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SUMMARY 

The p r inc ip l e s   o f   t r ans fe r   func t ion   ana lys i s  have  been  applied to  a 
passive  opt ical   heterodyne  receiver   to   obtain  the  modulat ion  t ransfer   funct ion 
( M T F ) .  MTF ca l cu la t ions  have  been  performed  based  of a n  op t i ca l   p l a t fo rm 
which is imaging v e r t i c a l l y   v a r y i n g   p r o f i l e s  a t  wors t   ca se   shu t t l e   o rb i t  
a l t i t u d e s .  A n  ana lys i s  of the   derogatory   e f fec ts  of  sampling ( a l i a s i n g )  and 
cent ra l   obscura t ions  on both  resolut ion  and  heterodyne  eff ic iency is  given. 

INTRODUCTION 

One measure  of  performance  of an  o p t i c a l  imaging system is  i t s  a b i l i t y   t o  
reproduce an ob jec t   d i s t r ibu t ion   w i th   su f f i c i en t   s igna l - to -no i se   r a t io  and 
r e so lu t ion  so as t o  make the  information  contained  within  the image usefu l .  
Generally,  such a system may be  character ized by i t s  op t i ca l   t r ans fe r   func t ion  
(OTF) or ,  i n  c e r t a i n   c a s e s ,  by the  modulat ion  t ransfer   funct ion (MTF) ( r e f .  1). 

For  conventional  imaging  systems  using  either  coherent  or  incoherent 
i l lumina t ion ,  one usual ly  assumes l i n e a r i t y  i n  the  lmaging process so tha t   t he  
cascading  property  of   t ransfer   funct ion  analysis   appl ies   ( ref .  2 ) .  Under t h i s  
assumption,  the MTF's of   the   individual   subsystems  ( i -e . ,   opt ics ,   detector ,  
e l e c t r o n i c s ,   e t c . )  can be mul t ip l i ed   t o   g ive   t he   ove ra l l   t r ans fe r   func t ion .  

I n   t h i s   p a p e r ,   t h e   p r i n c i p l e s  of t ransfer   funct ion  analysis   have  been 
app l i ed   t o  a pass ive   op t ica l   he te rodyne   rece iver  which i s  assumed t o  be 
imaging v e r t i c a l l y   v a r y i n g   s p a t i a l   p r o f i l e s  a t  wors t -case   shut t le   o rb i t  
a l t i tudes .   Resul t s   o f   the   ana lys i s  show  some in t e re s t ing   depa r tu re s  from the 
properties  described  above; namely, that   the   cascading  property must be 
ca re fu l ly   app l i ed  and that   opt ical   receivers   having  obscurat ions,   such as a 
Cassegrains ,   are   not  optimum for  heterodyne-type  detection. 

THEORETICAL  ANALYSIS 

Imaging Considerations 

Consider an op t i ca l   r ece ive r  which i s  imaging  an  object  amplitude 
d i s t r i b u t i o n  as shown i n   f i g u r e  1. Using scalar d i f f r ac t ion   t heo ry ,   t he   s igna l  
amplitude, Es, i n   t he   de t ec to r   p l ane ,  L, is  given by ( r e f .  3)  
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where h ( r )  i s  the impulse  response of the imaging optics and E g ( r )  i s  the 
amplitude  of  the  geometrical image of the  object. The shift   invariance of 
h ( r )  can be jus t i f ied   for   the  heterodyne  applications  discussed  here by a 
careful examination  of the  various phase factors  appearing i n  the impulse 
response  function. 

For  mixing of two deterministic  optical  beams i n  an ideal  detector,  the 
mean-square heterodyne  current power a t  the  difference  frequency, f = I v - v I 
is  ( re f .  4)  

0 

where E ~ ( K )  is the  local   osci l la tor  amplitude dis t r ibut ion i n  the  detector 
plane, q i s  the quantum efficiency, e is  the  electronic  charge, and hv is 
the photon energy. A simple-minded c lass ica l  approach is  taken to obtain  the 
correct  expression from which the  spatial  frequency  analysis may begin. We 
recognize that  the  geometrical image f i e ld ,  E ( s , ~ ) ,  i s  a stochastic  process 
which we synthesize by discrete frequency comJonents with random phases. NOW, 
f o r  a deterministic L.O. f i e l d  and a quasi-monochromatic opt ical   s ignal ,  
equation (1) and the  generalization of equation ( 2 )  combine to  give 

r- -l 

where < > represents an average  over  the ensemble of s ignal   f ie lds .  It is  
assumed that  the  source,   i .e. ,   the sun, of the image f i e l d  on the  detector is 
spatially  incoherent. The appropriate  substitutions  are 

-+ I2 (f)Af 
het  het  

where P represents  the image spectral  radiance  at  the  detector  plane i n  

w/m /str/Hz and I h e t   ( f )  is  the  current  spectral power density i n  A /Hz. 2 g 2 
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Equation (3 )  becomes 
+m 

where f 2 0 and we note  that   the L.O. mixes with  the  signal  field components 
a t  u + f and u - f .  Here, we have expressed  the  detector  overlap  inte- 
gral  of  the L.O. f l e l d  and the impulse  response  function  as 0 0 

J 
-m 

where Td t ( r )  i s  the  aperture  function of the  detector geometry and the 
product !? -(r) E* ( r )  = To* (g) i s  simply that  portion of the L.O. t ha t  i s  

transmitted by the  detector  aperture. 
det  - o - 

Referring  to  the  detector scheme of figure 2 ,  the  output  current from 
the synchronous detector i s  

where Hhet is the  total  heterodyne  transfer  function  defined by 
0 

and T is the  optical  transmission  factor. The various  contributions  to 

Hhe t 
carrier  diffusion and t r a n s i t  time ef fec ts  i n  the  detector; (2)  the photo- 
detector  transfer  function, Ha, comprised of  contributions due to  
capacitance,  resistance and Inductance; and ( 3 )  the I . F .  amplifier and f i l t e r  
transfer  function, Hifa. The square-law detector is assumed t o  have a unity 

transfer  function (H = 1) . The shot  noise  transfer  function, Htr ,  is  due 

only t o   t r a n s i t  time effects   as  opposed t o  Hm. 

a re  (1) the  signal/L.O.  mixing transfer  function, Hml representing 

sq 
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Heterodyne  Transfer  Function 

In  this paper, we  are i n t e r e s t e d   i n   t h e  spatial frequency  response  of  the 
heterodyne  receiver t o  a v e r t i c a l l y   v a r y i n g   o b j e c t   p r o f i l e  as shown i n  
f i g u r e  1. This  i s  d i f f e r e n t  from the   I .F .   cons idera t ions   d i scussed   prev ious ly  
o ther   than  a knowledge of t h e   t o t a l  I .F. power. To o b t a i n   t h e   s p a t i a l  
frequency  response  and,  ult imately,   the  system  modulation  transfer  function 
(MTF) , we assum the  object  scene  radiance  (and,  consequently,   the image 
scene) i s  l i n e a r l y   t r a n s l a t e d  due t o  motion  of the optical receiver ,   e .g .  , an  
orbi t ing  platform.   This   induces a t r ans l a t ion   o f   t he  image coordinates  by 
an amount 

and 

P (s, vo 5 f >  + P ( s  - r ,  v + f )  
g -  (3- - 0 -  

Fur ther ,  we de f ine  

Since  the  impulse  ,response , h , is  i n v a r i a n t ,  w e  have the   ou tput   cur ren t  from 
the  synchronous  detector as 

Equation (4) i s  of  the form of  a convolution 

Decomposition  of I i n t o  i t s  spatial  frequency components is sync 
obtained by the  Fourier   t ransformation 

m 

h 

I (E) = e I ( r ) d  r s " 

- i 2 ~ r K - r  2 
sync  sync 

-m 

Using the  convolution  theorem, we have 
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where & i s  the   spa t ia l  frequency  vector  variable  defined by i ts  rectangular 
components (Kx,Ky) ,  G (K) i s  the  object ,   or  more specifically,  the  geometrical 

image spectrum, Go(E) i s  the  detector  pupil  function modulated L.O. spectrum, 

and H(K) " i s  the  coherent  transfer  function of the system ( re f .  3 ) .  

g -  

Equation (5) i l lustrates   the  departure  of the  transfer  function  obtained 
i n  a heterodyne  system w i t h  that  obtained i n  conventional imaging systems. 
Remembering that  the  coherent  transfer  function, H (5) , i s  equal  to  the  pupil 
function of the  optical   receiver ( w i t h  a sui table  change i n  variables)  (ref.  
3 ) ,  the  conventional  optical  transfer  function is  proportional  to 

where (K)  is  the  Fourier  transform of the  detector  aperture  function, 

Tdet - (K)  . I n  equation (5)  , however, we see  that  H (5) i s  modified by the 
spectrum  of the  L.O./detector  combination, Go(K). The normalized  convolution 

of the  product Go(K)H*(K) - w i t h  i t s  negative argument complex conjugate i s  

defined  as  the  heterodyne  transfer  function, GH. Functionally,  then, we define 
a normalized  heterodyne  transfer  function by 

Gdet - 

or  

Heterodyne Efficiency  Factor 

The denominator  of  equation (6) indicates  that  the  product Go(KJH (K) 
represents  the  optics/L.O.  detector  amplitude  spectrum  that is  t ransferred  to  
the  detector. Using Parseval's theorem, the  integral 

Id2K] Go (E) 1 I H(K) I is thus  the power available  for  heterodyning  out of a 

t o t a l  L.O. -detector power of Po = d2KlGo(&) 1 . For a uniform  extended 

source, we  may thus  define an efficiency  factor 
s 2 
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With t h i s  
(equation 

I 

definition,  the  current spectrum for  the synchronous detector 
(5) 1 becomes 

Equation (8) may be re la ted   to  a more conventional form of heterodyne 
efficiency found i n  the  l i terature   ( ref .  5 ) .  The synchronous detector  current 
i s  the  inverse  Fourier  transform of equation (8), i . e . ,  

+m 
r 

For a stationary  scene, 
have r = 0 so tha t  - 

+oo 

i .e.,   before  translation of the image coordinates, w e  

and 

I (r = 0 )  = 
sync - 

where mixing occurs  over an effective bandwidth 2B centered a t  the L.O. 
HIF 

frequency, a polarization  loss  factor of 0.5 is  included, and f i  (K) is the 
Fourier  transform of A (r) . The integral  portion  of  equation (90, has the 
form of a throughput, 1.e.  , that   portion of the image passed by the heterodyne - 9  - 
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transfer  function. The product  of x and th is   in tegra l  is an efficiency 

'bet = - I  x 

SO that  equation (10) becomes 

2 2  
4Te ' 'oBHIFXhet 

hv/KT I sync ( r  = 0) = 
hv (e - 1) 

I f  now, we define a shot  noise  level due to  the L.O. by 

2 
N = -  2'e P B 

(hv) o SIF  

then  the  signal-to-noise  ratio i n  the  shot  noise l i m i t  becomes 

I ( r  = 0) 

N 
sync 2T 

B 

hv  /KT 'het B 
" s -  - - H I  F 
N 

. -  
(e  - 1) S I F  

where we have defined 

- 
'bet ' 'bet - < '  

as the  heterodyne quantum efficiency and is  the  effective  shot  noise 

bandwidth. Note tha t   for  a uniform  extended  source, A (K) = 6 (K) and 

equation (11) reduces t o  Xhet = x and = 'X. I n  this  case,  the 

efficiency  factor,  x ,  which we have defined i n  equation ( 7 )  i s  equivalent 
( t o  wi th in  the D.C. quantum efficiency, q )  to   the heterodyne quantum 
efficiency, nhet , found i n  the   l i t e ra ture   ( re f .  5 ) .  

B~~~ 

g -  

'het 

System Transfer Function 

Resul ts  from the  previous  section may  now be used to  calculate  the 
system transfer  function,  including  the low-pass f i l t e r   ( s ee   f i gu re  2 )  , for  
the  specific  case of imaging a one-dimensional object  through an opt ical  
receiver which has  rectangular symmetry. This  case  has some physical 
significance  since  the  resolution  elements of i n t e re s t  i n  an orbi t ing 
heterodyne  receiver  are  vertically  varying  stratospheric  layers. I n  addition, 
t o  avoid  scal ing  diff icul t ies   in   the  calculat ions we w i l l  use angular 
coordinates  defined by (see  figure 1) 
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and 

0 = -  
F di 

( rad ians)  

where €IF is  the   geometr ica l   ins tan taneous   f ie ld   o f  view (I.F.O.V.) of  the 
op t i ca l   r ece ive r .  

Using  equations (12 )  and the  one-dimensional  geometry,  equation (6) 
becomes 

GH (Ke  ;Kc  , 0,) = 
K0  K0 

2KC 2Kc K 0 =O 

(13) 

{ 1 s i n c  ( O,KO) RECT ("-1 3 hb [ s i n c  ( OFK0) RECT (-1 ] 1 

where 

Equation  (13) assumes a plane wave l o c a l   o s c i l l a t o r   i n c i d e n t   o f   t h e  
de t ec to r  so t h a t   t h e  detector/L.O.  transfer  function becomes simply  the 
Fourier   t ransform  of   the  detector   aper ture .   Further ,   the   coherent   t ransfer  
f u n c t i o n   f o r   t h e   o p t i c s  is  the  pupi l   funct ion  ( rectangular   in   shape)   having 
a coherent  cut-off  frequency  of Kc = D /2A, where D is the  diameter  of  the 

rece iver   aper ture   and  A the  wavelength.  This  convolution  process is  shown 
i n   f i g u r e  3. 

A A 

Equation  (13)  along  with  equation (8) g ives   the   sys tem  t ransfer   func t ion  
up t o   t h e  low-pass f i l t e r .   Expres s ing  GH (K - K  8 ) and x ( K c ,  eF) 
(equation ( 7 )  ) i n   i n t e g r a l  form, we have 

0' c '  F 

and 
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v - c  
H (K8) = sinc(-  0 

LP z K O )  

where v i s  t h e  ver t ical  component of t h e   o r b i t a l   v e l o c i t y ,  z t h e  receiver- 
o b j e c t  distance, and -c t h e   i n t e g r a t i o n  time. The t o t a l   t r a n s f e r   f u n c t i o n  is  
then   t he   modu la t ion   t r ans fe r   func t ion  

0 

Equations (14) and  (15)  can  be  evaluated i n  terms of t abu la t ed   func t ions  
y i e l d i n g   t h e   f o l l o w i n g   r e l a t i o n s   w h i c h  w i l l  be   used  for   computat ional   purposes  

In   the   above   equat ions ,   the   func t ions  Cin ( X )  and si ( X )  are de f ined  as 
( ref .  6) 

f X  r x  
s i n  t d t  and C ( X )  = 

1 - cos t 
i n  d t  
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RESULTS AND DISCUSSION 

MTF Calculations 

Equations  (16) and (17) may  now be evaluated  for some specific  parameter 
values which are   appl icable   to   the  opt ical   receiver   in  a space-lab  type of 
scenario. A worst-case s e t  of orbital   values would be for  the  receiver  platform 
t o  be a t  an orbital   height of R = 400 Km and a tangent  height, HT, of 10 Km. 
A t  these  values, we assume that  the  receiver i s  operating i n  a solar  occulta- 
t ion mode where the  sunrise  or  sunset  velocity due to   o rb i t a l  motion is 
v = 2 Km/sec.  The MTF and x calculations  (equations  (16) and ( 1 7 ) )  w i l l  be 
done for  an I .F.O.V.  of BF = 0.5 x rad , an equivalent  optical   receiver 

aperture of DA = 2.0", and values of integration time of T = 0.2 sec , and 
0.4 sec.  Further,  the  value  of DA = 2.0" a t  a wavelength of X = 11.152 pm 

(HN03 l i ne )  corresponds t o  an optics  cut-off  frequency of Kc = DA/2x = 2278 

cycles/radian. These parameters  are  compatible w i t h  the  values  for an LHS type 
experiment using a tunable  diode  laser  as  the L.O. and associated  optics  for 
coupling this   type  radiat ion  to  a detector  having  the  required time-frequency 
response ( r e f .  7) . 

0 

The calculations  are shown i n  figure 4. It  can be shown that,   for  values 
of T greater  than  roughly 0 .2  sec.,  the  optical  (heterodyne)  transfer  function 
dominates the MTF; and, fo r  T somewhat l e s s  than 0.4 sec.,  the low pass 
f i l t e r  is  the dominant frequency l imiting  factor.  Note that  the  angular 
frequency  values can be  converted to   l inear   spa t ia l  frequency (cycles/Km) by the 
relationships  of  equation (12)  by appropriately  scaling image and object  space 
by the   ra t io  of image distance,  di,  to  object  distance, z .  For the   o rb i ta l  
values assumed, z = 2262 Km and consequently a value of 2262 cycles/rad 
corresponds t o  an object   spat ia l  frequency  of 1 cycle/Km. Examination of the 
MTF curves shows that  resolutions of the  order of 1.5-2.0 Km may be expected 
for  the  various  integration  times. 

Efficiency  Calculations 

The efficiency  factor  (heterodyne  efficiency)  given by equation (17)  is  
shown plot ted i n  f igure 5 for  the  case of the plane-wave L.O.. Two geometries 
are shown: rectangular  optics  (as  has been previously assumed) and circular  
optics  adjusted  for  equal  optics and detector  areas. The significance of the 
abscissa (27r€JFKc) r e l a t ive   t o  heterodyne efficiency becomes apparent when it 

is  noted tha t   a t   the   va lue  of 27reFKc 7.7 corresponds  approximately t o  an 

image (sun)  size  f i l l ing  the  detector of one Airy D i s k  of the  receiver 
aperture. I n  this  region,  the  efficiency is  i n  excess of 80%. 
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Sampling Error 

The calculations shown plot ted i n  figure 5 do not  include any sampling 
errors  which may occur. Suppose we sample the  output of the low-pass f i l t e r ,  
which has been modeled as  a running mean in tegra tor ,   a t  a ra te  of the  inverse 
of the  integration  time. This i s  equivalent t o  a sampled mean integration 
scheme.  Under t h i s  constraint ,  it may be shown that  for  certain  values of T 
the. signal is undersampled. This  results i n  an aliasing  or  foldover  error 
which can be significant  relative  to  the  desired  signal.  For example, shown i n  
f igure 6 is  the   to ta l  MTF for  the  values of o rb i t a l  and system  parameters 
previously  stated. Two integration times are  considered: T = 0.2 sec and 
T = 0.4 sec.   I f  we define  the sampling error   as   the  ra t io  of the  "foldover" 
amplitude on the MTF plot   to   the amplitude of the MTF i t s e l f  , i . e . ,  a white 
signal spectrum, we see  that   the   error   for  0.4 sec. is  approximately 40% a t  
0.5 cycle/Km frequency and considerably worse for  higher  values of spa t ia l  
frequency.  Conversely, fo r  T = 0.2  sec and the  correspondingly  higher 
sampling rate,   the sampling e r ro r  i s  negligible. 

Heterodyne Receivers With Obscurations 

Telescopes  having  central  obscurations such as  Cassegrains  are  often used 
for  imaging a source.  If t h i s  type  receiver is  used as a col lector   for  
heterodyne-type  detection, one needs t o  compare the  efficiency, x, and the 
heterodyne transfer  function , %, w i t h  that  obtained  for  the unobscured case. 

I n  f igure 7,  we consider  the  effects of receiver  apertures  having  obscura- 
t ion   ra t ios  of 0 and 20% for  eF = 0 .2  x and 0.5 x rad. Note the 

enhancement of response i n  the 2000 qc l e s / r ad  region a t  the  expense of tha t  
near 1000 cycles/rad  for 20% obscuration and BF = 0.5 x 10-3 rad. The 

e f fec ts  of obscurations  are more pronounced for  square  as opposed to   c i rcu lar  
geometries. An unobscured  conventional MTF discussed  earlier i s  plotted  for 
0 = 0 .5  x rad showing a somewhat reduced frequency  response 
CEaracteristic from the  heterodyne MTF. For a smaller  detector 
( O F  = 0 .2  x rad ) , a 20% obscuration  tends t o  assume the shape  of a 
conventional MTF. 

I n  figure 5, we assume a receiver  aperture  having  obscuration  ratios of 
20% and 50%. For the  values  of O F  and Kc used e a r l i e r ,  X = 27r0 K 7 . 2 ,  

and comparison of  the  various  efficiency  curves  at t h i s  value shows s t r iking 
differences. For the 50% case, one sees  that  the  heterodyne  efficiency is  
virtually  zero  while  for  the 20% case a relative  efficiency of s l i gh t ly  
greater  than 0.2 i s  achieved.  This compares w i t h  a value of greater  than 0.8 
i n  the unobscured case. Note further  there i s  a "peaking"  of the  efficiency 
curves for  obscured  systems. The rule-of-thumb requirement  of one Airy disk 
on the  detector  for "good" efficiency no longer  holds  but  rather  the  source 
image needs t o  be less  than  this  value  to  achieve  the maximum efficiency  for 
t h a t  par t icu lar  system. The ef fec t  can be explained on the  basis of the 
overlap  integral  (equation ( 2 ) )  of the L.O. f i e l d  and s igna l   f ie ld  

F C  

505 



distributions.  Thus, the  'diffracted  field due to  the  central  obscuration is  
out of phase w2th. t ha t  o f  the prTmary d i f f rac ted   f ie ld  and, as  the  size of the 
detector and/or optics  increases,  the  cancellation  tends  to be more complete. 

CONCLUDING REMARKS 

The analysis of a passive  heterodyne  receiver  with  respect t o  i t s  imaging 
performance (transfer  function) and i t s  hqterodyne efficiency shows  some 
interesting  departures from the  resul ts  which are  obtained i n  s t r i c t l y  coherent 
or  incoherent imaging systems. For example, the  cascading  property of MTF 
analysis m u s t  be carefully  applied  since  the  coherent  transfer  function of the 
optical  receiver and tha t  due to   t he  L.0.-detector  combination  are  not 
separable  but  are  related by the  convolution  of  their  products.  Application 
of these  results  to  the  specific  case of a space-lab  type  optical  heterodyne 
receiver (LHS) shows that  resolutions of the  order of 1.5-2.0 Km are  possible 
for  worst-case  type orbital   scenarios.  

Further, comparison  of  obscured-type receivers  (e.g. , Cassegrains) w i t h  
unobscured receivers shows that  both  resolution and efficiency  are  severely 
degraded i n  an obscured-type receiver and consequently  should  not be used for 
a passive  heterodyne  detection scheme. 
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Figure  1.- Imaging  geometry. 
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Figure  2.- Sys t em  t r ans fe r  functions. 
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Figure 3 . -  Graphica l   in te rpre ta t ion  of heterodyne  t ransfer   funct ion.  
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Figure 4.- Total MTF €or   wors t -case   shut t le   o rb i t  and two values  of in t eg ra t ion  
t i m e .  
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- Figure 5.- Efficiency  factor,  X, versus  system  parameter 2TeFKc for   var ious 

receiver  geometries. 

Figure 6.- Aliasing  error  for  2.5 H z  sampling rate a t  worst-case  shuttle 
o r b i t .  

509 



= O  E:} .5 m rad IFOV 

- .. - .2 mrad 

1000 2 0 0 0  3000 

Figure  7.-  Comparison of t r a n s f e r   f u n c t i o n s   f o r   v a r i o u s   g e o m e t r i e s .  Dashed 
cu rve   r ep resen t s   conven t iona l  MTF w i t h  0 .5  mrad I.F.O.V. 
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