitude signal, which was used

with the earlier system with full bandwidth of zl0 _{z, caused a deterioration

of SNR in the received signal due to excessive frequency deviation. The

frequency translators and bandpass filters used at the Earth stations introduced

fixed delays in the transmission path.

The data for simultaneous two-way mode of transmission between DES and AES

for 28, 29 and 30 March is plotted in Figure 3. Simultaneous two-way clock

synchronization experiments were also conducted between Delhi and Madras (MES)

Earth stations with similar results. The precision obtained, even with _he
above limitations, was 4-5 times better than the earlier quoted results ().

A relative drift of the two cesium clocks at DES and AES is quite noticeable
in this figure.

In absence of proper portable clock time comparisons between the three Earth

station clocks, a three-way check on clock settings was obtained between DES,

AES and MES by alternately one station transmitting and the other two receiving,
as shown in Figure 4, and exchanging the data over the radio network or hot

telephone lines among the three Earth stations. Discrepancies of submicrosecond

nature were observed in these clock settings of the three stations. These were

due to satellite motion not being accounted for properly and different propaga-
tion delays encountered at three Earth stations, even though the instrumentation

at all ends was based on the same design. The lack of communication due to

occasional break-downs of radio network and hotline channels between DES, AES

and MES as well as limited experimentation time were the other limitations.

As the system was not designed for simultaneous two-way transmissions, changing
from one system to the other also presented some technical inconveniences.

As a practical use of this technique on 30th June 1979 a recently procured

atomic cesium clock for the STARS project at Kavalur, near Madras, was brought
to MES and synchronized to submicrosecond precision in the near simultaneous

three-way alternate transmit/receive mode between DES, AES and MES.

DISSEMINATION OF HIGH FREQUENCY TYPE TIME FORMAT (ATA) VIA SATELLITE SYMPHONIE

The National Physical Laboratory, New Delhi has been transmitting standard

time and frequency signals (2) at 5, I0 and 15 _{z under the call sign 'ATA.'

The time format transmitted is shown in Figure 5. The accuracy limitations

of high frequency broadcast are quite well known. One-way time transmission

technique via satellite provides not only wide coverage but also a more accurate
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time synchronization means, due to a stable path, as compared to ionospheric

propagation. In view of these and in accordance with the national plan to,

ultimately, disseminate time via Indian Satellite INSAT, a time format similar

to ATA (HF) was disseminated via satellite Symphonie and experimental studies

were made at Delhi, Ahmedabad, Madras and with the mobile terminal at Calcutta.

The major part of the studies were, however, concentrated between DES and AES.

A block diagram for the experimental setup of ATA format dissemination via

satellite is shown in Figure 6. At AES, ATA (HF) data via ionosphere was, side

by side, recorded for the sake of comparison with the satellite data.

The ATA format data via ionosphere and satellite, as received at AES, are

plotted in Figures 7 and 8 along with the standard deviation from the best line

fit. In Figure 9 is shown comparison of ATA format via satellites with 1 KHz

bursts; ATA format with i MHz bursts where i KHz signal of Figure 5 was changed

to 1 MHz signal; and 1 PPS transmissions from a cesium standard. These signals

were transmitted from DES and monitored at AES. The corresponding standard

deviations are also shown in the figures. It is clear from these that the

precision achieved by using 1 KHz signal is of the same order as that with

1 MHz or 1 PPS implying a great saving on bandwidth without sacrifice in the

precision.

DISSEMINATION OF TIME OF THE DAY CODED FORMAT

The ATA format was later modified to include time of the day information in

year, month, day, hour, minute and second and DUTI information in BCD code.

A slow code was used and is shown in Figure i0. The block diagram of the

experimental setup is shown in Figure ii. The encoding scheme is shown in

Figure 12 and the decoding scheme in Figure 13. Initially, rectangular pulses

were tried but these got differentiated by the interface units and the informa-

tion about time was lost. Later, sinewave pulses were transmitted and rectan-

gular pulses were generated from the received signal.

The time via satellite along with DUTI information was displayed and studied

at Delhi, Ahmedabad, Madras and with the mobile terminal at Calcutta.

As in the previous case with ATA format, no corrections were applied for the

propagation delays, neither the satellite orbit elements were disseminated

along with the timing information. These will, however, be incorporated in

the future satellite controlled clocks to be operated via Indian satellites
APPLE and INSAT.

DISSEMINATION OF TIME VIA DIRECT TELEVISION BROADCAST BY SATELLITE

Time synchronization via television, using both passive and active techniques,

is a common practice in many countries. A line i0 sync separator circuit was

developed for using with land television systems. The availability of satellite

Symphonie provided an opportunity to try this technique using the direct TV

broadcast between Delhi and Ahmedabad. The scheme of pulses in vertical blanking

interval of Indian TV format is shown in Figure 14.

The block diagram of experimental setup is shown in Figure 15. The circuit

diagram for a TV line -i0 pulse identifier is shown in Figure 16. The TV
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signals were transmitted from Delhi to Ahemedabad via satellite. The TV sync

separator identified line i0 of the odd field with an ambiguity of 40 milli-
seconds. As the propagation delay between DES and AES via satellite and between
DES to satellite and back to DES were of the same order of 250 milliseconds, the
time interval counter at DES was started with the local cesium clock 1 PPS and

stopped with the reflected TV sync separated pulses from the satellite and the
time interval counter at AES was started with local cesium clock 1 PPS and stop-

ped with the same DES transmitted TV sync separated pulses received at AES. If

CII is the time interval counter reading at DES, C12 is the corresponding time
interval counter reading at AES, T1 is the propagation delay from DES to satellite

and back to DES and T2 is the propagation delay from DES to AES via satellite;

all CII , C12, T1 and T2 correspond to the same TV sync pulse, then:

Clock off set (T) between DES and AES is

= (elI - TI) - (C12 - T2)

= (CII - C12) - (T1 - T2)

The procedure adopted for the measurements was as follows: The DES and AES
clocks were first synchronized to as close a value as possible, to within a

fraction of a microsecond, by using nearly simultaneous technique (1) . This
was done to check TV synchronization results and to gain confidence in the TV

measurements via satellite. In the beginning and at the end of TV measurements,

the propagation delays of 1 PPS transmitted from DES were noted at DES for the

reflected pulses via satellite (TI) and at AES for the same transmitted pulses

via satellite (T2). From these measurements the (T1 - T2) data, corresponding
to the respective TV line i0 measurement time, was deduced by using Lagrangian

Extrapolation. The (CII - C12) and (T1 - T2) data of TV readings and the
propagation delays at DES and AES for 27th and 28th April are plotted in

Figure 17 along with the mean difference of the two sets of readings and the
standard deviations. From this data it is clear that TV direct broadcast via

satellite is capable of giving submicrosecond precision.

The propagation delay for the TV signals were taken care of by experimentally

measuring (T1 - T2) rather than theoretically calculating it where a knowledge
of satellite orbital elements is necessary. However, in routine calibrations,

as in other cases, a knowledge of satellite orbital elements will be required

for the clock synchronization purposes.

Due to limitation on satellite time, the experiments on active TV technique

and time display via direct TV broadcast could not be carried out. The National

Physical Laboratory, New Delhi is developing such a technique for use with

land-line connected TV systems and will try these when next Indian satellite
APPLE becomes available in 1980.

CON CLUS ION

As the errors involved in time dissemination experiments via satellite argl_uite_)
well known and are amply discussed in literature and in the earlier paper

presented at 10th PTTI meeting, we have not gone into these details. The stand-

ard deviations from the best line fit are calculated and shown in the respective

figures.
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A major limitation in these experiments has been that only one satellite

transponder was available and simultaneous two-way transmission using full
video bandwidth was not possible. Thus, a parallel experimental check on the

precision of the measurements, in which satellite motion could be tracked

simultaneously, was not possible thus necessitating extrapolations for the
satellite motion.

Another limitation from practical use point of view was that satellite orbital

elements were not disseminated along with the timing information. The reason_

were two fold: firstly, the emphasis of these experiments was more on to

develop and try out various possible time dissemination schemes via satellite

and to study their merits and demerits rather than to push the limits of accuracy

and precision of any single measurement; and secondly, that the satellite orbital

elements were not readily available in advance and could be had only post facto.

The future Indian plans on time dissemination via satellite include some more

experimentation in this direction when the next Indian satellite APPLE become._

available in 1980 with an effort to disseminate, simultaneously, satellite
orbital information as well. The ultimate aim is to use Indian National Satel-

lite INSAT, to be launched in 1981, for a general and wider _time dissemination.

Towards the end of this series of experiments, a simultaneous two-way clock
synchronization experiment using both the satellite transponders was performed

between the National Physical Laboratory, New Delhi (NPL) and Physikalisch -

Technische Bundesanstalt, Braunschweig, West Germany (PTB) in May and June

1979. These experiments were done using the facilities at Delhi Earth Station

in India and Raistings Earth Station in West Germany. The results, which are

under preparation, will be reported somewhere else.
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ADVANCESIN THE STABILITY OF
HIGH PRECISIONCRYSTALRESONATORS

Arthur Ballato & John R. Vig

US Army Electronics Technology & Devices Laboratory
USAERADCOM,Fort Monmouth, NJ 07703

ABSTRACT

This paper describes recent advances in technology
directed toward minimizing the temporal changes in
frequency of crystal resonators, as well as reduc-
ing their susceptibility to temperature, acceler-
ation, and other environmental effects.

INTRODUCTION

Exceedingly stringent frequency control requirements follow from the
performance specifications of the latest generations of communications,
navigation and identification systems. Unfortunately, the present
generation of crystal resonators, which are the stabilizing elements
in the reference oscillators required in such systems, are frequency
sensitive to acceleration fields produced by the dynamic environments
surrounding land- and air- mobile use. These resonators are also
susceptible to frequency shifts due to transient temperature variations
and static stresses transmitted by their electrode and mounting systems.
The acceleration effects lead to degradation of the short-term fre-
quency stability, while the stress component contributes primarily to
long-term aging and to distortions of the frequency-temperature be-
havior of oscillators.

This paper describes recent advances in quartz resonators that permit
simultaneous compensation against both dynamic and static conditions,
and that are compensated, moreover, against rapid temperature tran-
sients encountered in fast-warmup oscillators for manpack use.

Acceleration sensitivity is greatly reduced by utilizing novel mono-
lithic compound vibrators having racemic_structures to nullify fre-
quency shifts, Static compensation is achieved by means of unique
lateral mounting contours, located so that nonlinear elastic constants
cancel, Compensation of thermal transients comes about by use of a
special, doubly rotated orientation of cut. Weshow that all three
features may be realized at one time to yield a highly stable quartz
resonator immune to accelerations in any direction, and to boundary
_tresses andthermal transients, No additional electronics are

left- and right-handed combinations.
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required, nor are increases in size, weight, and power requirements.

The aging is minimized through the use of: (1) the SC-cut, (2) ultra-
clean, ultrahigh vacuum fabrication techniques, and (3) packaging
techniques which are capable of preserving the ultraclean surfaces.
Additional concepts for high precision short-, medium-, and long-term
frequency control are presented.

A crystal resonator is comprised of a piece of quartz, or other piezo-
electric substance, together with a system of electrodes, mountings,
and encapsulation. For the high precision units dealt with here, the
form of the crystal vibrator is that of a thin disc with flat or
lenticu!ar major surfaces. The electrodes are most often deposited
directly upon the major surfaces to form a capacitor-like structure;
the connection to its external environment is made from the electrodes
via the mounting supports, through the enclosure, to form a one-port
device which is connected to the remainder of the oscillator circuitry.

Insofar as the external world is concerned, the mechanically vibrating
e!emen{may be represented by means of the equivalent electrical
circuit shown in Figure l, The static capacitance Co is the actual
capacitance of the crystal dielectric between the electrodes, plus
additionalstray capacitancedue to the mount, etc. The _, _, _,
combinationarises from the mechanicalvibrationof the crystal as
reflectedat the output terminalsby the piezoelectriceffect. A
knowledgeof these four elementssufficesin many instancesto
characterizethe resonatorin oscillatorand filter design. The
motional valuesCl, Ll, Rl, pertainto a single resonanceof the
system; if operationis not confinedto the narrow vicinityof a
resonance,then the equivalentcircuitmust be augmentedby RLC
series arms placed in parallelwith that shown, one for each mode of
vibration, We assume that a single motionalarm sufficesto character-
ize the resonatorsunder discussion. Relationshipsbetweenthe
criticalfrequenciesassociatedwith Figure l, and definitionsof
other parameters,are given in [l],

/

Typicalvalues for a high precisionquartz resonatoroperatingin the
fundamentalmode of thicknessshear are

• fR = 5 MHz

e Q = 750,000

e R1 = 4_

• r = 475 = Co/C1

• C1 = 10.6 fF
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e Co -_ 5,04 pF

e L1 = 95.4 mH

These values will be used in subsequent examples. In the above,

(2_fR)2 LT_CI, = I, and

(QRI)2 = L!/C 1 , In some

oscillator applications, the resonance frequency fR is adjusted to
the "load" frequency fL by means of a series capacitor CL; a typicalvalue of which is

• CL = I00 pF o

This adjustment is necessary to bring the oscillator to a precise
frequency, and to provide a means of correcting for subsequent frequency

offsets It is instructive to calculate the effect of changes in CL
itself on the frequency of a high precision oscillator. The load
frequency is _2] :

fL _ fR / 1 + _/r, where

= Co/(Co + CL).

Therefore the sensitivity coefficient S is

S : CL (_(Af/f)/_C L) : (-_2CL/2rCoV_).

This is to be multiplied by the fractional change in CL to obtain the
fractional frequency shift Af/f. Evaluating _S for our resonator gives

e S _ - 48 X 10-6 .

Temperature is one reason that CL might change, and if CL had a
temperature coefficient of

e TCL _ 2 X IO'6/K,

then the resulting frequency shift would be

• I S TCL I z Io-IO/K.

Thus changes in the temperatv)_e of only I0 millikelvins will change
the frequency by parts in I0 "_. In reality, the temperature coeffi-
cient of CL is apt to be larger than 2 ppm/K, with correspondingly
higher frequency excursions.
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Reverting now to the physical quartz crystal plate, it has been known
for many years that by cutting the plate at an angle to the crystallo-
graphic axes, the frequency-temperature (f-T) behavior could be greatly
improved; in particular, that two orientations exist (the AT and BT
cuts) where the temperature coefficient of frequency is zero. These
cuts contain the crystallographic X axisand are referred to as singly
rotated cuts. Figure 2 shows an example of such a cut as well as the
more general doubly rotated cut, plus the locus of zero temperature
coefficient (ZTC) as function of the two orientation angles e and
[3], [4].

For the orientationsshown in Figure 2 by the solid line, the ZTC is
obtainedfor the slow shear wave propagatingalong the plate thickness;
the locus shown dashed is for the fast shear waves. These are distin-

" m " "guishedby the terms b- ode (fast shear),and c-mode" (slow shear);
the thicknessextensiona!mode is the "a-mode",but does not possess
a ZTC for any orientationin quartz.

A ZTC means a flat f-T curve atsome particulartemperature. Over a
wider temperaturerange,the curve is cubic in shape for those cuts
on the upper portionof the locus (AT, FC, etc. branch),and parabolic
for cuts on the two lower branches(BT and RT branches).The precise
shape of the curve is dictatedprimarilyby the elastic constants'
behavior,and by the behaviorof the piezoelectric,dielectricand
thermoelasticconstants, These are functionsof @ and e. Of smaller,
but non-negligibleinfluenceon the f-T curve, are the load capacitance,
the electrodemass-loadingand the harmonicof operation.

In subsequentsectionswe will discussparametersleadingto resonator
instabilitiesand point out how emerging technologieswill minimize
the varioussourcesof frequencyinstability.

MAJOR PARAMETERSINFLUENCINGFREQUENCY

Some of the major parametersthat enter every discussionof high
precisioncrystalresonatorsare given in Table I. These will be
addressedin turn,

I. Temperature

a. Static behavior

The overwhelmingmajority of conventionalhigh precisionresonators
are fashionedof AT-cut quartz plates. The classicaltreatmentof
their propertieswas given by Bechmann [5]. These resonatorshave
f-T curves similarin form to the cubic sketchedin Figure 3. The
curve is characterizedby the three values ao, bo, co:

Af
f = ao AT + bo AT2 + co AT3;
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Af/f is the fractionalfrequencychange from the frequencyat the
referencetemperature,and AT the correspondingtemperaturedifference
measuredfrom the reference. The quantitiesao, bo, co are the first,
second,and third order temperaturecoefficientsof frequency,
respectively;they are functionsprimarilyof @ and e, and are also
weaker functionsof resonatorgeometry,electrodingand mounting.

Representativevaluesfor the AT and SC cut are:
AT SC UNIT

ao 0 0 lO-6/K

bo -0.45 -12.3 lO-9/K2

co 108.6 58.2 lO-12/K3

&ao/_O -5,08 -3.78 IO-6/K,dege

_ao/a@ 0 -0.18 lO-6/K,deg

These figuresare for a referencetemperatureof 25°C. The inflection
temperaturesfor the AT and SC cuts are 26.4 and 95.4°C, respectively.
By changinge slightly,the curves can be optimizedfor a given applic-
ation. For wide temperaturevariations,as encounteredin temperature
compensatedcrystaloscillators(TCXOs),an AT cut can be made so that
the total variationover a OoC to 50oc range is less than 2.5 X I0-6;
then the TCXO circuitrycan compensatethis variationfurtherto less
than 5 X I0-7. When the resonatoris used in an OCXO (oven controlled
crystaloscillator),the temperatureexcursionsare much smaller,and
the e angle is adjustedso that the f-T curve maximum or minimum is
locatedat the desiredoven temperature.If the oven temperature
should coincidewith, or be near to, the inflectiontemperature,then
e variationsin the order of secondsof arc become very importantas
the slope changesrapidly in this region comparedto its variationat
the extremawhen these are well separated. For OCXOs using AT cuts,
the operatingpoint usuallyis made the f-T minimum; for the SC cut
the f-T maximum is used becauseof the high inflectionpoint.

For cuts locatedon the upper locus of the graph in Figure 2 the
inflectiontemperaturemonotonicallyincreasesas functionof @.
Having the angle @ available,in additionto e, allows the static f-T
curve to be optimizedfor a given application. In high precision
applications,however,the static,cubic, curve is found not to be
invariantunlessthe temperaturechangesare made very slowly (quasi-
isothermal= static). This problemdid not become importantuntil
the past few years when requirementsbecame increasinglystringent;
this situationwill be discussedfurther below; it has led to the
necessityof using the doubly rotatedSC cut.
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b, Dynamic behavior

It has been known for many years that abrupt temperature changes
produce in cyrstal resonators frequency changes that are unpredicted
by the static f-T characteristic [6]. For the AT cut, an increase in
temperature produces a negative-going frequency spike that slowly
approaches the expected new frequency value; for BT cuts, the effect is
reversed in sign. An example is shown in Figure 4, which shows the
warmup characteristics for AT and SC cuts. Note the logarithmic
ordinate, The oven warmup time is that required to approach within
I0 mKof the final setting point, or operating temperature. Even with
the oven at temperature, the AT crystal frequency is not constant for
quite a while longer. Making the oven warmup shorter is of little help,
because then the overshoot is larger. A typical figure with an AT cut
is 20 minutes to get within 5X I0 -_. The desirability of fast warmup
oscillators has been stressed at PTTI meetings by systems users; a
resonator unaffected by thermal transients is an urgent need. It is to
be found in the SO cut. With its use the problem is determ_;ned by the
oven alone, as seen in Figure 4, where the frequency is better than
I0-9 in the oven warmup time.

The dynamic thermal effect has been given a phenomenological explan-
ation by a modification of the cubic f-T curve to include a time-
dependent term [7]-[8]. Evaluation of the added term using the results
from thermal transient data enables one to simulate the effect of
sinusoidal temperature variations about a fixed reference point. An
example is shown in Figure 5. The nearly flat horizontal line is the
static f-T curve for an AT cut, expanded about the frequency minimum.
Superimposed are the ellipses that result from the dynamic effect
having its basis in nonlinear elasticity, and characterized by the
parameter _ in the modified expression

Af(t)/f : (ao+_T(t)).AT(t)+bo_T(t_ 2 + C_AT(t_ 3,

where T(t) = dT(t)/dt.

From Figure 5 it is seen that sinusoidal variations of temperature
with magnitude + ½ mK produce large frequency variations when the
orbital period Ts hours long. With a period of 8 hours, the frequency
change is about 3 X 10-12; when the period is lengthened to 1 week, the
change is still about 1X 10-13, whereas the static f-T curve would
predict a change of only a few parts in 10-14, irrespective of cycling
rate.

^

Recent results point to the necessity of including a second term a in
the equation:

Af(t)/f = aoAT(t) + bo_T(t_ 2 + co_T(t_ 3 + (_AT(t)+a)'T(t).
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Since thermaltransients,temperaturecyclings,and fluctuationscannot
be entirely avoided,the dynamictemperatureeffect is a very important
considerationin high precisionresonators. Means of reducingthe
effect are discussedin a subsequentsection.

2. Time

The variationof resonatorfrequencywith time is shown for a
typicalcase in Figure6 [9]. The curve has the over-all form of

Af(t)/f= A _og (l+t/T),

with A an amplitudefactor,and T the time constantof the dominant
rate-processleadingto the frequencyvariation.

Superimposedon the long-rangeshape are perturbationshaving a distri-
butionof time constants. The curve is somewhatarbitrarilybroken up
into three regimes: short term (T _ lO sec), intermediateterm (_ lO
sec < T < _ severalhrs.),longterm (T > _ several hrs.).

a. Short term

This regime is characterizedby noise effectswhose originsare not
fully understood [lO]-[ll]. Typical values of Af/f. for l-second
samplingtimes, obtainedwith room temperaturecrystaloscillators
(RTXOs),TCXOs, and OCXOs are

RTXO 2xlO"9

TCXO IxlO-9

OCXO IxlO-ll

Contributingfactorsto short-terminstabilityare

fluctuationsin temperature
shock and vibration

fluctuationsin the active devic_ Johnson noise
electromagneticinterference(EMI)
circuitmicrophonics
quartz plate to mount electricalnoise
fluctuationsin surfacecontamination

Concerningthis last point, considerthe exampleof the 5 MHz, fundamen-
tal resonator. A monolayerof contaminatio_will, by mass loading,
reducethe frequencyby approximatelyIxlO-°. Since the relative
fluctuationof the number of particlesis proportionalto the recipro-
cal square root of _he number [12],for a disc lO mm in diameterthere
will be about 3xlOa_ molecules/ monolayer,and the relativefluctu-

ation will be about 6xi0-8. Thus the fT_quencyinstabilitydue to
this cause is estimatedat about 6xlO- , which, coincidentally,
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equals the best short term stability reported to date [13]. The discuss-
ion in the introduction concerning changes in CL is germane here as well,
as fluctuations in CL and other circuit components contribute to the
short-term frequency instability. A phase shift @ in the oscillator loop
will give rise to a frequency change of

Af/f : _/(2Q);

therefore, for the Crystal parameters quoted in the Introduction, phase
shifts of only 86 microdegrees (1.5 microradians) will produce Af/f

shifts at the I0 -Iz level.

There is preliminary evidence that points to the quartz-electrode
interface as a contributor to short-term instability. In a number of
measurements, Healey [14] has found a I/f 2 phase noise dependence,
close-in, in Cr-Ag-Ni plated units, and a I/f 3 dependence in A_-A_203-
Au plated units.

Another contribution to short-term phase noise is bulk elastic nonlin-
earities. For example, when the b-mode of an SC-cut is driven simul-
taneously with the c-mode, an increase in the phase noise of the latter
is found; although both modes would be independent if the crystal were
linear, they are coupled by nonlinearities in the crystal.

b. Intermediate term

In this regime the greatest contributor to instability is probably
the temperature control used. Ovens are normally of two general types:
a switching controller type, and a proportional controller type. In
the former, a snap action thermostat is used, where low cost and moder-
ate performance are important. This type begets wear and sticking of
the contacts, and contact arcing produces electrical noise. The pro-
portional type uses a bridge circuit that provides constant adjustment
because the heat supplied is proportional to the difference between the
crystal temperature and the oven setting point. Somehigh precision
oscillators use a double proportional oven so that inside the first
oven the temperature never varies more than IK, and this is reduced to
less than O.OIK within the second proportional oven.

Other contributors to intermediate term variations are changes in crys-
tal attitude, and low frequency vibrations. These will be considered
under acceleration effects.

Additional causes are stress relief in mounts and electrodes, and
changes in circuit reactance and drive level.

c. Long term {15]

Long-term frequency drift is called aging. It is usually found to
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be a logarithmic function of time. Whenthe oven and/or oscillator are
turned off and then on, the oscillator typically experiences an offset
in frequency and the onset of a new curve of the same form.

Typical values of aging are

RTXO 3xlO-7/month

TCXO IxlO-7/month

OCXO 1.5xlO-8/month

A major contributor to long term aging is mass transfer due to contami-
nation. Since, for a 5 MHz p!ate, one monolayer of contamination lowers
the frequency by about IxlO-b, to achieve high stability long-term per-
formance, the mass transfer allowed must be a very small fraction of a
monolayer. But, assuming that all molecules stick to the surface, the
number of molecules adsorbed by a surface at a pressure of 10-6 torr
would form a monolayer in approximately 1 second. It is obvious, ther_
fore, that high precision resonators must be processed in a high vacu-
um to avoid contamination. This includes cleaning, handling and
packaging.

Adsorption and desorption phenomena such as outgassing of surface con-
taminants from the electrodes and quartz are not the only causes of
long-term drift. In back-filled units, changes in pressure due to
atmospheric pressure variations produces oilcanning of the enclosure
which will change the frequency by 10-7 per atmosphere; the oilcanning
also produces time dependent stresses in the mounting structure. Per-
meability of the enclosure to gases is another contributor to aging.

Intrinsic stress reliefwith time changes the resonator's frequency as
well. The stress relaxation takes place in the mounting structure,
the bond between mount and crystal, and in the electrodes. As an ex-
ample, a 5 MHzcrystal of 14 mmdiameter, mounted along the X-axis,
would increase in frequency by 8xlO-8 for a force produced by a mass of
1 gram applied to the mount [16]; microgram force changes are therefore
perceptible in high precision applications, The observed aging is the
sum of the aging produced by the various mechanisms, and can be posi-
tive or negative.

d. Thermal hysteresis

Thermal hysteresis, or thermal retrace is shown in Figure 7 [17].
This phenomenon is largely unpredictable, although Hammond,et al.
[17] did find a variation with orientation angle e about the AT-cut
angle. It is a function of bonding, mounting and previous history,
and as such is not a candidate for modeling in systems applications,
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and ways to reduce it are discussed subsequently.

3. Acceleration

a. Attitude

Changes in the resonator's orientation with respect to the gravit-
ational field produce frequency shifts because of the stresses set up
in the resonator. For 180o changes one usually has a shift of about
2xi0-9. This is referred to as the "2-g tipover" value. This effect
is equivalent to the acceleration effect next described.

b. Vibration

Valdois [18] established experimentally the behavior of resonators
subjected to acceleration fields. His results are shown in Figure 8.
It is seen that the frequency shift reverses sign with reversal of the
direction of acceleration, and that the magnitude of the effect is
dependent on which axis the acceleration is directed along. For a
given system of mounting and direction of acceleration, the frequency
shift will be given by

Af/f: ao y,

where ao is the acceleration(usuallyexpressedin "g" units) and y is
the accelerationsensitivitycoefficientof the c_stal for that con-
figuration. Values for y normallyrun a few parts in 10g per g (AT-cut).

When the accelerationtakes the form of vibration,the same consider-
ations apply. If the vibrationis sinusoidal,sidebandsare produced
at the carrier frequency_ the modulationfrequency. An example is
shown in Figure9 [19]. The ratio of single sidebandto carrierpowers
followsfrom FM theory as

_(fm) : (Af/2fm) 2,

where Af is the frequency shift under acceleration, and fm is the
. I

modulation frequency. Measurement of_(fm) ylelds y from

y : (2fm/aof) • I0 (Z(fm)/20)

For high performance oscillators it is imperative that y be significan_
ly reduced; methods of attaining this end are discussed in the sequel.

c. Shock

Shock is distinguished from vibration and tipover only by its
magnitude. If the shock level exceeds the elastic limit for the
quartz or mounting structure, permanently offset frequency will result.
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In certainsensor applicationsthe crystalsmay be subjectedto as
many as 20,000 g's and be requiredto survivewith minor frequency
shifts;methods for shock-hardeningwill be describedin a later sec-
tion.

4. Radiation

a. Transient

Pulsed ionizingradiationproducesfrequencychangesin quartz
resonatorsby a mechanismsimilarto the dynamicthermaleffect mention-
ed previously. Thermalgradientsare set up in the quartz,leadingto
frequencychangesbroughtabout by the nonlinearelasticconstants.
The effect dependson the crystalcut, being negativefor the AT cut,
but is almost insensitiveto the type (naturalor cultured)of quartz
used, and to the quality,althoughQ degradationand even cessationof
the oscillationhas been observedwhen impure quartz is used.

b. Permanent

Steady state or continuousradiationproducespermanentfrequency
shifts in quartz resonators [20], [21]. The effect is due primarily
to changesin the defect structureof the material,which changes, in
turn, the effectiveelasticconstants. Becausethe effect is very
structuresensitive,the type and qualityof the quartz material used
is extremelyimportant. Typicalvalues for ionizingradiationare

naturalquartz: +-lO-11/rad

swept culturedquartz: ~<lO'12/rad.

For neutronsdisplacementdamage occurs at the level

neutrons: _ lO-21/n/cm 2.

Improvementof radiationinsensitivitywill be describedin the next
section.

TECHNOLOGIESAND TECHNIQUESIMPACTINGSTABILITY

In the last sectionsome of the predominantparametersaffectingfre-
quency of resonatorswere described. In this section, technologies
and techniquesthat are being broughtto bear on the problem of
resonatorfrequencychangeswill be reviewedin the light of latest
developments. Some of these have been touched upon before at previous
PTTI meetings [22], [23]. The "cures"to be describedfor the various
effectsalreadyenumeratedare surprisinglyfew in number; the most
prominentof which is the substitutionof the doubly rotatedSC cut for
the perennialAT cut. This is becausemany of the effects have their
basis in nonlinearelasticity [24], [4]. The more importantemerging/
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improving technologies being brought to bear on the problem of improv-
ing high stability resonators are shown in Table 2. These will be
briefly discussed in the same framework as the prior section. Cutting
across the Temperature/Time/Acceleration/Radiation categories is the
SC cut. Table 3 gives a preview of the sequel.

I. Temperature

The f-T behavior of SC cuts is shown in Figure I0, with adjacent
curves separated by 1 minute of arc. The inflection temperature is
about 95.4°C, as opposed to nearly room temperature for the AT, and
the cubic parabola term is only about one half that of the AT. In
many applications these are advantages over the AT cut, but relatively
minor ones. The real advantage of the SC vis _ vis the AT, as far as
temperature effects are concerned, is that the curves in Figure I0 are
nearly the dynamic as well as the static curves, because the SC-cut
is compensated for thermal transients occurring in the thickness
direction; lateral compensation of gradients does not in general occur,
but very little experimental or theoretical work has been done on the
lateral effect [I0], [8]. Because of the compensation for temperature
changes, setting an SC oscillator to its temperature operating point
is rapid; anyone who has performed this feat with a high precision AT
resonator will appreciate this practical advantage. More importantly,
fast warmup oscillators are a reality with the SC cut, with warmup
dictated solely by the oven, as shown in Figure 4; also highly import-
ant is the absence of the orbits of Figure 5 and the corresponding
meanderings of frequency due to temperature fluctuations.

The consequences of eliminating dynamic thermal coupling are brought
out dramatically in Table 4. The tabular entries pertain to an SC
cut operated with its reference temperature at one of the two turning
points. Refer to Figure 3 for the definitions of oven offset and oven
cycle range with respect to oven setting point. For state-of-the-art
ovens with cycling ranges in the millikelvin regime, resonator stabili-
ties in _he 10-14 range ought to be attainable. In fact, a stability
of 6xlO"_ for a sampling interval of 128 seconds has been reported for
an sc cut [25].

Stabilities approaching those of Table 4 assume that the additional
causes of instability can be sufficiently reduced or eliminated. As
ambitious as such a program might appear at first to be, the path to
doing just this is reasonably straight-forward and possible of accomp-
lishment in the future for production quantities of high stability
resonators.

The major drawback of the SC with respect to the AT is the increased
criticality of the orientation angles _ and e for oven operation near
the inflection temperature; where a few minutes of arc suffice for the
AT cut, the tolerance becomes seconds of arc for the SC cut. Fortun-
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ately, an automatedx-ray goniometerwith microprocessorcontrol is
being developedunder ERADCOMcontract,and this should providethe
necessaryaccuracyand precision.

2. Time

Under this categorywe will discussjust two areas of recent,
significantprogress; mountingand electrodestresses,and contamin-
ation control, Other areas discussedin this categoryin the last
sectionwill be addressedlater on, in this section,or the next.

Figure II shows traditionalmetal enclosures,and the recentlydevelop-
ed ceramicflat-packenclosures[26]-[28]. The ceramicunits have the
advantagesof cleanliness: they are cleanedmore easily,can be baked
at higher temperaturesto remove contaminants,and the aluminaenclo-
sure is imperviousto gaseousdiffusionunlikemetals and glasses. The
flat-packdesign also providesa geometricfactor not possessedby the
metal holders,and is microcircuitand hybrid circuitcompatible.
Within the ceramicenclosure,the resonatorsare attachedto the mount
with polyimide[29]. This material can be vacuumbaked at above 350oc
and thus has minimal outgassing. This means of attachmentcan be used
from cryogenictemperaturesto 350oc. The lid is sealed to the rest
of the ceramicenclosureby metal-to-metal,clean surfaceadhesion.

The resonatorblank sealedwithin the ceramicflatpackhas gold elec-
trodes depositedupon its surfaces, This providesa minimumof stress-
es and interfacereactions. The interfacebetweenthe gold and quartz
must also be clean. Near-atomiccleanlinesscan be obtainedby, among
other things, UV/ozone cleaning [29]-[31].

Adherent electrodes are still subject to thermal stress cycles, and to
stress relaxation, regardless of how ductile the electrode material may
be. Means of obviating this problem are: I. the use of the SC-cut,
which is insensitive to electrode stress relief, and 2. the use of
air gap designs _32], E33], An embodimentof the air gap type of
mounting/electrodingdesign is the BVA of Besson [23]. The absenceof
electrodesdirectlyon the vibratorsurface rules out surfacestresses
and possibleelectrodeasymmetrythat would lead to couplingswith
even harmonicsand with flexure. The BVA designalso utilizesa ring
structurewith monolithicquartz bridges that isolatethe vibrating
portionfrom the quartz supportingring.

The other area, contaminationcontrol,is best summed up by saying that
all processing,from initialinput of quartz blanks and ceramicen-
closures,to finishedresonatorunits,must be done under ultraclean
conditions. The final, most criticalfabricationsteps must be per-
formed in ultrahighvacuum. An apparatusthat accomplishesthis is
shown in Figure 12. This is the Quartz CrystalFabricationFacility
(QXFF) [34]. It consistsof five separatechambers: I. entrance,
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2. UV cleaning-bakeout, 3. gold plating A 4. sealing, 5. unloading.
Chambers 2,3, and 4 are under I0-_ to I0 -_ torr continuously, and never
see air after the initial pump-down. All chambers are separated by
ultrahigh vacuum gate valves, and each chamber is separately cryo-

pumped. The QXFF is being developed under ERADCOMcontract; the pilot
run for 22 MHz fundamental mode high shock crystals is scheduled to
take place during 1980. The pilot production run for high precision
5 MHzand I0 MHzcrystals in scheduled for 1981-82.

3. Acceleration

For accelerations out of the crystal plate plane, desensitization
of the acceleration-induced frequency shift may be partially accomp-
lished by use of ring-mounted resonators as shown in Figure 13 [35].
The improvement comes about by the alteration of the boundary condi-
tions at the plate periphery as described at the bottom of Figure 13.
Whenthe acceleration is in the plane of the plate, one cannot make
any a priori statements concerning the magnitude of the effect, except
that it will be azimuth dependent. The ring-supported resonator may
be fabricated of any cut.

It is an experimentally observed fact that SC cuts are considerably
less sensitive to the effects of acceleration (attitude, shock and
vibration) than AT cuts; the improvement may be as much as a factor of
ten. Beyond this, one may use dual resonators with two crystal axes
antiparallel {23], to obtain compensation along these axes, or one may
use enantimorphs in a three-axis antiparallel configuration to produce
a dual resonator compensated against the effects of an acceleration
field in any arbitrary direction [36].

The enantiomorphous composites may be fashioned as paired:

• conventional resonators
• ring-supported resonators
• BVA resonators
• stacked resonators
• ring-supported resonators with the ring

structures stacked

Additionally, the electrical connections may be series or parallel,
and the crystal cut may be singly (AT) or doubly (SC) rotated [36].
Examples of stacked crystal composites are given in Figure 14.

In order to render quartz vibrators capable of withstanding shock
levels approaching the theoretical breaking strength of the material,
it has been found that microscratches and imperfections left by the
conventional mechanical polishing operation had to be completely re-
moved. Otherwise, the stress magnification that took place as the
stress wave passed over the scratch resulted in plate fracture. The
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method newly introducedinto quartz resonatorfabricationfor this
purposeis chemicalpolishing [37]-[39]. Chemicalpolishingconsists
of etchingthe crystalto producepure crystallinesurfacesthat re-
veal defectsand makes the plate much stronger. The proper etchant
and procedureis dependenton the orientationangles @ and o. For
@_o°, even though each surfacemay be chemicallypolished,the result
is differenton each side; this can be used as a polaritytest of axes
when using paired plates as enantiomorphouscomposites.

4, Radiation

Temperature gradient effects on resonator frequency, arising from
pulsed ionizing radiation can be largely compensated by utilizing SC
cut resonators. Steady state radiation effects depend strongly on
defects in the material. Just as annealing has been used to increase
the Q of quartz, and to attempt to reduce aging [40], a combination of
high temperatures (below the _-_ transition point) and strong electric
fields (referred to as "sweeping") has been found to produce material
with superior purity and thus superior radiation hardness [41]-[43],
[21]. In addition, the sweeping process (done in a vacuum) has been
shown [37] to produce material having many fewer etch channels than
non-swept cultured quartz. Etch channels degrade the strength (shock
resistance) and serve as repositories of etchant that can produce in-
stabilities.

The use of t_ned IR and UV to excite lattice vibrations, and impurit-
ies, respectively, to aid in the sweeping process has been proposed
[44].

Further improvements in radiation hardness, Q, and long-term aging of
the material itself due to diffusive phenomena will require further
developments in crystal growth. Amongthese are use of defect free
natural quartz seeds, special seed preparation, use of select high
purity nutrient material, special cleaning oFautoclaves, and use of
precious-metal-lined autoclaves.

ADDITIONALCAUSESAND CURES

I. Quasistatic forces

These include thermoelastic forces, and intrinsic stress relief
mentioned under long-term aging. For in-plane forces applied to a
circular plate as shown in Figure 15, it is found that there are
azimuth angles such that applied force-pairs produce no frequency
change [16]; this is true even for doubly rotated plates on the upper
ZTC locus [45]-[48]. Whenthis criterion is used to locate four
mounting points [49], then thermoelastic forces will have no influence
on the resonator frequency, as long as no asymmetry exists, i.e. so
that bending moments are not generated. The structure is thus only
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conditionallystable,that is, only as long as the forces are colinear
in pairs. Anotherdifficultyis that the force coefficienthas an
appreciablegradientwith angle about the zero points. Two means of
overcomingthis difficultyare: I. use of ring-supportedresonators,
and 2. use of specialpolygonalshapes insteadof circularoutlines.
Rin_-supportedstructures,which can be producedby chemical etching
[49], absorb most of the forces and/or torquesappliedand are less
sensitivethan conventionalresonators. Plates of special lateral
contourhave been developed [50]for singly and doubly rotatedcuts
that have the propertyof being frequencyinsensitiveto in-plane
forces appliednormalto two pairs of edges. The edges are used for
mounting,and the stress levels are greatlyreducedover point-mounts.
Moreover,the polygonsare self-orientingin their holders. Examples
of the plates are shown in Figure 16 (AT cut), and in Figure 17 (SC
cut).

2. Line voltage changes

This is an oscillator, rather than a resonator, characteristic.
Defining a voltage coefficient of frequency as

Vo df
Vf =_ e_

fo dV '

one has the following typical figures for Vf:

RTXO 10-6

TCXO 5xlO-7

OCXO 10-9

The RTXOfigure of 10-6 means Af/f changes 10-7 for a 10% change in
line voltage. Improvement of these figures depends mainly upon
circuitry design and improvement.

3. Resonator drive level

The amplitude-frequency-drive level surface for a typical AT cut
is given in Figure 18 in schematic fashion. For high power levels the
surface becomes pleated, indicating a multiple-valued amplitude-fre-
quency curve. A rule-of-thumb figure for the frequency change in an
AT at low drive is parts in 109/pW, but this depends on geometry. The
BT cut bends in the opposite direction [4], [51], [52]. In the vicin-
ity of the SC-cut the curve does not skew until much higher levels of
drive.

Besides the amplitude-frequency effect, another nonlinear effect may
occur, viz., the presence of a very high starting resistance at very
low power levels [53], [54]. It is strongly suspected that surface
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preparation is responsible; chemical polishing and processing under
u!traclean conditions should eliminate this feature.

4. Static charge - dc field sensitivity [55]

The electric field coefficient of frequency is defined as

1 df
Ef - fo dE "

In terms of this coefficient, measured values for three quartz cuts
are [55] :

AT cut 0.04 pm/V
SC cut 2.3
LC cut 16.7

For rotated-Y-cuts, the effect should vanish for electric fields in
the plate thickness direction; but any x component of field will pro-
duce a contribution for any cut. In a clean, dry environment, static
charges on insulating surfaces can produce many kV with respect to
ground. From the figures above it is seen that the SC cut is more
susceptible to this effect than the AT cut. It is gotten rid of in a
simple manner, by placing a high resistance in parallel with the
vibrator.

5. Other nonlinear effects

• effect of bonding on f-T curve [56]
• piezoelectric hysteresis [57]
• nonlinear permittivity [58], [59]
• parametric excitation [60]-[62]

It remains to be seen if these effects are reduced in size for certain
doubly rotated orientations. It has been established that the SC cut
is remarkably free of another nonlinear effect-activity dips.

CONCLUSION

In many of the papers presented at the 1979 PTTI meeting that detailed
system requirements, it was heard again and again that it was highly
desirable or imperative that frequency sources be developed that pos-
sess fast-warmup capabilities, and that are insensitive to accelera-
tions and other environmental effects.

This paper reports developments that make these requirements realistic
for the future. The path is open for the realization; no "break-
throughs" are required to reach the goal. This is not to say that the
goal has been reached alreadyt Ahead lies an exciting period consist-
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ing of putting together coherently the developments reported in this
paper. It will require time and support on the part of the interested
systems users,

Table 5 shows a comparison relating to high stability oscillators. The
first column gives figures derived from manufacturers' specifications
as to what can be bought today off-the-shelf, in small quantities.
The second column provides a "guesstimate" of the state-of-the-art in
precision oscillators as of 1989 if the developments reported here are
carried out. Prices are in 1979 dollars. The 50,000 quantity includes
the sum of JTIDS, GPS, NIS, SINCGARS, SEEK TALK, etc.
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Table 1

Some Parameters Influencing CrystN Frequency

1, TEMPERATURE

A, STATIC

B, DYNAMIC

2, TIME

A, SHORT TERM (NOISE)

B, INTERMEDIATE TERM (OVEN FLUCTUATIONS)

C, LONG TERM (AGING)

D, THERMAL HYSTERESIS

3, ACCELERATION

A, ATTITUDE

B, VIBRATION

C, SHOCK

4, RADIATION
/

Table 2

Emerging/Improving Technologies

1, SC-CUT

2, BVA DESIGN

3, NEW FABRICATIONTECHNIQUES

A, SURFACE CLEANING

B, CHEMICAL POLISHING

C, ULTRAHIGH VACUUM FABRICATION

D, CERAMIC FLATPACKS

E, POLYGONAL PLATES

F, DUAL RESONATORS

G, AUTOMATED X-RAY ORIENTATION/ANGLE CORRECTION

4, QUARTZ GROWING AND SWEEPING

5, BETTER THEORETICAL UNDERSTANDING

6, LOW TEMPERATURE STUDIES
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Table 3
SC-Cut vs. AT-Cut

ADVANTAGES

i, PLANAR STRESS COMPENSATED (LOWER AGING_ LESS HYSTERESIS)

2, THERMAL TRANSIENT COMPENSATED (FASTER WARMUP)

3, LOWER ACCELERATION SENSITIVITY

4, LOWER DRIVE LEVEL SENSITIVITY

5, HIGHER CAPACITANCE RATIO (LESS AF FOR OSCILLATOR REACTANCE CHANGES_
HIGHER Q FOR FUNDAMENTAL MODE RESONATORS OF SAME GEOMETRY)

6, LOWER AF DUE TO EDGE FORCES AND BENDING

7, IMPROVED STATIC F VS, T, WITH FEWER ACTIVITY DIPS

8, LOWER SENSITIVITY TO RADIATION

DISADVANTAGES

i, MORE DIFFICULT TO MANUFACTURE

2, FAST SHEAR (B-MODE) EXCITED

3, MORE SENSITIVE TO ELECTRIC BIASING FIELDS

Table 4

SC-Cut Frequency Change vs. Oven Parameters

_e_,_, OVEN CYCLE RANGE (K)
B.! 0oB1 8._81

- -11 -12 -13
_ 2.1x10 2.1x10 2.1x10

"x"
V

3.Bxlg-12 -13 -14__ 2.1x1B g.BxlB
O'3
II -'

-12 -14 -15
i 2.7x10 3.6xlB 2.3x10

Z m
LLJ ......

> -12 -14 -16
o = 2.6xI_ 2.6xlg 2.6xIB
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Table 5

High StabflityOscillators

1979 1989GUESSTIMATE

STABILITY_ 1 SEC i PP 1012 pp 1014

24 HOURS 2 PP 1011 PP 1013

5 YEARS 5 PP 108 PP 101°

RETRACE PP 109 pp 1011

ACCELERATION 1 PP 109/G PP 1012/G

RADIATION 2 PP 10_2/RAD PP 101S/RAD

-40 TO +75°C 5 PP 101°(TO 60oc) :pp1012

HARMUP 2 PP 10 8 IN 1 HOUR PP 101° IN 1 MIN

POWER AFTER WARMUP, AT -40°C = 3 W <250MW

SIZE >400 CM 3 110 CM 3

PRICE IN QUANTITY >$1,000 <$300

OSCILLATOR CIRCUIT AND OVEN DESIGN CRITICAL LESS CRITICAL

QUANTITIES REQUIRED FEW =50,000
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QUESTIONS AND ANSWERS

QUESTION:

Is there any availability today commercially for SC cut crystals?

DR. BALLATO:

For SC cut crystals? Yes. They are-- Well, it depends upon the
quantity. John, would you llke to say a few words about that?

DR. VIG:

Yes. I would llke to comment on the fact that, no, you cannot buy

quantities of SC cut crystals and the ideas that are presented are,
at this time, many of them are ideas, and they need to be reduced

to practice and they need to be worked out, and there is a lot of

work that needs to be done before we get to the point where we can
mass produce SC cut crystals at a reasonable cost.

There are a couple of manufacturers who can provide very small

quantities of SC cut crystals, whose angle controls is very poor.

In other words, the turnover temperature is all over the place.
There is no way you can buy an SC cut crystal with a turnover of

95 degrees, for example, if that is what you want. In order to get
one of those, you might have to make a few hundred and select the

one that meets your specification. So, there is alot of work

that needs to be done on manufacturing technology before we get to

the point where we can afford to buy quantities of SC cut crystals.

QUESTION:

What about all the cases where they are needed, the majority. Not

everybody needs I0, ii, 12, 13 crystals. If you need one today,
what do you do?

DR. VlG:

If you reset your turnover temperature control, it doesn't make

any difference. Okay? The SC cut plate is difficult itself to

make today. You don't have the methods of angle control. As Art

pointed out, you need to control both the Theta and the Phi angles

to within a couple of seconds of arc. That is extremely difficult.

Okay? In theory the SC cut is going to be a beautiful cut.

In practice, before you can buy it off the shelf, a lot of work
needs to be done.
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DR. WALLS:

Something of a comment I guess. From the work at the Bureau and

work that we have done with Raymond Buisson and Jean-Jacques

Ganupoint, I would guess that stress probably plays a greater role

in frequency instability than what temperature contamination does

and that the range between one second and a thousand seconds is

dominated by temperature fluctuations in the AT as you have dem-

onstrated in the last couple of talks and what we have seen. But

beyond that, I would think that stress relaxation, stress in the

mounting, stress in the plating is more important than contamina-
tion. Even at i0 to the minus 9 torr, you are still going to get

monolayer exchanges of contamination within your enclosure at

1,000 seconds, so really it is an equilibrium between absorbed
stuff on the inside of the enclosure and on the crystal blank. So

I would guess that beyond 1,000 seconds it is really stress, and

as we get better resonators, the aging and the long-term stability

will be dominated by circuit parameters isolation in the output

stage because of feedback and other things and it is my guess the

architecture of our crystal oscillators must drastically change

if we are going to achieve the stabilities of i0 to the minus 13

for long periods of time.

DR. BALLATO:

You are right, Fred. But stress is very very important, espe-

cially in the long-term. Also, some other rather subtle phenom-

ena, that is to say diffusion of electrodes, if you have elec-

trodes. Of course you don't need electrodes, or diffusion of

impurities in the lattice. You need a lot of work on getting

better quartz. Those will contribute significantly to long-term
aging.

QUESTION:

How does the electromagnetic pulse change the frequency and stress?

DR. BALLATO:

How does that change the frequency? By heat effect.

QUESTON:

Heat?

DR. BALLATO:

Yes.
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GALILEO QUARTZ CLOCK

M. Bloch, M. Meirs and M. Rosenfeld

Frequency Electronics, Inc., New Hyde Park, New York

p. Garriga

Hughes Aircraft Company, E1 Segundo, California

ABSTRACT

Frequency Electronics has developed and tested a

quartz oscillator for use in the Galileo experiment
(orbiter and Probe) for Jupiter mission 1982. This
oscillator has achieved significant performance

breakthroughs by the use of an "SC" cut, double

rotated, crystal in a titanium Dewar flask. Some

of the performance parameters are:

Radiation Sensitivity: 2 x 10-14/ra d

-g" Sensitivity 2 x 10-10/g

optimum Deceleration Sensitivity: 2 x i0-_u/425 g
Power Dissipation: 1.2 watts

Size: 1.8" dia. by 5.5"ig
vacuum to 20 torts

Operating Pressure: 3 x 10-12/se cOnd
Short Term Stability:

The quartz oscillator uses a double proportional
control oven to achieve a temperature coefficient

of less than 1 x I0-i0/i 0 degrees C. The

results obtained on other "SC" cut crystals indicate

the possibility of significant performance improve-
ments in airborne, shipboard, missile timing,

navigation and high speed communication systems.

INTRODUCTION

Jupiter, appropriately named for the most powerful god in
the Roman Pantheon, is the largest planet in the solar

system. Located 770 million km from the sun, Jupiter has
an equatorial diameter of 140,000 km, approximately I0
times that of Earth. The planet, which is almost entirely

liquid, takes nearly 12 years to complete a solar orbit,
but a Jovian day is only of i0 hours duration.

The Pioneer I0 and ii missions of the National Aeronautics

and Space Administration (NASA) flew by the planet in 1973
and 1974 and verified that Jupiter emits more than twice as
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much energy as it receives. Thus it is a source of high

energy particles accelerated into space. In March 1979,

Voyager 1 transmitted photographs of the planet's

satellites and multicolored atmosphere, including the

famous red spot. The photographs revealed a ring of mater-

ial in equatorial orbit around Jupiter, a phenomenon

previously observed only with the planets, Saturn and Uranus.

Scientists believe that Jupiter holds many clues to the

origin and development of the solar system and that studies

of its atmosphere, magnetic field, satellites, and radia-

tion belts will be important keys in unlocking those

secrets. To make these and other important observations,

NASA has scheduled Project Galileo for launch on the Space

Shuttle in early 1982. The program is named after Galileo

Galilei, the Italian Renaissance founder of experimental

physics and astronomy, who is credited with discovering

four of Jupiter's 13 known satellites in 1610.

The program consists of an orbiter spacecraft which will

arrive at Jupiter in 1985 and circle the planet for 20

months, and an entry probe that will descend into the

planet's turbulent, hydrogen-rich atmosphere to a pressure

of about 20 Earth atmospheres after withstanding an entry

speed of 48 km/sec (107,000 mph).

The orbiter will accommodate eleven scientific investiga-

tions which will measure the magnetic_ gravitational, and

thermal properties of Jupiter and its satellites; determine

their surface composition and morphology; and study their

ionospheres, atomospheres, and gas emissions. The space-
craft will also study the magnetosphere-satellite interac-

tion; define the topology and dynamics of the magneto-

sphere, magnetosheath, and bowshock; describe the nature of

the magnetospheric particle environment; determinel the dis-

tribution composition, and stability of trapped radiation

and conduct a synoptic study of the Jovian atmosphere.

The interplanetary flight phase of the mission will take

about 1290 days, or 3-1/2 years. The probe, which consists
of a deceleration module and a descent module, will sepa-

rate from the orbiter 150 days prior to Jupiter encounter.

A timer will initiate probe operation about 6 hours before

entry into the planet's atmosphere. During high speed

entry, acceleration and heatshield performance data will be

collected. No telemetry is planned prior to or during

entry; all relevant information will be stored for playback

during subsonic descent.
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During the 60-minute descent the seven scientific instru-

ments on the probe will determine Jupiter's atmospheric
structure and composition, location of clouds and their

structure and physics, hydrogen/helium ratio, lightning and
radio emissions, energy absorption and radiation and

energetic particle distribution. The probe mission will be

completed at an altitude where the pressure is
approximately 20 times that of Earth's sea level.

There will be stable oscillators located on both the probe
and Orbiter spacecrafts. These stable oscillators will be

used by the scientists to obtain data about the atmosphere
of Jupiter as well as to transmit information. Both

oscillators have been designed to be virtually identical
although they will see somewhat different environmental
conditions.

Design

The oscillator is housed in a 1.8" diameter by 5-1/2" long
stainless steel enclosure. Stainless steel was chosen to

allow the entire package to be a vacuum sealed welded

enclosure capable of withstanding the vacuum to 20 bar

pressure variation. The outline and mounting dimensions
are shown in Figure I. The internal construction is shown

in Figure 2. The oscillator and amplifier printed circuit
boards are located inside a titanium dewar flask. Titanium

was chosen for the dewar flask for its low thermal

conductivity and light weight to minimize both power

consumption and weight and yet have the strength to
withstand the 425 g deceleration force.

Figure 3 shows the construction for this Dewar flask.

Inside the Dewar flask, we have a double proportional
controlled oven. The quartz crystal and oscillator circuit

are inside the inner oven. The output amplifier and oven
control boards are located in the outer oven. The entire

assembly is foamed in place to maintain stability during

shock, vibration and deceleration. Figure 4 is a photo-
graph of the first engineering model of this oscillator
next to a larger Fltsatcom oscillator. The connectors used

are ceramic to metal seals to withstand the large pressure
variation. A special weldable r.f. connector was

constructed by Tek-Wave, Inc. an FEI subsidiary to perform
this function.

Figure 5 is the schematic of the oscillator circuitry. A
Colpitts oscillator configuration was chosen for ease of

use and minimization of components. The quartz crystal is

an "SC" cut, 5th Overtone at approximately 24 _ MHz. The
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"SC" cut was chosen because it is stress-free, and will give

excellent warm-up repeatability. Q1 is the oscillator

transistor, and both a fundamental and B Mode trap are used

in the emitter. An output transformer couples the signal to

the rest of the circuitry. Figure 6 is a circuit block
diagram of the entire unit. The inner oven controller has

an additional booster heater which is slaved to provide

additional power during warm-up. Once the oven has reached
its normal operating range, this booster heater is no longer

functional. The A1 area represents all circuitry located

inside the Dewar flask. The voltage regulator board A2AI is

located on the base of the unit. All of the components used

in this oscillator are space qualified and goes through

additional screening and burn-in requirements.

Performance

The oscillator was able to meet all of the specification

requirements and performed considerably better than

specified in some significant areas. Table 1 is a summary

of these performance characteristics. The performance was
such that under all conditions of environment, during the 30

minute descent phase of the probe, the oscillator was

capable of maintaining the desired frequency accuracy. A

composite curve is shown in Figure 7 which shows a total

uncertainty of + 3 x 10 -10 at the end of this 30

minute interval. --The warm-up characteristic of this oscil-

lator is shown in Figure 8. The smooth and rapid warm-up is

indicative of the SC cut crystal performance. The warm-up
time to PPI0 -9 occurred within 6 to 7 minutes and no

overshoot or ringing was apparent in the frequency curve.

This type of overshoot-free warm-up curve has been found in
other oscillators which also used the SC crystals.

The oscillator performance in a radiation environment

showed an improvement over typical AT Crystal performance

of 1 to 2 orders of magnitude. A typical AT cut crystal

would exhibit a sensitivity of 1 - 2 x 10-12/rad

whereas the SC cut crystals showed a sensitivity of

1 - 2 x 10-14/tad in the best case and
3 x 10 -13 in the worst case. Radiation tests were

performed using a Cobalt 60 radiation source. Figure 9 is a

typical radiation response curve that was obtained from
these oscillators. The radiation applied was at the rate of

i0 rads/sec for 700 seconds. The initial response shows a

positive offset which varied from 1 to 5 x 10 -9 and was

independent of radiation rate. After this initial positive
offset a negative slope was obtained which was directly

proportional to the radiation rate and whose sensitivity

became less as the crystal was further preconditioned.
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TABLE I

GALILEO QUARTZ CLOCK

TABLE OF CHARACTERISTICS

PARAMETER OBJECTIVE ACTUAL

SIZE: 1.75" DIA X 5.5" 1.75" DIA X 5.5"

WEIGHT: 14 OZ. 20 OZ.

INPUT POWER: 7 WATTS PEAK 7 WATTS PEAK

WARM-UP TIME: 300 MIN. < 300 MIN.

FREQUENCY STABILITY:

AGING: 1 X 10-10/30 MIN. < 1 X 10-10/30 MIN.

VOLTAGE: 1 X 10-10/VOLT < 1 X 10-11/VOLT

TEMPERATURE: 1 X 10-10/10°C 1 X 10-10/10°C

MOTION: 1 X 10-9/G 2 X 1010/G

SHORT TERM: 5 X 10-11/SEC 1 X 10-11/SEC

PHASE STABILITY: 0.016 DEGREES 0.003 DEGREES
I

RADIATION SENSITIVITY: -2 X 10-12/RAD -2 X 10-14/RAD

Figure I0 shows a radiation level of 150 rad/sec for 24
minutes. During this radiation exposure the change of

slope as a function of radiation level is apparent. The
retrace characteristic at the conclusion of the radiation

exposure was random in nature and no conclusions have been

drawn as yet.

Figure ii shows an accumulated radiation exposure of

1 megarad after the initial 25 krad preconditioning. The

var iat ion was approximate ly 1 x 10 -8 for 1 Mrad.

Figure 12 shows the effect of radiation on the orbiter

engineering model. Radiation levels of i0 rad/sec for 700

seconds was applied after initial preconditioning of 25
krads and shows a slope of 3.3 x i0- /tad. After a

further preconditioning of 200 krads and with the same

radiation level (as shown on Figur_ 13) , we obtain a
sensitivity improvement to 7 x 10-_J/rad. Data taken
on these oscillators indicated that with a preconditioning

of 5_ krads to 1 megarad, radiation sensitivity of
PPI0- /tad are obtained.
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The • two engineering models built on this program will be

used to further determine radiation sensitivity and warm-up
as a function of time. These units will be retested at 6

month intervals for the next two years to further

characterize these parameters.

Conclusions

Tests on the engineering models of the Galileo oscillator

have indicated that the SC cut crystal has acheived

considerable improvements in both warm-up characteristics

and radiation sensitivity. Five to ten minutes warm-up to
within IPPI0 -9 was achieved Without overshoot and an

order of magnitude improvement in radiation sensitivity was
obtained. The use of the titanium Dewar flask has

permitted the achievement of low power drain and high

stability equivalent to that obtainable with glass, but

has provided the capability to withstand the harsh

environmental atmosphere that will be encountered during
the mission.
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Figure 5. Oscillator Schematic
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QUESTIONS AND ANSWERS

DR. WALLS:

Have you or do you plan to investigate the effect of chemical

polishing versus mechanical polishing on radiation sensitivity

because that may in fact involve some changes in the stress level
of the surface?

DR. BLOCH:

No Fred. We did not intend to, but we have a study contract now

on SC cut crystals and that might _e a test that would be there.

I have a feeling that it is something more simple. Unfortunately

we didn't have the luxury to take apart the resonators, but we

have seen in cutting quartz that the late vintage premium Q swept

quartz there aren't two resonators cut right next to each other
that have the same defects.

And another possibility Fred, it might be that one has more

severe defects than the other. The quartz has been really a

problem to us in handling.

MR. PLEASURE:

You seem to have a small resonator that is peculiar to the crystal

itself. You showed a little L and a dotted little C, is that what

you used to tweek in the final set of frequencies, the operating
frequencies?

DR. BLOCH:

Yes. We use either inductance of capacitance to set nominal.

MR. PLEASURE:

And isn't that a temperature sensitive device?

DR. BLOCH:

It is really not, if you make an error budget analysis, it con-

tributes less than a part in i0 to the llth to the error budget.
The SC cut crystal has a very low value of C-I, so the external

effects, if you shift the frequency of a part in a million of let

us say 20 plcofarads, the effect of that capacitor is negligible,
also with the inductor.
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QUESTION:

Is it made on an air core so that it won't stretch and have a

hysteresis in its characteristics?

Have you tried this?

DR. BLOCH:

Are you talking about the inductor? The inductors that we use

for setting are all air core inductors so they have a very low

temperature coefficient and the capacitors that we are using are

all glass capacitors with about 20 parts per million per degree C.
Since this is in an oven with about a 50 millidegree temperature

control under the worst condition, it produces negligible effects.

QUESTION:

So you have a bad form, it will knock it silly.

DR. BLOCH:

It really doesn't, the glass capacitors do what we need. We have

them to repeat to within a part per million and if you visualize

a 20 picofarad capacitor changing by more than a part, that is far
fetched change for a precision glass capacitor.

We have not experienced any such problem in the regime of

parts in i0 to the 10th and i0 to the llth. Maybe in i0 to the
14th.

QUESTION:

What is the error then?

DR. BLOCH:

There is an air core which has very similar retrace characteristic.

It has very little hysteresis and again there is a large tolerance.

You are talking many mlcrohenries for one part per million change.
It is a very stiff resonator. So there is a large tolerance on
the effect of those parts.
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ABSTRACT

The techniques of fabricating BVA resonators have

yielded greatly improved performance in terms of

aging, amplitude-frequency effect, and acceleration
sensitivity.

Preliminary results have been recently obtained

including Q factor of 3.5 x 106 , short-term stability

of 5 x 10-13 at 1 second and aging of 5 x 10-12 per

day measured at NBS. In addition, the frequency

shift under acceleration (measured at ONERA) was

found to be as low as 2 x i0-I0 per g for AT-cut

quartz, and a factor of i0 smaller for SC-cut, with

no residual frequency shift after static g loading,
to within a few i0-Ii.

In this paper are presented new results on 5 MHz

resonators concerning aging versus drive level,

reduced amplitude-frequency effect, frequency and

phase stability performance, and frequency retrace

following power interruption.

The conclusion from aging and level of drive in-

vestigations is that a zero aging rate is possible

at a drive level which depends on the quartz material

used. For natural AT quartz, a level of 70 to 90 _W

appears to be optimum, and for SC quartz approximately
160 _W.

Measurements of short term frequency stability and of

the phase noise were performed using crystals mounted
within a modified commercial oscillator model, FTS i000.

A 5th overtone crystal exhibits S_ (f) = -127 dB at
1.5 Hz from the carrier with close-in phase stability
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being degraded very little as the drive level is

increased. The white noise floor improves with

drive level, as expected.

10-13A stability o(T) < 5 x for averaging times of

1 to 30 seconds was measured for an SC, 3rd over-
tone resonator at 37 _W drive level. This is the

square root of the Allan variance and represents the
noise from both test and reference sources.

I. Introduction

New resonators have recently (i) (2) (3) (4) been developed in

Besancon, France. Research type resonators have been developed

covering approximately i0 different types or versions according

to various goals of frequency range, type of mounting, size,

environment, etc. At this point, some types are close to the

industrial preproduction stage (5).

Results have been obtained at various frequencies including i00 MHz

and ultrahigh frequencies (6). However the BVA 2 5 MHz type resonator
has been the most extensively studied.

In this paper, the most interesting results previously obtained are

reviewed and some new results concerning oscillators and resonators

are given. Particular attention is given to drive level capabilities

and aging versus drive level questions. Frequency and phase

stability performance and frequency retrace following power inter-

ruption are discussed. Of importance is the fact that BVA units have

already been used in a modified commercial oscillator, FTS i000;

initial results with this configuration are presented and discussed.

This paper deals only with resonators of the BVA 2 design.
Basically, BVA 2 resonator construction includes:

i. An "electrodeless" desisn. All problems of damping, stresses,
contamination, ions migration, etc., which relate to electrode

deposition are removed.

2. A crystal mountin$ made of quartz. Small "bridges" connect the
vibrating part of the crystal to the dormant part. Key

advantages are:

- no discontinuities nor stresses in mounting points

- very high precision in shape and location of "bridges"
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- symmetry and reproducibility when needed

- design of bridges very versatile according to goals.

3. Additional parameters. (when compared to classical designs).
The design exhibits additional construction parameters:

- the electrode (and thus the electric field) can have a
radius of curvature different from the radius of curvature

given to the vibrating crystal.

- heaters and sensors can be placed in a vacuum close to the

crystal without contacting the vibrating crystal.

- connecting "bridges" can have a great variety of shapes,
locations and various other features.

4. Provision for any material, crystal cut or frequency (including
very high frequencies).

5. Use of technological means (i.e. ultrasonic machining) which

allow reproducibility or versatility (for example the external

shape of the crystal does not need to be circular or rectangular).

II. Brief Review of Previous Results

In this section, only results dealing the 5 MHz AT or SC cut units

will be discussed, to point out interesting figures already avail-
able. Very roughly speaking, the BVA design is capable of an order

of magnitude improvement in short term stability (7), long term

drift and acceleration sensitivity (8). More precisely, the following
features can be listed from previous results:

i. Higher Q factor: A 5 MHz fifth overtone AT resonator (made at

Oscilloquartz, Switzerland, ref. 3) yielded Q = 3.5 x 106
together with

R1 = 80.7_

C1 1.02 10-4pF

CO = 4.1pF

2. Better frequency adjustment (by a factor of 2 to 5 depending on
technology).

10-143. Better short term stability. 5.9 x for 128 s has been
achieved (17)and 10-13 (for integration time in the order of

i00 s) has been reproduced since.
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4. Lower drift rate. 5 x lO-12/day drift has been measured at

NBS Boulder and at ENSMM Besancon as well. Also important is

the fact that final aging is established within days and

remains constant (4) (9). Results recently obtained will be
discussed in the next section.

5. Lower g sensitivity (8). A maximum sensitivity of the order of

lO-10/g can be achieved in the case of AT cut units. A
sensitivity lower than 5 x 10-11/g can be achieved in the case

of SC cut single crystals. There is no residual frequency

shift after static g loading, to within a few parts in i0II.

6. Reduced amplitude frequency effect: Reduction by a factor of
2 to 15 (9).

III. Recent Advances

i. Extremely high drive level:

The usual drive level for conventional units ranges from 0.i _W to

some 20 or 30 _W, at least in ultrastable 5 MHz oscillators.

Precision oscillators with an aging rate lower than 10-10/day

usually operate at less than a few _W. In the case of high spectral

purity oscillators, the crystal can be driven slightly harder but

this causes the aging rate to increase by an order of magnitude

or two. If the crystal is driven harder, non-linear effects (i0)

occur and with still higher levels the crystal can even
fracture.

On the contrary, BVA 2 resonators withstand drive levels in the mW

range at 5 MHz. For instance, the BVA 2 2-77, 5 MHz, natural quartz,
AT cut fifth overtone unit has now been running for Ii months at a

1600 _W drive level. The oscillator and the single oven are of

very simple design. Nevertheless, the drift remained very constant

at 3.3 _ 0.2 10-10/day after 72 hours. Another similar resonator

of artificial unswept material (BVA2 2-I19) has been driven at
2.8 mW with an aging of approximately lO-9/day.

2. Aging versus drive level:

The aging rate for BVA 2 resonators is a non-monotonic function of
drive level. Although aging experiments require long time periods,

preliminary results on 7 resonators, using various oscillator
electronics, have been obtained. These data plus theoretical

considerations show that the resulting aging_ at, may De modeled by
the following formula:
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a : a.+ [1 +ae:p(- d577 ot +''-]r 1

where: ai is an intrinsic aging depending on material and cut

k is a constant depending on material and cut

P is the power dissipated in motional resistance R

Pc is a reference power level

m is a time constant; t is time

This formulation is valid for a first operation; there is some

evidence that the exponential part decreases for further operations.

At this point, it is premature to quote precise figures for each

parameter. However, orders of magnitude can be given for AT cut
natural-quartz fifth overtone crystals:

ai _ parts in i0II per day (negative)

k . parts in 1013 per day, per _W (positive)

a . order of i0 to i00

r . several days

The numbers obtained with various units fabricated from the same
material are consistant.

For these units the aging is predictible. Moreover it is possible
to change the aging rate by changing the drive level. In

particular it is possible to obtain, by slight changes of drive

level, slightly positive or slightly negative aging. There is a

drive level PI, called "zero aging drive level", since it yields

an aging rate crossing zero. Three oscillators Operating at this

"zero a_ing drive level" were constant in frequency to within

2 x I0-10 over 3 months. For AT cut, natural quartz, 5 MHz, fifth

overtone, four bridge units a drive level of 70 to 90 _W appears
to be optimum. For SC cut, natural quartz, 5 MHz thirdovertone

four bridge units a level of 160 _W is suitable for the so called

"zero aging".

3. Internally heated crystals (11):

Using very high drive levels, it is possible to directly heat the

crystal by energy dissipation in the moti0nal resistance RI. Units
specially devoted to internal heating have been designed (12).
These special units are of special construction and will not be
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described here. However, if a regular BVA unit is used at mW

drive level, it is easy to see, through the mechanisms involved

that important changes will occur. In particular, the internally

applied energy can no longer be ignored; in other words, the energy

exchange with the external environment will no longer uniquely go

through the surface. As a consequence (ii) the whole bulk crystal

participates "in situ" in its own temperature control, and its

sensitivity to external temperature fluctuations decreases.

4. Frequency retrace following power interruption:

Extensive retrace experiments have been conducted with resonator

BVA 2 2-77 already mentioned. This resonator retraced to within
2 or 3 x I0-I0 following power interruption ranging between 12 and

48 hours, Some other experiments With similar resonators but

different drive levels have been conducted yielding similar results.

Nevertheless, one particular resonator has shown a frequency versus

temperature hysteresis effect which at this point seems to be

related to the old mounting structure and packaging of prototype

BVA 2 units. If so, this is one more reason to use the low g
design (8) which also carefully avoids mounting thermal stresses.

5. Results using commercial oscillator:

Several BVA 2 resonators have now been operated within modified
commercial oscillators (FTS-1000 of Frequency and Time Systems, Inc.,
Massachusetts). Results have been obtained with both AT and SC

cut, operated at various drive levels.

It has been verified that low aging rates are established quickly

(in a few days), and that a "zero aging" drive level exists.

However, since the first oscillator was operated for less than

200 days, more data must be collected for a more complete picture

on aging versus drive level.

Figure 1 shows results for an SC-cut 3rd-overtone resonator (BVA

2-125) for which the drive level was progressively increased up to

284 _W, over an elapsed time period of 135 days. The aging rate

changed from positive to negative in going from 124 _W to 284 _W.
When the drive level was set to 160 _W approximately zero aging

resulted and this is as predicted for SC-cut natural quartz.

This same resonator has yielded short term stability measurements

shown in Figure 2. In one case the drive level is 37 _W and the

reference is a standard FTS i000 oscillator. The square root of
the Allan variance for the two sources is better than 3.7 x 10-13

over 3 to 30 seconds averaging time.
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Results for an AT-cut, 5th-overtone resonator (BVA 2-28) at 72 _W

drive level are also shown. Figure 3 shows S_ (f) phase noise
results for this resonator versus the reference S/N 165. At 3 _W

drive the phase noise floor is -142 dB (spectral density in i Hz
bandwidth); for 72 _W the phase noise floor is -144 dB which is

essentially the noise floor of the reference. At the same time,

the close-in phase noise is degraded by not more than 1 dB for the
higher drive level (indicating that a flicker floor of a few 10-13

is maintained). It should be noted that 72 _W is close to the

theoretical "zero-aging" power level for this AT cut resonator.

Phase noise spectral density results for two other resonators are

shown in Figure 4. Here two BVA resonators are directly compared,

and assumed to contribute equally. A SC-cut_ 3rd overtone

resonator (BVA 2-131) is driven at a rather high power level of

265 _W. The other resonator (BVA 2-52) is an AT-cut, 5th overtone
at 84 _W. Close-in phase noise in characterized as -118 dB at

1.5 Hz from the carrier, and -140 dB at i0 Hz. At i00 Hz, S_ is
-152 dB; at 5000 Hz, -154 dB. In this region the observed result
is limited by the system noise floor shown as the dashed line.

IV. Conclusion

Initial results using a commercial modified oscillator have shown

that is is possible to take practical advantage of the BVA

resonator features. Especially the high drive level can provide

extremely good spectral purity without degrading time domain

stability. In contrast to results with conventional resonators,

the aging of BVA resonators remains comparatively small even at

high drive levels. Moreover, there are good hopes that the BVA

technique can yield resonators with an aging modelable and settable
through drive level.
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APPROX. DRIVE LEVEL AGING RATE TIME ELAPSED FROM

(MICROWATTS) af/f (per day) 1st TURN-ON (DAYS)

10 + 4 x 10"lO 8

37 + 9 x 10-11 70

(45 day avg.)

124 + 3 x lO-11 120

284 - 9 x 10-12 135

160 approx, zero 165

Oscillator OFF 12 hours

160 . 4 x 10-10 167
(after I day)

Oscillator OFF 12 hours

160 + 2 x 10-10 173
(after 4 days)

160 zero 177

Figure 1. BVA Resonator Aging Versus Drive Level
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-13
RESONATOR DRIVE REFERENCE q_ = _(_) in units i0

B V A LEVEL OSCILLATOR 1 sec 3 i0 30 i00

2-125

SC, 3rd 37 uw 1000 *6.5 3.6 3.5 3.7 5.1
s/n 12

285 uw B5400 "8 6.5 5.2 7.4
s/n 165

2-28

AT, 5th 72 uw i000
*8 6.0 6.4 6.8

s/n 12

*Uncorrected for 50% dead time,
at 1 second only

Figure 2. Time Domain Stability - Allan Variance (Two Sources)



Resonator BVA 2-28 (AT, 5th): Drive Level 3 u w  @ ^> 
in commercial FTS 1000  

Reference : 

FOURIER 

Figure 3. Phase Noise Spectral Density, SG (0, in 1 Hz BW 



BVA 2-131 (SC) (3rd) 265 uW
VSo

BVA 2-52 (AT} (5th) 84 uW
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QUESTIONS AND ANSWERS

QUESTION:

Could you comment on the partial availability of and the quanti-
ties that they are available?

DR. BESSON:

You are talking about the resonators or oscillators or what?

QUESTION:

Resonators.

DR. BESSON:

Well, I don't believe I could, myself, answer that question, but
however I believe that the resonator will be available with the
oscillator.

DR. HAMMOND:

These three papers on quartz resonators, if you will pardon a few

comments, in the thirty-some years that I have been following

quartz, it has been interesting tO track the progress of stabil-

ity. If you go back to 1930, it was probably a part in i0 to the

5th, by 1950, a part in i0 to the 8th. Today we are looking at a

part in i0 to the 12th. And watching that over the last 30 years

that I have observed it, it has been an order of magnitude improve-
ment in quartz about every 7 years and it looks like it is on track

and it looks like, also, that the next order of magnitude is also

possible. That that extrapolation-- It is always very dangerous
to extrapolate into the future, but I agree with Arthur Ballato in

his first comments that this is an exciting time in quartz. I

know of no time that I have observed it when so many things have
been coming together that showed so much promise.

Remember, you heard it here first.
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ABSTRACT

Very long baseline interferometry using natural radio sources

has been shown to be an excellent time transfer method. Our group
has linked antennas using a synchronous communications satellite

instead of the customary independent frequency standards and tape

recorders. We have performed a successful preliminary time transfer
using a wide-band data llnk that was accurate at the i00 nano-

second level, and have compared frequency standards to a part in
10-_over a 24-hour period using a phase coherent satellite link.

The narrow-band phase coherent link method is potentially capable

of timing accuracy of i0 picoseconds, and frequency comparison
accuracy of I0--v, and is in addition economical of spectrum usage.

We plan to continue development of this latter method using the
newly-launched ANIK-B satellite.

Our group's use of a synchronous satellite link between

widely separated radio telescopes has demonstrated the feasibility

of two related but separate approaches to accurate time transfer and

frequency standards compa_isono The first of these methods,
reported by us previously , involves the use of the satellite as a

wide-band data link to transfer the video signal used to cross-
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correlate and thus determine the differential delay between radio

source signals received at two separated stations. In our published

work, we used the CTS or Hermes satellite to transfer a 20 megabit

data stream between antennas in Greenbank,W.Va. and Lake Traverse,
Ont. and to obtain differential clock measurements accurate to the

I00 nanosecond level in real time. A joint _.I.To-U.SoNoOo group has
obtained results accurate to 20 nanoseconds-. A similar accuracy

should certainly be available via satellite link if a similar use of

bandwidth synthesis and accurate equipment delay calibration is

made. For any operational use, the simplicity of use of a real-time

time indication is a significant advantage.

Our time data-llnk experiment used two large radio astronomy

antennas and a wide-band (80 megahertz) satellite data channel.

Either of these requirements can be considerablyeased, however. The

signal-to-noise ratio in a one-minute integration was considerably .

greater than i00 to i for either of the two strong radio sources

(3C84 and 3C273) we used. Since the signal-to-noise ratio for a

wide-band radio source is proportional to the square root of the

signal bandwidth, it is possible to reduce the data rate to a low

enough Value to enable transmission via a telephone line (4 kilobits

per second). This is in fact done as an equipment monitor by radio
astronomy groups. The full (less than i0 nanoseconds) timing

accuracy should be available by using the bandwidth synthesis

technique even with a narrow signal bandwidth, although a greater

number of programmed local oscillator settings would be necessary to
compensate for the more severe ambiguity problem. An alternative

possibility is the use of a portable antenna° FQr example, the
diameter of one antenna could be reduced to a meter or two if used

together with a large master antenna.

The delay-calibration method, then, is a relatively well-proven

method with a potential for time comparisons to several nanoseconds

accuracy. Another method we are presently developing has the

ultimate potential for time measurements between separated stations

accurate to i0 picoseconds. This is the two-way transfer of a

phase-coherent carrier between stations. Although this concept may

seem unfamiliar, it is in fact an extension of the coherent doppler

tracking used on deep-space probes. In the simplest theoretical

realization a signal at frequency f0 is transmitted from station A
via the satellite to station B and compared with the station B

standard. Similarly the signal from B is transmitted to A and
compared. In this case, we have at either station:

_mB = _sB - _sA

= (1)
_mA _sA - _sB
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where _mA,_mB are the measured comparison phases and _sA,_sB are

the phases of the frequency standards. If we now allow the satellite

to move, we have:

2Ad

_mB = _sB - _sA c "f0

2Ad (2)

_mA = _sA - _sB ---_- "f0

where Ad is the component of the satellite's motion along the link

path_ so that _mB-_mA = 2(_sB - _sA ) and the satellite's motion

cancels out to give a direct measure of the phase difference between

the two standards that should be precise to within a fraction of a

cycle at the transmission frequency (typically 15 GHz); this

corresponds to a timing accuracy of 7 picoseconds for 0.I turn

(I turn= 360 degrees) phase measurement accuracy. The phase measure-

ment made at B is of course transmitted as data to A via telephone

line, satellite link or other convenient means. The satellite's

motion in theory cancels completely if measurements are made in such

a manner that they transit the satellite at exactly the same time.

The satellite used does not have to be synchronous, although our

first experiments have used such because of the lesser (although
non-zero) motion and the simplified tracking problem.

Significant complications arise because of the necessity for

frequency translation at each pass through the satellite to avoid

regeneration. Most importantly, the characteristics of the

satellite's translation oscillator enter the picture. An ideal

satellite for this purpose would be the synthesiser type (Fig. i)

in which the translation oscillator is phase-locked to a sub-

multiple of the incoming frequency, thus contributing no phase error.

This is in fact done on certain deep-space probes; but ordinary

communications satellites have not had provision for this.It is

possible, however, to make phase-coherent link measurements in
spite of the incoherent satellite oscillator under certain common

conditions. If the frequency of the path from A to B is translated

by exactly the same amount, using the same oscillator, as that from

B to A, the satellite crystal will contribute no error if both

signals transit the satellite at exactly the same time. Both the

CTS and ANIK-B satellites have had this equal-translation property.
For small differences in the transit time, an error will be
produced in the amount:

f

"At •Af'--_t (3)A_ = ft f f
0
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where f is the frequency translation, At is the timing error,
t

Af
-_ is the satellite crystal stability and f0 is the nomin_l link
frequency. For typical values of crystal stability of I0-?, timing

error of I0 milliseconds, translation frequency of 3 @Hz and link

frequency of 15 GHz, the total phase error from this source can

be kept to within about I00 turns. There is in addition a method of

compensating for the satellite's oscillator, using either a

separate beacon signal on the satellite derived from the same

oscillator, or, if this is not available, transmission of a second

pilot tone at a different frequency. In either case, the use of two

signals traversing the same path enables one to solve for the phase

change of the satellite oscillator as well as that due to the path,

and thus eliminate it; reduced accuracy is expected in the case of

two pilot tones transmitted with only limited separation. The first
method was used by our CTS experiments, the second method

is being used in our current series using the ANIK-B satellite.

Another complication is introduced by the fact that, again to

avoid regeneration, the mean frequency of the path from A to B

cannot be the same as that from B to A. This difference, typically

about 1%, can be allowed for, assuming no dispersive effects, by

multiplying the total observed phase count from the lower-frequency

path by the appropriate ratio before subtraction.

The earth's atmosphere should, surprisingly, contribute a

relatively small error. Dispersive phase shift due to the ionosphere

is negligible at the 15 GHz frequencies used by our satellite links,

and total excess phase delay due to the troposphere is only several

hundred turns, and should be completely cancelled by the two-way
link.

The largest practical error source is expected to be phase

wind-up error in the electronics used for transmit and receive. This

is similar to the delay error to be calibrated in delay VLBI

measurements, but is made more serious here by the higher accuracy

required, and by the use of electronics for both transmit and
receive functions.

Preliminary experiments using this technique were carried out

using the CTS satellite in May 1979. The short-term performance of

the link is shown in Fig. 2. Longer-term phase stability is shown

in Fig. 3, and a comparison of experimental results with the
laboratory stability of different types of frequency standards is

shown in Fig. 4. It is clear that short-term phase stability of a

small fraction of a turn is attained, but that long-term phase

drift with a period of a few hours is present degrading the

phase-link measurements. If there were no long-term drifts in the

phase'link its frequency measurement accuracy in Fig. 4 would have
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a i/t slope. The most likely source of the phase drift that causes

the slope of our very limited preliminary data to flatten is phase
wind-up in our transmit and receive electronics°

We are presently instrumenting to continue experiments with a

coherent link with the new ANIK-B satellite. We expect to obtain at

least an order of magnitude better control over the behavior of the

link over periods of 6-24 hours, and to obtain data on the

performance of the link over periods of many days. This method should

have the potential for comparing time bases maintained at different

places on the earth to parts in 10-16 over periods of a year or
greater. Our preliminary measurements correspond to a measurement of

timing change with a precision of ±5 nanoseconds over a 24-hour

period; a potentially much higher accuracy should be available.

For the CTS experiments we made no attempt to resolve our ambiguity

interval of i00 picoseconds, and thus were unable to make absolute

time comparisons° The transmission of appropriately spaced

multiple tones within the typical communications satellite

bandwidth of i00 MHz can reduce this problem, however° This method

makes very economical use of the spectrum; all that is required is

the transmission of a few pilot tones that occupy instantaneous

spectral bandwidths of less than one hertz, and long-term bandwidths

of less than one kilohertz allowing for satellite doppler. This

narrow bandwidth increases signal-to-nolse ratio, allowing for the

use of small and thus inexpensive ground station antennas. The narrow
bandwidth allows simultaneous multi-user use of the satellite (as is

occurring on ANIK ), unlike satellite pulse-transmission methods.

For time- and frequency-standard comparison, it is important to

note, radio astronomy antennas play no part and are not required.

We hope during the next year or two to investigate and control
sources of phase error in this method in order to realize its full

potential.

i. S.H.Knowles,WoB.Waltman,W.B.Klepczynski,N.W.Broten,D.H.Fort,

K. loKellerman,B.Rayhrer,G.W.Swenson and J.LoYen, "Real-time

Accurate Time Transfer and Frequency Standards Evaluation via

S_ellite Link Long Baseline Interferometry_ Proceedings of the
9- Annual PTII Meeting, p.135, Nov. 29- Dec. i, 1977, NASA
Tech. Memo. 78104

2. A.E.E.Rogers,A,R.Whitney,H.F.Hinteregger,C.A.Knight,T.A.Clark,
WoJ.Klepczynski,l.loShapiro,C.C.Counselman and L.B.Hanson,

"Clock Synchronization via Very Long Baseline Interferometry",
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QUESTIONS AND ANSWERS

DR. KEN PUTKOVICH, Naval Observatory

Pardon my ignorance, but could you define the term "turn" for me?

DR. KNOWLES:

Yes. A turn is 360 degrees. I simply used it because it looks

more impressive than saying our errors were 17,000 degrees. If

you say it was 20 turns, it sounds better and is more appropriate.

DR. JIM JESPERSON, National Bureau of Standards

Really, what I have is more in the way of a comment. As you
pointed out at the beginning of your speech, probably VLBI is one

of the very best techniques that we know of for clock comparison.

And in fact some of the ordinary ways that you can think of for

checking these new techniques, such as carrying, say, a portable
clock between the two sites as an independent check, perhaps isn't

good enough, especially if there is a great separation between the
two sites.

The only other system I can think of that might check the
kinds of results that seem to be coming out here is the two-way

satellite technique. And what I am wondering is that if at some

future time you or perhaps some of the people here who are in a

position to support a VLBI experiment with a two-way satellite,

what about the possibility of doingthe two-way satellite and the

VLBI experiment simultaneously, because I think the kind of errors
that contribute to the two systems are rather different. For

example, the two-way satellite, the errors due to propagation

effects, atmospheric delays and so forth cancel out, whereas in

VLBI you have to make some assumptions, some guesses about what
is going on now.

DR. KNOWLES:

In actual fact, we will do this routinely as part of the ANIK pro-

gram because the major objectives of the ANIK program are to

measure UT and polar motion, and for those purposes we do need to

measure the position of a radio sourceuslng VLBI and we will

completely reduce it according to the standard methods usingthe

Canadian VLBl system and we will attempt to solve for several

parameters. In the first place, we have to see to what extent
our llnk works and measure UT, but we will have that comparison.
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I do want to mention one thing, one slight point that I for-

got to mention. The phase llnk for ANIK, I had no mention of
avoiding the ambiguity problem. We haven't been concerned with

that. In actual fact, if one is, the actual bandwidth of the

ANIK transmitting band is 60 megahertz so one could think of

transmitting multiple tones and alleviating the ambiguity problem

from it so you could indeed lock in on the signal precisely.

DR. ROBERT KAALS, Van Swlnden Laboratory in the Netherlands

With respect to the question put by Dr. Jesperson, I can tell that

we have some possibilities in our country because VLBI stations

and stations which have possibility for two-way satellite links

are very close to each other and we are looking into the possi-

bilities to set up such an experiment. Thank you.

DR. KNOWLES:

Yes. I have talked to some of the people in the Netherlands, Dick

Skilutsee in particular and I know there is an active effort to

set up such a network in Europe. I think it is very commendable

and I think you are ahead of current efforts in this country.
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ABSTRACT

The Van Swinden Laboratory (VSL) of the

National Service of Metrology in the

Netherlands has recently been moved to

a new laboratory at Delft. The section

Time and Frequency of the Division of

Electromagnetism and Time is now housed

in a laboratory, built as a cabin of

Faraday, with well-maintained environ-

mental conditions and equiped with dif-
ferent other provisions.

The cesium atomic clocks are put on heavy

concrete blocks which are placed vibra-
tion free at sufficient distance from

other objects to avoid mutual disturbing
influences.

A microprocessor provides the automatic

data registration of the complete system.

The main international synchronization

link is the Loran-C system.

Initially it was planned to set up an

international TV-synchronization network

between NPL/RGO, LPTF, PTB/DHI and VSL.

For this purpose three 3 m-parabolic

antennas should be placed at 90 m height

on top of the main building of the Depart-
ment of Electrical Engineering of the

Technical University Delft.
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A preliminary experiment between NPL and

VSL during the years 1976 - 1978 showed

the possibilities The accuracy is 500 ns

during most of the time. The link is about

240 km long, mainly across the North Sea.

Also good reception of TV-syncpulses
was found of a German TV-transmitter at a

distance of 170 km from our laboratory.

NPL is going to propose a new, improved

TV-synchronization experiment. An accura"

cy of better than 200 ns seems to be pos-
sible. In both cases the receiver has

been equiped with a phase locked loop

TV-sync pulse detector.

However, instead of the planned three para-

bolic antennas, in the meantime the new

laboratory has been equiped with a system

of satellite receivers. A 3 m-parabolic
antenna receives signals above 4 GHz and

other antennas can receive signals in the

frequency bands from i00 - 500 MHz and
1 - 2 GHz.

Close co-operation has been established
within the Netherlands between the VSL

and the laser-satellite groundstation of

the Geodetic Department of the Technical

University Delft at Kootwijk and the radio-

astronomy station at Dwingeloo.

The mutual links make use of the TV-syn-
chronization techniques, with which we can

achieve an accuracy of about 8 ns to i0 ns
(i _) over links of 140 km.

It has been planned to join the ESA (Euro-

pean Space Agency) two-way laser satellite

synchronization technique experiments --

where the Netherlands' ground station is

one of the most powerful ones in Western

Europe -- and to co-operate in VLBI-measure-

merits. A proposal for such a VLBI-experi-

ment between the UK and the Netherlands may
be realised in 1980.
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In this way a good comparison and syn-

chronization can be performed between
the different methods.

INTRODUCTION

The Van Swinden Laboratory (VSL) of the National Ser-

vice of Metrology in the Netherlands has recently been
moved from The Hague to Delft. In the old laboratory

at the Hague the section Time and Frequency of the
Division of Electromagnetism and Time was equiped for

the reception of VLF/LF-, Loran-C- and TV-transmissions.

In particular the standard frequency signal transmis-
sions of DCF 77 (Mainflingen, FRG) were monitored daily.

Daily measurements were done on the Loran-C transmis-
sions of Ejde (7970-M and 7930-X) and Sylt (7970-W).

Also every day measurements were carried out on the TV-

synchronization system, in which way other laboratories

in the Netherlands are synchronised to the VSL.

The new laboratory at Delft, about 17 km south of the

Hague, also possesses the possibilities for receiving

satellite transmissions, while by further co-operation
with other institutes different techniques -- e.g.

laser-synchronization and VLBI -- can be used and com-

pared.

INTERNATIONAL TV-SYNCHRONIZATION NETWORK

Originally, it was planned to set up an international

TV-synchronization network between NPL/RGO, LPTF, PTB/
DHI and VSL.

For this purpose three 3-m parabolic antennae should

be placed at 90 m height on ton of the main building

of the Department of Electrical Engineering of the

Technical University Delft, directed to TV-transmitters

in the UK, France and Germany. A special low attenua-
tion coaxial cable of about 800 m should connect the

antennae with the measuring equipment in the time and

frequency standards laboratory of the VSL.
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PRELIMINARY EXPERIMENT BETWEEN NPL AND VSL

An experiment between NPL and VSL during the years

1976 - 1978, when the VSL was still in The Hague,

showed the possibilities.

The TV-transmitter to be received by the NPL as well as

by the VSL, was located at Sudbury (Suffolk, UK), 85 km

north-east of London. In this case no TV-relay stations

should be involved. In principle NPL could receive this

station without any special measures.

The transmitter frequency is 715 MHz (BBC 2).
The VSL, at a distance of 240 km of the transmitter and

a transmitting path mainly over sea, installed a 21

element, 14 dB gain Yagi-antenna on the roof of a 60 m

tall building next to £he laboratory.
The NPL used a broad band antenna with broad band am-

plifier.
Because the transmission link from the TV-studio to the

Sudbury transmitter is often different, it is strictly

necessary to do the measurements at the same moment.

The difference in propagation delay between the trans-

mitter and the respective laboratories showed up to be
about 2200 us, what is much more than the theoretically
calculated difference of 480 us.

It came out that the transmissions of Sudbury (at a dis-

tance of 100 km from NPL) were overruledby the trans-
mission of a local transmitter at the same frequency and

with the same program in Hemelhempstead (35 km from the

NPL) .

NPL could, however, very well receive another BBC 2 trans-

mitter at Crystal Palacein Sou£h_L0ndon' "

Taking into account that the BBC-program comes from
studios in London and then is transmitted via a detour

of about 500 km to the Sudbury transmitter, after which

reception in The Hague is possible, the overall correc-
tion, which one has to apply, is 2470 us.

In figure 1 the result of the measurements UTC(VSL) -

UTC(NP L) via TV is plotted over a period of 3 months

(May - July 1978). For comparison is also plotted UTC

(VSL) - UTC(NPL) via Loran-C (Sylt).
Except for throw-out measurements the average over theseL

3 months seems to be well within 500 ns.

The uncertainty in each measuringpoint is ± 1 us,as a
maximum.
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The VSL-measurements were carried out with the applica-

tion of a phase locked loop, locked to the received

synchronization signals. The variations in field strength
in the troposphere over this distance can be 60 dB.

As a check a portable clock measurement was carried out

between NPL and VSL on June 27, 1977. The difference

UTC(NPL) - UTC(VSL) = (30,05 ± 0,05) us. Calculations
in 1978 taking into account this value confirmed the de-

lay of 2470 us.

Also experimental TV-measurements were done between PTB
and VSL_

The VSL could receive the German ZDF-transmitter at

Wesel, 166 km away from our laboratory. The measurement

data were calculated with the help of the measurements

data UTC(PTB) - ZDF as published weekly by the PTB in
their Time Service Bulletin.

The TV-measurements were compared with the calculated
time difference UTC(PTB) - UTC(VSL) out of the Loran-C
measurements.

Also in this case a correction had to be applied which

was calculated out of the comparison of Loran-C diffe-
rences and the averaged TV-differences.

The results are plotted in figure 2.

The dispersion over about 2 months is less than 1 us.

CONCLUSION

The throw-out measurement results are mainly due to the

fact that for direct TV-synchronization over such large

distances there can be much disturbance, by which the

signal levels can strongly change and thus the receiver

will be upsetted and extra uncertainties of 1 to 1,5 us
are introduced.

Improvement for this can be achieved by applying a bet-

ter antenna with a higher gain and a more narrow beam

and placed on a greater height.
In this moment it is believed that in an international

TV-synchronization network, as thought, one can achieve

an accuracy of 500 ns, which possibly may be improved
to 200 ns.
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PROPOSAL

With respect to the feasibility study on long distance

international TV-svnchronization networks the NPL is

proposing a continuatlon of the work in the year 1980.

THE NEW VSL - LABORATORY AT DELFT

In the mean time the VSL has been moved to a new labora-

tory at Delft, 17 km south of The Hague.

Instead of the intended three 3-m parabolic antennae,

one has installed on the highest point of the roof of

the VSL satellite receiving antennae, so to have a good

opportunity to link in in these synchronization systems.

INSTALLATION

The section Time and Frequency is now housed in a labo-

ratory, built as a cabin of Faraday with a 135 dB scree-

ning up to i0 GHz. The environmental conditions are

(23 ± 0,3) °C and (45 ± 5)% R.H. An extra emergency air-
conditioning is available.

The laboratory has been equiped with automatic fire

alarm and halogen extinguisher.

The power supply consists of two different networks.
One is a stabilized mains; the other network is connec-

ted via an emergency power generator. Further, an

open NiCd battery power supply guarantees continuous
and undisturbed functioning of the clocks and the other
main electronics.

The cesium atomic clocks are put on heavy concrete
blocks which are placed vibration free at sufficient

distance from each other (i m) and other objects to

avoid mutual disturbing influences. Also was looked for
a minimum magnetic field (< 25 UT).

All the measuring equipment, receivers, digital clocks,
counters, microsteppers and other electronics are

brought together in a large console.

A microprocessor provides the automatic data registra-

tion of the complete system.

The switching between the different standards and re-

ceivers is done by means of TTL-integrated switches.
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The overall reproducibility in this switching system is
about 1 ns.

The on tape gathered measurement data are further pro-

cessed with the help of a microcomputer.

Further improvements on the system can be achieved and

have been planned by providing a microprocessor con-

trolled surveillance system.

The number of cesium atomic clocks, taking part into
the BIH-program has been increased to four, while a

fifth clock is under study.

Three of the clocks are located in our own laboratory.

The fourth clock is located at the European space

Technology Center (ESA-ESTEC) at Noordwijk, Netherlands.

LORAN-C, VLF/LF AND DOMESTIC TIME SIGNALS

Also in the new laboratory the main international syn-

chronization link is still the Loran-C system.
Received are the transmissions of Ejde (7970-M, 7930-X)

and Sylt (7970-W).

The measuring data are sent by telex once a week to the

USNO in Washington D.C. for keeping track on the North

Atlantic and Norwegian Sea chains, and every period of
30 days to the BIH.

The standard frequency transmissions of DCF 77 are

monitored as also the domestic time signals, which are
disseminated by the telephone PTT, ± i0 ms, and the

radiotransmitters Hilversum III, ± 1 ms.

TV-SYNCHRONIZATION

Daily measurements on the TV-synchronization system
guarantee a very accurate synchronization of the time

and frequency standards in other laboratories.

For the synchronization signal (point) one uses the

middle of the trailing edge of the first field synchro-
nization pulse.

The day by day variance in the difference UTC(VSL)-UTC

(ESTEC) is about 15 ns, and is mainly limited by the
instability of the standard tube of the cesium atomic

clock used by the VSL.

Figure 3 shows the stability UTC(VSL)-UTC(ESTEC) via TV.
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The variance of 6 measurements, spaced by i0 s each, is

about 8 ns. This is mainly due to receiver noise.

TV-synchronization measurements done at other locations
in the Netherlands show that over distances of 180 km,

where one measures via other TV-relay transmitters,
about the same variance of 15 ns can be expected.

A weekly time service bulletin is published by the VSL.

LASSO

For the succesful operation of the two-way laser satel-
lite synchronization technique, one needs very powerful

laser ranging ground stations, which can give very accu-

rate timed single shots and can detect the shot again

after having been reflected by the satellite at a dis-

tance of 36000 km. One of the most powerful stations is

located in Kootwijk, Netherlands.

After having applied some modifications and adaptations

it is planned to join the BIH-ESA-Sirio II laser syn-
chronization experiments, where we hope to achieve an

uncertainty in the synchronization of i-i0 ns as a
maximum.

The Kootwijk laser ranging station is linked to the

VSL by means of TV-synchronization and portable clock
measurements.

VLBI

Another possibility for time scale synchronization is

to make use of the VLBI-technique.

The radio-astronomy station at Dwingeloo, Netherlands
is located at a distance of 173 km from the VSL and

has also a TV-synchronization link wi£h the VSL.

An experiment which will make use of the VLBI technique

has recently been proposed by the NPL and the VSL ma-
king use of the radio-astronomy stations in Chilbolton

(UK) of the Appleton Laboratory and in Dwingeloo.

SYNCHRONIZATION VIA SATELLITE

The new VSL-laboratory at Delft has been equiped with
different antennae.

It is now possible to receive signals in the frequency

band from I00 MHz to 500 MHz. The antenna gain is 8 dBi;
RH or LH circular.
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Another antenna gives the possibility for receiving sig-
nals in the frequency band from 1GHz to 2 GHz. The
antenna gain is 8dBi; RH or LH circular.

Also a 3 m-parabolic antenna has been installed, which

at present has been equiped with a receiving system for
the frequency band ii GHz - 12 GHz.

The noise figure is _5 dB. It gives the opportunity
for looking into the time synchronization possibilities

at a high accuracy level by receiving FM-TV-broadcasting.
The parabolic antenna as also the 100-500 MHz antenna

are remote controlled in azimuth and elevation from the

console in the time _standards laboratory.

At present apart from the ii - 12 GHz receiver no other
receivers has been installed or are available for mea-

suring on other satellites.

The VSL might have also access to very large parabolic
telecommunication satellite antennae of the PTT at

Burum, Netherlands, 188 km north of our laboratory.

In the mean time the coordinates of the VSL as also of

Kootwijk are together with the coordinates of other la-

boratories and institutions determined by means of

simultaneous Dopplerobservations.

CONCLUSION

We hope to be able with the help of all the combined fa-
cilities to compare the different synchronization tech-

niques among each other.
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TWO-WAYTIME TRANSFERVIA GEOSTATIONARY
SATELLITESNRC/NBS,NRC/USNOAND NBS/USNO

VIA HERMESAND NRC/LPTF(FRANCE)VIA SYMPHONIE

C.C. Costain, J.-S. Boulanger, H. Daams, NRC
D.W. Hanson, R.E. Beehler, A.J. Clements, D.D. Davis, NBS

W.J. Klepczynski, USNO
L. Veenstra and J. Kaiser, Comsat Laboratories

B. Guinot and J. Azoubib, BIH
P. Parcelier and G. Freon, LPTF

M. Brunet, CNES

ABSTRACT

The two-way time transfer using the Hermes (CTS)
satellite and the Symphonie satellite began in July, 1978. The Hermes
experiment finished at the end of June 1979, and the Symphonie
experiment will continue until the end of 1980. The N.R.C. uses
terminals at the Communication Research Center about 25 miles from the
N.R.C. laboratory, and the time transfer from N.R.C. to C.R.C. is made
using line of sight TV reception with\frequent checks by portable
cesium or rubidium clocks. Initially the USNOused Goddard terminals,
and the NBSa HEWterminal in Denver, and both relied primarily on
portable clock synchronization. For the last eight months, Comsat
terminals were used at the USNOand at NBS, so that no secondary time
transfer was required. In France, the PBSSymphonie terminal is in
Brittany, 300 miles from the Laboratoire de Temps et Fr_quence (LPTF)
at the Observatoire de Paris, and the time transfer to the terminal is
made via the TV networks. The uncertainty in this latter link is
about 20 ns, but for the other stations the uncertainty is 1 to 5 ns.

In most of the experiments, 1 pps pulses of the
station atomic clocks were exchanged between the partners, and a
cubic equation was fitted to the I000 to 2000 second measurements.
The/equations were exchanged and substracted to obtain the time
difference of the stations. The standard deviation in the fit of the
equations varied, depending on conditions, from 1.5 ns to 16 ns. For
the last month of the Hermes experiment a 1MHz signal was used,
giving a standard deviation of 0.18 ns.

The comparison of the time scales via satellite
and via Loran-C (BIH Circular D) show clearly that some Loran-C links
are very good, but that the NBS link varies by 1 _s. Via the
satellite the frequ@_cies of the time scales can be compared with an
accuracy of 2 x I0 -'".
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INTRODUCTION

A preliminary report on the two-way time transfer
NRC/NBSand NRC/USNOvia the Hermes (CTS) satellite was given at the
PTTI meeting last year. The experiment finished at the end of June
1979, when the Hermes satellite was taken out of service, and this
paper is the final report of the year's operation. The transfer
NRC/LPTF(France) via the Symphonie satellite also began in July 1978,
and is expected to continue until December 1980, but only the results
of the first year will be presented for the purposes of comparison.

2. Satellite terminals

The NRChad the use of terminals at the Communication
Research Centre in Ottawa, located about 25 miles from the NRC
laboratory. The NRCrubidium clock and measuring equipment are housed
at the I0 m Symphonie terminal. Initially for the Hermes experiment,
the video signals were relayed via triax cables 1.5 miles to the 9 m
Hermes terminal. After December 31, 1978 the signals were relayed an
additional mile by cable with a 65 MHzcarrier to a 2 m terminal,
which operated until June 30, 1979. Time transfer from NRCrto CRCwas
effectedby line of sight IV receptioncalibratedperiodicallyby
portableclock transfers.

The USNO plannedto operate using terminalsat the
GoddardSpace Flight Center,but with various logisticand equipment
problems,only one successfulNRC/USNOtransferwas possible. At the
WingspreadUsers Meeting, September19, 1978 J. Kaisersuggestedthat
portable20 W 2.4 m Comsat terminalsmight be available,and one was
installedat the USNO for transfersbeginningNovember14, 1978.

The Hermes satellitewas a joint Canada/USAventure,
with each countryusing the satelliteon alternatedays. The experi-
ment was run on Canadiandays up till December31, 1978 after which
time the Canadianallocationwas dedicatedto_TV experiments.....From
Januaryto June 1979, the experimentwas run on USA days on time
allocatedto Comsat. The time transfersresumedon February13, 1979
when the new CRC terminalwas availableand other arrangementswere
completed.

The NBS had the use of a HEW 200 W 3 m terminal
on the top of a hospital in Denver from July 1978 to April 1979. Two
portableCs clocks were.carried_frpmNBS to_Denverfor each transfer,
and TV transferprovidedan additionalcheck.

In April 1979, a second 2.4 m portable20 W Comsat
terminalwas installedat the NBS laboratoryat Boulder. The
transfersNRC/Denver,NRC/Boulderand USNO/Denver,USNO/Boulderboth
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agreed to 30 ns, so no correction for the change in terminal delays
was made.

In France, the Symphonie terminal (PBS) at Pleumeur Bodou in
Brittany is used for the NRC/LPTF(Laboratoire primaire de temps et
fr_quence) transfer. The PBS/LPTF (Paris) transfer is made via the
French TV network with calibration by portable clocks. The precision
in the PBS/LPTF link is about 20 ns, and the accuracy via the portable
clock trips is about I00 ns.

The network described above is given in Figure I.

3. Experimental procedures

In the two-way time transfer, the second clock 1 pps pulses
are beamed to the geostationary satellite, and provide the start
signal for the local counter. The counter is stopped by the pulse
received from the other terminal via the satellite. If it is assumed
that there is reciprocity in the satellite transponders and in the
paths for the slightly different frequencies, then the time difference
between the clocks and the two stations is given, as in Figure 2, by

TI - T2 tl - r I t 2 - r 2
&t - 2 + 2 2 (I)

T_ - T2 tz - t 2 r I - r 2
- 2 + 2 2 (2)

To date, the transmitter delays t i and the receiver delays r. have
not been measured. However, if a simple transmitter t* and _eceiver r*
are built to measure t I + r* and t* + r I at station I, and the same
measuring equipment is carried to measure t2 + r* and t* + r2 at the
second station, then it is apparent from Equation 2 that tl - t2 and
r I - r 2 can be determined with high accuracy. These measurements will
be made for the present CRCand PBS terminals.

The 1 pps video signal, shown in Figure 3, includes
the normal horizontal sync pulses of the TV format to maintain
proper levels in the TV video circuits. There is a disadvantage in
the simple 1 pps format in that the rise time of about 200 ns makes
the readings dependent on the trigger level of the counters. There
are also variations if the S/N is low. Normally runs about 15 minutes
were made, giving 900 readings. A cubic equation was then fitted to
the measurements, and the two equations subtracted to remove the
effects of satellite motion. The time difference between the station
clocks was then calculated for a particular second, and the necessary
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transfers to the laboratory UTCscales included. The standard
deviation in fitting the equation to the measurements varied from 1.5
ns to 16 ns depending on signal conditions.

For the month of June 1979, three modemsbuilt
at NRCwith the 1MHz signal (FCgure 3) were used at CRC, USNOand
NBS. In the mDdema crystal was locked to the incoming Doppler
shifted 1MHz wave train, and a wide band square wave was used to
stop the counter. With these modems, a standard deviation below 0.2
ns was obtained.

In a later version of the modem, both 1 pps and
1MHz signals are included, with the 1 pps at 0.7 volts and the 1MHz
at 0.3 volt level. The 1 pps is sent 0.5 _s in advance, and is used
in the modemto open a gate to allow the first 1MHz cycle following
to trigger the counter. This gives the same output as a 1 pps signal,
but with the precision of the 1MHz signal. On a double hop to
France and back, CRC/PBS/CRC,a standard deviation of 0.25 ns was
obtained.

Figure 4 is a reproduction of the computer output
at NRCfor a five minute NRC/NBStime transfer on June 27, 1979 using
the 1MHz modem. The output includes a plot showing the fit of the
cubic equation to the data, and a histogram with 1 ns resolution.
After the switching transients at the beginning of the run all of the
measurements are within 0.5 ns of the equation. The constant term
should read 256537709.67, the first two digits having been suppressed
for convenience in computation. The linear term, showing a path
length change of 51 ns/sec, is typical, and emphasizes the need to
subtract the results for the two stations for a particular second.
The sawtooth evident in the plot is a beat between the transmitted
1MHz and the Doppler shifted received 1MHz. The interference was
due to inadequate decoupling in the modem, which would have been
corrected had the experiment continued. It does not affect our present
results, but it does partially mask real variations of about 0.5 ns
at the beginning of the run. It appears that the precision of the
experiment is sufficient to observ_ ionospheric effects of the order
of nanoseconds.

Experimental results

The results of the time transfer experiments are
given in Table I (NRC/NBS), Table II (NRC/USNO), Table III (NBS/USNO)
and Table IV (NRC/LPTF). On January I, 1979 NBSadded a steering
correction of 20 ns/day. This has been subtracted in the second
column of the NBStables to provide continuity for plotting the two
six-month periods.
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The terminal delays t. and r. were not measured,
and therefore there is an unknown _ffset _r error in the satellite
time transfer, which hopefully is constant. Portable clock results
NRC/USNOshowed the satellite value about 300 ns high. For the
NRC/LPTFthe satellite error is about 200 ns.

There is therefore a fortuitous cancellation
of the terminal delays, but the errors and the uncertainty in the
errors are such that some smaller fixed corrections to the tables were
not made. One correction that must be applied in future high accuracy
transfer is that for the Sagnac Effect.

This correction for measurements made with
geostationary satellites in the rotating coordinate system of the
earth is significant. The true time difference is given by
t (East clock) - t (West clock) = At (measured) - 2mA

C

where m is the angular velocity of the earth, and A is the projected
area, on the equatorial plane, of the satellite and earth station
network. The values* for the present experiment are given in Table V.

TABLEV

East West 2mAns

C

USNO NBS 75.5

NRC NBS 67.6

NRC USNO -7.9

PBS NRC 158.2

There is an interesting result for NRC/USNO,for while NRCis east
of USNO,viewed from the satellite position it appears to be west.

The results of the Symphonie transfer to France
are plotted in Figure 5. Transfers were made most working days until
MJD43913, and twice a week after that date. There was a break in the
measurements during the eclipse period in the fall of 1978, and a
shorter break following MJD43913 when the antenna at CRCwas changed.

There are occasional errors of about 200 ns
which presumably arise from the time transfer to the laboratories,
but the reason for these has not yet been identified.

*David W Allan, NBS, private communication
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In Figure 6 the results for the NRC/NBS, NRC/USNO
and NBS/USNO transfers are plotted (with the 20 ns/day adjustment
for the UTC (NBS) value after January I, 1979). The scale of the
figure is such that detailed comparisons of the time scales is not
possible, but some general conclusions can be drawn.

First, a comparison of the satellite results
with the Loran C values obtained from the BIH Circular D show that
the Loran C NRC/USNO is very good for most of the year. Unfortunately
the one Hermes result in July cannot be used, because at Goddard
separate transmitting and receiving antennas were used and the
terminal delay errors are likely to be much different than those of
the duplex Comsat terminal. Therefore, there is no comparison with
the portable clock measurements possible for this period.

The NRC/NBS Loran C results show, as expected,
variations of about 1 _s from the long land p_h to Boulder. Via
Loran C there are apparent changes of 3 x lO-'_in the relative
frequencies of the time scales for periods of 3 to 4 months.

In the satellite results, there are two dates
when changes were made in the NRC terminal. The first in January
1979 was to a different terminal at a different site, and there must
be some vertical shift in the scales at that point. However, from
the NRC/USNOLoran C measurements it does not appear to be large.
The second in March was an obvious change of 120 ns in both NRC scales
that did not appear for the NBS/USNOresults. This was not explained,
but the correction was added to all subsequent measurements.

The best results were obtained for NRC/NBS in
1978, when the main 9 m CRC terminal was used and a 200 W terminal
in Denver. As was mentioned before, the 1 pps results are dependent
on S/N and the quality of the received pulse. Over the last four

months of 1978, when routines had been established, frequency 4
comparison between the NRCand NBS scales was better than 2 x I0 -I .

The same accuracy was obtained for NRC/USNO
for the month of June 1979, using the 1MHz modem. Unfortunately,
the two mid June measurements with NBS using 1MHz were in error by
about 40 ns. A wrong deviation setting on the terminal at Boulder
resulted in a 2.2 volt rather than the proper 1 volt video signal
being received by the partners and this caused phase distortion
in the receiving stations. However, all ended well, and on the last
day of the experiment, on June 27, 1979 a 2 ns closure was obtained
for the three two-way transfers.
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There was some difficulty in 1979 at CRCin
maintaining a constant video delay in the complex and long transfer
system. On days when there was an obvious CRCerror, the points were
ignored in drawing the curves.

Another "closure" experiment was carried out on
April 9, 1979. The allocation on Hermes and Symphonie satellites was
at the same time, and the video signals from NBSand from France were
patched through the CRCterminal to effect an NBS/LPTFtwo-way trans-
fer. Immediately before and after this transfer an NRC/NBSand
NRC/LPTFtransfer was made, and the sum of these agreed to 4 ns with
NBS/LPTFresult. This agreement was perhaps fortuitous because in
using two satellites the near simultaneity of the normal two-way
transfer is lost. A further experiment, in which the NRC/NBSand
NRC/LPTFtransfers were carried out at the same time, had to be aban-
doned because one of the counters at CRCwas not sufficiently reliable.

Near the end of the experimental period Comsat labora-
tory installed two PSKmodems, which had been modified for time
transfer, at the USNOand NBSterminals. This system demonstrated
a higher efficiency in the time transfer, and achieved a sigma of
17.5 ns on a link of I00 kHz bandwidth.

The final comparison of the four time scales is
given in Figure 7. In this figure the intercepts and slopes have all
been altered to permit an expansion of the scale. Any factor that is
commonto the three curves arises from the NRCscale, and other
individual changes can be determined by using the other two scales as
controls.

Conclusions

There is no doubt that these long term experiments
have shown the advantages of the two-way satellite time transfer.
Our efforts must now be applied to the development of an economical
operational system using commercial satellites.

Acknowledgements

Wemust acknowledge that we have had a great deal of
assistance in these experiments. The Canadian Department of Communi-
cations has been most helpful in arranging the participation of NRC
in both the Symphonie and Hermes experiments, and the staff of the
Communications Research Center has given us excellent support with
their terminal facilities. The joint French and German Secretariats
have been generous in allocation of time on the Symphonie satellite,

505



and the PBSstaff very cooperative. The CTS program office of NASA
formalized the arrangements for NBSand USNOparticipation. The use
of the Denver terminal of the Department of Health Education and
Welfare for the first nine months of the Hermes experiment provided
some of the best NRC/NBSresults.

506



Table I UTC(NRC)-UTC(NBS)=dtns Table II UTC(NRC)-UTC(USNO):dt ns

MJD dt dt* MJD dt

43717.83 2706 43826.71 4938
43724.83 2674 43833.71 5033
43731.85 2639 43840.72 5053
43738.83 2643 43847.71 5129
43759.84 2566 _3854.71 5191
43766.83 2558 43863.89 5207
43773.84 2598 43917.61 5363
43780.84 2684 43931.59 5420
43786.83 2720 43952.63 5474
43800.83 2891 43965.78 5548
43807.83 2975 43972.58 5574
43814.88 3009 43986..59 5586
43821.88 3058 43993.64 5710
43828.88 3087 44007.60 5690
43842.88 3195 44028.76 5911
43849.88 3233 44035.80 5939
43856.88 3290 44044.60 5987
43863.87 3322 44051.58 6053
43870.87 3367
43931.64 4938 3765
43952.68 5609 4015 Table III UTC(NBS)-UTC(USNO)=dtns
43965.81 5990 4134
43972.61 6245 4253 MJD dt dt*
43986.61 6566 4294
44002.60 7177 4585 43917.65 989 (Denver) 1882
44007.63 7265 4572 43938.64 354 " 1667
44028.73 7957 4842 43945.63 44 " 1496
44035.86 8126 4869 43952.70i- 123 " 11471
44044.67 8382 4949 43965.83 - 436 " 1421
44051.67 8642 5069 43972.66 - 613 " 1380

43986.68 - 998 " 1276
44002.63 -1477 " 1176
44002.64 -1446 (Boulder) 1146
44007.56 -1578 " 1113
44014.87 -1690 " 1142
44028.78 -2007 " 1106
44044.61 -2355 " 1077
44051.63 -2586 " 986

For dt*, the -20 ns/day change in UTC(NBS) frequency on January I,
1979 (MJD 43874) has been removed to maintain consistency with the
1978 data. The dt* values are plotted in Figures 6 and 7.
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: TABLE IV UTC(NRC)-UTC(LPTF) = dT

M3D dT MJD dT MiD dT

43701.80 4419 43839.78 5906 43959.64 6889

43702.81 4387 43842.75 5879 43962.66 6937

43707.80 4401 43843.75 5090 43966.60 6975

43708.80 4400 43847.79 5931 43969.62 6974

43709.79 4412 43850.77 5932 43972.64 7001
43710.80 4395 43053.77 5964 43973.60 6992

43713.01 4430 43854.80 5963 43980.60 7097

43714.80 4428 43855.B_ 5912 43986.64 715_

43716.80 4498 43862.70 6082 43993.59 7276
43717.80 4477 43863.76 6086 43997.56 7296

43720.80 4505 43864.76 6075 44002.56 7351

43721.80 4527 43869.71 6130 44007.64 7426

43722.80 4533 43870.76 6175 44010.65 7474

43723.80 4575 43875.69 6213 44011.63 7496

43724.80 4549 43077.70 6223 44021.62 7704
43729.80 4031 43878.69 6232 44025.61 7829

43730.79 4573 43881.76 6280 44029.60 7843

43731.80 4570 43882.69 6274 44032.62 7912

43734.00 4o22 43883.69 6254 44035.62 7963

43735.80 4045 43884.75 6250 44039.69 8018

43736.79 4589 43085.76 6281 44042.64 _142

43737.79 4605 43888.76 6303 44043.54 £162

_3738.80 4058 43889.69 6313 44044.56 8200

43797.70 5064 43891.75 6343 44040,62 8231

43799.71 5120 43892.75 6354 44051.60 8378

43800.76 5156 43897.66 6396 44053.61 8448

43801.75 5183 43098.62 6410 44057.60 8528

43804.75 5253 I43099.62 6399 44060.62 8604

43805.67 5357 43902.62 6415 44063.62 8624

_380o.07 5473 43903.66 6537 44067.61 8674

43807.77 5384 43904.06 6431 44071.60 _760

43808.77 5380 43905.60 6429 44074.60 8821
43813.70 5454 43906.60 6444 44078.61 8912

43814.70 5405 43909.01 6471 44081.61 9036

43818.75 5504 43910.66 6428 44085.60 9129

43820.70 5539 43911.66 6452 44089.62 9221

43821.75 5538 43912.61 6440 44092.60 9120

43822.74 5590 43913.62 6467 44095.62 9304

43820.70 5683 43931.66 6650 44099.61 9371

43827.70 5590 43934.06 6724 44102.61 9391

43828.75 5706 43937.06 6729 44106.60 9493
43832.73 5772 43941.66 6779 44108.62 9407

43834.70 5023 43945.64 6008 44113.81 9571

43035.74 5814 43948.66 6784

43836.75 5687 43952.64 6881
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Two-way satellite time transfer Symphonie 11.5°w

Hermes (CTS) 116°W _ '_
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Figure 1. The Four Station, Two Satellite Network



Time transfer equation

Figure 2. The Two-Way Satellite Time Transfer Equation
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Figure 4. The Fit of a Cubic Equation to the Data at NRC for 1MHz Modulation on June 27, 1979



9000
I

8000

7000
UTC(NRC)-UTC(OP) -_

6000

5000
E "= PORTABLECLOCK :

f, , I , I ,,,, , I I ,, I I , I , , , , ii I , ,, ,, ,, o, i , I I ,, ,, , , I , ,

43700 43800 43900 44000 44 I00
tO HJD/div.

Figure 5. The Difference in the NRC and OP (or LPTF) Time Scales Via the Symphonie Satellite



Two-way Satellite Time Transfer via Hermes Satellite

UTC (i) - UTC (j) Hermes- _

6.0

++ ++ + + +

..... .%.--- + + . + +

Je + + +_ + + NRC-USNO

+ +
5.0

"_ + + + + _,LoranC ) x xx_"_xL. .

• + 1\ "J'_j-NRC terminal changes _,_<J
t /

+ '_, Hermes

USNO Portable Cloc

NRC-NBS
0

J_t "_
a) + + + s

,_ .o_ x x x ,L
x x IO0_ns

x x x x x .-_

x x Ix o-13
anC

x x

x

2.0

I NBS-USNO /)

_ ""_..._ - RC-USNO)-(NRC- NBS)

I I I I I I I I _1_1I.o i i I i I i I i I I I I I _ I i i I i t i i _l_ I i I
43700 43800 MJ D 43900 44000

Jan I Feb J March J April J May i June IJuly I _o I Sept I Oct J NOv i Oec I
1978 I 1979

Figure 6. The Differences Between the NRC, NBS and USNO Time Scales Via the Hermes Satellite



20 ns/di v.

1200 -

I000 - ,Z_r'- __,_,,_,_ /,_ .j... -- ..._ _,
800 -

6OO

• ,too -

2OO

0

-200 -

43700 43750 43800 43850 43900 43950 44000 44050
5 NdD/div.

Figure 7. The USNO, NBS and OP Time Scales Compared to that of NRC. The Intercepts and Slopes
have been Altered to Permit an Expanded Scale.



QUESTIONS AND ANSWERS

MR. CHI:

Are there any questions?

DR. COSTAIN:

Are there any answers?

MR. CHI:

Would you please use the microphone and identify yourself for the
sake of recording?

MR. LAUREN RUEGER, The Johns Hopkins University, Applied Physics Laboratory

With all those precision measurements, what kind of a standard

were you using out at the stations because we see in time order
scatter a nanosecond kind of a variation in cesium standards?

DR. COSTAIN:

There was an HP Rubidium at the CRC site.

MR. RUEGER:

Okay. What about the standardization of the point on the pulses

that you used for determining the epoch of a measurement? We
have been hearing for a while that people use different places on
these rise times and different rise time pulsesand character-

ization. Have you some kind of standardization for this purpose?

DR. COSTAIN:

We try to operate at a quarter of a volt trigger level on the

standard one volt pulses or .7 volt pulses. But of course with
the one PPS it is very sensitive in fact to the quality of the

received signal and the trigger level and somebody comes by and

changes the trigger level from time to time. This is why we pre-
fer the one megahertz. When you have got a wldeband square wave
it doesn't make much difference where the trigger is set.

The only thing is, is you have to make sure, and we did,

that the megahertz is synchronized with your i PPS.
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MR. RUEGER:

Does everybody in your network use exactly the same character-

istics in this respect?

DR. COSTAIN:

We endeavored to. That was the main thing. The video treatment

in the terminals was not always the same.

MR. CHI:

I would like to ask you one question if I may, and that is what

is the variation of the corrections throughout the time of measure-

ment? Is that variation large or fairly constant?

DR. COSTAIN:

It is a bit difficult to tell with the type of experiment we were

running, I mean, and you were fitting a cubic equation and can
cover a lot of faults. But I think we could see real variations

of the order of nanoseconds.

I was going to say that my endeavor is, if I can persuade

our authorities to get two terminals for Ottawa, to do a two-way

time transfer to ourselves, eliminate clock errors and make a

definitive evaluation of this statelllte system.

DR. LESCHIUTTA:

Can you please tell us something about what techniques you are

proposing to use in order to calibrate the ground stations? Call-

brate the delay of the ground station?

DR. COSTAIN:

Yes. I should_ elaborate. While it is intentionally what we intend

to do with Symphonle, first make a small transmitter, a little gun

diode, that you use to measure the artificial transmlt/recelver

loop, then carry that to the next statlon and make exactly the
same measurement and subtract it. I think that can be done to

one or two nanosecond precision.

And the same with the transmitter. You build a small receiver

and you carry that receiver, cables and everything and make the
identical measurement at the other station. And it is the dif-

ference in those measurements that you want to know.
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It is very difficult, I think, to measure precisely and sep-

arately the transmitter delay and the receiver delay at a station.
If we can make the difference measurements between the two sta-

tions, then I think it can be much more accurate.

MR. PLEASURE:

Would you please comment on the technique suggested by Professor

Cohen of the University of Pennsylvania in an article in "Physical

Review Letters" where he has geostatlonary satellites communicating

with one another and with ground stations and using that to calcu-

late Einstein. Were you aware of that?

DR. COSTAIN:

I think I did read the paper. I don't know that any further veri-

fication to my knowledge is needed in relativity theory to the

accuracy that we can make the measurements. You must, of course,

take into account a rotating coordinate frame--

MR. PLEASURE:

But he could not do that accurately. He has an approximation that
he would like to have measured.

DR. COSTAIN:

Well, if we can achieve nanosecond accuracy, this would be one

percent verification on this SAGNAC effect. I would say that my
objective is not that; my objective is a cheap commercial network.

It is an interesting thing, but it costs money to mount a more
elaborate satellite to satellite and we are at the moment searching

for a way to make our communication network economical. And I

think one of the things we have going for us is that I think the
communications networks will need sub-microsecond times in their

systems in the very near future.

DR. SERENE:

Are you planning to compare your result using the LASSO system, in
the area of i nanosecond?

DR. C0STAIN:

The inquiries that we have made that we do not have access to a

telescope for the two-way, and I am not sure, in fact, whether I
lwould have the money or manpower for the one-way from Ottawa. We
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are suffering a bit from retirements and it is going to be a bit
complex in the next two years. We might know certainly before

the experiment is finished. We might hope to be able to parti-
cipate. At the moment, I cannot do so.
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THE SIRIO-I TIMING EXPERIMENT

E. Detoma

Bendix/NASA-GSFC (I)
and

S. Leschiutta

Istituto Elettrotecnico Nazionale "G. Ferraris"

ABSTRACT

During the 1979 a time synchronization experiment
was performed via the SIRIO-I satellite. The ex-

periment is sponsored by the Italian National Coun-
cil of Research (CNR) and was proposed and studied

by the Istituto Elettrotecnico Nazionale, Turin,
Italy.
The RF communication channels are in the SHF re-
gion, with the uplink carrier at 18 GHz and down-

link at 12 GHz. The synchronization has been per-
formed between two ground stations located in the

northern and in the central part of the country.
One-way and two-way techniques have been evaluated.

Two modes of operation are tested in the two-way
technique:

- sequential, time multiplexed, signal transmission
on the same communication channel;

- simultaneous transmission using separate commu-
nication channel.

In the sequential mode of operation an advanced
technique, using range and doppler measurements

provided by the timing signals, is used, to take
in account for the satellite motion.

A low cost, versatile, time transfer unit (TTU)
was designed, to generate the timing signals and

the funations (RF carrier and receiver switching,
time tagging of the data, etc.) required to per-
form automatic time synchronization and data acqui-
sition with a minimum of external components.

(i)
The work was performed when the author was at IEN.
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INTRO DUCTI ON

During the 1979 a time synchronization experiment was per-
formed in Italy via the STRIO-I satellite. The experiment was
sponsored by the Servizio Attivit_ Spaziali (Space Aotivities
Service - SAS) of the Italian National Research Council and

was proposed, studied and performed by the Istituto Elettro-
tecnico Nazionale (IEN), Torino (Italy).

One-way and two-way techniques have been evaluated. Two modes

of operation are tested in the two-way technique:

- sequential, time multiplexed, signal transmission on the
same communication channel;

- simultaneous transmissions using separate communication
channels.

In the sequential mode of operation an advanced technique,
using range and doppler measurements provided by the timing

signals, is used, to take in account for the s_tellite motion.

The synchronization has been performed between two ground
stations located in the northern and in the central part of

the country. The results of the time comparisons have been
checked using the TV method and portable clock trips.

The SIRIO-I satellite

The SIRIO-I satellite is a synchronous, spin-stabilized, ex-

perimental communication satellite, designed to conduct tele-
communication experiments and study propagation phenomena at

frequencies of 12 and 18 GHz, and was launched by NASA from
the Kennedy Space Center on August 25, 1977.

The experimental SHF telecommunication payload consist of a
transponder with three separate channels - one for propagation

experiments and two for broad and narrow band communication
exper iment s.

The broadband communication channel (34 MHz RF bandwidth at

-I d_ has been used for the time synchronization. The 17.10
GHz uplink carrier is frequency modulated; the available vi-
deo (baseband) bandwidth used is 6 _Hz. The downlink carrier
frequency is 11.52 GHz.
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Earth stations

The two ground stations, operated by Telespazio S.p.A. (the
company is responsible in Italy for the operation of commer-
cial telecommunication space links, mainly through the Intel-
sat satellites), are located in the northern part of the

country, at the top of the Como Lake, near the Swiss border
(Lario station) and near Rome (Fucino station).

The two stations, to operate with the SIRIO-I satellite, are
equipped with 17 m diameter azimuth-elevation mount autotrack
antennas. The Fucino station serves also as the main control

center of the operation of the satellite (tracking and com-
mand operations).

THE TWO-WAY TECHNIQUE

In the two-way time synchronization technique (ref. I) two
clocks, located in A and B (fig. la), exchange the time in-
formation through a satellite communication link.

The basic equation giving the time difference between the
clocks is:

[m I -To] - [m3-T2]

(I) _ = 2 + &_(c°rrecti°ns)

where 8 is the time difference between the clocks in A and

B [actually _ = T(B) - T(A)], TI and T3 are the times of re-
ception of the time signals transmitted at the times To and
T2 by A and B (fig. Ib).

The corrections take in account several effects affecting

the time synchronization process: the difference in the for-
ward and return paths (from A to B and from B to A) due to

the satellite motion and to the Earth rotation, the atmosphe-
ric propagation delays and the equipment delays.

Corrections due to the satellite motion

If the signals transmitted by A and B are relayed by the

satellite at two different times tI and t2 (fig. Ib) and the
satellite changes its position in the time interval (t2-tl) ,
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the two paths (rAB from A to B and rBA from B to A) are no
longer equals; this results in a correction to be applied to
eq. (I), that can be written as:

rBA -rAB rBA- rAB
(2) A_ =

s 2 V 20
P

where V (speed of propagation) is assumed to be nearly equal
to c (l_ght velocity)

Corrections due to the propagation effects in the atmosphere

Two types of effects have to be considered:
a) tropospheric effects

b) ionospheric effects

The tropospheric effects are frequency independent, so they
nearly cancel out when performing the two-way time synchroni-

zation (in fact, they contribute nearly equal delays in the
forward and return path).

The ionospheric effects (that are frequency dependent) are to

be taken in account, again by adding to eq. (I) a second cor-

rection _p in the form:

&_B(fu) -A_(f d) &tA(fu) -_A(fd)
(3) &a =

p 2 2

where _t_ (N=A,B) is the additional delay (with respect to
the freeZspace propagation) introduced in the path between

the station N and the satellite; fu is the uplink carrier fre-
quency and fd is the downlink carrier frequency for the sta-
tion N (separate carriers may be employed in A and B).

At the frequencies employed in the SIRI0-1 experiment, the
effects due to the eq. (3) are negligible.

Instrumentation delays -ground segment
The delays in the transmittingand receiving equipments must

be taken in account; they contribute a correction A£eq given
by

[_tr (B) -_rec(B)] - [_Ttr(A) -_rec(B)]
(4) f_8 =

eq 2
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where: _IZtr(N) is the delay in the transmitting equipment and
Z_Irrec(N) is the delay in the receiving equipment, at the sta-
tion N (N=A,B).

Instrumentation delays - space segment

The correction _'eq takes in account for the differential de-
lay in the satellit_ transponder; if fN is the frequency used
by the station N, this correction can be written as:

&_transp(fB) - _lYtransp(fA )
(5) & 'eq - 2

where _t ..... (f) are the group delays of the satellite trans-
ponder at_h_frequency f.

Modes of operation

Let we set (fig. Ib)

(6) &t = T2-T 1

Z_t can be regarded as an arbitrary time interval (and we will

make use of its arbitrariness in the following analysis) de-
fining three possible modes of operation:

a) At_O: the two stations transmit sequentially in
time ;

b) _t-_O: the signal transmitted by A is simply
transponded back by B;

c) _t<O: the two stations transmit simultaneously
to the satellite.

If the two stations transmit sequentially in time (case a),
only one communication channel can be used, but in this case
the satellite motion must be taken in account, to compensate
the differences between the forward and return paths. In ad-

dition, if one channel is used, the correction due to eq. (5)
vani she s.

If two channels are used, the two stations can transmit si-
multaneously, in order to have the signals relayed nearly at
the same time by the satellite (case c), so that the change
in paths due to the satellite motion can be neglected.
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THE SIRI0-1 EXPERIMENT - SEQUENTIAL MODE OF OPERATION

The time synchronization SIRIO-I experiment was designed to
test and precisely measure the effects of the satellite mo-
tion.

Each ground station (fig. 2a), in addition to receive the sig --
nals transmitted by the other station, receives its own sig-
nal, relayed back to Earth by the satellite. This can be im-
plemented easily, as shown in fig. 2b. We use a fixed synchzo-

nization sequence, that will be covered in detail later, so
that the time of transmission for each station is at fixed

times, according its own time scale.

With reference to the geometry depicted in fig. 2a, the basic
synchronization equation, in which the corrections for the
satellite motion are taken in account, becomes:

(TI -T O ) - (T3-T 2) (r2+r_) - (rI +r1')(7) = +
2 2c

Now, we can write with good approximation Elf (t2 -t I) is
small ]:

r_ = rI + _A (t2-tl) +''"

!

rl = r2 + Z'B (tl-t2) +'''

where _. is the range rate of the satellite with respect to
the station N(N =A,B) and the higher order terms in the se-
ries expansion are negligible.

Let we define the pseudo-ranges _1 (tl) and _2(t ) as:
T4-T0 " _5-T2

(9) _I(tI ) - c ; B2(t2) - c

so that, by having a sequence of n synchronization measure-
ments, an estimate of the range rate can be obtained in the
following form:

_1(t1)n+1 - _I(ti) n

(10) rA = (tl)n+ 1 - (tl)n
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r2(t2)n+ 1 - r2(t2) n

(10) rB = (t2)n+ 1 - (t2) n

so that we finally obtain:

(T 1 -T O) - (T3-T 2) _A+_B
(11) _= 2 + 20 (t2-tl)

T4 + TO T5 + T2
t2 -_where : tI- 2 ; 2

Obviously the determination of tI and t2 is biased by the re-
lativistic effec_ due to the Earth rotation (Sagnac effect)

and by the non-reciprocity of the forward and return paths;
however, these effects produce only a very small error on _,

so that they can be neglected.

But the time interval (t2 -t I) is biased by a larger error:
this is the same difference £ between the clocks, since t2

and t_ are measured in different time reference frames.

In principle, the two-way time synchronization technique sets
no limits to the initial value of &, that can be very large;

the only limitation comes from the technical implementation
of the synchronization procedure. It may be shown that for
the fixed synchronization sequence implemented in the SIRIO-I

experiment, _ can be initially as large as 100 ms, without
affecting the automatic operation of the equipment (mainly
the data acquisition system).

Iterative solution

A simple iterative technique overcomes this problem. Let we

neglect the offset 5, biasing the time interval (t2 -tl); ne-
glecting for now the other sources of error, it's easy to see
that the error _&, on the determination of E, produced by the

bias on (t2-tI) , is given by:

(12) _= _A+_B2c

This s_ggests that an iterative procedure can be stated, the

error _&k+1 at the k+1 iteration step being expressed by:
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rA + rB(13) k+1 = 2c k

The iteration converges very quickly to the resolution of the

(_ +_B)/2c is very small;measurement system, since the term A .
usually one step is all that it is requlred to minimize the
error due to _.

Close form solution

A close form solution can be obtained by introducing _ in the
right side of eq. (11), that now becomes:

-
(14) _ = 2 + 2c (t2-t 1 -6) +

+ corrections

from which it is easy to obtain:

9A+gB

[(TI -T o ) - (T3-T2)] + (t2-t I) +corrections(15) c

2(1 + 2c "

Corrections due to the propagation in the atmosphere and sat-
ellite transponder differential delay.

Only a very small bias is expected
due to the propagation effects in the atmosphere; since it is
quite small as compared with the resolution of the measurement

system (based on the HP5345 counter, whose resolution is 2 ns),
this bias can be considered negligible.

Since only one communication channel is used, the satellite
transponder does not affect the synchronization accuracy. The
satellite motion is precisely measured, so that, except for
the Sagnac effect, that can be easily computed, no other ef-
fects, related to the space communication link (from one

ground antenna to the other), affect the synchronization ac-
curacy in the SIRIO-I experiment, the main source of error
still being represented by the uncertainties in the measure-

ment of the ground communication equipments delays.
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Corrections due to the Earth rotation (Sagnac effect)

This correction was computed and, due to the relative geome-
try of the satellite with respect to the ground stations, the
total effect was evaluated to be about 15 ns.

A complete derivation of the equation giving this correction
is reported in app. A, for reference.

THE TIME SIGNALS

The time signals used in the SIRIO-I experiment consists in
a burst of ten pulses (fig. 3); the duration of each pulse is
I ms and the repetition period of the pulses within the burst

can be manually set by the operator to be 5 or 10 ms (the time
signal must be the same for both stations).

The received pulse repetition rate shows no relative doppler
against the transmitted pulses, because of the small satellite
motion in about 100 ms (that is the maximum duration of the

burst), so that the repetition period between the received
pulses can be considered constant and equal to the transmit-
ted repetition period.

This allows ten measurements of the time Tn, since _he rela-
tive time of occurrence of each pulse with respect to the

first one is constant and well known. The time Tn is then
computed as the mean over ten separate values; moreover, the
standard deviation over this set of ten independent time mea-

surements is related to the precision obtained in the deter-

mination of the time Tn. This allows to monitor the uncertain-
ty in the determination of the time of reception of the sig-
nals in each station.

GROUND EQUIPMENT CONFIGURATION

The instrumentation installed in each station is shown in
fig. 5. One cesium beam frequency standard (HP 5061 and Oscil-
lcquartz 3200) generates the local time scale. The I MHz and
I Hz output signals are fed into the time transfer unit (TTU),
that actually controls the synchronization procedure.
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The I Hz distribution amplifier provides several outputs that
are used in the TTU calibration procedures and for the TV syn-
chronization subsystem.

The time interval counter used is a HP 5345A, that receives
the start and stop signals from the TTU; it is fully control-
led (functions, trigger levels, output mode, etc.) by a HP
9815 programmable desk calculator, that acts also as a data
acquisition system (via HP.IB bus), receiving the results of
the measurements from the counter and storing the data on the

built-in magnetic tape unit.

The TTU generates and receives the time signals from the com-
munication equipment; the existing F_ modulators-demodulators
are used: the available video bandwidth is 6 MHz. The output
of the modulator is the first 70 MHz IF, switched, under the
TTU control, to provide the RF carrier suppression in the se-

quential mode of operation (while the gating of the received
signal Rx is performed internally by the TTU itself).

The two cesium standards are also compared by using the pas-
sive TV synchronization system via the TV synchronization sub-
system.

The time transfer unit (TTU)

The time transfer unit (TTU) controls the synchronization pro-
cedure by performing several functions:

I) generation, according the selected mode of operation, of
the time signal Tx to be transmitted;

2) generation, in the correct sequence, of the start and stop
signals to the counter;

3) time tagging of the data;

4) switching of the RF carrier in the sequential mode of oper-
ation, and gating of the receiving functions (to avoid

noise related problems when the carrier is off).

_oreover, the TTU has a self-test capability (by simulating

the signals received from the satellite in both the operation
modes) and provides the internal switching to measure the in-
ternal delays (the results of these measures are also stored

on tape with the data, in a separate file).
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A block diagram of the TTU is shown in fig. 6.

The TTU receives the 1MHz and I Hz signals from the frequen-
cy standard. All the other signals are generated from the
I MHz signal; however, since the synchronization results are

usually referred to the I Hz output signal from the clock,
this is internally used to synchronize all the TTU functions.

The main purpose of the TTU is the generation of the time sig-

nals; this functions is performed by the Signal Generation
Subsystem (SGS); the repetition period of the ten pulses in
the transmitted signal (fig. 3) can be set manually by a front
panel switch to 5 or 10 ms.

The transmission time Tn (fig. 3) can be shifted over a I s
time interval (that is the synchronization frame, see sect.
6) in I ms steps via a 3 digit thumbwheel switches; this is
important when performing the time synchronization in the si-
multaneous mode of operation.

The generated signals are fed into the Logic Control Subsys-
tem (LCS), that provides the signals to be transmitted (Tx)
with the proper transmission rate; this rate can be set by
another thumbwheel switch to generate a synchronization mea-
surement:

- every second;

- every odd or even second (to avoid ambiguities in
the switch setting at the two stations);

- every fifth second;
- every tenth second.

The LCS controls also the operation mode (sequential or simul-
taneous synchronization) and the status of the TTU (self-test
or operation).

The LCS generates the start and stop signals to the counter
and the control signals for the RF carrier switching and the
gating of the received signals Rx (sequential mode of opera-
tion only).

In the self-test mode the LCS receives the simulated return

signal from the satellite simulator subsystem (SSS), that is
in turn controlled_ according the operation mode, by the LCS.

The LCS receives also the time-of-the-measurement information

from the internal clock, via a special subsystem called Time



Tag Interval Generator (TTIG). The TTIG receives a truncated

time information (minutes and seconds of the measurement, the
hours are omitted, the code is BCD parallel)from the clock

and generates a variable length time interval (VLTI); the du-
ration of the VLTI, in _s, corresponds to the digital read-
out of the internal clock (i.e.: if the clock time is XX

hours, 26 minutes and 56 seconds the duration of the VLTI is

2656.OYY _s, where X and Y are _ndefined digits).

The internal clock is driven directly by the I Hz signal ge-
nerated by the SGS; this is obtained by dividing the I MHz
signal from the frequency standard; 6 thumbwheel switches al-
low the time setting of the clock (hours to seconds); the re-
sidual setting (up to I _s) is performed automatically by the

internal I Hz synchronization circuit.

The TV measurement subsystem

TV signals received in both stations are used to compare the

two frequency standards after an initial and routine clock
trips to measure the propagation delays have been performed.

A differential, passive method of comparing the two clocks
against a common reference (a selected field synchronization
pulse in the TV transmission) has been used; the measurements
are performed when test patterns are radiated, once a day, from
a central location (the television channel monitored is the

state broadcasting television network), in order to minimize
uncertainties and possible errors due to microwave links
switching over different routes when local programs are trans-
mitted. Moreover the test pattern provides a more stable and

high quality signal.

The TV receiver (fig. 7) is a special, in-house built, re-
ceiver, designed to improve the separation of the signal of
interest, that is performed digitally.

A programmer subsystem with an internal clock is provided;
this controls the power switching of external equipment (HP
9815 calculator and HP 5345 counter), with the proper timing

[to load and start the program (the 981.5 is in the autorun

mode), to program the counter, to generate the proper signals
to the counter, to record the data on the tape, to update the
file name and other variables] to execute automatically, once
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a day at the selected time, the TV synchronization procedure
without any operator intervention in both the stations.

SEQUENTIAL MODE TIME TRANSFER

The time transfer in the sequential mode of operation is de-
picted in fig. 8.

The basic synchronization frame is I second; that means that
it is possible to obtain one value of _ from the measured da-
ta over a I s interval.

The approach chosen is a fixed synchronization scheme, in
which the two stations transmit at fixed times according
their own time scale. The main advantages of this approach
are :

I) the basic synchronization frame can be lenghtened by sim-

ply rearranging the data, as we will show later;

2) the initial synchronization error (time difference _ be-
tween the clocks) can be as large as 100 ms without affec-
ting the timing of the time transfer.

Since all the times shown are within a I s time interval,
starting at the time T , all the time measurements are unam-
biguously referenced t_ T ; the time tag measurement resolveso
the second ambiguity.

The time transfer (fig. 8) is started by the transmission of

the time signal at 0 seconds (T_) by the station A. This sig-o
nal is not expected, obviously, to be received in both sta-
tions within the next 0.2 s.

The first 100 ms are then devoted in both stations to time
tag the measurement.

A start pulse is generated at 0.5 _s (this 500 ns delay al-
lows the setting of the internal clock counters after the

count transition) and a stop pulse is generated after a time
tag interval (TT), whose duration in _s is equal to the clock
reading at T (minutes and seconds).o

In this way, the first measurement obtained by the counter is
the time tag of the measurement.
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At 100 ms (from T ) another start pulse is generated and now

the counter in bo_h stations will be stopped by the leading
edge of the first received pulse.

This gives the coarse measurement of the time of arrival of

the pulses relayed back by the satellite (T and TI). For ex-
ample, at the station A the measured time i_terval will be

(T4-T -0.1 s).o

After the first pulse is received, nine start pulses are gen-
erated synchronously with the local clock and with the same

repetition rate of the transmitted pulses. The corresponding
nine stop pulses are provided by the remaining pulses of the
received signal (fig. 4).

Since the doppler shift over these pulses can be neglected
(see sect. 4) these nine measured intervals provide nine ad-

ditional values to determine the time of arrival T4 (or TI)
[modulo the repetition rate of the pulses, but any ambiguity
is removed by the first measurement].

This allows T4(T I) to be computed as the mean of the measured
values and to obtain an extimate (based on the standard de-
viation of the measurements) of the precision related to the

determination of the time T4(T I) in each station separately
and for each measured value.

At 0.5 s (according its local clock) the same time signal is

transmitted by the station B; a start signa I is generated in
both sites at the time 0.6 s and the same procedure outlined

before is repeated to recover the times T3 and T5.

A total of 21 measured values is recorded at each station for

every synchronization measurement in the sequential mode of
operation.

RF carrier switching

A timing diagram of the RF carrier switching and the gating
of the received signals Rx is shown in fig. 9.

The basic requirements that are satisfied by such an arrange-
ment are:

a) the carriers from A and B do not enter the satellite at
the same time and a suitable time window is provided to
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avoid any interference (since the propagation delay is not
the same for the two sites and the timing is, in principle,
based on clocks that are to be synchronized;

b) a suitable time interval is allowed to stabilize the RF

carrier before transmitting the time signals;

c) the gating of the received signal is implemented in such

a way that the Rx signal (that provides some stop signals
to the counter, as shown in fig. 8) is enabled only after
the RF carrier is received and stabilized.

The RF carrier switching is implemented at the first IF level
(70 MHz); this simply shifts 70 MHz apart the RF carrier at
17 GHz, outside the bandwidth of the RF power amplifier.

Some considerations on the sequential time transfer

The fixed synchronization smheme as implemented is very use-
ful to provide a variable lenght synchronization frame.

Suppose to implement the time synchronization over the basic
frame (fig. 8) repeated every second (the TTU provides a se-

lection of different repetition rates for the basic synchro-
nization frame).

This provides a synchronization result _(_ = S s) every se-
cond, showing the relative behaviour of the two clocks. At

this level the correction due to the satellite motion is neg-

ligible ((t2-ts)_0.5 s) and we are perfectly aware of this
(this is not an assumption ) because we are able to evaluate

the correction with the range-rate estimates (eq. 11); the
correction, in this typical case, is in the order of S ns.

Now, let we consider the same basic sequence, but expanded

over a 10 s interval; this can be obtained easily by simply

taking the measured times of arrival T4 and TI from the syn-

chronization frame at T and the times T3 and T5 from the
synchronization frame a_ To + 10 s.

Now the time interval (t2 -ts) is about 10.5 s and the cor-
rection is about 10 times greater (eq. 11). In this way we
have another set of values E(_= 10 s). We can compute these
values without applying any correction. The difference be-

tween each _(_ = SO s) and E(_ = I s) shows exactly the ef-
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fect due to the satellite motion and, moreover, we are able
to compute this correction and compare our estimate (based
on a first order approximation of the satellite motion) with
the measured values.

This procedure can be repeated for every _ of interest by
using the same data. A reference set of values is always pro -_
vided by the 8(_=I s) set.

SI_ULTANEOUS MODE OF OPERATION

In addition to the sequential time transfer, a simultaneous

mode of operation time synchronization has been planned. Using
this well-known technique, the time signals emitted by the
two ground stations are relayed by the satellite at the same
time, thus avoiding any error on _ due to the satellite mo-
tion (see fig. 10).

The basic synchronization equation becomes now:

(T 1 -T O) - (T 3-T 2)
(16) _ = + corrections

2

where the corrections are due only to equipment delays, pro-
pagation delays and to the relativistic correction (app. A):
as was shown_ the corrections due to the propagation effects
in the atmosphere can be considered negligible.

Two separate RF communication channels are obtained by split-,
ting the available 40 MHz RF bandwidth in two 15 _Hz bandwidth

channels, at the expense of a reduced signal to noise ratio,
while maintaining the same video bandwidth (6 _Hz) as in the
sequential mode of operation.

The two RF carriers are obtained with a change of the local
oscillator frequency at the 2nd IF (transmission) and Ist IF
(reception), so that the available 70 _z modulators-demodula-
tors are still used.

Since now two separate channels are used, the differential
delay in the satellite transponder must be taken in account
as a corrective term, given by eq. 5.

This delay has been measured by Telespazio (ref. 2) and re-
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sulted to be about 0.5 ns/MHz. At a carrier separation of a4

bout 20 MHz, the value of the correction to the synchroniza-
tion result & is about 5 ns.

Procedure to obtain the simultaneous transmission from the
satellite

A simple mean to adjust the transmission time in order to ob-_

tain the desired simultaneity of transmission of the time sig-
nals from the satellite is provided by adding an additional
receiver (demodulator + IF) at one site (see fig. 5). This ad-

ditional equipment receives back the signal transmitted by
the same station, to allow a comparison to be made with the

signal transmitted by the other site.

In this way the simultaneity is checked by observing the local
pulses as received back from the satellite along an oscillo-
scope, the pulses coming from the other station. The transmit-_
ted signal is then shifted until nearly coincident (within a
few ms) times of reception are achieved (fig. 11).

Even if the simultaneity error _ (fig. 11) can be reduced in
this way to less than I ms, usually a much larger error can
be tolerated.

In fact, it can be easily shown by using the same equations
as in sect. due to sequential mode of operation (where now

t2-t I = _) that the error _ on _ due to _ is approximately
given by:

(17)
2c

so that _ can be as large as 100 ms without introducing a
noticeable error on _.

Simultaneous mode time transfer

The simultaneous time transfer is again obtained by using the
same equipment described, and again a fixed synchronization
sequence is easily generated by the TTU (refer to fig. 12)
over a basic synchronization frame of I second.

The first 100 ms are devoted to time tag the measurement, so
that any ambiguity is removed for later data processing; this
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is the 0nly constraint. The first 100 ms are not used in this

case for time transfer; however this can be implemented free-
ly in the following 900 ms.

In fact, in this case, the transmission times in both sites

are not fixed and, moreover, can be changed during the opera-
tions to compensate for the satellite motion: so, the time of

transmission To(T2) must be recorded and this is accomplished
by generating a start pulse at 0.1 s and a stop pulse when

the time signal is transmitted (To or T2) ; in this way the
second time interval measurement recorded for each frame gives
the transmission time.

After 10 ms (at the time To(T2) +10 ms) a new pulse is gener-
ated; since To is recorded, also the time of this pulse is
kno wn.

The leading edge of the first received pulse stops the coun-

ter at the time T3(TI ); this gives the coarse measurement of
the time of reception of the pulses. Following the same pro-
cedure described above, nine start pulses are generated to

provide additional nine values for the time of reception (mo-
dulo the repetition period of the pulses in the time signal).

A total of 12 measured values is recorded at each station for
every synchronization measurement (I s frame) in this mode of

operation. The TTU provides as usual different repetition
rates for the basic synchronization sequence.

CONCLUSIONS

The SIRI0-1 experiment was designed and implemented to measure
and analyze the effect of the satellite motion on the accura-

cy of the two-way time synchronization and to demonstrate the
feasibility of accurate time transfer using only one communi-
cation channel, time-multiplexed between the two stations.

The main features of the experiment are briefly summarized
here:

I) the experiment tests and compares different Cechniques to
implement the two-way time synchronization, and

2) precisely monitors the satellite motion;
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3) a new technique has been proposed to correct for the satel-
lite motion effect, while performing the time synchroniza-
tion;

4) the experiment features a fixed synchronization scheme,
allowing the flexibility of a variable length synchroniza-
tion frame;

5) the synchronization in the sequential mode of operation is

obtained by a time multiplexing technique, with automatic,
fast RF carrier switching;

6) no effects affecting the accuracy at the Ins level are due
to the space segment (from one ground antenna to the other)
in the sequential mode;

7) the technique can be easily extended to a multiple site
synchronization; inherent advantages of the methods tested
are:

8) the low cost and almost automatic operation; moreover the

time signals used

9) allow the independent determination of the uncertainties
of the time-of-arrival measurements at the two stations,
to separate the contribution of each station to the total

precision.

This last feature can be important to understand the contribu-
tion of local phenomena (ground equipment, atmospheric condi-
tion affecting the signal attenuation, especially rain at SHF,
etc.) to the synchronization precision.

Especially the sequential time transfer technique can be pro-
posed as a useful tool to synchronize ground telecommunica-
tions stations; in addition to the time synchronization, it
can provide also measurements related to the satellite orbital
status (range and range-rate) with interferometric capabili-
ties (since two stations are involved at the same time and the
clocks offset is measured with high precision), that can be
used to track the satellite or update the orbit elements with

different techniques (i.e., differential correction of the
existing parameters).

A complete analysis of the initial measurements is under way
and the results will be available at a later time. The first
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results show a precision between 5 and 10 ns (Ic_) for rough
(non filtered) data.

The accuracy is expected to be only dependent from the accu-

racy in the measurement of the ground equipment delays (see
app.
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Figure 1a. Two--WayTime Synchronization Via Satellite
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AI_PENDIX A

RELATIVISTIC CORRECTION DUE TO THE EARTH ROTATION (SAGNAC

EFFECT)

This effect, due to the Earth rotation, introduces, if not

properly taken in account, an error in the determination of
the offset between the clocks using the two-way technique.

The sign of the correction to be applied to compensate for
this effect depends obviously by the relative longitude of
the two stations. The magnitude of the correction can be easi-

ly derived (see ref. A, and A2).

The metric in a flat Minkowsky space is given by:

ds2 = dx2 dz2 2dt2(A.I) + dy2 + - c

In a polar coordinate reference system we have:

x = rcoskcos

(A.2) y = rsin_cos

z = rsin_

Applying a uniform rotation with angular velocity Co (in the
direction of the z-axis) we have:

x' = xcos_t - ysinoot

(A.3) y' = xsin0ot + ycosoot

Z' ----Z

By combining eq. (A.2) and (A.3), taking the differentials
and squaring, after a few manipulations it's easy to obtain:

(A.4) ds2 (_o2r2 os2 -c2)dt2+(2r2cos 2 eodX)dt+
= c . 2 2,{,22_

+(dr +r a_ +r cos2_d) 2)

The propagation of the electromagnetic signals at the speed
of light c is obviously characterized by ds2 =0; so the eq.

(A.4) is actually a simple second-order linear equation in
dr, and again it's easy to obtain immediately:
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By integration over the propagation path P (that is actually
a round-trip path) we obtain:

2 os2qr c dk
(A.6) &t = dt = 2 2 2 2

r cos _-cP
that is the time difference in the propag_.tion delays from

one station to the other (via the satellite) and back, assu-
ming a uniform speed u0 of the Earth rotation.

The error _r in the determination of _ is actually half the
magnitude of _t, so we have a correction:

2 2 _ Ip 2 2

AE r r cos dX _- r cos _ dk
(A.7) = -_ 2r2cos2 2 -2

--C C

22 2
where the term _ r cos2_ can be neglected, since it is quite
small as compared to c .

A simple geometric representation (fig. 13) can be given for

eq. (A.7) (according ref. At). By assuming the term r2cos2_=r '2
as the projection of the vector radius r on the equatori&l
plane, we have:

c2_ /p
(A.8) _E r - r'dk

The integral in eq. (A.8) is actually twice the area A gener-
ated by the vector radius r'(lying on the equatorial plane),
so we can _ite:

2_A

(A.9) _Er =

According the geometry relative to the SIRIO experiment the

_6r correction was evaluated to be about 15 ns. This is not
to be considered a constant, but a slowly varying term (pe-
riod 24 hr) around 15 ns because of the satellite motion re-
lative to an Earth fixed reference frame.
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APPENDIX B

GROUND EQUIPMENT DIFFERENTIAL DELAY _EASUREMENT

The measurement of the delays of the ground communication
equipment is performed at each station as shown in Fig. lq. A

test loop translator is available at each ground station; this
allows the measurement of the sum of the delays in the trans-
mitting and in the receiving equipment at the same site.

However, in the time transfer the difference of these delays
must be considered (eq. 4): a simple method to measure the
transmitting equipment delay alone has been devised.

Since the RF carrier is frequency modulated, a microwave cavi-
ty is used as a frequency discriminator coupled to the feed
of the antenna. The A_ resulting signal (if a pulse is applied

at the input of the modulator, the output signal is actually
an on-off RF signal) is detected by a fast rectifier, which
provides via an amplifier the stop pulse to the counter.

Two basic requirements must be satisfied by the microwave ca-
vity: it must be able to detect the shift of the RF carrier
as a result of the input pulse (this means that a high Q is
required), while it must introduce the smallest delay as pos-
sible (low Q); a suitable Q value for our purpose is between
1000 and 2000.

In this way, measuring the delay in the transmitter alone and
the sum of the transmitter and receiver delays, the eq. 4 can
be easily solved.
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ABSTRACT

The capability of very long baseline interferometry

(VLBI) to monitor the stability of remotely-located
hydrogen maser frequency standards has been

demonstrated by a series of experiments conducted

from September 1978, through January 1979, between

Deep Space Stations in Australia, Spain, and
California. The measured stabilities of the clock

systems, over approximately lO-day intervals, were

i to 3 parts in 1013 , with the instabilities due
to the oscillators, the clock distribution sys-

tems, the receiving system delays, and the VLBI
measurement error.

Experiments were conducted independently using two

different systems (BLOCK 0 and WBDAS). Later

comparison shows agreement on the order of i part
in 1013 . Closure was demonstrated on three

separate occasions to 33, i0, and 13 ns with an

error uncertainty of ±42 ns. The results repre-

sent an important consistency check on VLBI
measurements.

This paper presents the results of one phase of research carried out
at the Jet Propulsion Laboratory, California Institute of Technology,

under Contract No. NAS 7-100, sponsored by the National Aeronautics

and Space Administration.

Now with TDA Planning Office.
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I. INTRODUCTION

In order to improve the quality of radiometric observables at outer

planet distances, the monitoring of time offsets and frequency standards

at Deep Space Network (DSN) tracking stations has become a necessity.

Very long baseline interferometry (VLBI) presents the most promising

technique available to monitor clock epoch and rate offsets to the level

required for advanced deep space missions.

A preliminary demonstration of clock synchronization via interferometry

was performed using the DSN in 1967 by Goldstein (Ref. i) over a short

baseline. Early applications (circa 1972) of independent station

interferometry to astrometry and geodesy (e.g. Cohen and Schaffer,

Ref. 2, Hinteregger et. al., Ref. 3 and Wade, Ref. 4) have

demonstrated the feasibility of VLBI and provided source position

information. Also in 1972, Hurd (Refs 5, 6) and Thomas (Ref. 7) per-

formed VLBI experiments on a short baseline using the DSN. In more

recent work (circa 1977) by Counselman et. al. (Ref. 8), Clark et. al.
(Ref. 9) and Hurd (Ref. i0), VLBI has been used to measure relative
and absolute clock offsets. Clark and his associates (Ref. 9) demon-

strated clock synchronization using a traveling clock to the 10-20 nsec

level of accuracy on a relatively long 845 km. baseline. The works of
Hurd (Refs i0, ii) and Thomas (Refs 12-14) form the basis for the

experiments reported here. This work is based on relative clock offset
measurements obtained over intercontinental baselines of 8 to i0

thousand km. The goals of the development work, of which these experi-

ments are a part, are to develop an intercontinental VLBI capability
which will measure relative clock offsets to i0 nsec and relative

frequency offsets to one part in 1013 with a few minutes of observing
time and to one part in 1014 over periods of approximately one week

by differencing clock offset estimates.

This article reports the results of a series of clock synchronization

experiments that were conducted from September 1978 through January 1979,

between Deep Space Stations (DSS) in Australia, Spain, and California.

During this entire time, the cesium clock at DSS 63 in Spain and the

hydrogen maser clock at DSS 43 in Australia drifted only a few micro-
seconds with respect to the DSS 14 hydrogen maser clock at Goldstone,
California. The measured stabilities of the clock systems were 1 to 3

parts in 1013 , with the instabilities due to the oscillators, the

clock distribution systems, the receiving system delays, and the VLBI
measurement error.

On three separate occasions, measurements were made between the Spain
and Australia stations -- the first VLBI measurements ever made on this

extremely long baseline. Unfortunately, these experiments could not

be conducted concurrently with measurements on the other baselines.
However, the data were compared to clock offsets on the other two

558



baselines, interpolated or extrapolated to the time of the Spain-

Australia measurements. These experiments demonstrated closure to 33,

i0, and 13 ns, with an error budget of ±42 ns. This is an important

check on the consistency of VLBI measurements, considering that they

were performed at intercontinental distances under varying ionospheric
conditions.

Two different VLBI systems were utilized in parallel in the reported

experiments, thus providing both redundancy and a comparison of the
two systems. The main distinction between the two systems lies in

the manner in which the digitized received energy signals are recorded

and correlated. One application records the digitized signal across

the entire received bandwidth at distinct intervals of time, the other
records selected channels across the bandwidth in a continuous stream

of data from which the group delay across the passband is then recon-

structed. The first mode has accordingly been termed the "Wide Band
Data Acquisition System" (WBDAS) (Refs. i0 and ii) while the second

is termed the "Bandwidth Synthesis" System (BWS). The BWS concept,
originally developed by Rogers (Ref. 15), has been incorporated in the

JPL system i_ modified form (Ref. 14). The WBDAS approach was

developed for its ability to record and process VLBI data in near
real-time for the purposes of obtaining quickly accessible clock epoch

and frequency offsets. The BWS technique, on the other hand, with a
more elaborate modeling and parameter estimation scheme was designed

to provide astrometric and geodetic information in addition to more

precise clock synchronization data. The intent of the latter is

to use clock synchronization and improved timing and earth dynamics

estimates in the support of increasing accuracy requirements for

spacecraft navigation.

The specific BWS system used in these experiments is the Block 0

system, utilizing 4-Mbit/s digital recording on video tape recorders.
This is an interim system leading to DSN implementation of a near-real-

time Block I BWS System, and a wider bandwidth Block II System. At

the time of these experiments, the DSN stations did not have phase

calibrators (Ref. 16) and cable stabilizers that will be part of the

Block I and Block II Systems, and that are required to do clock

synchronization with the BWS technique. Thus clock synchronization

with the Block 0 system could not use BWS, but used only the bit

alignment of individual channels and therefore was similar in concept
to the operation of the WBDAS.

II. Experiment Configuration

The two VLBI systems used in the experiments are briefly described in

this section, and the configuration of the two VLBI data acquisition

systems (Fig. i) within the DSSs is discussed. It is argued that

instabilities in the station l-pps signal supplied to the VLBI systems,
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and in generation of VLBI epoch references from the l-pps inputs, are

probably the dominant cause of discrepancies between results for the

two systems.

A. Signal Path

The signal from the radio source passes through the antenna system and

a traveling wave maser (TWM) amplifier, and is then translated from

the RF center frequency to 55 MHz, using reference frequencies generated

from the station frequency standard. Both VLBI systems receive

55 MHz IF signals, but there is one more stage of amplification and

filtering for the WBDAS than for the Block 0 System. This restricts

the passband to 55 ± 18 MHz, whereas the signal to the Block 0 System
is bandwidth limited by the TWM or by a 55 ± 36 MHz filter. The

difference in group delays between the two systems is consistent from

experiment to experiment at a level considered to be insignificant.

The total signal delay does vary significantly from experiment to

experiment, however. Variations in tuning of the TWM amplifiers can

cause group delay variations of ±i0 ns at each station, and the path

length difference between the two TWMs at each station is as much as

52 ns, including waveguide lengths. Unfortunately, no accurate record _
of the TWM configurations was kept for all experiments, although each
station was instructed to use the same TWM for each experiment whenever

possible.

B. Block 0 System

Block 0 is a bandwidth synthesis VLBI system using 4-Mbit/s digital

recording on video tape recorders and sampling sequentially up to

eight BWS channels, each 1.8 MHz wide. The system is designed to
measure fringe rates directly and group delay by either single channel

bit stream alignment or bandwidth synthesis. Because, in BWS, unknown

dispersive phase shifts can lead to large delay errors in the phase
differences involved, the group delays produced by that method are not

meaningful without the incorporation of phase calibrators to remove
instrumental effects. Since operational phase calibrators were not

available for these experiments, the group delays reported here were

measured from the alignment offset of a single 1.8-MHz channel and
are referenced to the Block 0 sampling clocks. As described below, I
the timing system implementation may have resulted in experiment-to-

experiment delay changes which would not have occurred if the system
had been in its BWS mode with phase calibrators. The system noise

effects ranged from 3-20 ns, compared to the 0.I ns which would be

achieved with BWS.

For these experiments the system was configured to sample three S-band
channels, spending 0.5 second in each. Although frequently X-band data

were recorded as well; they were not included in these results.
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C. Wideband System

The wideband VLBI data acquisition system utilizes a high instantaneous
sampling rate in order to observe the entire signal bandwidth, as

limited only by the receiving system. The receiver output is digitally
modulated to baseband by sampling at 50 MHz in each of the two phase-

quadrature analog-to-digital (A/D) converters. The time delay

observable is the differential group delay to the A/D converter

sampling clocks. The A/D converter outputs are low-pass filtered, by

summing N consecutive samples in a digital integrate-and-dump filter.

These experiments typically used N = 3, thus reducing the effective

bandwidth to 16-2/3 MHz. The filter outputs are quantized to i bit,

and stored in a 4096-bit buffer. When the buffer is full, sampling

is inhibited and the buffer is emptied onto magnetic tape. Fourteen

bursts of data are taken each second, for an average data rate of

57 kbit/s. The WBDAS achieves a lower signal-to-noise ratio than the

Block 0 system because of the lower data rate, but achieves a time-

delay error due to system noise of 1-5 ns, because of the wider
bandwidth.

D. Station Timing

The VLBI systems are referenced to the station frequency standards

through the coherent reference generator (CRG) and the time format

assembly (TFA). Power to the frequency standards, the CRG, and the

TFA is nominally uninterruptible, so phase and timing is in principle
continuous except when catastrophic failures occur. The function of

the CRG is to generate various frequency references coherently from

the station standard. For the purposes of this experiment, the CRG

probably does not degrade the station standard. The station i pps is

generated from i MHz in redundant divider chains. Because the divider

chains are constructed of obsolete and slow circuits, the l-pps signal

is reclocked by 5 MHz in the TFA. This reclocking results in possible

200-ns glitches, which have been observed at DSS 14 during the course

of these experiments. Both VLBI systems initially synchronize their

internal l-pps references to the TFA l-pps signal, and then allow the

internal clocks to free run until synchronization is lost. This loss

of synchronization normally occurs only when there is an interruption
in power to the TFA or to a VLBI system. Such interruptions did not

occur within one day's experiment, but did occur between experiments.

E. WBDAS Timing

The WBDAS l-pps reference is generated from a 50-MHz signal from the

CRG, by dividing this signal to 1 pps using emitter coupled logic
(ECL). The internal i pps is initially synchronized to the TFA I pps,

and thereafter the WBDAS monitors the phase difference between the

TFA i pps and the internal i pps, in increments of i0 ns. The lO-ns
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resolution is achieved by observing the TFA signal both directly, and
delayed by i0 ns. Normally the phase relationship does not change by

more than i0 ns either within an experiment or between experiments.
This 10-ns variation is expected, due to drifts in the WBDAS ECL cir-

cuits or in the TFA TTL circuits. Occasionally, jumps of 200 ns were

observed at DSS 14; these jumps did not accumulate, but typically

changed back and forth within an experiment on some days. We attribute

this effect to the TFA. These jumps occurred only at DSS 14, and

were always in the same direction. Therefore it is likely that the

WBDAS clock was always consistently synchronized to the 50-MHz refer-

ence, within one 20-ns count interval, even when it was necessary to

resynchronize due to power outages between experiments.

F. Block 0 Timing

The Block 0 VLBI System has a sampling rate of 4 Mbit/s, a frequency
which is not available in the DSSs. The 4 Mbit/s is derived from

5 MHz in a phase locked loop synthesizer system. This system generates

1 MHz from the 5 MHz reference and from a 4 MHz voltage controlled

oscillator (VCO), using digital dividers. The 1 MHz signals are then

phase locked. A problem with this system is that the phase relationship
between the 5 MHz and the 4 MHz can change up to 200 ns in increments

of 50 ns upon resynchronization. Thus, power outages to the Block 0

System, and consequent resynchronization, may result in timing offsets

in increments of 50 ns, in addition to the possible 200-ns TFA offset.

This synchronization error is a likely source of discrepancies between

the results from the two VLBI systems.

III. Results

A. Experiments

From 3 September 1978 to 21 January 1979, a total of 34 VLBI clock

sync passes were scheduled. The pass durations ranged from approxi-

mately 2 hours to 25 hours. Each pass consisted of a number of runs,

i.e., time spent taking data on a particular source, separated by

antenna move time. Eight of the longer passes were scheduled by the
Block 0 experimenters and consisted of 2.5-minute runs. The other

passes were scheduled by the WBDAS experimenters and consisted of
9-minute runs. Because the time required for setup was uncertain,

runs were scheduled from the start of the pass. Thus data was not

always taken on the initial runs or the final runs. Some passes were
not successful at all due to equipment failures in one or both VLBI

systems, or in the DSS configuration. The results in this section

are the estimates of the clock offset for the successful passes.
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B. Processing and Results

i. Processing. The WBDAS results were produced in two stages. The

first stage correlated the data from each separate run and produced

an estimate of the clock offset and its rate of change, as well as

estimates of the standard deviation for each parameter. The second

stage combined the estimates for each Successful run in a pass and

produced an estimate for the clock offset and its rate for the pass.

Table 1 contains the results of the second stage. The column labeled

Date contains the nominal date of the experiment, Epoch contains the

time of the clock estimate, Clock contains the clock offset, Sigma

clock contains the formal uncertainty of the clock offset, Residual
contains the rms residual of the runs with respect to the clock esti-

mate for the pass, Clock rate contains the rate of change of the clock

offset, Sigma clock rate contains the formal uncertainty of the clock
rate, No. of observations contains the number of runs or observations

in the pass that were used to produce the pass estimates.

2. Closure Results. Three of the passes were performed on the 43/63

baseline, using only the WBDAS System. This provides a consistency

check on the clock offsets, since the offsets between pairs of stations

should sum to zero. Because the reference time for each pass is

different and the clocks are all drifting, it is necessary to make
some estimates to reference these clock offsets to the same epoch.

Figure 2 shows the 14/43 and 14/63 clock offsets used to make these

estimates. The clock offsets are modelled by straight-line, least-

square fits to the data, based on the assumption that the clocks at
the three stations have constant but different frequencies. On or

about 16 November, the clock at DSS 43 apparently had a sudden fre-

quency change and so two straight-line fits are made to the 14/43
clock offset. Table 2 contains the data used to calculate the 14/43

and 14/63 fits. The rms residuals to these fits are on the order of
70 ns. The closure is to about i0 to 30 ns. It should be noted that

the 14/63 data has to be extrapolated to 14 October. The earliest

14/63 experiment used here was on 23 October since the preceding

experiment of 1 October deviated considerably from the straight-line

fit. The hydrogen maser at DSS 63 failed in September and presumably

had not settled at its final frequency on 1 October. The fact that

the closure is as good as it is suggests that it had settled before
14 October.
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C. Block 0 Processing and Results

In the Block 0 System, the digital video tapes are shipped from the
stations to JPL, then cross-correlated in quadrature on the hardware

processor at Caltech. Postcorrelation analysis is performed on the
IBM 3032 at Caltech and begins with a step called "phase-tracking" in

which each source observation (typically 3-9 minutes) is divided into

segments 20 to 60 seconds long. Each segment is fit by least squares

to a complex sinusoid giving solutions for amplitude, phase, and fringe

rate. Simultaneous interpolation of fringe amplitude in the lag

domain with a sin x/x function yields the single channel group delay,
while cross-channel differencing of phase solutions yields the

synthesized delay for each segment. A priori values for the first

segment solution are taken from an initial Fourier analysis, while

those for the other segments are taken from the solutions for the

segment preceding.

Segment solutions are then analyzed collectively to yield a solution
for the entire observation. Amplitude and alignment delay are obtained

by a weighted average of segment solutions, while fringe phase and

rate result from a linear fit to segment phases. A linear fit to

synthesized delays gives the final synthesized delay and a direct

measurement of delay rate, which supplements the more accurate measure-

ment obtained from the phase rate.

In the final processing step, solutions for all observations are

supplied to a global fitting program which produces, for the entire

experiment, single solutions for clock offset, fringe rate, and clock
rate. In addition, when the number of observations is sufficient

(typically >7), the program redetermines the baseline, thus providing

some compensation for errors in the a priori UTI and PM values.

Although the program can also solve for selected source positions, we

did not use that feature, electing instead to discard obviouslybad
data.

The Block 0 data reported here are from this final processing step.

The clock rate reported is that derived from fringe rate rather than

from delay rate, because this is more accurate. The rate accuracy is

currently limited over the short term by systematic and random effects
of ionosphere, instrumentation, and modeling errors.

Table 3 contains the Block 0 results and provides the accumulated

"Allan Variance" stability estimates derived from the clock offsets.
Note that the accumulation has been restarted at points of major

breaks or jumps in the clocks.
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D. Comparison of Results

Figure 3 shows the DSS 43 minus DSS 14 clock offsets versus epoch for

both the WBDAS and Block 0 Systems. The offset is nearly linear from

17 September (Epoch 22.5) to 16 November (Epoch 27.7). The hydrogen

maser failed at DSS 43 between the 3 September and ii September passes
and was put back on line just before the Ii September pass. Thus the

early clock offsets are not colinear with those following. As men-

tioned above, the WBDAS data shows a rate change on about 16 November.

This rate change is not as precisely located in the Block 0 data since

there was no Block 0 result from 16 November. The frequency of the
DSS 43 maser was intentionally shifted in late December and thus the

offsets from 20 December (Epoch 30.7) to 12 January (Epoch 32.7) have
a different rate than those previous.

Figure 4 shows the DSS 63 minus DSS 14 clock offsets versus epoch for

the two systems. The DSS 63 hydrogen maser was not on line until

January of 1979, thus only the last two points represent a comparison
of two masers. However, the data is quite linear from 23 October

(Epoch 25.7) to 24 December (Epoch 30.9) while DSS 63 was on the cesium
standard.

The scale of Figs. 3 and 4 permits only a coarse comparison of the two
systems. However, Fig. 5 shows the 14/43 data with a linear clock

estimate removed, _ = -26.71 + 1.35 x Epoch. In addition, a constant

of 0.4 microseconds has been added to the Block 0 data, which repre-
sents an estimate of the difference of the signal and clock path

lengths in the two systems. The rate change in the 14/43 offset
mentioned above is quite obvious in Fig. 5, however it should be

noted that the slope is not really negative past 16 November since

the axis of Fig. 5 has a slope of 1.35 x 10-12. There are I0 passes

on the 14/43 baseline for which both systems reported results; the rms
difference (after removal of the 0.4-_s offset) is 64 ns.

Figure 6 shows the 14/63 data with a linear clock estimate removed,
= -11.4 + 0.29 x Epoch. In addition, a bias of 56 ns has been

added to the Block 0 data. The rate of 0.29 x 10-12 reflects the

rate observed from 23 October (Epoch 25.7) to 24 December (Epoch 31.0).

Before 23 October, the points are outside the range of Fig. 6, due to

station clock adjustments. A large clock jump occurred between

24 December and 16 January, so i.i _s was subtracted from the passes on

16 January and 21 January to keep them on Fig. 6. There were 7 passes

between 23 October and 24 December for which both systems reported

results. The average difference between the two systems was 56 ns
and after removal of this constant, the rms difference was 105 ns. Two

days, 5 November and 3 December, disturb these calculations and may be
the result of clock jumps.
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IV. Analysis of Results and Error Sources

The principal objectives of VLBI clock sync experiments are to

determine the offset and combined stability of the station frequency

standards. In the present case, with near-simultaneous results from

two different VLBI systems, we can also form some conclusions about

the performance of the VLBI technique itself.

On the 14/63 baseline, over the period during which the cesium standard

was on _ne at 63, the Block 0 results show a frequency offset of
3 x 10- J and a stability (square root Allan variance) of 2 x 1013 with

a sample standard deviation on the latter figure of 0.9 x 10-13 . The
WBDAS results show comparable values of 2.7 x 10-13 for the offset and

1.2 x 10-13 for the stability. On the 14/43 baseline both sets of

results show a change in frequency offset sometime in the period from
mid-November to early December. A lack of Block 0 results for mid-

November prevents a more accurate determination of the time of the

change. Block 0 data yield an offset of 1.7 x 10-12 before the change

and 8.2 x 10-13 after, with a stability over the whole interval of
3 x 10-13 . The sample standard deviation is i x 10-13 . From the

WBDAS data, the estimated offsets are 1.7 x 10-12 before the change
and 1.2 x 10-12 after, with an overall stability of 1.9 x 10-13. The

average interval between samples is approximately i0 days; however,
because the intervals vary, the Allan variances must be considered
nonstandard.

Because neither S/X ionosphere calibration nor instrumental phase

calibration were employed in these experiments, errors in the measured

clock offsets are dominated by transmission media and instrumental

effects. The stability values should therefore be regarded only as
loose upper bounds on the instability of the clocks themselves.

Figures 5 and 6 show the differences between the WBDAS and Block 0

measured clock offsets, after the removal of a constant bias, on the

days for which both systems obtained measurements. With the exception

of a few greater discrepancies, the agreement is at about the 50-ns

level. In all likelihood, the larger discrepancies are due not to

large random errors but rather to real temporary changes in the instru-

mental delays of one system with respect to the other. For example,

it has been observed that reinitializing the Block 0 clock, which is

routinely done, can change its epoch with respect to the station clock

by several hundred nanoseconds. The phase calibration systems now

being installed will remove the effects of those jumps.
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The VLBI systems described here have measured the combined instability
over _lO-day intervals of frequency Standards s_parated by intercon-

tinental distances to low parts in 1013 with an uncertainty of 1 part
in 1013 . It is known that well-maintained hydrogen masers will show

a stability over such intervals of a part in 1014 or better. With

VLBI systems now under development using dual-frequency ionosphere

calibration, accurate measurement and modeling of the wet and dry

components of the troposphere, instrumental phase calibration, and

simultaneous solution for UTI and _olar motion corrections, stability
measurements of a few parts in i0I_ should be attainable.

Although a thorough analysis of the error sources affecting the
interferometer used for these experiments has not yet been completed, a

preliminary set of mean value error estimates have been compiled based

on prior experience with the instrument. These values are presented

in Table 4 mainly to indicate the estimated relative magnitude of the
errors at S-band. For the sake of consistency, the geometric effects

have been scaled to a hypothetical i0,000 km. baseline and approximate

worst case partials are provided as well as the corresponding one

sigma error values. In the cases of "System Noise", "Instrumentation",

"Ionosphere", and "Bandpass Shape", Only those values footnoted by an
"a" or a "c" are applicable to the current instruments. The other

values presented in these categories represent an estimate of the level
to which these error sources will be reduced once phase calibration

and dual-frequency charged particle error cancellation have been
introduced.

The system noise contribution ranges from 1 ns for strong sources with

either system, to 20 ns with the Block 0 System for sources too weak to

be detected with the WBDA% The range of 10-40 ns for instrumentation

effects depends on the station configuration integrity. The bandpass
shape factor is smaller, about 1 ns, for the WBDAS than the i0 ns for

the Block 0, due to system bandwidth utilized (Ref. 17). Since there

are normally some strong radio sources in an experiment, the dominant

error sources are instrumentation stability and the ionosphere, whose

contributions cannot be accurately estimated. Overall, the error of
the current measurements is believed to be in the range of 24-51 ns.

For the closure experiment, the expected error is /3 times the

individual experiment error, or 42-88 ns, neglecting frequency stability
induced errors. Thus the closures of 33, i0, and 13 ns were better
than anticipated.
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Table 1

WBDAS Results

Epoch.

Date sees past Sigma
1 Jan 1978 Clock, ns Sigma clock, ns Residual, ns Clock rate, x 10-12 clock No. of

X 106 rate, X 10-12 observations

14/43

I1 Sep 21.9816 3.551 0.4 5.3 0.78 0.08 4

17 Sep 22,518 3.744 23.9 62.8 3.0 0.7 7

23 Sep 23.0292 4.379 18.0 5.0 2,0 1

30 Sep 23.6304 5.292 0.4 5.4 1.41 0.06 6
14 Oct 24.8436 7.320 0.6 2.1 3.4 0.15 2

23 Oct 25.6176 8.591 0.7 7.9 1.8 0.1 3

27Oct 26.0064 9.316 0.2 10.9 2.28 0,007 " 23

4 Nov 26.6724 10.659 0.4 11.5 0.98 0.04 9

16 Nov 27.6912 12.337 0.5 5.4 1.6 0.07 4

29 Nov 28.8072 13,688 0.6 11.2 2.1 0,2 3
12 Dec 29.9808 15.125 1.1 4.3 -2.8 0.9 2

31 Dec 31.5864 16,407 0.2 8.2 0.18 0.005 14

12 Jan 32.6628 17.423 0.5 14.2 0 0.15 6

14/63

9 Sep 21.8484 -8.768 0.8 6.8 -1.8 0.2 5

1 Oct 23.7348 -2.443 0.15 14.8 0.7 0.4 4

23 Oct 25.6536 -3.845 0.8 7.6 -1.4 0,2 5

30 Oct 26.2008 -3.705 0.7 18.9 4.09 0.08 9

5 Nov 26.7984 -3.451 0.3 32.4 0.66 0.01 10
20 Nov 28.0044 -3,303 0.5 5.9 1.0 0.1 6

27 Nov 28.6092 -3.126 0.5 6.4 0.3 0.1 5

3 Dec 29.1996 -2.955 1.4 4.3 -0.7 0.3 5

24 Dec 30.9492 -2.368 0.3 6.0 -0.28 0.04 10

16 Jan 32.9472 -0.664 0.4 4.2 -0.5 0.07 6

21 Jan 33.3756 -0.564 0.8 4.5 -0.2 0.1 4

43/63

14 Oct 24.858 -I 1.400 1.0 18.2 -3.4 0.3 5

3 Nov 26.604 -14.033 1.0 1.4 -4.0 0.2 3

28 Nov 28.7532 -16.643 2.0 6.3 -4.0 0.6 2

Table 2
WBDAS Closure Results

Date Epoch Olock Residual to Fit

14/43

^

30 Sep 23.6304 5.292 0.070 T43_14 = -36.1159
14 Oct 24.8436 7.320 -'0.025 + 1,74937 X Epoch
23 Oct 25.6176 8.591 -0.108 tins residual = 0.076
27 Oct 26.0064 9.316 -0.063

4 Nov 26.6724 10.659 0.115

16 Nov 27.6912 12.337 0.011

^

16 Nov 27.6912 12.337 0.003' T_3_I 4 = -21.386
29 Nov 28.8072 13.688 -0.005 + 1.2177 X l'poch
12 Dec 29.9808 15.125 0.003 rms residual = .0.004

14/63

23 Oct 25.6536 -3.845 0.007 T'_4_I4o = -10,669
30 Oct 26.2008 -3.705 0.001 + 0,26574 X Epoch

5 Nov 26.7984 -3.451 0.097 rms residual = 0.062

20 Nov 28.0044 -3.303 -0.076

27 Nov 28.6092 -3.126 -0.060

3 Dec 29.1996 -2.955 -0.046
24 Dec 30.9492 -2.368 0.077

43/63

^ ^

T43_14 T63_14 RESID = T63_43

+ T43_14 T63-14
14 Oct 24.858 -11.400 7.370 -4.063 0.033

3 Nov 26.604 -14.033 10.424 -3.599 -0.010

28 Nov 28.7532 -16.643 13.628 -3.028 0.013'
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Table 3

Block 0 Results

Rate, No. of Square root
Allan variance.

Date Epoch Clock, tss Sigma clock, ns X 10 -12 observations X 10-13

14/43

3 Sep 21.322339 4.368 5.2 -2,38 32 -
17 Sep 25.518534 3.377 9.7 2.22 7 -
30 Sep 23.629294 4.844 1.7 1.93 5 -

14 Oct 24.844771 6,910 1.0 3,82 3 2.68
23 Oct 25.618483 8.156 4.7 3,26 4 1.95
27 Oct 25.975236 8.744 2.4 2.31 117 1.60
4 Nov 26.670332 10.317 5.0 5.96 24 2.58

29 Nov 28,806020 13.397 1.6 2.91 4 3.47
13 Dec 29.981315 14.776 6.7 1.08 3 3.26
20 Dec 30.671408 15.361 2.0 2.23 3 3.14
31 Dec 31.543594 15.955 1.7 1.68 33 2.97
13 Jan 32.662017 16.984 14,6 2.32 6 2.86

14/63

4 Sep 21.385637 -7.668 3.8 0.68 56 -
16 Sep 22.410587 -10.059 7.3 -5.15 59 -
23 Oct 25.655368 -3.965 8.0 -0.62 5 -
30 Oct 26.180608 -3.828 6.2 -1.82 57 -
5 Nov 26.754849 -3.672 3.9 0.24 127 0.08

20 Nov 28.005401 -3.329 9.3 0.13 7 0.06
27 Nov 28,611230 -3.184 18.9 0.09 5 0.15
3 Dec 29.202867 -2.800 7.5 1.05 3 1.45

16 Dec 30.249901 -2.604 8.0 0.16 17 1.96
24 Dec 30.942036 -2.385 5.3 0.16 15 1.82
16 Jan 32.947914 -0.582 2.1 -2.08 4
21 Jan 33.374313 -0,469 15,5 -0,84 5

Table 4

Estimated Magnitudes of Error Sources at S-Band for a 10,000km Baseline

Delay Delay rate, xto

Error Source Partial 1a Final value Partial 1o Final value

Source position 130 ns/" 0.015" 2 ns 22 mHz/" 0,015" 0.33 mHz
Baseline 3.3 ns/m 1.0 m 3.3 ns 0.56 mHz/m 1.0 m 0.56 mHz
UTI 2.0/as/sec 0.003 sec 6 ns 0.32 Hz/sec 0.003 sec 1.0 mHz
PM(X) 3.3 ns/m 0,7m 2.3ns 0.56mHz/m 0.7m 04mHz
PM (Y) 3.3 ns/m 0.7 m 2.3 ns 0.45 mHz/m 0.7 m 0.4 mHz
System noise 1-2Ons fi 2.3 mHz a

n/a b n/a 3.5 ns n/a n/a 0.4 mHz
Instrumentation 20-40 nsa 1.0 mHz a

n/a n/a 3 ns n/a n/a 0.1 mHz
Ionosphere 10-20 nsc 4.0 mHz b

n/a n/a ~ 0 ns n/a n/a ~ 0 mHz
Troposphere n/a n/a Ins n/a n/a 0.2 mHz
Bandpass shape 1-10 nsa

n/a n/a ~ 0 ns n/a n/a - 0 mHz

Root sum square 24-51 nsa,c 5.0 mHz a,c
9.2 ns 1.4 mHz

a Without phase calibration.

b Not applicable.

CWithout S/X calibration of the ionosphere.
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qUESTIONS AND ANSWERS

DR. KEN YUGLO:

Mine is a clarification. I missed whether you are using the band-
width synthesis or whether you are recording the whole bandwidth

and possibly saving tape or something by taking pieces in time?

DR. YUNCK:

Yes. That is the difference between these two systems. The

Block-O system that Tom discussed in the last paper is a bandwidth

synthesis system. This system does sample the entire bandwidth

and throws away some samples.

DR. YUGLO:

And how long are those samples? The sequences rather.

DR. YUNCK:

Well, the samples are one bit samples and 4,096 samples are col-

lected. Four thousand ninety six samples at 50 megahertz. What-
ever that works out to be. Several microseconds. And then 14

samples per second or 14 bursts per second are recorded on the
tape.

DR. YUGLO:

What noise?

DR. YUNCK:

Well it is all noise. The A to D converter is sampled continuously.

It is just that some blocks of samples are thrown out and that is

done digitally. These are digital signals.
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TRAVELING CLOCK VERIFICATION OF VLBI CLOCK SYNCHRONIZATION

L. E. Young

Jet Propulsion Laboratory

ABSTRACT

Four experiments aredescribed which involved measure-
ments of clock offsets at two DSN stations. Both VLBI

and traveling clock measurements were performed and

the agreement between the two methods was within about

6 ns for all four comparisons.

INTRODUCTION

The Deep Space Network (DSN) plans to initiate a periodic program of

very long baseline interferometry (VLBI) experiments in order to

monitor the performance of the frequency standards used at its radio

telescopes. In order to demonstrate the capability of accurate

measurement of epoch offsets between DSN station clocks using VLBI,

as well as to develop procedures to be used in the operational pro-

gram, four VLBI experiments were performed from June 1979 to Septem-

ber 1979. During each VLBI experiment, a traveling clock was used to

check the accuracy of the VLBI clock synchronization. In order to

achieve a high degree of accuracy in the traveling clock measurement,

a pair of DSN stations separated by a relatively short baseline was

used. A previous short baseline VLBl/traveling clock experiment

has been reported by C. C. Counselman III et al.l That experiment

gave a reported difference of 9 ns + ii ns in the clock offset

obtained with the two methods, and it was suggested that a more
accurate measurement would be desirable.

VLBI Experiment

The radio telescopes used were DSS 13 and DSS 14, with dish diameters

1
C.C. Counselman III, I. I. Shapiro, A. E. E. Rogers, H. F.

Hinteregger, C. A. Knight, A. R. Whitney, and T. A. Clark,

Proceedings of the IEEE, Vol. 65, No. II, p. 1622 (1977).

577



of 26 and 64 meters, respectively. Both DSS 13 and DSS 14 are

situated within the DSN complex at Goldstone, Ca., and are separated

by approximately 22 kilometers. Each station used a Hydrogen maser

as its frequency standard. The VLBI experiments were typically 5

hours long, incorporating some 40 observations of about 25 extra

galactic radio sources.

Figure 1 illustrates the VLBI experiment in a schematic way. The

plane wave represents an incoming burst of radio noise. Some

incremental delay above that for free space is added by the media.

Because of the proximity of the two radio telescopes used_and because

the experiments were conducted during local nighttime, when media
effects are at a minimum, the media delay is assumed to be the same

at each site.

The wave front reaches the two antennas at times separated by the

geometric delay, • • At each station, phase calibrator tones derived
g

from the frequency standard were injected into the data stream near

the beginning of the receiver assembly. From this injection point

on, the phase calibrator tones were imbedded in the data, and in-
dicated the instrumental delays and phase shifts added to the data
as it was down converted and recorded into three time multiplexed

s-band frequency channels along with time tags from the station
clock. These channels were later combined to synthesize a measured

delay.

Each 2 MHz channel of data contained three phase calibrator tones.

In order to use the unambiguous delay resulting from the correla-

tion of a single 2 MHz channel at each station to remove the cycle

ambiguities inherent in the delays determined via the bandwidth

synthesis technique, it is necessary to know the instrumental delay
characteristics of that single channel. The instrumental delay can

be measured as a separate experiment, but this can prove difficult

for a complex receiving system and must be re-done after station

hardware changes which affect instrumental delay. In the interest

of avoiding the need for extensive calibration measurements, the

system of phase calibration used by the DSN allows a variable
spacing of tones, with the narrowest spacing corresponding to an

ambiguity of 19.8 _s in the instrumental delay. As this is much

larger than the 2 or 3 _s delay typical for DSN radio telescopes,
somewhat wider spacing can be used. In these experiments, for

instance, a tone spacing of 0.5 MHz was used. With this system the
instrumental delays added below the phase calibrator injection point

never need to be measured separately, and the VLBI clock synchroniza-

tion is not jeopardized if these delays change between experiments.

Another advantage of the presence of multiple phase calibrator tones

per channel was that it allowed a continuous monitor of the phase
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versus frequency response of each channel.

When the video tapes from each station were brought together and

correlated, the geometric delay, _g, known A priori, was removed

analytically. The phase calibration correction was made, resulting

in the following VLBI delay:

14 13 14 18 14 13

(i) TVLBI ~ (Ta - Ta ) - (Tu - TU ) + (tc - tc )

i
Portions of the antenna delays, T , were measured and the rest were

a

calculated from the physical dimensions of antennas and waveguides.
14 13

The results were T = 119.2 + 1.0 ns and T = 53.4 + 2.0 ns.a -- a =--
i

The uplink delays, Tu , consisted largely of a stabilized cable whose

delay was held constant with the use of a phase locked loop controll-

ing a phase shifter in series with the cable. In addition to the

fixed portion of the uplink delay, there was a 200 ns ambiguity in,the
tlming generator.

14 13

Tu and T were 1321.0 + 4.2 ns and 2015.2 + 4.2 ns, respectively.
U -- --

The remaining term in formula i is the clock offset term, which
was solved for. The errors in the determination of the clock offset

using VLBI were dominated by the estimated error of 6 ns in the

determination of antenna and uplink delays. These errors were

systematic, in the sense that they were not expected to vary among

the four experiments. The errors in the determination of TVLBI
were ~ 0.i ns.

Traveling Clock

During each VLBI experiment the traveling clock comparisons were made

at station A, station B, back to station A, and finally back to sta-

tion B. Each comparison involved about five offset measurements
between the traveling clock and station clock over a 45 minute

period. For each offset measurement, a Hewlett Packard 5360A

computing counter with time interval plug-in was used to measure the

offset between the 1 pps signal from the traveling clock and the

zero crossing of a 5 MHz signal from the station clock. In order

to remove the 200 ns ambiguity inherent in this measurement, the
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traveling clock 1 pps was also compared with a i pps signal from the

station clock. In all these measurements, a digital voltmeter was

used to insure the appropriate and repeatible setting of trigger

levels. As a resul_ the error attributed to the setting of trigger
levels was less than 1 ns.

The error in the synchronization of station clocks by the use of a

traveling clock was estimated by noting that the fit of a straight

line to the approximately i0 offsets measured between each station
clock and the traveling clock gave a RMS residual of about 1 ns.
While the behavior of these residuals ruled out the existence of

large unobserved jumps in the Rubidium clock during travel times,

jumps of up to 3 ns could not be excluded. Therefore, the accuracy
of the offset determined between the two station clocks was estimated

to be + 3 ns, which is expected to be a random error among the four

experiments.

Results

The results of the independent measurements of clock offset,
14 13

t - t , using the traveling clock and using VLBI are shown
C C

in table 1 for the four experiments. The frequency offsets between
f I_ _ f _3

the two stations, 2x c c
f i_ + f Is are also shown. The epoch offset
c c

measurements did agree within about 6 ns in all four cases. In

fact, there was a systematic deviation of 4.6 ns between the two

techniques, with a R.M.S. scatter of 1.4 ns about the average. The

systematic deviation originates from the measurements of the antenna

and uplink delays. The 1.4 ns scatter is primarily due to the travel-

ing clock measurements. The fact that the scatter is less than the

estimated value of 3 ns implies that there were no undetected clock

Jumps of this magnitude while the Rubidium Clock was in transit.
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(AFTER REMOVAL OF %3)

Figure 1. This figure illustrates the instrumental delays, Ta and Tu, which must be measured
at each station in order to use a VLB] experiment to synchronize station clocks. The use of
phase calibration with multiple tones per channel eliminates the need for measurements of
the receiver and downlink delays. It should be noted that, in practice, r a, and r u are defined
relative to the intersection of the antenna axes.
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Table 2

This table shows the results of four VLBI measurements of clock offset along with the results of concurrently performed
traveling clock experiments. For each experiment, the clock offsets are given for a certain epoch chosen within that experiment.

RESULTS

Traveling Clock VLBI VLBI - T.C.

6-6-79

Clock Offset +733.9 _+3. ns +740.1 _+6. ns +6.2 _+7. ns

-_ Offset +2.3x10 -12 _+l.5xlO -12 +l. OOxlO -12 _+O.03xlO -12 -1.3xlO -12 _l.5xlO -12

7-21-79

Clock Offset +874.2 ±3. ns +879.7 ±6. ns +5.5 ±7. ns

@Offset +2.1x10 -12 _+0.6x10-12 +2 31xlO -12 _+O.01xl0-12 +0.2x10 -12 +0.6x10 -12

8-26-79

Clock Offset -302.1 -+3. ns -299.7 -+6. ns +2.4 _+7. ns

-_Offset +0.4xlO -12 _+l.5xlO -12 +l. OOxlO -12 ±O.OlxlO -12 +0.6xlO 12 ±l.5xlO -12

9-18-79

Clock Offset -i135o5 ±3. ns -1131.1 +6. ns +4.4 ±7. ns

-A-_offset +2.9x10 -12 ±0.6xlO -12 +2.04x10 -12 +O.OlxlO -12 -0.9xlO -12 +0.6xlO -12

Mean difference between two methods VLBI - T.C. = +4.6 ns

P_S Scatter = 1.4 ns



QUESTIONS AND ANSWERS

MR. CHI:

Are there any questions? Yes?

DR. KAARLS, Van Swinden Laboratory

You use in your system a cable of several hundreds of meters, do

you know if there is any influence of temperature on the delay?
I assume the cable is in the open air.

DR. YOUNG:

Yes. The cable is in the open air and is in the sun in some cases.

However, the cable has a delay compensation network, in which, the

total delay through the cable is held constant by a voltage con-

trolled phase shifter, so that if the cable were to stretch, the

voltage controlled phase shifter would have its delay diminished

in such a way as to hold the total delay constant through this up-
link.

MR. RUEGER:

In making your differential measurements of your traveling clock,
did you use the same counter at both ends?

DR. YOUNG:

Yes. The same equipment.

MR. RUEGER:

Was the counter turned off in-between?

DR. YOUNG:

Yes. The counter was turned off in-between.

MR. RUEGER:

We found some problems in some of our work by having that counter

stabilizing thermally between measurements.

DR. YOUNG:

Well, I have seen those problems too. And we have thrown away

some data at the beginning of the measurements, during the warm-up
time of the computing counter.
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EARLY RESULTS FROM A PROTOTYPE VLBI

CLOCK MONITORING SYSTEM

T. P. Yunck and G. A. Madrid

Jet Propulsion Laboratory
Pasadena, California

ABSTRACT

Four sets of experiments were conducted to measure

the relative epoch offsets between atomic clocks in

California, Australia, and Spain by means of very-

long-baseline interferometry (VLBI). The experi-
ments were conducted using an incomplete R & D
VLBI system with a number of inherent limitations.

However, the results give us confidence that our

measurement objective of epoch offset to i0 nano-

seconds will be met using the carefully calibrated

system to begin regular operation next year.

INTRODUCTION

With the increasing navigational precision demanded of future planetary

missions comes the increasing need for precise monitoring of the atomic
frequency standards at the deep space tracking stations in Goldstone,

California, Canberra, Australia, and Madrid, Spain. To keep the clock

contribution to range error at outer planet distances (beyond Mars)

below 0.5 meters it will be necessary to know the relative frequency

offsets to three parts in 1013 . In addition, the Deep Space Network

(DSN), which is charged with operating and maintaining the stations,

has a vigorous interest in monitoring the behavior of its clocks as

precisely as possible. Consequently, a variety of methods for inter-

continental clock comparison have been under evaluation at JPL for some
time.

OBJECTIVES AND PLAN

In the Navigation Systems Section at JPL we plan soon to begin regular

weekly monitoring of several clock and geophysical parameters by the

technique of very-long-baseline interferometry (VLBI) [1-7]. Each

weekly observing session will employ two baselines (sequentially),

with eight to i0 observations of extra galactic radio sources on

each, and will last approximately three hours. From the data gathered
during one session we expect to determine:

. UTI to + 0.7 msec

, Polar motion (X and Y) to + 0.3 m

I
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• Clock epoch offset to + i0 nsec

• Clock frequency offset-to + 3 parts in 1013

From the weekly epoch offsets _ will be able to compute long-term clock
stability to a few parts in I0 Within several years, when various

pieces of dedicated hardware are in place, we will be able to produce

those results within 24 hours of the onset of data taking,

THE VLBI SYSTEM

To obtain results of that quality we require both a very accurate prior

knowledge of the VLBI geometry and the ability to remove a number of

contaminating delays. The diagram below illustrates the VLBI geometry.

#2

wavefront

The signal arrives from a distant radio source and is received first at

Station 1 and then, a time T later, at Station 2. The received signals
are sampled and recorded on magnetic tape with time-tags derived from

the station clocks. The apparent delay can be very precisely measured

by later cross-correlation of the two recorded signals. When all com-
ponents of the true delay T have been accurately modeled or otherwise

calibrated and removed from the measured delay, what remains is the
apparent delay due to clock synchronization error.

The components of the true delay include

• TG - the delay due to geometry

• Tp - the delay due to atmospheric charged particles

, TN - the delay due to the neutral atmosphere

• TI - the delay due to instrumentation

Removing the geometric delay requires knowledge of baseline length to
_0,5 m and of source positions to _0.01_ Such accuracies are now being

achieved with VLBI measurements being made at JPL and elsewhere, The

VLBI clock monitoring system to begin operation next year will in-

clude enhancements to remove the other delay components. They include:
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, S- and X-band recording for dual-frequency cancellation

of charged particle delay,

• More accurate modeling of the neutral atmosphere based

on surface weather measurements and (later) water vapor
radiometer measurements.

• Continuous calibration of instrumental phase and group

delay [8,9],

In addition, the near-simultaneous observations on two baselines will

permit solution for UTI and polar motion, thereby improving the geo-
metric model.

While this system has been under development, we have been conducting

experiments with an earlier R & D system employing none of those

enhancements. Consequently, the results presented here are substanti-

ally degraded by errors from the corresponding sources. Perhaps the

most serious of these errors-_occasionall_ prOducing'large apparent

changes in epoch offset from one experiment to the next-- are a) changes
in instrumental delays resulting from minor configuration changes, and

b) spurious epoch jumps at the temporary clock reference point used for
these experiments. Those effects would be removed by the instrumental

calibration system,

In addition, the absence of instrumental calibration prevented our

using the "bandwidth synthesis" technique to achieve large bandwidths

and hence very precise delay measurements [I0,Ii], The delay measure-

ments reported here were obtained with one comparatively narrow 1.8 MHz
channel at S-band.

We must therefore be careful in defining the delay measurement error.

The precision of the measurements _that is, the random error due to

such usual sources as ionosphere, neutral atmosphere, geometric model-

ing error, and system noise ---is estimated at 40 nanoseconds. However,
because of the occasional changes in instrumental delay, the offset

variation from one experiment to the next can be as much as several

hundred nanoseconds. Finally, the large, uncorrected, but constant
instrumental delay introduces a bias in delay measurements of up to
one microsecond.

RESULTS

We have obtained epoch offset measurements between the California -

Australia and California - Spain clock pairs for two experimentation
periods lasting several months each., Figure 1 shows a set of i0
epoch offsets measured between California and Australia over the

period 30 Sep 78 to 13 Jan 79, Both stations were using hydrogen

masers as primary standards, The cause of the rate change, apparently

in early December, is unknown. Because of the sparseness of points,
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exact placement in time of the rate change is impossible, There is a

clearly anomalous point in early November, indicating either a large
(_430 ns) temporary instrumental glitch or a much earlier rate change
not well-determined by the data, We interpreted it as the former and

excluded it from the linear fit, Residuals to the two fitted lines are

shown in Figure 2. The rms residual, excluding the anomalous point,, is

39 ns. The irregular spacing of samples in Figure i and subsequent

plots precludes the meaningful computation of the two-sampl e variance,
However, as an item of information we have computed it and included it

with the numerical data from those plots, The data for Figures 1 and 2
are given in Table i.

Figure 3 shows a set of eight offsets measured between California and

Spain over the period 23 Oct 78 to 24 Dec 78, Clearly evident is the

onset of apparently aberrant clock behavior at the sixth point. The
jump at that point is believed to be due to instrumentation local to

our VLBI system, probably the sync mechanism of the temporary clock, as

it did not appear in data taken simultaneously with another experi-

mental JPL VLBI system, the "Wideband Data Acquisition System" (WBDAS)

[12], The smaller rise in the last two points has apparently other
causes since it does appear in the WBDAS data. Note the switch at

Spain from a cesium standard to a hydrogen maser before the last point.

To more clearly illustrate the changes at the later points, the line in

Figure 3 was fitted to the first four points only. Figure 4 is a plot
of the residuals to that fit, Table 2 gives the values from those

plots as well as the residuals to a line fitted to all eight points.

Figure 5 is a plot of 13 offsets measured between California and

Australia over the period 19 May 79 to 25 Sep 79. Note that Australia

was operating with a cesium primary standard until the last point and
that two different Australia antennas were used. Those antennas use a

common frequency standard_ however, there is a small unknown instru-
mental delay difference between themwhich is uncorrected in the data,

The outstanding feature of Figure 5 is the abrupt, temporary rate

change in early August, As it happens, those responsible for maintain-

ing the frequency standards had the rate at California adjusted on

1 August and then had it reset on 16 August, The two anomalous points
fall on 6 and ii August, Separate lines were fitted to the points
before and after the disruption, Note that the reset did not restore

the rate to precisely its original value, The residuals to the fit

are plotted in Figure 6 and the numerical values given in Table 3.

Finally, Figure 7 shows a set of eight offsets measured between

California and Spain over the period 23 Jun 79 to 25 Sep 79. Both

stations employed H-masers as primary standards, however, again two
different overseas antennas with a common clock were used, For a
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number of reasons, including station configuration changes and scarce

antenna time at Spain, there is a large gap in the data from the begin-

ing of August to early September,

The two sets of points show markedly different slopes of -6,6 x 10-14

and 5,1 x 10-13, Since there is no comparable rate change over the

same period in the California - Australia data, we conclude that the

change in slope is due to a rate change in the H-maser at Spain. How-

ever, we are unaware of any deliberate resetting of that clock.

Residuals to the fits are shown in Figure 8 and the numerical values

given in Table 4.

CONCLUSIONS

In view of the spurious ,clock and instrumental delay jumps inherent in

the data, the fittin_ residuals from Tables 1-4 of 39 ns, 56 ns

(8-point fit), 50 ns, and 43 ns are consistent with the quoted precision
of :40 ns in delay measurements, Recent experience with operational

phase calibrators and wide bandwidth delay measurements [13] suggests
that the observed variability will be much reduced when those features

are incorporated into the operational system, When, in addition, the

planned enhancements to correct for propagation media and geodynamic

effects become operational in 1980, we should have little trouble

achieving the delay measurement accuracy required.
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Table 1

Clock Offset Data for California-Australia Baseline

30 Sep 78 - 13 Jan 79

Measured* Residual Square Root Allan

Date Epoch offset, Hs to Fit, ns Variance, x 10-13

30 Sep 23.629294 4.844 -29
14 Oct 24.844771 6,910 33

23 Oct 25.618483 8.156 3 0.63

27 Oct 25.975236 8.744 3 0.49

4 Nov# 26.670332 10.317 430 2.54

29 Nov 28,806020 13,397 -ii 3.64

13 Dec 29.981315 14_776 17 3.37

20 Dec 30.671408 15,361 48 3.21

31 Dec 31.543594 15.955 -58 3_01

13 Jan 32.662017 16.984 73 2.88

RMS 39

*Approximate sigma for all offsets is 40 ns
tNot included in fit or in RMS residual

Table 2

Clock Offset Data for California - Australia Baseline

23 Oct 78 - 24 Dec 78

Residual Residual Square Root
Measured*

to to Allan

Date Epoch Offset, 4-point 8-point Variance,

_s Fit, ns Fit, ns x 10-13

23 Oct 25.655368 -3.965 3 31

30 Oct 26.180608 -3.828 -2 8

5 Nov 26,754849 -3,672 -2 -ii 0.08

20 Nov 28.005401 -3.329 2 -49 0.06

27 Nov 28.611230 -3.184 -18 -88 0.15
3 Dec 29.202867 -2.800 206 116 1.45

16 Dec 30.249901 -2.604 118 -7 1,96

24 Dec 30.942036 -2.385 149 1 I_82

RMS 99 RMS 56
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Table 3

Clock Offset Data for California-Australia Baseline

19 May 79 - 25 Sep 79

Date Epoch Measured Residual Square Root Allan
Offset, _s to Fit, ns Variance, xl0 -13

19 May 43.492585 26.438 71 ....
1 June 44.611414 27.692 -64 ....

8 June 45.214741 28.432 -75 0.75

15 June 45.823228 29.324 60 1.31

24 June 46.599963 30.205 -26 1.73

3 July 47.375655 31.205 8 1.59

16 July 48.512931 32.634 22 1.43

6 Aug 50.317639 33.487 ---

ii Aug 50.743254 33.166 .......

2 Sep 52.565956 38.348 -46 ....

i0 Sep 53.255908 39.158 54 ....

18 Sep 53.945952 39.851 38 1.20

25 Sep 54.549574 40.391 -44 _ 1.01
RMS 50

Table 4

Clock Offset Data for California-Spain Baseline
24 June 79 - 24 Sep 79

Measured Residual Square Root Allan

Date Epoch Offset, _s to Fit, ns Variance x10-13

24 June 46.594296 7.641 7 ....

3 July 47.370614 7.593 ii ....

i0 July 47.973634 7.562 20 0.07

16 July 48.484081 7.414 -95 1.19

23 July 49.089347 7.526 58 2.17

i0 Sep 53.222916 8.645 -17

17 Sep 53.839622 9.010 32

24 Sep 54.518217 9.312 -15 1.04
RMS 43
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QUESTIONS AND ANSWERS

DR. CHI:

Are there any other questions? Yes. Would you please use the

microphone and identify yourself?

DR. STEVE KNOWLES, Naval Research Laboratory

I would be interested in a few more of the specific details on
bandwidth synthesis scheme being used or that you intend to use

and how it fits this into the rather narrow bandwidth of your
masers?

DR. YUNCK:

The bandwidth synthesis? Well, our receiver/amplifier will admit

only a maximum of about 40 megahertz. The channels that we were

using for this were 1.8 megahertz and that was purely a signal

alignment measurement for delay. So when we use bandwidth syn-
thesis we will go out to 40 megahertz and that is it.
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SOURCE STRUCTURE ERRORS IN THE SYNCHRONIZATION OF

CLOCKS BY RADIO INTERFEROMETRY

J. B. Thomas

Jet Propulsion Laboratory, Pasadena, California

ABSTRACT

Radio interferometry has the potential of synchroni-

zing clocks across intercontinental distances with
accuracies better than one nanosecond. One of the

potential error sources in such determinations is

the spatial structure of the natural radio sources

that provide the reference signals. Due to their

extent, the effective position of these sources can

vary as a function of the length and orientation

of the baseline vector joining the two antennas.

If they are not corrected, such variations can lead
to errors in clock synchronization. This presenta-

tion discusses the theory of structure corrections

and gives specific examples to illustrate the nature
and size of the effect.

INTRODUCTION

Radio interferometry with natural radio sources has the potential

for very accurately synchronizing clocks over distances up to

intercontinental lengths, possibly eventually reaching accuracies

of the order of 0.i nsec. Comparisons of absolute clock synchro-

nization by interferometry with the measurements obtained by

traveling clocks have already been carried out at the 10-20 nsec

level by the MIT VLBI group and at the 5 nsec level by the JPL

VLBI group (see L. E. Y0ung's presentation in this conference).

One of the error sources that can degrade high accuracy synchro-
nization measurements is the extended structure of the natural

sources. In this talk, I will present the results of a study to

estimate the size of this particular error source. Before the

results of that study are outlined, a few slides of background

explanation will be presented for those unfamiliar with the source
structure problem.

599



INTERFEROMETRY THEORY

The first slide is a schematic representation of the basic geometry

of the interferometry process and defines the baseline vector, source
direction, and geometric delay. Given two antennas, the basic idea

is to measure the difference in arrival times of a radio signal from

a natural source. After appropriate calibrations, the measured delay
will be equal to the geometric delay plus a clock synchronization
offset. If the geometric delay can be removed on the basis of a

priori knowledge of source direction, earth orientation, etc., then

the offset between station clocks can be extracted. If the position

of the source is uncertain due to extended structure, clock synchro-
nization determinations will be impaired.

This same slide also presents the first step of the data reduction

procedure used to extract delay. The analysis has been reduced to

an ideal form and includes a simplified derivation of the fringes
that would be obtained by perfect instrumentation when a mono-

chromatic signal is recorded for a point source. A sinusoidal voltage
signal is recorded at both stations but the signal at station 2 is

offset in time by the geometric delay T and by a clock synchroniza-
g

tion error T (relative to station i). The signals recorded at thec

two stations are multiplied together (cross-correlated) to produce

the sinusoidal cross-correlation function referred to as fringes.
The fringe phase is extracted by post,correlation software and is

equal to a product of observing frequency and T + T . As shown in
g c

the next slide (2), when the phase is observed at two frequencies

(separated by about 40 MHz in JPL efforts), the two phase values

can be combined as indicated to obtain the observed delay _BWS"

Integer cycle ambiguities in TBW S resulting from phase ambiguities

can be removed on the basis of a priori information and/or the

delays from other more closely spaced channel pairs. The resulting
delay will be referred to as the bandwidth synthesis (BWS) delay. As

indicated, the synchronization offset is obtained by subtracting from

the BWS delay an a priori model for geometric delay. Synchronization

measurements can be no more accurate than the accuracy of this

geometric model. If the source is extended, the specification of

source position, and therefore geometric delay, becomes uncertain.

To begin to explain structure effects, it is useful to present a
simplified derivation of the fringes for a double-point source.

As we shall see, these results can then be easily generalized
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to an arbitrary brightness distribution. As shown in the next

slide (3), suppose two points in the sky radiate with power
2 2 ^ ^

aI and a2 at positions S and S'. If the points radiate

uncorrelated signals, the observed fringes will be the sum of

the fringe expressions separately derived for each point (see

slide i). As shown, the sum can be rewritten as a product of

a modulating factor R and the fringes from point source i. The

factor R depends on the difference of the source vectors
A! A

(S - S) and varies as a function of baseline B, ranging between

2 2 _ a22 )summed power (aI + a22) and difference power (aI

Remember the form of these terms in R - power times a phasor -

since they will be used later to generalize to an arbitrary
distribution.

As suggested in the present slide (3) and stated in the next

slide (4), the maximum constructive interference occurs when

the difference in geometric delay for the two points is equal

to an integral number of wavelengths of the observed signal.

If the position difference (_S = S - S) is converted into an

angular differential representing the corresponding change in

angle _) between baseline vector and source detection, one

obtains an expression for the angular separation of adjacent

lines on the celestial sphere between which constructive inter-
ference of source emissions would occur. (The meaning of _S

is changed here to denote the vector difference between two

possible points of radio emission on the celestial sphere).

These lines are usually referred to as fringes on the sky.

Note that, as baseline length increases or as wavelength

decreases, the spacing of the sky fringes decreases. Further,

minimum fringe spacing occurs when the source direction is

perpendicular to the baseline vector _ = 90o). For B = i0,000
km and % = 3.5 cm (f = 8.5 GHz), the minimum fringe spacing

(maximum resolution) is 3.5 nrad (0?0007).

The next slide (5) schematically shows the changes in effective

position for a hypothetical extended source as baseline length

changes. The source is assumed to consist of a point source

placed next to a diffuse component. For the short baseline,

the fringe spacing is large compared to the size of the source.

Since all components contribute to the cross-correlation without

destructive interference, the effective source position will
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be equal to the centroid of the two components. For the long

baseline, the fringe spacing decreases so much that the diffuse

component is much larger than the fringe spacing and different
parts of that component destructively interfere with one another.

Consequently, this component is "resolved out" to such an extent

that it effectively does not contribute to cross-correlation.

Thus, for the long baseline, the effective position moves and

becomes the position of the point component. This example

emphasizes the possible dependence of effective source position
on baseline length and orientation.

As summarized on the next slide (6), one can easily generalize

the analysis for the double-point source to an arbitrary bright-
ness distribution. By adding more points to the sum in slide 3,

and then converting the sum to an integral, one obtains the

factor R for the general distribution. The factor R, usually

referred to as the brightness transform or complex visibility

function, becomes the complex Fourier transform of the bright-

ness distribution. The reference position So, which was placed

at the strongest point for a double-point source, is arbitrary
at this point, provided it is near the source.

The next slide (7) shows how structure phase _B and fringe

amplitude are defined from the complex brightness transform.

When total fringe phase is measured, this structure phase will
be one of the components. As shown in slide 2, the observed

BWS delay is essentially the derivative of phase w.r.t, fre-
quency. Thus the contribution of structure to the measured BWS

delay will be approximately given by the partial of _B w.r.t.

frequency. Such partials can be readily obtained for both

analytical and measured (numerical) source distributions.

The next slide (8) presents without derivation the equation

for computing the effective position of a source, given a

brightness distribution independent of time and frequency.

For computational convenience, the effective position is
computed relative to an assigned reference position S

O"

One can show that, for a given observation, the extended

source can be analytically replaced by a point source located

at the effective position. With this and only this assigned

position, the hypothetical point source will produce the same
geometric delay and geometric delay rate as the actual source

when the BWS delay and phase-delay rate are the observables.
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As can be seen, the effective position is a relative of the

ordinary centroid but is based on the quadrature components

of the resolved distribution. Given a measured brightness

distribution, this expression for effective position can be

readily evaluated. One can easily show that the effective

position becomes the ordinary centroid when the baseline

approaches zero, as one would expect.

Before structure effects can be properly removed in clock

synch measurements based on a single source, the absolute

location of the brightness distribution for that source must

be accurately determined relative to a global set of celestial

coordinates. When obtained through multibaseline VLBI measure-

ments, the brightness distribution for a source will be accurately
determined relative to a set of local coordinates (structure

coordinates) specific to that source but will not be accurately
placed on the celestial sphere in one absolute sense. Accurate

absolute positions are usually obtained by multiparameter fits

to the delay values for many sources, where the delays are

obtained through VLBI measurements independent of the structure

measurements. For these solve-for locations to have meaning
relative to the brightness distribution, each observation of

delay for a given source must be corrected for the difference

between effective position and some constant reference position,
where both are computed in structure coordinates. The solve-

for position of the source will then be the absolute location

of the reference position for that source.

TWO EXAMPLES OF ANALYTICAL SOURCES

For the first example, the next slide (9) derives equations for
the structure effects of a double-point source. As can be seen

from slide 3, the brightness transform can be rewritten as a

function of only two variables: the relative strength (g2) of

point source 2 and the projected separation (p) of the two

sources in units of resolution. Both the phase and delay effects

of structure become a function of these same two parameters. As

explained in previous slides, the delay is obtained by taking

the partial of phase w.r.t, frequency, but, for brevity, this
operation is not shown.

The next slide (i0) shows how the effective position of a double-

point source varies as a function of p (the projected source

separation in units of resolution) for selected ratios of the
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point strengths. The plot can be constructed in this manner due to

the fact that the effective position of a double-point source always

lies on the line drawn through the two points. As shown, the

effective position is equal to the ordinary centroid when the

resolution is large compared to the source extent (i.e. when p = 0).

As the resolution improves (i.e. as A decreases so that p increases),

the effective position moves away from the ordinary centroid and

can move far outside the extent of the source. In fact, for nearly

equal point strengths, the effective position approaches infinity

when p = integer/2. These nearly singular points correspond to

points of large delay excursion as will be shown in the next slide.

This slide (ii) plots the delay effect for a double-point source

as a function of the same two parameters. The plotted values

are referenced to the brightness centroid of the source rather

than to the brightest component. This shift, which is not derived

here, results in the subtraction of a simple term from the phase

expression in slide (9). As can be seen in the plot, there can be

critical values of baseline vector for which the delay effect

becomes very large, even approaching infinity if the source strengths

are nearly equal. These singular points occur when the component

phasors sum to zero so that small changes in p can produce large

changes in phase. These undesirable regions can be eliminated

to a large extent by placing a lower limit on relative fringe

amplitude. When the weaker source is 0.95 of the strength of the

stronger source, the maximum delay effect at 8.5 GHz is 1.2 nsec

for p = 0.5 cycle. This plot indicates that, except for the unusual

case of very nearly equal point strengths, the structure effect of
a double point source would be small relative to the present VLBI

clock synchronization capabilities (_5 nsec). However, when clock
synch accuracy reaches 0.i nsec, structure effects will be very

important.

For the second example, the next slide (12) presents the equa-

tions for the structure effects of a triple-point source. Note

that phase and delay effects can be expressed as a function of

four variables: the relative strengths (g2' g3) of point sources

2 and 3 and the two variables (p, q) that give the projected

separations (in units of resolution) of point sources 2 and 3.

When parametrized in this manner, the delay results can be used

for any triple-point source with the specified values for

(g2' gR) regardless of the point separations and directons.
Two ca_es will be shown to illustrate typical delay behavior
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for a triple-point source. The next slide (13) presents the first case

and plots delay as a function of p and q for the strength values

g2 = 0.2 and g3 = 0.4. Note that there are extrema in delay that

occur with lattice-like regularity. It can be easily shown that these

extrema correspond to points of minimum fringe amplitude. The extrema

occur when p and q are multiples of 0.5, provided g2 + g3 < i. For

the example in this slide, the first delay extremum reaches 0.i nsec

at p = q = 0.5.

The next slide (14) presents the second case and shows the structure

delay associated with a triple-point source with relative strength

values g2 = 0.4 and g3 = 0.8. There are local regions in the (p, q)

plane where the structure delay becomes very large and even certain

points where it approaches infinity. In this slide, the delays are

truncated above 1 nsec to improve the plots. As suggested by the

sharp dips near the positive peaks, the delay goes to negative infinity
next to each point of positive infinity. This behavior is demonstrated

in the next slide (15) where the delay is inverted. These singular

points occur whenever the amplitude drops to zero. One can easily

show by means of three-phasor sums that, if g2 + g3 _ i, singular

points can always be found on a lattice of points in the (p, q) plane.

(We assume here that point source i has the greatest flux). One

beneficial characteristic of such singular regions is that they can

always be detected (and therefore avoided in large measure) through

a drop in amplitude. Note that, in the regions between adjacent null

points, the delay effect reaches 0.3 - 1.0 nsec for the plotted range

of (p, q).

SUMMARY AND CONCLUSIONS

The analytical examples presented here indicate that, if a source
can be accurately represented by a double-point or triple-point model,

it might be necessary to avoid certain critical values of the baseline
vector. At the critical points, the delay effect can even theoreti-

cally approach infinity for a pure multipoint source. The effective

position at these points can move far outside the extent of the source.
However it is unusual for a real source to consist solely of two or

three sharp points. Real distributions tend to possess extended com-

ponent rather than point features and usually have additional weaker

components or background features. These characteristics would blunt
the truly singular behavior found in pure multipoint models. Never-

theless, it seems likely that the structure effect in BWS delay will
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be of the order of 0.5 nanosecond for some real sources at some base-

line values. At the nanosecond level, structure effects would be small

compared to present VLBI clock synch capabilities (_ 5 nsec). When

VLBI clock synch reaches the 0.i nsec level, structure effects are

likely to become an important consideration.

The analysis presented here has concentrated on the BWS-delay observ-

able. Unlike BWS delay, phase delay does not diverge to infinity near

points of zero amplitude. In such cases, the phase-delay observable

will be subject to less extreme structure errors than BWS delay.

Therefore, even though the development of a phase-delay system is

more difficult, the phase-delay observable has important advantages

with regard to structure effects.

In order to obtain a more accurate assessment of structure effects,

an effort is underway to analyze measured brightness distributions

for a number of real sources. That study will help to assess the

feasibility of limiting the size of structure effects through

judicious selection of sources and/or through enforcement of a lower

limit on relative fringe amplitude.
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SOURCE
DIRECTION
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Figure 2. Phase, Delay and Clock Synch from
VLBI
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GIVENTWOPOINTSWITHPOSITIONS(9, 9') ANDSTRENGTHS(al2, a22)

GEOMETRICDELAYS:

o-_._/c _-'----_._'/c
g g
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a_- _'-_

Figure 3. Fringes for a Double-Point Source
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f B.3Slc = INTEGER.
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B.S : B COS,_,

SO THAT

B.SS = -B SIN _, _,

THEN FRINGE SPACING (RESOLUTION)BECOMES

X I

A: B SINVz

Figure 4. Fringes on the Sky
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Figure 5. Schematic Example of Effective Position

FOR GENERAL SOURCE

WHERE

D(3) : BRIGHTNESSDISTRIBUTION

d_,_" : "AREA" DIFFERENTIALON PLANEOF SKY

: -3o

SO : ASSIGNED REFERENCEPOSITION
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s

Figure 6. The Brightness Transform
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, REWRITEBRIGHTNESSTRANSFORM

i2_ BR= IRl_

WHERE

IRI --FRINGEAMPLITUDE

-CB : STRUCTURE PHASE

STRUCTURE EFFECTON TBWS:
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Of

Figure 7. Structure Phase and Delay
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*FORBWSDELAYANDPHASE-DELAYRATE

Figure 8. Computation of Effective Position* from the
Brightness Distribution
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Figure 9. Structure Effect for a Double-Point Source 2.2 ,
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Figure 10. Effective Position for Frequency-Independent
Double-Point Source: BWS Delay and Delay Rate
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Figure 11. BWS Delay* Relative to Brightness Centroid for
Double-Point Source
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Figure 12. Structure Effect for a Triple-Point
Source
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Figure 13. BWS Delay Relative to Brightness
Centroid fo r a Triple-Point Source

Figure 14. BWS Delay Relative to Brightness
Centroid for a Triple-Point Source
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Figure 15. BWSDelay Relative to Brightness Centroid for a Triple-Point Source
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QUESTIONS AND ANSWERS

DR. ALLEY:

Where is worldwide time synchronization at the level of the i/i0

nanosecond readily available, because this assists in the unraveling
of the source structure of the interferometry measurement.

DR. THOMAS:

Yes it might, but there are better ways to approach that problem.

One of the bests tests for approaching whether the theory presented
here will be useful in correcting for source structure is to do

differential measurements between close adjacent pairs of sources
and that way all the typical error sources in VLBI cancel out ex-

cept for a very few minor ones and then you can look at the actual

variations in delay at a very accurate level and can take measure-

ments of brightness distributions to predict what those variations

are and see if you get the same results. So we plan to try things
like that, if possible, to check our structure calculations. Other-

wise, the structure effects tend to get messed up in all of your
other error sources in normal interferometry.

DR. TOM CLARK, NASA, Goddard

I just had a couple of brief comments, Brooks. First of all, the

information that you show proves that one man's signal is another

man's noise, because exactly the same source structure that poses
problems in things like clock synchronization or geodesy is ex-
actly what is of interest to the radio astronomer who wants to

study these same objects for his other purposes.

One of the things which you might want to stress is that the

typical VLBI observation, as was pointed out by Larry Young in his
comments and so forth, does not involve just a single source or
complex source whatever, but tends to involve anywhere from a half

a dozen upwards of 50, depending upon the nature of the observing

program, a number of sources on the sky. And although Nature may

be a bitch and conspire against you on one source, the chances

that she will also be conspiring against you on eight others at the

same time is very small. So, in a real experiment, I think these,
effects tend to go down much smaller.

There is one other thing which can be done in this to improve

the situation and give you ad4itlonal information. You, of course,
pointed out that when the amplitude goes to zero that is the time

at which the phase becomes undefined, hence the derivative of phase
with respect to frequency becomes undefined and you can't define

aproctolae when there are no fringes. That is sort of the summary.
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One thing which you can also do at that time is if you are run-

ning an interferometer with more than two stations, let us say three,

by summing the observed phases around the loop of three stations, all
of the instrumental phases cancel out, but the structure phase, at

least in its total, around the loop, is still unobservable, so by

looking at the closure phase on a three-statlon interferometer, you

can immediately pinpoint when you are having the bad apples problems

that can foul up clock synchronization.

DR. THOMAS :

Okay. That is true. One has to be careful though, there may be

cases when one wants to do clock synch with not many, many sources

but maybe one or two and you want to go out and take a quick measure-
ment of some sort with some limited antenna system or whatever. So

it is not always true with clock synch you are going to have 50

sorters or so. It could be a case where you run with only one or
two. And also with clock synch. I am not sure that there would

always be the funds available to do a closure experiment with three

antennas. I suspect it would be a lot more limited effort than

that, where you will have a couple of antennas out Just to do a

clock synch between the stations in question. So, I mean, while

your comments are true, I think they might be of limited use.
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PROSPECTSFOR ADVANCESIN MICROWAVE

ATOMIC FREQUENCYSTANDARDS*

F. L. Walls
National Bureau of Standards

Boulder, Colorado

ABSTRACT

This paper will focus on conceptual and component develop-

ments which could have a major impact on the performance

of microwave atomic frequency standards. Traditional

microwave standards based on rubidium, cesium and hydro-

gen have been greatly refined over the past decade, such

that the frequency stability of the current generation

of devices is generally limited by the basic concepts on

which they are based, as well as the performance of

various key subsystems. Future advances in ultimate

frequency stability and environmental performance will

primarily come from new conceptual developments, and

only secondarily from improved ccomponents. These new

advances will be explored in some detail and projections

for possible performance improvements made for microwave

frequency standards based on rubidium, cesium and hydrogen.

Brief mention of a new class of standards based on

stored ions will be made.

*Contribution of National Bureau of Standards, not subject

to copyright in the United States.
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INTRODUCTION

The next few years will, in my opinion, bring significant changes

in atomic microwave frequency standards. Traditional standards

based on rubidium, cesium and hydrogen have been greatly refined

over the past decade, such that that the frequency stability of

the current generation of devices is generally limited by those

basic concepts on which they are based. In my opinion, future

advances in frequency stability will principally come from changes

in the concepts on which the standards are based, and only second-

arily from more careful engineering of the old concepts.

In the following, I will point out what I consider the fundamental

limitations in these standards and indicate the important concept-

ual and component advances which could have a major impact on

future performance of these standards. In addition, brief mention

is made of a very promising new class of microwave standards based

on ion storage techniques.

RUBIDIUM FREQUENCYSTANDARDS

Fig. I shows a generalized block diagram of a rubidium gas cell

frequency standard. Because of the small size, weight and cost,

these standards are the most abundant of all atomic frequency

standards. The short term stability is of order 5 x I0-12_-i/2

limited by shot noise in the background optical signal with the

rubidium hyperfine signal being about 0.5% of the total detected

signal. [1] Long-term frequency stability is affected by many

things; such as temperature of the buffer gas, density of the Rb,

magnetic field gradients, microwave power variations, light spec-

trum changes, etc. The common contributor to most of these effects

is the highly asymmetric hyperfine resonance caused by the presence
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of the buffer gas, which essentially causes each interacting atom

to sample a very small portion of the total cell volume. The

buffer gas is primarily used to isolate the rubidium from the

walls of the cell where it would normally relax, typically causing

a frequency shift of order A_ _ 5 x 10-7 [2] Typical linewidths

are of order 300 Hz (6.8 x 109), yielding a hyperfine line Q of

_2 x 107. The very nature of the way the buffer gas acts causes a

fundamental problem so that even excellent engineering is hard

pressed to achieve frequency stabilities of better than _10-13 at

several hours and provide a frequency reproducibility or retrace

following several turn off/turn on cycles of 10-11 For example,

O.4dB change in microwave power caused a frequency change of order

10-11 for one Rb unit tested at NBS.[3]

Recent work initiated by Al Risley and Helmut Hellwig at NBS and

carried out in collaboration with Jacques Vanier (University of

Laval) and Hugh Robinson (Duke University),L4]" demonstrates that

parafin coated cells may provide a new way to make a rubidium gas

cell standard with greatly improved characteristics. The parafin

wall coating provides a means to contain the atoms with very small

hyperfine relaxation and, very importantly, provides a means for

the atoms to average all parameters over the entire bulb. Initial

experiments yield a frequency shift of _10-a for the wall coated

cell and linewidth of less than 250 Hz. Linewidths of approximate-

ly 70 Hz are ultimately expected. Signal-to-noise is comparable

to that of the buffer gas cell. Tests show, for example, that the

coated cell has a factor of 100 less sensitivity to changes in

microwave power than the buffer gas cell. Reductions in the sensi-

tivity to magnetic field gradients and light intensity are also

expected. As for cell lifetimes, Hugh Robinson has used one

closed cell for 10 years with no measureable degradation in signal
[5]

or signal-to-noise.
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The temperature coefficient of the wall shift is of order

1 - 2 Hz/K,L6]r_ so that fractional instabilities due to this effect

could be as low as 10-14 at a few hours and less than 10-13 per

day. Aging of the wall shift has not yet been measured. I would

also expect that the retrace of the coated cell could be made

better than a buffer gas cell due to the factor of 10 smaller

confinement frequency shift and spatial averaging. In the case of

the buffer gas cell, many hours are required to reestablish the

equilibrium between the gas phase and the absorbed gas on the

surface of the cell after a change in temperature.

There is yet another large bias in rubidium gas cell standards due

to the presence of pumping light interacting with the same energy

level being probed by the microwave radiation. Absolute light

shifts are of order 10-9.[2] The idealized pumping lamp profile

of Rb8_, shown in Fig. 2, has a component which tends to depopu-

late the desired F2 level. This unwanted light is filtered out by

using Rb85 as an absorber, but the filtering is not totally success-

ful and it shifts the center of the optical spectrum, causing an

output frequency shift of order 10-9. Also, the hyperfine signal

is typically 0.5% of the total signal, instead of _I0% as would be

expected from an ideal source.

Recent work by Tom English, et al. (Efratom, Inc.), has shown that

the frequency shift from varying the light intensity by 30% can be

reduced from 10-9 to < 1 x 10-11 by alternately applying pumping

light and microwave radiation.[7] This technique was first sug-

gested by M. Arditi.[8] English, et al., achieved a short-term

stability of _2 x 10-11 z-i/2 using a buffer gas cell.[7]

Many problems could well be solved by using a diode laser for

pumping the Rb gas cell. The diode laser can be stabilized by
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standard modulation techniques and can be tuned to pump only the

F2 levels, thereby increasing the hyperfine signal to ----16%of the

total signal as compared to 0.5% in the standard design. This

would:

I) improve S/N by-_5

2) reduce light shift to <10-12

3) increase line Q by _2

4) improve short-term stability to ~ 10-12_-i/2.

Summary of projected performance for several variations of small

rubidium standards is shown in Fig. 3. Performance could be

improved considerably by increasing volume.

CESIUM FREQUENCYSTANDARDS

Fig. 4 shows a schematic of a cesium atomic resonator.[I] It has

become increasingly apparent that present day cesium standards are

fundamentally limited beyond _ 1 day by the combination of phase

variations of the microwave signal across the cavity end, the

finite velocity of the atoms, and the spatial variation of velocity

across the beam profile due to the dispersive nature of the A and

B magnet state selectors.

The frequency offset due to the average phase shift is-

_M = <____><V>L

In my opinion, the major uncertainty and instability in the fre-

quency is due to the fact that <@2>I/2 may be 100 <@>.

The present state selection technique utilizing inhomogenic mag-

netic fields to spatially separate selected hyperfine states
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causes a correlation between velocity and position within the

microwave cavity window. This applies to dipole and quadruple-

hexapole systems. As a consequence of this coupling between

spatial position and velocity, any effect which can cause a varia-

tion in average velocity, state composition or spatial distribution

will cause a frequency shift even if <¢> = 0.[9] Effects which

can cause frequency shifts initially are variations in microwave

power, C field, Majorana transitions occuring in the beam between

the state selector and the microwave cavity, and even variations

in the voltage on the mass analyzer before the ion collector.

All of the above change the distribution of velocities contribut-

ing to the detected signal and shift the average frequency via the

distributed cavity phase.

At present, there are no attractive ways to significantly lower

beam velocity. Brute force attempts suffer from the low number of

slow atoms due the Boltzmann Distribution, and significant laser

cooling of neutral beams as proposed by Askin and also H_nsch and

Schawlow [10,11] have yet to be demonstrated.

Reduction of the distributed cavity phase shift by reducing the

diameter of the cavity window can be bought only at the price of

lower beam intensity. Cooling the cavities to cryogenic tempera-

tures could reduce this effect to near zero; however, the beam

would have to be carefully masked in order to prevent Cs buildup

within thecavity structure.

Recent work by Wineland, Jarvis, Hellwig and Garvey at NBS indi-

cates that the effect of the average phase shift <¢> can be reduced

to zero by implementing a 2-frequency and 2-cavity system[12] as

illustrated in Fig. 5. In such a system, the envelope of the

Ramsey Resonance is detected so that the average <@> between two
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ends is averaged to zero (see Fig 6). Since the frequency switch-

ing from _2 to v2'is fast compared to changes in <¢>, any pertur-

bation which would change <¢> is greatly reduced. As a consequence,

such a standard should be significantly more immune to frequency

changes due to microwave power changes, fluctuations in oven

temperature, position of oven/dectector, shock, vibration, etc.

In order to realize the full advantage of this technique, it is im-

portant that short-term stability be maintained of order 10-11%-I/2

or better. Todo this, it is necessary to open up the cavity

window in order to have a wide velocity distribution so that the

Ramsey envelope is narrow and to increase beam current. Under

optimum conditions, it is estimated that Oy(%) of I0-11T-I/2ican
be achieved. The current NBS test bed demonstrates _10-I°%- /2

for 4pA beam current <v> m 130 m/s, a 30% velocity width and a

cavity length of 17 cm. Opening the cavity windows should sub-

stantially improve the performance.

Reduction of the velocity dispersion across the beam profile could

also be accomplished with optical state selection. The laser

diodes for pumping Cs at the proper wavelength exist and state

selection has been demonstated.[13] Fig. 5 illustrates one possi-

ble configuration. The source is a single aperature to avoid

brightness variations over the oven opening, such as can occur

with multihole collimators. The straight through optics should

help utilize the maximum number of slow atoms. By using an opti-

cal pumping scheme completely analogous to that used with Rb, the

Cs beam can be predominately pumped into the 2SIz F = 3 manifold.

Len Cutler[14] has• suggested a dual frequency ,2Optical pumping

scheme by which all of the atoms could be pumped 'into the F = 3,

MF = 0 sublevel; thus providing approximately a factor of 4 in-

crease in signal-to-noise over standard design. With the absence
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of the A Magnet, magnetic shielding of the resonance area is

easier and Majorana transitions between the various sublevels

could be completely eliminated. Beam detection could be obtained

by conventional magnetic state selector/hot wire ionizer or by 2

step optical ionization. Both would offer near 100% efficiency

and the ability to velocity select.

The net effect of the optical pumping scheme for state selection

is to totally eliminate any correlation between spatial position

within the beam and thereby within the cavity opening and velocity.

Variations in microwave power, for example, will now cause a

change in average velocity, but not average phase shift.

So the variation of frequency with average velocity, such as by

changes in microwave power, should be reduced by a factor of 10 to

100 over present designs. In addition, the straight through

geometry and the efficient state selection should permit a factor

of 2 reduction in average velocity resulting in:

1) A factor of 4 reduction of second-order Doppler shifts
V2

1/2 C--__I.5 X 10-14

2) Oy(%) improved by factor of 4 to 8 ls <_<104s.
3) <@>reduced by a factor of (2).

4) A<@> vs microwave power reduced by _ 20 to 200.

5) A_ = <@><V>reduced a factor of approximately 2_over aL
magnetic state selection and should be extremely stable

and measureable. The offset is not measurable with high

accuracy with present magnetic state selection.

If the optical pumping scheme were coupled with the 2 frequency, 2

cavity technique, then the offset would also be made zero at the

expense of decreased short-term frequency stability.
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Fig. 7 shows a summary of projections for various configurations

of commercial sized cesium frequency standards. Additonal improve-

ments are possible with laboratory type cesium standards.

HYDROGENFREQUENCYSTANDARDS

A block design of a standard hydrogen maser oscillator or active

hydrogen maser is shown in Fig. 8.[1] This device is unique among

the atomic standards being discussed now because it is an oscillator.

By building up enough population in the excited hyperfine state,

it can be made to oscillate. Frequency stability at a few hours

is unexcelled and therefore such devices are used for the most

exacting high frequency phase sensitivity receivers, such as VLBI

and the JPL deep space tracking network (See for example references

15, 16 and Fig. 12). However, for long-term timekeeping applica-

tion, active hydrogen devices are seldom used because the frequency

drifts away due primarily to cavity pulling which causes a fractional

shift of:

A V Qc (Vc-VH)N

- QH VH

Assuming a hydrogen line QH of 5 x 10s and a cavity Qc of 3 x 104
results in

A_c
v - 0.6 x IO-4 "

VH

In order to achieve a stability of I0-Is in the output frequency

the cavity frequency must be stable to 1.5 x 10-11 Free running

cavity stability of this order has never been demonstrated for
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periods beyond a few hours. Long-term stability of active masers

can be improved using automatic cavity tuning. One synchronously

detects changes in output frequency with changes in beam flux and

servos the cavity tuning to minimize output frequency changes.

Stabilities of order a few times 10-14 have been reported.[17]

Recent work at National Bureau of Standards has produced a new

concept for stabilizing the microwave cavity.[18'19'20] A simpli-

fied block diagram is shown in Fig. 9. A local probe oscillator

is phase modulated at two different low frequencies fi and f2

where f2 is approximately the half-bandwidth of the hydrogen

resonance and fz the half-bandwidth of the microwave cavity. The

transmitted microwave signal is envelope detected and the result-

ing amplitude modulation processed in two separate synchronous

dectectors referenced to fz and f2 respectively. The error signal

recovered from the fl synchronous dectector is used to electronic-

ally tune the cavity to the probe frequency and the error signal

recovered from the f2 synchronous detector is used to tune the

probe frequency to the hydrogen hyperfine resonance frequency.

This allows one to lock the cavity frequency to the hydrogen

resonance with an attack time of a few seconds, thereby allowing

rapid recovery from any induced cavity perturbation.

Fig. 10 shows the frequency stability realized with a conventional

full-sized cavity as measured against NBS-6, one of our primary

frequency standards and also the ensemble of 9 cesium standards,

which generate UTC(NBS). The realized stability of 3 x 10-15 at 4

days confirms that this NBS passive hydrogen maser scheme can be

effectively used to control cavity induced frequency perturbations.

For a more thorough discussion of the other possible perturbations

see.[18'19'20] The above data was obtained with a hydrogen hyper-

fine line Q of 5 x 108. A new bulb configuration and better teflon
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coating now yields a line Q of 5 x 109 with 10 times the previous

signal-to-noise. Measured frequency stability at 1 s is better

than 1 x 10-13. Based on the above, one would expect a daily

frequency variation of less than I x 10-Is for this full-sized

passive hydrogen maser cavity system.

This passive system concept also makes possible the use of a small

dielectrically loaded microwave cavity. The new cavity system

described in [19] was designed and assembled in colaboration with

David Howe and S. Jarvis, Jr. at NBS. The hyperfine line Q with a

storage volume of 1.1_ is 1.4 x 109 at low microwave drive and

1 x 109 at operating conditions. The observed frequency stability

is 1 x 10-12_-I/2 out to approximately 1 day. The small passive

maser has been compared with UTC(NBS) for 54 days and its frequency

drift was 1±1 x lO-IS/day.

Fig. 11 shows a comparison of frequency stability of hydrogen

atomic standards. A line labeled H(Active) is the best reported

in the literature.[21] The time-keeping ability of various atomic

standards is shown in Figs. 12 and 13.[22] The data on the passive

masers clearly shows that active cavity control can be used to

greatly improve long-term frequency stability of hydrogen masers.

Furthermore, this technique greatly simplifies the thermal vacuum

design, thereby decreasing cost, weight and complexity.

STORED IONS

A new class of microwave frequency standards based on stored ions

is presently under study. These devices appear to hold the possi-

bility of achieving frequency stabilities of order 10-16 and

absolute accuracy of order 10-15. These devices are explained by
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D. J. Wineland in these proceedings, and are the only systems

which fundamentally reduce both first and second-order Doppler

effects to sub 10-14 levels. For example, the cavity phase shifts

encountered with Cs standards is a form of residual first-order

Doppler shift.

The principles of ion storage based frequency standards aredescrib-

ed elsewhere.[23] Basically, the ions are contained within an

electromagnetic trap with dimensions of a few cm or less. Contain-

ment times are typically hours to days which, in principle, makes

possible extremely large line Q's for hyperfine transitions, even

at microwave frequencies. The ions can be cooled to sub-Kelvin

temperatures using lasers tuned to the lower side of an allowed

electric dipole transition. Each scattered photon carries off

approximately 20 mk of energy if the laser is detuned by 500 MHz.

Recent work[24] clearly shows that sub-Kelvin temperatures are

easily achieveable in the case where appropriate lasers exist to

pump the ions.

One proposed scheme for a stored ion standard has the following '

half cycle:

I) state select ions using optical pumping,

2) induce hyperfine transitions with probe tuned to the

high frequency side of the hyperfine resonance and the

laser off,

3) optically pump ions to determine how many made the

transition and to cool the ions.

In the next half cycle the same three steps are repeated; however,

the probe frequency applied in step 2 is moved from the high

frequency to the low frequency side of the hyperfine resonance.
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The maximum frequency stability that can be realized for N ions

having a hyperfine resonance frequecy _o is

I -I12
0 (t) - toN _0 t

where t° is the total cycle time or 2 (_z +T2 +_) = to. Values

for Oy(IS) vary from 10-12 to 10-Is for some of the systems under

consideration. At present, the most serious impediment to this

effort is a lack of suitable lasers to overlap ions having attrac-

tive other properties for theapplication.

SUMMARY

In the above, I have presented what I feel to be the most serious

perturbations to frequency stability of rubidium, cesium and

hydrogen devices. Most of these are perturbations essentially due

to the concepts on which the standards are based. I feel that

there is great opportunity for substantial improvement in frequency

stability in both laboratory and field settings and I have indicated

how I think these improvements can be obtained.
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QUESTIONS AND ANSWERS

MR. FISCHER:

I noticed on the slide of the rubidium stability there. It seemed

like what I noticed to be a random walk of frequency was indicated

for all the longer Taus. I wonder if you could comment on that and
the fact that they all turned over at about the same Tau, close to
i0 to the 5th seconds.

DR. WALLS:

Well, lots of systematic effects appear to come in at somewhere
between 12 and 24 hours. It is an environmental effect. It is

usually not a true drift. But it is some sensitivity to small

temperature changes, to gradients that happen because of temper-

ature changes in the room or whatever. And I think it is quite

typical for standards, when they start to deteriorate that they
come out as Tau to the one-half rather than Tau to the one.

Now if you are effected by something like cavity pulling,

cavity drift, that too may look linear for a while, but I suspect
that it slows down to Tau to the plus one-half or even flatter for
a while.

MR. PLEASURE:

Dr. Cutler disclosed how he proposes to pulse a cesium atom in a

laser, is there another transmission involved?

DR. WALLS:

I suggest you talk to him. It is a refinement of some things in

the literature, namely, by using two optical pumping signals you
can force them to tumble into the two middle ones where the transi-

tion probability is smaller for movement from the optical pumping.

But I suggest you talk to him about the details.

MR. PLEASURE:

How does the hydrogen maser have an amplifier that doesn't fluctuate

in phase? In other words you are Q-multiplying the cavity of the

hydrogen maser, isn't there a phase fluctuation in the amplifier?

DR. WALLS:

In the passive maser there is no Q-multiplication. I will show you

here. You do phase modulation on this side and on the output trans-

mitted signal you detect amplitude modulation which tells you the
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detuning between, in one case the probe oscillator in the center

of the hydrogen resonance, and in the other case between the probe
oscillator and the center of the cavity resonance. So you do

phase modulation here. All detection on this side is amplitude
sensitive and not phase sensitive.
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ABSTRACT

Clock manufacturers have encounted major difficulties

in attempting to supply reasonably-priced, reliable

clocks for critical aerospace applications. The basic

problems arise from the inherent technical difficulties

of designing and fabricating equipment to provide per-
formance at the limits of the state-of-the-art in

demanding environments, but the difficulties are

compounded by inconsistent and unstandardized specif-

ication practices, and by an emphasis on initial

acquisition costs, rather than on life-cycle-costs.

Conventional parts-stress analyses, which do not

provide a useful indication of the reliability of

a clock, lead to increased parts costs for high-

performance aerospace clocks without commensurate

benefits in improved reliability or performance.
The characterization of clocks in term of the

mean-time-between-resynchronizations, facilitates

the estimation of life-cycle costs and provides
a means to evaluate clocks in a realistic fashion

for specific systems applications.

INTRODUCTION

There is concern in our industry, users as well as suppliers, over

the reliability and the acquisition costs of high-performance clocks

and frequency standards. Such concerns can be related to the com-

plex interaction between cost, performance and reliability in the

design and fabrication of clocks. Certainly there are similar

relationships in all technologies; but there are unique aspects

to the clock problem, particularly with the respect to a useful

definition of clock reliability. Although our primary interest

here is with instruments intended for long-term operation in

spacecraft, the same considerations are applicable to a wide range

of environments and applications, from standards laboratories to

oil-exploration rigs, in which uncompromising performance and

reliability are essential.
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A pragmatic approach is to carefully examine the impact of certain

categories of customer specifications and requirements on the cost,

reliability and performance of clocks. The issues of parts selection

and parts stress analyses, "qualification", nonstandard interfaces,

and operation or "life-cycle" costs are of particular concern in any

discussion of cost, reliability and performance tradeoffs. The

situation is further complicated by the extreme difficulty of

abstracting clock specifications from the system design. A clock

which may be quite adequate in one system may be considered

inadequate in the context of a second system, even in instances in

which the missions of the two systems are identical.

PARTS STRESS ANALYSIS

Mean-time-between-failure (MTBF) estimates based on electronic parts

stress analysis are a valuable tool in the reliability engineer's

kit. Used with care and understanding, and in conjunction with

failure mode and effects and worst-case analyses, MTBF calculations
are an aid to a complete understanding of the operational

characteristics of an item of equipment. But because the MTBF

estimate is relatively simple to calculate, and provides a single

unambiguous number as the result of the calculation, the MTBF tends

to be given a great deal more attention than it deserves. A
review of the basics of parts stress reliability predictions may

help to clarify the limitations of the parts-stress MTBF estimate.

MTBF Calculations

Failure rate models have been established for the heavily-used

electronic parts: integrated circuits, transistors, resistors

and capacitors. The models and the corresponding experience factors

are compiled in a military handbook, MIL-HDBK-217. 1 From this
handbook, the failure rate model for a discrete semiconductor device

in failures per 106 hours is

_p = _b (_E x hA x _$2 x _C x _Q) (i)

where

NE is the environmental factor

_A is the application factor

HS2 is the voltage stress factor

_C is the complexity factor

_Q is the quality factor
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The voltage-stress factor and the quality factor are cost-sensitive;
that is, tradeoffs are possible between cost of the device and the
failure rate.

An example is instructive. Table I lists the appropriate factors
for a NPN silicon transistor used in a benign ground environment

(a laboratory or similar protected environment). The transistor

will be operated at a collector voltage of 40% of VCB O.

TABLE I

MEAN-TIME-TO-FAILURE EXAMPLE

NPN SILICON TRANSISTOR

HE = 1 Ground Benign Environment, 25°C

_A = 1.5 Linear amplifier application

HQ = 0.2 JANTXV quality level

_$2 = 0.48 Voltage stress level = 0.4 x VCB O

= 1.0 Single transistor complexity
C

%p = 0.0014 Failures per 106 hours

All factors from MIL-HDBK-217B

Once the failure rates of the individual parts are determined, the

failure rate of the equipment, )tEQUI P can be computed by summing
over all parts,

m

XEQUI P = _ XPi
i=l

where

m is the number of parts in the equipment

and
th

is the failure rate of the i part.
pi
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As examples of the results of such calculations, the following
results were obtained for two typical frequency standards:

a.) Precision 5 MHz Crystal Oscillator: %EQUIP = 470,000 hours

(Ground Benign, 25°C)

b.) Cesium Beam Frequency Standard: %EQUIP = 68,000 hours

(Ground Benign, 25°C)

It should be noted that these estimates include all electronic piece

parts, but exclude the precision quartz resonator and the cesium

beam tube resonators. This exclusion will be discussed in greater
detail later.

Parts Cost Considerations

The voltage stress and the quality factors were earlier indicated to

be cost-sensitive items. The calculated part failure rate can be

reduced by selecting derated parts and by chosing high-quality

parts. All other things being equal, a higher-voltage rated

capacitor will be more expensive than a lower-voltage device and
similar arguments apply to transistors and resistors. In most

instances, the economic impact of derating is moderate and the
effect on equipment reliability is substantial and cost effective.

Note, however, that there are pitfalls to an undisciplined attempt

to achieve low failure rates through part derating. Transistor

voltage stress level is an excellent example - the selection of a

rating may sacrifice other desirable
device with a high CBO
characteristics suc as switching speed and result in an overall

lower equipment reliability in practice. The cost impact of
higher quality parts can be very high, however. Table II is a

listing of the purchase price of typical Established-Reliability

capacitors, in single unit quanties, as a function of the

failure level of the device. Prices of established reliability

parts have been volatile recently, so that only the relative prices
should be considered.

Parts, including Established Reliability types, used in equipment

intended for critical applications are generally required to be

rescreened - tested by the equipment manufacturer upon receipt from

the factory or distributor. Rescreening costs can be considerable,
often greater than the purchase price of the parts themselves, and
difficult to accurately predict. The actual costs of the electrical

and mechanical screening tests and of the required destructive

physical analyses (dissection and microscopic examination of samples
of each lot) are only a portion of the total costs attributable to
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rescreening. The loss of entire lots of parts due to excessive

failure rates in either electrical, mechanical or destructive

testing, may require the procurement of from three to ten times

the quantity of parts normally required.

TABLE II

ESTABLISHED-RELIABILITY PARTS COST EXAMPLE

Capacitor: Solid Tantalum, 22MF, 50VDC + 10%

Type CSRI3G226M

Failure Level Failure Rate Factor (_Q) Price

L 1.5

M 1.0 $10.28

P 0.3 13.15

R 0.i 21.80

S 0.03 30.45

Limitations of Parts Stress Analysis

It should be reemphasized that parts stress analysis is only one of

a number of sophisticated analytical techniques available to the

reliability engineer. Taken by itself, a parts stress analysis

does have certain value. It can illustrate the reliability improve-

ments possible by replacement of lower quality parts by higher

quality parts and the tradeoff of part costs versus increased MTBF.

Perhaps the most important use of parts stress analysis is to provide

a quick and simple means for estimating the relative failure rates

of competitive equipment all other things being equal. A simplified
technique, parts count reliability prediction, can be used for this

purpose before the circuit design has even been completed, if the

approximate parts count in each generic part category (resistor,

capacitor, relay, etc.) can be estimated.

Parts stress analysis, however, cannot be used to compare equipment

of varying complexity. In fact, noncritical application of parts

stress analyses in these cases can be misleading. A multistage-

stage transistor amplifier of marginal performance is a simple

illustrative example: an additional stage of gain will improve the
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reliability of the amplifier in the commonly understood sense of the
word. The parts stress analysis taken alone, however, indicates a
decrease in the MTBF.

The extension of this concept to clocks and frequency standards is

straightforward. Stated simply, the MTBF estimates do not indicate

the relative reliabilities of different clocks, or different types

of clocks, when applied in real-world systems. The precision quartz

crystal oscillator, discussed earlier in this section, with a MTBF
of 470,000 hours, is not necessarily more reliable than a cesium

beam frequency standard with a MTBF of 68,000 hours. If a system

specification requirement is that a frequency shall be maintained

to within 1 x i0-I0 of an inital value, then the quartz oscillator

will "fail" within a matter of days or weeks due to its frequency

aging, whereas the cesium beam frequency standard could operate

satisfactorily for about 7 years.

There is another, perhaps more fundamental, limitation of the

application of parts stress analysis to state-of-the-art clocks

and frequency standards: the inadequate reliability data base

for the resonators; precision quartz crystals, rubidium cells and

lamps, and cesium beam tubes. Parts-stress MTBF estimates are

statistical data based on many millions of hours of user experience

with a large number of electronic piece parts. It is not meaningful
to factor into these estimates failure rates for resonators based

on a limited sample of a few dozen to a few hundred parts. The

examples shown above assumed that the MTBF was not limited by

resonator failure; an adequate treatment of the subject, although 2
admittedly of utmost importance, is beyond the scope of this paper.

I

QUALIFICATION

Military and aerospace equipment is normally "qualified"; validated

by test and analysis to survive and operate in a specified

environment. Qualification is an expensive and time-consuming

process, justified by the expectation that the qualified equipment

can be deployed with confidence.

There is an unfortunate corollary to the concept of a qualified

item of equipment; unless the specific test and analytical

sequences are completed, the unit is unqualified. This fact has
become a powerful inhibitor to the use of existing or previously

developed clock and frequency standards Sn new systems. Each

system or platform has its own specification and corresponding

environmental and performance requirements. The resulting design

changes dictate further qualification testing, adding to the cost
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spiral without signifigantly improving either performance or
reliability.

In addition, different and incompatible requirements for similar

space vehicles or for different portion of the same payload are not

unusual. The lack of standardization, however, may go beyond

objective requirements of the actual environmental conditions; test

requirements are sometimes specified in conflicting and incompatible
terms, even in cases in which the actual physical conditions are

similar or identical. Shock and vibration requirements are

particularly subject to requirements proliferation. Shock testing
for example can be specified in terms of hammer blows, pyrotechnic

simulation spectra or time-domain pulse shapes and it is often

difficult or impossible to analytically verify that a clock which

has been qualified to one set of shock criteria will prove

satisfactory under a different set of test conditions.

The major casualty of the proliferation of specifications and the

non-standardization of requirements is the "off-the-shelf" high-
reliability clock or frequency standard. For the reasons outlined

above, clock manufacturer cannot prequalify the instrument and

offer it as a standard item. It follows, therefore, that production

runs are always short and that clock prices reflect the inability

of the manufacturer to amortize development, documentation and

project management costs over a large number of units. Furthermore,

reliability inevitably suffers when only a small number of items

are fabricated. The normal product maturation process (learning

curve) by which design and workmanship problems encountered in the

early production units are corrected in later production runs never

has a chance to operate.

SPECIAL INTERFACES AND FREQUENCIES

The primary purpose of a system clock is to provide a stable,

reliable and precise time or frequency reference. This challenges

the clock manufacturer if the requirements of the system specification

are at or near the limits of the state-of-the-art and new or unique

interface requirements such as special output levels, multiple out-

puts, "TTL-compatibility", special ground isolation, or operation

from non-standard supply voltage are an additional, andoften costly,
burden.

When a special or non-standard interface is specified, the clock

manufacturer must incur not only the engineering costs associated

with the development of new circuitry and mechanical packaging, but

documentation, reliability engineering and qualification testing
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expenses as well. Even if the basic frequency control circuits and

resonators are proven and reliable, the qualification legacy may be

lost because of the addition of the special features.

The specification by a user of a non-standard or unusual frequency
for a high-performance clock presents the clock manufacturer with

a difficult measurement problem, one that may be unique to our

industry. If state-of-the-art performance is required, the manu-

facturer is usually instrumented to measure frequency stability and
phase noise spectra at a few commonly used frequencies such as

5.000 or 10.23 MHz. The only feasible technique for certain measure-
ments at non-standard frequencies may be the fabrication of additional

units or of special test systems. Therefore, certain specification
requirements may not be economically feasible at all for a small
production order.

CLOCK COST EXAMPLES

It may be useful to examine two illustrative examples of some of

the relative cost elements of high-performance clocks for spaceflight
applications. The examples are composites and are not intended to

represent the pricing of any specific instruments. The relative

costs in both cases are for small production quantities and the parts

and parts screening costs reflect the distortions caused by minimum

lot-size procurements. The per-unit parts cost would be considerably
less for larger production quantities.

Precision Quartz Crystal Oscillators

Table II! shows a composite relative cost breakdown for a quantity
of four space-qualified crystal oscillators.

All electronic parts in this example are to be ordered to JANTXV or

to Established Reliability Level "S" and subjected to rescreening
and a sampling DPA.
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TABLE III

PRECISION CRYSTAL OSCILLATOR COST EXAMPLE

Parts 44%

Purchase 19%

Rescreening and DPA 25%

Manufacturing and Test 8%

Qualification Test 4%

Program Management 30%

Design and Development 14%

TOTAL 100%

Atomic Frequency Standards

A second example, shown in Table IV, is a quantity of four space-

qualified atomic frequency standards. The parts are to be selected

to the same standards as in the previous example.

TABLE IV

ATOMIC FREQUENCY STANDARD COST EXAMPLE

Parts 28%

Purchase 14%

Rescreening and DPA 14%

Manufacturing and Test 15%

Qualification Test 7%

Program Management 30%

Design and Development 20%

TOTAL 100%

A moderate amount of engineering effort, primarily reliability and

parts selection oriented, has been assumed. Major changes in the
basic design, such as any of the interface characteristics, would

require substantial increases in the design and development costs.
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It should be noted that a very signifigant fraction of the costs

shown are unrelated to the specific technology of the clock but

rather arise from the reliability, testing and management aspects
of the program. Since these cost elements tend to be similar for

equipments of roughly the same complexity, the cost differentials
between high-reliability, high-performance clocks based on

different timekeeping systems can be expected to be much smaller

than for the respective commercial counterparts. Flight-qualified

cesium and rubidium frequency standards, for example, are roughly
equivalent with respect to initial acquisition costs.

RELIABILITY AND LIFE-CYCLE COSTS

The previous discussion has been primarily concerned with the

acquisition costs of clocks. In most cases, however, the operational

costs of the system far exceed the procurement costs and the total
life-cycle costs must be considered in the selection of a clock

or frequency standard for a particular system application.

It is difficult to treat adequately the subject of life-cycle
costing without a more careful consideration of the performance and

reliability of the system clock. In general, the mission of any
system can be accomplished over a wide range of system clock

performance capabilities. With less stable or less precise clocks,
the system must be resynchronized more often than with more stable

and precise clocks but, in principle at least, mean-time-between-

resynchronizations (MTBR) can be traded off directly for system

clock performance. Neglecting systematic errors, a precision quartz

crystal oscillator requires resynchronization at 1-day (approximately)
intervals to maintain one-microsecond time accuracy. A rubidium

frequency standard requires resynchronization about every i0 days for

the same accuracy, and cesium frequency standard about every I00 days.

The resynchronization process may require frequent travelling clock
trips or additional radio-frequency channels and may be difficult

or expensive because of security or operational considerations, but

the principle is still valid. It is interesting that the MTBR,

which is derived from the performance of the clock and the require-

ments of the system is also a useful measure of the reliability of

the clock in the specific application. The probability of outright
failure of the clock cannot be neglected, but in those cases in

which the MTBR is much less than the MBTF, the MBTR number must be

considered to be a primary indicator of clock reliability.
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The lifetime cost of resynchronization; the total life of the system

divided by the MTBR and multiplied by the cost per resynchronization,

can be computed readily for a large variety of systems. For example,
at the Deep Space Network, operated by the Jet Propulsion
Laboratories, preliminary estimates have been made of the tradeoff

of operational costs for network time synchronization by simultaneous

radio telescope observations of quasars versus the cost of acquiring

and operating improved atomic frequency standards. 3 The improved
clocks extend the MTBR by approximately a factor of ten and for

network operational costs of $500 to $100Oper hour per tracking
station, the life-cycle costing excercise favors the use of the

improved standards, even at very high acquisition cost levels.

Although it is not possible to generalize broadly from this example,
it appears that for multi-user, continuous-duty applications such

as spread-spectrum communications systems and navigation satellite

systems, operational costs dominate the life-cycle-costing

estimates. In these instances the acquisition costs of the system
clock is a secondary consideration and the primary concern of the
system designer should be the MTBR.

CONCLUSION

The ability of the clock manufacturer to supply reasonably priced

clocks and frequency standards for high-reliability applications

would be greatly enhanced by the standardization of clock frequencies,
interfaces and environmental requirements. Conversely, the cost of

clocks for aerospace applications is inflated by the very small

production quantities required for most systems and the consequent
small base over which development and management costs can be
amortized.

Stable, high-performance clocks improve the reliability of systems as

measured by the mean-time-between-resynchronizations. Therefore,
there does not exist a one-to-one relationship between clock

complexity and reliability, in contrast to the conventional parts-
stress analysis of failure rates. It also follows that the total

operational costs of a system are inversely proportional to the

MBTR and that the system designer must include resynchronization

costs as well as procurement costs in the life-cycle-cost estimates.

Finally, the focus on the electronic circuit performance clocks

without an equivalent effort of obtain data on the resonators may be
misleading to the designer as well as the user.
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QUESTIONS AND ANSWERS

QUESTION:

I liked it very much, but I wish you could have included some idea

of how often these costs are not typical of contract by delivery

price. You never once mentioned the fact that so many manufac-
turers count on delivery and then you have people sitting around

with nothing to do because some other supplier has not given them

or has a good excuse for not delivering.

DR. LEVINE:

My experience has been that everybody working on a system is hoping

and praying that somebody else will come in late.
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THE FREQUENCY AND TIME STANDARD AND ACTIVITIES AT THE

BEIJING INSTITUTE OF RADIO METROLOGY AND MEASUREMENTS

H. T. Wang

Abstract

The Beijing Institute of Radio Metrology and Measurements (BIRMM),

as a calibration center and a research division of radio metrology
and measurements and frequency control devices for the system of
space technology in China, has made some progress in PTTI research
work in recent years. This paper will review some of PTTI activ-
ities briefly.

Frequency measurement is one of the routine jobs of BIRMM. Now

there have been three kinds of frequency measuring systems: a

system of frequency comparison, a system of phase comparison and
a system of time comparison.

In cooperation with other organizations from 1978 to the second

quarter of 1979, two experiments on timesynchronization were

carried out. With the help of the portable cesium clock in deter-

mining the time delay between two stations, one experiment of
time synchronization, chiefly sponsored by the Central Bureau of

Metrology, of China, between Nanjing (China) and Raisting (West
Germany) by using the "Symphony" satellite, has achieved a result

with an accuracy of 30 ns and an uncertainty of about i0 ns.

The other experiment, applying the television pulse technique for
time synchronization, has yielded a result with an error of about
0.5 _s in 24 hours.

In order to measure the short-term frequency stability of crystal

oscillators or other frequency sources, BIRMM, in cooperation

with the Wuhan Institute of Physics, developed a rubidium maser

atomic frequency standard about two years ago. BIRMM has devel-

oped a short-term stability measuring s{_tem with a time-domain
stability resolution _y (2, T) < 1 × I0- /T (sec) and a frequency-

domain stability resolution s_ (f) = 10-12/f + 10-15 .

Additional new PTTI items under consideration will be mentioned

briefly, too.

i. Frequency measurement

BIRMM began its PTTI activities not long ago. The basic frequency standard

founded in BIRMM is a commercial cesium beam atomic frequency standard (2 sets,
type 3200, imported from Switzerland). Its frequency accuracy has been

checked with the Loran-C receiver and has proved to be 1 × i0-II. A crystal

oscillator of type XSD with a time aging rate less than 1 × 10-10/day is used

as a working standard for frequency calibration. There have been set up the
systems of frequency comparison, phase comparison and time comparison. The
operation of these systems will be described below.
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A. System of frequency comparison

fx

Difference Electronic Digital

---]frequency _ counter recorder
__J multiplier TR-5589L TR-6196

4110
fr

'0rystal _' Computing

frequency counter
standard -- E-314

XSD

cesium
beam

frequency
standard

• 3200

Figure I. Functional block diagram of the system
of frequency comparison

The limit sensitivity of the system is not only dependent on the uncertainty
caused by the noise of the difference frequency multiplier 4110 itself, but on

the resolution of the system. There exist experimental data for the former.

The latter may be calculated as follows:

Frequency resolution Rf = i/M_foT where M is an effective multiplying factor,

fo is the nominal value of the frequency measured and w is the sample time.

Uncertainty resolution of The limit

Sample caused by the system sensitivity of

time 4110 itself the system

i sec <4 x 10-12 i x i0-II =i x i0-II

i0 sec <3 x 10-12 1 x 10-12 =3 x 10-12

i00 sec <5 x 10-13 1 x 10-13 =5 x i0-13

Uncertainties caused by reference sources are given below.
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Type of Drift-rate/day Error introduced by

reference of the reference short-term stability of
source source the reference source

1 sec i0 see i00 sec

Crystal
oscillator 5 x i0-II 3 x 10-12 3 x 10-12 2 x 10-12

XSD

Cesium

frequency 10-14 10-15 3 × i0-II i x i0-II 3 x 10-12
standard

3200

It can be seen from the above table that when XSD is used as a reference source

in measuring long-term stability or aging rate/day, a i0 sec sample time can

be applied to calibrate the frequency standard below 5 x 10-10/day. But when

3200 is used as a reference source in measuring long-term stability or aging

rate/day, in order to calibrate the frequency sources below 3 x lo-ll/day,

i00 sec sample time must be applied due to the limit of the short-term sta-

bility of 3200 cesium frequency standard, so that the calibration error will

be one order of magnitude lower than the error of the calibrated equipment.

B. System of phase comparison

rx V------"--- ----I

 Oi  eren e[i Phase! I frequency recorderXKP

fr--_ mu,ltiplier 'I

' I
Crystal
frequency
standard
XSD

Cesium beam I

frequency
standard 3200

Figure 2. Functional block diagram of the system
of phase comparison

659



The dashed line in the block diagram indicates that a measuring equipment can

be added to increase the resolution of the system, if necessary•

The resolution of the system of phase comparison can be calculated by:

1
Re=

M fo TN

Where M is the multiplying factor of the difference frequency multiplier, fo is
the nominal value of the frequency measured (in Hz), T is the sample time (in

sec) and N is the number of division in the width of the recording paper.

According to the above equation, the resolution of the system (when M = I, i.e.

without use of a difference frequency multiplier) is the function of the sample

time and the input frequency as shown in the following table.

• _requency
Resolution _ I00 KHz IMHz 5MHz
of the

\
Sample _
time

103 sec 2>_10-10 2 _10 -11 4>(10 -12

10 4 sec 2Xl 0 -1 1 2 ,_<10-1 2 4 -_ 10 -1 3

10 5 sec 2X'10-12 2k:10 -13 4X10 -14

Calibration error of the system of phase comparison: the calibration errors

for various sample times are given below, assuming the input of the phase com-
parator to be i MHz.

L

Sample Resolution Measurement error Introduced error
time of XKP ,error due to by XKP in mea - of
"r accumulated suring sample XKP

difference time
tlme_of XKP,

103 sec 2X_0 -11 5X10 -11 I X10 -9 I)/I0-9

10 4 sec 2 XIO -12 5X10 -12 1 :<10 -10 i_I0 -lo

105 sec 2XI0 -13 5 XIO -13 I )_I0-11 1_'_I0-11
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It can be seen from the above table that in order to reduce the error of

the system an external standard clock should be used in measuring sample time.

3. System of time comparison

fx[Digital
clock I pps

I 2205

q Electronic counter forstart mesuring TI

ll)igital I I pps stop _ TR5589+ 4013
fr _ clock

22O5

i

I Crystal I Digital

frequency recorder

standard TR-6196

XSD

beam
frequency
standard

7200

Figure 3. Functional block diagram of the
system of time comparison

The resolution of the system of time comparison can be calculated by:

Rt - TOr

where To is the time base for time measurement and T is the sample time. The
resolution of the system is given below.

e base 1,g s 0.I,_ s 10ns
0-6time _ ( I s) (I0-7s) (I0-8s)

103 sec I 10 -9 I 10 -10 I 10-11

104 sec I 10 -10 I 10 -11 I 10-12

10 5 sec 1 10 -11 1 10 -12 1 10 -13
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The calibration error of the system of time comparison depends on the pha_3e

jitter and phase jump caused by the frequency divider of digital clock 2205 and

on the resolution of the system. Generally speaking, the phase jump of the

phase divider is recognizable and the phase jitter is very small. Thus the
calibration error of the system is chiefly dependent upon the resolution of the

system.

The items for calibration and comparison BIRMM can deal with and the accu-

racy BIRMM can obtain are given in the following table.

Type of the Items for calibration and aompa-
_requency risonand their accuracy
standard
being cali-
brated or Stability Stability Stability Drift Accu-
compared (I sec) (10 sec) (day) rate/day racy

Crystal 0-12 0-12 I>_I0-q_ I,_I0 "Ii !0frequency 2 _<I 5 _iI 3 X 10-II 3%10- 1;410-
standard

Rubidium 0-12 0-12 13 0-12 I_, 0-10gase cell 2 >_I 5 X I 3,_<IO- I_I ,-,I
frequency (phase
standard (intercom- compa-

parison ) rison
method)

Commercial

cesium 0-1 2 12 0-I3beam 2 XI 5 XIO- 3 7{I I;<1.0-II

frequency (intercom- Receive
standa rd pari son ) Loran-C
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Internationall Primary Cesium National basic frequency
Loran-C il beam frequency standard or receive in-

VLF I standard
ternational frequency

receiver I (Nation,_l Ins- (standard)
titute of Me- -71 XIO -12
trology of
China )

Passive. Commercial ce- Secondary frequency
television sium beam standard

-----. frequency + IxlO -11
synchroniza- standard -
tion 5200
comps ri son

Qunrt z-c rys tal working
fre quenc y frequenc y
s ts.ndard stsnd,_ rd

XSD + 1 xlO -tO

(after cnlibrn.tion)
I

user _ _+

i

xIO -_I
J

Figure 4. Schematic diagram of the hierarchy of frequency
accuracy

II. Measurement of short-term frequency stability
and a survey of the research work

Short-term frequency stability of precision frequency sources is a problem
to solve urgently, which the system of space technology has been dealing with
recently. BIRMM has undertaken some research work in this area with the follow-
ing achievements:

A. Principal technical characteristics

(i) Frequency measurement range
1 MHz, 2.5 MHz, 5 MHz, IOMHz, 100 MHz,
M x 100MHz (M=45 to 70)

(2) Form of input signals
Continuous sinusoidal wave
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(3) Resolution of the measuring system

a. Resolution of tlme-domain stabilitv

Allan variance _y (2, T) < ixl0-12/T
T is in sec. fh (bandwidth) is 10KHz

b. Resolution of frequency-domain stability

phase noise power spectral density

S _ (f) < 10-12/f+10 -15

f is Fourier frequency in Hz.

B. Standard reference sources

(I) Rubidium maser atomic frequency standard (active rubidium frequency
standard)

To increase the measurement accuracy of short-term frequency stability,

BIP_M in cooperation with the Wuhan Institute of Physics under the Academy

of sciences of China has developed a rubidium maser atomic frequency stan-

dard as a reference source for the test of short-term frequency stability.

The maser was developed by the Wuhan Institute of Physics, while the elec-

tronic circuits (including a phase-lock receiver, a 100MHz quartz-crystal

oscillator and a 311KHz frequency synthesizer) were developed by BIRMM.

The schematic diagram of the maser, the functional block diagrams of

the phase-lock receiver and 311KHz frequency synthesizer are given below.

Two models were successfully developed in 1977, with the maser having

a copper cavity. The short-term frequency stability of these two models
of the maser proved to be 5x10-13/T. (T is in sec.)

For further improving the characteristics three new models have been

developed recently. Some modification has been made in the maser and the
electronic circuits.

The maser has a microcrystalline glass cavity instead of the copper

cavity. The low-noise elements and components being used, the noise of the

electronic circuits has been reduced and the operation reliability has
increased.

The following technical characteristics are obtained after the prelim--

inary test.

a. Output frequency stability of the maser is indicated in the follow-
ing table and the curves.

b. Output power of the maser (1.5-2) x 10-10W)

(2) Besides the rubidium maser atomic frequency standard, 100MHz and 5MHz

quartz-crystal oscillators have been developed as reference sources

for the test of short-term frequency stability.
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Figure 5. The structural scheme of the rubidium maser
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6,334.689 HItz 34. 689 MHz 34. 689 Mttz 311 Kttz

1 1% a7 _ .

I 1 I _ frequency

de tec tot syn thesi zer

I I I I 'I
X2 X20 5f_Hz Low pass

VCXO filter

IOO[_Hz Phase I Output _- IOMHz
detector-] :-- 5MHz

VCXO filter I stage _-2.514Hzi _- IMHz

l
Figure 6. Functional block diagram



Figure 7. Functional block diagram of frequency synthesizer



L | ;-

!0-" /0:' 0_ '?"_'C"3 i0-2

Figure 8. Characteristic curves obtained in test of the

short-term frequency stability of PBR-MII maser

3. Comparator s

A. Time-domain comparator

A multi-period measuring system was used to meet the requirements of mea-

surement of short-term frequency stability with 1 ms--i sec sample time.
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fo

I I
L__ 8ource

Ifr= fX+ fB

Figure 9. Functional block diagram of the multi-period

measuring system

The limit sensitivity of the measuring system depends on the uncertainty

caused by the noise in the comparator and on the resolution of the system. The

former is determined by experiments. The latter is calculated by

fB TO
RT -

Mfo T

where fB is the beat frequency, To is the time base of the counter, T is the
sample time, M is the error multiplying factor and fo is the frequency measured.

(100MHz + IKHz) crystal oscillator serves as the reference source of the

comparator. With the help of a low noise frequency multiplier the frequencies

of various sources being measured can be multiplied up to i00 MHz, then the

beat frequency period (or multi-period) of mixed frequency can be measured and

processed with the computing counter.

.... _--_ , IFrequency I
source i I' i | I
being ] I _ I

•.a.ur I
.... II t

_ i,, ' _ I_B E- 314
Reference I I I- _ i _- computing

.o_oe ,il.__- I I oount_
I00l_Hz4-fBll ----

Figure i0. Functional block diagram of the time-domain

stability comparator

The possible measuring accuracy for various frequency sources being measured is

g_iven in the following table.
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Frequency

being ? MHz 2.5 MHz 5 MHz IOOMHz

measured fo

Frequency

multiplying 5X 20 2 X 20 20 I
factor H

Me,_suring 0-1 0_ 1 0_ 1 0_1
AccUracy 5 X I 2/_ I )< I 2/y_ 5 X I _/I[ i5 X I 3/L-
( -C in sec.)

Test band-

width IOKHz IOKHz l OKHz IOKHz

(fb)

B. Frequency-domain comparator

The frequency-domain comparator developed by BIRMM uses a correlative zero

beat method, in other words, two-channel zero beat method, based upon the

single-channel beat zero method. With the help of two identical single-channels
it measures the correlative components, thus improving its resolution and re-

ducing residual noise of the phase-detecting amplifier. The block diagram is

given below.

5MHz or 100MHz quarts crystal oscillator is used as reference source. The
time constant of the phase lock loop is changeable. The phase noise levels of

various Fourier frequencies are analyzed by the narrowband analog spectrum

analyzer. The results are post-processed later on.

The narrowband analog spectrum analyzer has the following characteristics:

frequency range from 5 Hz to 50 KHz

bandwidth i Hz, 3 Hz, i0 Hz, 30 Hz, i00 Hz, 300 Hz

sensitivity 30nv

dynamic range 80db

The residual phase noise S_R (f) of the measuring equipment is shown in
the table.
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Fourier
frequency

f (Hz) IO IOO I,O00 IO,OOO

Resldual

phase noise
s_. (f) (db) -135 -145 -155 -155

fler

Mo. I I-I Ibalanced_-_ Bandpas
'I [ mixer I Ifilter

Voltage I ILow pass

multi- _filter

plier I I

Osoillat°rl II Double I I I t I
I II Ifilter I ISpec trum

N°'i2(VXO) __II _ixer- II I I [analyzer 1

loop

Figure ii. Functional block diagram of the frequency-domain

comparator with a correlative zero beat method

The use of television signals for

precision time and frequency com-

par isons

A. BIRMM has undertaken the work of precision time and frequency comparisons

using the passive television method in order to compare its atomic frequency

standard with atomic frequency standards of other institutes of our country
at a remote distance.
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B. The principle of operation and the functional block diagram of the TV

line-6 synchronizing system:

The television system of our country is a system with 25 frames per secoud

and 625 lines per frame and with interlaced scanning. Its vertical scanning

frequency is 50 Hz, where as the horizontal scanning frequency is 15625 Hz.

Passive television synchronization is based on the measurement of the time
difference between the arrival of a certain television synchronizing referenv.e

pulse and a local clock second pulse. The clock difference between two loca-

tlons and the frequency accuracy are determined by means of the post-exchange

of the data. The first horizontal synchronizing pulse after the vertical and

equalizing pulses of the odd field (the first field) is chosen as a reference

pulse, i.e. line-6 of the odd field. Since the television frame frequency is

25 Hz, the clocks at two locations must he synchronized so that there would

be no multivalence. This can be easily done by comparison with the BPV time

signals (short-wave time signals transmitted by the Shanghai Observatory of

China). The functional block diagram of the measuring system is shown below.

/

Digital counter

1 TR-5589L I IOutput from

I, _ I _ ' llst video
• lamplifier

B-5200 I TR_6196 [ Printer I

I count 1 I
2205 per sec.

Local atomic Line-6 preamp.

clock pulse generator
Commercial cesium

Figure 12. Functional block diagram of the TV line-6

synchronizing system

We have made it a rule to make two comparisons everyday from 19 o'clock 15
minutes 0 second to 19 o'clock 15 minutes 45 seconds and from 20 o'clock 15

minutes 0 second to 20 o'clock 15 minutes 45 seconds (Beijing time). Each

comparison lasts 45 seconds, and one value is taken in every second. Two

average values are calculated every day, i.e. one at 19 o'clock, the other at
20 o'clock.

C. The result of the test:

(i) Stability of the relative time difference between the Beijing Insti-

tute of Radio Metrology and Measurements and the Beijing Observatory

_ (ATi-Z_Ti)2Standard deviation _ = N-I
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AT i denotes the relative time difference

N denotes the number of measurements

at 19 o'clock a =o.32_s

at 20 o'clock _---_-o.3_s

Allan variance

at 19 o'clock a=o.23_s

at 20 o'clock _o.24_s

(2) Accuracy of the frequency calibration

The relative frequency deviation of the BIRMM commercial cesium clock

during two months in comparison with the portable rubidium clock of the Beijing
Observatory is shown below.

Af a
r _86400 sec.

f r

Standard variance at 19 o'clock Af __ 3.7 10-12
f

at 20 o'clock Af ___ 3.4 10-12
f

Allan variance at 19 o'clock Af = 2.4 10-12
f

at 20 o'clock Af = 2.6 10-12
f

(3) Determination of the time-delay difference between the Beijing Obser-

vatory and BIRMM by using a portable clock:

The portable clock is a commercial cesium one imported from Switzerland.

It took sedan four hours to transport the clock (to go and to come back).

The result of the comparison is as follows.

The' serial
number of 1 2 3 4 5
the trans-
portation

Time-delay
difference 44.7 44.4 44.6 44.8 45.2

i

Uncertainty 0.3_s (standard deviation)
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(4) Conclusion

The following conclusion can be drawn from the two-month continuous com-

par ison.

a. The different readings of the counter after the two continuous measure-

ments which have been made every twenty four hours will approximately give the
relative clock difference between two stations. The stability is _<0.5_s, in

other words, the two measurements separated by twenty four hours have achieved

the 5xl0 -12 accuracy of frequency calibration.

b. Time-delay difference between two stations can be measured with an

accuracy within 0.3_s using a portable clock. Therefore the BIRMM clock can
be precisely synchronized with the clocks of the Beijing Observatory or other

remote places within 0.3_s (UTC).

Figure 13. Curves obtained in the test of stability
of the relative time difference

4. Time synchronization test by using satellites

Time synchronization via satellites is an advanced technique under development

generally recognized in the world. The technique provides high accuracy, large

coverage, long transmission distance and short comparison time and requires low
cost for building the station. BIRMM took part in the experiment of time

synchronization by using the "Symphony" satellite organized by the Central
Bureau of Metrology of China.

Three experiments were carried out. Two of them were conducted in China
from March I, 1979 to March i0 and from March 21 to March 31. The other

experiment was conducted with a foreign country from June 18 to June 27. The
comparison test with the portable clock was made in the period of all the

experiments.
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From March i to March i0 the experiment was conducted between Beijing and

Shanghai.

From March 21 to March 31 the experiment was conducted between Shanghai and

Nanj ing.

From June 18 to June 27 the experiment was conducted between Nanjing (China)

and Raisting (West Germany).

The experiment version by using the noncoherent two-way method (or simultaneous

two-way method) and the results obtained are presented.

A. Principle of noncoherent two-way method (simultaneous two-way method) for

time synchronization test.

_ I,SYMpHONIE_,_

.J , \

1Sta_,A 1 15_a_i°n8

clock clock

8 t,

675



72

HA

Simultaneous two-way method can be expressed as follows: two ground

stations transmit standard time signals to each other at the same moment and

receive the standard time signal transmitted by each other. To test the method

is one of the important purposes of the experiment. The functional block dia--

gram and the principle of operation are given above in Figures 14 and 15. With

the help of the above-mentioned method it is quite easy to obtain TBA and TAB.

TAB is the time difference between the standard time signal transmitted by
station A and the clock time of station B which is measured by the time inter--

val counter of station B. TBA _is the time difference between the standard
time signal transmitted by station B and the clock time of station A which is

measured by the time interval counter of station A.

If we express the clock difference between station A and station B by _t

[ 1At = H1 - H2 - TAB - TBA tAT - tAR tBR - tBT tl - t2
2 2 + 2 + 2 (l)

tAT - tAR tBR - tBT tI - t2

Let M- 2 + 2 + 2

then (2)

TAB - TBA
_t = M

2
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B. Parameters used in the experiments in China

2 2- 2

el)

2 2 2 '

then

z (2)

A transponder was employed in the experiment to carry out the test of two-

way method. The transmission power of the ground station was restricted in

order that the satellite transponder could work in the allowable range.

C. Parameters used in the experiment with West Germany

Uplink Downlink EIRP

Shanghai ground 6096 MHz 3905 MHz 78dbW
station

Nan jing ground
station 6130 MHz 3865 MHz 79dbW

Beijing ground
station 6130 MHz 3865 MHz 79dbW

Two satellite transponders were used in this experiment, thus the trans-

mission power of the ground station increased and the synchronization accuracy

improved.

D. Results of the experiments

Places for the Antenna elevation Test Stability Accuracy
experiment and carrier-noise method (ns) (ns)

rat io

Shanghai 6.4 °/8.6 o two-way 70 71

Beij ing 9 "_lldb

Shanghai 6.4 °/8° two-way 70 75

Nanj ing 9 -_12db
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Nanj ing 8o/23 ° I two-way 1 9 29

Raist ing 16_18 db I I
E. Determination of the clock difference by the clock transport

The accuracy of the portable clock (stability and accuracy) depends on the

quality of the clock and the time interval between trips. The shorter the

time interval, the highe r the accuracy. In general, the accuracy lies within
10,-'200ns. The portable clock we used for the experiment is a 3200 commercial

cesium clock. It was transported by air. The transport test was carried out

on purpose to determine the value M and the accuracy of satellite time syn-
chronization by using the two-way method.

The result of the trans)ort test is as follows.

From . . . to Number of Time interval Stability

the trips (ns)

Shanghai- i0 Once a day 14

Beij ing (24 hours)

Shanghai- 7 Every two 28

Nanj ing days (48
hours)

Nanj ing- 4 Different for 30

Raisting each case.
In the first

case to go
and to return

took 12 days.
In the second

case to go
and to return

took 13 days.

It can be seen from the equation (2) that the value M must be measured

accurately, besides the calculation after post-exchanging TAB and T , when
the clock difference _t is found by using the two-way method. TherBAare

two approaches to determine M. One approach is to measure preciselyTAT - TAR ,

TBR -TBT, T1 - T2' then to calculate M. It is a quite complicated and dif-
ficult job. And it still remains one of the problems to Solve in satellite

time synchronization research. The more precise the value M, the higher

the accuracy of time synchronization. Thus there should be a very precise
measurement for time delay of the ground station. The other is to determine

the value M by using the portable clock.
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5. New PTTI items under consideration

A. To set up a hydrogen maser atomic frequency standard

In order to improve the accuracy and stability of frequency standard of this

institute, BIRMM has completed installation of the hydrogen maser atomic stand-

ard developed by the Shanghai Institute of Metrology and Measurements. BIRMM

expects the frequency accuracy to be improved to (l_5)x10 -12 in 1980. (by
using the hydrogen maser atomic standard).

B. To set up the BIRMM local atomic time scale as a part of the atomic time
scale of our country.

A clock group made up of two hydrogen maser atomic standards and two cesium

clocks (and more clocks will be added in 1980) is used for time keeping to set
up at (BIRMM).

C. To further impmove the characteristics of the rubidium maser atomic fre-

quency standard and to increase its reliability. The performance of the short-

term frequency measuring system will be further improved too.

D. To deal with the research work of transfer from frequency domain to time

domain in the area of short-term frequency stability measurement and to under-

take the development of automatic measuring equipment.

E. To study frequency calibration technique by using the colour television
subcarrier frequency method.
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Figure 16. Short-term frequency stability measuring system

Two rubidium atomic frequency standards

(far left and the second from the left)

Reference frequency source

(the second upper one from the right)

Comparator

(the second lower one from the right)

Computing counter (far right)
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Figure 17. Rubidum maser atomic frequency standard 311 KHz
frequency synthesizer (above). Phase-lock

receiver (center). Rubidium maser (below).

Figure 18. Short-term frequency stability comparator, the

time-domain comparator and the frequency-domain
comparator are mounted in one unit.
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Figure 19. Data processor. (E-314 computing counter produced

by the Nanjing Communication Instruments Factory)

Figure 20. Short-term stability reference frequency source
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Figure 21. i00 MHz crystal oscillator

5 MHz crystal oscillator

Figure 22. Hydrogen maser atomic frequency standard developed

for BIRMM by the Shanghai Institute of Metrology
and Measurement s
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RECENT PROGRESS OF THE RESEARCH WORKS

ON FREQUENCY AND TIME AT THE NIM

\

Huang Bingylng

National Institute of Metrology

Of China, Beljlng

i. INTRODUCTION

Research works on frequency and time have been engaged for many years

at the NIM. We do the research and development on the primary cesium

beam standard and the high-precision crystal oscillator, keep the atomic

time and calibrate frequency standards. We also study how to transfer

the standard frequency and time at the highest precision. Now, our pri-

mary cesium beam installation has been operated to give an accuracy of
1.2 • 10-12 (io). Basing on it, some improvements are being made to

attain an uncertainty goal of the order of 10-13 . Furthermore, two im-

portant experiments have been done in the last two years. One of them

was the standard frequency transfer via TV color subcarrier. The fre-

of o_ (30 mln.) = 4 • 10-12 has been obtained. Anotherquency stability

test was the time synchronizatlon via the Germany-French "Symphonle"
satellite. The best results are as follows: the random fluctuation of

direct measurement data is ioR (RMS) < I0 ns, and the absolute error of

clock synchronization is i_A (RMS) < 30 ns.

2. PRIMARY CESIUM STANDARD

In our cesium beam tube, the interaction region is 3.68 m in length.

The Ramsey linewldth is about 46 Hz and the arrangement of the beam

optics is a typical dipole system. 2Square wave phase modulation at 43 Hz
is used. AD accuracy of 1.2 • i0-i (io) and a stability (Oy, i hour)
of 5 " 10-13 have been obtained last year. After that, we started to

make some improvements on the beam optics, the cavity, the C-field, the

vacuum system and the environment. Now, a narrower Ramsey llnewldth of

28 Hz has been observed. It is expected that the uncertainty of the

order of 10-13 will be attained after finishing all these improvements.

3. STANDARD FREQUENCY TRANSFER VIA TV COLOR SUBCARRIER

Firstly, we have developed some equipments for this experiment. The
major one is the frequency synthesizer at 4.43 ... MHz which is used for

color subcarrier frequency in our TV system. We have measured the errors

of these equipments and compared the simultaneously obtained data of
standard frequency measurements made in BelJing and other cities such as

Wuxan, Shanghai and Kuangchow. The results of these measurements show

that the stability of the standard frequency transfer via TV color
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subcarrler is about 4 • 10-12/30 min. within our TV network. We plan to

realize the standard frequency and time dissemination via the TV signal
in the near future.

4. TIME SYNCHRONIZATION VIA THE "SYMPHONIE" SATELLITE

A series of tests about the two-way delayed noncoherent time synchro-

nlzation via the Germany-French "Symphonle" satellite have been done in

this year. The results obtained are listed in the following table:

Type of the Errors (ns)

Ground Stations oR (RMS) oA (RMS)

Shanghai-Beijing

March, 1979 70 71

Shanghai-Nanjing
March, 1979 70 75

Nanjing (China)-

Ralsting (Germany)

June, 1979 9 29

In this table, the oR and _A have the same meaning mentioned above.

Many other units, especially the PTB of FRG, have taken part in the

experiments. Here, we would like to thank them for their valuable co-

operation. We just attempted to march out the first step, and we shall
continue to do more research works in order to build up the time syn-

chronization system via the satellite in our country.
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Fig. I. Primary Cesium Standard
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QUESTIONS AND ANSWERS

DR. COSTAIN:

Yes. Just very quickly, as I mentioned privately I think you will

have very great difficulty in establishing the excellence of a

primary standard when you only have a commercial standard as refer-

ence. I would suggest that the quickest and the best to do is to

build another primary standard because you need something Just as

good or better to compare it with.

MR. Bing-ylng Huang, National Institute of Metrology of China, BeiJing

Thank you.
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