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ABSTRACT 

High pressure gas  laser t e c h n o l o g y   o f f e r s   t h e   p o s s i b i l i t y   f o r   s t a b l e  lasers 
a t  f ine ly   con t ro l l ed   t unab le   f r equenc ie s  and power l e v e l s  needed for   a tmospher ic  
remote sens ing .   Broadly   tunable   p rec is ion  CW lasers f o r  LHS or CW DIAL measure- 
ments, or r e p e t i t i v e l y   p u l s e d   h i g h   i n t e n s i t y  lasers wi th   the   requi red   charac te r -  
istics for   h igh- reso lu t ion  DIAL obse rva t ion  of pressure-broadened  pol lutant  
l i n e - p r o f i l e s  ( t o  o b t a i n  a l t i tude  d i sc r imina t ion )  are poss ib le .  A f i x e d   f r e -  
quency c h i r p f r e e  and h igh ly   s t ab le   i n t ense   pu l sed  laser can be made f o r  Doppler 
wind velocity  measurements  with accurate ranging. The t a l k  w i l l  review  the 
related t e c h n o l o g i e s   i n   t h e  1 0  pm region.  The review w i l l  be i n   t h e  form  of 
a progress  report present ing  an  on-going  research  and  engineer ing  effor t .  

INTRODUCTORY REMARKS 

This  ta lk  was p r e s e n t e d   i n  t w o  parts. The f i r s t  part gave  the detai ls  of 
t h e  w o r k  r e l a t i n g  t o  the   gene ra t ion  of i n t e n s e  I R  laser pu l ses  a t  h i g h l y   s t a b l e  
(and c h i r p f r e e )   s i n g l e   f r e q u e n c y   f o r  Doppler  wind velocity  measurements.  I t  
t o o k  place a t  a workshop (cha i red  by D r .  Robert   Menzies)  on  the  evening of 
March 26. The second t a l k  p resented   the  w o r k  addressed to ene rgy   ex t r ac t ion  
f r a n  a high  pressure  002 laser a t  a tunable  single-mode  frequency. It  t o o k  
place  on March 27 a t  the  session  on  Coherent   Applicat ions  (chaired by D r .  Frank 
Goodwin).  Both t a l k s  reviewed  the s t a tus  of a project c u r r e n t l y   i n   p r o g r e s s .  
Fu tu re   pub l i ca t ions   ( and   f i na l  reports to NASA) w i l l  g ive   ex tens ive  de ta i l s  of 
the  var ious  phases  when completed.  For this   proceeding,   the   viewgraphs shown 
i n   t h e  t w o  t a l k s  are submitted as f igu res   a long   w i th  de ta i led  d e s c r i p t i o n s  o u t -  
l i n i n g   t h e   p r e s e n t a t i o n s .  

GENERATION OF INTENSE 002 LASER PULSES AT A STABLE 

CHIRP-FREE  SINGLE FREQUENCY 

Frequency   S tab i l iza t ion  by Trans ien t   In jec t ion   Locking  

Wi th   t r ans i en t   i n j ec t ion   l ock ing  (TIL) ,  t h e  laser ene rgy   f r an   an   i n t ense  
gain-switched CO2 pulsed plasma can be e x t r a c t e d  a t  a single-mode  frequency 
t r igge red  by an   in jec ted   (weak-f ie ld)   rad ia t ion .   Wi th   an   in te rna l  low pressure 
C02 ga in  cell, the  T I L  laser o s c i l l a t i o n  occures on a s i n g l e  mode of  the reso- 
na to r   l y ing   nea r   t he   cen te r  of a 002 ampl i fy ing   t r ans i t i on .  The i d e n t i t y  of 
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t h e  laser f i e l d  inside the   r e sona to r  as a n   o s c i l l a t i n g   s i n u s o i d a l   f i e l d  is 
e s t a b l i s h e d  after two or t h r e e   t r a n s i t s  across the   l eng th   o f   t he   r e sona to r  
( a f t e r   t h e   g a i n   o n s e t ) .   S u b s e q u e n t   o s c i l l a t i o n   b u i l d u p  i n  t h e   s i n g l e  mode (near 
the   l ine-center )  w i l l  occu r  as i n  a free-running oscillator, without   an in t e r -  
f e rence  from t h e  (weak) i n j e c t e d   f i e l d .  

I n   t h e  course of t r a n s i e n t   o s c i l l a t i o n   b u i l d u p ,   t h e   o s c i l l a t i n g  laser fre- 
quency w is s u b j e c t  to  time v a r i a t i o n s  caused by re f rac t ive   index   changes   o f  
t h e  medium. It is known t h a t  by f a r  the  dominant source of r e f r a c t i v e   i n d e x  
change arises from shock  waves  due to  the   in tense   cur ren t -pulse   p roducing   the  
h igh   dens i ty  C02 laser plasma.  Rapid  deposition of e n e r g y   i n   t h e  medium causes  
t h e  shock  waves,  which  propagate a t  sound speed. However, t h e   o n s e t   o f   v i o l e n t  
refract ive  index  changes  due to t h i s   c a u s e   g e n e r a l l y  occurs a t  l a te  times 
(because of   propagat ion a t  sound speed) exceeding   tens   o f   psec  a f te r  t h e   c u r r e n t  

p u l s e .   A c c o r d i n g l y ,   t h i s   e f f e c t   c a n   r e s u l t   i n   s i z a b l e   c h i r p i n g   m a i n l y  a t  t he  
t a i l  of a long   du ra t ion  (several psec)  pulse. In   p rac t ice ,   the   magni tude  of 
t h i s   c h i r p i n g   e f f e c t   c a n  be minimized by ope ra t ing  a t  a low plasma-current 
pulse; t h i s ,  however, w i l l  be a t  the  expense  of  a reduct ion   in   energy-depos i t ion  
capacity and  energy-conversion  efficiency. 

Another cause of f requency   ch i rp ing  is s a t u r a t i o n  of the   ampl i fy ing   t r ans i -  
t i o n .   T h i s   e f f e c t  occurs dur ing  a laser pu l se   i f   t he   r e sona to r  mode on which 
laser o s c i l l a t i o n   o c c u r s  is appreciably  detuned from t h e   t r a n s i t i o n   c e n t e r .  
T h i s   c h i r p i n g   e f f e c t  is l a r g e s t   i n   t h e   b u i l d u p   p o r t i o n   ( t h e   l e a d i n g   e d g e )   o f  
t h e  pulse. A t  l ine-center,   however,   there w i l l  be no c o n t r i b u t i o n  to ch i rp ing  
due to t h i s  source. 

From the above it appears t h a t  the ch i rp ing  w i l l  be a t  a minimum on  l ine-  
cen te r  and f o r  a moderate laser e x c i t a t i o n   ( s a c r i f i c i n g   e n e r g y - c o n v e r s i o n   e f f i -  
c i e n c y ) ,   p a r t i c u l a r l y   f o r  pulse d u r a t i o n s  below seve ra l   p sec .  However, t h e  
s t u d i e s  reported here  have  revealed  addi t ional  causes l ead ing  to small time 
dependent   refract ive  index  changes  during  the  pulse   and,   hence,   f requency  chirp-  
ing.  The dominant process arises from a time dependent  change i n  molecular 
composition  of  the medium tak ing   p lace   dur ing   each  laser pulse. The i n t e n s e  
current   pulse   produces  s izable   molecular   decomposi t ion.  The r e s u l t a n t   u n s t a b l e  
c o n s t i t u e n t s  of the  gas   subsequent ly   evolve (af ter  each   cu r ren t   pu l se )  toward 
the  equilibrium gas  mixture .   In  addition, t h e   e f f e c t   o f   r e d i s t r i b u t i o n  of 
popula t ions   in   the   low- ly ing   exc i ted  molecular states also c o n t r i b u t e s  to a 
t ime-varying  refract ive  index  change  during  the laser pulse.   Although  the 
r e f r a c t i v e   i n d e x   v a r i a t i o n s  due to  these  causes are small, t h e   r e s u l t a n t   f r e -  
quency  chirping  can  be  s izable .  

Under the  best cond i t ions ,   t he   ch i rp ing  rate on l i ne -cen te r   ( fo r  a s e v e r a l  
hundred milli j o u l e  laser) can be reduced to a f rac t ion   of   one  MHz/psec f o r  
pu l se s  below one  psec  durat ion.  On t h e  t a i l  of   the   pu lse ,   ex tens ive   he te rodyne  
observa t ions  show t h a t   t h e   c h i r p  rate w i l l  b u i l d  up to va lues   l a rger   than   sev-  
eral  MHz/psec a t  times beyond f i v e  or t e n   p s e c   a f t e r  the onse t   o f   t he   l ead ing  
edge of t h e  laser pulse. A t  t h i s   s t a g e  of the  a r t ,  it appears d i f f i c u l t  to 
reduce   the   f requency   ch i rp ing   be low  th i s   observed   l imi t ing   va lue  reported here.  
It  is also to be n o t e d   t h a t   r e f r a c t i v e   i n d e x   v a r i a t i o n s   l e a d i n g  to frequency 
ch i rp ing  w i l l  be l a r g e r   i n  a higher   energy laser. 
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Doppler wind velocity measurements  (and other  accurate Doppler Lidar appli- 
cations)  require a laser  pulse of several psec duration  at a chirp  rate below 
100 k€Iz/psec. A proposed method is described below, offering  the  possibility 
of  removing the  residual frequency chirping  fran  the  laser  output  pulse. 

Figure 1 shows the  experimental arrangement employed i n  heterodyne  obser- 
vations of TIL frequency characteristics. Two methods are employed.  The f i r s t  
relates  to the studies of single-mode T I L  operation near line-center  obtained 
wi th  an internal low pressure (302 gain cell .  I n  t h i s  case, the single-frequency 
laser output i s  heterodyned against an external CO2 laser  local  oscillator  to 
observe  the frequency characteristics. For a variety of reasons, i t  is advan- 
tageous to achieve single-mode T I L  energy extraction employing  an external 
CW (302 laser master oscillator  for T I L  driver, as shown i n  figure 1. ( I n  t h i s  
case, the internal CW CO2 gain cell is switched off) .  The advantages include 
the  possibility of employing the CW T I L  driver  laser  also as the  local  oscilla- 
tor i n  heterodyne detection of the Lidar return  signal. 

If the  external T I L  driver  laser is detuned fran the peak  of the  resonator 
mode  of the pulsed power oscillator, the T I L  laser  osciallation occurs a t  a fre- 
quency shifted  to  the peak  of the  resonator mode. I n  the  extensive  studies of 
frequency chirping and the related  effects, the injected f rquency, q n j  , is 
detuned by a known amount fran  the peak  of the power oscillator  resonator mode. 
The TIL laser output is heterodyned against the same C02 laser employed as the 
T I L  driver  laser  (see f i g .  1 ) . 

Detuning of the external T I L  driver  laser  fran the center frequency, w0, 
of the power oscillator  resonator mode is obtained as follows: With the  intense 
pulsed plasma switched off, the internal CW CO2 gain cell is employed to  obtain 
ZW laser  oscillation  at the  center frequency wo, of the power oscillator 
resonator mode. (With PZT tuning,  the mode is centered on the internal law- 
pressure (302 gain profile.) With heterodyne observation,  the T I L  driver  laser 
i s  detuned from wo by a preselected known  amount.  Rugged  and stable  resonator 
configurations  are used to avoid appreciable long term drifts  (as  verified by 
frequent heterodyne observations i n  the murse of an experiment). Once the 
known detuning is achieved, the  internal 0 2  gain cel l  is switched off. The 
TIL energy extraction and heterodyne observations  are then performed a t  the 
known detuned injected frequency. 

I t  is necessary to decouple radiatively the power oscillator  laser  totally 
Crom LO (and external T I L  driver). A ring  resonator w i t h  appropriate  suppressor- 
mirror (to avoid backward oscillation) and appropriate padding wi th  attenuators 
are employed. 

I n  accurate  observation of frequency chirping, it is important to employ 
3dequate optical  isolation and electrical  shielding of the high intensity plasna- 
zurrent  pulses (and the LO laser power supply);  otherwise, the local  oscillator 
ail1  suffer (due to  optical feedback or spurious  electrical pickup currents) 
;mall frequency variations, rendering  the measurements invalid. To verify  the 
Pbsence of such a spurious LO chirping,  another Iio is used to probe the  fre- 
mency of the f i r s t  LO during  the short  observation time (while  the  energy 
zxtraction from T I L  power oscillator  occurs). One arrangement to achieve t h i s  
i s  shown i n  figure 1 .  
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It is essential  to study  frequency chirping  effect (due to  refractive 
index var ia t ion)   a t   la te  times  (about 5-to-10 psec).  After  the  onset of TIL 
laser  pulse  the t a i l  of the gain-switched pulse  generally  provides a weak, 
slowly decaying, laser  output a t  such la te  times. Although the  intensity on 
the t a i l  is considerably below the main laser  pulse, it can be readily  detected 
w i t h  heterodyne detection and  employed i n  the  s tud ies  of frequency chirping. 
Figure 2 shows typical  oscilloscope  traces of a photopreionized single-mode TIL  
laser  output  (at  several hundred millijoule energy per pulse) heterodyned wi th  
a LO; the heterodyne  beatnote ( i n  the MHz range)  appears superimposed on the 
pulse  profile. The  main pulse is below  one psec and has a long ta i l .  The 
upper figure is displayed  to show the  general  features of the  observation. I n  
the lower trace, the  oscilloscope is triggered  at about five psec after the main 
pulse. It shows  an i n i t i a l  zero  beat and a subsequent increase i n  beatnote. 
A t  about 10-to-11 psec  after the  pulse,  the  chirp  rate has increased  to a value 
of about 3 MHz/psec. This displays  the l i m i t i n g  chirp  rate  obtainable i n  a 
typical  several hundred millijoule photopreionized TIL C02 laser. A s  noted, 
lasers  at  higher  pulse  energies w i l l  suffer  larger  chirp  rates. A t  early times 
after the  onset of the laser  pulse, however, the  chirp  rate can be considerably 
below the  value stated here. This can be obtained by carefully  centering  the 
power oscillator  resonator mode near the line-center and a t  a somewhat reduced 
energy deposition  efficiency and uniform excitation  across  the  cross  section 
of a (seed  gas)  photopreionized C02 laser. For a one psec pulse,  the  chirp  rate 
can  be as low as a fraction of one MHz/psec. 

Removal  of Residual Frequency Chirping From Output Laser Pulse; 

A Proposed Method 

The proposed chirp removal  method  employs electro-optic modulation of the 
laser  output  at an rf  frequency.  "he modulating rf  voltage is obtained from 
a laser  beatnote produced by mixing a small fraction of the  intense  laser  pulse 
w i t h  the  output of a stable CW laser. I n  one embodiment, the  stable CW laser 
frequency (or the  frequency of the high-energy pulsed laser) is tuned so that 
the  beatnote  appears a t  a convenient  rf range. ( T h i s  heterodyning is accomplished 
at  large  input  radiation  signals  incident on the mixer element, hence the  beat 
voltage  across  the mixer appears a t  a sizable  signal  level). The resultant beat- 
note, after  amplification i n  a broadband rf  amplifier (when necessary), is 
applied  to an electro-optical modulator to produce frequency modulation of the 
output  laser  pulse.  Inspection w i l l  show that one  of the  rf  sidebands w i l l  be 
free from laser  chirp. The b l o c k  diagrams i n  figures 3 and 4 give a summary 
description. A variable  optical delay is provided to make  up for small delays 
i n  the  rf  amplifier  circuit. It can  be shown that i f  t h i s  delay is not totally 
corrected,  the  chirping  effect,  although reduced by orders of magnitude, w i l l  
not be totally  eliminated;  the remaining chirp w i l l  be (b /d t ) . r ,  where (dw/dt) 
is the  chirp  rate  at the  output of the  pulsed laser and T is the  delay time. 
( I n  practice, T can be reduced to values below several  nsec.) 

I n  an ultimate  design it is possible  to employ single sideband  e.0. modu- 
lation,  converting  mre than 50 percent of a (e.g., ten  joule)  laser  output  pulse 
to a nearly  chirp-free sideband. Depending  on the laser  intensity, it w i l l  also 
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be  possible  to  use  the e.0. modulator  in  the  form  of a thin  (possibly  waveguide 
type)  sample  to  achieve  high  conversion  efficiency  at  reduced  modulator  rf 
voltages. 

Other  applications  require a pulsed  chirp-free  master-oscillator  unit  at a 
reasonably  large  output  power  level:  the  master-oscillator  unit  can  then  be  used 
in a MOPA  configuration  to  extract a chirp-free  amplified  output  from a high 
energy  power  amplifier.  If  the  master  oscillator  provides a reasonably  large 
output  power,  the  requirements  for  multipass  power  amplification  will  be  enorm- 
ously  relaxed.  (In  the  existing  M)PA  systems,  multipass  amplification  with 
intricate  isolation  stages  are  needed  because  of  low-level  power  outputs  of  the 
existing  stable  master  oscillators.  This  is  the  main  reason  for  complexities 
of  the  existing  high  energy  MOPA  systems.) A longitudinally  excited  low  pres- 
sure  Q-switched C02  laser,  for  example,  can  be  used  in  the  chirp-removal  system 
suggested  here.  Such a Q-switched C02 laser,  after  chirp  removal,  can  be  used 
as a master  oscillator  at a relatively  high  peak  intensity  in a MOPA  system. 

This  proposed  method,  yet  to  be  developed,  was  presented  in  the  conference 
workshop  because  of  its  potential  application  in  generation  of  chirp-free  radi- 
ation  for  accurate  Doppler  Lidar. 

ENERGY  EXTRACTION FROM GAIN-SWITCHED  HIGH PRESSURE C02  LASER  AT A 

STABLE  TUNABLE  MONOCHROMATIC FREQUENCY 

Energy  extraction by Transient  Injection  Locking  (TIL)  at a tunable  fre- 
quency  requires  the  utilization  of an external  tunable  master  oscillator,  driving 
an  intense  pulsed  power  oscillator  at  the  tunable  frequency.  In  this  sytem a 
weak  radiation  field  (from  the  tunable  master  oscillator) is introduced  in  the 
resonator  of  the  pulsed  power  oscillator  at  the  frequency  of a selected  resonator 
mode.  As  the  power  oscillator  gain  is  rapidly  switched  on,  under  appropriate 
conditions,  laser  oscillation  buildup  occurs  at  the  single-mode  selected by  the 
frequency  of  the  weak  injected  field.  This is a transient  process  and  appre- 
ciably  differs  from  the  previously  known  steady  state  injection  locking.  The 
transient  injection  locking  under  consideration  in  this  talk  is  an  extension 
of  the  well  known  art  of  superregenerative  amplification  in  the  microwave 
region,  where  enormously  large  gains  are  obtained  with a (repetitively  pulsed) 
gain-switched  microwave  (or  rf)  oscillator,  driven  by a weak  (input)  signal. 

An  important  feature  of  the  TIL  process  relates  to  its  transient  nature: 
the  oscillation  "buildup" at the  selected  single  mode  will  "hold on" only  for 
a limited  time  duration.  The  oscillator  will  switch  after a short  time  inter- 
val  (determined  by  the  injected  field)  into  its  free-running  oscillation  mode. 

If  the  weak-field  injected  radiation is introduced  at  the  frequency  of  one 
of  the  resonator  modes  lying  near  the  peak  of a high-gain  line - consider, e.g., 
a power  oscillator  with a grating  resonator  tuned  to  the  high-gain  line - the 
time  duration  of  switchover  (to  the  steady-state  oscillating  mode)  is  generally 
long.  However,  if  the  selected  mode is appreciably  detuned  from  the  peak  of 
the  high-gain  line,  unless  the  injected  field  has  sufficient  intensity,  the 
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switchover from t h e  selected mode to t h e   f r e e - r u n n i n g   o s c i l l a t i n g  mode (or 
modes) w i l l  occur i n  t h e  early times d u r i n g   t r a n s i e n t   o s c i l l a t i o n   b u i l d u p .  

For a power oscillator with a resonator  employing  broadband  reflectors 
(without  a g r a t i n g ) ,   i n j e c t i o n  of a weak f i e l d  a t  the  f requency of a law-gain 
t r a n s i t i o n   o f   t h e  C02 amplifying band w i l l  c a u s e   i n i t i a l   o s c i l l a t i o n   b u i l d u p  to  
occur  on  the selected m o d e  of  the  low-gain  line. The f r e e - r u n n i n g   o s c i l l a t i o n  
( w i t h o u t   t h e   i n j e c t e d   f i e l d ) ,  however, occu r s  on s e v e r a l  modes of  the  high- 
g a i n   l i n e  of the   ampl i fy ing  band.  Accordingly,  the  switchover from t h e  TIL on 
t h e  low-gain l i n e  w i l l  g e n e r a l l y  occur to multimode o s c i l l a t i o n   o n   t h e   l i n e   w i t h  
the   h ighes t   ga in .  

Energy  extract ion a t  the  f requency of a r e sona to r  mode selected by T I L  w i l l  
be complete if the  switchover  time to f r e e - r u n n i n g   o s c i l l a t i o n  occurs a t  l a te  
times a f t e r   t h e  main pu l se  (i.e., it takes place on  the  decaying t a i l  o f   t he  
laser pulse).  I f  appropriate cond i t ions  are no t   s a t i s f i ed ,   t he   swi t chove r  time 
w i l l  be i n   t h e   e a r l y   b u i l d u p  time (or a t  a time dur ing   t he  main p u l s e ) ,   i n  which 
case TIL ene rgy   ex t r ac t ion  a t  the  desired frequency w i l l  no t  be complete. 

Complete-versus-partial  TIL  ene rgy   ex t r ac t ion  is a subject requi r ing   ex ten-  
s i v e   s c r u t i n y   f o r  a tunab le  TIL laser. This   important  problem is not  encountered 
for a TIL gain-switched C02 laser wi th   an   i n t e rna l  low pressure gain cell (caus- 
ing   l ine-center  T I L ) .  The i n t e r n a l  low pressure ga in  cell selects a mode near 
the   cen ter   o f  a h igh -ga in   l i ne  and,  hence, as noted  previously,   the   switchover  
time to  the   f r ee - runn ing   o sc i l l a t ing  mode (which may be,   e.g. ,   another  resonator 
mode ad jacen t  to or i n   t h e   v i c i n i t y   o f   t h e  selected mode) w i l l  take place a t  l a t e  
times on t h e  t a i l  of   the   pu lse .  However, the  switchover  process can be an 
i m p o r t a n t   e f f e c t   i f   t h e   i n j e c t e d   r a d i a t i o n  is in t roduced  a t  a frequency  where 
the   ga in   o f   the  m e d i u m  is lower than  the peak gain  (even by as much as f i v e  or 
t en   pe rcen t ) .  

The switchover time d u r a t i o n   c r i t i c a l l y   d e p e n d s  on severa l   parameters .  
They c o n s i s t  of: (a) I n t e n s i t y   o f   t h e   i n j e c t e d   r a d i a t i o n ,  (b) the  gain-above- 
loss-f  actor a t  t he  mode selected by t h e   i n j e c t e d  f i e l d  compared to the  gain-  
above-loss   factor  i n  t he   r eg ion  where  f ree-running  osci l la t ion  can occur, 
(c) the   de tuning   of  t h e  f r equency   o f   t he   i n j ec t ed   f i e ld  from  center-frequency 
of the  selected resonator  mode, and (d) t h e  saturation parameters of   the 
medium determined by pressure e f f e c t .  

For the   power-osc i l la tor  laser a t  a f ixed   p re s su re ,  and a g iven   resonator  
loss fac to r ,   t he   cond i t ion   fo r   comple t e   ene rgy   ex t r ac t ion  by TIL can be described 
by a t h r e s h o l d   i n t e n s i t y ,   I t h ,  of the i n j e c t e d   f i e l d   i n s i d e   t h e   r e s o n a t o r .  
This   th reshold  is def ined  by t h e   i n t e n s i t y   o f   t h e   i n j e c t e d   r a d i a t i o n   c a u s i n g  
the  switchover  time to take place a t  times no t   sho r t e r   t han  two or t h r e e  times 
the  durat ion  of   the  main pulse. Accord ingly ,   the   th reshold   in tens i ty   ( for  com- 
plete T I L  ene rgy   ex t r ac t ion )  w i l l  depend  on t h e  g a i n   f a c t o r  a t  t h e   i n j e c t e d  
frequency,  and  the  detuning  of it from the  peak of t h e  selected resonator  m o d e .  

The work of   co l leagues  ( ref .  1 )  i n  Canada  on T I L  of  a gain-switched C02 
laser (and  the  other workers) have addressed the  problem of   l ine-center  T I L  on 
a high-gain l i n e .  Energy  extract ion  in   such a system is always  in  the  "complete 
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regime". The p r e v i o u s  w o r k s  h a v e   n o t   d e a l t   w i t h   T I L   e n e r g y   e x t r a c t i o n  a t  a 
t u n a b l e   f r e q u e n c y ,   r e q u i r i n g  an unders tanding  of the comple te -versus-par t ia l  
T IL   ene rgy   ex t r ac t ion   p re sen ted   he re  (for t h e  f i r s t  time). 

I n   t h e   e x p e r i m e n t a l   s t u d i e s   d i s c u s s e d   h e r e ,   t h e   T I L  process is e x p l o r e d  
i n   t h e   l i n e - c e n t e r   r e g i o n ,  as well as a t  f r e q u e n c i e s  appreciably detuned  from 
t h e  (302 l i n e  c e n t e r s .  I n  t h e  line-center o b s e r v a t i o n s ,   a n   e x t e r n a l   l i n e -  
t u n a b l e  low p r e s s u r e  CW C02 laser is used as the   T IL   d r ive r  master oscillator. 
I n   t h i s  case, e.g., c a n p l e t e - v e r s u s - p a r t i a l   e n e r g y   e x t r a c t i o n  on a l o w - g a i n   l i n e  
is explored  by TIL of a gain-switched power oscillator employing a broadband 
r e s o n a t o r .  I n  t h i s  case t h e   s w i t c h o v e r  from l ine -cen te r   T IL  on  t h e   l o w - g a i n   l i n e  
w i l l  take place to  f r e e - r u n n i n g   m u l t i m o d e   o s c i l l a t i o n   o n   t h e   h i g h e s t  ga in  l i n e .  

T h e   e n e r g y   e x t r a c t i o n  a t  f r e q u e n c i e s   a p p r e c i a b l y   d e t u n e d  from cO2 l i n e  
c e n t e r s  are studied e m p l o y i n g   a n   e x t e r n a l   l i n e - t u n a b l e  law pressure N20 laser 
as t h e  T I L  d r i v e r  master oscillator. I t  is knawn t h a t   t h e  N f l  and (302 ampli- 
f y i n g   b a n d s   ( i n   t h e  10.6 pm reg ion )   ove r l ap   one   ano the r .   Seve ra l  N20 laser 
l i n e s  l i e  a t  known f r e q u e n c i e s   d e t u n e d   f r a n   t h e   c e n t e r   f r e q u e n c i e s   o f   n e a r b y  
C02 l i nes .   Wi th  a gain-switched C02 power oscil lator a t  v a r y i n g   p r e s s u r e s  (cor- 
responding  to v a r y i n g   c o l l i s i o n   b r o a d e n e d   l i n e w i d t h s ) ,   o f f - l i n e   c e n t e r   T I L  is 
s t u d i e d   e m p l o y i n g   t h e  N20 TIL d r i v e r  laser.  T h i s  process is also s t u d i e d   u s i n g  
t h e  CO2 power oscillator w i t h  a g r a t i n g   t u n a b l e   r e s o n a t o r   c o n t a i n i n g   w i t h i n  i t  
a low pressure N20 g a i n  cell. 

F i g u r e  5 is a schemat ic   o f   wel l -known  TIL  wi th   an   in te rna l  low p r e s s u r e  
g a i n  cell. Observa t ion   of  a smooth   ou tput   pu lse  i s  a good i n d i c a t i o n  of TIL. 
T h i s  is o b s e r v e d   w i t h   t h e  low pressure g a i n  cell  switched  on.  W i t h o u t  t h e  l o w -  
pressure g a i n  cell, t h e   o u t p u t  is accompan ied   w i th   bea tno te s   o r ig ina t ing  from 
mu1 t imode   ope ra t ion .  

F i g u r e  6 i s  schemat ic  of a tunab le   T IL   employ ing   an   ex te rna l   ( t unab le )  
master oscil lator.  

F i g u r e s  7, 8 ,  and 9 re late  to  comple te -versus-par t ia l  T I L  e n e r g y   e x t r a c t i o n .  
The upper trace i n   f i g u r e  7 is a canputer m o d e l i n g   t h e o r e t i c a l  estimate f o r  a 
case i n  wh ich   an   i n j ec t ed  f i e l d  a t  20 mW i n t e n s i t y  is i n t r o d u c e d   i n   t h e   r e s o n a t o r  
of a gain-switched CO2 power oscillator a t  t h e   f r e q u e n c y   o f   t h e  P(1 0 )  l i n e   ( w i t h  
t h e  power osci l la tor  laser employ ing   b roadband   r e sona to r   r e f l ec to r s ) .  The main 
p u l s e  shows  buildup  and  decay of t h e  P ( l  0) l i n e .   F u l l  scale a b s i s s a  is 1 0  psec.  
The ga in-swi tched   pu lse  i s  fo l lowed by a l o n g  t a i l  (caused by t r a n s f e r   f r o m  N20 
to  0 3 2 ) .  The  switchover  t o  t h e   f r e e - r u n n i n g   o s c i l l a t i o n   o n   t h e  P ( 1   8 ) ,  the   h igh-  
g a i n   l i n e ,  is also d i s p l a y e d   ( t h e   l a w e r  trace). I n   t h i s  case (which  corresponds 
to a n o n - c a n p l e t e   e n e r g y   e x t r a c t i o n ) ,   t h e  to ta l  laser o u t p u t  w i l l  c o n s i s t   o f  
a S u p e r p o s i t i o n  of t h e  t w o  cu rves ,   w i th   t he   ma in  p e a k  d o m i n a n t l y   c o n s i s t i n g   o f  
t h e  P ( l 0 )  l i n e   a n d  an e a r l y   s w i t c h o v e r   o n   t h e  t a i l  t o  t h e  P ( 1 8 )  l i n e .   T h i s  
f i g u r e  7 also shows  exper imenta l ly   observed   near -comple te   TIL  energy   ex t rac t ion  
wi th   abou t   one  nW i n j e c t e d   r a d i a t i o n   i n   t h e  P ( l 2 )  l i n e .  The switchover o c c u r s  
to  the P ( 1 8 )  l i n e   o n   t h e  t a i l  of   the   pu lse .  When t h i s   o c c u r s ,   t h e  P ( 1 8 )  l i n e  
appears (as i n  a f r e e - r u n n i n g  oscillator) with  mult imoding.  The b r e a k i n g   i n t o  
a mul t imode   ope ra t ion   s een   on   t he   decay ing   po r t ion  of t h e   o b s e r v e d   p u l s e  i s  due 
t o  t h e   s w i t c h o v e r  f ran s i n g l e  mode TIL P ( 1 2 )  l i n e  t o  multimode f ree-running 
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P(18)   l ine .  For c l a r i t y   o f   p r e s e n t a t i o n ,   t h e  lower f i g u r e  is a hand drawing 
of   the  somewhat f a i n t   ( h i g h   s p e e d )  oscilloscope p i c t u r e  of the  experimental  
trace shown. 

F igure  8 shows the   observed  pulses d e s c r i b e d   i n  figure 7, except   the  
i n j e c t e d   f i e l d   i n t e n s i t i e s  are var ied .  The two traces i n   f i g u r e  8 show t h e  con- 
trol  of  switchover time by i n j e c t e d   f i e l d   i n t e n s i t y .  

Figure 9 shows the   obse rved   pu l se s   desc r ibed   i n   f i gu re  7 fo r   abou t  50 mW 
in jec ted   rad ia t ion ,   showing complete energy   ex t rac t ion   (wi th   the   swi tchover  time 
delayed to late times on t h e  t a i l  no t   appear ing   on   the  trace). The i n t e n s i t i e s  
o f   t h e   i n j e c t e d   f i e l d  for f i g u r e s  7, 8, and 9 correspond to t h e   i n j e c t e d   f r e -  
quency, q n j ,  tuned to the   cen ter   f requency   of   the  power oscillator resonator  
mode ( v i a   t h e  method described in   t he   exp lana t ion  of f i g u r e  1 ) .  Addi t iona l  
details o f   f i gu res  7, 8,  and 9 w i l l  be publ ished by S. Nazemi and A. Javan. 

Figure  10 lists s e v e r a l  N20 laser l i n e s  a t  f r e q u e n c i e s   d i f f e r i n g  by  known 
amounts  from C02 l i n e  centers. 

F igure  11 i l lus t ra tes  t h a t   t h e   t h r e s h o l d   i n j e c t e d   f i e l d   i n t e n s i t y   f o r  com- 
plete energy   ex t rac t ion   ( I th)   depends   on   the  parameter N g i v e n   i n   t h e   f i g u r e .  
A s  is seen,   the  parameter N in   tu rn   depends  on pressure broadened  linewidth 
as shown. Ith a t  a f ixed  detuned  f requency is cons iderably  lower f o r  a broader 
l i n e  (higher  pressure). 

F igu re   12   g ives   t he  T I L  t h r e s h o l d   i n t e n s i t y ,   I t h ,   f o r  complete energy 
e x t r a c t i o n  a t  a detuned  frequency  employing  the  R(l0) N20 l i n e  ( a t  1980 MHz 
removed from  P(16) cO2 l i n e   c e n t e r ) .  The t h r e s h o l d   i n j e c t e d   i n t e n s i t y   ( v a l u e  
f o r   i n s i d e   r e s o n a t o r ) ,  Ith, is given a t  3 d i f f e r e n t   p r e s s u r e s .  A t  about  one 
atmosphere  pressure,   larger   than 50 mW is required for complete TIL  energy 
e x t r a c t i o n .  A t  about 2.5  atmospheres,  on  the  other  hand, 3 pW is s u f f i c i e n t   f o r  
complete ene rgy   ex t r ac t ion  ( a t  the  detuned N20 f requency) .  The threshold  
values  are g i v e n   f o r   t h e   i n j e c t e d   f i e l d  carefully tuned to the  peak of t h e  
power oscillator resonator  mode, wi th   the  method e x t e n s i v e l y   d e s c r i b e d   i n   t h e  
explana t ion   of   f igure   1 ,   employing  CW N20 lasers (and  gain cell)  in s t ead   o f  
CW CO2 lasers (and  gain cell) , see f i g u r e  1 .  

We mention  here ,   wi th   great   emphasis ,   that   an  important  aspect of engineer- 
ing  of  a tunab le  T I L  C02 laser is c o n t r o l   o f   t h e  power oscillator resonator  mode 
wi th  respect to the   f r equency   o f   t he   t unab le   i n j ec t ed   r ad ia t ion .  Based on 
ex tens ive  component-by-component expe r imen ta l   i nves t iga t ions ,  a frequency track- 
ing   un i t ,  complete w i t h   f i n e   c o n t r o l  and calibration,  has  been  designed  and is 
under cons ide ra t ion  by NASA LaRC f o r  possible implementation.  Future  publica- 
t i o n s  w i l l  descr ibe   the   cont ro l   sys tem.  

Tunable   f requency  energy  extract ion by T I L  from  an  energet ic   gain  switched 
C02 laser can  be  achieved  with a TIL d r i v e r   i n p u t   c o n s i s t i n g   o f  a frequency  tun- 
able laser pulse (low energy)  with a du ra t ion  as s h o r t  as about   ten  nsec (or 
longe r ) .  A g ra t ing   t unab le   pho topre ion ized   h igh   p re s su re  C02 laser can  be 
r e l i a b l y  operated (with seed gas   photo ioniza t ion)  a t  o u t p u t   e n e r g i e s   i n   t h e   t e n  
to f i f t y  m j  range.  Such a high pressure laser can  be  tuned to f requencies  
appreciably  detuned  from CO2 l i n e   c e n t e r s .  However, t h e  spectrum of   t he   g ra t ing  
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tunable high pressure  pulsed C 0 2  laser is generally broad. I t  consists of 
multimode oscil lation spread over a range of about 2000 MHz. T h i s  laser, by 
i t s e l f ,  is inadequate  for use as a driver T I L  master oscil lator.  On the  other 
hand, if i t  is followed by an appropriate Fabry-Perot f i l t e r ,  i t  is possible 
t o  reproducibly  select one (or two) osci l la t ing modes for use as a tunable T I L  
driver master oscillator.  (Controlling  the tun ing  can be achieved w i t h  simul- 
t a n e o u s  - ganged - laser  grating and Fabry-Perot f i l t e r  tuning.)  

I n  the system employed, the  selected  (fi l tered)  oscil lating modes appeared 
(after the f i l t e r )   a t  a pulse  duration somewhat  below 100 nsec a t  a peak intens- 
i t y  of about 0.1 to  1 kW. The CO2 power oscil lator was tr iggered  at  a (variable) 
delayed time w i t h  respect  to  the pulsed  driver master oscil lator.  The pulsed 
injected  f ield is introduced i n  the gain-switched 0 2  power oscillator  during 
the  early  buildup time. By varying  the  delay, it is found that  about 100 nsec 
time window is readily  available  to  achieve T I L  w i t h  the  injected  pulse. T h i s  
experiment has been successfully performed. However, detailed  observations 
(and the  possible  utilization i n  a remote sensing  experiment)  are  presently 
postponed for a later  date. 

A short  pulse T I L  driver master oscil lator cannot be used at   the  same time 
for  heterodyne detection of the  Lidar return  signal. (The return  signal  arrives 
a t  a delayed  time.) Such a system would require a separate LO laser (such as 
a tunable diode laser)  i n  the Lidar detection system. 

A gain-switched CO2 power oscillator  operating  at a multiatmospheric  pres- 
sure,  driven w i t h  an appropriate T I L  driver master oscil lator,  can offer  fre- 
quency tunable  output i n  ranges considerably detuned from CO2 line  centers. 
An isotopic high pressure C02 laser can be operated  closed  cycle  (sealed o f f )  
w i t h  catalytic CO2 regeneration. Such  an isotopic cO2 laser,  reliably  operat- 
i n g  w i t h  seed gas photopreionization  (refs. 2 and 3 ) ,  offers broad frequency 
t u n i n g  a t  about 3 atmospheres pressure. 

An important  tunable master oscillator  available  for T I L  driver i s  the 
system consisting of a line  tunable CW CO2 laser followed by a tunable micro- 
wave e.0. modulator (ref.  4 ) .  The tunable microwave sidebands have sufficient 
intensity  for T I L  energy extraction. 

With  a t i g h t  oontrol of the power oscillator  resonator mode  and its cen- 
tering on the  injected frequency, i t  should also be possible  to employ a tunable 
diode laser as the tunable T I L  driver master oscil lator.  
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PRECISION  MINI E-BEAM-SUSTAINED TUNABLE CW C02 LASER; 

A  COMPONENT-BY-COMPONENT DESIGN STUDY 

A  design-study  project  is  in  progress  to  construct  a  miniature  e-beam  sus- 
tained  tunable CW C02 laser,  with  a  thin  pencil-like  plasma  volume  (of  about 
10 cm x 1 (mm) 2), capable  of  operating at pressures as high as 3 to 4 atmo- 
spheres. Such a  laser will offer  a fine  frequency-tuning  characteristic,  with 
a  single-mode  output at a CW output power  up  to  about  50  watts.  The  removal 
of deposited  heat  energy  (necessary  for CW operation)  is  achieved by rapid 
transverse gas flow. The thin  cross-section of the  pencil-like  plasma  facili- 
tates  the  heat  removal at a  subsonic  flow. The design  calls for operation at 
a  sustainer  voltage  below  avalanche  breakdown,  where  the  totality  of  the  elec- 
trons  in  the  thin  pencil-like C02 plasma  is  produced by the  secondaries  from 
the  incident  primary  e-beam. The e-beam is in  the  form of a  thin  ribbon  trans- 
mitted  through  a  thin  foil. 

The  operating  pressure  under  consideration  is up to 3 to 4 atmospheres, 
where  broad  tuning can be obtained, as in  reference 3,  with  an isotopic C02 gas 
mixture. 

It is necessary  to  employ  a  low-Fresnel  number  resonator  with  a  short  mirror 
spacing (1 3 cm in  the present  design). 

The  requirement for  a short low-Fresnel  number  resonator  together  with  the 
miniature  nature of the  device  calls for novel  design  considerations  within 
severe  space  limitations  (of  the  miniature  laser). The short resonator  of  the 
laser  facilitates  energy  extraction at a  minimum  diffraction loss. 

The  electron  gun  is of the  plasma  cathode  design.  Figure 13 shows internal 
components  of the electron  gun  made  visible by removal  of  the  anode.  The  hollow 
cathode  and  its  concentric  shield  are  precisely  aligned  inside  the  vacuum  box 
(left)  by means  of  two  high  voltage  feedthroughs  which  are  not  seen  in  this 
view. The  anode  plate  is 2 cm thick to  allow  for  water  cooling  channels.  A 
wide  slot  is cut out of the central  portion of the  anode.  This  is  covered on 
the  vacuum  side  by  a  thin  narrowly  slotted  plate to permit  electron  passage 
into  the  2  cm  long  field  free  region. A 0.3 mil thick  aluminum  window  seals 
the  outside of the  wide  anode  slot.  This  device  produces  a  uniform,  stable, 
cw electron  beam 9 cm  long  and 0.2 cm wide at a current  density of 300 UA/cm2 
and  energy of 30 keV. 

Figure 1 4  is an electron  gun  similar  to  that  shown  in  figure 13 in  opera- 
tion  with  the  ribbon-like  beam  emerging  into  the  atmosphere. In this  view  the 
two H.V. feedthroughs  are  visible  emerging  from  the  vacuum  chamber.  Also  visi- 
ble  is  the glow of  ionized  air  in  the  path  of  the  electron  beam. The uniformity 
of the glow  reflects  the  uniformity  of  the  emergent  beam. 

The author  expresses  acknowledgment  to  the  Spectroscopy  Branch,  LaRC, 
Virginia,  headed by  R. V. Hess, for continued  encouragement  and  support.  The 
program  has  extensively  benefited  from  the  modeling  estimates  and  other  inves- 
tigations  of  the  branch,  specifying  the  various  requirements. 
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C02-Laser i"i-8 Display I CW Stable - 
Beam  Splitter Display 

CO2-Laser 
CW  Stable 
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Measured Detuning 
1 -.-- Mode-Center 

! f i  

(Ca  F2) 
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Figure 1.- T I L  charac te r i s t ics ;   he te rodyne   observa t ions  
i n   t h e  C02 l ine-center   region.  

1 psec/cm 

Figure 2.-  Heterodyne  signal  r ing power o s c i l l a t o r  (TIL)  
d i sp lay  of chi rp ing  a t  l a t e  times. 
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Suppose  could  generate  radiation  exactly  at 
wo(t)+8(t) ;   This  wi l l   be  chirp-free 

W,(t) + [ wr-w,(t)] = wr - - 

Figure 3.- A method f o r  removal  of  frequency c h i r p  
from a pulsed  laser :   concept .  
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Figure 4.- A method for removal of frequency  chirp 
from a pulsed laser: experimental  arrangement. 
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Figure 5.- Pulse-smoothing: TIL with  an internal  gain-tube. 
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Figure 6.- Schematic of tunable  Transient  Injection Locking. 
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Figure 7.- Theoretical and experimental energy 
extraction by Transient  Injection Locking. 

Figure 8.- Effect  of varying  injected power  on  the 
time-of-onset of multimoding. 



Figure 9.- Complete energy extraction by 
Transient  Injection  Locking €or  the 
case of strong  injected radiation. 
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Figure 10.- Difference frequencies  for 
some N20 and C02 laser lines. 
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Figure 11.- Threshold  for  complete  energy  extraction 
versus  detuning from l i n e   c e n t e r .  
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Figure 1 2 . -  T I L  a t  detuned  frequencies: 
Im versus  pressure.  
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Figure   13 . -   In te rna l   v iew of plasma  cathode  electron  gun. 

Figure 14.- Plasma  cathode  e lectron gun ope ra t ing  
i n  a i r .  
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