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SUMMARY 

The  far  infrared  or  submillimeter  portion  of  the  elektromagnetic 
spectrum,  which  spans  the  range of  wavelengths  between  roughly 50 pm  and 
1.0 mm, is  experiencing a  tremendous  growth  in  attivity  due  to  rapidly 
emerging  source  technologies.  This  paper  reviews  the  major  technological 
innovations  in  continuous  wave (aJ) submillimeter  sources  which  are 
specifically  suitable  for  application  as  local  oscillators  in  heterodyne 
systems. A description of  the  various  sources  is  given  which  underscores 
the  general  principles  and  operating  features  for  each  type  of  device. 
Particular  emphasis  is  .placed  on Uv' optically  pumped  lasers,  which  have  had 
a  dramatic  impact  as  widely  available  sources  of  narrow  linewidth  coherent 
radiation.  The  state-of-the-art  is  summarized  for  these  lasers  and 
performance  data  are  presented  for  a  compact  and  reliable  local  oscillator 
package  recently  developed  at  the  Aerospace  Corporation  and  for  several 
different  designs  from  other  laboratories.  Optically  pumped  lasers  are 
then  compared  and  contrasted  with  other  competing  sources  such  as  backward 
wave  oscillators,  IMPATT  diodes,  and  Josephson  junctions. By  comparing 
their  advantages  and  limitations  for  use  as  local  oscillators,  the 
potential  applications of these  different  sources  are  projected.  The 
prospects  for  increased  tunability,  reliability  and  scalability  are  briefly 
considered,  and  several  novel  techniques  for  generating  partially  tunable 
radiation  using  Schottky  diode  mixers  or aJ Raman  lasers  are  highlighted. 

I. INTRODUCTION 

The  submillimeter  wave (SMMW) portion  of  the  electromagnetic 
spectrum  between  the  infrared  and  millimeter  regions  corresponding  to 
wavelengths  between 50 pm  and 1.0 mm is experiencing  tremendous  growth  due 
to  rapidly  developing  source technologies. In  spite  of  absorption by 
atmospheric  water  vapor  in  the SMMW region,  there  is  an  enormous  wealth  of 
information  to  be  somehow  obtained  within  this  large  segment  of  the 
spectrum  that  covers  nearly  two  decades  in  frequency.  This  potential 
provides  strong  motivation  for  attempts  to  exploit  the  recent  progress  in 
source  availability. 

*This  work  supported  by  the  Division of Magnetic  Fusion of the U. S .  
Department of Energy 
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Many  practical  applications  of SPlMW technology in areas  sueh  as 
high-resolution  astronomy [I], plasma  diagnostics [2],  remote  sensing  of 
upper  atmosphere  constituents [31, molecular  spectroscopy [ 41 ,  imaging  and 
non-destructive  testing [51, and  all-weather  radar  and  communication [ 6 ]  
will  require  the  advantages  of  high  spectral  resolution  and  sensitivity 
provided by heterodyne  systems.  Coherent  sources  are  essential  as  local 
oscillators  in  any  heterodyne  system,  and  several  excellent  general  review 
articles  on SMMW sources  are  available [7], [ 81. The  aim  of  this  paper  is 
to  review  the  present  state-of-the-art  of  the  most  promising  continuous 
wave ((X) SMMW sources  suitable  for  local  oscillator  applications. 
Strictly  speaking  this  paper  should  only  assess  the  relevant  properties  of 
SMMW sources.  However,  it  is  useful  to  preface  the  detailed  description  of 
the  various  sources  with  some  general  remarks  about SMMW heterodyne 
receivers. 

In contrast  to  other  spectral  regions,  the  performance  of a SMMW 
heterodyne  receiver  is so intimately  coupled  to  the  performance  of  both  the 
local  oscillator  and  the  mixing  element  that an  understanding of  these 
receivers  requires  some  discussion  of  the  complete  "front  end".  There  are 
two  possibilities  for  a  heterodyne  receiver:  lone  chooses  either a tunable 
oscillator  and  a  narrow  band  detector  or  a  fixed  frequency 
oscillator  and  a  broad  band  detector.  Both  approaches  have  been 
successfully  demonstrated  in  the SMMW range. A very  important 
consideration  in  both  cases  is  the  minimum  local  oscillator  power  for  which 
maximum  sensitivity  can be  obtained  from  the  mixer.  ?his  requirement  is a 
strong  function of  the  selected  mixer  element. 

The  most  widely  used  mixer  element  at  microwave  and  millimeter  wave 
frequencies  is  the  Schottky  diode. It is a  room  temperature,  wide 
bandwidth  device  having  high  sensitivity  and  good  mechanical  stability. A 
basic  property  of a  Schottky  diode  is  that  substantial  local  oscillator 
power  is  needed  to  minimize  its  conversion  loss. On the  order  of a  few 
milliwatts  is  typically  required  at  lower  frequencies  near A - 1  mm, and 
this  increases  to  tens  of  milliwatts as one  goes  toward  higher 
frequencies.  Such SMMW power  has  been  difficult  and  expensive  to  obtain  in 
the  past,  and  this  was  the  primary  limitation  in  the  development  of SMMW 
technology. However, recent  innovations  in SMMW sources,  particularly  the 
optically  pumped  lasers,  have  provided  the  necessary  local  oscillator  power 
needed  for  efficient  Schottky  diode  receivers.  If  one  can  accommodate 
cryogenic  mixers  such as photoconductors  or  Josephson  junctions,  the 
requirements on local  oscillator  power  are  significantly  relaxed  at  the 
expense  of  the  added  complications  with  helium  cooled  operation. In 
addition,  the  photoconductors  have  fundamental  bandwidth  limitations  of 

t l O O  MHz. Besides  the  threshold  requirements  on  output  power,  there  are a 
number  of  other  criteria  listed  in Bble I which  also  must  be  considered 
when  comparing  the  choices  for a  local  oscillator.  In  the  next  section 
these  criteria  will  be  used  to  compare  the  competing  sources  in  an  attempt 
to  evaluate  the  potential  of  each  type  for  local  oscillator  applications. 
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11. (;w SUBMILLIMETER  SOURCES 

SMMW source  development is being  pursued  from  both  of  the  bounding 
spectral regions.  From the  low f r equency   s ide   e f fo r t s  are underway t o  
extend millimeter wave technology  toward  higher  frequencies.   Others are 
t r y i n g   t o   t r a n s f e r   o p t i c a l   o r  laser techniques  from  the  high  frequency  end, 
s o  t h a t  one o f t e n   f i n d s  a blend  of  these two t echno log ie s   i n   t he  SMMW 
t r a n s i t i o n   r e g i o n .  The overlapping and in te rmingl ing   of   t echnologies  are 
r e f l e c t e d   i n   T a b l e  I1 which l is ts  the   poss ib l e  W s o u r c e s   t o  be  considered. 

Heading the  list are t h e   o p t i c a l l y  pumped lasers, which  have  had a 
r evo lu t ion iz ing  impact on SMMW t e c h n o l o g y   s i n c e   t h e i r   i n c e p t i o n   i n  1970 

developments   in   these  rapidly  matur ing  sources .  
[91 Par t icu lar   emphas is  w i l l  be  placed on desc r ib ing   t he  l a tes t  

Backward wave o s c i l l a t o r s  are a cons iderably   o lder  vacuum tube  
technology  which  has  enjoyed  renewed  interest   in  the SMMW region  because  of 
t h e i r   h i g h l y   d e s i r a b l e   t u n a b i l i t y .  

Josephson  junct ions are more e s o t e r i c   d e v i c e s  which o f f e r   t h e  
p o t e n t i a l  of ac t ing   s imul taneous ly  as both  the  mixing  element  and  the  local 
o s c i l l a t o r .  LO power can be der ived  f rom  the  internal   Josephson 
o s c i l l a t i o n   i n   t h e   j u n c t i o n   i t s e l f ,   w i t h   t h e   f r e q u e n c y  of t h i s   i n t e r n a l  
o s c i l l a t i o n   p r o p o r t i o n a l   t o   t h e   v o l t a g e   b i a s   a c r o s s   t h e   d e v i c e .   I n  
p r i n c i p l e ,  a readi ly   tunable   rece iver  is  then  possible .  The main source of 
d i f f i c u l t y   w i t h   t h e   i n t e r n a l  LO mode of opera t ion  i s  the  broad  l inewidth on 
the   o rder  of 1 GHz, which i s  c h a r a c t e r i s t i c  of such  Josephson 
osc i l la t ions .   Promis ing  resul ts  have  been  reported a t  s h o r t  MMW 
f requencies  [ 101, however, so t h i s   t y p e  of sys tem cannot be r u l e d   o u t   f o r  
wide  bandwidth  heterodyne  systems  in  the  future.   Unless arrays of 
junct ions  can be developed,  Josephson  devices do not a p p e a r  t o  be the   bes t  
prospect   for   tunable   coherent  SMMW sources   with milliwatt l eve l   ou tpu t  
powers. However, Josephson  devices w i l l  cont inue   to  be of importance as 
he terodyne   mixers   in   conjunct ion   wi th   ex te rna l  LO sources  because  they are 
h ighly   nonl inear ,   ex t remely   fas t ,  and  have  very low LO power requirements  
on the   o rder  of 1-10 VW i n   t h e  SMMW region [ 113. 

IMPATT diodes are s o l i d  s ta te  sources  which  have  been  operated  into 
the  SMMW r eg ion ,and  combined with  harmonic  generators   offer  some hope  of 
ach iev ing  compact s o l i d   s t a t e   l o c a l   o s c i l l a t o r s   i n   t h e   n e a r   f u t u r e .  
Progress   in   these  two areas w i l l  a l s o  be covered   in   the   fo l lowing   sec t ions .  

Electric d ischarge  lasers can  provide  large  amounts of power up t o  
about 300 mW, but  only a t  a very few f ixed   f requencies  a t  s h o r t  SMMW 
wavelengths. This limits t h e i r   u t i l i t y   i n   h e t e r o d y n e   a p p l i c a t i o n s  [lZj. 

Gyrotrons are r e c e i v i n g   c o n s i d e r a b l e   a t t e n t i o n   l a t e l y  as sources  of 
exceedingly  high power and e f f i c i e n c y  [13] .  CW output power on the   o rder  
of 1.5 kW has  been  reported a t  a wavelength of 0.9 mm 1141, but   the  main 
emphasis is on  achieving  high power and these  are l a rge   dev ices  a t  
p re sen t .   Gyro t ron   o sc i l l a to r s  have  poor  temporal  coherence  and i t  appears  
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that  these  devices  cannot  be  scaled  down in  size  and  power  for LO 
applications  without  significant  loss in efficiency. 

In the  following  sections,  advantages  and  limitations  will  be 
discussed  in  more  detail  for  a  few  selected  sources  which  have  been  most 
successfully  utilized  in  practical  heterodyne  applications. 

111. BACKWARD  WAVE  OSCILLATORS 

The  operating  features  of  a  backward  wave  oscillator  (BWO)  or 
carcinotron  can be  very  briefly  described  in  a  highly  simplified  manner 
with  the  help  of  the  cross-sectional  diagram  given  in  Fig. 1. An electron 
beam  is  emitted  from  a  cathode (1) and  is  focused  through  an  interaction 
region ( 4 )  by a  magnetic  field if (3)  and  is  collected  at  the  collector 
( 6 ) .  The  electron  beam  moving  in  a  vacuum  interacts  with  a  periodic 
structure ( 4 )  which  supports  the  generated  electromagnetic  wave.  The 
interaction  is  phase-matched  for  the  wave  in  the  reverse  direction  to  the 
electron  beam  (hence  the  name  backward  wave  oscillator)  and  is  coupled  out 
through  the  output  port (5). The  BWO  is  essentially  a  voltage  tunable 
oscillator  whose  tuning  characteristics  are  strongly  dependent  on  the 
characteristics of  the  periodic  slow  wave  structure.  'Ihe  advantages  and 
limitations  are  summarized  in  Table  I11  for  these  devices. 

The  primary  advantage  of  the  BWO  is  the  continuous  electrical 
frequency  tuning  which  can  be  done  rapidly  without  mechanical 
adjustments.  The  typical  tuning  range  for  a  wideband  BWO  is  about 20% of 
the  center  frequency.  Thomson  CSF,  Paris,  offers  the  highest  frequency 
commercially  available  carcinotrons (up  to 400 G H z )  and  they  are  presently 
developing  tubes  which  would  have  output  powers > lOmW  in  the 400-600 GHz 
range [15]. Frequencies of up  to 1,300 GHz have  been  reported for 
laboratory  models [ 1 6 j ,  but  above 300 GHz the  efficiency  of  operation  falls 
off  rapidly.  Table  IV  hows  that  at X = 0.4 mm the  efficiency  has fallen 
to  less  than 2 x 10 %, compared  with 11% for  a  tube  designed  for 

X = 4.0 mm. Unless  there  is  a  considerable  advance  in  the  technology  of 
cathode  emitters,  there  seems  to be  little  hope  of  pushing  the  efficient 
performance  to  higher  frequencies. 

-3 

State-of-the-art  in  performance  for SMMW BWO's  is  illustrated  in 
Fig. 2 which  shows  the  operating  characteristics of an  extended  bandwidth 
BWO  intended  for  use  as  a  local  oscillator  in  a  heterodyne  receiver [17]. 
Continuous  spectral  coverage  from 320-390 GHz with  greater  than 10 mW 
output  power  is  achieved  at  rather  low  power  consumption.  One  obvious 
technical  weakness  of  the  BWO is the  strong  variation  in  the  output  power 
as the  frequency  is  changed  (Fig. 2) due  to  the  unintended  resonances  in 
the  guiding  structure  and  the  output  couplers. 

A relatively  high  sensitivity  of  the  output  frequency  to  the  beam 
voltage  of 10-30 MHz/V for  these  tubes  would  seem  to  preclude  their  use in 
heterodyne  systems  when  a  stable  frequency  is  necessary.  However,  recent 
studies [18] designed  to  evaluate  the  potential  of  using  BWO's  as  local 
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oscillators  for  heterodyne  spectroscopy  have  shown  that  they  can be  readily 
phase-locked  to  an  external  stable  reference  source  of  lower  frequency. 
Linewidths  as  narrow as 750 kHz at 40 db  below  the  peak  value  at 244 GHz 
were  achieved.  These  same  studies  measured  the  noise  properties in the 
230-380 GHz  range  of  three  different  tubes.  Noise  temperatures  were  in  the 
1000-3000°K range  at  an IF frequency  of 1.4 GHz,  which  corresponds  to  a 
signal  to  noise  ratio  approximately  equal  to 120 db/MHz.  This  resulted  in 
the  conclusion  that  the  BWO  has  all  of  the  required  qualities  of  a  tunable 
oscillator  for  wavelengths  near X 3 1  mm and  several  successful  heterodyne 
experiments  have  already  been  performed [ 191, E201 , [211 

A  fine  example  of  a  practical  application  of  a  BWO in  a SMMW 
heterodyne  receiver is the  recent  observation  of  the  carbon  monoxide 
molecule  in  interstellar  clouds by Erickson [221, who  was  able  to  achieve 
system  noise  temperatures  as  low  as 3400°K (SSB)  at 345 GHz.  The 
requirements  for  high  voltages  and  magnetic  fields  make  carcinotrons 
relatively  large  and  heavy (10-30 kg),  but  this situation  may be  improved 
with  the  development  of  new  advanced  magnetic  materials. 

The  BWO  performance  at  long SMMW wavelengths  is  satisfactory,  but 
there  are,  however,  basic  fundamental  limitations  to  extending  the 
efficient  operation  of  BWO's  to  higher  frequencies.  Serious  fabrication 
difficulties  arise,  because  extremely  high  precision  of  machining  and 
alignment  is  demanded  for SMMW operation.  The  slow  wave  structure  has  to 
be  machined  to  tolerances  within l u m  and  the  dimensions  of  the  structure 
are on  the  order  of a  fraction of a  free  space  wavelength. As the  size  of 
the  device  decreases,  a  difficulty  arises  in  avoiding  serious  heat 
dissipation  due  to  unwanted  interception  of  the  electron  beam by  the 
structure.  Along  with  these  problems  are  additional  circuit  losses  which 
increase at  least  as  the  square  root  of  the  frequency  due  to  the  decrease 
in  the  skin  depth  and  even  more  rapidly  increasing losses caused by surface 
machining  imperfections. All of  these l o s s  mechanisms  contribute  to  the 
rapid  power  falloff  with  increasing  frequency,  and  impose  severe 
requirements  on  the  electron  beam  quality,  particularly  with  respect  to  the 
high  values  of  beam  current  density  and  magnetic  focusing  field  required. 
To offset  the  increasing osses, the  beam  current must be  intreased  to 
densities  of 10-20 A/cm , which  can  only  be  obtained  at  cathode 
temperatures  exceeding  the  values  usually  recommended  for  long  life. 
Lifetimes of 1000-2000 hours  are  typical  for  tubes  operating  near 300 GHz 
and  decrease  at  higher  frequencies.  These  rather  short  lifetimes,  the  high 
cost  of  approximately $80,000 for  the  tube  and  its  stabilized  high  voltage 
power  supply,  and  the  limited  availability  of  these  devices,  especially  for 
frequencies  above  abut 400 GHz, diminish  the  prospect  of  near  term 
widespread  application  of  the  BWO  as  a  local  oscillator  for  the SMMW 
region. 

i! 

A very  promising  alternative  electron  beam  oscillator  design,  the 
ledatron [23] ,  offers  the  possibility  of  overcoming  or  reducing  the 
deficiencies of  the  BWO. Oscillation  at X = 1  mm has been  observed  with  a 
peak  power  of  about 300 mW  and a tuning  range  of 40%, but  these  tubes are 
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s t i l l  i n   a n   e a r l y   s t a g e   o f   d e v e l o p m e n t   a n d  more  work i s  needed t o   e s t a b l i s h  
t h e   p o t e n t i a l   f o r   e f f i c i e n t  SMMW o p e r a t i o n .  

IV. IMPATT D I O D E  OSCILLATORS 

Over t h e   p a s t   s e v e r a l   y e a r s ,   s i g n i f i c a n t   p r o g r e s s   i n   i n c r e a s i n g  
output  power  and e f f i c i e n c y   h a s   b e e n   a c h i e v e d   w i t h   s i l i c o n  IMPATT diode  
o s c i l l a t o r s   o p e r a t i n g  a t  f r e q u e n c i e s  up t o   a b o u t  300 GHz [ 2 4 ] .  These 
r e s u l t s   c l e a r l y   p l a c e  IMPATT diodes  as t h e   p r e m i e r   s o l i d  s ta te  d e v i c e   f o r  
t h e   g e n e r a t i o n   o f  millimeter wave power. T h e r e f o r e ,   t h e i r   p o t e n t i a l   f o r  
e x t e n s i o n   i n t o   t h e  SMMW r e g i o n  must  be  examined. 

The o p e r a t i n g   p r i n c i p l e  of IMPATT ( impact   ava lanChe  and   t rans i t  
t ime)   d iodes  is  based   on   the   in jec t ion  of carriers, g e n e r a t e d   i n  a r e v e r s e -  
b iased  p-n j u n c t i o n  by a v a l a n c h e   b r e a k d o w n ,   i n t o   a n   i n t r i n s i c   d r i f t  
reg ion .  The e lectr ic  f i e l d   a c r o s s   t h e   d r i f t   r e g i o n  is high  enough so t h a t  
t h e   v e l o c i t y  of t h e   e l e c t r o n s  i s  cons tan t   and   independent  of t h e  e lectr ic  
f i e l d .  When a n   a l t e r n a t i n g   v o l t a g e  is a p p l i e d ,  a phase   de lay   occurs  
b e t w e e n   t h e   c u r r e n t   a n d   t h e   v o l t a g e   w a v e f o r m s   d u e   t o   t h e   t r a n s i t  time 
e f f e c t .   T h i s   r e s u l t s   i n  a f r e q u e n c y   d e p e n d e n t   n e g a t i v e   r e s i s t a n c e   t h a t   c a n  
be  used t o   g i v e   o s c i l l a t i o n  when t h e   c r y s t a l  is  i n c o r p o r a t e d   i n  a microwave 
c i r c u i t  as i n  Fig. 3.  V a r i a t i o n  of t h e   e x t e r n a l   c i r c u i t   i m p e d a n c e   a l l o w s  
the   f r equency  of o s c i l l a t i o n   t o  be  tuned  over a broad   range   s ince   the  
nega t ive   conductance   covers  a wide  frequency  bandwidth  of 10-20%. Bias 
c u r r e n t   t u n i n g  is  t h e  most e f f e c t i v e  way of producing  broadband  swept 
f requency   genera t ion ,   and   h igh   f requency   modula t ion  rates (2100 MHz) can  
be achieved.  Mechanical  tuning is  necessary  f o r  optimum performance a t  a 
s p e c i f i c   f r e q u e n c y   a n d   t h i s  is  achieved by v a r y i n g   t h e   p o s i t i o n   o f   t h e  
m o v a b l e   s h o r t   i n   t h e   o s c i l l a t o r   c i r c u i t .  

A comparison  of   the  propert ies   of  IMPATT devices  is g i v e n   i n  E b l e  
V. B e s i d e s   t u n a b i l i t y ,   t h e r e  are many o t h e r   a t t r a c t i v e   f e a t u r e s  of such a 
s o l i d - s t a t e   g e n e r a t o r   l i k e   c o m p a c t   s i z e   a n d   r u g g e d n e s s ,  low  power 
consumpt ion ,   and   r e l i ab le   ope ra t ion   w i th   l ong   l i f e t imes .   These   advan tages  
would make IMPATT d e v i c e s   h i g h l y   d e s i r a b l e   a s   l o c a l   o s c i l l a t o r s   i n   t h e  SMMW 
r e g i o n   i f   t h e   h i g h   e f f i c i e n c y   o p e r a t i o n   c a n   b e   e x t e n d e d   t o   h i g h e r  
f r e q u e n c i e s .  

U n f o r t u n a t e l y ,   t h e r e  are some fundamenta l   l imi ta t ions   which   have  
h i n d e r e d   t h e   s c a l i n g  of IMPATT's t o   h i g h e r   f r e q u e n c i e s .  The c u r r e n t  state- 
of - the-ar t  i s  shown i n   F i g u r e  4 w h e r e   t h e   s t e e p   f a l l o f f   i n   o u t p u t  power 
with  f requency  above  the  demarcat ion  point  a t  about  100 GHz can be c l e a r l y  
seen. The output  power i s  u l t i m a t e l y   l i m i t e d  by t h e   r e a l i z a b l e   c i r c u i t  
impedance  which  causes   the  mismatch  between  the  device  and  the  c i rcui t   to  
become i n c r e a s e l y   d i f f i c u l t   t o  overcome a t  h i g h e r   f r e q u e n c i e s .  The power 
f a l l o f f  is  m a i n l y   d u e   t o   t h e   a d v e r s e   e f f e c t s  of the  diode  package  and 
m o u n t i n g   p a r a s i t i c s .   L i m i t a t i o n s   o t h e r   t h a n   t r a n s i t  time e f f e c t s   h a v e   a l s o  
been  considered.  There are p rob lems   w i th   d i f fus ion   a ided   sp read ing   and  
bu i ldup   o f   t he   i n j ec t ed   cu r ren t ,   and   w i th   t he   f r equency   r e sponse  of t h e  
a v a l a n c h e   p r o c e s s   i t s e l f  [ 2 5 ] .  
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As one  attempts  to  extend  IMPATT  operation  to  higher  frequencies, 
the  diode  dimensions  must be reduced  to  reduce  the  parasitic  capacitance 
effects.  Unfortunately,  thermal  problems  associated  with  dissipation  of 
the  power  increase  as  the  size  of  the  device  decreases.  Since  the 
parameters of the  junction  are  strongly  dependent on  temperature,  the 
minimization  of  thermal  resistance  in  device  packaging  plays  an  important 
role  in  performance [ 2 6 ] .  The  physical  dimensions  of  the  device  also 
become  inconveniently  small  and  severe  demands  are  placed  on  processing  and 
fabritation  techniques.  Recent  improvements  in  output  power  from  the MMW 
devices  are  primarily  due  to  diamond  heat-sinking  and  improved  packaging 
techniques.  Commerically  available IMPATT  oscillators  can  now  produce 
single  device  outputs  of  700  mW  at 94 GHz, 100 mW  at 140 GHz,  and 25 mW  at 
220 GHz. Recently,  liquid  nitrogen  cooled Si  IMPATT's  have  produced  output 
powers  of 2.2 mW  and 4.5 mW  at  frequencies  of 412 and 295 GHz  respectively 
with  a  tuning  range  of 10% [27].  With such  output  powers  these  devices 
are  on  the  verge  of  being  useful  as LO sources  and  hopefully  developments 
in  this  area  will  continue. 

Another  serious  problem  with IMPATT  oscillators  is  the  very  high 
noise  level,  which  is  attributable  to  the  random  way  in  which  the  avalanche 
grows  from  a  few  initial  ionizing  events.  ?he  noise  exceeds  that  of  a 
klystron  or  Gunn  diode "W oscillator  and  for  this  reason  they  are 
difficult  to  use  as LO'S in  low  noise  receivers.  Recent  results  have  shown 
that  they  can  be  phase-locked  at  harmonic  frequencies  through  injection- 
locking  with  a  fundamental  mode  reference  source  of  high  frequency 
stability  and  low  noise  [28].  But  as  yet it is  difficult  to  assess  the 
extent  to  which  this  technique  will  be  effective  in  the SMMW region. 

The catastrophic  fall  in  efficiency  as  the  frequency  approaches  the 
SMMW region  is  reasonably  well  understood  and it is  unlikely  that  efficient 
operation  will  be  extended  beyond 400 GHz  with  conventional  techniques. 
Perhaps  a  quasioptical  approach  to  diode  packaging m y  be  the  only  way  to 
extend  the  frequency  coverage  further  into  the SMMW range.  There  is  no 
doubt  about IMPATT utility  at  the  long  wavelength  end  of  the SMMW spectrum, 
and,  as  shown  in  the  following  section,  harmonic  generators  can  provide 
useful  extension  of  the  frequency  coverage. 

In  addition  to  avalanching,  electron  tunneling  can  occur  in  a 
sufficiently  thin  p-n  junction  and  this  leads  to  a  tunnel  transit  time  or 
TUNNETT  mode of oscillation [ 2 5 ] .  Since  tunneling  is  a  very  fast  process 

sec),  the  idea  of  using a  tunnel  transit  time  mode  offers  promise  of 
enabling  one  to  extend  the  frequency  limit  well  beyond 300 GHz,  assuming 
the  appropriate  quasioptical  circuit  can be  devised.  Further  experimental 
work  on  TLJNNETT's  should  enhance  their  value  for SMMW systems. 

V. HARMON1 C GENERATORS 

The  long-standing  method  of  harmonic  generation in  nonlinear 
junctions  pumped by tunable  sources  offers  the  possibility  of  extending  the 
range  of  tunable MMW oscillators  into  the SMMW region.  ?he  formidable 
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problems  of   pushing  exis t ing "W sources   t o   h ighe r   f r equenc ie s ,   combined  
w i t h   r e c e n t   a d v a n c e s   i n   t h e   f a b r i c a t i o n   o f   S c h o t t k y   d i o d e s   h a v e   c a u s e d  
renewed i n t e r e s t   i n   t h e s e   h a r m o n i c   g e n e r a t i o n   t e c h n i q u e s .  

A harmonic   genera tor  is  simply a frequency  converter   in   which  power 
i s  genera ted  a t  a h igher   f requency  by e x p l o i t i n g  a n o n l i n e a r i t y   i n   t h e  
c u r r e n t - v o l t a g e   c h a r a c t e r i s t i c .  For   example ,   the   cur ren t   th rough a 
Schot tky  diode w i l l  conta in   harmonics   o f   the   f requency  of t h e   d r i v i n g  
f i e l d ,  and th i s   ha rmon ic  power can be r a d i a t e d   i n t o   f r e e   s p a c e   o r   i n t o  a 
waveguide i n  which  the  diode is  mount d [ 2 9 ] .  I n   p r i n c i p l e   h a r m o n i c  power 
can be g e n e r a t e d   i n   p r o p o r t i o n   t o   l / n  a t  the   n th   ha rmon ic   o f   t he   app l i ed  
f i e l d ,   b u t   t h e   u s e f u l   r a n g e   o f   f r e q u e n c i e s  is l i m i t e d  by j u n c t i o n  
capac i t ance   and   impedance   ma tch ing   t o   t he   ex t e rna l   c i r cu i t  [ 3 0 j .  Higher 
f r e q u e n c i e s   r e q u i r e   s p e c i a l   f a b r i c a t i o n   t e c h n i q u e s   t h a t   p r o d u c e   e x t r e m e l y  
small area con tac t s   w i th   d i ame te r s  of 0.1-2.0 Um and  very  low  values  of 
j u n c t i o n   c a p a c i t a n c e  [ 3 1 ] .  These small c o n t a c t  areas create a limit on t h e  
amount  of  generated  harmonic  power,  however,  since  they restrict t h e  
al lowable  fundamental  pump power t o   a b o u t  100 mW. Above t h i s  power l e v e l  
the   d iode  w i l l  u s u a l l y   b u r n   o u t   o r   s u f f e r  e lec t r ica l  breakdown. 

5 

The most s u c c e s s f u l   d e v i c e  of t h i s   t ype   has   been  a crossed  waveguide 
harmonic   genera tor   (F igure  5 ) ,  and   conve r s ion   e f f i c i enc ie s   o f  2% g i v i n g  2 
mW of output  power a t  228 GHz have  been  obtained [29 3 .  The  maximum second 
harmonic  output was 3.5 mW a t  226 GHz f o r   t h e   s a t u r a t i o n  limit of 200 mW of 
input  power f rom  the   source   k lys t ron ,   and  a f r e q u e n c y   t u n a b i l i t y  of about  
5% was r e t a i n e d .   I n   t h e  200-300 GHz r e g i o n  more r e c e n t   r e s u l t s   h a v e  
ach ieved   s econd   ha rmon ic   conve r s ion   e f f i c i enc ie s  as high as 6-8% y i e l d i n g  4 
mW at  270 GHz, and 2-3 mW was produced a t  305 GHz w i t h  -1% convers ion  
e f f i c i e n c y   i n  a t r i p l i n g  mode [ 3 2 ] .  T h i s   r e p r e s e n t s   s u f f i c i e n t  LO power 
f o r  good c o n v e r s i o n   e f f i c i e n c y   i n  a Schot tky  diode mixer a t   t h e s e  
frequencies ,   and  has   a l lowed  system  noise   temperatures  of 3100'K (SSB) t o  
be  reached a t  270 GHz [ 3 2 ] .  

F u r t h e r   i n t o   t h e  SMMW region,  output  powers of about 0.1 mW have 
been   ob ta ined   a t  447 G H z  1301 which are t h u s   f a r   i n s u f f i c i e n t  as sources   o f  
LO power for   Schot tky  diode  mixers .  However, t h e s e  power l e v e l s  w i l l  
s u f f i c e   f o r  He cooled   InSb  or   Josephson  mixers ,   and   severa l   he te rodyne  
r e c e i v e r s   h a v e   b e e n   r e a l i z e d   f o r   s u c h   a p p l i c a t i o n s  as m e a s u r i n g   t h e   f i r s t  
SMMW m o l e c u l a r   l i n e   i n   a n   a s t r o n o m i c a l   s o u r c e  [ 3 3 ] ,  a n d   f o r   a i r b o r n e  
observa t ion   of   a tmospher ic   ozone   in   the  440-530 GHz r e g i o n  [ 3 4 ] .  I n  
molecular   spectroscopy,  more SMMW experiments  have  been  performed  using 
th i s   t echnique   than   wi th   any   o ther  1351. Above about 500 GHz, however, 
harmonic  generation  has  not  proved a u s e f u l   s o u r c e  of LO power e v e n   f o r   t h e  
v e r y   s e n s i t i v e   c r y o g e n i c   d e t e c t o r s .  

Some improvement   can  be  ant ic ipated as new f a b r i k a t i o n   t e c h n i q u e s  
are in t roduced ,   s ince   t hese   sou rces  are  as ye t   r e l a t ive ly   undeve loped .  If 
more  power c a n   b e   g e n e r a t e d   i n   t h e   f u t u r e ,   t h e   f a v o r a b l e   f e a t u r e s   o f   t h e s e  
devices  w i l l  b r i n g  them i n t o  much more widespread  use.  
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V I .  OPTICALLY PUMPED  MOLECULAR LASERS - ___ 

All  of  the  sources  previously  discussed  are  characterized by a 
drastic  falloff  in  output  power  with  increasing  frequency.  Transit  time 
effects,  unrealizable  mechanical  tolerances,  and  impedance  matching 
problems severelylimit their  high  frequency  response. To circumvent  these 
limitations a fresh  approach  was needed.  The  departure from  attempts to 
extend  conventional  technology  to  higher  frequencies  was  pioneered  in 1970 
by  Chang  and  Bridges,  who  introduced  the  optically  pumped  molecular (OPM) 
laser [361.  The  optical  pumping  technique  has  now  succeeded  in  generating 
a  rich  spectrum  of  laser  lines  from X = 40 to 2000pm,  thereby  bridging  the 
gap  in  source  availability  up  to  the  infrared. A comparison of OPM lasers 
with  other CN SMMW sources  (Fig. 6 )  shows  that  for  frequencies  greater  than 
600 GHz they  are  clearly  the  dominant  source  technology [ 3 7 ] .  A brief 
outline  of  the  operating  features  of  these  lasers  is  worthwhile,  since  they 
have  had  such a  dramatic  impact  on  the SMMW region.  Detailed  descriptions 
are  available  in  several  excellent  review  articles  1371, 1381. 

The  basic operation of an OPM laser  is  illustrated  in  Figure 7. 
Transitions  between  specific  rotational  energy  levels  within  the  ground  and 
first  excited  vibrational  states  of a polar  molecular  gas  are  utilized  in 
both  the  absorption  and  emission  processes.  The  pumping  is  achieved 
through  an  accidental  near  coincidence  between  a  rotational-vibrational 
absorption  line  of  the  molecule  and  a  suitable  pump  laser  line.  The 
intense  and  efficient C02 laser  emission  lines  in  the  infrared  near 
X = 10pm are  almost  exclusively  used  for  this  purpose.  The  pump  photons 
selectively  excite  a  particular  rotational  level  in  the  excited  vibrational 
state  and  produce  population  inversion  between  the  unoccupied  adjacent 
rotational  states. In typical  molecules  like  CH3F  and m3OH possessing  a 
permanent  dipole  moment,  the  large  rotational  transition  matrix  elements 
lead  to  high gain, and  laser  emission  can  be  achieved  with a  suitable 
optical  cavity.  The  molecular  kinetics  are a l s o  very  important  for 
efficient CW operation of an OPM laser. In the  steady  state,  vibrational 
relaxation  through  diffusion  or  V-T/R  processes  must  be  sufficiently  fast 
to  prevent  destruction  of  the  inversion by rotationally  thermalizing 
collisions.  Operating  pressures  are  typically  limited  to  the 100 mtorr 
region by  the relatively  slow  rate of vibrational  relaxation  in  diffusion 
dominated  systems,  such  as CH3F, and  this  adversely  affects  the  rate  of 
energy  extraction by limiting  the  pump  absorption. However,  non-diffusion 
limited  operation  using  molecules  such  as  CH2F2  with  very  fast  V-T/R 
relaxation  rates  has  recently  overcome  this  limitation,  leading  to 
increased (3 power  and  operating  efficiencies as high  as 32% of  the 
theoretical  limit [ 3 9 ] ,  [ 401 .  

The  physical components  which  make  up  an  actual OPM laser  system  are 
displayed  in  Figure 8 .  The  setup  consists  of a  grating  tuned aJ C02  laser 
with  a  single  line  output  power  in  the  range  of 10-50 W. The  pump 
radiation  is  normally  injected  into  the SMMW resonator by focusing  through 
a  hole  in  one  of  the  cavity  end  reflectors.  The  more  common  resonators  and 
output  coupling  schemes  have  been  well  reviewed [411, [42],  but  in  general 



t h e   b e s t  beam  mode q u a l i t y ,   l i n e a r   p o l a r i z a t i o n ,   a n d   o u t p u t  powers  have 
been  obtained  f rom  hol low  dielectr ic   waveguide  resonators  [431 .  The 
combina t ion   d i e l ec t r i c -me ta l l i c   r ec t angu la r   wavegu ide  is another  
conf igu ra t ion  [ 4 4 ]  which has   proven  to  be ve ry   u se fu l   fo r   S t a rk   t un ing  
[ 4 5 ] ,  high  speed  modulation 1461, and  phase-locking of the  laser output  
[ 4 7 ] .  Output  coupling  can be accomplished  with a s imple   ho le   in   the   cav i ty  
end   r e f l ec to r ,   bu t   fo r  practical a p p l i c a t i o n s  where output  beam q u a l i t y  is 
important some t y p e  of hybr id   ou tpu t   coup le r   e i t he r  metal mesh-dielectr ic  
[ 4 8 ]  or   d i e l ec t r i c -ho le   coup le r  [ 4 3 ]  i s  necessary.  

The p r o p e r t i e s  of OPM lasers are summarized i n  Table V I .  A pr ime 
advantage of t he  OPM laser as a l o c a l   o s c i l l a t o r  is  i ts  inherent ly   narrow 
l inewid th ,   s ince   mo lecu la r   t r ans i t i ons   i n   t hese  low p res su re   gases   y i e ld  
ga in   l inewidths  of < 10 MHz. OPM lasers are eas i ly   cons t ruc t ed   and  
r e l a t ive ly   i nexpens ive .  Commercial systems complete  with power supp l i e s  
and a s s o c i a t e d   e l e c t r o n i c s  are ava i l ab le   fo r   unde r  $40K from a number of 
s u p p l i e r s ,  so t h a t   t h e s e   s o u r c e s   a r e   w i d e l y   a v a i l a b l e   t o   r e s e a r c h e r s .  
Another  important  advantage of t hese  lasers is  t h e i r   v e r s a t i l i t y .  A l a r g e  
number  of emis s ion   l i nes  (>1000) are a v a i l a b l e ,  so  t h a t   t h e r e  is  almost 
complete  coverage of t h e   e n t i r e  SMMW range  with  an  average  spacing on the  
order  of a f r a c t i o n  of a wavenumber [ 4 9 ] .  A s i n g l e  laser can   a l so  be made 
t o   o p e r a t e   o v e r   t h e   e n t i r e  SMMW on a v a r i e t y  of wavelengths by tun ing   t he  
C02 pump. Molecules   l ike CH3OH [501 and CH2F2 [511 each  have more than 50 
laser l ines   spread   th roughout   th i s   reg ion .  For other  wavelengths,  it is 
o f t e n  a r e l a t i v e l y  s imple  procedure  to   change  the laser gas. These lasers 
operate   sealed-off   because  there  i s  no d ischarge  t o  des t roy   t he   l a s ing  
molecules .   This   a l lows  very  high  f requency  s tabi l i ty ,   about   three  orders  
of  magnitude b e t t e r   t h a n   f o r   f r e e   r u n n i n g  e lectr ic  d ischarge  SMMW lasers 
[ 5 2 ] .  Phase-locking  to a low frequency  reference  s tandard  has   a lso  been 
demonstrated [ 5 3 ] .  

The major disadvantage of OPM lasers is  t h e i r   l a c k  of t u n a b i l i t y .  
S t a rk   t un ing   o f f e r s   t he   po ten t i a l   fo r   i nc reased   r ange ,   bu t   on ly  up to   about  
100 MHz [ 5 4 ] .  Recent  advances in  Schottky  diode  mixer  technology  have 
p rac t i ca l ly   e l imina ted   t h i s   p rob lem,  however s ince  I F  bandwidths as l a r g e  
as 20 GHz can be now obtained [551 .  In conjunct ion   wi th   the   ava i lab le  
laser l i nes ,   t h i s   i nc reased   bandwid th  w i l l  a l low a heterodyne  spectrometer  
t o  be b u i l t  which provides  almost  complete  coverage of the  SMMW region  
[ 5 6 ] .  Several   novel   techniques  have  a lso  been  recent ly   demonstrated  for  
increas ing   the   tun ing  of OPM lasers and  they w i l l  be desc r ibed   i n   t he  
fo l lowing   sec t ion .   Another   l imi ta t ion  of OPM lasers is t h e i r   i n h e r e n t  
i n e f f i c i e n c y .  The o p t i c a l  pumping process  a t  best   cannot  achieve power 
conversion  exceeding  about  one-half of t he  Manly-Rowe limit [ 3 7 ] .  Only a 
handful  of l i n e s   a c t u a l l y   o p e r a t e   w i t h  (w c o n v e r s i o n   e f f i c i e n c i e s   w i t h i n   a n  
order  of magnitude of t h i s  limit, bu t   t he   p ro l i f e ra t ion  of new source 
molecules  such as CH2F2 has   g rea t ly  added t o   t h e  number of such  s t rong SMMW 
laser l i n e s .   R e l a t i v e l y  low ef f ic iency   imposes   l a rger   s ize   and   h igher  
power requirements on the  C02 pump laser system,  and  the  need  for two laser 
resonators   increases   the   complexi ty  of the  overall   system.  Amplitude 
i n s t a b i l i t y   c a u s e d  by  coupling  between  the two laser c a v i t i e s   h a s   b e e n  a 
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problem i n   t h e   p a s t ,   b u t  recent design  improvements  have now e s s e n t i a l l y  
e l imina ted   t h i s   p rob lem.  None of t h e   l i m i t a t i o n s   f o r  OPM laser s o u r c e s  
have  proved  insurmountable,  and  compact  and well engineered  systems  have 
been b u i l t   i n  several l a b o r a t o r i e s .  

One such OPM laser system was c o n s t r u c t e d  a t  the  Aerospace 
C o r p o r a t i o n   f o r   u s e   i n  a t r a n s p o r t a b l e   h e t e r o d y n e  receiver s u i t a b l e   f o r  
d i agnos t i c   expe r imen t s   on   l a rge  Tokamak plasma  machines [ 5 7 ] .  S e v e r a l  
u n i q u e   d e s i g n   f e a t u r e s   h a v e   b e e n   i n c o r p o r a t e d   i n t o   t h i s  new s e l f - c o n t a i n e d  
OPM laser package .   'Because   o f   t he   s t r i ngen t   r equ i r emen t s   fo r   r e l i ab le  
o p e r a t i o n   i n   h o s t i l e   e n v i r o n m e n t s   a n d   r e m o t e   f i e l d  sites, t h i s  new d e s i g n  
i s  much more complex  than  the laser norma l ly   u sed   i n   t he   l abo ra to ry .   Fo r  
compactness   and   mobi l i ty ,   bo th   the  C02 pump laser and   t he  FIR laser 
c a v i t i e s  were b u i l t   i n t o  a s ing le   Inva r   f r ame   w i th   ove ra l l   d imens ions  of 
2.0 m x 0.4 m x 0.4 m. Figure 9 shows a view of the   comple te   package   wi th  
t h e  C02 pump laser mounted  above  the SMMW waveguide  resonator .  The low 
t e m p e r a t u r e   c o e f f i c i e n t  of expansion of I n v a r   h e l p s   t o   e n s u r e   t h e   l o n g  term 
t e m p o r a l   s t a b i l i t y  of   the laser power  and  f requency.   In   addi t ion,  a 
t e m p e r a t u r e   c o n t r o l l e r   c i r c u l a t e s   c o n s t a n t   t e m p e r a t u r e   c o o l a n t   t h r o u g h o u t  
t h e   s t r u c t u r a l   c o m p o n e n t s  of the  f rame.   Provis ions  have  a lso  been made f o r  
remote-tuning of t h e  C02 and SMMW lasers fo r   ope ra t ion   f rom  r emote   con t ro l  
areas. 'Ihe h i g h e s t   p o s s i b l e  CW output  power i s  r e q u i r e d ,  as w e l l  as a 
s m a l l   a n g u l a r   d i v e r g e n c e   f o r   t h e   o u t p u t  beam. To a c h i e v e   t h e s e   g o a l s ,   t h e  
SMMW laser i s  equipped  with a s t a t e -o f - the -a r t   hybr id   ou tpu t   coup l ing  
mir ror .  

Prel iminary  performance  measurements   have  been  obtained  with two 
p ro to type   sys t ems   ope ra t ing   i n   ou r   l abo ra to ry .   Us ing  CH2F2 a s   t h e   l a s i n g  
medium, t r u e  CW output  power  of t y p i c a l l y  45 mW is  o b t a i n e d   a t  a wavelength 
of  214.7 pm with  long term a m p l i t u d e   s t a b i l i t y  of *3% (F igure   10) .  I t  must 
b e   e m p h a s i z e d   t h a t   t h i s   e x c e l l e n t   a m p l i t u d e   s t a b i l i t y   h a s   b e e n   a c h i e v e d  
w i t h o u t   a c t i v e l y   s t a b i l i z i n g   t h e  C02 pump laser,  and  conceivably i t  can  be 
improved  with  such a s t a b i l i z a t i o n   s y s t e m .   A n o t h e r   i m p o r t a n t   f e a t u r e   o f  
the  package is t h a t  i t  can   be   opera ted   in  a sealed-off  mode w i t h  a s i n g l e  
f i l l  of CH2F2 gas   fo r   ex t ended   pe r iods  of up t o  2 weeks. This i s  very 
d e s i r a b l e   f o r   i n c r e a s e d   r e l i a b i l i t y   a n d   e a s e  of  day t o  day   opera t ion .  A 
v a p o r   t r a p   h a s   a l s o   b e e n   c o n s t r u c t e d   t h a t   c a n  be  used t o   r e c a p t u r e   a n d  
r e c y c l e   t h e  CH2F2 g a s   f o r  a number  of c y c l e s ,   s i n c e   t h e   c h e m i c a l   r e a c t i v i t y  
of t h i s   mo lecu le  i s  q u i t e  low. 

The n o i s e   s p e c t r u m   a n d   f r e q u e n c y   s t a b i l i t y   o f   t h i s  SMMW laser 
package are cr i t ical  pe r fo rmance   cha rac t e r i s t i c s .   These   pa rame te r s  were 
measured by he terodyning  two of   these lasers toge ther .  The outputs   f rom 
both lasers were mixed i n  a 0.25pm Scho t tky   d iode   mixe r   f ab r i ca t ed   i n  
house   and   op t imized   for   the   h igh  laser frequency [ 5 8 ] .  The I F   s i g n a l  
produced by o f f s e t t i n g   o n e  laser 3 . 9  MHz f r o m   t h e   o t h e r   i n   F i g u r e  11 
c o n f i r m s   s i n g l e  mode ope ra t ion   f rom  bo th  lasers, s i n c e   o n l y  a s i n g l e   b e a t  
no te  i s  p r e s e n t   o n   e i t h e r   s i d e  of t he   r ece ive r   cen te r   f r equency .  The f r e e -  
r u n n i n g   f r e q u e n c y   s t a b i l i t y   o f   t h e   b e a t   s i g n a l   i n   F i g u r e . 1 2  was b e t t e r   t h a n  
20 kHz, as measured   f rom  the   ha l f -wid th   o f   the   s igna l   for  a two minute 

4 27 



exposure .   This   exce l len t   l eve l   o f   per formance  is well w i t h i n   t h e  
r e q u i r e m e n t s   f o r   l o c a l   o s c i l l a t o r   a p p l i c a t i o n s   i n  Tokamak d i a g n o s t i c  
expe r imen t s ,   and   p l ans   t o   u t i l i ze   t h i s   sys t em  fo r   such   measu remen t s  are now 
underway. 

Another   noteworthy  design  has   been  developed a t  t h e  NASA Goddard 
Space  Flight  Center,   where C02 pump laser r a d i a t i o n  i s  i n j e c t e d   o f f - a x i s  
i n t o  a nove l   fou r - fo ld   degene ra t e   Gauss i an   r e sona to r   w i th in   t he  SMMW 
waveguide  [59] .   This   has   the  advantages of i m p r o v e d   s t a b i l i t y ,   t h r o u g h  
e l i m i n a t i o n   o f   f e e d b a c k   e f f e c t s   a n d   g r e a t e r   e f f i c i e n c y   a s s o c i a t e d   w i t h  
b e t t e r   u t i l i z a t i o n  of t h e  pump power. The technique  may p r o v e   e s p e c i a l l y  
u s e f u l   f o r  many of t h e  more weak ly   abso rb ing   gases   o the r   t han  CH2F?. 
E x c e l l e n t   a m p l i t u d e   a n d   f r e q u e n c y   s t a b i l i t y   h a s   b e e n   o b t a i n e d   w i t h   t h l s  
system,  which is d e s c r i b e d   i n   d e t a i l   e l s e w h e r e   i n   t h e s e   p r o c e e d i n g s   [ 6 0 ] .  

A SMMW heterodyne   rece iver   sys tem  has   a l so   been   cons t ruc ted  a t  t h e  
Max P l a n c k   I n s t i t u t e   f o r   R a d i o   A s t r o n o m y   f o r   t h e   o b s e r v a t i o n   o f  
i n t e r s t e l l a r   m o l e c u l e s   [ 6 1 ] .   F i g u r e  13 shows r e s u l t s   f o r   h e t e r o d y n e   m i x e r  
c o n v e r s i o n   l o s s   i n d i c a t i n g   t h a t   v a l u e s  as low as 11.6 dB have  been  achieved 
a t  761 GHz. T h i s   t r a n s l a t e s   t o  a sys tem  noise   t empera ture  of only  3,670"K 
(DSB) [62] .  From Figure 13 one  can see t h a t   t h e   c o n v e r s i o n   l o s s   f o r   t h i s  
Schot tky  diode is n o t   y e t   s a t u r a t e d  up t o   t h e  maximum a v a i l a b l e  laser LO 
power  of  10 mW. T h i s   e s t a b l i s h e s  a lower limit on t h e  amount  of LO power 
n e c e s s a r y   f o r   e f f i c i e n t   p e r f o r m a n c e  a t  these   h igh   f r equenc ie s ,   and   imp l i e s  
t h a t   w i t h   i n c r e a s e d  LO power i t  w i l l  b e   p o s s i b l e   t o   a c h i e v e  s t i l l  lower 
system  noise   temperatures .  

OPM laser technology is  now rap id ly   ma tu r ing ,   and   s eve ra l  well- 
eng inee red   sys t ems   have   been   des igned   and   cons t ruc t ed   fo r   va r ious  
purposes .   Present   l eve ls   o f   per formance  are s u f f i c i e n t   f o r   l o c a l  
o s c i l l a t o r   a p p l i c a t i o n s   i n   p r a c t i c a l   h e t e r o d y n e   s y s t e m s  w e l l  i n t o   t h e  SMMW 
region .   Novel   t echniques   descr ibed   in   the   fo l lowing   sec t ion   for   ex tending  
the   tun ing   range   of  OPM lasers w i l l  c o n t r i b u t e   s i g n i f i c a n t l y   t o   t h e i r  
u t i l i t y ,  a n d   t h e   a c c e l e r a t i n g  ra te  of  advance i n  OPM laser technology 
s h o u l d   l e a d   t o   a d d i t i o n a l   p r a c t i c a l   a p p l i c a t i o n s   d u r i n g   t h e   n e x t  1-3 years .  

VII. NOVEL OPTICALLY  PUMPED LASER TUNING TECHNIQUES 

The t e c h n i q u e s  of s ideband  genera t ion   and  (315 s t i m u l a t e d  Raman 
emiss ion   have   recent ly   been   ex tended   in to   the  SMMW region.  These  advances 
show promise of e l i m i n a t i n g   t h e   s e r i o u s   t u n i n g   p r o b l e m s  now a s s o c i a t e d   w i t h  
OF" lasers. 

The p r i n c i p l e  o f   gene ra t ing   t unab le   s idebands  is  i l l u s t r a t e d   i n  
Figure 14. A quas i -op t i ca l   Scho t tky   d iode  mixer is f e d   c o a x i a l l y   w i t h  
tunable   microwave   rad ia t ion   and   s imula taneous ly   i r rad ia ted   wi th   the   ou tput  
of an OF" laser. Tunable  sidebands are g e n e r a t e d   a t   t h e  SMMW frequency by 
non l inea r   mix ing   i n   t he   Scho t tky   d iode   and   r ad ia t ed  by t h e   l o n g  wire 
antenna of the  corner  cube  mixer.  Output  powers  of W cont inuous ly  
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tunable  from 2.5 to 18 GHz  have  been  obtained  in  this  way  from  the  first 
SMMW experiments [ 6 3 ] .  Initial  laboratory  experiments  have  used  this 
tunable SMMW source in  an infrared-submillimeter  double  resonance  study  of 
an excited  vibrational  state in Cd3F [ 6 4 ] .  A Schottky  diode  heterodyne 
receiver  easily  detected  the  sideband  radiation  with  signal  to  noise  ratios 
of 40 dB,  and  since  the  time  response  is  fast  the  kinetics  of  energy 
transfer  processes  could  also  be  investigated.  ’Ihus,  the  introduction  of 
these  tunable  sources  combined  with  the  sensitive  heterodyne  detectors  has 
opened  up  the  possibility  for  new  types  of  high  resolution SMMW 
spectroscopic  studies. 

The  technique  of aJ stimulated  Raman  scattering in  a three  level 
molecular  system  is  schematically  illustrated  in Fig. 15. An intense  pump 
laser  with  frequency v is  nearly  resonant  with  an  infrared  transition of 
frequency v with  aR  offset Av = v - ujl. Using  the  nonlinear 
properties ollthe molecular  gas  itgelf, ’a signal  is  generated by the 
stimulated  Raman  effect  near  the  rotational  frequency v32. In contrast  to 
the  two  step  resonant  absorption  and  re-emission  process  of  a  normal OPM 
laser, the (w Raman  laser  is  a  simultaneous  two-photon  process,  and 
changing  of  the  pump  offset will  tune  the S M ”  frequency by  the  same 
amount.  The  tuning  in  the  Raman  case  is  larger,  since  in  the  normal  laser 
the  change  in  the  emission  frequency  is  reduced by  the ratio of  the SMMW 
frequency  to  the  pump  frequency  due  to  the  Doppler  effect.  Experiments 
have  been  conducted  with NH3 ** and  HCOOH [65] and  interpreted  as  the 
first  observations  of  stimulated SMMW Raman  lasing  using a aJ pump  laser. 
These  results  demonstrated  that  Raman  effects  can  be  observed  at  the  power 
levels  typical  in a CW OPM laser,  and  that  dramatic  increases  in  tuning 
range  can  be  achieved. A frequency  tuning  of 50 MHz,  which  is  roughly  the 
tuning  range  of  the CO2 pump  laser,  was  observed  using  NH3  at  67pm.  This 
corresponds  to  about  an  order  of  magnitude  increase  in  tunability.  Raman 
emission  has  the  additional  advantage  that  the  power  scaling  behavior  will 
also be different  from  normal O E ”  lasers,  and  could  eventually  lead  to 
higher  achievable  output  powers.  Although  very  promising,  this  technique 
is  still  in  the  preliminary  stages of development  and  more  work  will  be 
needed  to  fully  assess  its  true  potential. 

VIII. CONCLUSION 

This  review  has  summarized  the  state-of-the-art  performance  of aJ 
SMMW sources.  Each  source  type  was  introduced  with a brief  description  of 
its  basic  operating  features.  The  advantages  and  limitation  of  the  various 
devices  were  then  compared  in an attempt  to  assess  their  potential  for 
applieation  as  local  oscillators  in  low  noise  heterodyne  receivers. 

**Unpublished  article  by G. D. Willenberg, U. Huebner, and J. Heppner 
entitled  “Far  Infrared CW  Raman  Lasing  in  NH3.” 



The assessment of t h e   c u r r e n t   s i t u a t i o n   l e a d s   t o   t h e   f o l l o w i n g  
conclusions.  The Combination of a sealed-off ,   h igh power OPM laser and a 
room-temperature  Schottky  diode  mixer is an   ex t r eme ly   a t t r ac t ive   package  
for   he te rodyne   sys tems.   Present   l eve ls  of performance are s u f f i c i e n t   f o r  
many p r a c t i c a l   a p p l i c a t i o n s .  As a consequence of t h e  new compact  and 
r e l i a b l e  laser packages ,   immedia te   appl ica t ions   to   sc ien t i f ic   p roblems  and  
f e a s i b i l i t y   s t u d i e s   c a n  be expected. The near  term out look i s  t h a t  OPM 
l a s e r s  w i l l  be implemented ,   s imply   because   o f   the i r   ava i lab i l i ty ,  
throughout   the SMMW range. For f requent ies   above  500 GHz, they are the  
so le   a l te rna t ive .   In   the   long   wavelength   por t ion  of t he  SMMW spectrum, 
backward-wave osc i l la tors   have   demonst ra ted   sa t i s fac tory   per formance   in  
heterodyne systems.  However, h igh   cos t ,  l i m i t e d  a v a i l a b i l i t y ,  and a 
r epu ta t ion  of s h o r t   l i f e t i m e  have  prevented  widespread  applications.   In 
s p i t e  of t h e s e   l i m i t a t i o n s ,  backward-wave o s c i l l a t o r s   a r e   c u r r e n t l y   t h e  
only  sources  of widely  tunable  coherent SMMW r ad ia t ion .  A t  p r e s e n t ,   s o l i d  
s t a t e   sou rces   such  as the  IMPATT diode  have  not  yet   reached a s t age  of 
development  to be u s e f u l   i n   t h e  SMMW region. The long  range  prospects are 
good t h a t   f u r t h e r   e f f o r t s  w i l l  l e a d   t o  compact t u n a b l e   s o l i d   s t a t e  SMMW 
sources .   In   the  near   future ,   harmonit   generators  w i l l  extend  the  useful  
range of both  the BWO and IMPATT dev ices   t o   h ighe r   f r equenc ie s ,   bu t  
probably  not much beyond 600 GHz. 

A so l id   founda t ion  now exis t s   for   cont inued   deve lopment  of SMMW 
sources,   but SMMW technology i s  s t i l l  i n  i t s  infancy   and   s ign i f icant  work 
remains. As i n   t h e  pas t ,  p rogress  w i l l  depend  on t h e   s y n e r g i s t i c  
re la t ionship   be tween pract ical  appl ica t ions   and   v iab le   sources .  The 
n e c e s s i t y   t o   e x p l o i t   t h e   u n i q u e   p r o p e r t i e s  of SMNW rad ia t ion   i n   impor t an t  
a p p l i c a t i o n s  w i l l  accelerate the  advancement of SMMW sources .  Improved 
source   per formance ,   in   tu rn ,  w i l l  mu l t ip ly   t he  number  of p o t e n t i a l  
appl icat ions.   This   cycle   can be expec ted   t o   con t inue ,   and   s ign i f i can t  
r e s u l t s   c a n  be a n t i c i p a t e d  from SMMW heterodyne systems i n   t h e   n e a r   f u t u r e .  

The a s s i s t a n c e  of my co l leagues ,  D. T. Hodges and J. R. Tucker, i n  
c r i t i ca l ly   r ev iewing   t he   manusc r ip t  is  g r a t e f u l l y  acknowledged. 
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TABLE I. - CRITERIA FOR COMPARISON OF cw sw LOCAL OSCILLATORS 

OUTPUT POWER LINEWIDTH 

FREQUENCY RANGE LIFETIME 

EFF I C I ENCY NOISE 

TUNING  BANDWIDTH SIZE 

FREQUENCY STABILITY COST AND AVAILABILITY 

TABLE 11.- SUMMARY OF CW SMMW SOURCES 

OPTICALLY  PUMPED LASERS 

BACKWARD WAVE OSCILLATORS 

JOSEPHSON  JUNCTION  OSCILLATORS 

IMPATT D I ODES 

HARMON  IC GENERATORS 

S IDEBAND GENERATORS 

ELECTR I C  D ISCHARGE LASERS 

GYROTRONS 
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TABLE 111.- PROPERTIES OF BACKWARD WAVE OSCILLATORS 

ADVANTAGES 
0 CONTINUOUSLY  TUNABLE  ELECTRICALLY 

0 WIDE  RANGE OF TUNABILITY 

0 NARROW LINE  WIDTH 

0 EASILY  PHASE OR FREQUENCY LOCKED 

0 LOW NOISE  CHARACTERISTICS 

0 COMPACT 

LIMITATIONS 

0 FABRICATION PROBLEMS 

0 RELATIVELY  HIGH  COST 

0 UNAVAILABIL ITY 

0 RAPID POWER FALLOFF WITH FREQUENCY 

0 REDUCED LIFETIME  AT  HIGH FREQUENCIES 

TABLE 1V.-  CHARACTERISTICS OF AVAILABLE  CARCINOTRONS 

WAVELENGTH 
(mm) 

~~ 

4 

2 

1 

0.5 

0.4 

0.35 

CURRENT 
(mA) 

65 

45 

30 

35 

35 

45 

VOLTAGE 
(kV) 

6 

6 

10 

10 

10 

10 

POWER EFF I C I ENCY 
(W) 

0.5 1.4 

4 8 

11 38 

( 7 0 )  

15 x 

6 x 0.25 x 

2 x 9 x 

4 x 
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TABLE V.- PROPERTIES OF IMPATT DIODES 
1 
I 

ADVANTAGES 

0 COMPACT S IZE AND RUGGEDNESS 

0 POTENTIAL LONG LIFE AND RELIABILITY 

0 WIDELY TUNABLE 

0 MODEST DC POWER REQUIREMENTS 

0 POTENTIAL HIGH EFFICIENCY 

LIMITATIONS 

0 HIGH NOISE LEVELS 

0 WIDE  LINEWIDTH 

0 RAPID POWER FALLOFF AT HIGH 
FREQUENC I ES 

0 UNAVAILABILITY 

TABLE V1.- PROPERTIES O F  OPTICALLY PUMPED  MOLECULAR LASERS 

ADVANTAGES 

0 INHERENTLY NARROW LINEWIDTH 
0 EASILY CONSTRUCTED AND WIDELY  AVAILABLE 
0 RELATIVELY I NEXPENS I VE 
0 WIDE SPECTRAL RANGE 
0 HIGH FREQUENCY STABILITY 
0 PHASE- LOCKED OPERATION DEMONSTRATED 
0 VERSATILITY 

LIMITATIONS 

0 LACK OF TUNABILITY 
0 INEFFICIENT 
0 HIGH POWER REQUIREMEMS 
0 INSTAB  lLlT IES 
0 INCREASED COMPLEXITY 
0 RELATIVELY LARGE S IZE 



Figure 1.- Cross-sectional  diagram of a backward wave o s c i l l a t o r   ( a f t e r  
R e f .  15) .  
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Figure 2.- Performance c h a r a c t e r i s t i c s  of a wide  bandwidth medium power 
carc inot ron   (a f te r  Ref. 17) . 
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Figure 3 . -  Cross-sectional  diagram and e q u i v a l e n t   c i r c u i t  of an IMPATT 
o s c i l l a t o r   ( a f t e r  Ref. 24) - 
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Figure 4.- State-of-the-art  performance  of IMPATT d i o d e s   ( a f t e r  R e f .  2 4 ) .  
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Figure 5.- Cross-sectional  diagram of a  crossed-waveguide  mounted  Schottky 
diode  harmonic  generator (after Ref. 22). 1" = 2.54 cm. 
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Figure 6.- Comparison of CW SMMW source  technology (after Ref. 37). 
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Figure 7.-  Energy level  diagram  for an o p t i c a l l y  pumped l a s e r .  
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Figure 8.- Schematic of an OPM laser system. 



Figure 9.- P i c t u r e  of Aerospace SMMW l a s e r  package. 
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Figure  10.-   Amplitude  stabil i ty of OPM l a s e r .  

20 

444 



100 kHz BW -20 dBm 

I 1  
I I  I I  I I  

I I 1 1 1  
I 

f CH2F2 214.5 t m  1 3.9 M z 
t II t 

I I  I 1 I I I I  

-5  -4 -3 -2 -1 0 1 2 3 4  5 
2.0 MHzlDIV, 1 msecldiv 

Figure  11.- Heterodyne  mixing of t w o  OPM lasers .  
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Figure  1 2 . -  Frequency j i t t e r  of he t e rodyne   bea t   s igna l .  
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Figure  13.- Schottky  diode  mixer  performance a t  761 GHz ( a f t e r  R e f .  6 2 ) .  
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Figure  14.-  Schematic  diagram  of a Schot tky  diode  tuneable   s ideband 
gene ra to r .  
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Figure  15.- E n e r g y   l e v e l   d i a g r a m   i l l u s t r a t i n g   r e s o n a n t l y   e n h a n c e d  Raman 
s c a t t e r i n g   i n  a three- level   system. 


