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SUMMARY

Tho object of the inveatigation roported hexein was ta devalop a method
of analysins for thin atructuras (boamn, ¥ings, plates, and sholls) that
incorporatoea finita atrain, elaatic-plaatic, atraln-hardening, time-dapendant

material behavior implemontod with reapact to a fixed roforence configuration

{total Lagrangian foxmulation) and ig consintontly valid for finito straing
and finito rotations,

Tho theory is formulatod systematically in q body-£fixed systom of
convactad coordinatos with materially-ombodded vectors that deform in common
with the continuum. Tonsors are considored as lincar vector functinns, and
uge is made of the dyadic represontation (instead of simply considering tonsors
as a collection of componants) because thege coneise tools are helpful to
clarify the physical laws under which materials deform. The kinematics of a

deformable continuum is treated in detail, carefully defining precisely all
quantities necessary for the analysis,

The finite strain Plasticity theory of Hill is extended to include very
complex material behavior (like the Bauschinger effect ang strain rate
dependence) by means of the "mechanical sublayer method", fThig plasticity

theory is referred to quantities associated with a- fixed reference configura-
tion by means of Proper transformations,

Strain-displacement equations for beams, rings, plates, and shells,

valid for finite strains and rotations and including thinning effects are
derived.

A new constant stiffness formulation of the finite element equations of
motion is developed. This new formulation is more efficient computationally
and better conditioned numerically than the conventional pseudo-force formula=-
tion. Furthermore, this new formulation is valid for finite strain behavior
of any kind of material, while the conventional pseudo-force formulation is
valid only for small~strain elastic-plastic materials,

with experimental data conducted at the MIT-ASRL and the Picatinny Arsenal,
These include impulsive loading of beams, rings, and plates, and impact tests
of steel spheres against aluminum beams and plates.

The results from the finite-gtrain analysis are compared with the

results from the small-strain theory of plasticity to ascertain the range of
v-.idity of small-strain theoxy for the bregsent kind of problems,

It is shown that, for the problems investigated, the finite~-strain
theory developed in this report gives much better predictions and agreement
with experiment than does the traditional small-strain theoty, and at bracti-
cally no additional cost. This represents a very sighificant advance in the
Capability for the reliabile prediction of nonlinear transient structural

responses, including the reliable prediction of strain
pProduce ductile-metal rupture,




SECTION 1

INTRODUCTTON

1.1 Background

Concorn for the abillity of atructures to withatand oxtroma
loadinga associated with accident conditions is roceiving inercanod
attontion from cnginoors. To dotorminc tho degroo of safoty associatoed
with the ability of thoir dosigns to suatain damage and absorb anorxgy,
onginecrs must now study the dynamic large-defloction clastic-plastic
responses of structurcs subjectud to those impact énd transiaent loads
which may occur in an accident. For instance, aircraft and aircraft
engine designers are now studying the responses of turbojet engine contain-
ment structures which may be subjected to impact by engine rotor fragments
following the potential failure of high-energy rotating engine parts
(caused by the ingestion of birds or other foreign objects, low cycle and
high cycle fatigue, etc.).

The power industry is concerned with components and equipment of
conventional and nuclear powerplants which may be subjected to impact from
a wide variety of "internally generated" missiles such as rotor blades,
rotor disk segments, pipe or valve segments, etc. or to “"externally-
generated" missiles such as tornado-propelled pipes, rods, planks, utility
poles, and automobiles, or to impact by aircraft or other such vehicles.
Naval vehicles, such as submarines, must be designed to undergo signifi-
cant transient undersea envirommental loadings. Nonlinear transient
response analysis is also employed in studies of offshore drilling plat-
forms, response of buildings to seismic loadings, energy-absorbing capacity
of automobiles, aircraft crashworthiness design and assessment, etc.

The loadings and/or fragment sizes, masses, geometries, and especially
the attendant impact velocities for these "threats" are in an analysis
domain quite different from those of "military missiles or loadings".
Therefore, the extensive impact, penetration, perforation, and response

data which have been collected for the military in experiments on various




T

matallic, reinforcod concrete, aor other target matorials, cannot serve as

a basis for astructural design agalnst the ecited eivilian throats,

Although many ntruecturen may he donigned to withatand sovere loadn
by increaning thelxr bulk, the addition of axeennive wolght may introduce
navern aconomle ponaltion or dogradation in porformanee for many applica-
tionn, For officlont minimum woight donign, it ia thon noconmary to takn
battar advantage of tho onorgy-abrorbing capacition of matorxialn by
pormitting thom to undoxgo largo plastie stralns and deformationn. Tho
complex and nonlinoar charactor of such structural problems, howavor,
makes it impossiblo to devalop a elansieal analytical golucion, and
attention has boen directod at approximato methods. Tho computor has
provided a practical means of cbtaining meaningful predictions for these
types of complex problems, and corresponding numerical analysis procedures
have been developed and expanded.

In order to provide detailed transient response data of the high resolu=
tion and accuracy required for a definitive assessment of the various
predictive methods, a variety of impulsive loading and impact experiments
hasg been ¢onducted at the MIT-ASRL, including impact tests of steel
spheres against or impulse loading of aluminum beams [1l]* and aluminum
panels [2]. The missiles and targets introduced in these experiments
pose well-defined impact configurations and conditions for which transient
strain, permanent strain, and permanent deflection data of high quality
have been obtained. These test conditions have included impulse loading
or impact veloecities sufficient to produce responses of various severities
up to and including threshold rupture conditions; often finite strains
well beyond the "small strain range" were observed,

To date, an accurate and rational accounting of theoretical transient
structural response prediction methods capable of incorporating the effects
of large straine and deformations in metallic structures subjected to
impact or impulse loading has not been demonstrated. No comparisons
betwoen small strain theory predictions and finite strain theory results

*
Numbers in brackets [ ] denote references given in the yeference list.




have been found in the literature to ascertain the range of validity of
amall mtrain theory.

The comparimons of predictions vs, expeariments in tho literaturae
uAually involve only displacemonts, With one exception (31, no comparironn
hava boon found which nhow atrain results va. oxprrimontal measuremontn
for ntrainn that are outaida the “emall ntrain® rango, It ia to bo notnd
that displacomont ronults are a much poorar basin of ontablinhing tho
valldity of a fZinlte eloment fommulation than the uge of dircet atrain
comparinons. Strainn involve dorivatios of dinplacomonts and, honce, aro
a much £inor moanuro of accuracy of numorical mothods. Furthormoro, tho
strains themoolven are usually of primary intercnt and olgnifiecance,

Sinca tha stross-strain curves for many structural materials are

usually very flat in the plagtic range, a small error in the strain will
produce a smaller errer in the strepu; whereas, a small error in the stress
will produce a much larder error in the strain. PFor this reasaon, gtrain-
based criteria for necking and fracturc are more "sonsitive" and morc
reliable than are stregs-based corresponding criteria.

It is evident that finite strains are present in impulsively-loaded or
impacted ductile metal structures deformed to the threshold of rupture.

For example, the steel-sphere impacted and explogively-l16aded beams and
panels reported in Refs. 1 and 2 suffered large strains. Some of them
s8lightly exceeded the rupture threshold, while other specimens experiefced
large strains but did not rupture. In addition, static uniaxial tengile,
compressive, and cyclic loading tests have been conducted at the MIT-ASRL
on the same aluminum material employed in the beam, plate, and shell large
strain elastic-plastic transient response experiments. These teats
revealed that the 6061-T651 aluminum material used for the impulsively-
loaded and steel-sphere impacted beam and plate specimens fractureg at
stralns that cannot be considered "small". The 6061-T651 aluminum test
coupons that were machined parallel to the plate-stock roll direction

(or longitudinal, "L", specimens) fractured in statie uniaxial tests at
2
' - £ _
relative elongations Eu 0.8, where Eu = @; 1, zf(£°> beihg the final
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(initial) gagae length. Large permianent strains (recorded using
mechanleally lightly-reribed marka) in the impulsively-loaded and stee]
shers impacted plates reachaed Eu % 0.3 for the mpecimens that were at
the rupture threshold.

Rocognizing that finlte ntrain offocts are prasent in thoae preobloms,
roliahle predietionn domand that auch nffoatn bho lneluded rationnlly and
propoxly in tho analynin,

varloun formulationns havo boon employod to troat nonlinoar statleo
and/or dynami.e problomo invelving large rotationn, larqgo stralnn, and
path=indopondont or path=dopondont material nonlinearitioosy voo for
oxamplo, tho articloo of Batho ot al. (4), Nomat=Naguor [5), and Stricklin
and Haloler (6], All of thesce formulations use celthor throo-dimonclonal
contlnuum equations (mest of thom restrictod to planc strain, plane stross,
or axisymmotric solids) or the mombranc theory of plates and shells
{restricted to very thin shells). Furthormore, only isotropic and/or
kinematie hardening rules arc presont in thego finiteegtrain elastic-
plastic formulations, and it seems that none of the computer implementa-
tions of these formulations employ a (total Lagrangian) fixed reference
configuration for the analysis of finite-strain plasticity.

Of course, the strain-displacement equations which are valid for
finite strains and large displacements of a three~dimensional continuum®
have been known for more than a century (7, page 270] being due to. Cauchy
[8,9,10 and 11, for example] who fully elaborated the theory of small
strain, obtaining it by specialization from his general theoxry of finite
strain. The history of the membrane theory of plates and shells goes
back to tie eighteenth century [12]. However, the equations for large
strains ot thin bodies involving both membrane and bending effects are
more difficult to derive and are not found in explicit form at least in
the readily accessible engineering literature. Koiter (13, page 2]

a: And, consequently, the even simpler strain-displacement equations of
a three-dimensional coatinuum under the simplifying asgumptions of
plane strain, plane stress, or axisymmetry are also well known.




recognizea that the astrain~displacement relations for large doflactionsa
of shells are "extremely complicated", It im the propence of mecond
dorivatives and the largor pumbor of texrms ln curved beamn, platon, and
shalla that vostriots the extonslva literature in finlte atraln analyails
to the eguationa of thren~dimansional continua and tholr pimplified
varnlona, or to membrano theory., The only mothod of analynin of trannlent,
largo~daeflootion, {inito-ntrain, olantle-plantie ronponna of atructuron
utilizing nhold theory (including both mombrann and bonding effoetn) noomn
to bo tho PETROS [1L4=21] 'sorien of codon dovelopod dn tho popioed 1960-1975,
Thoro aro many fundamental differonces botwoen the formulatlons used
in tho prouent study and that of tho varliox work of DETROSG. Thu prosent
ogquationg ara gsolvod by tha spatial f£inito=clumont mothod while PRIROS Lu

a opatial finite-difforonce computor codo. Also, all of the cquationo in
tho prusunt analysis arce cast in the roforontial dascriptionb of motion
taking a fixed (indepondunt of time) placementc as roferonce, while PETROS
uses essentially tho preuentd placement as the reforence. Also, these two
analyses differ in the type and implemantation of finito strain plasticity
theory used.

a: Kolter defines "“large deflections" as being characterized by the absence
of restrictions as to the magnitude of the displacements, which is
different from the engineering definition of “"large deflectiohs" ~--
usually understood asg deflections larger than the thickness of the
thin body but smaller than its spanwise dimensions.

b: Still called the Lagrangian description of motion, espe&ially by
hydrodynamicists, although it was first introduced by Euler.

c: The c¢hoice of 'this referende placement is arbitrary, it can be any
configuration that the body has or might cccupy, but ustually one
chooses the original, undeformed configuration. Truesdell [22, page 79]
writes about the referential description: "Some form of it is always
used in classical elasticity theory, and the best studies of the
foundations of classical hydrodynamics from Bulex's day to the present
have employed it almost without faii'.

d: Trueadell calls it the "relative" desoxiption [22, pade 89] and it
should not be confused with the spatlal description of motion, known
as "Eulerian" by hyd:iodynamicists.




Botter choices of atress and streass rate are made in the preﬁont analysis.
In the pant two decades the numbor of publications concerned with finite
strain planticity has grown tromendously and significant advancen hava
boon mado in tha finld of conatitutivo equationa. The pronent ntudy
providea a moro ayatematic and conalntont presentation, formulation, and
implomontation of tho concapts involved than has boen found in the
tochnical literuturc. On tho othor hand, tho following ugoful features
of PETROS: (1) the strain-rato dopendent mechanical-sublayor-model for
time-dependent plasticity (the presont analysis, however, docs not include
relaxation cffects and is restricted to isothermal conditions) and (2) a
body~£fixed system of convected (intrinsic) coordinates, are employed in

the present analysis.

1.2 Purpose of the Present Study

The present work extends to the realm of finite strain the work done
by the MIT-ASRL on developing finite difference methods [14-21] and
finite-element methods ([23-31] of structural analysis to predict large-
displacement, elastic~plastic transient response. The object ig to
develop a finite element analysis for thin structures (beams, rings,
plates, and shells) that incorporates finite-strain, elastic~plastic,
time-dependent material behavior implemented with respect to a fixed

reference configuration, and is valid for finite strains and rotations.

The results obtained from this analysis are compared with experimental
data as well as with results obtained from “small strain" large-
displacement analysis in order to ascertain the range of validity of the
"gmall strain" approximation.

1.3 Synopsis of the Present Study

Saection 2 contains the concepts that are necessary for the develop-
ment of a general finlte strxain theory for thin bodies with path-dependent
and time-dependent material nonlinearities. The theory is systematically
formulated in a body-fixed system of convected coordinates with
materially-embedded vectors that defomm in common with the continuum.

A parallel development is presented in the ﬁraditional fixed-in-space
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ayatom of canntant voctors amployad in the large majority of hooka in
continuum mechanien, Aftor a vary brief rofrosher of tonsor anpalysin, tho
kinomatics of a deformable continuum arce treated in some dotail, deflning
doformation and ntrain tonporg and tholy rates, an well an satronn tonnors
and the difforent ntrosw rotos that aro obtained according to difforont
obiorvern,

Many'pitfalln in the analysan of various lnvostigations aro
indicatod. A vory important point. that has boen connlatently neglectad
by many analysts and computer programs is to indicate proclscely in what
form the conotitutive propertios have to be input. Most investigators
after an claborate treatment of a general theory in tensor notatioa,
keave undefined the constitutive equations to be measured in the
laboratory. In Subsection 2.5 the homogencous uniaxial irrdtational
deformation of a continuum is trecated, with at least two purposes in
mind: (1) to give a clear physical understanding of the quantitics
involved in the analysis (which is not possible to obtain through the
tensor index notation) and (2) since the most common material test is
the uniaxial test, to identify precisely what are the guantities that
one should measure in the laboratory (as well as how to express these
data to conform with the constitutive equations used in the theoretical
material model).

The general form of the constitutive equations employed in the
analysis is presented in Section 3.

In Sections 4 and 5, the previous developments of Sections 2 and 3
are utilized to derive consistent strain-displacement equations and
constitutive equations which arc valid for finite strains and rotations
of thin bodies. Some of these equations seem to be original (have not
been found in the literature by the authors).

Discussed in proper perspective in Scction 6 are the different forms
of analysis currently utilized to analyze transient response problems
with material and geometric nonlincaritics, as well as several different
timewise finite differcnce operators used to intcegrate the transient
responst oquations. Also, the form of analysis utilizoed in the computer

program and the solution of the governing equations are discussed.
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In Saction 7 tha predictions of the finito alement cemputer programs
that incorporate the finito-ntrain clastico~plastic ﬂimo~dopondont theory
doveloped in the previous soctions are compared with oxperimental data
for cascs of impulsive loading as well as impact loading that produced
transiont nonlinear structural responses, It 1s shown that for the
problems invastigatod, the finite straln theory developod in this report
gives much botter predictions than the traditional small strain theory
-= and at no additional cost. These problems contain the nonlincar
path-dependent and timec-dependont response characteristics typically
experienced bé ductile metal structures when full advantage is taken of
their.enexgy absorbing capacities.

The entire study is summarized and pertinent conclusions are drawn
in Section 8.

Finally, those'readers who are interested in the principal results
obtained and a discussion of those results (without the developmgntal
details) need read only Sections 7 and 8.




SECTION 2

GENERAT, FORMULATION

2.1 Introduction
=2 krQduetion

as well an with finite straing and rotaﬁions, are prosented systomatically
and consistently. Use is made of the gennral approach to continuum
mechanics that has been responsible for the significant advances in
continuum mechanicg in the last threec du des, References that have
influenced this write-up arc: Truesdell et a3, [7,22,32-40], Sedov et al.
[41~49), Malvern [50), Jaunzemis [51], Leigh [52], Eringen [53~54], Biot
[55], Green et al. [56-58], Prager [59], and Fung {60],

Tensors are considered ag linear vector functions, ang use is made of
the dyadic representation (instead of simply considering tensors as a
collection of components) becauge these concige tools are helpful to

The brief refresher on tensor calculus, Subsection 2.3, follows
Malvern (50]. Other more extensive references on this subject are the
classic works of Schouten (1], Eisenhart [62], McConnell [63]), anda Synge

monograph of Ericksen [67], the modern treatment of tensor analysis by
Bowen and Wang [68], and ths clear and lucig bresentation by Sedov [41,42
and 45],

many purposcs one identifics ag the original configuration, The concept
of finite strain admits infinitely many definitions, but only a handful

of theso are useful for the solution of genheral problems, In the formula-
tion of rate~type constitutive Ccquations, the concepts of stress, stresy
rate, and strain rate, which admit infinitely-many defintions ag well,




have ta bo dofined proporly. It turna out that tho ptrain, stross, strain
rata, and stroas rate measuros which a phyrically-valid theory of finito
doformation of an elastic-plantlc continuum usos aro not (unfortunately)
the name measures which are convonient for the numorical computation of
the problem, and that both of thosa measuron {tho measuren that tho
phynically-valid thoory and the mmerdcal solution uses) are not tho samo
as tho quantitios that ono usually wmeasuron in a loboratory. Hence, it

is of great importance to dofine all of theso quantitics in a conslstont
and rational way, and to define the relationships that tranaform one sot
of quantities into another. If this is not done proporly and consistently
in overy arca of analysis (the physical formulation, the numerical analysis
of the problem, and the experimental measurcments of the quantities that
are necessary for the solution of the problem), then the results are not
going to be fruitful.

Since the theory and analysis used in the present work is of consicdexr-
able generality, a grcat many definitions are necessary. The work of
laying down the foundations of this analysis has been exhaustive and time
consuming. Unfortunately, many of the results present in Section 2 are
gcattored in a number of references, some of them of difficult access, and

other results are just not present in any work.

2.2 Notation

Scalars (zero order tensors) are identified cimply by letters; for
example, the volume V, the mass density p, and the mass m.

Vectors (first order tensors) are identified by letters with an over-
bar: the displacement vector u, tha velocity vector v, and the position
vactor R.

Second order tensors arc identified by letters with double overbars;
for cxample, the Cauchy stress tonsor 3, the Green (Lagrangian) strain
tensor ?, and the spin tensor ﬁ.

The scalax components of tcnsors arc denoted by attaching indices to
a kernel letter without overbars. This kernel letter is the same letter

uged to denote the tonsor quantity. ‘These indices are lowoer case letters
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whon the tonser im expressed in torms of tho base vectors of the curvi-
linaar  eoordinato ayatem of the xoforonce (undaformnd or initial)
configuration. They aro capital letters when the tonnox in expressad in
torms of tho baso voctors of tho curvilinear coordinato systom of tho
progent (deformod or curront) configuration. 8ince tho basc voctors of
a roctangular Carteosian systom are constants (with raespoct to apace and
timo), tha basa vectors of tho Cartesian syﬂtoma'k the reforenco and
present configuration are the aamﬁ.' Honco, it is an arbitrary choice to
asasign cither lower case or capital lotters to the indices of a tensor
component in a Cartesian system. Usually this choice is done according
to the most froquently used curvilinear represcntation of the tensor.

When the components of tensors are referred to a rectanqular
Cartesian coordinate system, they are identified by a circumflex sign
nhn (3 "hat") on top of the kernel letter. Components of tensors
referred to a curvilinear coordinate system do not have the circumflex
sign (they do not wear hats).

Fox example A is a second order tensor; Aij are its components* in
a curvilinear coordinate system related. to the reference configuration,
AIJ are its components* in a Cvailinear coordingte system related to
the present configuration; and Aij are its components in a rectangular
Cartesian coordinate system.

In order to help the reader, Table 1 relates the notation ucilized

in this review with the notation utilized in some treatises of Continuum

Mechanics. The number in parenthesis indicates the page in which the
quantity is defined or first appears.

2.3 Review of Tensor Analysis

2.3.1 Vectors

in an n~-dimensional vector space any set of n linearly independent
vectors Sl' 52, coe Sn i3 called a basis. Any v in the gpace can be
cxpressed as a unique lincar combination of the n base vectors of the

basgisg:

*
Thesc components arc the so-called covariant components.
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. v* b avKEKQV-E *v‘gz*.....+v‘">E<n, (2.1)

The coefficients vk are called the contravariant components i.a.,

with superscript k of the voetor v with rospect to the basis Bk' Nota

that the base voctors Bk noed not be unit voctors, and thoy noed not ho
orthogonal.
If the Buclidoan vector space is referred to a basis, thon

w— V bwri T
and then
WV =uwvtb. b, | (2.3)
where u.v is the dot or scalar product of the vectors u and V.
Let -
%rs = br ’ bs (2.4)

then it follows from Eq. 2.3 that
TRV VR ) (2.5)
L-V=uvigs

Note that = is symmetric; that is,

3‘6 = %sv (2.8)

since the dot product of two vectors is commutative:
brbEs =b5.br (2.7)

pual (or reciprocal) base vectors B4 (g = 1,2, ... n) are defined for each
given set Bp (p = 1,2, ... n) of base vectors in Buclidean vector space
as the set of vectors satisfying

EF'E* = gq‘; (2.8)

12




1 if x=g
whero the Kronocker delta §* is dofinea by 8t =
8 8
0 if r#s

For theo important caso of ordinary voctors with n = 3 ona can oxpross
the dual base voctors Bk in torms of the original banis Bk by umsing tha

cross preduct (X ;) as follown:

% E& (2.9)

'(E;g“ ;)

ol

If the given basis is orthonormal (composed of mutually orthogonal unit
vectoxs), then Slf(g2 x 53) = 1 (for a right~handed system) and the dual
basis is identical to the given basis. When the base vectors of the given
basis are mutually oithogonal but not orthonormal, then the magnitude of each
of the dual bése vectors is then the reciprocal of the corresponding base

vector in the given basis:

‘BK 3‘5— where lEKl= '\/ EK'EK (2.10)

Covariant components vk (i.e. subscript k) of the vector ; with respect

to the basis Bk are defined as

K -
V= Vy b= ve bK (2.11)
Note that _ E; (2.12)
VP - V‘ P

(2.13)

The fundamental-tensor components gij' gij, g%i, gé% are defined as

5.5

follows:

. e
e .
. tme

355E'E %“J-:E‘.E" 8jaE‘.EJ. 9

(2.14)
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| . Obseorve that tho following relations are satiasfiods

! ' y ' 'J = Jt o t ‘C w i f
| Cditdt 477 a 8'J""33"’6J'

o i
| Therofore, one can expross tho contravariant componants v and the

(2.15)

covariant componontn v, of a vaector v in torms of tho rociproecal compononts

and the fundamontal-tensor componantd, as follown:
v? bj'b{: VJgaj

T ' i ¥

. °bJ'B - I} ‘J
b =y b0 "V §
b=vib;'b

=
1]
<t $I
g‘i
it

1

< el (2.16)
V’%j‘: = v SJ'

<
"
<

ot
il
=<

O

ij_
|

i j
= VS E}. i = V&j ESL

Evidently the various sets of quantities gij' g?j, 9%5 and g;% have the
property that when they are used as the coefficients of a linear transfor-
mation operating on the covariant or contravariant components of a

vector, they yield as a result of the operation the components of the same
vector (covariant or contravariant components, depending on which set is
used). These quantities are therefore components of the unit {second~
order) tensor I such that

o

V=V.dl=141-V (2.17)

The unit tensor i is also called the fundamental tensor or the metric

tensor* of the space. The gij are its covariant components, gij its

controvariant components, and g%; = g%% = Gi its mixed components. The
process of raising or lowering indices can also be performed on the base

vectors themselves:

— M
L -

E‘i“g{‘ bi. bj‘—‘gjtb (2.18)

*
They are called the metric tensors, because all essential metric proper-
ties of space are completely determined by thuse tensors, and theix

derivatives.
14




Thoe matricaos [qij] and [gij] are inverse to each othor

[g91-Tgy1" B

By dofinition, the detorminants of thoso matrices are
{\
85 det [g‘j] 1 = det [8"_"

2.3.§ Tanuors

2.3,2.)1 Lincar Voctor Functions

A sccond order tonsor T is a lincar vector function associating with

cach argument voctor another vector, @.9.,
w=T-V (2.20)

For any given basis Bl, 52, oo En e¢ither of the two vectors may be
represented by either covariant or contravariant components vj or vj and

u, or ui. There are, thus, four possible scts of n2 coefficients for the

four different linear transformations
— qj ‘j ] “ OL L‘ +
u""T‘J v w;=T." Vi w=T1 7 W =T.J' v (2.2

involving, respectively, the

covariant components Tij
contravariant components Tij
or mixed components T%S or Ti?

%; # TB%, it is necessary to observe carefully the

order of the indices.

Since in general T
One can also express thesc tensor components as the dot products of

the bage vectors and the second order tensor, using Eqgs. 2.12 and 2.13,

as follows, Observe that since u, = Ei.ﬁ and vj = Ej.G, then
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- = P
1 FTQL\g = t); ¢ ’T~' t).< ’I~ = k) ' | . t)‘<
-k T F T e TR T (2,22)
*Tﬂg o k) ’ —Iﬂ ' L) v k™ k) 'F“' k)|<

‘.
&

A aymmetric tennor T is definod as ono that is eporationally idontical to
itn transposo %w, go that if T i symmotrics

.

J— (2.23)

a———

» T-V ;v.% for any voctor V

Also, its components obeys

Ty-Te TETE O THATE o

J

It is convenient to write the mixed components of a symmetric tensor T as:

i i .
Ty=T=T;

But note, that, in general (even for symmetric and antisymmetric tensors)

'T'j‘ #Ti , (2.26)

For a symmetric tensor, the matrix of covariant or contravariant components

(2.25)

. C©-

is symmetric while the mixed vomponent matrices are not in general

symmetric, because the third equation relates elements of the two

different matrices of mixed components instead of symmetrically placed
elements of the same matrix. To make this point c¢lear, and for convenient

reference, these matrices* are, for n = 3

* .
The symbol || || is standard notation for matrices in books on tensor
analysis (for example, see Refs. 7,22,40,41,42, and 61).
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To, = To,

3

3

i

T

Ta

Tll
T:u

T
T,
T.:

T, T Ta Ta
Tol 3 [ Te Ta Ta
Tza T-T" I T;a Taz
T" T T T
T" = T T T
T |57 T T

« 3
T,.
3
T,
Ts'

if T is symmetric, implies for n = 3

T
T
T

T.a T,
Th Th
T T

»
- -
>
-

_

~+
el
by
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Qx

Tl ol Tl

.J “ "’ 'J % qJ

In effoat, indopondently of ita ponition, whethexr up ar down, the first
index’ of an olemont of the matrix donotan tha numbor of the rux, and the

socond tho numbor of the eelwnn correnponding o that alemant.

Aa Sodov pointn out [41), tho aporations of additlon, of multiplica~
tion by a numbor, and of acalar multiplication of tonoern of tho nocond
rank corroopond to analegous opoxationo en matricon) honeo, tha uio of
mothodo and rosults of matrix caleuluo facilitaton the developmont of
tho thoory of tonsor functiond.

The oporational product ($.§ or T8) of two vocond ordor tonsoxs
(T and §) produces a second oxder tonsor (5) gsuch that

% ’*' g (2.32)

Also,
%-v.-a(?.?)»'\u E’r('"év) (2.33)
Its components are given by
?tj = T;‘: SkJ = T;k Sk
Pi=Ti S =T* S,
‘]:"J:"]"k Skj (2.36)
Pid =T §,4 (2.37)

; (2.34)
J
.{ (2.35)

T™wo sealax products (L.eey 5:§ and ﬁ"g) of two second order tensors can
be defined. The scalar product T:8 is produced by a double contraction

of the outer product as follows:

i

v

T:5=TISy=Ty SUTi 81T # TS oo
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Note that the two filret suffixes are the same, while the two second
indices are the same,

i The scalay product T8 im defined as follawa:

o TS xTH8, Ty ST T[Sl Ti g, o

} Nota that the two inaide indiees are equal and the two outnide indicon
arc oqual. In gonoral Tiff ¢ T8, but 4f althor one of thn twa tongors
uymnotyie thon i = ¥ .8,

' 2.3,2,2 Dbyadie Roprooontatlon of a Tonner
F , The opon product or tonsor preduct ab of two vooters a and b 45 eallod
) a dyad, A lincar combination of osuch dyads is callod a dyadie. Highor=-
ordor opon producto aro callod polyads and lincar combinations of polyads
are callod polyadico (all polyads in a polyadie must be of tho same oxder).
All usual multiplicativu rules of olemontary algebra hold for polyads,
oxeept that open multiplication is not commutatlive, that ls, in geheral

EE # E'a' (2.40)

Also, the single dot product of two dyads ig not commututive:
L T =71 °T (2.41)
ab.cd #cd.ab
The scalar proiuct (or double dot product) of two dyads denoted by
ab:cd ie defined as the scalar obtained by multiplying together the two
scalar products a.c and b.d. Note that the first vector of the first
dyad multiplies the firgt vector 6f the second dyad, and the second

vector of the first dyad multiplies the second vector of the second dyad.
The scalar product is commutative:

$ied (3 ED-(E3)EER)  ww
= cd:ab
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The double dot notation with the two dots on tho mame leval denotas
the praduct obtained by multiplying tho two outside vectors togothay and
the two inside vectors togethor:

| ';E..;j = (53)(@8} (2.43)

Lvory socond oxdor tonsor can bo roprosentod as a dyadic, a linoar

combination of theo n2 dyado formod from n lincarly independont bago
voctors of the n-dimonsional vector spaco on which tho . tonsor ig dofined.

For cxample, in throe dimensions (n = 3, n°® = 9) with basc vectors Sl, 52,

b3' onc may write any sccond order tensor T as:

T-T'BE+T'LEL-T'EL  aw
+» T E;En ¥ Tugz Ez +T" E’- E‘
+T" 5, B, + T™ b, Ez + T”Ez Ea

T = Tn E, Es (2.45)

where the Tre are the contravariant components of the tensor with respect

or

to the basis Srss‘ In Euclidean vector space, by introducing the dual
basis Sk, one obtains additional representations for T:

?g T” ErES’T“ErEs? r;ErESBT;f E" Es (2.46)

The convention of upper and lower indices does not guarantee a unique
tensor for a given set of components, since, for example, in general

% S S i Esgr (2.47)

For definitiveness, the convention that the first index on the tensor
component goes with the first vector of the dyad is adopted as, for
example:

20




== ye 7 T8 2 Al T8 T (2.48)
TzT'ﬁbrb’ﬁ oﬁbbr
o polyadle reprenentation of o tonsor makesn Ltomuch simpler to dovelop
the theory of eparations on tennorn, particularly in the thoory of
differentiation of tensors with vegpoot to coordlhaten oy ncalar para-
moteors whon the veetors of the basos are variable, and ospecially whon
a glven tonsor han to bo considoraed pimnltancously in diffurent banes

moving with rospeet to ong anothor,

2.3.2.3 covariant Differentiation of a Tensor

The sot of partial dorivatives (with reapoct to the coordinates) of
a covariant vector, in general, is not a toensor,

The covariant derivatives of a tonsor component are defined in such
a way that they are tensor components which reduce to the usual partial
derivatives in rectangular Cartesian coordinates. The covariant deriva-
tive appears naturally when the partial Jurivative of a vector is taken,
and in the process certain non-tensor, three-index quantities, called

christoffel Symbols arisc naturally when partial derivatives of the base

voctors are taken; since the basc vectors are functions of position, they
cannot be treated as donstants in differentiation. fThe derivative of the

covariant and contravariant basc can be shown to be:

23m ={ : g (2.49)

32%" m h s
N n s 3 (2.50)

whore the (nontensor) three index quantities called Christoffel symbols

of the sccond kind are

s =_\_ rs Bnr arm__amh s
{mh =78 3%""*3%" a%’*) (251




If the coordinate gyatem is Cartesian, i.e, the bame veators arc

constants, then the Christoffel symbols of the second kind are idontically
20r0:

{ k } - 0 for a Cartesian coordinate system.
Lo

Therefore, the covariant derivative (denoted by a; j) of a cuvariant
14
vector componcnt ay igs

3.=a,&'83° (2.52)
- - k .
23 _23a;, &t 2% _ 2a: =i _ ‘ ‘}-»
ST 3 tAE T T g
o~ [ 221 _ k =i =
={3Fr a“{‘v J} g =243
2a; k
A, ?;';3' - ak{aj (2.53)

Similarly, the covariant derivative (denoted by ai.j) of a contravariant

vector component ai is:

a =3}g;
. : : (2.54)
>a Ba‘- “3 « . 23 k }—
H TR T 35,13 "'a'{k il d
af
‘ a.‘ NP (2.55)
a".i"aff > {k _j}

Furthermore,

5%:; _%m o gg?gna_: 8'"‘. {h s‘}gs e
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and

{2.57)

o/

%{‘_: ~ %ni. {s"‘t} .gs

slnce

AEL - %nida"

Covariant derivatives of highor order tensor components appoear quite
naturally whoen the partial derivative of the polyadic is taken. For
example, 1if

T T35 Ta gy - T 55Ty oo

3ra¥r
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o o/
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(N -1
«
(aN=}]
'3
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g

™ = 31‘ + Tk‘{ r }-;- T'k {k s\p} (2.60)

T-r's,':= %LE; = Tks {v kr} - —rvk {s kF} (2.61)

(2.62)
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whore,

v———

%%:F = T";fh 3’35 :Tm,r grgt —'!Tr;,rgrgs (2.63)

2.4 Kinematics of a Deformable Modium

Motion is always dotormined with respect to some refaorenco coordinate
syatem. A corrospondence botwcen numbers and spatial points is estab-
lished with the aid of a coordinato systoem. A continuous medium represents
a continuous accumulation of matorial points. By definition, knowledge of
the motion of a continuous medium implies knowledge of the motion of all
material points. For this purpose, one must treat individually distinct
material points.

In kinematics, a continuous medium may be conceived of as an abstract
geometrical object, and not merely a material body. For instance, it may
sometimes be agreed to represent by points in a plane the prices of some
products and to study the motion of prices in economics by the methods
of the kinematics of continuous media.

Besides the concept of laws of motion and coordinate systems, one
must still introduce for the description of the motion of continuous media
certain other concepts, in particular, that of velocities of particles of
a continuum medium. Strain tensors are fundamental characteristics which
arise in the deformation of bodies, and they enter into the basgic equations
which describe the motion of continua. Strain tensors compare two states
of a medium, while the rate-of-deformation tensor is a characteristic of
the medium at a given instant of time.

2.4.1 General Description

Lower case letters are used for quantities that identify the points
of the medium at some reference instant of time to. Capital letters are

used for quantities that correspond to the points of the medium at the
current time t,
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Conaidor arbitrary displacoments of a continuwm. Lot tho position

of tho points of the continuum ba dofined in a rectangular Cartosian systom

of gpatial (Fwlorian) coordinaton Xp = ¥y0 Xy X, and the roforonce
position of tho points of the continuum by the referontial (also callod
Lagrangian or material) coordinates L = xi = xl, X0 X4 (here, for
oxample, it is convoniont to adopt X, 5 xi 80 ag to difforontiate betweon
x) and xl). This system of Cartosian coordinates is fixed-in~apace, or
inertial, and it has orthonormal baso vactora: 51 = EI = Ii = Ii.

Also, it will be convenient to use the convected body-fixod (also

called intrinsic) system of (Lagrangian, material or embodded) curvilincar
coordinates &i which moves with the points of the medium, has base voctors
§i in the reference configuration and base vectors 51 z EI in the deformed
configuration. These two systems can be displayed conveniently as follows;
for a three-dimensional Euclidean space:

r
-
Rectangular Reference Xy
Fixed-in-$pace { Cartesian Configuration X,
(Inertial) Coordinates (t = to) x3
System
Present Xl
Configuration x2
| (bt =1t) X3
~
Base il
Vectors 9 Iz
- L 13
r
Body-Fixed Curvilinear 5;
Coordinates 3
(Convected, < 53
Intrinsic, .
or [ Reference 9,
Embedded) Base Configuration 62
System Vectors ¢ (t= to) 53
-
Present Gl
Configuration ¢ T,
(t = ¢) 55
- ‘ L
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Note that the (Lagrangian) coordinates &1 are "sfrozen" into the modium,
and they deform with it so that a givan materiql point.
with its material coordinate &1.
bases (i

is always identificd
When motion is «onaidored, all throe

. 31. and 51) can coinclde at some instant of time, but tho rate
of change of these bases with raspect to tha motion of a fixed point of

the medium will bo different.

Position vectors r and R (see Fig. 1) from the origin of the

Cartesian system xI to the undeformed curvilinear system &l with base

vectors §i and to the deformed curvilinear system €i with base vectors

GI' respactively, are defined as

=Xt —R"X;TL
. ‘ (2.64)
dF = dx, T, =JE,°§; =d&;g"
512,=¢i>(;;L; ==CJE; 6;: -'C‘Eiics
Observe that, for any time t,
3: = G:l: 8""- G;_ gi' # Gx X»#X: (2.65)
Xi-‘-Xa X;’-‘X;, i, =T, E =27
and that
3:& = GI (ta't,) xis-X: (t=te)
The base vectors of the undeformed and deformed configuration, in
the convected system can be expressed as:
q. = glj::: X T Ei; = EEFE =;jéz§é[{:
8“ o3& E' T oE E (2.66)
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The motric tensor components in the undeformed and tha daformed coh-
figuratlaon arae

S’J "g"g.i Gw ® —éz 'G; (2,67)

The determinants of those matrices aro definod as
8 = det [8 ‘J] G e det [G,,a] (2.68)

The reciprocal base vectors arc

-"gi:a_.l.r = _E._..X_ (2.69)
Fe i GEipe¥
-3

g'= darda g .3.x3 - X (2.70)
3 ko 5 QF_ 3 {%_3 .
Gt- G.x G, Gzz GaxG, Ga (2.71)

The contravariant components of the metric tensor are:

§9-35  GT-GE wm

Also, the following relationships are satisfied:

[ 3&, ] [3 J]-‘ [G”] = [G,,,]_' (2.73)

..(_'5.. =det [G*7] @
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2,4.1.1 Double Taensorn
Lot M be a matorial point identifiod by r= ini in its original

ponition and R = X ii in ite final poaition in Buclidoan spacn, Tho
k‘"'m Kmnnbi
p.‘lq p...g

formation law for a tonsor of tyno 7T
Kyl

quantition T conntitute a double tonmor* if they oboy the trans-

;:::g when the xl coord}naton aro

whon the xi aoordinaton aro trann-

tranasformed, and for a tonsor T

formed. As a apocial case, it follown that the compononts of a doublo
KOOQM
P
In other words, ordinary tonsor fields arc included as a speclal kind of

double ficelds.

tonsor of tho type T tranaform ag gcalars under X, transformationa.

2.4.1.2 The Unit (Metric) Tensor

The unit second order (metric) tensor 1 can be expressed as:

1-943'% - 8‘19"51 - 5}_"%&?”‘ 8, 9‘8]'_ (2.7
= 8 LY = (,,G°G7= G7G,G,-6; 6,0- 56,

Observe that the mixed components are the same in any coordinate system.

2.4,1.3 The Displace@ent Vector

A displacement vector u can be defined as the vector difference
between the position vectox R defining the present location of a material
point and the position vector r defining the reference (undeformed)
location of that same material point:

R-F (2.76)

<l
it

with components

i

o =‘ll.;5§ =

<.

gt =u;G: ’U:G, =0T, (2.77)

Observe that .
A _.X A (2.78)
W= ANy = X

*
When thie indices of a kerncl letter do not all belong to the same space,
"the quantity is called a connecting quantity [61].

28




2.4.1,4 Tho Valoecity Vectoxr
Tha voloeclty vector v of matorial points of a moving continuum is

defined by the material time derivative* (timo dorivative holding the

“mutorial coordinaten conatant) of tho displacemont voator s

-— 3E - axz"." ;\ rwd
VEL® 5F lgiecar ( r> st Tl (2.79)
- CL' -t CL‘ - a'\& 'E, = alll\ - b - Ebu}\ ] L
- (R el v eRm—— - ———
v % 3 v ) K9 CoNsT at E,‘-uﬂ\‘ at E‘-coﬁﬂ"

Notlicao that

& 53 SR T

This velocity vector v has components:

V= Wg‘: v‘gﬁ LT= V. G° V@G, (2.81)
. ¢ .
V= 0,=X_ il Vil

(2.82)

By differentiating with respect to time t keeping 51 & congtant, one
obtains the time derivative of the defoxmed base vectors from Egs. 2.64,

2,66, 2,79, and 2,53-2,55:

= 2R 2V I = =zl
G, =3%7= 3 ° CP =Ve,= G (.59

From differentiation of the scalar product 61 . aJ = 8;, the derivatives

of the contravariant base vectors are found to be:

r} *

G"‘.G‘a + G‘.Gq: 5: =0

»
This derivative with respect to timc is symbolized in this work by a dot
on top of the quantity being diffexcntiated. The symbol ~—~is also often
used in hydrodynamics texts for the material time dcxivative.
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4.4.2 Dovormation and Strain Tengors

' 2.4.2.) Thao Deformation Gradicnt Tonsor

The deformation gradient tonsor F ig tho simplest to define in terms
of the deformation equations and it includes more information about the
motion than do the strain tensors.

The deformation gradient tensor is denoted by F, and its transpose
by F . The deformation-gradient F is defined as the tensor wgose
rectangular Cartesian components are the partial derivatives 3;1 and which
operates on an arbitrary infinitesimal material vector dr at ¥ J to

associate with it a vector dR at R as follows:
) m—— ﬂ
-_— T -— — T
dR=F.d =dr.F (2.85)

AlSO,

ET

i
Ql ool
S

G; =

F

Evidently F measures rotation as well as deformation since a vector §

‘
9

el"
ool

(2.86)

deforms and rotates to become EI. Because the deformation gradient F
includes the rotation as well as the deformation, constitutive equations
employing it will have to be constructed so that they will not predict

a stress arising from pure rigid body rotation.
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The deformation gradient tensor F oparates on the véctors dr and 51,
assoclated with the reference configuration, to produce the vectors dR
, And 51, raspactlvely, whlch are assoclated with tha present configuration.
=
Therafore, F is a double tensor (previously defined in Bubmection 2.4),

: Companonta of this double tensor aro;
' e A

[ = F;J' TLTJ = F-%J,.Gx QJ;’F;:JG%"J’ FzJGxg (2.67)
| A - oj""!_.'z "J«-' A “__;__J'- u'.: _,,j :J,J.,.
? "G4 g Py Friag- Py,

From Eqo. 2.85, 2.64, and 2.87, ono can ebtain oxprooplonus for tho
compononts of F, as follows:

Ji = F. dF = AX:T;, = (F/::Jth)'(d"&n)’%dx)t& e

Hence,

?' £ 3K (
Ti ) 2,88a)
- Xj

Frqm Bq. 2.78, one can express the comporients of F in a rectangular
Cartesian fixed-in-space frame in terms of the displacement vector:

:;;: A
Hence, N
A n
QU
. -3 . +. ——L .
- F;J 8"3 dX (2.90)

One van also express F in texms of components in the convected system, by
employing Eq. 2.86 as follows:
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—

Gy = F-3,- (FiG, 5.3~ F7iG,  wo

Honee,

Ff:j = 65 (2.92)

Thoraforo,

FEJ' - gtj (2.93)

F;:J‘ = G:a- (2.94)
Joo kj
F:: ‘ GzK 8

(2.95)

Also, P can bu uxpressed in termy of components of the displacoment
vector in a convected system, as follows:

= F ng(F"‘gvg&).gJ: F“J g‘a (2.96)

From Egs, 2.76, 2.77, 2.69, 2.52, 2.53, 2.54, and 2.55, one obtains:

L_3R _d = o - 3"
dU - 6 8.]: u'.;j gi'= LLiﬂ 8," (2.97)

28 - 3] %

Then
G.a'.:‘gj'l'u:lj gc=(65+uij)g; (2.98)

Then

(5 +U,,J/8, F-L‘g (2.99)
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Theraofore,

(2.100)

']

F'fjf- 8}+uf

llenca,
F"U = 8‘:& <6j *w’ﬁj) " Qi T UL (2.101)
F SSJ& (é& + LL'“,Pa)”"’ 8” e, (2.102)
=3;939‘j (51_*’ u.n,&‘)a E)jt + ULL,J {2.103)

2.4.2.2 'Tho gpatial Doformation Gradiont Tonsor

The opatlial deformation gradiont tensor E-l 1o tho inverso of the
deformation gradlent tonuor F.o1t opurates on the quantities asuoclated
with tho presont eonfilguration (dR and GI) to Eroducg the quantitios
asgoclatod with the roforonce conilguration (dr and gi), as follows:

o dR R (P

gt‘-‘ f':“'. G: = Gz' (—‘FE-')T (2.105)

' 3. G

Components of the SFoEIaT efomation sadsont. senor 7 oo

F-'=(F"')mw (F")wg Ga (F)3 ‘G
=(F)43:G7(F )7 §'Ge= (F)76,Gs

—

=(F")_ GG =<F“)Je = (F)IG™Gs

(2.106)
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Utilizing Bqa. 2,104, 2,106, 2,64, and 2,106, ona can obtain exprossionn
for these componontan, an follows: '

| dF = E’-" (J"Rm. ® dxfif.; = [( ‘;\”‘)L;yfi tJ] ¢ AXKE"”"(FQ“)W(JXJIL

Honeo,

: A
‘ (F ');:,r“"' %‘;{J (2.107)

AlSO, from qu 2.78;

Xt =X; -~ W, - (2.108)

Hence,

(?—-.) & - _a_:_U-» (2.100)
W9y ¥

From Egs. 2.105 and 2.106: , ’

8j= -F:-“Gg" [(F“yx gtiJ.-GJ= (F—-.)b‘a'g-.»

Hence,

(F_-.)bJ = 5; (2.110)

Therefore,
T
(F' )‘ = Gﬁr (2.111)
-\
<F )tJ = 8':‘ (2.112)




| (F");ngaﬂ; GKJ (2.113)

Again, from Bqgo. 2,106 and 2,106:

5, £ G [(F R GE GG, o

| From Fan, 2.76, 2,77, 2,66 and 2,52«-2,85, ono obtaing:
, 4

——

L _ 2R G?
Thaen

gJ: GJ- uiq G:‘:(Sj—uiﬂ)ax (2.116)

Then
( 83 - UTJ) G: = (F—‘)za‘ 6; ' (2,117
Therefore
(F")IJ = 8; - ul’q (2.118)
Hence,
- k X
(F |)N- =G:K(6J~ - u ’J)= G:a _u;,a (2.119)

(F-‘)xq = JK 6& ,K) GIJ u:a’ (2. 120)
(F-‘);a =G,._GK“<6&“U.,K>= CC-)L ‘u‘x, (2.121)
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2.4.2.3 Rotation, Btrotch, and Strain Tensora

The polar dnonmpuaition theorem* Indicaten that any invortible linear
tranaformation B has two uniguo multiplicative docompositions

Aeme
—

F"‘R'U.“V'R _ (2.122)

in whivh R is orthogonal (R R = 1)

and 0 and ¥ are symmotyic (U ] U1
)nud ponltive dofinite. R is callod the rotation tongor, U is

the right strotch tonsor, and V ig the loft atrotch tonsor of the
deformation. .

[

One may consider the doformation of an infinitosimal volume elemont
at r to consist of the succesuive application of;

(1) A gtrotch by the operator E, and
(2) a rigid body rotation by the operator R.

Alternatively, the samo deformation can bo produced by the successive
application of;

(1) A rigid body rotation by ﬁ,and

(2) a stretch by V.
It can be shown that the following relations are valid:

a'=00-FF Viyy. F-F™

Cauchy-Green Deformation Tensors

The square of the right stretch tensor

E: = ﬁz = ﬁﬁ‘ FT' F (2.124)

is called the right Cauchy-Green deformation tonsor., The squarce of the
left stretch tensor

*

Sce, for oxample, Scction 83 of p. R. Halmos (Ref. 69) and Section 43 of
J. L. Ericksen (Ref. 7).




Fomo

E=VV-V-F 0"

in callod tho loft Cauchy-Groen tonpor of deformation, It can be vanily,
shown that

= = = =
B = R C R (2.126)

The right Cauchy-Groeon deformation tonsor C is associatod with the
reference configuration, and it gives the new squared length (dS)2 of the

differential line clement dR into which the given differcntial cloment dr
is deformed:

(ds)zi Jﬁ C):R.: (d?- FT)‘ (F_:'cl?) = J?(ETF)JF = d‘F-EgJ'F (2.127)

The inverse of the left Cauchy-Green deformation tensor §, denoted

by ﬁhl gives the initial squared length (ds)2 of a deformed differential
line element dR

(4= dr-d7 = (GR-(F))-(F-dR)- R (F-FT-0R
=JR-B"dR
The right Cauchy-Green deformation tensor has components
==’= : ' . ﬂ = 2.129

and from Eqs. 2.124, 2.88, 2.90-2,95 and 2.100-2.103, one can express
C in terms of the displacgment vector componhents, as follows:

Cij= (Fie) Fiy= F;J s 2y

be (2.130)
2l 2l 2l oyl
= (6‘“' ax;)(s’ﬂ dX; ) S”)r"_**ax; 5% ox;
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C"j = (F&Pz)T F&_; = Fa F&J = va=(3,9+uh;>(6}* u’tﬂ)

(2.131)
= ga_\ T U.L,J' + Wi+ UL&,J Wh,t

Ch=(FiY FY = FilFY =g Gy

(2.132)
[t iN/ek  R\_ et i i -
= (5,‘+u&’~)(sj_+ u ,j)~ 5j"'“'»j*“:l* *lhg, U
] CoNT ”j ‘i &j R
Cl=(Fip) FP=FalF *3 4 Gux

(2.133)
L N/ ki kj T T LT Y
=(5y +uy, )(g s ul)=gleuieud s ulluy,
Notice, that although ¢ # ?, from Egs. 2.95, 2.132, 2.94, and 2.131, the

following components are equal:

C" - F-av (2.134)
J B

C‘j = F’J (2.135)

The Green Strain Tensor

The Green* strain tensor ? is defined as follows:

? - % (E _T) (2.136)

|

According to Truesdell (Ref. 15, page 266), this strain measure was
introduced by Green in 1841, and by St. Venant in 1844; since its
components are usually reforred to a fixed reference configuration, it
goes by the name of "Lagrangian strain® in the older engineering litera-
ture.
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From Eq. 2.124, it is oasily shown that cquivalent expraossgions arc:

X"“"(U.z i) (FT F i) (2,137)

This strain measure gives the change in the squarod longth of the matorial
voctor dr as follows from Egqas. 2.127 and 2,128;

(d SY" (ds)z = dﬁdﬁ- - d7 .d¥ (2,138)

Expressing this in texms of the material vector d;, ona obtains from
Eq. 2.127:

( ) (C]S) = dv- Cdr - d¥- idr dr. (E— —) dF  (2.139)

-
=

Defining ? g %'(C-T), one obtains

(dSV-(ds) _ 4=. F. 47
2

(2.140)

‘ =
Components of the Green strain tensor Y are:

-—iem A

—

X:.-X.‘. 0.1 i ngg XJ8 gJ J38 (2.141)

These components can be cxpressed in terms of the displacement vector

components, from Egs. 2.136 and 2.130-2.133, obtaining:

”J) s (aXx aXy. ‘J) <au. g_u:,,(g_yasu)/z

FYT AN, TaX; aX;

J
{2.142a)

X"j —ZL( tJ 8,’) %(Gxa-gi.j)'-’-(u&.,j"’uj,ti'u% LLk,L)/Z (2.142b)
¥ =4 (- 6))=4(5" 0= 8))={uly e e

‘ & 2,142¢0)
1(CH-g9)-4(s's Gumg )= eud v iy, Ve

¥
(2.1424)

¥y=3(Cy-5

ﬂ
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The Almansi 8train Tensor

iho Almansi* atrain tensox a is definad as followa:

———
—

€= "‘Z (T - B”') (2.143)

Equivalent axpressions for tha Almanaoil atraln 0 aro cbtained from thm
definition of the loft Cauchy-Greon deformation tensor B, Eq. 2.125:

Bed (T-(@N)-4(T-(FVFY) o

The Almansi strain also gives the change in the sguarcd length of the

material vector dr as follows, from Egqs. 2.138, and 2.128:

(4S)- (ds): = JRI-dR - dR-BdR = dR-(T - B )R 2140
Defining e = %‘(i-g-l), one obtains:

(65)2_ (ds}z _ c‘:—R«-’ -.éd_ﬁ' (2.146)
2

Components of the Almansi (Bulerian) strain tensor e are:

= A .. =7 (2.147)
e = 6:‘., L“Lj =.e G :‘G 633 e,a
where
A _ A (g . 3k )
€:s = Z (6.‘.\ X, X s (2.148)

%(6” - 85) (2.1.49)

o®
o
&

i

-

*According to Truesdell (Ref. 15, page 266), this strain measure was
introduced by Almansi in 1911 and Hamel in 1912; since its components
are usually referred to the present configuration, it goes by the name
"Bulerian strain" in the older engincering litetrature.
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e; :-‘é (55 - Gzhg,&.)) (2.150)
= ':{ (qu - GMG“% u,_) (2.151)

=) b}
Obacrve that tho covariant components of the Groon Y and Almansi o atrain
tonsors with rospoct to tha refeorence base vectors 51 and to the prosont

=T
base vectors G-, rogpectively, are tho samo:

\‘Ej = 65;4:

Thereforo, from Egs. 2.140, 2,64, and 2,141:

@SY-(ds)* ~ T . eir T.= i
> =drox'dr=dﬁgéo\"8jda

=d£‘g; ¥%iq 33) g“d&

Also, from Egs. 2.145, 2.64, and 2. 146:

(‘*5’2;(‘*5’ CdR.5.dR-dE'G, -3 G, dE

or

(2.152)

= d& Q. (exs G:G{r)' -GJAE;‘

(2.153)

LS Ge) o, dE'dE:

of, course, although Yij = ey these are different tensors, and this

cquality does not hold in the absolute tensor notation:
=

¥#¢
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Other Strain Moasures

Sinee in Buclidean apace distances are measured by a quadratic form,
tho Cauchy-Groon deformation tensors, and the Green and Almangi. fatrain
tonsars aro by far the moat popular strain measures, However, ag
Wodnranberg [701 han obnorved, any* measure sufficlent to dotarmine tho
f diroctions of tha pPrinelpal axon of atrain and tho magnituden of tha
' principal olongations may bo omployod and in fully gqoneral,

Othor straln measuros of intoront in the presont analyals aro tho
} clongation tensors ﬁ (annociatad with the name of Riot (71, pago 118)) and
; B {assocliatad with the namo of swailngor [72)) as woll as tha logarithmic
strain tonsors fi and i (associated with the name of Honcky [73])). fThese
strain tonsors arc defined as follows:

= =_ == =' =
- L-yFRF - TVIa¥-T s

O

i
"
i

—I_ (2.155)
%(FTF%%%@*Z?) (2.156)
=§="'2L/Q/n(=f'2§) (2.157)

e
|
]
&l
Il—
|
<
- l
]
o)
®I

e

rol-

0 0 ™My rej
B
< <l
-
s F
Ol
I
P

with components

E- i38-E3:87Ei g5 o

E = f:IJf;tJ= E;,,GIGJ= Eﬂé;éa . E:-G-,_GJ (2.159)

e
MR

L
uJ\'«.J

*
As a matter of fact, it is possible to describe strain correctly by
measures which are not tensors; Truesdell points out (Ref. 15, page 269)

"but there can hardly be any advantage, and attempts of this kind have
usually led to confusion if not disastor”.

'y
.
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g

(2.160)

d
- e TS = T = —=d (2.161)
H RHIQL;‘J: "’lx‘{yGIGJ:H GI a” HJ GIG

Rolationp botwoen Straln Tonpern

Tho tonnors 8, 8 V, g, and ﬁ all have the namo principal axon of
ntrain at ¥, in tho roforongs phapo at. ¢ = t . The tennopn 6, E, 3, I
and 11 all havo tho name principal axon of ntzain at R, in the prosont
shape at t = t, fThe rotation tonnor R carrios principal axes of strain
at r into principal axes of strain at R.

Tho tonsors U and V have the same principal values. fThese principal
values, called the prineipal strotches A y! are the ratios of the deformod

line elements dH in tho prinedpal dirgctions b to th undeformed linc
i\
ds '

The tunsors C and B have the same principal values (A ). and these
principal values are equal to the squares of the principal stretches A .

elemonts du in thu gamoe principal diroctions: A

Thae principal values Y of the straln tensor Y are related to the
prineipal strotches by: Yu =5 ((A ) - 1), while the principal values
e of the strain tensor arg e, = % (1 - (Aa)—z). The principal values
B of the elongation tensor ¥ are related to the prineipal stretches by

o
g = Aa ~ 1, while the prihcipal values E of the elongation tensor E are

h—»

=
(=%}

=

Ea = 1 - (A ) l. The principal values ﬁ dnd H of the tensoxs H and H

are egual; that is, H Na s Ha' and arc relatud to tho principal stretches
b3

by ﬁ =H = fn A . The mixed components of the tensor H and the tensor

H in the rcferonce base and the present base respectively, are egqual:
v b

If the axes of deformation are fixed and several deformations are
carried out successively, each principal component of the tensors H and
=
{ in the resultant deformation is equal to the sum of the corresponding

principal compononts for the several successive deformations. For the
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tensors G, 8, ? ﬁ, and 5, E, 2, L this property does not exist, The
components of the taensors G,.G, g, E, ﬁ, § are complicated irrational or
tranagondental functions of the components of ;, and hence in the solution
of problems it is usually better to upe components of ?, C and S, B (mince
thoy arn polynomials in tho ecomponontn of F) rather than B, ﬁ, ﬁ and 3, E

and 1l an measurnn of ntrain,

2,4.3 Qntormntlonvﬁatnqunnprn

2.4.3.) The Rato-of-Deformation Tongor

Tho rato-of=doformation tannor D (also callod ntretching) is tho rato
of change of tho atroteh U orVat R in the phapo at time t + ¢ with
rospoct to that at timo t, in tha limit as &+ 0 (22}

:D = ut(t \/ (‘l:) (2.163)

where, in this notation the subscript t denotes that the presont (timc t)
configuration has boen chosen as the reference configuration. Also, in
this notation [22]:

ﬁ ('E) But('b’) (2.164)

1:&11

If a fixed reference configuration is used, then

-

R-B-dR = 4 & [(@SF]- 4 8. [4RR]
O\R—Tj . c\?‘_:é (J:RAV + dv-dﬁ)

Also, it can be shown that

(2.165)

l

&
w— a——
onvamem— — ——
[

SARET TR e

Components of D are

N\»—

e
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== A . —_— L N |
D= Dis 1T = D\ GG D 6,616,675

8inco Et is symmetric, so 1is B, being its derivative with raspoet to a
paramotor;

ﬁ " T)T Dm = :Dax :Dw” :Dm Dza'hx‘l): . em

Rocalling that tho voloeity voctor v » u = R can bo axpronnnd an

Ve, T, = \VAi Gx ...v; G* (2.169)

Thon:
A 1oV . 2
= — __.'___.i.) 2,
D, z',(a}(q 2%, (2.170)

c%: (G‘ féJ):JZ(é:'—J*-G{“ ')(2.171)

o)
&y
"
r |-
o
H
4
i
]

(2.172)
T ~TL~ K2 i 4 rzo JI
G = ’ii'b G kaz / *’V 5 ) (2.173)

= é‘GxKGKa = ‘%_" (Vz,,; *\].-;y :c) (2.174)

O o
H
¢

1"
I
o

2.4.3.2 PRelations between Strain Rate Tehsors

Observe that the covariant components D._ of the ratc-of-deformation

Ig
tensor D in convected coordinates are equal to the material rate of the

covariant components Yij of the Greoen (Lagrangian) strain tensor ? and
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also are oqual to the material rato of tne covarlant components e 7 of the

T

Almansl (Eulerian) straln tensor ’{;,

DIJ = ;:G;ur: "%;CLJ"' X‘J = éxa’ (2.175)

Dut, thin doen not at all imply that the rate-of-~deformatlon tenror in
nqual to thy matorlal ratea of the Groen and Almannl atrain tennora. In
Lact, thn roctangular Cartonian compononto axo difforont

A ;\ A (2.1.70)
D, #* Xaj # Cio

and tho eouvoctod mixod coﬁmclwntu aro difforonta

XJ =81& Xn‘j = gik Gm D‘,}-" Cl :D; @ (5}+2YE>D; (2.177)
Gf-,- = (6“8.«) = G“em* Gméw""" ’ZD:KB kg T -D:; (2.178)

=20 G s+ T = T 2T € = DT ( 6 - 2e5)

T " -
:D_:I %XJ ‘#66 (2.179)

Also,

37 Srib) e xJ (2.180)
D7+ Yl te
The material rate of .the Green st.rain tengor can be expressed as

Aﬁ,ﬁdﬁsé[@@z} = &?-?‘o‘? = (dF'T‘:T)'i ‘ (?JV) (2.181)
P B F.0E DR

=T

oxr

?
J=3 = (§~')T’7'(?~‘) =R-W-Y U:" RT (2.182)




with componenta
5.3 L]
= * . 3 PR W N R N
X :.'X';J SLEJR YJgigJ,g O/J*S,_&g}:: Y“ :‘TJ (2.183)

The relation betucen the mixed components of the doformation rate in tha
presant canfigura’.ion D} and the rate of the Green straln tensor (elthoer
”'YH or \";’ will ho of importance in the formulatian of tho conatitutive
| aquationn for wie flxed reference confiquration, Thin relation ¢an he

obtalnad ay follows nlnee, from Fg, 2,175

L . \ I .
TC*J = XLJ = Do (2,104)

. ! * 2,185
%:- 3&0 CJ = 3&2 XJ = Gmg I)J {2.184)

roj-
O-
; -
o(.

b 3&96“ :D: = CQb :D; = (5’?',,, 2X£)D;<2.1ae)

X.; ) Ck D:T = (S}Q + ZX&)D; (2.187)

x SN A il 2,188
D_a_z(c )QYJa(C) le (2.188)

The rate of the Almansi (Eulerian) strain tensor admits many interpre~
tations, dince this strain tensor is referred to the turrent (deformed)

configuration. For exa.mpleé the rate observed by an observer that remains

fixed-in-gpace, canoted by 3, constitutes a tensor with components
3

22 B8 ArAd 8,8 & B =7 N - -
€= e,gG G =L 6163"-836;6 = Caqig by (2.189)

d T +
Since TS (ii) = 0, it follows that
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(2.190)

A A
Cryg = exa‘

€3

E = ?;q(—;xéq; A—gfb(ezvgxaa)"’ é,oaxéa*ﬁwémaa
- 0l
*e;JG G =€-:1.d'6 6"'8:’.@(\]’,'(@ ) *e:l'.'ﬂ' V G)
- = =3

= é;a G G‘T -Eww ::G:GJ'E:K :O'G:G (2.191)
Exo‘ = éazir -e:Kv.:O' -V:= e“ﬁ'
:’G""=§-t( ) -67; 5,87 e 5,0+ e 0.6
O J A (v,“,'c;.‘)a‘u =G, (v G")
= ¢2:6,G +es V. G,G7- &V 56, G’

2 n
=3 x
e 5

ol

=; .. - " v:’ y (2.192)
e,a-é €7y - €k ,.a"" «x &g

Another rate is the change cbserved by an observer that rotates and
deforms with the medium: the "convected rate". However, different
tensors are obtained from convected differentiation of different represen-
tations (coutravariant, covariant, and mixed) of the same tensor. For

example, the components obtained by differentiation of the covariant

(convected) components e 13 ¢

7Y 3 A A .
T IK - T I VK
e;o‘ B era e.a = eK‘ e = G G el.K (2.193)
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and tho componantn obtained by difforentiation of thoe mixed (canvoatad)

1,
componentn ”'T
B‘ " P . P’
b 1] -,5’.‘ 3 [ x‘ﬂ' Ka . N
e..‘y 'tac,q egg’ &Gxﬁenﬂ' & HG B?n (2,194)

are not componontas of oo and the damo tennory

A &> A > 4 ey 2.195)
g ¥ & 4 e #e%; e*v ¢

2.4.3.3  spin Ponpoy

The spin tonoor, ﬁ {alosd called vorticity tonsor) in the ultimate
rate of change of tho rotation R at R from the prosont shape to one tho

body had just before or will have just aftorward:
——1 -_—..__—
W = Rt () (2.196)

Motions in which W = 0% arc called irrotational. They form the main
gsubjoct of study in classical hydrodynamics.

If a tixed reference configuration is used, more complicated formulae

onsues
-

Ld .
I JS— a— s
e P g D] —— = oa—

R@IT-WWR e

(2.198)

W0y W GG W GG, WiGE GG,

N & A :
3 =% (%!—é. - %T) MJ - é— (X/:*,J "\]:'J;I>
AV WISV

*whore O iy acefined as the tensoer which obeys A0 = D for any tensot R.
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= P t =

| pPifforontiating tha rolation Rt(T).gt(T)p = 1 with respoct to T, and
I I

‘ notting +© = t, ona Linda that jL}@_ﬁknw:

:\F’\:T + WT = ﬁ (2,200)

} 2.4.3,4__ %he spatial Voloelty dradiont Tonnor
Tha npatial veloeity gradiont tendor T, in tho witimate vate of change
of the Jdafomation gradlont tensor I at R from the prosent shapo to one

\
7
} the body had just bofore or will have just atrtorward:

Tji = F:1: (t) (2,20))

| For a fixed reforence configuration:
“3
—— o =
L a F . F‘" (2.202)
L Also,*

t—: = Gvad ﬁ = Gyad v (2.203)

which justifies the name spatial velocity gradient.
Also, differentiating the polar decomposition

ﬁ(x)"':fé-t(t)'ﬁt (“6)=7, ('t)’—i.\: (v) (2.204)

with respect to T, and then setting T = t, one finds that

ammm——
e

' E = 3 + W (2.205)

This resnlt shows that D and W are the symmetric and skew parts of thne

velocity gradient:

*

Henceforth, Grad shall denote the gradient operator with respect to the
gpatial coordinates X , while grad shall denote the gradient operator
with respect to the réferential (material) coordinates Xy
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B-4(E0) [ WAED)] e

It also expresser tho fundamental Eular-Cauchy-Stokes decomposition of the
instantaneous motion at R and t into the sum of a purn &trotching (B)

along tho mutwally orthogonal axea and a rigid spin (ﬁ) of those axon,
Componanta of E ara:

== A - _yad IJ A~ TR T
L=l Tl = L. GG =L 61641”‘ s G.0G (2.207)

2.5 Stress Tensors

At a typical material point M, consider a differential element of
area dA in the present configuration, and a differential element of area
dA in the reference configuration. The orientations of these differential
elements of area are defined by their unit noxmal vectors N (for dA) and
n (for dAo).

The force transmitted across the differential element of area da
at the material point M is d§, and the corresponding traction vector is

D= %%. Also, it is convenient to define a fictitious force d§ = (?)”1.65,

or dﬁ.ai = dﬁ.ai, a traction vector measured with respect to the undeformed

area t = é%L . and a fictitious traction vector at = é%i. These vectors
©

[
have components:

I\TNNGNG 33 Jp-F.58

U

a0



2,5.1 The Cauchy Stress Tansor

The Cauchy atress tensor, a {sometimes called Eulerian stress in

the ongincoring litorature) is defined as

rorr—

=1:=:z ‘ESI . 235 (2,210)

Components of thls oymmetrie tonsor* are

A - v ~ —_— T~ "
0=Cplil =07 0,05 =0;, G*G7 =025, G @2

The first subscript on a component of 3 idontifios the planc on which it
acts, while the second subsoript identifics the dircction of that
component. The definition can be cxpressed, in component form as:

A A A (2.212)
T:=0,. N,

T 0™ N, =z N’
(2.214)
T:: = Gxﬂ’N‘T = G: Néf

or

—_ A A e T = s
T = OLs N: ;= o JN,G‘-r*O‘;NIG (2.215)

2.5.2 The Kirchhoff Stress Tensor

The Kirchhoff stress tensor ?, can be defined conveniently in terms

of the Cauchy stress tensor as:

*Ib is not a law of mechanics that the Cauchy stress tensor is symmetric.
Truesdell (32, page 14) points out that it has been known for a century
that the presence of couples, acting whether from within the material
like body forces or upon contiguous portions of material like stresses,
is sufficient to render the strdésu tensor unsymmetric. These couple
stresses may arise from inhomogeneity of strain. Some presentations of the
continuum theory of dislocations in finite strain make use of couple
stresses (pola: medium). However, for the present purposes, the couple
stresses are ignored and attention is restricted to the nonpolar case.
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% = .99-"6‘ (2,216)

or, equivalently:

SF = BE): N% (2,217)

whare po is tho mass denslity of the material in the reforence configura-
tion at t =~ to' dofined by:

_ dm .
ﬁ B r— (2.218)
dV.
where m is the mass and v° the volume in the reference configuration.

The mass density p of the material in the present configuration at
t = t is defined by:

[ :‘j_\"_}_ (2.219)
Here, again, m is the mass, and V the volume in the present configuration.
Observe that once a fixed reference configuration is chosen, o is a
constant for a material point, while p is a function of time. The
equation (2.219) for the mass-density expresses a relation between

the body and such shapes as it may assume. To each shape of the body

one may apply Eqs. 2.218 and 2.219 to obtain the same mass for the same

part of the body:
me| P AV - [p &V

If one writes J for the absolute value of the Jacobian determinant, then

a theorem of integral caleculus* shows that
jB EAVA ._.,jj) JdV. (2.221)

*
For example, Theorems 3-13 and 3-14 of [74] and Theorem 8.26 of [75].
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ar

J"‘" ‘ det -F‘:! ”"é‘ j‘xfr "é"‘ (2.222)

Thorefore, one can alac oxpress the Kixchhoff stress T ant

dV = == @ = 2,223
t=dV°U =Jg = lde‘rFow\/;o- -

Since the Cauchy stross tonsor G is gymmetric, the Kirchhoff stress tonsor
is also symmotric., Components of this tonsor aro:

R R MRy A ) RN

The Kirchhoff stress tensor can be defined also from:

dP= Zao (i dA)T =" (md A)Gy = 2% (AN

{2.225)
since from Nanson's relation (page 169 of [50])

Ndi’ % nidA,= Jn; J_Ao = \Ig:mdAo (2.226)
5.

t= dA, Tra i b= T G;= T3 m G (2.227)

>

ow—

&4

43 T A
= .tx t.,]’= “Ltq tg'g n Tag (2.228)

1>

2.5.3 The Second Piola-Kirchhoff Stress Tensor

The Second Piola~Kirchhoff stress tensor § 1s defined as:

_"E- =-ﬁ . 5 (2.229)
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whore t is a psaudo-traction vector rolating a fictitious differential
force dP to the oxiginal arca dA as t & é%i~. Thin pseuda-traction
voctor is definad by tha same mlauon that relates the differontial of
the position vector to the deformed configuration dr to the difforential
of tha ponsition vector to the undeformed confiquration dr, From Eqn. 2.856

and 2,801

w  dR. =
thon chE;

”’1%

and E?;:: =
and '_E =

~i

W

(2.23))

"1 "111

d og. (2.230)
¥
cl E

Bl

agil
n

Bl
o+

(2.232)

ox d"\ﬁ = .}-_:”‘. A.:ﬁ and
Observe that these relations imply
—~ o - - =  (2.233)
dP‘%;""dP‘Gr t'g;”t'e‘x
Writing these expressions in component form: '
— —— R A b e
4P Gz = F 4P P'g, =P Fo53.- IPGs (2234

Sm——

G, -

Tl
Q)

T (2.235)

-%“gg? Frgo=t

Hence

JP* = dP* AT 2.236)

d'PI 4 A-?-'\b .t: "“%L (2.237)
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and, of course
S ~ - =
dP#dP £4+F - e

The second Plola-Kixchhoff ntress ia a aymmetria tongor if tho Cauchy
atroas tensor im symmotriec,

Expronsing the 8Sacond Plola~Kirchhoff strona tonnor § in compenont
foxm:

o~
oo

A t 4 . ) ‘

6:5‘ -"E': "—‘- = 'V l'.-J= "'-'—' (2.239)
417 9'%:3,= S;35¢- 53,3

Its definition (Eq. 2.229) can also bo exprogssed in component form ag

A

T - Lo i A
‘t=V\LSJ8J= ni SJ 8".—: VHS.‘J' ('J' (2.240)

. . . A A
~} v ~ (% .
£ = V\aSJ t"=m5~‘ t"’-{"\; S, (2.241)
3T i=he Sy
- v . | A (2.242)
dP"‘" St’ (VNJAJ 81 = Sj (me'Ao)gJ= SU(GLJAO)B
Obse¢ rve, from Eqs. 2.236, 2.241, and 2.228 that
'.Ej = tJ (2.243)
Then,
ne Si. = hit:q (2.244)
Hence,

5"] = t:ir (2.245)

The contravariant components Sij (with respect to the reference basis.gi)
of the Second Piola-Kirchhoff stress tensor § and the contravariant
components TIJ (with respect to the present basis EI) of the Kirchhoff
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atress tonsor T are equal. However, this does not at all imply that the
Kirchhoff stress and the Second Piola-Kixrchhoff atress are oqual.

2.5,4 The Pirpt Plola-Kirehhoff Stress Tenaor

The Pirast Plola-lirchhoff strasa tonnox T (also called nominal stroas)

in a double tengor¥ defined aci

- e

= "ﬁ_"r (2.246)

ohaorva that tho double tonnor T operatos on tho unlt vector ﬁ, annoclatod

with the reforonce configuration, to producc tho traction voctor t
asgociated with the present configuration. The First Plela=-Kirchhoff
stregss tensor is, in general, an unsymmetric tensor. Components of this
stress tensor ares
= .

W_ = _ ,T =
| = lwul“;r 8.;6.1= 36 T,gg G\;

(2 247)

Truesdell and Noll [40] define the First Piola-Kirchhoff stress as the
transpose of this definition (Eq. 2.246) and denote it with the symbol
'R' employing the following components:

T T 6,576 g - TG O

in their analysis.
The definition of the First Piola-Kirchhoff stress tensor ?. is, in

component form

L-ET'"" L"’“J A /\ - (2.249)
‘t = V\LT G,a- = hLTo;_]'G = V\;T&J J' )
or

BT (e dAYGg =T+ (e AYE= Tis (idAYE o

»*
Sece Subsection 2.4 for a definition of a double tensor.
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A=

) o . -, A A
t = ne T“ t,= hLT: t. ’p\a_-rm (2.25)
) J J

Obgsexva that the mixed components of the Kirchhoff stress tenmor with

roapoct to the present, bagls G

L and tho following mixad compononta of
the Fieat Plol

arKirchhoff atxesn with raspoot to the roferonce and prenecnt
configuration bania, axn oqunls

z L 2,252
'Zfo-= T (2.252)

Alge, the following contravariant eompononts of the Kirchhory,

Pirpt
Piola=Kirchhoff,

and Socond Plola-Kirchhoff stropg tengor are oqual:
,t::ir __THT_ S"j (2.253)

2,.5.5 Relations batween Stress Tengors

The following relationships between the stress tensors

can be shown
to hold:

T = ,%_ o | (2.254)
g- J% F.5. (F- % R-&R -0 .
T-£F.5-ATR 5
o= .:g; T (2.257)
= =, = ==_.'T._ ==_‘.===11 ==:.=== ‘===_|

6=F.E‘(F)~ < TRU (2.258)
T = F-'- T = a—"_T’ T (2.259)




— — o= m=3 = =T :::.T

O = )_% F.5:F'= JE‘RU— R (2.260)
foy o

feseoed == -—w—’ B = T :.mme

7 = S FT= RAW SR (2.261)

R: l.LT (2,463)

Qi
L
Tro
i
_..‘
L]

? (2.264)

N
I
__‘
©

..__S._. ] ? (?,\)T _ -___l__—_- =—u"_|’ '-'-'-ﬁ"r (2.265)

The rolation betwoen the mixed components of the Kirchhoff stress in the
present configuration, in the body~fixed convected coordinate system, Ti,
and the components of the Second Piola~Kirchhoff stress (Sij or S?) will
be of importance in the formulation of the constitutive relations in the
fixed reference configuration used in this work. This relationship will
be needed in later parts of the analysis.

Since the contravariant components of the Kirchhoff stress tensor
component in the present configuration and the Second Piola-Kirchhoff

stress tensor component in the reference configuration are equal:
T o
= = SJ (2.266)

it follows that

'?:i GK"T= S; 8% (2.267)
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ng = Sﬂ %Dj GvTK = S; Ci - S} (5}& +2\(i> (2,268)

Hence, the mixed camponents ake relatod by:

Tz = Ci Si = (82& + 23&{)61 (2.2689)

or

b b
t':::(:“ S =(3&2+2,)12)S (2.270)

2.6 Stross Ratoo and Ratos of HSagond Oxdor Tunsors in General
The time derivative of tonsor £lolds, such ag stross, that aro
asgociatod with the prodent configuration, admitg infinitoly many

definitions, deponding upon the observer used to compute such timo
derivatives. For use in congtitutive

equations, it ig conveniont that the
following conditions [76]) should be satigfied:

1. The Leibniz rule of differentiation of a product,

2. The time derivative should be a tengoyr quantity of the
same type as the original tensor; in particular, if the

original tensor ig symmetric, its time derivative should
also be symmetric.

3. The derivative should be defined uniquely; i.e., starting
from one definition, the same tensor should be obtaineqd

by differentiation of various representations of the
same original tensor.

4. Vanishing of the time derivative of a tensor should

induce vanishing of the time derivative of itg arbitrary
invariant.

5. The time derivative of the tensor should vanish when the
material point of a continuum with itg environment perfovmg
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a rigid body motlon and the tensor does not vary in time

Intrinsically with respoct to the material point,

Ginco tho first time derivative of a tonsor (defined in this fashion)
conntitutes a now tonsor field, sacond and higher time derivatives can
b dafinnd by considoxing thin field, It, thoreforo, nufficen ta analyen
in dotall tha definition of tho firvpt time dorivative,

Throa difCorent typon of obiorvorn witl bo connldorods (1) an
obrinrver that ntaya fixed in oan tnnxtial frame, (2) an obporver that
rotaten and movon with tho bady, and (3) obnorvera that move, rotato,
and dofovin (in difforont fachionn) with tho hody.

The tlmo doyvlvativo, dofinod from tho viowpolnt of an obnorvor

romadning at root in gpaco will bo called tho "fixed=obgorver rate!., Mo

timo durlvative, dofined from the viowpolnt of an obuerver that movey with
the particle, partielpating in itu rotutional wotion, will be called the

"go=rotutional ratae".

The timo derivative, defined from the viowpoint of an obasnrver that
moves with the particle, participating in its rotatory motion, and
deforming in common with the continuum, will be cailed che “convectod
rate" (there existe more than one type of this derivative, according to

what one defines as “"deforming in common" with the continuum).

2.6,1 Rates of the Unit Tensor
It is intuitive that a good definitiou of the time rate -~f a tensor

would make the rate of the unit tensox 1 vanish. It scems approp: iate,
therefore, to investigate what time rates satisfv this condition.

(a) Fixed-Obgerver Rate
It will be shown that the fixed-olsserver rate, denoted by (ca)' of

the unit (metric) tensor vanishes:

[~}
k——

j_-'-‘és;t(i)=:6 (2,271)

In the fixed-in-gpace Carterian represefitation:
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=

(o A —
I- dt (S‘J L"IZi) =0 (2.272)
glnca
.d_..<.f;, = 6 and d__ SiY=0 (2.273)
dt ) dat ( )
In tho convactod system, with the reference confi'guration metric 9 j'

R L T

and simi 1ar1y for

L-5 (5330 5 (559)-0  om

In the convected system, with the present configuration metric G 3’ this

result is not trivial, since:

I

Ges 70 G™%0 G.+0 G+ 0

Employing Eq. 2.84, one finds:
T-%(6.,G°G%) = Goo GG +GulGG + G, G
'G;aG:G;"' G:ﬁ!( ,KG )6 szG:(‘Va — K)

(2.276)

=(,,G°G° -GKaV,:G G - G. VG
(G:a- - G V,=6KJ>G G GG’
6:« = G“ - G—"“V’:a -V Gus (2.277)

But' froni qu 20172

Chn Ol

(2.278)

]
6:6’ = \7;,17 +\7;,:t
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Heneo

= 1

G:m- = 0 _j_ = O (2.279)

Also, for the mixad compononts:

.—-—.
"y

1-5(8G.6% - ;6,6 636,67 536G
- 63(V3.G)G+ 6,8, (V.G
= 81V G.G' - S1V*.G. G
“(Vie -V9)G.6- 86,60
I-4 (6 6.8 676Gy~ G76,5  GG.Gy
= G766+ GV, B)8s + GG, (V4 E.)
=G7G,G,*G VL GG, + GV G,G,
=(G*+G™VI, + V. G)G.Gs= G*G,5;
6:« G:a V::r v;r:t aen

But, from Eq. 2.173
6 == (V , ¥ s (2.262)

Hence,
o= |

G™-0

-l

ol

(2.283)
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(b) cConvocted Ratoes

The convected rate ig the time dorxivative of the convected components

of the tenpor, TFor oxample, for the unit tonsor:

A
.-::m - —z=g A e (2. 284)
1=0:G" G 2 G0 GGT

Honco, omploying Eq. 2,172

A .
_ _ (2.285)
2

I = Z;:E) (2.286)

Another convected rate, denoted by (v ), can be obtained from the material

rate of the contravariant components, as follows:
< ST R = Sxzg = =3 (2.287)
From Eq. 2.173:

»

él‘v = G:Nr= _ Z:D::.r (2.288)

Therefore,

= = -
i = - ZD (2.289)

< >
Two other convected rates, denoted by ( ) and ( ) can be obtained from

the mat:rial rate of the mixed components: '
—— . — D
T .= =T
1= S: G:GJ X CHENCHC (2.290a)

Hencee

»

P
Gy =863=0 (2.290b)
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Theoroforae

B =
{ = O (2.290¢)
q
) _ [ * \_.-.‘T- d .z —-a,...u (2.291a)
i. = ES;I CS 65:: = <Eiq-. Ca Gi]: o
Haonce
p x ol o |
Gq = 63 =0 (2.291b)
Therefore

Jﬂ.' =

1 =0 (2.291c)

4 >
which shows that orly the "mixed" convected rates ( )} and { ) of the
unit (metric) tensor do vanish; while the contravariant ( ) and covariant

A
convected ( ) rates of the unit (metric) tensor do not vanish.

(c) Co-Rotational.Rate

The co-rotational rate can be obtained frem the additive decomposi-

tion of the velocity gradients, Eq. 2.205: A
p < X b o - 3
L»ng,a"DJ +W'J (2.292)

The expression for the fixed-observer rate (Eq. 2.277) in convected

coordinates can be expressed as:

. a 13 =\_Ci:o," Gz« (Dfr +y:j) B @EJE_I)G»@

R A4 \'d
Fixed Convuected Doformation Spin  Deformation Spin {2.293)
Obscrver Rate Rate Rate
Rate

Therefore, the co-rotational rate (the rate obscrved by an obscrver that

rotates but does not deform with the body) should be




o

. .
—— K -~ K ,
G = - - 2.294a)
T G:NT CP™ :Dir D;Gnir (
Co~Rotational Convoctad Defarmation Doformation

[+) . .
Gxa’ = G;W - :D;a "':D;q = Gx;r - 21)10‘ (2.294n)
Honce, from Eq. 2,172:
6;; =0 (2.294c)

Similarly:

G-GT+G™DL +DLG"

(2.295a)
~aT T T g T
=@ +DT+D T2 37 42D
Hence, from Eq. 2.173:
o ,
6.‘.:.-8‘_ o (2.295b)
Therefore,
= =
1 =0 (2.295¢)
The co-rotational rate of the unit (metric) tensor does vanish,
2.6.2 Rates of the Cauchy Stress Tensor
2.6.2.1 Fixed-Observer Rate
The fixed-observer rate of the Cauchy stress tensor in Cartesian
coordinates is simply:
2 Py = (3
= c L) = . = .296
()’}: Ci1: (<3;f47 b J <32b0 l‘tlu CI;Ar (S:tir (2.296)




The fixed-obsorver rate of thoe Cauchy stresas tensor in convected curvi-
linear coaxrdinatons, is obtained by taking into account tho time rato of

the base voctors,

Contravariant Compononta

= (2.297)

5 = & (07°G,5) - 0 G.Ge 0 GG, 0BGy
= 5 G,G: 07 (V5. GG + 0¥ G, (V3G
=0"G,G; vV GGy + 0™V, G,G,
= (6 + V=, 0%+ V7, 076,650 G“G, G,

8:a= C').:er+ VTKGW* O»:K‘v“J"K

Mixed Components:

(2.298)

=52 5,67+ 0% (V. GG+ 02 G, (VI.GY)
~U:JG G +0’;V,K6 G’- -0k V 36 Ga
=(52; +Viwos-02V, ) 036G

GJ Cy iT + V 'K G J G K
Covariant Compohents:

ﬁ

(0:1:0 -G- ) _pa‘ G:GU*' O-:r_a‘ -GIG€+ OE-;; GIG




i

iz G G+ 0,0 (V= GG+ Oz G CVTG")
0.e G*Q7 0, VS . GG - 0 Ve GG
(G2e-V", o, - 6 V'5:)G*G = 5, G=G7

= - O _ K _ K
UIJ - g 'z O.‘K‘a O}K oV

il

]

(2.300)

2.6.2.2 Convected Rates

The time derivative of the contravariant components of the Cauchy
stress tensor in convected coordinates, was name

d the "convected rate" by
Oldroyd [77).

This is one of four different tensors that can be optained
by time differentiation of the four components (covariant, contravarian

and the two mixed components) of the Cauchy stress in
nates.

t,
convected coordi-

This "Oldroyd" rate will be identified here as (¥
convected coordinates:

&5 d W\~ A _ exe”m -Vﬂ,-—-—'
C)- - ('Eli: CJ' ) (ESJ:(2547 - <:’. (Ea;g(ziif = (5' (Ei;;(ziir
aN— ' (2.301)

(J- T

-t in Cartesian coordinates:

x
= (szir i L‘F

N

). Therefore, in

Oldroyd {77)] shows, .

qQlla

- A A A A A
20= Ozq - Vz,« Ok - Va,x Ozx

Another convected rate

C]F><3

(2.302)

can be obtained from time differentiation of the
covariant components of the Cauchy stress in convect

stress rate, identified by (A
In convected coordinates:

ed coordinates. This
) was analyzed by Cotter and Riviin [78]}.

€8




a2

o A “SE AW
5,.0 0
(2,303)

= (é‘j:c Gxa)GIGJ’ O:a GI. 20,

]
Y = (};if
WWM_
tor and Riviin (76] show that in Carteslan coordlnatons
s &
——— - -
(2,304)

>

9

o>

cot,

A _ A A A A A
G-I‘T = Cy:;--ka)': O’KJ“*-VK)JO-:;K

es can be defined by time differentiat
coordinates, as shown by

ion of the mixed

other convected rat
nents of the Ccauchy stress in convected

compo!
Masur [79 and 801

o.—."a Px

56,0

5= (4 0%)G.G7- 0756 G.G
. (2.305)

= _ <
G= I O,a'
Fron
5207

z R
0 = Our bl
N - A A A A
U;q = O;J O:.,K GK“ + VK)‘U 0.3-\‘
(2.306)

2\ FIC oo T RS (o . =77~
(3360} ) GJG: = Oy G’G.=03" G'G:

(2,307)

w

4'02 A
G-J' O'.a.
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(2, 308)

6 A A
K, U wd T Y Ogg

2.6,2.3 LCo~Rotational hato

The co-rotational otrosn rate here donotod by (0), in the convoectod

coordinate oystom can bo obtainod from the flxed-obscrvor rnto in
nonvoctod coordinates by roplacing tho voleeity gradioents V "y e Dg + WI&

by D (thoreby eliminating the subtiraction of thoe spin tensor w? from the
convected rate). Hence, in convected coordinates:

- e

'.g:' I —— e
O-'= O.:h'l G::Gir U= G Ga= G:GG'. -r -CJ

Oy b: (2.309)

o Xy X = «3J TR T
O™ =07+ D07+ 0 D (2.310)
ES'J? =:(3:: ‘¢ :[):. K _ ~oT -I)l< .

) ‘T KGJ GK 3 (2.311)
e . K ®

2o = Oz "Dz O0us - (i :D.J (2.312)
A A N A N A
Oy = Oxs ’\f‘fxx Oxks ;\"]x:rk Oz« (2.313)

The co-rotational stress rate in Cartesian coordinates was first
introduced by Zaremba [81], and later on by Jaumann [82). Noll [83] and
Thomas [84] rediscovered this result. The co-rotational frame is referred
to as "kinematically preferred co-ordinate system" by Thomas [85] and the
co-rotational stress rate is denoted as the "Jaumann stress rate" by

Prager [86].
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An altornative way to ohtain the co~rotational rate is from the
average of the convected ratos of the mised componenta, as shown by
Magur [79,80]:

= A A

g = = (O‘ + G‘) a(‘ym Vz,nqmwm 6?: mx%mmffv,‘gn)f;q(z'”‘”

;\ N A N . A A

e " Oy \"7::;« Oks ww%n “Ogqgt (j:,'v:\,\]"‘_‘.r - wmﬁ;r (2.315)

A

2.6.3 Rateo of a Socond Qrder Tongar

Rucapitulating, a sccond order tonsor 5 having coemponents:
== - T~ s~ rd rx vyl
ﬂ-“-».ﬂ.;;; by sz& G;GJ"&-JG;G’&:JG G (2.316)

hag the following rates.

[
2.6.3.1 FIXED-OBSERVER RATE {}

= A -
- (2.317)

T . wJ Tw -a‘
), = LO_,’ +V: D+ L (2.318)

o TEERY TR VAo ORI o R A @2.519
TJ 13 » X KI = T

=

S

.::- X X T K
D37 +Vocdh s -V g (2.320)

mo:_ o:- K P o K
Lf)-l.a'. = . V 337 LQK‘ + LQ-J_Jv 5K (2.321)

A N A ,
‘ﬁ":a’ = Slq ’W;K Sdug + &:KWKJ (2.323)
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L e S L Tk~
O = 7+« DEOA + L Dy
(] »

QF = 05 + DR L - T D3

o .
3 N 4 3 N & T ~ o W T
\,Qa;f."-- i "”DJ "o +"~Q"J':DK

ﬁ':a‘ = L‘(.2‘.1:19' _D:: Jlus - SLae D

v a4 P
2.6.3.3 convecrsp rares 3, 8 8 8

< H
q.
)]
oM
&4

>a D2 v Dy
&
i 1]
. b}-
"
'
<>
Ry
r 3
[
4
+
é§:>
“
‘;:)>
%

(2,
(2.
(2.°

(2.

(2.

(::o

(2.

(2

(2‘

(2

(2.

323)

324)

320)

327)

.328)

329)

330)

+331)

332)

»333)

334)




T ——

2.0

,3,4 Ralations batween Rates of Second Order Tensors

Tho

=1
tonnor 4

follawing xolations botween tho various raten of a second ordoer
can ba ahown to haolds

P ot

= = = = =
Q- WD W

-

9]

ﬁgé éé& L] ol o] e N
Q=0 +0C-0« Hi-C .30
=§;= é%é JU— m = TR e

LCL = Q - L O - e L. (2.337)
2 £ — == R

O =5 -LC N +SL-L (2,338)
‘g" '—9—“ — — —— "--""'-’:T

o= 8L + LT-8L - Sue b (2.339)
é :-9:-' — — ——— oy

=0 + D+ LD (2. 340)
AR o — ==

LQ =|.Q. - D'\.Q. "tQ.vD (2.341)
= = — = = ==

ﬂ "LQ-«":D‘\_Q.: + 0L D (2.342)
;ﬂ__ =éE= st —_— o= ==

S = §), + D-SL "LQJD (2.343)
-2 = W s X

%oy 820 B

ﬂ 2 Sl S 2 (2.344)

=
Note: (1) The fixed-in-space observer rate, denoted by ( ), does not

gsatisfy condition 5. Foxr example, the fixed observer rate
of the cauchy stress tensor does not vanish when the body

pexforms a rigid body motion and the body remains unstresscd.

(2) The convected rates identified by (V) and (A) do not satisfy

conditions 1 and 4.
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(3)  The convocted rates Ldentified by () and () produce
unaymmetrle tonsors evoen whon the tensor being differentbated

was originally symmotric,

: (4} the eco-rotational (Yaremba-dawminn) rate sallsfien all five
condbtionny Truondoll and Toupln P19, e 2427, Prager {oog,
and due Showg=hong [76] oxporannod opdndonn in des favol
Lelmann [87) intorpratad tho comrotationad vido an eovar §ant.
} Mflorentdation with raopeet ta timo, by Introducing time as
the fourth ecoordinato In an appooprlato mannor.  Roforo
Jehmann, Thoman {88, p, 83] had alroady Intrestuced the name

Meovariant time derivative" for the co=rotational rate,

2:0.4 Co-Rotational Rate of thoe Kirchhotf Stross Tensor

k.
The co-rotational rate T of the Kirchhoff stross T with components

?IJ in the present voector bases, is

L2, 6 = =g o gy

~ o :a F a3 o b 4 — Lol L P Lralhuel (2.345)
't - t u:GJ = o G; G = t:a' 6 b ("1\3 \v;‘j

Cartesian Components

-] .
A

A A
A 0 A A Al 7‘ (2.346)
t‘:::r = Tzg ~ W:KtKJ T Tawk Wia

Contravariant Components:

S xy ’ x R K J (2.347)
T = ‘Z:::a‘ + :[)|< 2: + ‘2: :[),<

Mixed Components:

S« ~ T K .
Ts=T: + Dith - Tk Dy (2.349

Covariant Componentg:

o . K
’C:Jg t;to’ - :D: Tkas ~ Zzu:Da' (2.349)
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2.6.4.1 Co-Rotational Rate of the Kirchhoff Stross Exprossed in

Toms _of the Hocond Piola-Kirchhoff 8trona and tann Green
Strain for a_convoctod Coordinate Syutem

Thin rolation is wnoful in an analyaia formulated in torms of a

raforence configuration, Tho follewing oxproacions ara uned (moo Eas.

2.140, 2,175, 2,188, 2,266, and 2,270)

Cxe Al ©o R _ ci t
T SY C:,j é} (Eiu;r é%j + Z-W{J
TE . S"j’- 8J1J S& XS - 8‘&?’3:1. &&GW,: C

- - Y LA _‘ak= K
Gx«"C&k 8&& +2%:k :D:a" X‘J-JZ-C:) C ) G

From these equations, and Eq. 2.347, one obtaing:

Contravariant Components:

4

T3 £ + G¥ D2 + 2% D G

2. &5+ 4 [GSN « 5G]

5 : o N ' . Y il (2.350)
227 = 59 + SP ¥ [sh(Cr () sh]

Mixed Conmponents:

One can obtain these compohehts from any of the following relations:
c%:_,°:~6 0;_1[ iﬁ KE .
;"t NT tar‘;\ Gw *6 ZJK

o — 4 g . IK o
z;‘z, 1 +G Gm.'txlil

Employing the first of these relations, one obtaing:

(2.352)

75




576" G + ¥ (G 6e + 6151
# S04 Gue + S g™ ¥ 5,6 G S Hn
= Su(E2Y) 1SRV TG Gue + S VT g
= S (6] +243) + SLY1G G +S,, ¥}
= 50 (87+2¥7)+ Sp YT (848 + G G
= 87 (quy+ 24m)+ S Yt [B4 6 + G765

o i ~m om v 0 & 2.352
25 =5.CT+S 17 [8isj+ () Cul 250

s ,

P m m i INE 2.353
82=8"Co + S (8065 + (€ Cul| @

il

2.7 Energy Equation

The internal enexgy integral U over the present volume V can be
expressed as a function of the Cauchy stress 0 and the rate-~of-deformation

| U’/VL;&“L]S&JV | (2.345)

One may write U in terms of the following components in the Cartesian
and in the convected coordinate system:

U‘Uﬁ’;,rf),,, dtdV Ut gD, tdV
.-.-); L (i D’q AtaIV =ij 6'3_ :Di 4t 4V (2.355)




Tho onexrgy integral U over the volume V0 in the referenco confiquration

at t = to, can bo casily obtained from Eqe. 2,223 and 2,355 an:

U-f [o:Dgadt -f [Z:Dw

whore, as in kgu. 2.218 and 2.219:

_ dm _ dm
o F7av
Henece, the energy per unit mass U is:

uggll__l JUdG 4 JUL
Vﬂ
4

[

d\, dwm _P(r t) dV,
%"""‘I-)At (2.357)

(2.358)

ox

%_-33 = ﬁ (F,to> D., (2.359)

q ;:=5 =_F ('—R-_)t) a (2.360)

These equations express the important fact (for constitutive equations
baged on thermodynamics principles) that the scalar product T:D is simply
reiated by a constant (po) to the power per unit mass é, while the scalar
product 0:D is related by a variable (p, which depends on the deformation
history) to the power per unit mass é.

It can be shown that equivalont cxpressions for the internal energy
U arc:
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u- jj :DdVdt = jft . DAV, dt - ”5 F IVt
L,"‘Z§=-CJV,Jt =j_( (f)"‘: FJ\Z,AtajLT.. FNAt (2.361)

Thorefore, G and D are conjugate variables for the internal strain power
per unit present volume V; § and Y, 8 8 and c, T and F, and T and D are
conjugate variables for the internal strain power per unit reference

volume v
For the conjugate variables T and D, the energy expression in terms

of the components in the Cartesian and in the convected coordinate system

in the present configuration read:

u = J L%::a’j\)za J\Ldt =J[ T:JDIJJV;Jt
| [ e DVt - ) [ vz DIt

For the conjugate variables S and Y = 1/2 C, the energy expression

in terms of the components in the Cartesian and in the convected coordinate

(2.362)

system in the reference configuration read:

L S“JX Vo ot _[' Sg A\Z;j O\V;
=L [ ¥ amat [, oy, I
SV -], e o
gjt J'vz S‘j \J‘J JV"At ) Jv, jm S‘J JY‘J dV.
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For the conjugate variables 7 and I the enorgy orprostslon in terms

of the components tn the cavtonian and in tho wile formed conveeloed conrdi-
nate uyntem roads .
- A , A ~
W= T, dNt=] | T 4V,
SV I Y I odt W g C‘ F;t o

t o " ¥3i

j[T PR -] [T 9P Y

{2.304)
ST FaWat - ) THF 4V
T AL [ T
Obscrve that since D5 = Y i ‘“m' equivalent expressions are:
u"'JS :JX JVJt jJ“:} IFJXLJAV
[, 0% e dVit =] J, o TdencdV o

= =
However, note that o and Y, and 0 and e are not conjugate variables, since,

for example:

u%' L LT 6;5 §‘J Jvo\'\i A U%Jt LG;J é’xo’ J\]’Jt(z.me)

This scemingly simple distinction has Been the cause of confugion by many

authors.

Observe, that since
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and
. .
:Dgg- = Y\-J = exa‘
then, equivalent oxpressions aro

U=f [, v gydVed [ [ v o¥ydw

%

| f v et = [ [ 2 e dV.

Caa

NIRSh DL VLt
= [( S o dVat-[ [ ST dessdV.

9:6

=JJ Twéw JVOAJC=JVJ T“Aew JV, e
I TV Vet - [ T ¥ 4V

= = ==

However, here again, T and Y, T and 2, and D, T and D, S and e, T and

*

(D He

and T and ? are not conjugate variables.

2.8 Specializatiocn: Homogeneous Uniaxial Irrotational Deformation

The uniaxial tensile test is a common and simple way to charactexize
the stress-strain relation for a given material. Since the tensor
components used in the constitutive relation will have to be related to
this uniaxial test, and also to gaim a physical understanding. of the
quantities involved in the analysis, it is both useful and ingtructive
to express the tensor quantities previously discussed in terms of the
uniaxial tension test variables. A homogeneous, uniaxial, irrotational
deformation will be considered. Then, it is evident that the curvilinear
convected coordinate El is equal to the Lagrangian Cartesian coordinate
3 for a bar with no initial curvature:
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i
E,. - xg, (2.368)

Observe that &l and %) are not functlonn of time (thoy remain the same for
a given material particle).

If the original length of the bar is Qo' and itrm presant longth is 2,
then the Bulorian Cartesian coordinate Xl in

Rl

If the unit vector dirccted along the axis of deformation is il' then

—L--,-

a = L (2.370)
Ji=g =™

= “'= i (2.371)
8“, 3

and

The deformed base vectors are:

- A |
= &1 = =7 (2.372)
(E;AM 'Eo i (Ei ‘£ i
and the metric of the deformed configuration:
2 2
G“.‘z —f—; Gu= '/%i (2.373)

©

so that the unit.second order tensor is:

= - - 1-14 = =4 Y -
ﬂz-‘-—i Pz"— _ - =ra —, = (2.374)
=-'PG G = faGLGL = 1616 =-16°G,
The posi:ion vectors are:
— A - — -
V‘=Y’AL1=X1LL=F"3L=Q%1 ?’ierBris X‘i
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(2.375)

='R*-G-,_-r*gi=xi X, T =X,04 %x,. (l- kG,
, | I ) (2.376)
Ut (- $)x W, =% (4- 3%

The velocity vector is: 2

v =0,% Vgﬁ\ug VG VG
l

Y E' =X, = consT.

A@(A

ViTat X,= CONST, L X

j
I

V=wa.'V G, =V,G"- Vi—-u V%

. f’ p, (2.377)
V 'Tx‘_ Vi:"""'—'xl

A
\/ Vi= V‘_
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e time ratos of tho doformed haso vectors aros

C‘G& B\/—t —“
dt T 2%,

4G' . a\76,__g;-6

-

dt A Xy

-—C:- = ——K L1 (2.178)

L
L,
B

i -

Laard 6::

(2,379)

b\a-a-

2.8.1 peformation and Stngin Tonsoer

p=3
The components of the doformation yradient tensor ' are:

& BX‘ -2- (2. 380)

F- 25)(‘ = ﬂ

Cartusian Component:

Double Tensor Components:
==& Fri=4
Fu =1

. -1
ij =F-"(JGK3' Fii A

C . p' e t (2.381)
Frx . ::F-fpcaxx ! Fri . f:

Components in the Convected Coordinate System in the Reference

configuration are:

Fig =55+ Wk
F:'ia - 1‘*_ B\L = 4 4_<:£° i)

33(1

>

. i R |
F}A.:F =F£1=F1f— 1 (2.382)
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The components of the apatial deformation gradient taensor ;"1 ara

Carteaian Componont:

(%7 e

Doublo Tensor Componenta:

(F*)" = 6k (Fs- 4
(o ST G s
(F57=(F)" 9y (Ft- 4
(Fix=(F""x g4 (Fy =4

Components in the Convected Coordinate System in the Present

(2.384)

(FYhegi- W (F)hea-Ses (i
(FY* =(F)aG™ (P kg &

(FYp = (FYiGas  (Fu=4i-f
(Fh = (FG*  (F)ite b £

Since an irrotational deformation is being considered, then the

orthogonal rotation tensor is the unit tensor:

oo —
'R. = i (2.386)

aAnd for this special case, the right and left stretch tensoxs ﬁ and V
become both equal to the deformation gradient tensor Fi
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LL” \/” F (2.1387)

compononts of the right astreteh tonsor in the Cartoslan ayntom and

in the roforoncn configuration of the convocted eoordinate nyatem aros

A 14 !
U,=U- u'i U, = 1, (2. 208

compononta of the loft strotch tonsoy in tha Cartonlan syatom and in the

propent configuration of the convactaed coordinate aystom aro:

¢ ‘Q o . ’ 2,389
V,,_"'\/i: 1, V“"% Vit = %:‘ e

Obgorve that the value of the stretch tensors is equal to unity for no

deformation, and the possible range is

A A
i i (2.390)
- = =
0< U, U, =Vy=V, <0
The right Cauchy-Green deformation tensor = 62 has the following

components in the Cartesian system and ia the convected coordinate system

A : ﬁ"
C“. = C: = C‘“‘: C‘“‘ = G£L= 'j} (2.391)

The left Cauchy-Green deformation tensor B = 52 has the following

in the reference configuration:

components in the Cartesian system and in the convected coordinate system

ia the present configuration:
4

A 2
i
:BA:‘_:B;: = i%-l :BL = .'-i-. Biia %74 (2.392)

Observe that the value of the deformation tensors is equal to unity for

no deformation and that the possible range of values is:

A A
0<C1L=C:=Bii=Bi<+w (2.393)
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The Green (Lagrangian) strain tensor ? is defined as

77—. %(6~T) (2.394)

Thorafoxe, Lt han the following compononts in the Cartenian and in the

convacted econrdinato ayatom in tho referonen config retion:

A %
" i 4. (1 ) (2.395)
= = = L ol B T e
Xu. Yu. X:L Y Yo" 7\ [ 4
Tho value of thin otrain tonsor roducoo to zero for no dofermatien, and

the possoible range is:
i ¢ 4
The Aimansi (Eulerian) strain tensor e is defined as
s = =.
e:%(i- B ") (2.397)

therefore, it has the following components in the Cartesian and in the

convected coordinate system in the present configuration:
2
b, -et=4(1-§)
€u=€i= 72 )
2
eu=%(%-0=ﬁi
w 4 0 _P‘)
e > I%(i I{- (2.398)

The value of this strain tensor also reduces to Zero for no deformation,

and it has a possible range:
‘ N 1
‘ ——
- e, =, K+73 (2,399)

The elongation strain tensor § is defined as

= ==

- [L' i (2.400)

86

i




A

T

2

Thersforo, it has the following components in the cartesian and in the

convocted coordinate aystem in the raferonce configurationi

s . .
Eug E“ggimﬁ’l*z E:“:: —f— (2.401)
o

Observe that this uniaxial componont in axactly equal to the no-called
"onginoering ntrain® by tho anginooring litoratura that in moanured in
unbaxial tonoiio tostn. Thio strain tonpor aloo roduween to zoro for no
deformation and it hao tho following possiblo rango of valiogos

-1< Eu. <+ Q0 (2.402)

The clongation strain tonsor E is dofinod as:

= ] -4
E=1-V (2.403)

Therefore, it has the following components in the Cartesian and in the

convected coordinate system in the present configuration:

EurEi-i-}

| (2.404)
Eu D ( ,Q,) Eu’]%(i'%)

This strain tensor also reduces to zero for no deformation and it has

the following possible range of values:

A 1
- 00 (E"‘E., <+‘i- (2.405)

The Logarithmic strain tensor H is defined as:
—3

m "‘»W:a— (2.406)

therefore, it has the following components in the cartcsian and in the

convected coordinate system in the reference configuration:

87




A
[aY]

Hu= ki He R, = i)

Tha legarvithmic atrain tonaor 0 la defiped an:

ifj » ,8“r§7 (2.408)

it has the following compononts in tho Cartonlan and in tho
convoctod coordinato nystom in tho prosont configuration:

Hu= His Iid)

' 2

T (2) . );‘(_f_
H =-£%2*]; H,, T~
zaxo for no deformation and thoy heve
the following posaible range of valueg:

A
eu.‘s H“‘H:"H“’ﬂH:
EI( .P‘,)go (2.410)

-0< EX <+

Obgerve that this strain tensor, unlike the other

Thoiaﬂorn,

) (2.409)

These strain tonsors algoe reduco t

strain tensors, has
a symmetric range in tension (s > 0) and compression (e < 0). Aalso,

this strain tensor is called the "natural strain" or "true strain" in
uniaxial tension tests by the engineering literature.

2.8.2 Deformation Rate Tengors

The rate-of-deformation tensor B has Cartesian components

A J a(%,xt) X, JZD D |
D“ 5‘5\‘3“ BX; % Pﬂ '2‘ (2.411)

and components in the convected coordinate system in the prescent configura-
tion:
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O“ =,__ﬁ'. % (2.412)

Obscrve that the material rate of the logarithmic strain componont
*
€, 18 oqual to tho mixed compononts of tho rate-of-deformation tensor

A
v =9 (h)=4-Di-D
= = = - 2.413
D“= ew dt ]: ,f, Di 44 ( )
The material rate of the Green strain ténsor has the following
components in the Cartesian and in the convected coordinate system in the
reference configuration:

_ < VE TRV o/ 4l Iy j« |
Xuz Y“’f' Xi =XA.1 =X = ]:3- I (2.414)

The material rate of the Almansi strain tensor components in
cartesian and in the convected coordinate system in the present configura=-

tion are:

[
L]

R
é""=1%% g4 %’; (—yz%}%— (2.415)

Observe that these convected rates are not components of one and the

[4

game tensor. However, the fixed-cbserver rate of the Almansi strain
tensor components are components of one-and the same tensor. For example,
the components of the fixed-observer rate of the Almansi strain tensor in
the deformed coordinate system are:

=

i |
eu"}: e,= Jg e 517]' (2.416)




Relationships botwoen the compononts of tho rateo-of-deformation
tongor and the material rate of the Groen atrain tonsor can he oasi ly

obtainad for the uniaxial case; for eoxample,
. °, 4 Y} ‘ 1 .5.
¥i= Dy ¥,- %3 Df(bzmh
| :Di - X: (2.417)
1 (1+2Y))

4.8.3 Stross Tonsors

The unit normal vectors to the deformed and undeformed areas arc
one and the same unit vector directed along the bar axis, since the
deformation is uniaxial and irrotational. Therefore,

I\”T«--W_-.Tf'gﬁg"
Niz 1 Ni=% 1’% (2.418)

A '
n,=n,=n"=4

The force transmitted across the cross-sectional area of the bar is db
4P-dP.7,- dP'G, - IP. G
dP, - 9P

d ‘Piz % dP Api =

The fictitious force df = (I?‘).1

(2.419)

dP

e

Ao

. dP has components:

A ~ ~
dP, = dP-dP, - L 4P 2420
Also, the corresponding traction vector camponents are:

A + P _P
Ly T-x SN
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(2.421)

»|J

The Cauchy stress tensor a is defined ag:

L e S ey ——+

T =N ."63 (2.422)

Therefore, its Cartesian components are:

315:: Tty (6, T.TY)
A P (2.423)
Cu = A
which can also be expressed in terms of the ref-rence area by the law of
mass censervation:

}Oo-v; =_FV .P"Ao Do"fA«Q

4 _ £ l (2.424)
X"AL%

o

Hence, *

& _ig?_L

O_", ;u. A D (2.425)

g

The components of the Cauchy stress tensor in the convected coordinate

system in the present configuration are obtained as:

*

The components 311 = Oi + are called "true stress" by the engineering

literature.

e e

91




Therefore,%

h
‘Q
| ol
Q)i
™
Q)
Nl

2
"
i
‘oto

>0
e

G»u.

o %ol | 1o
i ==

0

&[>0 ([0
oto

{ s [l
[}
o

The Kirchhoff stress tensor is defined as

ll

T-£T

(2.426)

(2.427)

(2.428)

Therefore, it has the following components in the Cartesian and in the

convected coordinate system in the Present configuration:

Observe that the uniaxial component

Tu=Ty

A

*
See the footnote on the previous page.
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(2.429)

(2.430)

(2.431)

(2.432)



is the stress actually computad in most uniaxial tension tests and is
"true stresa", since it is usually assumed

also inaccurately labeled as
to be oqual to the "true atress" because p ~ Q) is satisfied almost

idantically for most metals in the plastic ragion.
The socond Piola~Kirchhoff strass tensor ls defined as

R{ = ‘y'; . g (2.433)

Therefore, its Cartesian components ares:

}::o %-T‘ =1, (Sy T$T$>

A P L_p P 2.
SLP-BEE] e

convected coordinate system in the reference config-

The components in the

?Lag -5-(s13)

uration are:

Si‘ Sug S“___A'E_o %_ 5% %%i (2.435)

S11 between the contravariant com=

Observe that the relation Tll =
ponents of the Kirchhoff and the Second-Piola Kirchhoff stress tensors

is satisfied.
The first Piola-Kirchhoff stress vensor % is defined as:

.t =n T (2.436)
Therefore, its Cartesian components are:

E‘ Ta = Ii.(-/i_it —git)

° _

_?-u- £ ﬁ’— Bl (2.437)
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i The components of the double tensor T reforred to the convected
; coordinate system in the reforence and prosent configuration are TiJ, TiJ'

T%' and T'q and are obtalned as

2 hg,-3, (Ti'7'E)

;' Tit= Pk =% %' -%’; (2.438)
G

)
4 _ :E: JL = :E:
T-:L A&ﬂo %A (2.439)
a E-o % Gy~ gif (T “g"‘ GQ
. 1w _P 2 - P P N 2.440
T £ 3 %A C (2.440)

Tug % l = ,E?- :E- (2.441)

Observe that the relations Ti = T%i and Tll = Tll between the

components of the Kirchhoff and the first Piola-Kirchhoff stress tensor

are satisfied. '
The components of the first piola-Kirchhoff stress tensor referred to

the reference configuration of the convected coordinate system are:

AOSL 3‘. (Tbi-ig)
TitaTHaT*eT, =R -2F% | o
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H A , ’P
' OJEE"T " 1.1,,...... 443
a4 A, (2.443)

This is the so~called "ongineering strass" in the engincering literaturc
P and it is the casiest one to compute in uniaxial tests since it is just
the load applied to the specimen divided by the original cross-sectional

arca Ao of the specimen.
The relationship between the components of the Kirchhoff and the

second Piola-Kirchhoff stress tensors can be simply obtained:
t“"' 54.‘-
4 i
S: (i"'z\ﬂ)

L}

(2.444)

T

2.8.4 Stress Rates

Since an irrotational uniaxial deformation is considered,

um ememb. Sm———w————
omstmme emen

R=1 W—-':d 3_}?3?7 (2.445)

Hence, from Eg. 2.335
= o
—Q = .Q), (2.446)

For this particular kind of deformation, the fixed-observer rate and the

=
co~rotational rates of a second order tensor {! are equal.

The co-rotational rate of the components of the Cauchy stress tensor

in Cartesian coordinates is:

L d

A (P
Ou= 6"“'—' -3-,6 (“A’) (2.,447)

The co-rotational rate of the components of the Cauchy stress tensor in

convected coordinates is:
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-}

Gi=Gti+Diot-0LtDi=Gt=8(F)
6+ Dot Dt g ke
4 (B LY, d (D)oP ki P

o\t(A 22) 2' (A. B‘) B’dt( )2 oQ‘Q A!’
i" :i(f_) (2.448)
ESJ = érlg ’:I) (3;1"(T1¥]>a =:<311 21:1)1(3;4

j 2L
d{(ﬁfa) Zﬁ(A r) 4&3&@*%%%‘%%}2

&,, = f 4(2) (2.t

The convected rates of the components of the Cauchy stress tensor in

the convected coordinate system in the present configuration are:

v

S A E) L 4D 22hD e
: L L4

811 = 0= f‘é(fg o‘>= ]Eg_{;(%)'*-zﬁf:f (2.451)

> < . . d P

. .1_ ‘.'_. ’i-_ -——n) .
dfi’m.-d..{-ou.-dt(ﬁ (2.452)
Evidently these are not components of one and the same tensor. The co-

rotational and convected rates of the Kirchhoff stress components

referred to the convected coordinate system in the present configuration
can be similarly obtained:
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> g L2 )
i 4 Ch e d e e s d(f. -—-»)
Ti=Tii=Tl=rti=tit=te t, =5 (2.453)

(2.454)

| ELA, ],
o Ldmreld
Ty ‘aﬁ;(i},) (2459

%“”-"t“':’ %‘;i(i%)—di%)ﬁ% (2.456)

(2.457)

The relationship between the co-rotational rate of the Kirchhof#
stress tensor mixed components in the convected coordinate system in the
present configuration and the Second Piola-Kirchhoff stress tensor mixed

components material rate can be easily obtained from Eg. 2.269:

Bl St (1e2¥t) 4+ 2S5% = Sich + Si8E

Or, for this uniaxial, irrotational motion condition:

o4 . _d _E-_Q__ 1_P. po
tj_= t."l'.- E{:<A° fo 61~Aof (2.458)
¥ 2 (-0 Viept

Hence,
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£ d (g p B\ _ e ) .
a{:( ) SH L +2.54~§1—E (2.459)

\ Therofore,
%i" éi (i*Zﬁ[_) + ZSti/i (2.460)

2.8.5 Encrgy Equation
As previously notod in Subsection 2.7, the cnorgy integral over the

present volume V can be expressed as a function of tho Cauchy stress o

and the rate-of-deformation tensor D as in Eqs. 2.354 and 2.355. In this

uniaxial case, one obtains:
A A
U= [ 6,D, dVdt=] [ oD, dVit
(2.461)
44 1 TN
f o, D Vet - | [ oy Dl Vet
Notice that, from Bgs. 2.411, 2.412 and 2. 413:
Du dt = :D‘ dt = E*dt=i—gga{'=°‘%=dai (2.462)
Also, from Eqs. 2,425 and 2.427:
A P u P .k: ﬂ
= iz — = e e
O-:li GL A g AT ﬁ_A-}: (2.463)
Therefore, Eq. 2.461 becomes:

R

AR
(2.464)
2 2 .
L[ CRED-[f, B[ [Pad




which shows that the arxea under the "true stress" (OT a Oi = %)'and the

logarithmic strain (e: = fn &éL)) in tho energy per unit prosont volume
of the matorial. ©

An pointed out in Subnection 2.7, the onergy bgr unlt refarnnce
voluma of tha matorial, ean bo ocanily abtainod from the Jacabian dotoyms-

nant of the deformation, from Fgq. 2.3501

u-f %3

¥For the uniaxial case:

-l [ (EDE ML (EPEDS

[ @D e HE[ [

which shows that the area under the Kirchhoff stress (T & Ti fl-%Q

and logarithmic strain (e = 4n (~—ﬂ) is the energy per unﬁt refefe
0

JVO dt (2.465)

volume of the material.
The area under the Kirchhoff stress and the logarithmic strain is

simply proportional to the energy per unit mass of the material, the
proportionality factor being the mass density P, Per unit reference
volume v , which does not depend on the deformation history.

The enexgy per unit reference volume of the material can also be

=

expressed as a function of the second Piola-Kirchhoff stress tensor ]
and the Green strain tensor Y or the right Cauchy-Green deformation

=
tensor C:

U'LIV’E g§ VL dt .—.J;L_‘i ’“s"éc JV,dt (2.467)

For the uniaxial case:
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Honeoa, D .
u L Ao pk (;2 Ap) JV° J J&, ?d«a é—-gf' (2.468)

which showo that tho aroa under tho socond plola=Kirchhoff stxooa

2 2
0 S B -} o O S 3 | .
(sll = &l A 2) and the Grooen strain (Yll 'Yl 3 (2. 1)) is oqual

to the cnergy per unit reference volume of the material, proportional to
the encrgy per unit mass of the material.

Another expression for the enorgy per unit reference volume of the
material relates the conjugate variables: the first Piola-Kirchhoff
stress tensor T and the rate of the deformation gradient tensor M

U’J; LOE‘E":F.EAV; dt (2.469)

For the uniaxial case (convected coordinate components in the reference
configuration) :

A

i . [ i ‘i ’?
T“'ET . 1=T1 . =T ‘:Ei: - B g ("cngineering stress")

[4

e Fas ke E

where ’o

) - Lo

A

. ~ 4 ~/
a W emmmenr—— " : L]
E = E1= E = ("engineering strain)

L
Hence,

u- Jm’ Ao JV LLO’PJD ‘N: (2.470)
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which shows that the area under the flrst Piola-Kirchhoff ntress (or

o L
"onginenring stregg" OE = il) and the "engineering atrain" (Eu = Ei T ~1)
in aqual to the anergy per Unit reforance valume of tho material, “
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SECTION 3

CONSTITUTIVE EQUATIONS

3,1 Introduetion
In fection 2, the aquatlone necosaary for the pracine treatment of con-

stitutive equatlionn wore premented, In the prosent asection, the finite-
atealn planticlty theory used In the prosont analynin in oxaminod and din-
playad in tho opirit of modorn eentinuum mochanilen,

3.2 Roviow of Smalle=Strain Plaotielty Thoory

trsiremE s

3.2.1 Roviow of Prineipal Concoptno
Thore aroe two typoo of plasticlty theorics, termod "€low" and "doferma-

tion". The doformation thoory of plastieity assumes that, as in olaotielty,
thorxe oxiots a one-to-~one correspondence botwoen streso and ptrain, Tho flow
{also termed "rate-type") theory of vlasticity states that there is a fune-
tional relation betwoen tho streogs rate and the strain rate. Since these
thoories are conceived for small-strain conditions, the stress, strain,
stress rate, and struin rate measures are left undefined for any strains that
are not "small". Only £or proportional loading where the sgtross tatio re-
maing constant, and for a certain restricted range of loading paths other
than proportional loading (through the assumption of the possibility of a
singularity in the yield surface) does the deformation theovy agree with the
flow theory.

The behavior of an elastic-plastic material can be characterized by the
following two ingredients. Pirst, one agsumes the existence of a boundary
(yielding surface) in stress space which defines the elastie domain; within
the boundary the continuum deforms elastically. 'The onset of plastic flow
(irreversible deformation in a thermodynamic sense) is possible only at the
boundary, and ho meaning is assoclated with the region that is beyond the
boundary. Second, one employs a flow rule which deseribes the behavior of
the material after ylelding has started; this rule gives the relation of
plastic flow (strain rate) to the stress and the loadihg history.

102




Another baslc assumption in the theory of an elastic-plastic continuum

Yyyr in

assumod to have tho same invarianen proportios as doern the atrain tensor,

ims the Introduction of a plastic gtraln tensor, The plastic atrain,

i P i . i i s ) Q
| Yij' The quantity Yij 18 relatod to Yij by an elastic straln tengox Yij,.in
tho form:

| Y=Y+

The atroeasn, S Y, 1n rolated to tho olastic strain Y W) by the components

{ i1kgof the fourth ordor olastic modulun tcongor:

Sk Y& - (Y %)
When the material is elastically igotropie, the Eijkg
: M 0k Y

J J b

where U, A are the tamd constants.

(3.2)

(3.3)

can be expressed as:

(3.4)

The yield surface, 9, is assumed to be expressible in terms of certain

variables and may be expressed as:

EE: (,ESEi) }{l;) = () (3.5)

for perfect plasticity behavior, where Ko i8 a constant., For strain.hardening

§(5“J Y'J > %) =0 (3.6)

where Sij is the stress tensor (also undefined for finite strains) and kK is

behavior:

a hardening parameter which depends on the strain history.

various yield criteria have becn proposed for the prediction of the on-
set of plastic flow. Among them is the Mises-Hencky yield criterion [89]
which usually fits experimental observations better than the Tresca criterion
[89], for instance, for pelycrystalline metals and yet is mathematically

simple., The Mises-Hencky rules will be discussed and adopted in the préesent
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analynisn.  The Miscos-lloncky yiold critorion may be interprotod as "yiolding
bagins whoenovor the distortion onergy pox unit maes oquals the distortion
enorgy per unit mass at yleld in pimple tonaion", Thus hydrostatic pronsure,
for an nlantically inotropic material in tonsion or comprosaion doeos not
affect tho ylolding, plastic flow, and repultant hardening. 8tatod othor-
wise, no plastic work in dono by the hydrontatic component of the applied
atvens.  Thin implios that thore is no plantic (or irreversible) change in

volume.  Phu,,

[ P .
iw = O (3.7)
For an initially-isotropic matorial, the Mises-Honcky yield function
can be writton in the form:

$ - J; - ‘%‘ (03)1 =0 (3.8)

where

Teatci k |
= —?‘% [SJ SJL - %(S&Y:‘ (3.9)

O: is the yield stress in the uwniaxial

stress-strain state

This represents a hypersurface in nine-dimensional stress space. Any point
on this surface represents a point at which yield can begin.

Considering the eiastic—perfeotly—plastio solidt if the conditiong (a)

d<0or (b) & =0 and ¢ < 0, arc satisfied, the state change can only be
clastic; any plastic deformation (which may have been incurred earlier)
remains unchanged. Thus,

v P
X,, = O when § < O "~ (clastic deformation)

J
§ = 0 i < O (unloading)

It is postulated that the plastic strain rate :Yl;j is linearly related to the

(3.10)

+'with no strain-rate sehsitivity.
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aradlont of ¢ in stroas spaca, 3¢/Bsij, an follows;

. o § [ ] :
X{-‘-‘-’X%’é&] whon I.—:O md =0 (loading) (3.11)

This is a conmoquence of Drucker's [90] stability poatulato*y it implien
that the plastic strain-rata vector ?l

:j (?Ej can be oxpressod as a voctor
principal strain-rata compononta ag axes) isg

ace 9 (since ~§%§ is the normal to tho loading

S
surface ¢ in atress space with grincigji streogss components as axes, and the
prinecip

al axes of strain rate and stress arc assumed to coincide) .
A

is a scalar factor of pProportionality; it is not a matorial const
varies with the doformation.,

is independent

in a strain-rata space with the
normal to the loading surf

Here

ant, but
The relation for the plastic strain rate ?fj
of time as written, since it is dimensionally homogeneous

in
time.
Considering the elastic-plastic (strain hardening) solid, the state
change is clastic if
( <0 , "~ (elastic deformation)
O P— ]
X"J "‘O when 4 § =0 and § 20 (neutral loading)
L
E = O and E < O (unloading)
> (3.12)

It is postulated that the Plastic strain rate ?fj is linearly related

to the gradient of ¢ in stress space, as follows:

X»j""i g—%ﬁ when P=() and i} 0 (1vading)

where the factor of proportionality A can be expressed as:

;i':z (E; Eii ' (3.13)

+

The work done by a sot of external forces act
during the applieation and positive or zero ow
plication and removal. For

that the plastic work of the

ing on a body must be positive

er a4 complete cycle of ap-
perfect blastieity, thisg ig modified to require
external ageney is zero instead of positive,




T D e—

P s OF

X.J=G§ >GH (3.14)
The factor G (as well as ¢) can be any scalar function of stress, strain,
and strain history.

Not.lce that for $ = 0 then ?ij = 0, which is consistent with the provi-
ous oxpression for noutral loading.

The factor G is not supposed to bo a function of the stross rate. This
assumption, suggested by Hill (page 34 of [89]), is based on the considera-
tion that in a crystal grain, a plastic strain rate is produccd by a combina-
tion of shears along certain slip directions, depending on the orientation
of the grain and its external constrairt. For the operation of such a
glide—sysﬁem, a certain state of stress is neede. and hence, as a statis-
tical  average over all grains, a definite macroscopic stress exists. The
stress rate enters only in ‘determining the magnitude of the strain rate.

For the material to exhibit strain-hardening behavior, it implies that
the yield surface will change in case of continued straining.beyond the
initial yield. The change of the yield surface (or loading surface) that
chavacterizes the strain hardening (or work hardening) behavior of the
material depends on the loading history.

There are several hardening rules available to describe the subsequent
loading function. Among them are "isotropic hardening" and "kinematic
hardening”.

Isotropic hardening assumes that during subsequent yielding from a
plastic state, the yield surface will expand uniformly with respect to
the origin in stress space but will retain the same shape and orientation
as it had initially. It does not take into account the Bauschinger effect
[89]. Mathematically, the subsequent yield function for an isotropic
hardening material can be put in the form:

2B (SLYLK)
L or Y
K =4 (W= L“% S44d%:) or/(%(J%j M}’ NJ})

where W is the plastic work cxpended and the upper limit of the integral

and (3,15)

refers to the plastic strain at the current condition or time.
To account for the Bauschinger effect, Prager [91] introduced the

"kinematic hardening rule" which postulates that during subsequent plastic
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'Y

A

flow, the yield aurface translates (as a rigid body) in stress gpace and
that it will retain the samo aize, shape, and oriontation that it had initi~

ally. Mathematically, this can bo expressed as
&o Lo
§ - ﬁ;ﬁ. (8"‘ b"l) - O (3.16)
i] o
whore o @ = o ( ij) represents the translation of tho reforenced origin in
gstross space of the yield surface and deponds on the dagree of hardening.

prager proposcd that the direction of translation be normal to the yield

surfaces
PO Al
‘ x3=2C Xj (3.17)

where ¢ is a constant.
ziegler [92] modified Prager's rule by suggesting that
& -.-./L (St-‘ - D(tl) | (3.18)
where ﬁ > 0. Geometrically, this means that the direction of mot}on of the
center of the initial yield surface agrees with the radius vector that
joins the instantaneous center aij with the stress point Sij.

These kinematic hardening rules considerably over-estimate the
Bauschinger effect, and therefore in general practice do not represent an
improvement over the isotropic hardening rule, as observed by Almroth [93]
and by Hunsaker et al.[94]. One exception is the case when a bilinear
stress-strain curve provides a satisfactory approximation, as observed, for
example, by Almroth [93] and by Iwan [95]. However, few materials have a
hysteresis loop that is truly bilinear.

A combination of kinematic and isotropic hardening, that translates
in accordance with ziegler's rule, and whose hardening modulus and yield
gurface size at any point in the deformation history are assumed to be
functions enly of the plastic work has met with some success. It can be

expressed mathematically as:




and translates according to

o 2 . { Y

X :/'L (S“J - 04&‘1) (3.20)
where ﬁ > 0., This combined isotropic-kinematic hardening raile is usually
used with a linear strain-hardening assumption,

Another hardening rule is the "mechanical sublayer model" of White [96]
ard Besseling [97]. In thig model, the material at any point is conceived
of as consisting of components, cach component behaving as an elastie,
perfectly-plaastic medium, having common strain, but appropriately different
vield stresses. TIf the components have the same elastic 1 alus, the yield
stress of the composite will be the same as that of the weakest of its com-
ponents. However, since the other components can take additional load, the
composite will exhibit strain hardening with a piecewise linear stress-
strain curve, In contrast to kinematic hardening, the mechaniecal sublayer
model gives a hardening modulus at the outset of reversed yield which equals
the hardening modulus at initial yield. This agrees well with experiments.
Plastic anisotropy develops automatically in the model during loading in
the plastic range. Use of only one sublayer results in the application of
ideal plasticity; that is, elastic Perfectly-plastic behavior. The use of
two sublayers of which one has an infinite yield limit (in practice large
but finite), results in the application of kinematic hardening with a bi-
linear sgtress-strain curve. .

Mroz [98] introduced the concept of a "field of work-hardening moduli”.
A number of surfaces in stress space are introduced, and associated_with
each surface 18 the value of the work hardening modulus of the corresponding
point in the uniaxial stress-strain curve of the material. On loading, all
of the surfaces are shifted in stress space according to the rules of kine-
matic hardening. The hardening modulus obtained from the Mroz model depends
on how many of the moduli are currently active. The results obtained by -

the use of the Mroz model are almost identical to tliose obtained by the use
of the mechanical sublayer model [94]. While both models are practically
identical for proportional loading, for nonproportional loading they differ
in the folléwing: under the Mroz [94] model the yield surfaces are not
allowed to intersect, while under the mechanical-sublayer model the surfaces
yill intersect and corners will be created [97].
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3.2.2 The Mochanical-Sublayer Model

Since the machanical~sublayer model is used in the prasont analysis to
model the finite strain, gtrain-hardening, atrain-rate depondent behavior
of motala, a brief raviow of the origins of the model will be given in this
subsection.

The mechanical sublayor model, has been also called tho "compoaite
'model",'%ubelement model", "subvolume model", voverlay model", and
"distgibuted element model", according to the way in which this model was
physically motivated, but most of the mathematical formulations are similaxr
for small strain conditions. The general idea is that the strain~-hardening
behavior (including the Rauschinger effect) of an elastic-plastic material
can be represented by a number of ideal elastic, perfectly-plastic elements
having different yield limits but a common strain. As early as 1926,
Masing [99] used this model to make some general statements about the be-
havior of materials; Prandtl [100] in 1928 used a mathematically equivalent
model (but with a different physical representation of the model) as a ve-
hicle for the application of .kinetic theory to a rather wide range of prob=-
1em§ associated with rate effects. The approach was suggested again in
1930 by Timoshenko [101]; in 1935, Duwez [102] applied the model of elastic,
perfectly—plastic elements in series to single crystals and showed that
the model could be made to give stress-strain curve and hysteretic energy
loss results which were in close agreement with experiments.

The model seems to have received little attention until the early 1950's
when White [96] in 1950 and Besseling [97] in 1953 uged the model to repre-
sent elastic, perfectly—plastic pehavior exhibiting the Bauschinger effect.
Ivlev [103] in 1963 discussed the model, incorporating viscosity effects,

and Prager [104] in 1966 further extended Ivlev's work.
In numerical predictions of strain-rate elastic-plastic transient

structural response, the mechanical sublayer method was applied first at
MIT. fThis application was carried out by Leech, Balmer, and Witmer during
1962-64 ahd is reported first in 1964 [105], with more details in 1965 [106]
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and 1966 [14]. In carlier MIT work reportod in 1962 [107}, a linear-
olaastie, linear-strain-hardening approximation with similar rules for
loading, unloading, roversed loading, and recloading was used to represant
material behavior: however, strictly speaking, this was not the mechanical

sublayor model.
pPruckor [108] has also discussed this model in 1966 and lndicated some

of its advantages as well as ita shortcomings. Tho model was again applied by
Iwan [109, 951 1in 1966 to modol the hysterctic behavior of materials and
structures. 2ionkiewicz [110] considorod tho isoparametric finico-clomont
implementation of this model in 1972. Hunsaker et al. [94] in 10993 compared
the mechanical-sublaycr model with other strain-hardening plasticity rules:
isotropic hardening, kinematic hardening, and the Mroz model. The mechanical-
sublayer model was again utilized in 1976 by McKnight and Sobel {111] to
analyze the cyclic thermoplasticity which occurs in areas of strain concen-
tration resulting from the combination of both mechanical and thermal stresses.
1t is interesting tr note that in the mechanical-sublayer model, the
characteristics of the numcrical method are used to bypass the necessity for
an. explicit constitutive relationship. As a matter of fact, by using only
elastic, perfectly-plastic sublayers, more .satisfactory behavior patterns
are achieved than those corresponding to isotropic or kinematic hardening
rules; the Bauschinger effect is approximated well by the model.

A “physical® justification for the mechanical-sublayer model can be also
found by analogy with a "micro" mechanics approach. The stress-strain be-
havior in strain-hardening can be attributed to the yielding of individual
crystals, each of them experiencing elastic, perfectly-plastic behavior but

yielding, however, at different levels of stress.

3.3 Plasticity Theory for Finite Strains

3.3.1 Introduction
As previously noted, the quantities utilized in the small strain theory

of plasticity (stress, strain, stress rate, and strain rate) are defined only
within the assumption of "small strains". Yet the precise definition of what
constitutes "small strain" is always lcft unstated. Whether or not the
strains are "small" cannot be determined by "geometric congiderations" a

priori; the strains result from loading, and (in general) one cannot know in
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advancoe whethar for a given leading of a material the "amall atrain” asrsump-
tion (always loft undefined) will hold or not. Of courne, after the problem
1a solvod, this can bo ostablished, but if ono has solved the problem it ins
no longer vory important whothor the strains ara amall or not. The quostion
of whothor the small-strain approximations aro valid in advanco is always
avoldod in tha "small strain® litorature., Purthermore, an R, pi1l [(112)
points out, the really typieal plastic probloms involve changos in qoomntry
that cannot bo disrvegarded,

In tho present subsection, the quantitics involved in the particular
finite-strain-plasticity theory chosen for tho prosent analyris are dins-
cussed in dotail; they were defined precisely in Scetion 2. Now, howdver,
the reasons for this particular choice of variablos are stated in Subsoction
3.3.2.

3.3.2 General Concepts

The constitutive law to be used in the presoent analysis can be expressed

o = =
T =JC(:D/AC) (3.21)

where the actual form of this function will be made explicit in the next

in functional form as:

subsection (the purpose of the  present subsection is to show the reasons for

this particular choice of variables). The quantity T is the Kirchhoff stress,

‘previously defined in Subsection 2.5.2 as:

== afé =
~ = o g (3.22)

where O is the Cauchy ("true") stress tensor, and p(po) is the mass density

) =
in the present (reference) contiguration. Also, the circle over T denotes the
+
co-rotational  stress rate defined in Subsection 2.6.4. The rate-of-defor-
mation tensor D is defined in Subsection 2.4.2.1.

this constitutive law (Eq. 3.21) involves quantities associated with the

present configuration of the material, with the only exception being the mass

4
Algo known as the "Jaumann stress rate".
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density Py which is a congtant for a fixed reference configquration and, thera-
fore, does not depend on the deformation history.

The Kirchhoff stress T is usad instead of the Cauchy atresa 0, since it
ia known to be moro suitable for defining the constitutive oquatlons, pax-
ticularly when thermodynamic prineiples ara used to formulate a constitutivo

rolation, 8Some of tho reasons for tho use of thin stress moasure aras

(a) The Kirchhoff atrass i tha stress (asgsociatod with tho presont
configuration of tho matorial) that is rolated to a unit of
mass, instoad of a unit of volume, since as ghown in Sub-

gection 2.7, the poweok per unit mage is oxpressed simply by
"c:=2D
R(F,to)

where p ig a constant for the entire deformation process

Power per Unit Mass = (3.23)

for a fixed reference configuration, while the power per
unit mass expressed in terms of the Cauchy stress is ex-

pressed by:

0

Power per Unit Mass = e——m=—m (3.24)
PR,

v

where pdﬁ,t) is a variable in the deformation process.

(b) For this reason, the thermodynamic expressions that the
constitutive relations must satisfy are simpler when ex-

pressed in terms of the Kirchhoff stress.

(c) The co-rotational rate of the Kirchhoff stress has a xate
gotential while the co-rotational rate of the Cauchy stress
has not. As shown by Hill [113]

2 =

Rate Potential = = T D (3.25)

2

(d) The existence of a rate potential is of importance in an
incremental finite clement analysis gince it implies the
existence of an incremental variational principle and

symmetric tangent stiffness matrices.
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(o)

' (£)

—

(9)

The Kirchhoff gtreass can be easily measured in experimonta,
As shown in Subsection 2.8.3, in uniaxial experiments it ip
simply expressed as

W= :%'o (i*’ E;;,) (3.26)

whera P is the load applicd to the mpecimen, Ao ia tho

original cross socticnal arca and Eu i the chango in
-2

length divided by the original longth: Eu @ e tha

2‘0

quantity that oxtonsometors and strain gages can provido,

The Kirchhoff stress is the quantity which was computed
from experimental data and used in the presentation of
results in many of the classic experimente in plasticity
of metals by G.I. Taylor [114] and also by A, Nadai
{115]. As a matter of fact, it is frequently con-

fused with the true stress in experiments for metals,
since for practical purposes one can assume incompreg-
sibility (p = po) for metals; hence, the Cauchy ("true")
stress is approximately equal to the Kirchhoff stress.

When used in conjunction with the logarithmic strain, it
produces an approximately symmetric stress-strain re-
sponse for the wniaxial loading of metals*, unlike other
stress measures, like the 1lst and 2nd Piola-~Kirchhoff
stresses which produce significantly asymmetric stress-

strain responses for the uniaxial loading of metals.
°

The co-rotational rate (overscript "o") of the Kirchhoff stress (?)

is used instead of the fixed-in-space observer rate, convected rates, or

other stress rates, since:

(a)

It satisfies the principle of material frame-indifference as
defined by Truesdell and Noll [40] when used in conjunction
with the (frame-indifferent) ratc-of-deformation tensor in

a constitutive law. One implication of this is that the

*
For mctals with a cubic structure, since slip is their primary deformation
mechanism, and it can operate equally well forward or backward.
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constitutive law is invariant under arbitrary rigid body
gotsAAay the co~rotational rate aof the Kirchheff straess
T vanishes when a material point of the continuum with
its environment performs a rigid-body motion and the
Kiychhoff ntrens tonpor T does not vary in timo intrin-
aleally with rospeot ta tho material point,

(b) Tho co-rotational rato of the atronn tonfor in a tonaAor
quantity of the name type as the oxiginal atronn tonnor,
sinco tho Kirchhgﬂf atroon tonsor T is aymmetric, tho co=
rotational rato T i aloo symmotric,

(e) Vanishing of the co-rotational dorivative of a tonsor in-
ducos vaniohing of the co-rotational derivative of its
arbitrary invariant,

(d) In a uniaxial, irrotational deformation, it reduces to
the material rate of the tensor.

The rate-of-deformation D is used in the constitutive expressions since
it is Qefined completely and uniquely by the present state of the material
and, unlike strain rates, its description does not involve any reference
state. Since plasticity has some similarities* with a flow problem, and
the rate-of-deformation tensor D is the rate quantity used in hydrodynamics,
the appropriateness of a description of large strain plasticity in terms of
D is seen at once.

In the case of a uniaxial, irrotational, homogeneous deformation, the
rate-of-deformation tensor becomes the rate of the logarithmic strain tensor,
as shown in Subsection 2.B.2. The logarithmic strain ranges in value between
zero and infinity, both for tension and compression, as shown in Subsection
2.8.2. This provides a measure of strain which has "symmetric" properties
for tension and compression. The relative elongation, the Green ("Lagrangian")

strain, and the Almansi ("Fulerian") strains do not enjoy this useful property.

*Thesc similarities are only formal in the case of time-independent plasticity,
since therc is really no rate-dependence or viscosity implied by the plasticity
equations., However, in the present trcatment, strain-rate dependerice of the
constitutive equations was taken into account.
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Also note that tHe rate-of-Jeformation tensor D is "conjugate" ta the
Kirchhoff atraos tonsor T in the sense that their scalay product is propar-
tiopal to the rate of work poer unit mass, an shown praviously.

The conatitutive law o

FEy —_ =

T “f (D(, “C) | (3.27)
in a hypenlaptie law (refaroncan in hyponlanticlty arns page 731 of [16],
pagn 401 of [40], and [116-122]), TIn the general multiaxial eane, it tn n
path-dopendent materinl law, sinee 1t connot he 1ntonrntnd+ In termn of an
tnittal and o Cland state; 1t dopends on the path connoeting thene ntated,
To erntder finito=glangle=atrain renponse, In additfon to fintto~plastice
straln roaponse, 1t 18 neecssary to iIntroduce a findte=otratn meavurce In the
constitutive law (that measures deformation by comparing o reference and a
present configuration, irrespectivoe of the paths conneeting these configura=
glons)., It is not difficult to ineclude this finite~ulastic~-strain response
{n the constitutive law, for cxample, by including the Almansi strain ¢t

[}

T-3(3,%,8) .29
as done by Lehmann [123], who assumed a lincar relatlionship between stress
and strain, with no experimental basis for large-elastle~strains,

For metals, experiments have shown only small elastic strains, even for
cases of unloading from large plastic strains. No experimental data seems
to cxist from which a finite-elastic strain law for metals could be de-
duced. Moreover, whether elastic strains++ do exist at all for me%als is
still a matter of discussion. E. H. lLee [124] indicates that under large
strain-rate conditions, finite-elastic-strains can be expected in metals.
However, these strains could be visco-elastic and not purely elastic, by

the very nature of the strain-rate dependence. The experimental information

available is not precise endugh to determine if these strains are visco-elastic

+It can be integrated, under some assumptions, in the cases of uniaxial
stress-strain, and purs volumetric deformation.

4
In the sense of Green, an t.astie material is onc for which a strain-
cnergy function exists.
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or viaao—hvpnelaatic;_ Tn view of the present atate of aexperimental informa-
tion, tho hypoelnsatic law will be used in the analyais, aince it is conveni-
ent for the numerical analysis of the elastic-plastic problems) algo, fox
amall alastic straina thara i practically no differonecn batwceh hyponlag~
tic and alantie laws, an rhown, for example, by Lehmann [123],

3,2.3 AVFinAcnfﬂtxa§n,ﬁlqa&¢g~ﬁlantio thninﬁnatn~
Dopondont. Thoory '

Thin subnoetion in coneornod with £ha finite-ntzain alantie=-plantie
ntrﬁinarntmndnpondnnt thoory utilizod in thin aralyaln. Tho conatitucive
oquationo of thio thoory aro dincuopod in tho nplrit of modorn gontinuum
mochanion. It should bo romarkod that ovon within tho limitation of tho
infinitosimal or tha "emall" ptrain thoory of plastieity, thoro doo€ not
appoar to bo complote agrocmont among tho varloun schools of placticity
in tho United Statcs, Great Britain, and tho Soviet Union; thurofore, no
attompt at roviewing tho litoraturae in finito-ptrain plasticity will bo
carricd out, sinco there {g 1ittlo that has bocomo widoly accopted, and
active theorectical research on the subject is otill taking place, Rathor,
the specific theory used in the numerical analysis of the problems with
which this work deals will be examined in detail. In the pravious sub=
gection, the reasons why tho partieular variables used in the constitutive

equations were chosen were explained. The previous rough description is
made precise in the present gubsection.

The present description of the behavior of an elastic-plastic vontinu-
um is based on the work of Hill {112-113, 125-131] and of Lehmann [87,
123, 132-137], and can be interpreted as a speclal case of the general
thuory of an elasto-plastic continuum by Green and Naghdi [138]. However,
strain-rate effects are included in the present analysis, and gtrain-
hardening. behavior is troated with a "mechanical sublayer " method properly
modificd to take into account finite strains.

The present subsection shows the theory in terms of the “primary"

variables: % =§(—5, %)

48 previously specified in Eq., 3.21, However, it should be ment.oned that
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in tho actual implomentation of the theory, this equation is transformed
ta L = TS
6 '“% (X) S) X) (3,29)

according to tho trnsor trannformation rulos of Soctlon 2, since the

analysain in implomonted in the roforontial (Lagrangian) depcription of
motion with a fixed roformeo conflguration. Tn Bq, 3.29, § ia the
Socond Piola Kirehhoff stropo tongor, S ig its matorial rate, Y ig tha
Greon (Lagranglan) strain tonsor, and Y io 1ts matorial rate.

Roturning to Eq. 3.21, it is anﬁumod that the Kirchhoff strosn T at
o material point can bo conqidercd as the sum of 1 compononts ( T;

s = 1ton) with welghtihg factors A ?

:E:-IQLS (3.30a)

where prescript "s" refers to the sth sublayer.

Since the weighting factors A are assumed to be independent of time, the
co~rotational rate T of the Kirchhoff stress at a material point can also

e
be considered as the sum of n components ( T, 8 = 1ton) with the same

n 2
= Z Asst (3.30b)

Each component T of the co-rotational rate of the kirchhoff stress is
ssumed to be 1inearly related through a fourth order *elasticity tensor"

=

E to a component 558 of an “elastic" rate of deformation tensor D :
—-n — swe
St = SE . D (3.31)

*
These weighting factors are discussed explicitly in Subsection 3.3.4.
* &
This fourth order "elasticity" tensor has the same symmetric properties

weighting factors AS:

ag does thc usual elasticity tensor (since the 1 with the D° have a poten-
tial); this fourth crder tensor is a "tensor-tensor", a quantity which
plays the same fole for tensors of second order as second-order tensors
do for vectors (p. 145 of Schouton [e1]).
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The rate-of-deformation tensor D is assumed to be decompogsed into an

"elastic paxt" BSQ and a plastic part BBP for each sublayexr "s":

— f s L m—
*D=D=-°D* D
Obmerve that each sublayer "s" exporiences the same rate of deformation
8, but. different amounts of "alastic" %8¢ and plastic AEP components. The

decomposition of the deformation ratc aesumes difforent proportions in
cach sublayaer "g". From Eg. 3.32 one can axpress Bq. 3.31 as:

= = = =
St = SE .(D - s:DF) (3.33)
Next, the existence of a loading function o (yield surface in stress
space) is assumed to exist for each sublayer "s", as a function of the

Kirchhoff stress component s; of that sublayer, and the total rate of

deformation tensor E :

3 =‘§(s=’8)=ﬁ) (3.34)

This loading function 86 will define the "elastic" sSe and plastic
P parts of the rate of deformation D in each sublayer "s", according to
the following rule: -5§ < 0

sjj':.-.o when s§=0 d’ si <0 (3.35)
DAL v (Fe0m B -0

which implies that the plastic part sgp of the rate-of-deformation tensor
B, for sublayer "s" is normal to the loading surface %0 of sublayer "s",
In the present work, a von Mises loading function (yield surface in

stress space) is assumed to exist. This loading function is most readily

expressed in terms of the deviatorid stress S?D defined as

= ==",

s?:p s s
a r-T (3.37)
where S?Sp is the spherical (superscript "sp") stress, defined as

5?“? E‘% (‘TY’ s%>_I- (3.38)

and (tr 8% ) stands for the trace operator:
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+r’€ = i- :s% = ‘“'E s 4 (3.39)

Hence, the deviatoric Kirchhoff stross of the ath sublayer is:
== = sTN\ T
Sfba =5t - _% <+r t) i (3.40)

In torms of the deviatoric stross, the von Miscs loading function can be

exprossod as:

Sv,.,5TD 2 %
3§ = st”,st - & (57:3) , (3.41)
where

SZE"" stg("ﬁa) (3.42)

is the deformation-rate-dependent yield stress of a specimen in uniaxial

tension. Denoting by STU? the static (rate independent) yield stress of
o

a specimen in uniaxial tension, the rate-dependent vield stress sTgiS

assumed to be related to the deviatoric rate-of-deformation tensor, ED by
|
2(R°. B°) 5p
STY Sy z(D : D P (3.43;
= +
L =T (| -
where d

=D

D = ==D --ér("’r Tj):j-j (3.44)

s s
and d and “p are material "rate" constants. Therefore, the von Mises

strain~rate dependent loading function becomes:

(3.45)

>, =) )L \*
DR ATEA I S %) P _%_(_E__'D) i

The gradient (8(S¢))/(8(S?)) of the loading function s¢ of sublayer
s, with respect to the Kirchhoff stress S% also at sublayer "s", will be
needed in the ahalysis. For the von Mises loading function S@, one

obtaing:
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(3.46)

aAlso, from Eq. 3.36:

Trhees

Observe that the pa;c@meter sX can be expressed in terms of the plastic

(3.47)

power per unit mass Ep of sublayer s, as:

S () () A ()T

Since SE =0 N = N
(tb) (* ba) = & (*zd)" ( ( 1(1:' D) )’F) (3.49)
,'5-—:6?#6 (3.50)

Then, Eq. 3.48 becomes:

ll = 7\ (t ) (i+(J (-D ) ) (3.51)

Herice, one can express 8} as:
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6 = saF
" S ()

(3.52)

Equation 3.52 implies that the scalar parameter 8% characterizes the
plastic dissipation SW¥ of sublayer s, which in turn restricts 5% to be
positive semidefinite:

s)\/; 0 since sUj 20 (3.53)

Finally, to summarize, one can express these finite strain, "elastic"-
plastic, strain-hardening, strain-rate-dependent c¢onstitutive equations

ass

B0 - § (ot (- (AT ED) o)
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whera; 4 SE is the fourth order "elasticity” tensor of

sublayer s

a is the wuighting factor of sublayer s

sd and Sp are material strain-rate constants of
sublayer s

atﬁ _ is the Kirchhoff stress at yield in

° uniaxial loading, in static conditions,

of sublayer s

'7L scalar factor that characterizes the

dissipation of sublayer s.

-

It is evident that by considering different values of the material
constants sd and sp, and of the "elasticity" tensor “E for each sublayer
8, a very complex material behavior could be represented. However, in
the present numerical calculations these parameters have been considered

to be the same for each sublayer s; that is, —
EE-tE.B.E.  .F
da d=td »2d c3da, ., . =™y (3.55)
s = 1 2 3 (n)
PE P p=peTpee. . =®p

for the present analysis.
*
In addition, for a few numerical calculations the material has been

considered to be strain-rate independent, in which case:

s\ . /s> - 2 (s 2 3.56
( T ) * ( T .> 3 7:3;) ( )
It should also be mentioned that the loading conditions of Eq. 3.35,

3.36, and 3.54 are not the actual loading conditions used in the numeri-
cal model, and for these, the reader should turn to Sections 4 and 5.

* .
Impact analysis of €061-T651 aluminum alloy structures.
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3.3.4 Computation of Machanical-Sublayer-Model Weighting Pactors
3,3,4.1 Application to Uniaxial Streas-Strain Cconditions

The dotermination of the mcchanical«aublayor~modo1 weighting factor
A will be considered in the following. As indicated in Egq. 3.29, it is
asaumcd that the Kirchhoff strese T at a material point can o considered
as the sum of 1 components ( T, 8@ 1, «oop n) with welghting factors

A s
-1

%= iAss% (3.57)

The welghting factors A may be selccted for either one-dimensional, two-
dimensional, or three-dimensional stress conditions. Considering one-
dimensional stress conditions, the uniaxial (denoted by subscript u)
static stress-strain curve of the material is assumed to be perfectly

antisymmetric in Kirchhoff stress (T ) versus logarithmic strain (8 u)
Ys

space, as shown approximately by the classic experiments of G.I. Tayloxr
{114], among others. From Eq. 2.402, the logarithmic strain is

8: = In (—\ = ,P/VL (i+ Ew) | (3.58)

where %(2 ) is the final (original) gage length and

1-1 .
E:u- 1, (3.59)

is the relative elongation, or *engineering strain" that strain gages or

extensometers can provide.

From Eq. 2.424, the uniaxial Kirchhoff stress is:
s 2 =-——-(_{+E) (3.60)
4 W
’Z:W JQLo ﬁ —/53
This static stress-strain curve is first approximated by n+l piecewise-
linear segments which are defined at coordinates [ (T, ) (e ), s =1, 2,
o

eeep n); see Fig. 2a. Next, the material is envisioned as consisting, at

any point in the material, of n equally-strained sublayers of elastic,
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‘l}

+
perfactly-plastic material, with each sublayer having the same elastic
modulus E as the idealized material, but an appropriately different

yield stress (denoted by superscript y). For example, the static (sub~

script o in Tu ) vield stresu (superscript y) of the s sublayer is givon
(8]

by (see Fig. 2h):

‘(2«%)9 - ’(C:) (3.61)

Then, the Kirchhoff stress value under static conditions, s('ru )
(o)

associated with the sth sublayer can be defined uniquely by the strain
*
history and the value of the strain eu at that material point. Taken

’

collectively with an appropriate weighting factor As for each sublayer,

the stress (Tu ) at the material point corresponding to logarithmic strain
o

(e;) may be expressed as:

[ éAs s('z‘%) (3.62)

where the uniaxial weighting factor As for the sth sublayer may readily
be confirmed to be:

T T
A = Es - E S+i
s E: (3.63)

where
T
E 4 " E (Young's modulus of the material)
s _ s
T = Zuo tho
s s * _S-ip% (S=2, 3, eeer n)
Eu Eu

-
E=0
The elastic perfectly-plastic and the elastic linear strain-hardening

constitutive relations may be treated as special cases. In the case of

+,
As previously mentioned this assumption is not necessary; by employing

different elastic modulii SE, more complicated material behavior can be
represented.
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claﬂtic porfectly-plastie behavior, there is only one sublayorj in the
case of lineoar strain-hardening material thore are two sublayers and the
1imit of the second sublayer is taken sufficiently high so that the de~
formation in that sublayer remaine olastic, However, the main advantage
of the mechanical-sublayer method is roalized if three or more sublayern
are utilized, since with propor adjustmont of the yleld strosses

B(Tu )y of the sublayers, complox material behavior can be ropresented,
]
including elastic-plastic unloading, the Bauschinger effcct, and hystere-

sis; see Fig. 2c.
For a strain-rate dgpendent, elastic strain-hardening material, the
rate dependence is described by :
:Du\)

(e = () (4 + d
where D is the uniaxial component of the rate-of-deformation tensor:

L .+ _ _E
D, - 1 & (L+ Eu) (3.65)

*
that is equal to the material rate of the logarithmic strain eu' as

(3.64)

previously shown in Eg. 2.405, and S(Tu)y is the strain-rate dependent
yield stress of sublayer s.

Equation 3.65 is the Cowper-Symonds strain-rate equation developed
in 1957 [139] at Brown University to represent the Strain-rate effect on
the uniaxial stress-strain response of metals. The material strain-rate
constants d and p are obtained from experiments. When the material
strain-rate constants 4 and p are chosen to be equal for each sublayer,
the stress-strain curve at a given deformation rate é: is simply a con-
stant magnification of the static stress-strain curve along rays emanating

from the Kirtchhoff stress versus logarithmic strain origin (see Fig. 3).
3,3.4.2 Application to Multiaxial Stress-Strain Conditions

Generally, a somewhat different description for the mechanical-
sublayer model is needed when multiaxial stress-strain conditions
occur. Fowler [140] has derived the weighting coefficients based on a

biaxial stress state using expressions given by Pian [141) in 1966. 1In

+

As previously mentioned the material strain~rate constants d and p, can
be assumed to bc diffcrent for edch sublayer s, thercby represcenting very
complicated strain-rate material behavior.
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1974 Stalk [142) derived the weighting coeffioients'based on a triaxial
Btress state.

Both Fowler and Stalk coneluded that the differences between the
stross~strain diagrams obtained from the welghting coefficionta based
on a uniaxial statoe of streas~strain and tha diagrams obtained from tha
coofficients basaed on a multiaxial state ware vory gmall. Fowler [140]
concludod "the orror rosulting from this difforence, cortainly, should
be smaller than that resulting from the use of a straight-1lina~acgmant
approximation of the strogss-strain curve, ... it 18 concluded that the
use of the uniaxial model woights in a biaxial model does not lead to
any significant errors”. Stalk {141] concluded that the errors intro-
duced by using the one-dimensional weights for three~dimensional stress
states is of the order of 1 to 4 per cent in the sublayex welghts.

More recently, Hunsaker et al. [143] discussed the calculation of
the sublayer weights when multiaxial states of stress are present., No
comparisons of stress-strain curves produced from weighting coefficients
based on uniaxial and multiaxial states are shown, or even discussed.
However, Hunsaker [144] obtained a closed-form golution for the case of
a two sublayer (linear strain hardening) model. The example shown. by
Hunsaker [l43]shows differences between the uniaxial and multiaxial pro-
cedures which are of the order of the typical experimental errors in the

dgtermination of the material properties.

Besseling [97] in 1953 had already obtained a closed form solution
of the sublayer properties (for any number of sublayers) for a general
state of stress-strain. It is easy to show that (when only twe sublayers
are present), Hunsaker's closed-form solution coincides with Besseling's
formula.

One can readily show, that upon replacing the deviatoric stréins

and stresses by the total strains and stresses, Besseling's formulae

become:




T

E § 8 "EE . N (3.66a)
* o (52 2 (18 1) -+ ()]
2 s=| '
A=|- 2 (1+2) -) A, (3.66b)
5 E 271 . 1
—= -%(z-9) 4=
Ege

It is easily scon from these equations, that for v = 1/2 (i.o.,
assuming clastic incompressibility), the sublayer properties become
identical with those derived from uniaxial stress-strain conditions
(Eqs. 3.61 and 3.62). Also, it is interesting to rote that tie difference
between the sublayer properties derived from uniaxial (Egs. 3.61 and 3.63)
and multiaxial (Eqs. 3.66a and 3.66b) conditions is directly related to
the factor (%-- V), which expresses the difference between the elastic+
(V) and plastic (assumed to be equal to 1/2 in the analysis) Poisson's
ratios. Moreover, in the present analysis for beams, plates, and shells,
incompressibility++ is assumed in calculating the changes in thickness;
hence, the calculation of sublayer properties from the uniaxial procedure
(Egs. 3.61 and 3.63) is consistent (under the incompressibility assump-
tion) for the plate (and beam) FE calculations of this report.

3.3.5 Comments on Strain-Rate Behavior Modeling

Because of physical as .well as theoretical reasons (as indicated,
for example, by Perzyna [145-152]), the plastic.strain rate rather than
the total strain rate should govern the dynamic (non-stationary) yield
condition (Bq. 3.45) if the initial yield condition is to remain the

+The elastic Vv is to be used in Egs. 3.66a and 3.66b. Note that these
equations hold for s > 1; for s = 1, only the first term of Eq. 3.66a
and only the first two terms of Eq. 3.66b apply.

++Both for plastic and elastic strains, since the elastic strains are
assumed to be small.
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same as in plasticity theory., In order to relate the equation for the
dynamical yield condition of this work with the equations of Perzyna
[147), it is convenient to express Eq. 3,49 in terms of the following

invariantss
] L 650 670 _ .DIsD‘T
J =7 T T "’&'(’T )J(T>1 C(3.67)
PapB B =205 (0%;
2~ 2 ' T2 T D T (3.68)
and the yiceld ptross in shoar, defincd an:
F PN 4 Y \2
4 =_Z‘.‘£_ or (%>z_ (°t.. (3.69)
0 dfs- o) = 3 '

Then, from BEq. 3.49+

SJ (3.70)

FACRE
2 {3.71)

“NE

+

e (k) |

or

|

I D

JU = % | + Iz “ (3.72)
2 - 0 : SX

which would be identical with Eg. 2.68 of Perzyna {147]) if the second
invariant of the plastic strain rate

1= 4 BB =4 (0 ()]

+Since superscript "p" is used here to denote plastic components, the
gtrain+rate constwat Sp for sublayer "s; (see Eg. 3.49) is replaced
only in Subsection 3.3.5 by the symbol “o to avoid confusion.

(3.72a)
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were used instead of the second invariant of the deviatoric atrain rate
D

12. Also obsnrve, that the relation botween the viscesity coofficient
in simple tension 83 and the viscosity coefficient in shear SY is the
game as the rolation between tho yield atress in tension and in shear
{compare with Bg, 3.G9)1

“d

Y = & (3,72
\} 3
The equation [3.52) for the nanlax factor of proportionality )\ rolating

tho plantic atrain rato to tho doviatoric atronns

(3.74)

s"Br = %5\ s;"io D
can also bo rolated to tho cquations of Porzyna (147], by oxproosing
the dissipatod (viscoplastic) work pex unit mase au:

UIP 5 L ’DP - \]—— \I P (3.75)

Then, using Eqs. 3.75, 3.72, 3.69, and 3.52, one obtains

s; fa % \/ st JSI: (3.76)

= 2 [5 7\
) 2 3(%,) _J}. ). J;r_ i

s+ P A .
I‘ [, + J—I-: = (3.77)
,k, r

which is identical with Bg, 2.77 of Perzyna {147] if Ig is replaced by

A =

SIg.
The strain rate equation"‘ . o L
& «
Tu _ 4
Zr = T3
| M _ (3.78)
4 .
This cquation applies only for (E:)p # 0; then, 'ru = ’l‘i > Y,
: u

o]
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used in the present work oan represent secondary cxeep, since for
constant strass

[

T, =o (3.79)

the elaatio rt. ain rate ip zeros

L\ T
" Es

lonco, tho total atraln rate 1o nqual to thn plantic atrain rato

‘.*’ '*Q . P [ h P
€, = (éu) -i'(e:) = (ét) 13.81)
Thﬁu, Bq. 3.78 cuu bu oxprossod au
: (4
. #\P T
(éu) = 4| —— =1 (3.82)

7]

o
which is the power luw (alsu known au Norton's law) of secondary creepf
However, the strain rate equation used in the present work cannot
represcnt relaxation effects. 1In effoct, for relaxation, the total
gtrain rate is zero:

.

= O
eu (3.83)

and Eq. 3.78 expresses the condition that the stress Tu relaxes

\ 4

u
[}

instantaneously to the static yield stress T
Y H .
- = O

Ty Ta, for €, (3.84)

oK
However, if the plasti¢ strain rate (eu)p rather than the total strain

ok
rate Eu were used in Eg. 3.78,

+However, secondary creep is present only for Tu > Tz . Also, d and @
are temperature dependent. (o)
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R I

= | + (3,85)
To d
Thon, for rolaxations
, . . &
X Tu T
él=o0 = gh4d |y - (3.86)
T.,
For example, this equation can be solved for o = 1, yielding an
exponential relaxation:
- "R ¥ 4
T.= T, € + T, ' (3.87)
where the relaxation constant R is
Y
R = e,
- (3.88)

E 4
1f many sublayers are present rather than one, it can be shown
that creep recovery, and primary as well as gsecondary creep, can be
represented by Eq. 3.85.

Only total strain rates (rather than plastic strain rates) are
usually measured in strain rate tests; therefore, it is necessary to
assume that the elastic strain rates are small in those experiments,
as indicated by Campbell (page 52 of [153]1), for example. When the
material strain-rate constants d and p are chosen to be equal for
each sublayer, the present mechanical sublayer model produces as a
result stress-strain curves at a given strain rate that are simply a
constant magnification of the static (rate-independent) stress-strain

curve alohg rays emanating from the origin of the Kirchhoff stress vs.
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logarithmic strain curve., This is the bohavior that was observad by
MacGragor [154] and by Wulf [155] in a numbor of oxporimonts, among
others.

In any case, tho difforence between the total and tha plastic strain
ratos can bo deducod from tho following argument for a uniaxial tost:

W — ralative elongation
Lo '

5:; % (14- Eu.) total uniaxial logarithmic strain
s ¥ d & .

Eu= (&w) | material rate of €}

. . *
(5:>e » (&:)P elastic a{xd plastic parts of € o Fespectively

= Z E
Tu i+ Eu uniaxial Kirchhoff stress
Ao
E Young's (elastic) modulus

ok
Decomposing the total strain rate e:u into elastic and plastic parts:
L]
* _ ( s #\¢& s #\P
8’&‘ &,‘_) + (&u.> (3.89)
where since

1
(5:)8‘: E T (3.90)

.*
the elastic strain rate (e:u)e is related to the stress as:

. i ,
(6133 =_E__ pgw (3.91)

one cbtains
S N NGy

Hence, one can express the plastic-strain rate (e )p

(5u.)f’ au.. ~’E

a'#__;‘.._d‘t’u.
Eu E Je* H
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Defining the tangont modulus ET as

ET AT& (3.94)
one obtains 5 EATE“-
(5:) ) (i - -) E: (3,95)

Since the tangent modulus ET = (d'r )/(de ) of the Kirchhoff stress '1
versus logarithmic strain cu curve is small for most metals, the
quantity E /E = (d’ru/dt.u)/L is small comparcd with unity. For example,
the calculatioens in the present work have been carried out with the fol-
lowing materials: ‘

For 6061-T651 aluminum:

ET_4idxn .
B CF def SO008B] o somi< el < 076

(EXF= 0933 &}
ET _ Jzu

(E2Y= 0.99561

076< e* < ¢i5

%

LE
- b
Therefore, for 6061-T651 aluminum, the relative difference Eu (Eu)

(X3

£

u
between the total strain rate and tie plastic strain rate is less than

0.7%,

For National Fordge 4130 cast steel:

ET oL d¥ _ gou0es

E E‘ Jet v for  .00283<Ef< .05
(E2Y=0959¢
ET 1 dtw

‘ a
E * F get 00034 ,(& 09904, | o 0825 £l< 06
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ET . 4 dx _
e E T 0.00338

for 060 < e¥ < ,55%
EXF=09%¢)

llence, for this National Forge 4130 cast steel, the relative differonco
botwoon the total and plastic strain rates is 4% for strains smaller than
2%, and the difference is less than 1% for strains larger than 2%. The
experimental error in the calculation of total strain rates in strain-

rate experiments is of the same or larger order than the difference be-
tween the plastic and total strain rates.
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SECTION 4

CURVED BEAMS AND RINGS

4.1 Introduétion

Section 4 deals with the strain-displacement equations and the con-
stitutive equations used for the numerical analysis of curved beams and
rings.

These strain~-displacemer.t relations for finite strains and rota-
tions also take into account thickness change and seem to be "new"

(not found in the literature). The decomposition of the total strain
into a "membrane" and a "bending" part is discussed, and it is seen to
be dependent on the definition of the strain measute. Also, the de-
composition of the deformation gradient into a rotation and a pure
stretch is shown for illustrative purposes. Equivalent equations for
"small membrane strains" are displayed. Finally, the constitutive
equations for curved beams are shown together with the corresponding
incremental procedure which can be used in solving the equations of

motioh stepwise in small increments At in time.

4.2 Strain-Displacement Relations for Finite Strains

and Rotations

4.2.1 Strain-Displacement Relations for the Bernoulli-

Euler Displacement Field

4.2.1.1 Formulation
The previous general results of subsection 2.4 for the kinematics

of a deformable medium are specialized to the ease of a curved beam, as

pictured in Figs. 4a and 4b, with the following definitions:
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~ " X
Reference Configuration 47y =~
, (t=t) 2
3 x.s
Rectangular Cartesian < [
Coordinatoes Present Configuration 1 X
| Fixed-in-Space < (t = t) heplipd
} System t- a
| ' (Inertial) i :xL
Base Vectors 4 [ . L4 >3
2
\ —-——
i3

| > X

Curvilinear Coordinates 4 ,,L 52:

Body-Fixed ~
< T =g
System | & 75 g
~ Reference Configuration J g&
(Convected, < (t = to) -
Intrinsic or Base Vectors JF Ws 83
Present Configuration =
Embedded) (£ = t) GL
G,
L L | NR=G,

The coordinate n

= §2 deiines the (curvilinear) reference axis of the
o -

curved beam and § 53 measures the distance along an outwardly-directed

normal to n. All defo-mations take place in the 1, Z;o two~dimensional plane.
For the body-fixed convected system, the base vecdtors ?;'i and EI are

£unctions of the coordinates n and co, and the G, are also functions of

3:=3.00,5°1; G.* G. (7,5, 1)
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Tho base vectors of tho body-fixed convocted systom at the roforence curvi-
linear axis n (that im, at KO = 0) are given spacial names:

02 ® 3. (7,570) = 3o ()
A G (/'Z;Z’ O 't) Aa.("z)t) (4.2

The base vectors associated with the coordinatoe ; 3 53 aroe:
— - #*
n=3, MNN-=G,

Here, n is the unit normal vector to a in the reference configuration

(4.3)

and N is the unit normal vector to A in the present configuration. Since

they are unit vectors, they are only a function of the coordinate n:
7] ("Z) N = N(q ,t) (4.4)

*
The quantity A is a parameter that is associated with the thickness
change of the curved beam, and hence is a function of CO as well as n!

PP\ (7) z,t) | (4.5)

Hence

G, =X (1,50 N(pt) =G, (7,5t)
3= () =3, @)

Any point in the reference configuration of the curved beam is located by

(4.6)

the position vector ;; to the reference axis n and the unit vector n normal

to the reference axis n in the form:

F=¥, +&°N (4.7)

Any point in the present (deformed) configuration of the curved beam is

located by the position vector R to the reference axis n and the vector

Es A*N normal to the referpnce axis n in the form:

R,=-R° +Z° AN (4.8)
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The base vector ;2 at the reforence axis n (at CO = 0) in the reforence con-
figuration is the unit vector tangent to the rofereonce axis coordinate n:

- 2AF, 3T, - - 22

o"& at?. = Iz 0‘17.= a‘&’a’&glaa’ (4.9)

Tha bhase voctor Az at the referonce axis n (at co = 0} in the present con-
figuration is:

vyl B-'Ro B‘R.o
A T DER = /tz (4.10)

and it is not (in general) a unit vector.

The covariant base vectors of the "curved beam space" in the reference
configuration are:

- al" _3_?3 o N _— ' &\ 7
= ar: o "oy ¥ 3’2"“*%“"(“5 )%

ar — o— t——n—
azg 2z az,
where R is the radius of curvature in the reference configuration, taken

here positive when the center of curvature lies in the negative direction
of n (which is opposite in sign to that given in some books on tensors).

Note that:
a,= g 2 (&°= O)

The (metric) tensor components of the unit tensor i in the convected co-
ordinate system are:

(4.32)

1 2Y 0

-— (4.13)
0= Qe J =
4473 0 1
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§ 8 =[8‘.|']‘ - (4.14)
z' 0 i

The displacement field at any point &2 = N, €3 = Co in a curved beam can bo

; expressed as follows (as depicted in Fig. 4b):

a (/rz,Zf) = U, (nz) +C [7\. (Zf,fz)N'(nz) -7 (,?)] (4.15)

where

o - o— O 2 e (] —
G.= R.-% = 0°G, + U2
= (4.16)
= R -F
or defining v = 32 and w = 83, one may write
R, = Vo, +wWh (4.17)

in the case of no extension of the normals (no thinning or thickening

of the beam):
¥
A= A=1 (4.18)

Accordingly, one cbtains a "Kirchhoff" or "Bernoulli -Euler" displacement
field (see Fig. 5):

=T+ 2 (N-R) = vaas +(w-2)A+%° N«

It can be shown that+:

G N- [(i+)6)n + V) ouz] (4.20)

+From geome trical considerations; in particular, it can be obtained from a

specialization of Eq. 5.84 of Section 5.
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; wharo ; ) 7 ,ﬂ,
’ 2~JE? v i+2%?
| uz ) 2 " i+2”b’z (4.21)
o
Ug = mixed Componﬂnt of tho right atroteh tonnor at the roferonco'
| o axis n(r a 0)
(,2
2
| o. axio n(z® = 0
| Yi = mixed componcnt of the Groeun strain tonsor at the roforonce
| axis n(z° = 0)

= mixed componont of thce Cauchy-Groon tonnor nt tho raferonce

oW _ v

7(_a AR = - = (4.22)
a’z R 3"2 R

(V - z '\") a'z "'[““' °z(i+7o Z']

=¥q,+Wh

Then, the deformation gradient tensor F has the following components with

Hence,

L
(4.23)

z‘e-_-°

respect to the base vectors of the reference configuration:

(i‘*X) 3 ’i) - :\f_

i.: = Ui
F'J
V(14 l;‘a' (140 || . @20
Fiz i
| (4.25)
‘2 Fis

where

}i._-: (- ?@-;;E)(u)() + %W (4.26)
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From Bq. 4.24 and Eq, 2,132, tho right Cauchy-Greon daformation
: ' tanaoy componants C§ in tho body fixnd coordinate ayatom in tho rof-

aronco confiquration can bo obtained as follows:

EFT

Ol
il

} (1*7()(1*(%?6) 'Y(i*' o.)zﬁ.) ("X)(i‘*m.)ﬂo 15
' : L o\T k-
' Ci=(Fi)Fti=

' : -y 40 iy n) L
‘ o i (i uh
(4.27)

which reduces to

[+ Ve K 0

(w

"{) *y (1+XY'
0 (e

(4.28)

Hence, the right Cauchy-Green deformation tensor mixed components at the

reference axis nlat QO = (0) are:

CeeCh(y,z0) = (44X + Y

Also, note that

)
2 2\%
= (U'z> (4.30)
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Placing Eq. 4,30 into Eq. 4,28, ono can expreas the mixed components ci

of the right Cauchy-Groen daformation tensor anywhore in tho curved beam
o TROE

apacn N,&° in texma of tho mixed coemponont C; at_the roforenen axin

(" = 0), the "ewrvatura" «, and_tho normal coordinato r°

Cliv ZSKT 0

C

[ A

(4.31)

0 i

The classical Green (Lagrangiar) strain tensor $ can be obtained readily
from the right Cauchy-Groen deformation tensor (Eqs,

T+ 4(2-1)

2.136 and 2.140):

%(é; [14*(—?’;:)%!{]2 - i) 0 (4.32)

=
f

0 0

%2 1%
u,whgm.mm.mmwyz=y%-lhtMn

%2 2 {Z?ﬁz]{z
(Xz +W }i-’- (i+2i(2)"> O

(4.33)

o<
M
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0 )
whare the Graen atrailn component at tha referonce axis N, =0 puparscript

na"y, or the mambrane ntrain component im
e O ——
2 i 2 A ) (4.34)
Ei;x;ff P 4 =
Grkr Y X

4,2.1.2 Mombrano, Bondlna, and Nolar Dncomponitionn

No nnnumtflnnn an far an tho magnitudo of Lthe atrailnp or s rotatioun

have boon maco in B, 4,33, Ono can decompona B, 4.33 Qddi‘tygéz an

followa:

e 2 [ K
Yo \mea' “ (1+zx)”f~]

L)
" MEMBRANE" “BENDING" "CMANGE OF CURVATURE"

(4.35)

Otherwise, one can apply a mu 1tiplicative decomposition of the deforma-

tion gradient tensor into a "menbrane” part (defined at C = 0 and de-
noted by the superscript "o") and a "bending" part (denoted by the over
gscript “k"):

. R L (i+X,) -yﬁ_{ (i"' \3&) 0

1 (4.36)
J o
v @-o—; 0 1
uU;
\ o oy - " \4 1] /
*MEMBRANE BENDING

o
Hence, the "membrane" right Cauchy~Green deformation tensor component Cg

is:
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v [N ke
éJ n( P “) (FJ) R )Y () || @
W &
La+¥]" 0 & o0
éJf - e |
o i N O i (4.38)
Y ME M;RANE"

Similarly, the "bending" right Cauchy-Green deformation tensor component

K

Ci iss
gty 0 EL) 0
0 i 0 1
_&_‘l %
s et
J o ‘i (4.40)

v—
» gENDING"
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Thun, in accordanco with ka. 4.31

[0yl o) | fé—\"’})"
) (4.41)
0 o 1

» v Yf
MEMBRANE" " BENDING”

sition of the doformation gradient tensor, one

) From the polar decompo
nd P in terms

n expressions for the displacement gradients X a

| can obtai
rence configuration and 2) a

of (1) a rotation angle U from the refe
stretch, (see EQ. 2.122):

e A
F ' = Rt kuJ (4.42)

or, in matrix form, Eq. 4.42 becomes

AR s

(14» X) - lv— cos @  -sin 0 fl: 0

uz
2

Y €52 w8 0| (O 4

s
v l ) . N v L\, v
DEFORMATION GRADIENT ROTATION STRETCH
which shows that:

_ﬁ
e t——
——

(i +)C) = fl: ¢os 0 (4.44)
'\Y = '[1’; an b (4.45)
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Thoan rolations are vory important in the finito olomant analyniln
ainen X and Y are unods (1) an aome af the dogroen of frocdom of oach
finite clomont and () in tho atrain~diaplacoment relationn., It in noon
from Hegn.,  4.44 and 4,456 that both X and ¥ aro volatoed to the stroteh
and to tho rotation,

w
Ohuoerva, that for "amall rotationa":

cos® % { (4.46)
smb %0

*
and, for "small mombranc strains":

il

(4.47)
°, E S "e' 2 %2
U=+ Ez=vVie2¥: x4
Honce, onc obtains
t
X% éz_ "relative elongation™
(4.48)
'\y ~ 9 "rotation"

This indicates that the displacement gradient ¥ is approximately the
relative elongation, and the displacement gradient P is approximately

the rotation angle © only for small strains and small rotations. Observe,

however, that for finite rotations, botn X and Y are related to the
strains and rotations. Also, note that one can obtain Eqs. 4.44 and
4.45 from geometrical arguments as indicated, for example, in Fig., §
and the following observations:

e &
2 2
u,_ = 1 + Eg "membrane" right stretch (4.49)

As=ili AVL (4.50)

*
lere, the precise meaning of "small" rotations and “"small" strains is
made clear in this context.
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The Bernoulli-Fuler-Kirchhoff displacement field may be oxpronsad ans

Vev-2sind (4.51)

W=w=-7 (L- cgs@) (4.52)

cos B = A{?io (%—) (4.53)

cos O = )Pl'm ( ;{ AZ+AV = i‘ (i-o- g—‘-’-) (4.54)
VRN L G § A

snb = Jim (Aw (4.55)
I (22)

=) OJ. Aw \ _ 1 2w \
. A7'i"o(a; T W

Hence, defining

.56)

=3V oW (4.57)
X = M’L ’\P a2 a?
one obtains
i
cos® = - (;L+)(,) (4.58)
u.
sih O = 1 Y (4.59)
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Thua, the Bornoulli-Eulor~Kirchhoff displacoment fiald bocomos:

Vg vV - Z;’ (4.60)

(4.61)

which compares with Eq. 4.23,

At this point it is convenient to use Eqs. 4.44 and 4,45 to show that
the expressions for the right Cauchy-Green deformation tensor component
Cg o '
indeed, invariant under arbitrarily large rotations.

f Eq. 4.31 and the Green strain tensor component Yg of Eq. 4.35 are,

For this, itosuffices to show that the right Cauchy-Green deformation

tensor component C;

o 2 2
K are invariants under rotation. From Eq. 4.29: cg = (L+ %) +y .

at the reference axis n(;o = 0), and the "curvature"

Placing Eqs. 4.44 and 4.45 into this expression, one obtuins:

é:_ = (ﬁ: cos 6)z+ (a: sin 6)2" (‘[ol:)z (cosz@ + s'mze)
-(U;)

which is an identity, from Eq. 4.21.

(4.62)

o

2
Hence 02

is invariant under arbitrarily

large rotations. Next, from Eg. 4.26:

(- (-3 0+ 3y

(4.63)
Placing Egs. 4.44 and 4.45 into Eg. 4.63, one obtains:
o £ 3
%l) = u;cose 14 + sinb g——&
,7. °"Z ”7, (4.64)
o
o 2
2;25- = - I;[»:,’“” Ealzagi + ¢ 5»() z;lzgz
7 1 1 (4.65)
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Lot Do amc i

AR AR o it

=g
]

- (ﬁa cos@ ,Z t sin@ BU )(Tl cw@)

¥ (-.D; 5‘"6 a:z + cosb au‘)(u sin @>

(4.66)

7
"'UM

==} zég cos O + sin
(uz) 3/2 6 6) (u) ?

(U‘) Coze = . U ? L[ sin"0 ,Z

Equation 4.66 shows that the "curvature" expression K of By. 4.26 is invari-
ant under arbitrarily large rigid-body motions.

It can also be shown that the expression

'{/(ﬁ:)s (4.67)

appearing in the expressions for the deformation gradient tensor compononts

of BEq. 4.24 and Eq. 4.36 and in the right Cauchy-Green deformation tensor,
*

Eq. 4.31 and Eq. 4,40, is the actual curvature 30/3s, as follows.

Since
)
uz = 08 (4.68)
2 3'2
and
0 %2 ¥
=~ =uz —; (4.69)

o

Here s is the "deformed" arc length (the are length in the present
configuration)
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One finds from kq, 4.66 that

- (D)3 = - (L) 32

Honeo

Ak K
° )’ (C‘ . (14292 )"

Therefore, one can express Eq. 4.36 as:

wo & | ez o
.
F-.j = '\V (i«bX) O i (4.72)

u;

|- / —
Y

(' " v
MEMBRANE *BENDING"

&

(4.71)

v

Also, the expression for the right Cauchy-Green deforaation tensor component

Ci, Eq. 4.41, can be expressed as:

3
o é o G-mg)t o0
Ci=lo a1 o L

A
¥ MEMBRANE * “BENDING”
Equivalently, one can express the Green strain tensor component Y » from

Bg. 4.35, as:

X Xz Z° (i +2% )'bs (i 2 e$>, (4.74)

MEMBRANE" BEND!N&”

Or, defining a “curvature" measured per unit length of the reference con-

(4.73)

y

figuration, as in Bg. 4.69:
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%% - Wi" %g (4.75)

2 2 _ e . 20 (4.76)
Y&”Xz O i"‘z*z %7(1 ZW a,z)

(4.77)

)

v

° o 6
Y=¥; - © %;iwhz%, -
“MEMBRANE." \ “ geNnDING"

This equation holds for arbitrarily large rotations and strains.

chV
~{S

4,2,1.3 Specialization to Small Membrane Strains
If, instead of the exact equations for arbitrarily large rotations and

strains, ohe assumes "small membrane strains" at the outset (a common

*
assumption in the engineering literature ), the displacement field (Eq. 4.23)

becomes altered. For convenient reference, Eq. 4.23 follows as Eq. 4.78:
L=(v-Z W) a, + (wt B (140)-2)7
&3 2 ,Iolg (4.78)
2 %

For "small membrane strains", one has

Us=4+E2=viny: « 4 @7

Hence, Eq. 4.78 becomes

(4.80)

(v-z°Y)a, + (w+ a‘}()“ﬁ

In this (approximate) Bernoulli-Euler-Kirchhoff displacement field, the only

agsumption made is that the membrane strains are small, but no assumption is

made regarding the magnitudes of the displacements.

*For example, as in Novozhilov's book cn the Nonlinear Theory of Blasticity
[156], or as in [28].
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From this displacemont field, one obtaing the following dnformation
gradiont tensor componentsi

(1+X“%93"4’) __,\y

(4.81)

(Y+ e BZ> (1Y)

From Fia, the following right Cauchy~Grean deformation taonsor components

are obtaineé:
Ao e Z) | @red) ¥

ci= (FiY(FY)-

-¥ (d+X) (*hz,‘%) (1+%)

(4.82)

Cor-sBle(na By VxR edmr )
-‘V(1+)(-z°°w) +{1X) (Y272 ) Yoo (1)}

{é:+za°;{+(z°)“[(%5+(%%)‘]} rx[w S+ (102 ]
C=

zly %—% + () 35 &t

(4.83)
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whore, an bafore

C: = C;(’*Z; Z°50)= (1+X)a+ ye (4.84)

= (- ﬂ)(“ g_% (4.85)

Obsorve that the introduction of the "small membrane straing" assumption in
the Bernoulli-Buler-Kirchhoff displacement ficld is responsible for pro-
ducing gpurious shear strains and normal straina*. The spurious normal
strain is just as large as the membrane strain, although the shear and
normal strains had been assumed to be zero. Also, the introduction of the
"small membrane strains" assumption in the displacement field results in an
expression for the quadratic terms in C that needs the extra assumption of

small membrane strain gradients ((3U 2/Bn) << (96/8n)) to be correct.
From Eqs. 4.64 and 4.65, one finds that

(0 [(B )+ (3] (o [0y ) (2N oo

The Green strain tensor components can be obtained from this displacement
field as:

REIGRE)
{Y*+Z’l{+"(w’) [(ﬂ (32 _” ‘LZ,'[V 7H{#X) oz]

Hence,

3

Lk £ 1Y+ (140 ] L#

(4.87)

*
This observation has alrcady been made in [28].
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where, s bofare

; V=X g gkt
'{= (_ 372\2)(1*')0 +’\V%% R

Soveral subsets of the strailn-displacement cquation for the Green straln

& tensor component Yg were uscd and studied in Ref. 28,
For convenient reference, these rolations aro shown econcisely in the

tollowing:

¥ W
Vi Lo Ve ez (R v B eI

R Qm—"
e 17 LT
\————— 1YPE *D"
- TYPE "E"
e TypE “C"

Strain-displacement relation Type "A" is used in the JET 3 computer program
[24] . It is restricted by small strains and by small angles of rotation:

Strain-Displacement Relation Type "A" (JET 3):

Yile =Xt 2 Y 5CH)

Placing Eqs. 4.44, 4.45, and 4.64 into BEq. 4.91, one obtains:

le »-\/i+2‘o" cosB-1 + i(uzw),wa

; !_—‘ Vis2¥}
‘6{ 192%3 cosﬁ%“% + sin® 2(02. = )] (4.92)

(4.91)
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So that only, for amall mombrano strainss

1422 x4 (4,53)

omall_anglon of rotntions

cos® x4
(4.94)
smoxp
and small mombrane strain gradionta:
%2
g2« 39 (6.5

one obtains ,z

X “ " X Xz Q (4.96)

Strain~displacement relation Type "B" is used in the CIVM-JET 4B com-

puter program [27], For strictly membrane deformations (no bending deforma-
tions at all), it is valid for large strains and rotations. Otherwige, it

is also restricted by small strains and small rotations, as follows:

Strain-Displacement Relation Type "B" (CIVM-JET 4B)

2 o N2 ° A4
X,_ o = Yz_ + Z, 3”2_) (4.97)
It was shown previously in Eq. . .62 that the membrane part

°
(Y2 = 3102 = 1)) of this strain-displacement equation is valid for

large strains and large rotations. But the bending part is not.
From Eqs. 4.64 and 4.97, one finds that

“.B"= Xz +C [\)14-27(2 C:ose +snn93 /;ZHZ'S’;’: ] (4.98)

It is obvious from this that, only for

(a) no rotations (and therefore no change of curvature)
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C056 nl S"Vle"o %92“0 (4.99)

or

| (b)  AmALL mombrane ptradnas

i*Z%;‘ %J_ (4.100)
' and
. (e) omall anglop of rotations
cos9 i sind x 0 (4.101)
' and

(d) small membrane strain grac‘ientm

3;; < (4.102)

2 one obtains:.
0 0
XZ‘“aﬂ A Z, 3% (4-103)

For example, see Fig. 5, suppose that a clamped beam is bent at the

free end by the application of pure moment, to 90°. 1In this case,
one would obtain from the application of strain-displacement rela-

tion type "B":
3 &2 ° :
rors 0230 ana ¥.%0 , 5-,;2"'80

then

\{: \"B" = O + Z’o [‘/I:B (0>%%Z + 1(0\] = O (4.104)

which indicates that strain-displacement relation type "B" would pro-

duce zero bending strain no matter how latge the curvature 38/0n is.
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L2 A

“learly, this is a spurious result produced by the umre of tho equation

beyond its range of validity, A

It ia evident from Bqa, 4,86, 4,06, and 4,62 that the only subantn of
Eq, 4.90 that arxe valld for arbitrarily largo ratations aro atraln-displaco-
mant relatlons Pypen "B" and "c"; although thene relationn apply for arhitrar-
1y largo membrane atrainn, the assumod atnplagement. £40ld given hy Ba, 4,80
which ip omployod to computo tho bonding atrain fmplion omall mombrane atrain.

422 Incluolon of Thicknann Change Anpegiatord with

Finito Stralnp
As proviously montioned, no_asusumptions rogarding the maemitude of
straing and/or yotutions aro precsunt in Bqs. 4.31 and 4.33. Howover, thouo
cquations arc subject to the kinematical rostrictions imposad by the
agpumed=dioplacement fiold of By, 4,23 which does not allow any sheur do=
formations or normal (to the rofervnce axis n) strains, as iy ovidont

)

from the strain matrix digplayed in Eq. 4.33, for example.

&4 theory of thin bodies which 18 subjected to the kinematie constraint
that the thickness before and after deformation remains the same, is not
realistic whon finite strains are admitted in the deformation process. To
enforce such a constraint, the density of the material would have to chanhge
in a special way during deformation. Since for most materials the ratio of
the deformed to the undeformed mass density is very nearly equal to unity
even for large strains, such an unrealistic density change (as enforced by
the constraint of constant thickness) cannot be admitted in the characteriza-
tion of the deformation prr sess of an actual material at finite straina.

The formulation to be presented here can be derived from the general
shell formulation of Section 5. Thiokness changes will be introduced in
the formulation by means of the assumption of no volume chahge.

The assumed-displacement field will contain only the zeroth order term
in a (thickness-coordinate) asymptotic expansion of the factor A(n,Co)
appearing in KEg. 4.8. This zeroth order term provides only a gymmetric
thickness change (with respect to the reference axis n) and excludes anti-
symmetric thickness changes that can be provided by higher order torms in
the asymptotic series expansion.
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It turns out that the retention of juat the perc.n order term is equiva-
lent to satiafying the incompressibility condition in an oxact fashion anly
at the roforeonce axla n (at CQ = ), Higher order terms in tho thicknoss
auordinata (do) aro not Includod at the prosent time na an not ta complioato
tho analysia unduly, Thene higher order tormn affact tho axlal atrain-
dlaplacomont equation In tormn of thn erdor of the aquare of the thicknoon
coardinate and higher, For sufficiontly "thin" hodion, thone torms nhould
bo nogligible,  Alno, the practical unefulnonn of including nuch hlgher
ordor tarms (that norve to natinfy with ineroasing dogroos of aeeuracy tho
incomproooibility acoumption along the thieknouo of tho thin body) 1o of
quootienablo validity in a thoory ouch as tho prosont one that doous net
include any shoar doformutions and i rostriectod to doformations in 2-D
gpaco,

Lot an asymptotic expansion for the factor A(n,co) of Bq. 4.8 bho
assumed in tho form:

?L('Y)Zf) = Ao (/’Z_) + Z'OA;L("Z) AR 0(&" 2 (a.108)

Keeping only the zZeroth order term,

A (/Y)Z") = Ao (’Z) (4.106)

Ed¢. 4.8 becomes
R=R,+& }\.oN (4.107)
Also, Eg. 4.6 becomes

= _3R_BR .y T
GB= 5—-5'3 = ,5-8'; = )\-ON (4.108)

Thus, the displacement field, Eq. 4.15 becomes:

u (/’Z) 50) = [L, (”D + [lo("l)ﬁ(?)—ﬁ(”p] (4.109)

From Eq. 4.108, one can ottain the detormation and strain tensors in the
thickness direction:
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TR = =TT e

~ v T =

633 = C33 = 833 + 2 Xas’ Ea ’63" (7\.0)2 (4.110)

Sinco terms of ordor Eo and highor woro noglectad in the expansion given in
Eq. 4.105, thoy should also bo neglocted in Eq. 4.110 to be conaistent)

henee,
2
Co= [A(p)]
3 - A3 = = S a'/. z
C3=C5=Ca=Csy =(A.) (4.111)
where ég - C‘; C&"O>

é;s * Css (C“‘O)

The thickness deformation is measured by the parameter Ao' which is a
function of the curvilinear axis coordinate n, and is not a function of the
thickness coordinate co. The thickness deformation is assumed to be homo-
geneous through the thickness. The deformation tensor component Cg has
the same value anywhere in the thickness §° at a given location n., One can

express the deformation tensor Cg in terms of the stretch tensor Ug as

u; = ﬁ; = ~‘/ C; = A‘O (4.112)

Imposing no volume deformation at the reference axis n(;° = 0) for this
thin body deforming in 2+D space is tantamount to writing

u:u: =1 & z°=0 (4.113)

or

[}
u:ﬁ: =1 ‘ (4.114)

Employing Egq. 4.112, one ocbtains
° 2 (4.115)
];];z, ;\ao = jL
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Hence,

}\.=”‘._. i= i = i (4.116)
© 3 ) ° ®
2 ’ 2 2
]:];z C:z. \/.1 *Wz T(z
which ogprussos the thickness change l in terms of the membrane axial
strain Yz

Placing this result into the displacement ficld equation (4.109), one
obtains

=W, + Cfﬁ -z°n (4.117)
2

Hence, using Egs. 4.19 and 4.20, Eq. 4.117 becomes

(ﬁ [(i )R+ EY)a, ]

W=Va, + (W=-2°)7 + 2~

E- ()

= Va’l +Wh (4.118)

Thus one obtains the following strain matrix (to the order of Co):

Wiramnt)  Caim )

(M*&‘)

¥

Cme o~

(_ & B?ﬁ)
(g2 ¥3) 2,

1 41
z [(i+2 ¥2) i]
(4.119)
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whare y§ and K wore definaq in Bqans, 4.26 and 4,34,

This exprosaion showa that non

“#0ro transvorse shoar atraing
away from

the roforonco axis n{at covziéb.

tho normal atyain (thickneag c¢hang
and disappoarsg entirely
effoct),’

are progont
This tranasverse shear atrain ig

@) gradioent in the'7 direction
whon thig gradiont ig zoro (sue Fig, 6 for this

causod by

LB 3 LY IV

Xy =¥x0

This is equivalent to

enough:
RS 0
(i+2‘5”§)2 a,z v (4.123)

Hence, the transverse shear strain created by the normal strain gradient in

the axial direction is neglected in the Principle of Virtual Work,

Likewise,
although normal strains are considereg in the analysis,

the terms that

e of plane stress throughout the thin body.

the normal (through-the-thickncss direction) stresgses
are considered to be negligible.

Or, what ig equivalent,

An evident shortcoming of tha

bresent analysis is itg restriction to
two-dimensional space.

In the physical worlg all phenomena take place in

161




-

a three-dimensional space, Tncomprasaibility (or equivalontly, no change
in volume) is a threco-dimonsional concopt.

In the prosent analysis, incomprossibility was imposed in a two-
dimensional spaces that is, not allowing any dcformations in ého direction
noémnl to this two-dimonsional n,co surface. Onc can examine tho consc-
quences of satisfying incompressibility in the throe-dimensional case,

in an approximate fashion, by replacing Eq. 4.114 by:

° o o
U:Ll; Uf;, -1 (4.124)

where the index "1" refers to.the 51 direction, normal to the &2 £ n and
53 = ¢ directions. Therefore, from Eq. 4.112 and Eq. 4.124, one obtains:

) [~
U.ZUZ Ao = 1 (4.125)
[-d
i
;K-o<= ];Ia;.== o o (4.126)

Assuming that

)= 4 (T12) - (4127

4 ) i
Ao = TEEFTE) . 90D

In the case of a very naryow beam, with isotropic properties, and with a

then

(4.128)

width exactly equal to its thickness, it is natural to expect:
° " °_ 3
= 4.129
ua. ua (4.129)
Hence,

°r 4
ui = >\° (4.130)

Hence, from Eq. 4.125:
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- T (=1

(4.131)
|

ﬁ )\‘ = 4 - ;{- " L - (4.132)
o TV (ED (Yt

Placing Ao into Nq. 4.109 for the displacement field, onc can obtain, after
some manipulations the following strain-displaccment equations:

| N | 1

T : ' ‘?f:§ B ?5/:. T2 [;\/ j,-#Z,‘%;;" - i:]

l | 2 _ 2 2 (4.134)
, Xl XZ + (i,‘_zx"(;‘y’/‘i 'i

o
Here, Y; and K have the same definitions as in Eqgs. 4.34 and 4.26, re-
spectively.

(4.133)

In general, one would expect a behavior that is bounded between
Egs. 4.134 and 4.119; that is, between the case in which (1) the strain in
the El direction is equal to the strain in the 53 = ° direction and (2) that
in which the strain in the El direction is equal to O.

4.2.3 Summary of Strain-Displacement Equations

For convenient reference, the strain-displacement equations for thin

curved beams (1 + (CO/R) N 1) will be reproduced in the following for cer-
tain specific situations.

4.2.3.1 Strain~Displacement Relations for Small Strains

From Eq. 4.80, the agssumed displacement field (implying small membrane
strain) isg:
b d -] — i
W=(v-z°Y)a, + (w+z2X)h (4.135)

This field lcads to the following strain-displacement equation (Eq. 4.90):
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b ¢ H A o
X;:}U%YH%X%ao[( (j_+)( +~W ]+~ [ )i@%)]
TYPE “A"
TYPE“B"—'——I
E TYPE "D"

TYPE"E"
TYPE 0"

(4.90)

] where

i | LR HERHER TR Ml P R Rl

and
'\/i+2 g.cose -1
=\/1+2Y2 sin ©

The displacement gradients are X and Yy, and 6 is the angle of rotation of
the reference axis N(at ;o = 0).

<

o I
I

Dl 7d[£

Note from Egs. 4.74 and 4.77 that the bending contribution to the
[3)
Green strain Yj involves also the membrane strain Yj. Hence, the bending

contribution can be approximated in variocus ways depending upon one's
assumption (in the bending part) concerning the size of Y2 For example,
if one assumes that 1 + 2 Y2 % 1 only in the bending part as in Eqs. 4.79
and 4.80, the resulting strain-displacement relations are restricted,
thetefore, to small membrane strains insofar as the bending contribution

itself is concerned; this applies to strain-displacement relations A, B, C,
D, and E. For the membrane part of Yz, arbitrarily large membrane strains
and rotations are taken into accounht in Eq. 4.90 extept for Type A. For

the bending part of Yg in Bq. 4.90, arbitrarily large rotations apply only
for Types C and E. Type A is the curved-beam equivalent of von Karman's.
nonlinear plate equations [157] and Sanders' nonlinear shell eqguations [158].

4.2.3.2 8Strain-Displacement Relations for Finite Strains
and Finite Rotations
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Ag before, let the Groon ("Lagrangian") membrana strain bo dofined as
| ¥2= X+ b YRy Y
- 2 2. 2 ' (4.136)

and the “curvature" as

| {- (B0 + v
}

Tha following displac:ment ficld:

{ Haly——& o (1+X)
, - (V (L+2¥5)™ "V) <w Svern (292 Z)

(4.138)

produces the following strain-displacement equations (to the order of t,o) :
o
z °,2 &
¥i=Y¥i+
3 Yz 92 \& % (4.139)
(1+2¥3%)

4l 4 |
Xg“‘ z[(j_i’l%/:){s - '{-] (4.140)

Y¥i=3 [@%5)‘, ~ i]

(4.145)

™|

with
'RV RS 4 2 3
R P Xiz\(s z\[.;z'\[zz 0

The following special cases can be identificd:
{a) No changes in thicknesgs or latoral dimensions (Yi = Y; = 0);. then,

& =4 /3= 0 /‘& =0
(b) Thickness change only (Yi = 0, Yg # 0); then, '

X = 1 ﬁ= i /uc 0
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R R A A l 4l R E)

() Equal straina in the thicknooa and the lateral Alroation:
(Yg ™ Yi # 0); then

o¢ = 32 //3;: 4 '/ALsn £
Y 3 2
Tho cage in which ¢ = 1, B = 1, 4 = 0 in called strain displacomont

relation Type F and is tho onc used in tho analysis of beoams and rings of

Soction 7: that is

vy .

‘A’i =0 (4.146)

) >
This equation is valid for arbitrarily large membrane strains, rotations,

and diiplacements for incompressible thickness-changing B-E 2-D structures
with Yl = 0,
4.3 Constitutive Equations for Finite Strains and Rotations

4.3.1 Introduction
The general theory for finite-strain elastic-plastic strain-rate de-

pendent deformatlons of a solid presented in Section 3 will be specialized
to curved beams, for which only the axial (circumferential) component of

stress is considered to be important.

4.3.2 Constitutive Equations

In the particular case in consideration, the stress-strain relation is

onc -dimensional (no shear strains are considered and normal through~-the-

thickness stresses are disregarded, considering a state of plane stress).
Hence, the problem simplifics considerably. The co-rotational rate of the

mixed components of stress in convected coordinates becomes equal to the
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matorial rate of thoe mixod vomponents of atronn in convected coordinaten,

L)
In convoetod coordinatant

(4] .
-3 2 s 2
=
T2°* T (4.147)
Alce, the mixod componantn of the rato-of=doformatlion tonoor in convoetond

coordinatos bocomo oqual to the material rate of the mixed compenonts of

logarithmic strain in convected coordinatas:

. [
:D: = 1——1: = ﬁ: (4.148)

Hence, Eq. 3.31 for the case of a one~dimensional stress-strain relation

. »
in convected coordinates becomes

U] e '
s AL ‘(D’;'_) | (4.149)

or, equivalently:

S~ 2 _ S S 2 \é (4.150)
T’&" E (Dz}

® (D) + (Do) = H2 - H: S e

Equation 4.150 can 2e integrated to obtain

Yl ()= E (Y () + 2 () was

Therefore, in this specie” case of a one-dimensional stress-strain relation

where

expressed in the body-~fixed convected coordinates, the constitutive law
(Bq. 3.27) does have an elastic potential:

,\Y l :L . (H ) ;: sE?(H:){lz (4.153)

O

*
Here, as in previous subsections, prescript "s" refors to a quantity per-
taining to the sth sublayer of the mechantcal-sublayer model,
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and s
2 o 8( 2\e (4.1494)
> (1Y)
whore ﬁw ig tho Holmholtz free intornal onorgy por unit mana, undor lno-
thormal conditions, of sublayer.n, -

Tho govorning oguationn, oxpropsod in tho body-£fixed convoctad coordl-
nate system, arc (comparc with BEq. 3.54)1

vi=22A,T:
'Z.;"= iAs s.ta (4.155)
2

2 4 .2
s§ = (st;)z - (s T@Dz (i‘*’ ‘ ]32 ) P) (4.156)
St:’ E:DZ I'(:{ SEQO (4.157)

4
/P) .;{ "L’P'Kﬁ(i*\%‘%) (4.158)

D
d

2 =+"Cu§(i+

Ty *(i+|-3—>-:-

Yo y i/f) '-‘:i st§-<_sz‘a(i+|..§;.)%> (4.159)
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Thoan aquations havae to bo trannformed to the atreas and ntrain quantition
unnd in the numarieal analyninsy far thope, one unen the followlng proviounly-
doarivod nquationn (2,269,2,352, ond 2,188) to obtain

'Zf;“ 5;: (1'4"2.\(’;_) o (4.160)

(4.161)

Ti= ti= 5% (1+2¥2) + 2 5L Y2

0 (1e2¥?)

Tt will be shown that since each sublayer experiences the game strain

:Dz \5/:: (4.162)

as the actual material, the mechanical sublayer model is casily represented
in terms of the Second Plola~-Kirchhoff stress component S;t

To = EAS T3
Yi- S5 (1+272)

Ti=°S; (12D

(4.163)
8; (1+2%3) = é "k (r2¢2)| A
= (1+2\o’§>i ACS;

s=4 (4.164)

Therefore, also the Second Piola-Kirchhoff stress Sg can be considered as

169




— T

ﬁsg. A= 1y veuy n) with the ramo wolghting factorn

Aa an uaod Lor the Kirchhoff atreons Tgt

-
872.. = Z A SSZ (4,155)

Now, oxpraonning Eq. 4,157 4n tormn of tho Socond Plola-Kirchhoff ntrounn
componont S? and tho Groon strain componont Y?. by uoe of Bqa, 4.160-4,162,

ono obtainn:

the aum of n componentn (

séz i*‘ZX: +2%G2% Y2 o -—SL .166
z.( )+2°S3 Y ECL+ZK;) (4.166)

ox

e 2 [E -2 (i"'ZX:) (SS:.)] 2 (A 67)
d(52) - (1+2%2) %)

Integrating this differential expression by the trapezoidal rule,

from the time instant t - At to the incrementally close time instant t,
and defining for the time being:

*S = SS; (4.168)

Y=Y,

(4.169)
A*S= (52 - (o) L
A= (X;'Y - (Y;-Y-“ (4.171)
one obta na;lss = {E- Zsst-ae [(14»2?(‘)- AXJ} AX
[(i*l f)a'- (i+2‘b't)AX+Z(Nf)Z_] (4.172)

170




A 1lluntration of the mothod of computing the axlal ntronn
w
alvon thru-tho~thicknanns intogratlon ntation

at a

In pranontod an follown,

Mo boging by knowine the aublayor otronn nstaAt at timo (&t = At) for tho

and tho ntraln dncromont Ay at
t
tho name Intogration ntation; thorofore, tho otrain Y

intogration otation iu algo known,

nth tublayer at tho intoaqration ntation,

at timo ¢ at that

Ono takus a trial valuo (suporoeript 1) of Ust

(the strocs at sublayor
4 at timo

t) which {a computed by assuming an ineremontally=clastic paths

(s?)7- sgm
+ i_E -25 St-a'e [(i*ZXt)‘AX’]} y
(2 ) (1429 )l Y]

(4.173)

A check is then p *furmed to see what the correct wvalue of BSt must bes

If

[Es(ue2d)] < (rt) 1+

then

l d (J.f;’&*‘)At ‘-‘% ‘

(4.174)

s S't = (s S‘l'.)"'

»
Gaussian integration is utilized in the analysis.
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s SY(1r2¥*) > v (1 |d(im,,)&| )
sqt - s"t’%(i"' IA(+zx*=)At %)
(i,i_z)/t) | . (4.175)
(¢ 5)("-*2\“") <- t“o o Ll(uz‘l*)At\ )

o sTd i‘“ld( +2‘A"‘)At—)
(1+2¥*)

(4.176)

This procedure is applied to all sublayers at that numerical integra-

tion station, and at every integration station.
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SECTTION 6

PTATES AND SURLLS

8.1 Introduction

Strain-displacement relations for general thin shells valid for
finite strains and rotations are dorived here. The main references that
have been consulted for this derivation are: Mar (159), Dugundji {160},
Koiter [161), and Biricikoglu and Kalnins [162].

The classical theory of shells is subjected to the kinematic con-'
straint that the thickness of the shell before and after deformation
reméins the same, but this is not realistic when large straiﬁs are present,
Since most materials which are capable of undergoing large strains are
nearly incompressible, the constraint of incompressibility (no volume
change) seems to be a physically-plausible and mathematically-convenient
assumption; accordingly, this assumption is made in the present analysis.
The analysis of thickness change by this kinematical constraint saves
nunerical computation and reduces the number of degrees of freedom
required to e&nhalyze a given problem (in comparison with the existing
finite-strain three-dimensional finite element analyses). The assumption
of incompressible bchavior of shells, as enforced in the present analysis,
will not result in the existing critical numerical problem [163)
associated with large severe thickness distortion associated with three-
dimensional incompressible behavior present ir the assumecd-displacement
finite-clement analysis of large pléstic strain thrce-dimensional, plane-
strain or axisymmetric problems. The assumption of incompressibility is
enforced in the analysis by moans of an asymptotic scries expansion in
powers of the normal thickness coordinate. 'The corresponding finite-
strain, finite-rotation, strain-displacement relations are believed to be
original. These equations are then gpecialized to the case of an
initially-flat shell; that is, a "plate”.

In Subscection 5.3, constitutive cquations which are valid for (1)
finite strains and rotations, (2) clastic-plagtic materials with strain-

hardening and strain-rate propertics -- are derived under the assumption
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of plane strean conditionn for gonoral thin sholln.  Thoso aquations ara
writton dn torms of the variablen associatod with tho fixed roforence
configuration, and the finito oloment incromental procudure for tho
ovaluation of the atrosues is prosontod.

5.2_ Strain~Displacemont Relations for Finito Strains and Rotations

5.2.1 JFormulation for Genoral Shells

Let the location of each matcrial point of the continuum be defined
by the same two systems indicated in Subsection 2.4; namely, the space-
fixed and the body~-fixed (embedded) coordinate systems. A surface in
‘threo-dimensional Buclidean space is defined by the curvilinear coordinatoes
El and 52 of the body-fixed coordinate system; this surface is called the
"reforence surface"* of a "thin shell®. The coordinate £3 £ Co measures
the distance along an outwardly-directed normal to the reference surface
(co = 0). The unit nomal vector to the reference surface in the reforence
configuration is denoted by E, while the unit normal vector to the
reference surface in the present configuration is denoted by N. Any
material point p in the reference configuration of the shell is located
by the position vector ;o to the reforonce surface (co = 0) and the unit

normal vector n to the reference surface, in the form (Fig. 7):

FELELT) =7, B+ TR (ELEY) s

Observe that the position vector r (as well as ;0) is not a function of
time:

F (555 2)=F (245525 t0) (5.2

whero t is pame reforence (fixed) time.

The =aterial point p in the reforonce configuration of the shell (at
time to) ig identificd by the lotter P in the present configuration of thoe
shell (at time t).  The material point P is located by the position vector

*
It turns out that the best location for this surface for the purposces of
this work is the middle surface of the sholl.,
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Rooxprosgoed in tormn of R to Lthe rofovonce surface (¢ 0 0) and the uwnid
0

veetor N normmal to the vetereonee surfaee, ags woll as the gealar parameter

A that measures the thickness changes
R(,5,2°) = R B2 N T AEE EINEE..

Observe that the pogition vector R huxwvll.nzﬁo) Lo a funcetion of tiwe,

ﬁ (Z;t)z;‘; Zfo) = ﬁ (Etf}l,l:a) t) (%.4)

Bquation 5.3 is tantamount to the assumption that the resulting deforma-
tion is such that the lines normal to the refoerence surface in the
reforence contfiguration ramain normal to the prosent rveference surface,
but the surfaces originally parallel to the reforonce surface at time to
necd not romain parallel to the present reforence surface at time t.
Moreover, the distance of a matorial point to the rveforence surface is

permitted to change with the deformation of the shell.
9

A -

. . . N A o,
The displacoment field at any point {7, &, ¢ in a shell may be

writton as follows:

o (54,2557

R(ELELTD) -FELELE) e

Re-F + Z°AN-T°R
o=0, +2 (AN-/) o0

The covariant base voutors of the reforence surface in the roforonce and

]

prosent configurations are, rospoctively:

= o= 26 Ao -Rowr 3B oo
X ©ro ZSZ;* “' 2525;‘ ",
and they are tangent to the reference surface.*  Note that one can exproess

*
Greek minuseates o, By oos take on valyges Land 2 corvesponding to the

reference surtace coordinates {0 and £, vespoctively,
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tha bano vactor !\u to tha reforonco surface in tho prosent configuration

in toymn of tho diaplacomont voctor Go’

TN bﬁc, _ O | M, = dllo (5.8)
_A,« aa“ - az’“ + az'“ ""a«"*‘ aa'&

The reforence surface metric tenpsor compononts associatod with thene

basce vectors are:
Lup = Oyt Op (5.9)
= A oA L= a Rle = My Mo o
Ae((s A“ A/& a«/a"' a« .az'/;‘i'a./yaa“' bz’« 5?(5.10)

One can introduce the contravariant base vectors ;ot' At by the relations:

ax. ‘5,(5-.-. 8;.—.-A°"_K/3 (5.11)

gu {l it ®=f3
( o f A3 (5.12)

is the previously defined Kronecker delta. Thercfore, one can write the

where

following tensor components:

o.ﬁ=a .af A =AA (5.13)
The determinants of these metric tensors are:
Q, Q,

A= la, oap| =%~ (Cluz)z

Au Aaz. (5.14)

Af' = .A-uAgz - (An.y.
A&l All
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Tho contravariant bane voctorn a and A7 aro relatoed to thoe covariant base

voetorn as:

e
-

f | (6'1 X a'z>°ﬁ (A, "AQ N
; az n X Ou:L A -Ij‘ X.A-é}—‘ (5.16)
|

ai Q, X n . Ai'éz X N (5.15)

= ——
(@,x0,)7 (AixAz ]
It is also truc that:

 [eeoyAlte  [EAINEA e

Hence, one can express Egs. 5,15 and 5.16 as:

-4 Q,xn —:1 A, xN
(l, - 2. .JAL 2.

= (5.18)
[ VA
02 = nxos A%, .____x'._z_g.:& (5.19)
R VA
i = %& AL = -—‘g-y'— (5.20)

Y A (5.21)
Z" (5.22)

The "socond fundamental tengor of the reference surface" is tho

tensor that oxprvsses the curvature of th  reftrence surface; its
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compononts are abtained either by differontiation of tho (tangont) base
vactorn of the surface, or by differentiation of the unit normal voctors

to the surfaco:

(5.23)

bup= 7 355 = - B 2 = - B

Bq(sa_,ﬁ-lA—;— = -Aﬂ. %g-«— A“' 3%” (5.24)

,Associated with this tensor are two important sets of invariants (k, h, b
and K' H' B)3

AR

— Nl»- PIO‘

(5.25)

“ﬁb“ﬁ'_—.—?i:b:

ol bubss - (bu)

(5.26)

—
—

k -
h-=
b

K = J:E. (5.27)

H= %AK(S Bo((s -1 B: | (5.28)
\ Bu{i\ = BAABzz - (Blz)&

Here k and K are the "Gaussian curvatures" of the roference surface in

N

the rofercnce and present configurations, respoctively, while h and H are
the "mean curvatures® of the refereice surface inh the reference and

present configurations, respectively.
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Tho difforontial elomonts of reforonco marface arca, can be shoyn
to bes

o = ’ &ix azldaidaz=£1daidal (5.29)

IA;XAZ\AE"‘AE\Z’JA-‘AZiAEZ (5.30)

in the reference and prescnt configurations, respectively. Thus, the
ratio of the determinants of the metric tonsors of the reference and

prescnt configurations is cqual to the ratio of the differential elements

of arca:
Q" clo(oo
A dcﬁ (5.31)

Likewise, one defines base vectors of the "shell space" 3 ' 93, that

are tangent to surfaces at a distance g from the reference surface in
the reference configuratlon.

(-] o Ja
80( aau 83 32‘3 BZ»
and base vectors Ga. G3, that are tangent to surfaces at a distance Co

from the reference surface in the present configuration:

= R — a-ﬁ' 5,33
Gx= 5%‘ G°= SZ‘.’ e

These base vectors have the following determinantg:

i 8’“. 8’12. 8’43
5 3o gu gu

843 823 8 3
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6 = Gu CY CPA
C PN Qas

The base vaectors él, 52, 63 as well as al, 52, 53 deseribe the metric
proportics of three dimensional Euclidean space. The basc vectoxs 51, a
describe the metric properties of the refercnce surface cmbedded in the

threc dimensional space.

(5.135)

2

It is intercsting to observe that the unit (metric) temsor 1 of the
three~dimensional Euclidean space can be expressed as:

== " =iz = t -.‘j.-.‘. L.'—.—‘.
1-9938-%33-9'33
= G, G*G7= &; G;.G"- G7 G, G5
+

= aupa“‘a” +tAh = &5; 0
And that:

\/g = 1-22h+ () k (5.37)

The differential elements of volume are:

c:‘V; = 1/87 O'Zrid E-za‘zto (5.38)
Clv = 'JE dE‘dede (5.39)

in the reference and present configurations, respectively,

(5.36)

nn

Ohe can express the base vectors of the "shell space" in terms of

the base vectors of the refercence surface as:
— 'aF BFO o aﬁ - Ohﬁ
Fumomx= pex V& =0« Coxr s
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D
3%y

R . BRe , o 2AN)
o -32_’«"‘ DEX ® ax“
=A°<+ R+ oA B e

63 3Z,° = BZ,"N +7\.N (5.43)

Likewisge, .these expressions can be written in texrms of the curvature
tensors and the base vectors, by means of Eqs. 5.23 and 5.24, obtaining:

Gu= Oy = & x Qp ] s
G- T
Gum A EABLA, + AN | o
G, (A2 2N st

|

o = N (G,41)

Qo)

S“

ml

where

A _ BT
Bo= B°‘75 A (5.48)
1
b/; = b,(x o

(5.49)

Finally, with these equations, one can write the metric tensor
components, from which the Cauchy-Green deformation tensor, or the Green

gtrain tensor can be easily obtained as follows. Since
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C]ae( . Clﬁﬁs = Clﬂlf3 u‘gka‘ '.Iasrg - ~1£5bg‘(§
(5.50)

Oy 7 = 0 A,N=0

thon:

8«/3 = got ’g(é = a«P “R& b«/&"'(z‘o)z bi ‘374 (5.51)
8.‘; - 0 (5.52)
833 =1 (5.53)

| Gu/s“Gx'GP’“A s "'ZZ")\B f ,_a)k (5.54)
+(Z)~B lea(/‘o (C) SEXSEP

2 (5.55)
630( Co)\az:« (Z.°) géx ggxs

Gyy= (A +22°A B + (5P (A} e

The assumption of no change in volune can be expressed mathematically as:

JV ~\/;; =4 (5.57)

This assumption will be utilized to express the parameter A in terms of

the variables at the reference surface. From Eqs, 5.51-5.53, one finds
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81:1 34& 0
8 - 8“ 822. 0l= 811321” (8;.2,)1 (5,58)
0 0 1

Thorofore,

8’ =a-RC (b“azaf bzza# - Zbi,,o.,z)
+ (w)l[ b: bsi.a*az* b:b& Ayt 4 bubzz
- 2 bf bsz. Qiz = L‘ (buy.-l + O (C")a (5.59)

8=a[i-2‘&°h+ C°k]z (5.60)

TG A OY -22C Oy 25 AN DD
+HEV A (BY+ (0 [8Ba, A t BB A,
+UB B 2B B A i@
“YOPRCY+ 0(5Y

where:

| C=B A+ BrA,L-2Buh,

(5.62)

To solve Eq. 5.57 in terms of X, the following asymptotic expansion is
assumed:

?‘<§’>§‘J') = ?\o(f',s‘)w*}’/\‘(g‘, §z)+(5')z }‘z(g‘)g‘) PR (5.63)
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This asymptotic axpanaion will turn out to be a Taylorx series expanaion
o a :
in pawern of 7 around [ = 03

A(Z) = A (2 0y + 22 [ B (a0 #0er s

1t Jo oany to show, uning Eqn. 5.57, 5,59, 5.61, and 5.64, by oxpannion
matching, that:

Ao "N (Z"’ 0) 'E (5.65)

- W) o o
A’i g%%(z O) z- (A)Z \/’;‘A" (5.66)
where
Cs b“ aag_ + \‘Dnaﬂ - 2big Q.‘z (5.67)

Henca, from Egq. 5.63:

A(a")"\/}g + %‘: C(:j:)z - \/:.—A‘ "'O(z’°)z (5.68)

is the asymptotic expansion for A in intedral powers of Co that satisfies

the condition of no change in volume.
Observe that substituting this expression for A into Eq. 5.6, one
obtains the following displacement field:

D=0, + & (\/EN *ﬁ) *.(z,°)‘}h,‘ﬁ+o(z,°)’ (5.68)

wheore Al is defined in Eq. 5.66. Also, substituting BEgq. 5.68 into Eqs.

5.54=5,56, one obtains the metric tensor components of the present
configuration:
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0nf & Lo (VN T
Gop " Ay 2 \/;:33% 2 (7Y At By

+ (T & BB + (&Y 2‘1;) %ng(zﬁ

(5.69)*
a,
Gue VE 3B +(zm%-‘£-§

RN %% - (2 TE BE o

(5.70)%

633’%_ +‘45°'\/E)\_i + D(Z”Y

(5.71)*

The curvature tensor components BaB were defined in Eq. 5.24 in
terms of the referenhce surface base vectors and the hormal to the
reference surface in the pregent configuration. Hence, all that remains
in order to write the metric tensor componentgs of the present configura=-
tion in terms of the reference surface displacemerts is to express the
normal N and vectors A as a function of those displacements. The
reference surface displacement field in terms of its components u along
the coordinates Ea and its component w along the normal to the reference

surface is:

{5.72)
Hence,

A _ d3R.. D [ v= _
A, = S5 a«*bz,*(”° ax+wm) .

*THese expressions arc shown to illustrato the nature of the terms involwved
when all terms to a gdven order of t are rectained. Ilowever, these expres-~
sions arc not intended to form a consistent approximation to the gtrain
energy.
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fince
- $ _
g_(}% = « a,+ “Ph A (5.74)
gj‘:{s - - b;; O (5.75)
whoere

55 o = $ :bzxog
= a- ¢ (5.76)
o (5 bff

are the surface Christoffel symbols, Eq. 5.73 becomes

Ko(= a«"‘(uf;« -wW ED (g%"‘*'“"’ bw h 7

Thus, defining the displacement gradients:*

o L) ¢
.ua U~0)o< "Wbu (5.78)

00‘ = 2N 4+ We b},o‘ (5.79)

one obtains:

(5.80)
The components of the deformation gradient tensor of the surface
[« i - [+ 3]
'g'o(= 80‘ +0 . (5.81)

Tbese displacement gradients are the covariant derivatives in three-
dimensional Euclidean space of the three-dimensional Euclidean vector u .
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are alno usoful, and anable one to writa:

A =17, Ag + 0.0 (5.82)

o4

Since

< K.t "_Kz (5.83)
N R

5.82 for A into this equation for N, one obtains:

N=vz [(0u 0% -0, 4%3) '
+.§:(Jz%;1/f J’“ 35 ]

substituting Eq.

VA5 -0 08
+ (0,05 -0,0%) 5"
(@1 ,ﬁf; - 9; nf:&) az:{ (5.85)

This is an exact expression for the normal to the reference surface in
the present configuration and is

completely independent of tYe assumed-
displaéement field.

From Eq. 5.82, one can obtain the expression for the metric tensor

of the reference surface with components A

B in the present configuration,
as a function of the displacements:

_A.,‘.,(/z"-'UAx‘,('_/-Kx_(.3 o,o.zﬂ '!"9 ep

Henca, one can dofine the compone

(5.90)

nts of a Green strain tensor at the
reference surfa-e as:
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A P

\2/04(3 2 “"7‘: (Aoqa - 0-&[0 (5.91)

the ratio of the detorminants of the metric tonsor of tho reforoncao

nd reforonce configurations can be cxprassed in

nts as ¥

Also,
gurface in thc present a
toxms of the refecrence surface strain copone

A . i+ ZX“ + 2 5“" s ,‘/3\/;% (5.92)

——

O

ox

(L+2¥4)(a+233) - RAIGHIETS

re the mixed components of the Green strain tensor:

’”(0'“¢Acp“ 6{3) (5.94)

spect to g , one obtains:

[
where Y% a

pifferentiating Edq. 5,82 covariantly with re

J; T30 29
_2 a¢+/p == c.,.az}:n«v@az),, (5.95

(2L by, + (W by 172

(5.96)

ol YV
S W\?‘

5,96, 5.85, and 5.24, one ctan eXpress the curvature tensor

in texrms of the displacements ass

From Egs.

Bug® \[“[ L ks (3 + bq,ﬂf;)

(0}‘ .a'eg-p.é)) gzﬂi}: -b; Q] (5.97)

.
Where B o1ifa=1,8=2 oy ifa=2,8=1 and =0

if o = B.
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Thorofora, one can axprons tho Groon atrain tonsor componontn an:

| Yo‘/& ) (G“P 8“/‘> (5,98)
| ¥ Gy
\533 = '%_’(633 B i)

il
e

(5.99)

T T T T T NI

(5.100)

Finally, using Eqs. 5.97, 5.93, 5. 91, 5.90, 5.81, 5.79, 5.78, 5.71, 5.70,

5.69, 5,66, 5.62, and 5.14, onhe can relate these strain components to the
displacements for general thin shells.

5.2.2 Strain-Displacement Relations for Plates

At this point, these equations are specialized for a shell with no
initial curvature; that is, a plate. The reference surface coordinates
El and & and the normal coordinate C are chosen so as to form a

rectangular Cartesian coordinate system (in the reference configuration),
where: 2
E;i =X E; iiY 2}°93== CL°93== €5°93
b“(y-‘ b‘:. = b’m =0 U.: U U.:'lV (5.101)
g=a=1 c=h=k=0

Expression 5.68 for the parameter A that characterizes the thinning or
thickening of the plate becomes

7&(5")? ‘/:% + %_:’ 4Az;;:;bzzzAu ZBuA\z ;7(5 102)

Taking the middle surface as the reforence surface of the plate, the

-

Zeroth order term in go characterizes the (symmetric) thinning due to

, . .0
membrane strains; while the first order term in & charactorizos the
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(antisymmatric) thinning produced by changes of curvature. Defining a
asi

aB
I{“p E - ‘)—Z :Bu/s (5.103)

one can obtain, after some manipulations, the following expressions for

"curvature" K

the components of the Green strain tensor:

Y“P = %/«(a + f ){«p + _.1_2.._(50 (A33{(6 +ZX°YD [O{:\mm
K K] 4 4 aa)(i A )} +0(zy

7{“‘ - — o%l ( E;J +0 (Z),)z (5.105)

\°/3‘3 = J?': (K _i) * UL\%‘{(P(Z?”) \{“ " (1)‘2&»{“(5.106)
- 28, Zf(i;} +0(z)"

Observe that the transverse shear strain YBG is associated with the strain

gradient with respect to the g coordinates on the reference surface:

=— G (4L 2A
Y:Sc( (A)z( 2 327

2 - 5 ?_\_Z./zz-_ S B%
(J%z((uzxu) + (1429,) S

(5.107)

and that it can also be expressed in terms of the grdadient of the trans-
verse nhormal strain Y43?
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__ . A _ ozt d(AY: 5.
X.Bo( 2(AY dEX 2 SEX & 3-“—?9 108)

Y
Ysot =G %"‘E'?— (5.109)

In the present analysis, the following simplifying assumptions are

made:

(a) The sccond order terms in the thickness coordinate Co in the

expression for vy B arec negligible

,{o(/s> 2 (A)x{(go&p"' ZX“P)[(’{u) ’{u\{]

‘*(l i EU\ (5.110)
zag,« ?. bZ,”
andAhence Eq. 5.104 reduces to:
Y=Y + B ¥
wp= Y ¥ FHyp T OET o

(b) The “thinning" parameter A can be characterized by:

= _i... ° (5.112
)L-*IR + 0 (z°) )

and hence Eq. 5.106 reduces to:

Xas- = —- - i) + O(Z,°) (5.113)

and (c) the transversc shear strains are small:

oé}iai_ e 3_3A, (5.114)
X:s A aao( - (AY‘(Z 35;" ~(
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Asgumptions (a) and (b) are made since the present formulation is intonded
to apply to thin shells, and for problems in which the symmetric (with
rospect to the middle surface) part of the transverse normal strain is

tho dominant factor in the thickness change. Assumption (c) is made since
otherwise (as shown in the next gubsection) a general state of multiaxial
2nd Piola-Kirchhoff stress would exist in the shell (even though a state
of plane Kirchhoff stress may exist simultaneously) . Assumption {c)
precludes a detalled analysis of necking. The incorporation of thinning
effects under assumptions (a), (b), and (c) does not represent any extra
effort in the analysis. The only quantity that needs to be computed to
include thinning effects (Al/z) would have to be computed anyway for
finite strains even if thinning effects were not included, as is

evident from Eq. 5.97.
Under these simplifying assumptions, the following plate equations,

for finite strains and rotations, and including approximate thinning
effects are expressed finally in terms of the reference surface displace-
ments (u, v) and the displacement component (w) along the unit normal to
the reference surface, along the Lagrangian (material) vectors 51. 32 and

ﬁ, respectively:

o Z’O
X"‘ =X°‘{’ M A *f (5.115)

\6/33 = -'4-2’_- ("j‘& - 1) (5.116)

Ci(je? - 9 A o \2
_A_= (g;(;o = (i+’231\1)(i+,232\2> - (2/\/@ (5.117)

where ?11, ?22, ?12 are the “membrane" strains at the middle surfuce.

These strains are given by:*

o _ 2u, Aru\r, ALV, LAWY
Ty 2% * z(ax + a(ax N g(%;z) (5.118)
ANV . AN

. ,
The underlined AAN terms will be discussed presently.
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| %zz.'"‘ %}"' + %— (%)Z+ -/%_;-/(30\/73\ }-'2- (%?W-)z (5.119)
| ANNN
et 2t B BB HY

and the "bending" expressions Kll' K22, and K are

'{11'.0(( Bx‘) " ) m (5.121)
BrBUE -

RV ) (5.123)

ok >+W3‘31) 7055

—

o= J_+§-;—‘(‘- +%—V- (5.124)
NNV
-1} 2V AW oV (5.125)
Nva E=) 8 (i+ay)+ ’a)l X
= — 2W F-I QW AW (5.126)
22"‘ oy 4+ ax>+ ox 2y

Subscripts 1, 2 and 3 stand for the lLagrangian (material) coordinates x,
y, and Co, respectively.

The terms underlined by’\/\J are terms not appearing in ven Karman's
equations [157] for "large displacements". The much-used von Karman

nonlinear plate equations [157], and the popular Sanders shell equation
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for "modorately small rotationa" [158) am woll am Koiter's nonlinecax
shell equation for "amall finite dofloctions” (161), dospite its
succesnos, have theme inheront limitations: (a) emall strain, (h)
moderately small rotations, and (¢) no transvorso normal strains. Thase
cquations are very important for analytical purposcs, but for a genaral
numerical analysig,.tho morae comprehonsive oxpressions 5.115 through 5.12¢
should be used, since the extra amount of numerical computation ig
amply compensated for by the generality of arbitrarily large rotations
and finite strains that one accommodates by the use of these equations.
Observe that the following displacement field is associated with
expressions 5.115 through 5,126:

o o=u Ay + W h | (5.127)

1 (]

w=uw - A VZ (5.120)
o

w=yv - %/5 (5.129)

3 e o (5.130)
W=w+ & p -
Al
where

- VR -TH-Y
/u_.=0<+ 5_;%7 37, >X (5.131)

,,Zz,*_/:‘z..,./tz =A (5.132)
V@@ gy -t
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Constitutive Bquations for Finito Straina and Rotationga

5.3.1 Introduction

Conatitutive cquations which are valid for finite strains and largo
diaplacements aro derived for gonoral thin sholls under the assumptlon
of plane streas. This assumption is eritically oxamined in terms of tho
"psoudo-stross” measure (the 2nd Piola=Kirchhoff stress) used in tho
present analysis. The von Miges stralh-rate dopendent loading function
introduced in Section 3 is derived in terms of the stress and strain
quantities associated with the refercnce configuration for the casc of
plane stress. The "elastic" and plastic parts of the constitutive rela-
tions for strain-hardening, strain-rate dependent materials are shown in
explicit form in terms of the stress and strain measures associated with
the reference configuration as well as the material constants (to be
measured experimentally). Finally, the incremental procedure for the
evaluation of the stresses in the finite element analysis is shown. Note
that, although the present work is concerned with the numerical analysis
of initially flat plates, the theory presented is valid for general thin
shells,

5.3.2 Constitutive Equations

5.3.2.1 Plane Stress Assumption for Thin Shells at Finite Strains

An approximate state of plane stress is assumed to exist in the shell.
F. John [164] has established that the state of stress in an elastic thin
shell, in the absence of surface loads, is indeed approximately plane, by
means of concrete estimates of the errors involved. Exploiting modern
developments on the behavior of the solutions of elliptic systems of
partial differential equations, he published a rigorous proof that the
state of stress in the interior domain of an clastic shell (i.e., at a
sufficient distance from the edge of a shell) and in the abscnce of
surface loads is approximately plane with an approximately lincar distri-
bution through the thickness of the sttess parallel to the middle surface.
The approximatc equations of F, John hold for any magnitude of the

deflections, provided the strains remain small everywherc. Unfortunately,
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a nimllar praof for largo strainn daen not appoar to exist, It neemn
roanonabla that, if a ntato of plano atrens ahould axint for a thin aAhall

for finite ntraina, that state of plana ntronn should be oxpronnod in
taxma of the Kirchhoff atrean compononta

3 3 L _ A2 i
with rogpoct to the prosont configuration; that ias,

= = =7

T = 'tg- G;G (5.135)

€2 =7I=0 (5.136)
J 3 )

If this condition should be satisfied at all times, the co-rotational
rate of the out-of-plane Kirchhoff stress components should vanish:

%; = ff:;" =0 (5.137)

Since the present analysis is formulated in terms of the reference
configuration, these plane-Kirchhoff-stress equations are expressed in
terms of the 2nd Piola-Kirchhoff stress components and the Green
(Lagrangian) strain, from Eq. 2.270 as:

x B
Tx= (3u+27‘u) S p
'zjg =0 = (832 + 2“(32)5 :
= (1423 )57+ 2%, 5+ 2 ¥, S
T30 = (gat +2%)s"
= (9m F2%,) S+ 2%, 5P +2%,, 5%

(5.140)

(5.138)

(5.139)
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" BRI L b Ll 2L L) L . S T e R L A A TR -
| W R ] '(MFV‘E‘v - R\l {41

| Ca=0= (8,Q+Z“z(,g) gl

r = (1+2%5) 57 2% $*4 2, S
©3i-0-= (849 +2.‘441) gt

(qut 2%) ™+ 2%a S+ 2 8%

.142)

ri-0-= (33“2*&34)5“
(442 ¥32) S+ 2%, §4+ 2,5 500

It ig clear that the condition of “plane 2nd Plola-Kirchhoff stress"

3
Sﬁ—"" Sz = 53?.__: 0 (5.144)

satisfies Eqs. 5.139, 5.140, and 5.142, but still Egs. 5.141 and 5.143:

'Z; e(Q= 2%, S* - 2.\6/33 Su (5.145)
Y;: O= 2)’23 5“ + ZX13 6“ ‘ (5.146)

are not satisfied, in general, unless the transverse shear straing are

negligible:
Yas =¥ =0 (5.147)

From Eq. 5.109, this is equivalent to:
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s 5
12 -S-é%-wc‘j’ ’gzi*: = () (5.148)

which aro natinfiog oxactly at tho roforonce guefaco (ga @ 0),

Theno quantitioo (Y13 and 723) can bo mado as omall as ono pleasen

by rostricting the oholl thicknens to bu nufficiontly thin, If the
condi tiong

S”"‘ st= 543=O
Y3 =¥ =0

(5.149)

(5.150)

arc satisfied at all times, then the material rates of these quantitiesg

also vanish; hence,

[ L4 [
533 = 623 = 8135 O (5.151)
\Z(“ - )’{23 =0 \5.152)

and; therefore, the co-rotational rate of the out-of-plane Kirchhoff

stresses vanishes:

0 a3 ST
’Ba- = T 3= 0 (5.153)

as can be shownh from Eq. 2.353; 2
0 Sim - i A
;= E7Coy £ S lS )G
Ade =~ C""J + 2 S CMQ 6&6J+ C C’*J (5.154)
In this expression, Cij and (Cij)-'l are defined ag:

Ctj = G:q= 8 + ZXU (5.155)

J
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(C-":,)ij = (8{) t ZY“Q”L (5, 156)

whoro

Cp- Cza = éaz = Cza = (C—-‘>*3' (C-‘)”" 0 (5,157)

with matricos:

Cu Cp O (qu+2¥y) 2%, 0
”CLJ = ICy, Can O || =] 2%, (ga+2¥u) O lis.158)
0 0 Cg; O 0 (,44»1‘6,,)

€ e o
(cH* €™ 0
0O o0 (%

C _ Cu
= "3
-C Ca
rr=
0 0

=

e

=

0
0
.
Caz ' (5.159)

det = CuCs - (Caz}’.‘ (8 ut ZXM)(S zz+2\°/u> "(an)l
| (5.160)

From Egs. 5.157 and 5,151, it follows that
03 Lam 4 ~km A 34 RN £
B;'-"S cmj +-ZS Cmﬂ[gks‘i‘#* (C> CkJ]
=0
) 2 im b 2 ¢ -l -1\
't: = 5" Cma + -Jé— S CmQ[S& 63+(C ‘)Q Cka.]
=0
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Hence,

33a 523? '513‘_:. O
¥n=¥0n=0 (5.161)

arc gufficient conditions for the existence of a state of plane stress
and are assumed in the present analysis to hold at all times.

5.3.2.2 wvon Mises Strain-Rate-Degendent Loading Function for

Plane Stress and Finite Straina

In the finite-strain elastic-plastic strain-rate dependent theory
displayed in Subsection 3.3.3, a loading function S0 {yield surface in
stress space) was assumed to exist for each sublayer s of the mechanical
sublayer model. This loading function s@ was assumed to be expressible
in terms of the deviatoric Kirchhoff stress B?D of sublayer s and a
parameter sTu which depends on material properties of sublayer s and the
deviatoric rate of deformation tensor ED, as expressed in'Eq. 3.45 and

repeated here for c~nvenience:

ST =TT ( Ty ) (i'i'(—izi')‘r (5.162)

This loading function BQ will be expressed in terms of the nonzero
components of stress Sij and strain cij under the plane stress condition
of Eq. 5.161. Equation 5.162 can be rewritten as:

s 2 S=», ST S~ \2
E’é(% T®: 7T "(Zu)>
£(°,-°3,)

The first texm of this expression, namely (subscript *1")

55_ S'C:’ "Z’ (5.164)

(5.163)

200



o

cati be writtoen as

F,3CE-$ (BT (T- 5D

oeil

=32 3% _ 4 =)
2 (s : St 3 G‘rs't) ) (5. 160}

by means of the definition of l’, . 3,40, and making use of thesa faota:

I t T = 3 (5.167)

s-—.=~‘=‘$=ﬂ- $=
T:il=1:57T = +%r 5T (5.168)
Kquation %,166 for ’Ql, can be writton in terms of the components of 5T

in the proseont configuration of the body-fixed convected coordinate systom:

o

s? = s t; GIG (5,169)

Henece,
sii 3( t: ° -4 (’t’ K) > (5.170)

or

4?
*%,= = st C, ~ '% (t'.i)z (5.171)

Undey plane stross
3_n.3 _~2 _ 1 3
ta‘tz" t3-t3=ti=0 ‘ (4. 1729

Fg. H.171 becomes

g, = (T (e 30T Tin L,

Q01




and VA o Y m -

Since, from Eq. 2.270: )
z: K ='(::ﬂg EE; ‘
_ Q (5.174)

and, from Eqn,., 5.161 and 5.165:

533 = 623= 51350
Cn = Cza= 0

then, Eq. 5.173 is equivalent to:
SI"' = (C" 6“)2 * (c 22 Saé)z + [ (Cul)z'.' S Cusz] (5‘1)2'
+ [C“ &'+ C S JUCS™ + [3(Ca)* - C.‘C,A g'gir | (5.175)

where the components Cij of the right Cauchy-Green deformation tensor were
defined in Eq. 5.158 in terms of the components Yij of the Green strain
tensor.

The second term in the loading function %0 is (from Bq. 5.163):

(i+ (\/?: 2’*5" N .76

53,2 ()= ()

where sTuo is the static (rate independent) Kirchhoff stress yield of a
specimen in uniaxial tension, and 8d and sp arc material strain-rate
constants, as discussed in Subscction 3.3. Equation 5.176 can be rewritten

as

ey (e (B e

where D is an “ecquivalent doformation rate" defined by:

D= —% .—j:j” :"jnj;D (5.178)

which, being the scalar product of two deviatorie tensors, can be expressed

as:
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ST TSR T e TR ey TRy
I R g 1 . P el e

3 x ™7 3
D= > D7 Dr - "é' (I):)z
— - a' 6,17

just an the scalar product of the deviatoric Kivehhoff stress tonsors wero
oxprossed in the form of Kg. 5.171,  Feom kq. 2,188 one can expross the

I -
components DT of the rate-of-doformation tensor in terms of the material

\

rate of the Green strain components Yij:

D5 - () e

where the components (C-l)im were defined in . 3. 5.159, Since

CC-')“S"- Yas‘ o) x=4,2 (5.181)

from Eq. 5.157, thon:

3 5.182
D;=D}-D;=D;-0 oo

and hence, Eq. 5.179 becomes:

D= (D)D) (D)D) - (D)(:)+ T4 (03 Di-Di))

gince the presont analysis is formulated in terms of the strain components

Yij' Eq. 5.183 will be exprossed in terms of these quantities. From

Bgs. 5.180 and 5.158:
2 - )33 \‘K - \.0/33 - \{33 (5.184)
Dy=(C 2 Ca (1+2%)

Tt can be shown, after some tedious algebra, that
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Di=- (&) (%) - (E)* 4 (%)

2 2 (5.185)
- (C: )9. gd"{;(cu)
where
C‘:}: af] + 2%, (5.186)
éﬂ. éﬁz 0 (a..-n-Z‘?D 2%, O
IC"J I": ész ézz. 0 “ = [ 2¥%. (o,,fzi,) 0 |is.187)
O 0 C33 0 0 (_1,-021{33)
. JEYEY o i -Cu O
,kc )J Ia (é't)tz. (0-.)12. 0 =C3’3 "én. é" 0
5.188)
O 0 C.. N ..LL
€ ° 9
Caa = i+2133= -9-:- = . i .
A (428 [@e2%2) - (280 @F7) B
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D= [+ [ ¥l
+{[ (C.”')"']z +3 (C")“‘ (C~4>zz} (\Z“)z
FULCHY, + (VY ICH Y,
F{alEH) - (9 €} ¥t
+DIDL - (€4, - (€Y, 9 Ya)

i3

{H,190)

whore the components lv-l] are defined in Bg. 5.159 and Di is defined

) by Bg. 5.185. Therefore,

$§ =%‘(s§j, _ SE-L‘),

and {'13 by.¥qs. 5.175, 5.158, 5.177, 5.185,

is defined in torms of Sij, Yij

%.187, 5.188, 5.159, and 5.190.

=

5.3.2.3 "Blastic" Part of the Constitutive Relations for Plane

Streoss and Finite Strains

Consider Bq. 3.31; namely,
o = ==
=m $ s e
' sT =E:°D (5:191)

o
where BT is the co-rotational rate of the Kirchhoff stress 5T of sublayer

8, "E is the fourth order "clasticity tensor', considered here to be the

same for cach sublayer s:
A
s . .
E = E_ (5.192)

Q) " - ;
and D the "elastie" part of the rvate-of=deformation tonsor.  Exprossion
5,192 will be made explicit in tomms ot the componoents in the prosent

contiquratton of the body=-tixed convected coordinate systoems

2. 0 o = —
*T = S"ny 616‘7 (5.193)
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Honeo, one obtains

—v-L' .
G (5.194)

(5.19%)

s ‘(‘o;; = E:;': (”De):; | (5.196)

For plane-stress conditions of an isotropic material, the classical plane~

stress elasticity relations are generalized to finite strains and rotations

as follows:

*ti=EL (DY)

(DB

stie £ (D),

sLa2_ —iifs
ti- -——1:.(:D>1

12 (s e)'&

. D 2 (5.197)

s ~e\i

( D ).1. (5.198)
(5.199)

(5.200)

=
where the mixed compornents of the fourth order clasticity tensor E are:

M E

4"

1 —a
Ez'a:Eu (- Qz)

12 2l _ EI 44
ol =B,

12 1+D
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Tho physical components* of a fourth order tensor are,

"7““\ Gux Ggz
(:E:: I:K»:>P = ALY TY
J L

lloneo,

(E: H)P‘Vs““\ _ G
i4

T K
Gi. Ggg J L
G it _

G 4

- va,

sica\
(B2 -ye

R

Gu

| k}s‘ sl G
(E:::)P " - G;

“

G —

rlnysical G
(E : :) = G:

G

12 vieal 22
(B -Ve:

CPA

iz
o
24

44
ii

Q22 ' L 22
gl S B

12
12

G 3: E 24 E 24
-
Q.. &1 24

i2
21

—a\pved (G G
(E:L) =‘/G:. G Eiz"'Eii

*
As defined by Truesdell [37].

(%.204)

(5.206)

(5.207)

(5.208)

(5.209)

(5.210)
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Tha componoenta Eii in Bgn. 5.197-5,200 ‘are, indend, physical components
and, thoveforo, E and v are Young's madulus and Poisson'n ratio, ronpoe-
tively, as measured from oxporimento.

Exproaaiona 5.197-5,200 are written in torms of the co~rotational
Kirchhoff astyoss rate and the rate-of-doformation tonsor, both quantitics
associated with the progsent configuration. 8Since the prosent findto
oloment analysis is formulated in terms of a refercnce configuration, one
has to oxpress Egs. 5.197=5.200 in torms of the 2nd Piola~Kirchhoff stross
and the Grcecen strain.

Before doing this, an important point will be mentioned. In Section
3, Eq. 3.32, the following additive decamposition of the rata~of-defomation

tensor B was assumed:?
—_— o -— f—
*D = D-D*+D' (5.211

From BEq. 2.182: o _—

X-F-DF

(5.212)

Hence, one can express the additive decomposition of the rate-of-deforma-
tion tensor B in terms of the material rate of the Green strain tensox

? as follows:

(5.213)

- FeBF DT

If one wishes, one may define the "elastic" Green strain rate as:

S=-FB.F-F.(DDF
E%?

o
s-—-

Y%= T
and the "plastic" Green strain rate as:

s-_\?r' F_T° S-BF' F; (5.215)

i

(5.214)
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Thorofora, from kg, 6, 13;

[ ]
ram—rt

X =

e
e

s 7"&

s"“%’ f

(5.216)

& B
the Green strain material rato ¥ ean bo docomposcd, as woll as D, into

additive clastic and plastic parts,

Since this wau shown to bo truc inm the absolute tonsor notation, it

is truc for any coordinate systom.

convected coordinate gystem one obtains:

Dz -

si(:[)JK:)e

From Bq. 2.175:

\.5/“ = D:,‘r

Therefore,

iy = (8D C(EY

or, from Eq. 2.188:

D3 - (¢ ¥y

Hence,

(@) (03"
D7 G = *(DE) Gax + *(DE)" G

s (DJK)P

In particular, for the body=-fixed

(5.217)

(5.218)

(5.219)

{5.220)

(5.221)

(5.222)

D; = | ;;)e s( ) (c >‘Q s(\&g\f (C")tn (Xjﬂ (5.223)
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s e - iQ 8/, \€
(:D::T) = (C ) (Xoﬁ (5.224)
'(wa)r N (C‘")‘! S(Y’lj}? (5.228)

Note, that the deformation gradient tensor F appearing in expressions
5,213, 5.214,and 5.215 is the total deformation gradient tensor that
measures the total deformation from the reference configuration to the
present configuration. Also, the Cauchy-Green deformation tensor
components (C-l)ig appearing in expressions 5,223, 5.224, and 5.225 are
the total deformation tensor components. The decompositions

D= "D+ 5 (5.226)

$. Fesr

(5.227)

are exact. The first decomposition (Eq. 5.226) measures the “elastic"
and plasti¢ deformation rates with respect to the differential length of
the differential line element in the present configuration, while the

second measures it with respect to the reference configuration differential
line element.

The basic assumption is that the differential line element ds in
the present configuration can be decomposed into "elastic" and “"plastic"

(CLS)L = A-ﬁ.' A—-R- (5.228)
ds ""'s(dS)a + S(C\'S)? (5.229)
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Honca, tho material rato of the difforontial line oloment d€ in the

bresant e~ “iquration can alno be docomponod into elastic and plastic

2 (d8)= 45
C\S = S<d,§>e + s(dg)‘; (5,231)

Dividing this relation by tho longth of tho differontial line olement in

the present configuration, onc obtains the additive deocomposition of the
rate-of-deformation tensor (BEq. 5.226):

48) _ (98 | (S
48 d.9 dS
= Sf& + 5:‘:5?

Since the Green strain tensoyr compares lengths in the present’and
reference configurations:

X- i ( (58(35}(65) > (((jss)z i> (5.233)

dS 5.234)
!%EI-SET 1+ 2% = ( ‘) (

its material rate ig:

X.. %(%— ((%;S)z_i) = g—?—(ﬂ—s&) (5.235)

\Z{.'-. % C (5.236)

ol

Multiplying Eq. 5.231 Ly C = 1 + 2y = (gg)z, onc obtains:
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i

; (dgy(dg) cus WSy, 4SSy
ds /Mds ds “ds VT ds ds

(5,237)

= 3?c+s?‘p {6,238)
5: !S‘,}e R l:d"g,:p
ds ds

¥ = 0% 4+ c%e

Therefore, the additive decomposition of the rate-of~-deformation tensor

D into "elastic¢" and plastic parts‘D and$p¥ i equivalont to the additive
decomposition of the material rate (dS) of the differential line eloment
ds in the presgent configuration into "elastic" ddée) and plastic ﬂﬂép)
parts, which are measured with respect to the total) differential line
element ds in the Eresen configuration. fThe additive decomposition of
the material rate Y of the Green strain tensor Y into "elastico"® Y and
plastic Yp parts is tantamount to the additive decomposition of the

o

which in oquivalont to:

dS
ds

(5.239)

material rate (dS) of the differential line element (dS) in the present
configuration into "elastic" (do ) and plastic (dsp) parts, which axe

measured with respect to differential line element ds in the reference
configuration.

Consider, for the moment, that the deformation in sublayer s is
totally elastic, then

S(D:-‘;-)e = D:. (5.240)
S(*ij)e” YU (5.241)
(C")w iﬂj (5.242)
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By moana of Hq. 5,442 apd Eq. 4.353; namnly,

tr 5“MCMJ "i" CMQ[S&S *(C i) “C&ﬂ (5.243)

one can oxpronn Bgn. 5,197-5,200 In texmn of tho 2nd Plela-Kirchhoff

compononte ”Hij and Groon otrain Yij o %'(011 - qij)' to obtain aftox

st 7.5/41 { £ ﬁ [(.C")“Jl L S“’ (C")“}
"'(2‘3’“_){ i ( c ;)m. (C' i)u _sgi (C-g)u_ s (C")u}
R 72 ol () (00 P S [ (Gl YA (OB S

LR A (Gl A (o
HRUNERCIHCY s ) e )]
FHERCPEMERCY T2 )

(5.245)
S éAz. - \Zu { E“ C")“ (C")M- ssu (C -4>n._ ssu (C")“ }
ek U ELEDICITELRCY Y28y

152(C)*- 58 (- 5 (')
+ Yza. { E ;i (C..Yz (C-.)u_ 5 Sn (C-|>aa - ssoa (C -.):2.}

(5.246)
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whera '

| u __E

| TR (5.247)
' 12 o DE_ _ 1d

; iz~ (1= ) VEL (5.248)
f E

12 _ _ m
| 287 449 (i' D) Lt (5.249)

as defined in Egs, 5.201-5.203, and the inverse of the right Cauchy~-Green
deformation tensor [C.l]ij was defined in Eq. 5.159. Compare Eqs. 5.244-
5.246 with their "small strain" approximation:

Sc i : i ', 42 '
S = Xii ii + 22 12. ‘ (5.250)

s ~22 0 i1 : i2 5.251)
S = Yzz ut Y, (5.251)

S &2 : iz 5,25
& - YL.EN

to evaluate the exrors incurred in such an approximation.

5.3.2.4 "Plastic" Part of the Constitutive Relations for Plane
Stress and Finite Strains

From Section 3, Eq. 3.33, the constitutive relations of the sth
sublayer is:

s - E - (35 "‘]-SP> (5.253)
*T-ED-ED
s % = (s %>1 _ (s%)z (5.254)
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The first part of this rclationship; namely,

= [ J—
(’”t )¢° F:D (5,255)
(SE’) = E:K DL.
J/4 JL K (5.256)

was trecatod oxtensively in the previous subscction, and was expressed in
terms of the 2nd Piola-Kirchhoff stress components sSij and the material
rate of the Green strain tensor with components Yij in BEgs. 5.244-5.246,
In this subsection the second part of expression 5.254; namely, the term

(s%)z= E;s-ﬁf' (5.257)

will be studied.
From Eq. 3.47, the plastic rate-of-deformation tensor 5P of

sublayer g can be expressed as:
STRP_ 54 s=o
D'="A°T (5.258)

Hence, one can write Eg. 5.257 as

é = > s =
(st>z= E :A°Z® (5.259)

or, in the body-fixed convected coordinate system, in the present
configurationt

© . T K L
(st:):')z" AES, (s 'ZD)K (5.260)
For plane stress conditions, this equation becomes
soz\ _$) na(s ‘-_1-20 L (s 152)
( ZJ>Z- A EZi tK 3(1- 9) Sk( ti+ tz) (5.261)

where, as before,

12 E
E 24~ i*"{) (5.262)
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pefining,

», M- SEL s A (.26

; exprossion 5.253 becomes:

(s%i)zg si‘(ést: - (.:‘:2?9 )(s'tii' st;‘)) (5.264)

| LD, A - () (edem) e

s°L) _SA¥asd
( Zz .= }\. 3 tz (5.266)
o * %
S~ 2 - S S, 2
( 2:1)1" A3 (5.267)
Using Eq. 2.270, and the conditions of plane-stress (Eq. 5.161)
r H
Tk = C&Q S (5.268)

533 = Sn’-‘- Sn-'-" 0 | (5.269)
\&n=c13=\&z3=czézo (5.270)

one obtains

sehe 1S = (IS4 Ca '™
]
s tz Czn 5 *= C;,zsgn"' sz 5 (5.272)
- Scil sciz
ti'czg 5 20 9"+ (%S (5.273)
R si2 S —22
s,t: - CLQ 55 2= C“ S + C“_ (5.274)
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Honco,

( s ;),ﬁ 57‘\?(3 C/9'+3C, S ~ ?‘2 ;)(C" S4(S'% 20"5'&)15.27&

(5 %2)9_:' SA‘*(:BCRSS:ZZ-‘.‘}C“SS.M* %-:__zi,)))(cussu.‘,czzSzﬁ_zcussl?s).276

(s ot)z-:si*(sszsS‘z*' 3C1255u>

(5.277)

(23).= *A* (3¢, 55 +3C,,°5™)

Also, from Eqs. 5.197-5.200, 5.191 and 5.254, one obtains:
(‘*Ei)fl:__.‘ID} +E2D: » (5.279
v2), =E D+ ERD, (5.280)
sm -EX DL |
(‘%Th-’E‘-L’.Dz
T=ENDAELD: -2,
“c En DL+ EiD - (22,
E. :Dz_ ( 2-)2 (5.285)

(5.281)

(5.282)
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S%T = EZ :Di - (“%f)z (5.286)

One can coxpress Eqs. 5.283-5,286 in terms of tho material ratos of sij
and Yi j by means of Eq. 2.188, which f«: these plane stress conditions

8= §%= 8= (5.287)
(C-‘ya = (C—'>23= Crs = Czs = O (5.288)

becomes
:D‘i-_- (C")“ \?/" + (C")‘z j/lz. (5.289)
Di= (€Y. + (€ Y. (5.290
:D::: (C—‘)“ Y"l M (C‘-‘>'z \Zzz (5.291)

D; = (Cd)u Y“ + (C-‘.)n \.6/,2 (5.292)

and by means of Eq. 2.353, which for the plane stress conditions (Eq. 5.287)
becomes:
o

6?::: sSnC" + SS-),,_ "2_
+¥, {08+ 2SNt S* ()0
+(2¥a) 8™+ 58" (€Y Cy- 28 (O Caa}

F %O (5570 + 557 0]
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s %;7_ 8 ézz C.. + séu C,
' + \ZR{SSaa*_ QR (c~!>:z ot sq2 (C")"’ C'z}
(5.294)

+ (2%, )F 9™+ TS (C)* Cun - 2S' (€)' C )
+%,{(C)* ("8 Caa+ *S'C))

) := sén Cn:. + gSnzCu
+¥,{(C)"' (°8"Cn +55™Cau)}
LR[S+ 5 () Ca Y]
+ \Kzz{sslz + (C..>|z. (ssu. an + sszzcu)}

*Ti=58%C. + *S*C,
¥ f () (F57Ca +2570)]
+2(2%,)[*57+ *S* () Ca
+ S'(CH* Cy
+ %, {82+ () (82 Ca +* 5" Cu)}

(5.296)
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This results in a system of 4 coupled equations in Yll Y ?12' Sllr 82?

22!
and S12 Solving for tho 2nd Piola~Kirchoff strosa rates 8§ 311 822 12

in torms of the stresses, strain rates, and atrains, one finally obtains;

*S¥{EN )T 20 ' "
+2) EN (P ey-2sm )= s' ¢) “}
B0 () () )T 252 )]
=S (2R () (S'C, + 55 C o+ 2°5%C.0))

(5.297)

*S*e X E N () - 205 (¢}

| +(z~(,2){E,': (S (R i (2 et 0 o N
B ) (CY+ER [y 225 “}
N 3esm - (& Y ' CrrsC 2% '*c.z)};

"5 YA ENE )25 cy-5sm (ed
4@ ENERC) T + E2 ')

255 2 C 2 ssu C 22 sszz (C )'l
+Yzz{E.. © )“(C ) (s) B () Lo gs )(c Y }

(5.299)

k {35 2 ((T_){s) (C ‘7-/55th" 5523C22+2 stzcu)}
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as previously defined in Eqs. 5.201-5.203. The right Cauchy-Green deforma-

tion tensor components Cij and their inverse (C-l)ij

5,188 and 5.159,

are defined by Egs.

5.3.2.5 Incremental Procedure for the Evaluation of Stresses

In the following, the procedure employed to determine the stress
components at any integration point in the volume integrals necessary for
the finite element analysis, is described. In the previous subsection
this procedure was described for the case in which differehtial changes
in strains and stresses occur. In the present case, however, those rules
are applied directly for finite incremental rather than differential
changes. Hence, attention must be given to computational difficulties
which might, therefore, arise. This matter will be discussed further,
presently.

Let it be assumed that at time (t - At), all stresses, strains, and

displacements are known at all shell locations of interest. Further, let

it be assumed that the displacement increments Aqi and strain increments
AYij from time (t - At) to time t have been calculated. In order to
integrate the differential expressions 5.297-5,299, a "mixed roctangle
rule" which uses the Cauchy-Green deformation tensor components (C-l)ij
and ci computed at time t, and the stress tensor components ssij computed
at time t - At is employed. The trapezoidal rulc would be ideally suited
for this integration, since it entails a much lower truncation error than

the integration method used. However, as it is ovident from Eqs. 5,297-5,299,
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that the asystom to be integrated has many torms (many moro than in the small
strain approximation of the conatitutive oquations) and it is highly
coupled. In ordor to apply the trapozoidal rule (am proviously done in
Section 4 for the curved boam equation), this syatom of throe coupled
oquationa would have to be solved in torms of tho stress increments

Aasll, Aaszz, and Asslz. For the prosent analysis, thesc cquations are

expressed in incremental form by replacing:

, PR . S22 . sQl2
s . ?_\ts s Q*. _AZ_EJ__ s "'g%.gt_ (5.300)

v AX“ v 22, ‘ Yl?. .
N

CC")"] = [(C*')"j:lt C3= [C‘Jlt (5.302)
SS‘:’ B (S Scj)t-At (5.303)

in Egs. 5.297-5,299.

It is convenient in the computational process for determining the
stress components (Ssij)t at time t to perform an initial examination
by forming a trial value of the stress (overscript T) by assuming that

the stress increment arises from wholly-"elastic" behavior:
(sé&‘l)t = Asgcj + (5 S‘j)t-bt (5.304)
A8« A LC ]2 S e (€,
B (C0 (O - *Sta Ch - *Sha ()]
NG 00 (€02 + S LT 255 ) 5,000
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As ézz”A\{zz{Z%@)[(C ! ] ZSS t-at (C ) }
R NN S -2 (02}

A B N T 280, ] oo

Asslz. A\O/u{(‘ 9‘) (C-‘ N C“‘ 12_ sst-At(c.')‘z $ A\:(C'-' }
+-(2A‘(u){ = 9>[(¢; 0% Es (m) (€ )

"Sea 008 0 000, (€]

(5.307)

+A\Kzz.{-(‘§:9-;) (C) () -=8p . -2, ()}

It should be noted that the symmetry of these expressions is fully
exploited in the computer implementation of the analysis.

Next, a test is performed to determine whether or not the (Sslj)
are within the “elagtic" region bounded by the loading function ( ¢)
defined by Egs. 5.175, 5. 177, 5.185, and 5.190. Thus, one forms a trial
(T) value of the loading function (sg) of the sth sublayer at time t:

(si)t '(s Qt' [("Zﬁ] | . (5.308)
(sii)t = [(C" + (séu>t]a+ [(Cu & (sgzz)t]z +

223



00D +3(Co)e (b} (€)1
HLEN (S +(Ca (53D, T4 (Co), (B,
+[3 [ I (e (€)1 63", ¢E2),

(5,309
[CoBT = (e 1 (V2 )]
Dy = [0 AT+ [(CDF M)
HIED I 430 (€] (a%.)
+2 [, A%+ CVE ML) A2% (5.5
Bl - ey (€] AY, AY,.
(DI DH () A+ ()22 A, + (C)A2Y,] o

(D3 = (CDy A%, + (62 AY,, + (&) A2%.e
In these expressions:
STJ»

= static.z§eld (Kirchhoff) stress of the
o

8th sublayer
in an uniaxial test.

d,p = material strain rate constants

T T
If (sé)t X 0, the trial stress state (Bsij)t lies within the "elagtie®

domain bounded by the loading function (yield surface in stress space)
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or it lios exactly on it, Thorefore, for this time atop At, thore hag
atd) aia, in

fact, ariso from wholly-~nlantie hohavior an initially annumed in tho
4
)

boon no plantic flow and the actual astrosn inoromontn A(
trial axamination. Honen, the actual atropn ("a " In oqual to the
trial atronny thua,

(gsﬂ)t‘( ‘j) A(S ““) ( Lj)twt: (5.313)

If, on tho contrary, (8'5)t > 0, the trial strosg statoe (Bgij)t lico
outside of the loading functioh (i.e., in the forbidden rogion). Thoreforo,
the trial assumption that the entire strain increment is an elastic strain
increment is not valid. Plastic flow has occurrcd within this timo step
and the actual stress state (ssij)t must lie on the loading function
(8¢>)t = 0, fThen the calculation proceeds as follows. As shown in
expressions 5,221 and 5.239, the total strain rate *kﬁ can be decomposed
exactly into elastic and plastic components for each sublayer s:

5‘2/;:-2 - Yu, - s\Z):Q (5.314)

From expressions 5.297-299, one may see at once that the stress rate
s'ij can be decomposed into two parts, c e dependent on the total strain
rates Ykz and another part dependent on the plagtic strain rate Yk2

which iss

sj\* is 5&3 _ (é;f:; (Cf') (ssucn +SSEC, 4+ 755 C”)} (5.315)

ij
Since the stress ( s )t At
the loading function condition

(s§>t-At & O (5.316)

Bq. 5.315 will be integrated during a finite time increment At by taking
8giJ ~1,43 to be

at the previous time increment t - At satisfied

the stresses and strains (C

[} Cij
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2¢ 3 = (55“ )t -t (5.317)

(Cw\)l.j - (C-‘)E (G.318)
“ - (C‘J)t (5.3)9)

Thoxofore, onc obtains tho following oxpronsion for tho actual 8trooo

increomont A(Bs"j): g‘j
ACS4) = ACSY) - ARSI, () ‘5""
\ ) L‘ (5.320)
due Yo due +o

P
A‘Yaj A S\Jﬁ

where

*S'= '-’::2-52 [(SS").;;- At (C u et (sszz)k“&((:zbszcsq(g"-(‘s.321)

The actual stress at time t is
(459 = ALSH* (5% )ent
_(fvsl-.l)e A(S}\* 13(5 »J)t.w__(c_‘ tJSSP}

(a8H)

The parameter A( 82" will be obtained from the solution of a second
This second degree polynomial is obtained

(5.}22)

degree polynomial in Al( B\ ).
from the condition that the actual stresses ( 8 j) N at time t must
gatisfy the loading function ( ¢) s 0, This condition insures that the

stress ( Sij)t at timo t is, indeed, jocated exactly on the yleld surface.

Expressing this matHematically:
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(204 [(eD (8 T+ [(Ca)e (8™ T
LGRS CRTONCRNTTEON
T 050 E BSOS, (5
. (30T (O, (€ (8" (5%)
' ~[C2d. T

where (Q'rg)t is obtalned from Eq. 5,310. Substituting Bg. 5.322 into
Bqs 5,323 and solving for A(SA*) one obtains the physically valid value:

-
3

A B+/B*-AC

A= L@ 8" + [(Ca) I 23T
HICDT+3 (€D (C)) (8= )
+[(©e (8" + (Ca), (487 Y (e (-8
P[] - @ ()} (8 (32)

B= [T (45" (3D + [(C) 1 (5%), (3)

HICD % 3(C). LGl (5 (57 +[eEN
+ (Ca)e (5] 2(0), (48 %)+ [EDLSD+ ade (342 (C")f 5(53?2"
B LETC), (3B, (8943 (5,
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T '
C = (s§>t . (5.327)

Tho cocfficiont C was already displayod in BEge. 5,308-5.312. Tho following
roquiromonts must be satisfiod:

:BZ'AC =20 (5.328)

B - \/B”-AC >0 (5.329)

During the operation of the solution process for intense loading
problems, instances of large strain increments may occur which lead to
an imaginary value of 5\*. a subincremental procedure to circumvent
this difficulty as developed by Huffington [165] is employed. The basic
time increment At, is divided into a number, say L, of equal subincrements;

the size of the subincrements is chosen to be sufficiently smal) so that
a positive real value of A®A* for each subincrement can be derived

successively, as follows. The value of the strain increments AYij during
the time interval At are also divided into L equal parts, AYij/L’ It is
assumed that during each subincrement of length At/L this change in strain
is approximately correct. Then, by employing the previously mentioned
procedure, a valid value for Ask* along with stress increments A(ssij) are
calculated for each subinterval, and in the meanwhile, the stresses and
plastic strains are kept updated. The process is continued until either
(a) the information needed at time t is calculated or (b) a complex or
negative ASX* is encountered.' In the latter case, the process is repeated
from time (t - At) using a larger value of L., If the stresses at time t
can be derived successfully, the solution procedure continues with L
henceforth set to unity until an imaginary or negative ABA* is again

encountered.
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SECTTON 6

COVERN ING BQUATTONS AND SOTUTTON TROCTEDURES

6,1 Tntroduction

m thin invostigation, attontion is restrictod to mothods for analyzing

dynamic structural response, with principal attontion devoted to the transiont

respontios of structures which are subjoectoed to transiont oxternal loeads such
as those arising from gusts, blast, impact, ctc, Bxplicitly excluded from
consideration is the "short time" or "carly time" response which is ofton
called "matorial response", and which pertaing to the naturce, propagation,
and effects of stress waves in the material as a result of sovere impact or
impulsive loads applied to the structure; roughly the time span of interest
for this type of rosponse is of tho order of from 1 to 100 microscconds.
Only the "late time" response which i3 usually tormed “structural rosponse"
(in contrast witlimatorial response") is discussed here; such responsos
involve times of interest oxtonding from time zoro to 1 millisecond or per-
haps to several hundred milliseconds; this type of response pertains to
the transiont bending and/or stretching behavior of overall structures or
of structural components such as beams, rings, plates, and shells,
Furthormore, principal intorest in this study centers upon transient
structural responses involving finite strains including large rotations
and deflections, as well as path-dependent and time-dependent clastic-
plastic material behavior. Sought is information on both the peak transient
rosponses (deflections and strains, with primary interest on strains)

togethor with the time of oceurrence of that poak and tho poermanent deforma-

tion condition of the structure after subsidence of the oxternally-applied
transiont loading,

Th this section, the finite clement equations of motion are derived
from a variational statemont consisting of the Principle ot virtual Work
and D'Alombert's Principle.  The resulting cquations can be anlved in throeo
wayst (a) the pure voctor form (characteristic of explicit solution by

mothods 1ike the central=difforence operator), (b) the constant stiffnoess,
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and (¢} tho tangont atiffness form; these lant two forms are ofton uned
with impliecit oporators which exhibit bottor atability propertics than
do oxplicit oporators.

For the transiont, path-depondent, timo~-deopondont probloms of in-
torest in the prosont work, tha firast two forms arc usad, since theoy
aro more cfficient computationally. For the "pure voctor" form of the
cquations of motion, the so-called "unconventional" formulation is the bost
to use; however, for the "tonstant stiffness" form of tho aquations of
motion, the resulting equations are doveloped in two forms: (a) the "conveon-
tional” form and (b) the "modificd unconventional® form. The new "modificd
unconventional® formulation is shown to be applicable for any kind of ma-
terial behavior, while the usua’ “conventional" formulation is valid only
for small-strain, elastic-plastic materials. In addition, it is shown that
the "modificd unconventioml formulation" is more efficient and economical
(although it takes more computer storage) than is the conventional formu-
lation. '

A brief review is made of different timewise finite-difference opera-
tors suitable for the problem being investigated. Also, the solution of
the governing equations of motion is discussed. '

6.2 Equations of Motion

6.2.1 Variational PFormulation

In the present investigation, the assumed-displacement version of the
finite element method was used. The finitec-element method can be developed
most systematically and conveniently .thin the framework of variational
principles as shown, for example, by Pian and Tong [166]. Variational
principles, as expressions of physical laws, have the following advantages:
(a) they are statements about a system as a whole, rather than the parts
that it comprises, (b) since they refer to the oxtremum of a scalar, they
arc invariant, and may bc uscd to derive the spocial forms appropriate to
any particular description, (¢) they imply boundary conditions as well as
differential equations, (d) thoy automatically include the effects of con-

straints, without requiring that the corresponding reactions be known,
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(o) thoy have heuristic value Cor suggenting gomoralisations, () they aroe
olegant, and {q) they may be unod +to caleulate or prove esistonee of solu-

tionn.

conntdeor a continnum in cquilibrimm andeor the action of body forcees,

oxtornally-applicd surface teactions, and with arbitrary deformation cdn-

E ’ ditions conafiastont with the progseribod geomotrie boundary conditions. lot

r this equilibrium contiquration be subjectod Eﬁ an arbitrarvy and independent
got of infinitosimal virtual displacemonts Su without vielating the geometric

‘ bhoundary conditions. The displacemont variations Su are called virtual be-

cause they need not be actual physical displacements u which would occur

under the given loads, but merely hypothetical, kincmatically possible

displacements. The Principle of Virtual wOrk* (page 595 of [7], 237 of

[50], [167] and [168]) states that the virtual work, OW, done by the external

forces (body forces and surface tractions), is cqual to the virtual work,

SU, of the internal stresses, i.e.,

6'[1 = SW (6.1)
SUL-6W =0

(6.2)

with

s = —g 6.{? JV; (6.3)

5)‘, 5 SXJ d\L (6.4)
6'W=J B-:BSE,AV; +JA:E S dA, (6.5)

* ' ‘
soemingly First formulated for a continaum by Piola in 1848 f169].
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In this equationm, § 1s the second Piola-Kirchhoff strcss tensor, intro-
duced in Subscction 2.5.3, B is the body-force vector (inertia, gravita-
tional, magnetic, etc.) per unit mass, t is the externally~applied surface
traction vector, introduced in Subsection 2.5, Eq. 2.209, ; is the Green
(Lagrangian) strain tensor, introduced in Subsection 2.4.2,3, u is the
displacement vector introduced in Subsection 2.4, Eq. 2.76, and po is the
mass density in the reference configuration, introduced in Subsection 2.5.2,

T T T emRTEpe————— -

el

Eq. 2.218, In the Eqs. 6,1 = 6.6 only displacement variations Su are per-~
mitted, and for that reason this principle also goes by the name "Principle

of Virtual Displacements". By dividing through by 6t, one obtains an alterna-
tive statement of the Principle of Virtual Work called the "principle of
Virtual Velocities", the only advantage of this formulation is that the

ey

virtual velocities 8u/8t can be considered as arbitrary finite quantities,

without invoking the imprecise notion of "infinitesimal" virtual displace-
ments,

In the present formulation, all pertinent quantities used in the tinal

form of the analysis are described congistently with respect to the fixed
reference configuration. The integrations extend over the entire volume

Vo in the reference configuration* of the continuum which is bounded by the
surface (area) Ao in the reference configuration. The boundary surface A0
may be divided into a prescribed surface-traction boundary Ao~’ and a pre-

scribed-displacement boundary AO_ . t
u

*

As previously indicated, one must always bear in mind that the choice of
the relercnce configuration is arbitrary [22, page 79), that the refercnce
configuration is mercly some shape that the body has occupied or might
occupy. If the last configuration that the body has occupied is employed
as the reference configuration, the correspohding description iy sometimes
called "updated Lagrangian"; while if a fixed reference configuration is
employed, the description is sometimes called "total Lagrangian"., 1In the
bresent treatiment, a fixed reference configuration is going to be used for
the description of the motion.
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By omploving the concept of D'Alembert's Prinelploe, the body foree
voetor B may be regarded as consiating of D'Alembert inertla force veetor
(-~ ) and other hody forcog F(qravitntlnnnl, magnetic, eote.). Thus, one

may writoe:

\
l

B=-u+f=-v+
L_ ouL L- . L
B =-ilr+f=-vied (6.7)
where v is the velocity vector, defined in Eq. 2.79, and () denotes the
material rate. Observe that the Gvappearing in the acceleration u are not
subject to variation since this pertains to the existing force.

The Green (Lagrangian) strain tensor ? can be expressed as a function

of the deformation gradient tensor 5, from Eq. 2,133, as

?= _é_' <T:-=T —f 'j-—-> (6.8)

or, in the body-fixed convected coordinate system (Fq. 2.139) the tensor

components are

_ &
&J-é—(ui)ﬁu‘,wu&; U »J) (6.9)

where ( ) i denotes covariant differentiation with respect to the con-
14

vected coordinates gi using the metric tensor gij of the reference configu-

ration (Eqs. 2.53 and 2.55). Then, the variation in the strain tensor y may

be expressed as

6-\? = -% (?T SF + S?T. =F=-.) (6.10)

or

%X i[(Sngu_)b)éu,%*- (6 *“»J)SM. :\ (6.11)

whero 6 is the Kroneckor delta defined by Bg. 2.8.

This basic variational formulation, the Principle of Virtual Work,
holds independently of the naterial constitutive equations and the possible
oxistence of potential functions for the extornal forces, Also, it om-

bodics the equation of cquilibrium of the continuum:
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' ] ::1_ o 20 s
dw(S‘F)*‘ﬁF“ﬁW’ﬁV (6.12)
whore "div" stands for the divergence operator with rospect to the rofor-

cnce configuration. This cquation has the following components in tho
body-fixed convected coordinate system:

J'& v L L ‘.i J
[S™(Brruwn)], + p 5= paii' = g 1
and the prescribed surface traction boundary condition on Ao_ (Eq. 2.229,

t
2.246, 2.262) are

h- (§ . ==T> =--E | (6.14)

;‘E ¢ -‘?T‘t (6.15)
koo 4 3

V)j S (6k+ W k) =1 (6.16)

where n is the unit outward normal vector to the boundary surface in the

=
reference configuration, and t is the pseudo-traction vector both defined
in Bq. 2.209. '

6.2.2 Pinite Element Formulation for the Assumed
Digplacement Model

In the finite-element-analysis method, the entire domain of the con-
tinuum is subdivided into a finite number of regions called "finite
elements" or "discrete elements", each havihg a finite number of "nodes" as
control points. The behavior of the actual continuum which has an infinite
number of degrees of freedom is thereby described approximately in texms
of a finite number of degrees of freedom (DOF) at each of the finite number
of nodes. The generalized displacements within each finite element are
expressed in terms of (a) such variables called “gencralized degrees of
freedom" q which are defined at the node points in conjunction with (b)
suitably-selected interpolation functions to describe the distribution
of each quantity throughout the interior of each finite clement. Applying
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this approach within tho framework of tho Principle of Virtual Work and
D'Alembort'n Prineiple ropultn in a finito-aized syntem of ancond-ordor
ordinary difforontial aquationn, The .nknowns in the oquatlions are tho
gonaralizoed degroes of freodom at cach node of the compléto assomblied
diserotizoed structure (or continuum).

In the assumed-displacoment-type of finite-cloment analysis, onc
sclects appropriato interpolation functions “anchored to" control-point
values which are the nodal gencralized displacoments. Let 1t be assumed
that the continuum (or structure) being analyzed has beeon subdivided con-
ceptually into n finite elements. Then, one may write Eq. 6.1 as the sum

of the contributions from each of the finite clements as follows:

?; (811);5 (%W)e (6.17)

where for any element e:

(éu)& =Jél’)§ ; 6? AV; (6.18)

= 6‘1 8Xij AVO (6.19)
(o

(6W): ’ijﬁ’ i+ T) 6L dV, (6.20)
+ | E-8T dA.

(Aot )e

)o° ("U' + {: ‘) 6 Wi AV;’ (6.21)

- J{VE)e
+J(.A..€ )e‘\‘: Su; AAo

In these equations, (Vo)0 is the volume in the fixed refercnce configuration

235




-

T e, e 8

of the eth discrete elomont, and (Ao_)Q is the portlon of the surface
t
aran (Ao)0 in tho flxod reforence configuration of eloment a, over which

the surface traction t is proseribod, The summation . extonds ovor tho n
clomants of the continuum,

For cach element a, lot an assumod disgplacomont fiold u
ing form be sclected:

Uy (Z," t) = LN (273 )_[ {O((i:)} (6.22)

where Nf&j is an appropriately asaumed interpolation function expressed
in terms of convected coordinates 6 of a generic point within the element
(a yYow vector is identified here by the symbol }, }). Also, {a(t)} repre-
sents a column vector (symbol { }) of independent parameters which are a
function of time t only. Hence, it follows that the vector of nodal
generalized displacements {gq} is defined in terms of the local coordinate

i of tho follow-

system of each element and can be obtained by substituting the coordinates
of the nodal points into Eq. 6.22. Accordingly, one may write:

{3} = 61« o)

If one takes the same number of displacement parameters 0. (t) as the nodal
generalized displacements ¢(t), the transformation matrix [G] is a square
matrix. By inverting Eq. 6.23 for {a(t)} and then substituting into Eq. 6.22,

s (55,£) = LN (201 [G T{ g (0|6 g0

where

L3, (5))] - LN.E) (@] (6.25)

. A
One should not confuse the interpolation function ¢i(€1) with the earlier
® symbol used to denote the loading function (yicld surface).
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Boecaune Ni and G aro a prlorl chosen functions expromsed in tho &j co~

ordinaten only, thoy are not subjected to variation; heneco

ou; = LEJ {éq} (6.26)

Also, tho time derivatives of Eg. 6.24 hooomon

i, =L§ ol {’q’,} ' (6.27)

By using Eqs. 6.9 and 6.24, one may obtain the corrasponding strain Yij
at any point in the eclement ¢ as a function of position &k and the nodal

generalized displacements {q} as follows s
Rf i (&% t) =| D‘J (E})_l ﬂﬂ, (‘c)} + -é- L@l ) {D}; (5,9‘» \_D; (gk)_\‘\ﬁﬂ (6.26)

5% =10y {89) + Lo {Da) LD}1{59)

(6.29)

where Dij' Dzi, and D§ are the appropriate differential (gradient) opera-
vors which may be expressed symbolically in the form:

L:DuJ (Z}).\ = ‘%‘-J‘QL}J (E}) + EJ’“ (Z})_\ (6.30)
L:Dﬂi. (E}M = L§ D‘,L (E}M_ (6.31)
L:D§ (?:k).\ = L§ 2)j (&kn_ ‘ (6.32)

*
Here the three-dimensional continuum cquations are utilized for clarity,
instead of the more complicated strain-displacement equations for shells.
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Employinq Egs, G.24 through 6.32, Egs. 6.17, 6.19, and (.21 bacomes

ZLeql(f 1Dg} 8% + | (i} L0174V 3]

(%)e

jﬂ,{m X3\ ]M ‘;taA +j Jp 11V

(Vo

= O (6.33)

where subscript "b" is used to signify that the {¢i} are evalnated along
the element boundaries.

Equation 6.33 is a convenient finite-element form of the Principle
of Virtual Work and D'Alembert's Principle from which onc can obtain the
"equations of motion".

6.2.3 Computational Strategies

One can divide the numerical schemes for the solution of initial
boundary-value problems into three categories which differ primarily in
the preconditioning of the numerical solution; as pointed out by Argyris
[170]. According to this criterion, one distinguishes between:

(1) The pure vector approach, describing the kinematic motion by

state vectors without resorting to gradient matrices. This
approach 1is characteristic of explicit forward strategies,
like the central difference time operator.

(i1) The constant stiffness approach describes the solution path

in terms of gradient matrices whieh remain constant. This
is characteristic of combined explicit-implicit solution
s¢hemes, like the Houbolt implicit time operator with linear
extrapolation of the nonlincar torms due to plasticity or
geome try.

(iii) The varilablc stiffness approach (tangential stiffness method)

238



ru o RS el add P T A W T
j Y . Pl P il A g s )

describos the solution path in towms of gradient matrices which
aro updatod with the ovolution of tho pelution, Thin in char-
' actorintic of fully implicit ntrategion, like the wnn of an im-
plicit time operator with Nowton-Raphnon itoration of tho non-
| linoax tormrs,
The pure_voctor appreach in traditionally wnod in connoetion with
o finita aifforonco oxplieit mothods [23, 171, 172, for examplel, A
ayotem ntiffnoos matrix io novor conatructod, and tho oquations of motion

| aro oxpresued simply in torma of'vmctcx oquationo which roads

a{g) --iz@y +4F)

UNKNOWN *KNOWN * A
whore [M] is the global mass matrix, {r} represents tho gonoralized nodal

1oad vector accounting for externally-applicd distributed or concontrated
loads and body torces, and {1} is a vector of internal forces (elastic
and plastic) and nonlincar geometric effects. The pure vector approach
which results from the use of the explicit time-marching scheme has strict
stability limitations and very rostrictive convergence behavior for the
iterative solution of nonlinear structural equilibrium equations. There~-
fore, the range of application is restricted to small inetrements of time.
It has the advantage that, for a given time step that provides stability
and convergence, it presents the smallest computational effort of all of
the computational techniques being reviewed. In some kinds of analyses
(notably ih the analysis of short-term shocks and wave propagation
preblems in which the higher frequencies play a significant role), it
is the most effective technique.

The constant stiffness approach was the nhatural computational procedure

to use at the time that finite elements were introduced into nonlinear
analysis [23 and 173, for example]. Just as in linear finite element
analysis, a systom gradicnt matrix called the stiffncss matrix [X] remains
constant (hence the name "constant stiffness") during the whole solution

procedurc. The effects of honlihearitics are treated as pseudo forces:

therofore, this method is aluo called the "pscudo force method". These
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preudo forecen are funetions of the displacements {q} and are placad on the
right-hand aide (the "known" aide) of the equationa of equilibrium, The
banie equationa of equilibyrium, aa ohtninad by thin method, may he axe
pranned mathematieally anad

[Mg) + DIy = (P AR {F)

o T

UHKNOW N “KNOW N (G, 35)

whaoroe {FNL} i0 a pnoudo-foreo vector arxioing from nenlinoar qeomotric of-
foeto and {Fp} is a pscudo-forea voctor stemming from plastie offocto.
Since the pseudo-forees arc not known in advance, one resorts to elthor
an extrapolation of the psoudo forces from provious inerements (in an in-
cromental procodure), or to an iterative corroction of this dmplicit pre-
diction. Tho constant stiffnoss mothod, thus leads to a combined implicit-
explicit formulation of the equations of motion. Ono iterative schomo
that keeps the gradient matrices (the matrices on the loft~hand side of
the equation) constant is the method of successive approximations. How-
ever, this iteration scheme imposes reétxictions on the amount of non-
linearities that the scheme can handle (if the structure stiffness becomes
larger than the original stiffness, then the method will not converge).
Also, the convergence rate is very slow. Further, self-correcting pro-
cedures can be utilized, as shown by Stricklin [174]. Of course, the
Newton-Raphson methed can be utilized, but this will involve refactoring
of the left-hand side of the equation.

Finally, the tangent stiffness approach [74 and 175, for axample)
follows the concept of tangential linearization of the solution path by

introducing time variable system properties. The form of the incremental

Da1{ag} ~ [K"] {AgrléL{AF\}(i{gi})

UNKNOWN KNOWN

(6.36)

where {f } is an unbalancc load added to the right-hand side to satisfy
equilibrium Here [K ] is a tangent stiffness matrix that includes
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nonlinoar geomeirie effactn as well as olastic-plastic offects, Thia pro-
cadure han heen uped, for exampla, by MoNamara and Mavcal [175] who

nhow that larger tiun Inexemanta can bn unnd by thin mothod than with the
provioun onon,  Of courne, a eonAidorable amount of computer time in in-
valvad in the ovaluatlon of [KT] and tho rofactoring ot tho laft-hand aidn
of tho ogquation, In connwotion with an wneonditionally stablo timo
oporator and tho Nowton-=Raphoon lteration, this nelutlion methed previdon
the mont roliablo computational tochnique for long term ronponue analyoon
with large nonlinoagitlos, The Nowtun=Raphoon techniquo io very ofton
modifiod in order to roduce the computational offert whoroby thoe systom
gradionts arc updatod only ocecasionally. In this caso, howover, tho con=
vargonca proportios dotorieratu (in tho limie, whon the initial otiffness

matrix romains unalterod, the constant stiffrness method iz recovered),

Finally, one can summarise the threo schomes, as done by Argyris [170]
by expressing the reliability of tho threo methods in terms of stablility
and convergence restrictions of the underlying nonlinear time-marching
scheme and where the computational effort accounts for the programming
effort as well as the numerical cost of the solution of typical reference

problems:

Computational Stability Convergence Computational
__Procedure Propexties Behavior Effort
Pure Veetor Very restric-| Very restrice Small
(Explicit tive tiv +

Operators) ©

Constant Stiff- Not restric- Restrictive Modium
ness (Implicit- tive

Explicit)

Tangent Stiff- Not restric- Not restrictive Large
ness (Implicit) tive

One can observe that the constant stiffness procedure r~nverts nonlincar
deviations from the lincar prediction into equivalent pseudo-load

+Numerical experience, however, shows that when the At is chosen small
cnough to insure stability, convergence is algo achieved.
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voatorsn (nonlinear corraction), thercby combining tho simplicity of the
voctor formulation with the reliability of the gradient mothodn, Fox the
purporen of the propent atudy, the puro voctaer approach with the contral-
a4 fforonce oxpiicit time operator and tho conatant atiffnonn approach with
tho implicit Houbolt time oparator aro waed. Thooo two approachof have
hoon chooon (1) bocause of their inhoront numorical advantage (tho ntiff-
ness matrix ig nover formed or usod in the voctor approach, and it io
formed and factored only once in the comstant stiffnoss approach) and (2)
sinca the prosent study is concorned with the strain predictions of tima=
dependent plasticity.

Since the present class of nonlinear elastic-plastic transient struc-
tures exhibits strictly path-dependent rcsponses, it is impossible to
guarantce the return to the true solution path by residual correctien at
the end of the time increment without integration of the prior history.
Hence, onc has either to use small increments of time (as is necessary
with the pure-vector approach and constant stiffness method) or to inte~
grate the nonlinear history of deformation within each time increment,
which will always involve numerical truncation errors. Morec rexr, since
hicher frequencies are more important in the strain response than in the
displacement response of the structure, it may be poseible to follow the
displacement response with fairly large increments, but to follow the

strain response, smaller time increments are necessary.

6.2.3.1 Pure Vector Form
Observe that Eg. 6.33 may be written more compactly as follows [23]

for the so-called "unconventional" formulation:

Zsgd (e {8+ {pY + TDfg} -{F])-0

where the following are evaluated for each finite element:

[W)—J = -9’ {E 6} LE‘J CJV; (6.38)

Vede
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{P} = {DU} S.”J d\C (6.39)

(Vo)e

[n]=] (D] LDjISY;

{F1=f plaf oo f {mtua  cm

¢

Aot e

Note that {p} and [h] involve stress information, and that they are time

tPy=1p®)
[h‘l - [h(t)] (6.43)

Since the element nodal generalized displacements {q} for different
elements are not completely independent, a transformation is required to
relate the element nodal displacements {q)} to independent global (or

common) nodal generalized displacements {q*} for the discrete-element

assemblage by {q} ) [-J_]{%*j 6.4

The quantity [ J] includes the effect of transferring from local
coordinates from each individual element to global reference coordinates
for the system as a whole.

Applying Eq. 6.44 to Eqs. 6.38-6.41 to describe the sys:em in terms
of the independent global generalized displacements {q*}, one obtains:

2L (T2 {1 D g} - (£ -0

(6.45)
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{P”} = E J]T { F} | . (6.47)
(h]= (37 [hlld]
()= [IT{#)

Since the square matrix [h] is not a constant, and since both {p} and

[h] involve nonlinear geometric effects as well as plastic effects, there
is no practical reason to calculate the matrix [h] explicitly in the

analysis, and this is not done. It is more convenient to express

L:DQJJ {‘}} = L:DQJ] [Jl{%’} = Xi (6.50)

and hence

(3o{p)Trlfa) - [ (2} a0 [V

Therefore, Eqs. 6.37 and 6.4> become:

é\.é’q{l([m:\ﬁ} +{L§ - i-f})=o (6.52)
(D) A e

eI
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Performing the sunmatlon in Fq, 6.53, invoking the approprinte element
| ; funct lon penernlized displacoment compatibilition, and hecause the { Sepne}
are Independent and arhitrary, the following veetor equations of mottion

are ohtainad for the complete assembled diserotized structure:

[M1{g*} = -{T} +{F}

whore [M] is the gldbal mass matrix, {I} is a vector of internal forees

associatod with lincar and nonlinear terms of the strain displacoment
rolations as well as elastic and plastic forces; and {F} represents the
generalized load vector accounting for externally-applied distributed or
concentrated loads. In terms of element information, [M], {I} and {F}

may be expressed as:
[ *
)]

U%J {m:]

[ms*].

L[]
.
L
L

] .[m:l_

({i,®}]
MO
{ilm)

. (6.57)

{in ®)

(6.56)

 \
A 2

{T®) -

-
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{£.'®)
{F@)} = - {6* W)

{ 'Fn; (t)} | (6.58)

-

6.2.3.2 Constant Stiffness Form

Two types of constant stiffness formulat
The first type is the "conventional®
be obtained by replacing the stress

ions will be presented,
bseudo force formulation, which may

tensor Sij in BEq. 6.33 by the follow-
ing expression in terms of the strains Ykl

si= My, )

ial strains such as thermal
it should be evident that this formulation ig
1 strains, since for finite strainsg Eijkz

but it will depend on the total s
and plastic parts).

strain, etc.). oOf Course,

valid only for infinitesima

cannot
+
be a constant,

train (both the elastic

For finite strains the decomposition of the total Green
strain into elastic

and plastic¢ parts is not a useful concept, since the Green
"elastic"

strain will not have the usual meaning of elastic strains,

but
will be a quantity affected by the teotal deformation.

By means of the strain-displacement equations

(6.28), one can
express Eq. 6.59 ag:

$9= EM (Loansfg) +4191{Da) L3 M3} %) .co



Applying Fas, 0,00 and 6,55 to Kq. 0,33 ono obtainn:

2: L&g}*‘J ([m*l{ }Jr[&*_lh } {&"“} {f, } {:‘*})*0

(6G.61)
whare

() =[IT7] [E}LEIV [Tl we
[k1=[J ]Tj(v,ib‘ﬁ e Dl dV [J] o
H‘.*}" [JJTU /%{IL} ‘Pd\]; + f tingt‘t J-Ao> (6.64)

(3 3= T 0 (o) SARE LONTETTE L9\ A
_)‘N){DM}LZD JEJM (Lonel{ Y +5 Lq_\{bck}LD,qlkﬂ)N m
{.'F? =T {Jl JM“{.D‘_)} EJM\‘&Q dVe (6.66)

& o) D
(£} - - LOTRIPRE NS o

Performing the summation invoking interclement generalized displacement

*
compatibility, and because the variation {8q } can be independent and
arbitrary, the following conventional equilibrium cquation, which is valid

only for small straing is obtained:

g+ U {9} = {F)+{Fy" ) R

247




R AR AL AR A L el A et

whexe [M] is the global mass matrix, (K] ia the ugual small-strain linecar-
olastic global (constant) stiffnosn wmatrix, {F} is the generalized load
voctor roprenenting externally applied distributed or concontratod loads,
{FEL} raprosonts a pacudo load voctor eriaing fyom the nonlinecar terma in
tho strain-displacement oquationn, {FLJ and {P NL} are tho proudo load
voctors due to plastic (small) utrainn and. are aaaociatou, rogpoctivoly,
with the linoar and nenlincar torms of tha strain-displacemont equations.
Not only does this formulation have the drawback that ls applicable
only to small strains, but if an adequatc description of tho structural
behavior requires onc to employ nonlinear s;rain-displacement rclations
(specially for finite rotations of beams, plates, and shells), it is
evident that the "conventional formulation" involves much more computational
work than the "modified unconventional" formulation to be presentad next.
The "unconventional" formulation of Eq. 6.55 is valid for small and
finite strains, for any kind of material. The reason for this is that
the "unconventional” formulation is an exact expression of the Principle
of Virtual Work. No assumptions whatsoever have been made in the
"unconventional formulation about the constitutive equations. On the
other hand, the "conventional® formulation is valid only for the specia\
kind of material that obeys the constitutive equation given as Eg. 6.59,
which is not valid for finite strains of elastic-plastic materials.
However, the "unconventional” fexmulation, as expressed by Eq. 6.55, has
stability and convergence problems, since the only gradient matrix (the
matrix on the left hand side of the equation) is the mass matrix. There-
fore, to be able to have stability and convergence properties similar to
the constant stiffness method, while at the same time preserving the useful
properties of the vunconventional" formulation, the small-strain linear-
elastic, constant-stiffness matrix [K] is added to both sides of the Eq.
6.55 to obtain the following modified unconventional form of the equations

of motion:

D’ﬂ{ ﬂ* EK:“%*} {K‘H% }'{I}V {F} (6.69)
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Obsioxrvo that this oquation in valid for finita atraina, and for any kind

of matorial, alnev no conntitutiva ansumptions have boon made, Dnfining

{F)=[k1{q*} -{1} (6,70

whera {FNL} is a pooudo~force arining from finite ntrain elastic~plastic
bohavieor as well as all (lincar and nonlincar) torms of tho ntrain-
ddsplacement equations, onc can oxprogs Eq. 6.69 aa:

D"ﬂ{%*} + [K]{QI*} = {F""} +{F_} (6.71)

This expression is called the "modified unconventional" form of the
equations of motion.

In the next subsection, this "modified unconventional® formulation
is to be used with implicit time operators, while the "unconventional®
formulation of Bgq. 6.55 is to be used with explicit time operators.

6.2.3.3 Tangent Stiffness Form

The tangent stiffness form of the equations of motion will be derived
here from the Principle of Virtual Work for completeness purposes, but
the reader is reminded that the tangent stiffness formulation is not
utilized in the present report for any computations or predictions.

The vector form of the equations of motion (Eq. 6.55 derived from

the Principle of Virtual Work) at time instants t and t-At may be
written, respectively, as

[m14 .9}*}{ =T {I}t T {F} £ (6.72a)
[84] { é*}t-af‘ ) {IS e { F}k"ﬁt (67200

Subtracting Eq. 6.72b from Ec¢ o.72a, onec obtains the following incremental

ferm of the equations of motion:
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EM-]{A‘}'J = iAI} + {AF} (6.72¢)

(a4} = 1475 {47

{ } {I}e - {I}t_be (6.720)
{ } {.F}{;" {F}t_“ (6.728)

Next, the increment of the internal force vector {AI} is treated as a
differential:

o1}« 258 g Dl {age} o

Hence, one obtains the following "tangent stiffness" form of the equations
of motion:

[.1’1] {A'Q}*} + EKT] {A%*} = {AF} +{F\L} (6.74)

whoro

(1]

where the "unbalanced force" {fu} is due to the error implicit in Eq. 6.73
and consists of writing the residual equation for Eq. 6.55:

{fu=- DM {§7) - {1} +{F] .7

This error term consists of evaluating the terms at the state before the
current incrcement (if no errors had been introduced by previous increments
the error would be equal to zero). By ineluding this residual load

correction in the equations of motion, one may obtain converdgent solutions
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uning timo ineromonts that are rolatively large in comparipon with tho
solutions obtainod without the coreaction,
Prom Bgr. 6,37, 6,39, G.40, and 6,51, one obtainn

v } Sjwipﬁ} St“ AV; + J&‘)(DQ& L:I)‘g'_l{q:} S‘S dV; (G6.76)

and, sinuve, from Eq. 6.73

?' Eﬁ{r] - 3". } (6.77)
2ls}
it follows that

| 384 zm
| (A= [ o 357 Lagay! W
,)( >{D”‘}LD§J SVdV

J 37{2 6.78
of o) Lo0sfg] [P0 o

By means of the strain-displacement équations 6.28, one can write:

g?&; | Dpgd +1qu{])ck‘j\_DQJ+iL% {p§ Dl e

Placing Eq. 6.79 into Eq. 6.78, one obtains the following tangent stiffness
for finite element “e"

[kT]- f{DJ}[ ]LD&ldV

e 108} [;i,; LD} LD3 4VL/2

PR o)

o et
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(6.79)

T W v

It snould be omphasized that this tangent stiffness matrix [kT] depends

upon the current state of displacoment {q} and stress. also, comparing

Egs. 6.79, 6.63, 6.76, and 6.70, it is evident that more caleulations are

involved in the formulation of the tangent stiffness matrix than in the

formation of the internal forces for the modified unconventional and/or
L ' for the unconventional foimunlations.,

6.3 Finite Difference Operators

6.3.1 Linear Dynamic Systems

For the timewise numerieal solution of undamped linear dynamic

structural problems, many finite-difference operators have been explored

to assess their attributes and shortcomings. Some schemes are stable no

matter how large the time increment At is chosen to be -- and hence are
termed "unconditionally stable"; others are unstable Ffor At larger than
Some
i introduce (unintentionally) artificial or false Aamping whereas others

do not exhibit this undesirable feature. All of these methods,
usually* produce a phas

some critical value -- and thus are termed "conditionally stable".

however,

e-shift error in the predicted response, depending
upon the size of the finite At used -- some schemes exhibit morc phasc-
shift error than others for a given At. A concise tabulation [177) of

*Ah exception, however, has been noted in Ref. 176 wherein the 3-point
central-di “ference formula was used to solve the one dimensional wave
equation. When At was chosen such that (At) /(Ax) = 1, a solution which
was cxact in both amplitide and phase was obtained, Sccond, the Gurtin
averaging operator with o = @ exhibits no phase shift error but only with
one (much too large) value of At; false damping also is bresent.
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Aome af thoe foatures of the more commonly-used 'vari'etiefz_ of thin mothod
ara given bolow,

SUMMARY OF HOMH FP OPRRATOR FRATURES
FOR {INDMMPED LINFAR DYNAMIC SYSTEMS (MATH, MODEL)

|
: Allowablo At
for Condition= Phago
ally Stable Uncondition- Falso Shift
Mothod Mothod ally Stable  Damping Error
EXPLICLT
Caentral Diff. At < Ei- No No Yes
3 pt. max
3rd Ordoxr At < /Eywhax No Yes You
Runge Kutta
4th Order At S-ZVQA%nax _ No Yos Yes
Runge Kutta
\
g | de Vogelaere (I) At 5‘2“57wmax No Yes Yes
IMPLICIT
Houbolt - Yes vas Yes
+Newmark B
1 1 1
; Y=3 8= 7 -—- Yes No Yes
Y= -21-', o<6<% At < 2 73 No No Yes

) Ugnax(l*48) )

3 Gurtin Averaying ——— Yes Yes Yee
Wilson Averaging ——- Yes Yes Yes
de Vogelaere (II) At < 12»’2—/(““1ax

or No No Yes

273/ SBES 2B/

*
Here wmax represents the largest natural frequency of the math. model.

+For B = 0, this reduces to the explicit 3 pt. cp operator.
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The sclection of a suitable time lpcrement aize At 1p
governed by (a) the atability eritorion -- the condition undor which the
axponontial exror growth will hn bounded and (b) the converqonen raquire-
mant =~ the closonnen of the temporal dincrotization polutlon to the
oxact aifforontial aquation pelution an the timrwiaa diseretization manh
docroanon,  The mathomatical foundationn for tho quantionn of gonvaxgonen
and otability of numcrical mothodn arve woll=daveloped only fov linoar
pyntomi.  Moroover, tho problom of practlcal convorgonco (the alononenn of
tho solutionn for finito At) is ofton nuglocted.

Ao proviously definod, a finito-difforonce schomo ip said to bo
convergent, 1f all valuos of tho finito~differcnce polution approach tho
solution of the differcntial ogquation of tho continuum ag the finite
di fforonce mesh size approachus zuro. The finito-differonco gchomo i8
sald to bo consistent if the finite-difforence gquation approaches the
differential eguutidn as the mesh size approaches zero. Although consig-
toncy might secem to bu automaticslly satisfied by the Taylor series method
of developihg the finite-diffcrence scheme, in fact it is ggé. The
property of consistency is a subtle concept, gsince it is not concerned
with the limit behavior of the whole solution of the differential equation
but merely with the limit behavior of the individual terms (differentials)
of the equation. For example, a finite-difference simulation of a

differential equation may have consistent finite differences but not be
convexrgent. *

Lax [178] has stated an ~quivalence theorem that has fundamental
importance for linear systems of equations. This equivalence theorem,
states that, for a consistent finite-difference scheme, stability is a
necessary and sufficient condition for convergence:

Lax equivalence theoreul:} consistency + stabllity = convergence

(for linear systems)

Although early investigators like O'Brien, Hyman, and Kaplan [179] as well
as £ddy [180] have defined stability in terms of the growth or decay of
roundoff errors, it is now gencrally accepted that the definition of Lax
and Richtmyer [178] is much to be preferred. This more general definition

254



- T T T W= T

of ntabllity roquires a bounded axtent Lo which any eompanont of the initial
data con he amplified in the numorical proendure (by any kind of orror,
inaluding trunecation error an woll an gronn orrorn) .

A Roacho {181, p. 48] polntn out, ntability ovon for linear byntomn
i not dofined with univornal applicability. Tho ntability exitorlion
anpoclatod with tho name of von Noumann in that ntability in to bo dotox=
mined from thu docay or ampllficatien of cach mode of a finito Fourlor
nerloo oxpansion of tho wolution to a medol cquation. Lax and Richtwyour
(178] have domonstrated that this in ouffieiont for stability for a lincar
pyotom with conutant cocfficlento. Richtmyor (182] pointu out that tho
concupt of stabllity depends on tho choiéc of thoe norm used to moeasuro
stability, and that tho use of louricr analysis as in the von Noumann
mothod implics a root mean squaro norm, which ls somowhat arbitrary.

One can readily construct mepoint forward-differcnce, gentral-
difference, or backward-differvnce opurators by fTaylor gerios representa-
tion of the acceleration ¢ and/or velocities q in terms of displacement
%, information at m instants in time; the truncation error of ecach approxi-
mation thus selected may be identified, and depends upon the number (m,
such as 1,2,3,...etc.) of the time instants used. It can also be shown
that: (1) all forward-difference operators are unconditionally unstable,
(2) all central difference operators are conditionally stable (a critical
At exists beyond which exrow blowup will cceour), and (3) all backward
difference operators are unciniitionally stible. Krieg [183] has shown
that there can be no explicit second order method which is unconditionally
stable, and, in addition, no explicit second order wethod can have a
critical time step larger t an that of the central difference time operator.
Morino et al. [18] have shown that the central difference method is the
optimal method within the class of oxplicit n-step predictor methods with
different n-step correctors, where n € 3.

The Houbolt method is a Four-point implicit backward-difference method
(that is, at time n, ﬁn and én are expressed in tewms of q » q _1r 9 o
and qn*B)' this method, accordingly, is unconditionally stable. However,

it introducuvs false damping.

255



R S S

While orror instability is avoided by all of the unconditionally
ataklo mathods (permitting one to use as large a At as one wishes), the
forcing function in a given problem may have severe variatlons éuch that
one must use a fairly small At in ordeor to follow and identify the savero
poaks, ote. in tho response. Porhaps a At of some chosen fraction of the
poriod of the highest significantly-excited mode should be uscd. However,
the problem is: can one make a rational a priori estimate of this situa-
tion? 1In such cases the feature of unconditional stability may not be as
much of an advantage over a conditionaliv-stable method as one might think
at first sight. However, for "stiff" equations (a term used by numerical
analysts to refer to equations containing widely varying frequency
components) like structural dynamics equations, and in particular transient
loadings which excite only the lowest modes of the structure, the "larger
At" permitted by the unconditionally-stable methods compared with the
“small At" required by the conditionally-stable methods (like the 3 point
central-difference scheme) makes the unconditionally-stable methods
attractive.

Although one can construct finite-difference operators of the
implicit or expl!=it type having truncation errors as small as one wishes
by using informstion at time stations (t, t-At, t=2At,....), it is evident
that one pays a price in the necessity of storing this information in
order to march the solution ahead in time. Further, the use of an explicit
operator circumvects the iterative (or extrapolation) type of calculation

required for the solution of the equations of motion when an implicit time
operator is used.

6.3.2 Nonlinear Dynamic Systems

The equivalence theorem of lLax is certainly important for linear
systems, but, as Roache [181, p. 50] points out, its significance tends
to be overemphasized. Some authors have based arguments for the convergence
of nonlinear finite-difference equations on the Lax equivalence theorem
for linea: systems, "apparently out of desperation". While it is useful
to stﬁdy linear systems as guidelines to nonlinear systems, Lax's equiva-
leiuice theorem is simply not applicable to nonlinear systems. As Roache
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[181, p. 50] points out, a proclse stability critorion Is not required
mathematically. Hicks [185) suggests skipping ovor the problems of
stability ecrxlteria and going directly to tho heart of the matter which is,

aftor all:s convexgenco. Fundamentally, one wants the finite-difference
solution to approadh.zgﬁ differential cquation golution, and stability
definitlions arc of secondary nature.

None of the criteria or analyses of stablility are really adequate
for practical computations of nonlincar problems. Usually the stability
conditions are applied locally. The shortcomings of this approach should
be clear. Several authors [182,186,187, and 188] have reported instabili-
ties caused by nonlinearity, or at least because of variable coefficients.
Others [189] have reported the phenomena of time splitting of solutions
(Section III-A-6 of [181]) which, though not an instability in the sense
of producing unbounded solutions, is an instability in a practical sense

of preventing iterative convergence.

It is of fundamental importance to realize that it may be impossible
to distinguish between what one might call a "true" instability and just

a very poor rate of convergence. In fact, preoccupation with tidy defini-

tions of consistency, convergence, and stability as the mesh size goes to
zero (At + 0) is sometimes rather futile, since computations are not run
under these conditions. Various of the explicit methods have been applied
to nonlinear problems -~ with the corresponding linear system At limit
being used as a guide for choosing an appropriate At -- in typical practice
some fraction, usually 0.8 and 0.9, of the analytically-indicated maximum
At for the linear system. In early time calculations, when transients are
large, smaller fractions may be needed.

All of the finite-~difference operators which are unconditionally
stable for the linear system provide degraded (grossly inaccurate) solu-
tions for nonlinear problems if the time step is too large.

Since there is no reason to extrapolate to nonlinear problems the
classical methods used to describe stability limits and convergence for
simple linecar systems, the complexity of the problem determineg tHat the
best way to examince the various approaches at the present time is by

numerical means.,
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6.3.2.1 Implicit Mothods withontvltagation .

Stricklin ot al. (190] have comparod tho oxplicit fourth ordor Rungo-~
Kutta mathod with the implicit Houbolt and Nowmark (B = %) mothods., The
comparigons wore mado on probloms with nonlincar strain~displacomont
rclations and lincar clastic material bohavior, solved by the finite

cloment method. The "conventional" form of tho cquations of motion was
used. Therefore, the equilibrium equations consisted o a constant stiff-
ness matrix on the left-hand (unknown) side of the equations, and the
nonlinear terms were expressed as pseudo-load vectors on the right~hand
("known") side of the equations. The nonlinear terms or the right~hand
side of the equation were extrapolated from the previous increments, thus
avoiding iteration. Por the extrapolation of the pseudo-loads, both linear
and quadratic extrapolations were explored. The *inear extrapolation was
felt to be more accurate since the quadratic extrapolation led to numerical
instabilities. The Houbolt and Newmark (B = %ﬁ implicit methods are
unconditionally stable for linear problems, while the fourth order Runge
Kutta method is explicit and conditionally stable. For the nonlinear
response of an elastic shell of revolution subjected to a step pressure
loading, direct preference was established for the Houbolt operator since
it was stable and accurate for a larger time step At than that required
for stability with the Newmark (B = %ﬁ method. The time increment At
demanded by the Runge-Kutta operator was extremely small in comparison
with the other two. Later on, Stricklin et al. [191] extended their
investigation to include elastic-plastic behavior.

Wu and Witmer [23] also campared the Houbolt and Newmark B = %
methods. They demonstrated that the Houbolt method is more accurate for
a larger time increment At size than the Newmark method, for linear elastic
or elastic-plastic, geometrically nonlinear structural problems, and that
the 3 point central-difference method remains conditionally stable but
the stability criterion becomes more scvere (a smaller At is required)
than for lincar problems. The equations of motion were cast in both the

"unconventional® and the "conve.tional" form for use with the (explicit)
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contral difforence timo operator; only* tho "convontional" form of the
ogquations of motion could bo unod with tho (implicit) foubolt and Newmark
time oparators, and the ppneoudo-loads wore oxtrapolated linearly.

waoks [192] oxamined the Houbolt, Nowmark B = %, and contrale-
difforonce oporators. Based on a one~degroo~of-froodom systom, he showed
that the Houwbolt method providqa accurate solutions for a larger time stop
At- than tho Nowmark f = % method when linear extrapolation of Fhe psoudo-
forcos is used. PFor the lincar elastic, geomotrically nonlinecar responsc
of a cantilevered rod, the results obtained indicated the same character-
istics as for the one-degree-of-freedom system, and with large time
increments both the Houbolt and Newmark operators gave grossly inaccurate
answers.

McNamara [193] studied the central-difference, Newmark, Houbolt, and
Wilson time operators. Unlike the previously-mentioned authors, McNamara
used the tangent-stiffness formulation of the equations of motion, where
the stress-strain relations for nonlinear material behavior are suitably
linearized during an increment, and all nonlinearities are taken together
in one total stiffness matrix; this tangent stiffness matrix has to be
reassembled and refactorized frequently throughout the solution, McNamara
points out: “the computer time required can become substantial for large
problems, and much thought has been given to avoiding this drawback". He
proposes the pseudo-load extrapolation method with constant stiffness
(the “conventional® formulation) as an alternative, bat does not use this
method in the solutions presented. The tangent stiffness matrix was kept
constant throughout the increment. When no equilibrium iteration was used,
the Houbolt method again proved to be the method that gave accurate solu-
tions for larger time steps of all the methods compared. The comparisons
included a linear clastic beam clamped at both ends with a point step-load
applicd at the midspan of the beam. This problem iz geometrically

nonlincar. The Newmark B = %-and wilson 0 = 1.5 methods became unstable,

*

The "unconventional® form of the cquations of motion cannot be usced with
dan implicit operator, since the initial guess afforded by the "unconven-
tional® mothod is quite poor becauso the gradient matrix is just the mass
matrix.
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whilo tha lloubolt method was stablo for all checked valuos (theso valuen

of At were am much as five times largor than tho valuen of At that produced
unstable behavior for tha Newmark operator, and thirty -times larger than
the values that produced instability for tho contral-difforenco oporator),
Another comparison was ocatablishod for an impulsively-loaded beam clamped
at both conds, with olastic-plastic matorial behavior, and deflections
reaching a value of more than four times the.original thickness. For this
pbroblem the Newmak (8 = -) method proved to be the most "unstable" of the
implicit operators examincd, and again, the Houbolt operator was given an
edge over all of the other operators examined,

Recently, Park (194] has devised an attractive implicit method. Two
numerical examples are shown for the nonlinear dynamic response of struc-
tures. A shallow spherical cap with clamped edges under a step load at
the apex was solved by the Park and Houbolt operators. Thig problem has
geometrical nonlinearities but the material is considered to be linear.
Park concludes that his method provides a maximum "stable" step size of
0.5 usec, while this value is 0.3 usec for the Houbolt operator. Since
these are the only two At values displayed, it is not clear what it is
congidered to be stable or unstable behavior in this case. Also, a simply~-
supported cylindrical shell under uniform external impulse, with nonlinear
material (elastic-plastic) behavior as well as geometric nonlinearities
was solved by the Park and Houbolt methods by the DYNAPLAS code. The same
problem was solved by a different computer code, named SHORE, that
utilizes the central-difference time operator. The solution of the SHORE
code was utilized by Park as the bench-mark solution. Park concluded that
the solution obtained with his method with At = 8 || sec was more accurate
than by the Houbolt mecthod with At = § Hsec. This conclusion is intriguing,
since different computer codes arc utilized, and again, only thc Houbolt
method solution for one At value is displaycd. fThe equations of motion
for this comparison are cast in the "conventional® form, and the pseudo-
loads are extrapolated lincarly. Finally, Park's operdator is at least ag
stable locally and has less falso damping and frequency distortion than
the Houbolt operator; accordingly, its use for the prosent class of

vonlincar transient response problems descrves further investiation.
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6,3.2,2 Tmplicit Mathodn with Itoration

Tt din vory important to dintinguinh botwoon two typon of gquanintatle
probloms decording to tho path-depondence of the solution. As polntod oul
by Argyris [170], path=indopondent probloms readily lend themoolvos to a
total cquilibrium formulation in which the incremental linearization orrors
are under full control via rosidual load itoration. In contrast, path-
dependent problems (for oxample, plastic problems) make it impossibli
to compute residual loads without integration of the priér history. While
path-independent problems guarantee a return to the true solution path
within a given tolerance, path-dependent problems provide no possibility
of raducing the numerical integration errors without reanalyzing the
process with smaller increments. THe numerical solution of the path-
dependent problems poscs computational problems which are fundamentally
different from path-independent problems., The error control and the
development of time step strategies which assure accuracy as well &s
stability are far more complicated. It is a common mistake to believe
that residual correction at the end of the increment will guarantee the
return to the true solution path. It is of fundamental importance that

the truncaticn error cannot be reduced by residual iteration for path-

dependeht problems.

Path~-Independent Nonlinear Problems

Weeks [192] observed that, for the nonlinear, path-independent
response of 4 one-degree-of-freedom system, the Houbolt operator provides
more accurate solutions when linhear extrapolation of the pseudo-loads is
used than when (Newton-Raphson) iteration is used, for sufficiently large
time step sizes At. The numerical damping of the Houbolt operator is
compensated by the weak instability produced by the linear extrapolation
of the pseudo-loads; thus, extrapolation provides more accurate sdlutions
than iteration. When the Newton~Raphson iteration method was used to
converge for a nonlinear solution at cach time step, the Nowmark and
Houbolt operators were always stable, at least for the time step sises
investigated (time steps that were small enough to trace the responsce

adequately) . 1n contrast, the Newmark operator became unstable when using
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load extrapolation and largor time rtopa, whoreas the Houbolt oporator
was always atablo with load oxtrapolation.

For the clantic (path-indopondont) nonlinoar ragponae of a canti-~
lovered hoam, Weoks found that, the Houbolt operater is atable (but
oxhibits considerable damping) when Newton~Raphson itoration ig ugsed at
cach time stap, while the Nawmark method exhibits no artificial damping
but docs oxhibit a slight shift, and was stablo for the time step sizes
investigated.

McNamara [193] studied the linear elastic {path~independent)
geometrically nonlinvar response of a beam clamped at both ends and
subjected to a point - step-load at midspan. He used the tangent stiffness
form of.the equations of motion. The iteration method he used is the -
so-called modified Newton-Raphson iteration. This method is just the
well-known method of succesive approximations, applied at each time step.
The gradient matrix is the tangent stiffness matrix, which is kept constant
within the time step, and hence, is kept constant withih the iteration
loop, He found the interesting results that (for large time steps At):
(a) the Houbolt operator provides better results when iteration is not
used and (b) the Newmark operator becomes stable for this nonlinear problem
when iteration is used, but the results are not as accurate as the results
ocbtained with the Houbolt operator.

Path-Dependent Problems

For the path-dependent (elastic-plastic) and geometrically nonlinear
problem exam. 1 (the impulsive loading of a beam clamped at both ends) by

McNamara [193], he could not achieve convergence for the iteration scheme
used (the modified Newton-Raphson method) .

However, Belytschko and Schueberle [19%) report to have obtained
"stable" results for the same problem. They alse used the tangent stiffness
form of the equations of motion, as well as the modified Newton-Raphson
iteration scheme (the tangent stiffneoss is kept constant within each
iteration loop, and recomputed at each time step) . Belytschko and
Schoeberle used a different computational procedure which ensures that

the energy is conserved within a given "energy error criterion". fThe
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averago numbor of lterations per time step was not roportod, put Lt in

‘ roportad that whon laxgoe time atopn are used, from 50 to 100 itarationn

; aro roquired bn thoe firat timoe atop bocauno the yiold valuo ins oxconded
quite a bit within that time atop, The Nowmark B method was uned, with
; valuas of f = i, %'and %. The Nuowmark R o % mothod is unstablo, just an
for linoar syﬂtomé. The rosulta for B = L and f = % are "gtable" but

4
dotoriorate as the time step size is ihervasod, with the amplitudo of

the rosponse increasing as the time step is increased. The threoe problems
{ shown exhibit “stability" and "accuracy" €or time steps much larger (10~
1000 times) than the stability limit of the central-difference time

! operator. However, in order to have comparable computing times as for

the central-difference time operator, time steps'more than twenty times
the size of the allowable time step size for the certral~difference

{ operator were required for the implicit scheme. Belytschko and Schoeberle
conclude that the path-dependence for the problems. investigated was quite
weak, and that in problems with two or three dimensional states of stress,
the accuracy will deteriorate more rapidly with increasing time step size.t

el et

6.4 Solution of the Governing Equations

In order to obtain the timewise solution of a set of equations of
t dynamic equilibrium such as Egs. 6.71, 6.68, or 6.55, one may resort to
analytical techniques or numerical techniques depending upon the mathemati-
cal (and/or physical) nature of the ptoblem.

For small-deflection linear-elastic behavior, for example, one may
recast these equations into noxmal mode form and solve the resulting
equations of motion analytically, mode by mode if the forecing functions
are modally uncoupled or'are properly sequentially coupled. Superposition
of the forced responde of each mode then provides the total response of the
system. Alternatively, if desired, one may solve these equations by using

a finite-difference numerical procedure whereby one obtains a recurrchce

equation which provides a solution step-by-step in finite-time increments.
If the stiffness matrix varies with time as in the present class of

nonlinear problems, the normal imodes also vary in time; of course, onc

+Since the plasticity itself becomes path dependent in stress space for
non-proportional loading in multidimensional states of stress,
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| could rotain the linoar part of the internal foreo tormes ~- thercby
identifying timo-invariant "normal modon" and troat tho romainder of the
internal forea tormo an puoude~loads. Howaver, tho normal mode approach
may bocome impractical. Accordingly, tho numarieal finito-differonce
| mothod in omployed in the prosont gtudy for ‘nolving aquatioqn of motion
liko Eqo. 6.71, .68, or 6.55. '

; In particular, the contral-difforonee finito-differonco time operator
' is omployed for purposcs of illustrating the solution process for the
"unconventional" foymulation described in Subscction 6.4.1. Since the
] central-difforencoe time operator is an axplicit scheme, the solution of

' the equations of motion is best handled by the pure voctor form described
’ in Subsection 5.2,3.1, which is denoted here as the "unconventional
formulation; of course, other methods like the constant stiffness method
("conventional" formulation) can be and were used in the past, but these
\ methods are not as efficient as the "unconventional" formulation.

In Subsection 6.4.2, the Houbolt (finite~difference) time operator

is employed to describe the solution process for the "conventional" or

for the "modified unconventional" formulation.

6.4.1 Explicit Solution Process of the Equations of Motion
As indicated earlier, the equations of motior (Eq. 6.55) in the pure

vector form are:

I (E ] =15} < 1F)

where [M] is the global mass matrix, {I} is a vector of internal ferces

agssoviated with linear and nonlinear terms of the strain-displacement

relations as well as elastic and plastic forces; and {F} represents the
generalized load vector accounting for externally-app d distributed

or concentrated loads. These cquations are to be solved at a sequence of
instants in time At apart y employing the following central-difference
(explicit) (finite-difference) simulation for the dcceleration at at any
instant t:
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Alno, ono may approximate tho voloclty d; at timo t by

q{t q’*-'*Az% ;‘Eq’t-At + 0 (A{-_)‘”‘ (6.74)

Now notc that at any time instant t, Bq.

6.72 can bo writton axactly ag:

1{4*), =15}, +{F).

In this ecquation, all quantities excapt (M) change, in general, with time.

If the solution has been obtained for earlier instants of time, one may
compute {g* } from this equation (Eq. 6.75), and then use Eg. 6.73 to

*
obtain {q }t+At as:

{%*}i-mt = {‘:’}*L (At)zi' 2 t%*}t - {q* - (6.76)

Assuming that at t = 0, the structure is at & known condition such as

(3710} 5 13D -A] s () f8) e

one can readily obtain {q*}At from the following Taylor series expansion:

{gf*}u ) { %*}o+ {?*L At + {é‘}*}o (-%):-0(&)3<6.7e)

since {F}o is prescribed and all other quantities are known.

In the timewise step-by-step solution process involving geometric
(path-independent) nonlinearities ag well as material (path~dependent)
elastic-plastic transient responses, the vector of internal forces {I}
changes with time and hence must be reevaluated,
instant in time.

in general, at each

This vector, in turn, is composed by agssembling the
contributions (see Eq. 6.51):
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{i} "'J o{;D;j S"‘AV& + JM'Q‘?»Q&} S‘Jx.ﬁ dVe (6.79)

Xi® LDj1{s} 10

for vach tinite olemont *o", (ooc Bqe. 6.51, 6.50, 6.54, and 6.,55), It io

whoro

soen that thuso quantities involve volume intograls of information involve
ing the stréss state Sij. In practice, thesc evaluations arc carried out
by appropraite numerical integration == Gauseian quadrature. This requires
that the stroesses s1j and digplacement gradionts LD§J {gq} ve evaluated at
a finite number of Gaussian integration points over the “"spanwiase" or
"arecawise" and the "depthwise" region of cach finite element.

At any instant of time t, one nceds to solve Eq. 6.75 for {&}t, which

is of the form:

[M] {X &)}t = '{ b(a}t for t-O,At)ZAt,...(e.al)

where
[M] is a known banded positive definite symmetric matrix

{x(t)}t is a vector of unknowns which must be determined by
solving Eq. 6.81

{b(t)}t is a known vector (representing all terms except

M} {ﬁ*}t in BEg. 6.75)

In order to solve Bg. 6.8l, the Choleski method is used. Briefly,
the well known Choleski method [194] involves factoring the matrix [M]
to form a lower triangular matrix and an upper triangulax matrix, which
is the transpose of the former. If a diagonal ("lumped") mass matrix is
used, then the solution of Eq. 6.8l is trivial, and hence extremely fast.
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An altoernato nolution scheme e the triple-~factoriaation and
noquential nolution method (noe pp. 162-167 of Ref, 190) and in moxo
of ficiont and bottor conditionod numorieally than tha atandard Cheleonkd
mothod,  Thin mothod 1o alpo called the Gaunp-hoolittlo docemponition
with noquantial nolution (noo pp. 21=22 of Rof, 197) and connintno of two

E ' major atopus
| ' 1. The global maoe matrix Lo factorod into a triplo produet (triploe
| ‘ factorizution or Gauss=Doolittle docompeoition).
|
. 2, The displacoments are solvaed for sequontially, in three sub-
! f staps.
) .
l The global mass matrix[M]is factored into the form:
T

(M]= [L][D][L] (6.82)
\ where[L]is a lower triangular matrix with zeros in its upper “riangular
L portion and unity on the diagonal, and[p] is a pure diagonal matrix.. By

direct substitution and comparison, one can show readily that
m~\

:Dm - Mmm Z L.m,: ‘D (6.82a)

and
"

LWL :Dm[MLm "L LMFDF_X (6.82b)

Note that for m = 1, there are no summation terms. By the use of Eq.
6.82, BEq. 6.8l may be rewritten as

[LIEDIET {x} = {#] .89

Noxt, let

EL:‘ {R} = ib} (6.84)
{R}"‘ L:D][L3T {X} (6.84a)
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Rolving Eq, 6,84 for{R}, ono abtalne hy forward rolution

' : "
R.= — | - R (6.65)
" L.M,[b“" % Loy Rr’]

Noxt, rowcite hg. G.84a ao

ED] {?} - {R} (6.86)
[L]T{X} = {PB (6.86¢)

Solving Eq. 6.86, one finds

whotro

R
/D,

P} - [T R+ %}

'
L?A/DM |

Finally, Eq. 6.86a is solved by backward subst’ -cecion to obtain:

P

Xm =
Lamn

L " (6.88)
n N~

Xy = 4 (PM-‘ - LMM-I xn)

X;= l-:i. (ﬁ "‘Lqu‘Ls.xs' see _L"‘" X,Q

Sequentially, the “computing and storing" process involves (a) solving
BEq. 6.84 for{R}and replacing{b}by{k} (b) solving Eq. 6.86 for{P} and
replacing {R}by {P}, and (¢) solving Eq. 6.86a for {x}and replacing|pjby {x}
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£.4.2 Implieit Solution Procoss of the Equations of Motion

The conatant atlfCfnoas form of the oquationa of motion i to he uysed

with implicit opomtom.'+ From Bgm, 6.71 and 6G.GH, thosae oquations of
motlion avo:

{4 DT - (Y {re)| e

whore [M] is the global mass matrix, [K) is the usual small strain, linear-
clastic, global (constant) stiffness matrix, and {F} is the load vector

representing externally applied distributed or concentrated lcads. fThe
vector {F'M} s, for the "conventional" formulation

{F“‘L}"‘,F;}*iF:L}*'{_F';L} (6.90)

a pseudo~-load vector representing internal forces, which for small strains
can be decomposed into three vectors: {FgL} a vector arising from the

nonlinear terms in the strain-displacement equations, and {F;} and {FNL}

pseudo-load vectors due to plastic (small) strains and associated regpec-

tively, with the linear and nonlinear terms of the strain-displacement
relations,

For the "modified uhconventional" formulation, the vector

(F)+ [<1{3) - {3}

is & pseudo-load vector representing internal forces arising from (small
and finite strain) elastic-plastic behavior as well as all (linecar and
nonlinear) terms of the strain-displacement relations. 1In Eq. 6.91, the
matrix [K] ls the same global (constant) stiffness matrix appearing on
the left-hand side of Eq. 6.89, and {1} is the same pseudo load vector
of internal forces used for the "unconventional® vector form of the
equations of motion, Eq. 8.72. ‘The "médified unconventional" form of the
equations of motion (Eq. 6.91) is more efficient than the "conventional®

form of the cquations of motion, as well as being valid for finite strain

+Of course, one can also use a variable stiffness formulation with implicit
operators, like the tangent stiffness form of the equations of motion.
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matorial bohavior of any kind, while the "conventional" form in valid only
for small-strain clastic-plantic material beohavior.

The nolution of the dynamic oquation of motion (Eq. 6.89) can be
accomplished by applying an implicit intogration schomo. In thin acheme,
the timo dorivatives of tho nodal displacoment vector {q*} (that is, {§*}
and {4"*}) aro capressod at a discrote time instant in terms of the nodal
displacemonts at sovoral ncarby discrote time instants., Whon substituted
into the governing cquation of motion, a rocurrence relation is obtained
from which displaccments can be calculated at cach discrote time instant.

The acceleration {ii*}tmt at time t + At is expressed by a 4-point
backward-difference formula in the Houbolt operator:

{§e A el L syt ded,
+0(at)*

The velocity [é*}t+At at time t + At can be expressed by the following
3-point backward-difference formula having the same truncation error as

{g*}

t+At’

{gf trat 9 At (3 {% }ﬂ.;; H{ } {‘/} },c, +O(M) (6.93)

For computational convenience, the terms in Eq. 6.92 can be regrouped
so that {a}t+At at time t + At can also be related to {é*}t at time t:

o am R0 1)
or + ('3{3*}4;"'” 19}*}{-&“ {q*}t.mﬂ (6.94)
{8l mislledats))- 21470,
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Fauation 0,89 can bo writton to oxpross dynamic oquilibrium at
time €+ At an

[M] {q*}fﬂf[’(]{ tiat {F t+At' FNL}t e

tAt
Haquation 6,95 in then nubstituted into Bq. 6.96 and the torms rogroupoed
to give

T & s s e on.

(‘N’) [M] M EKI) {Q[ }tm i {F} * { F NL}mt ‘
nr

The recurronce relation given by Eq. 6.97 can bo solved at cach came

step for the unknown displacements {q*}
. NL}

tHAL at time t + At, based on the

t+At' E4AL! {q} , and {g* } The quantities {F}t+At'
{q*}t, and {q*} on the right-hand smde of the uquilibrium cquation (Eq.
6.97) are known at time t + At, but the vector of pseudo-forces {FNL}

knowledge of {1}

t+At

is a function of {q*}t+At and, thus, is not known. Consequently, either

some form of extrapolation or iteration is required to calculate {FNL}t+At
as will be discussod in Subsection 6.4.2.1 and 6.4.2.2.
Once {q*}t+At is determined, the velocities, {é*}uAt can be obtained
from Eq. 6.93, and the solution advanced to the next time instant. This
process is ropeated until some specificd texmination point is rcached. The
process is self-starting, since once the initial conditions, {é*}o and {q*}o
at time t = 0 are gpocified, the solution for {q*}At is obtained dircctly
from BEq. 6.97. However, in order to evaluate tlio veloeity {q*} at time
t = At (needed to calculate {q*} weone) from Ea. 6.93, {q*}_At is needed
but is not known. Thus, some form of “starting sequence® is required. In
the prosent case, {q*}_At is calculated from a contral-difforonce oxprossion
for {&*}O

{- %*}o - Z%‘t ({g;}ﬂt B { q*}—MD t0 (At>z(u.qa)

271




which when aolved for {q*}_At givos

{q‘}'% ) { %*}A‘t- 20t {ér*}o 1699

and substituting this into Eq. 6.93 (for t = 0) givus tho roquired
expression for {é*}Atz

g}, = &(] R L E A S

After the first time step, the solution progresses using Eq. 6.97 for
* q*
{q }HM and Eq. 6.93 for {q }HAt.
The matrices [M) and [K], and the time step size At, are held constant
throughout the timewise solution. In order to solve Eq. 6.97 for {qw}

t+At’
the triple-factoring form of Gauss-Jordan elimination is used, as reviewed

in Subsection 6.4.1. The matrix sum qf%r[M] + [K]) is thus formed and
factored only once, prior to the first time step. At each time step,
{q*}t+At is obtained by back-substitution operations.

6.4.2.1 Extrapolation

Using a first order Taylor's series expansion about time t, one
obtains:

{F. m}t-m:: { qu}t * S—E {FNL-}Q A+ O(At)" (6.102)

Approximating the partial derivative g% {FNL}t by a first-order backwards
difference expression gives:

A

substituting this back into Eq. 6¢.101 broduces the following "linecar
extrapolatien expression®:

{ FNL teat - Z{ F'N"}t N i FNL}t_At (6.103)
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This exprossion han an inhoront truncation orror of order (At)

which
La the same as the order of o

rror inheront in the Houbolt, approximations

for both the aceeloration (Bq. 6.92) and the volacity (K

de 6.93); hence,
abproximation of tho pseudo-lead voctor {FNL}t+At'
Bquation 6,103 corrosponds to loads from

it s a vonsistont

a linear oxtrapolation of the
the two provious time ingtants,

Substituting expression 6.103 into tho

recursive relation (BEq. 6.97)
for the ecquations of motion with the

Houbolt operator produces:

-(‘A-z:—t)" [M] ¥ [K]) {%’*.}twt B ‘{F'}MM (6.104)
< DT 2y 2 - P

where;

FRINgL -l
[Pk 947 - (1)

e "modified unconventional formulation with linear extrapolation®
(MULE) form of the equations of motion, and

L L ), e

t

{FNL}t—A: {Fli}t-at {F:’L}t : { F‘;L}t-at .

At

(6.106)
t-at

for th

for the "conventional lincar extrapolation® form of the o

The lincar extrapolation of the
nonlincaritio

quations of
Pseudo~-forecoe vector arising from
8 has significant advantages:

motion.

no iteration foy convergonce
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in nocessary, and only a vactor ({FNL}t~At’ neads to bho stored, rathar
than tha complote Jacobian matrix, as it would be noecosoary with the
Newton~Raphgon mothod,

6.4.2.5 itoration and converganco

The iteration method that is uged in this work is the method of
suceessive substitutions, also known ag the method of Successive approxima-
tions. fThig iterative technique, one of the eesiest methods to apply, was
used since it does not ihvolve the formation ang refactoring of the

stiffness form of the equations of motion., For the Houbolt operator, the
equations of motion are (see Eq. 6,97):

iy (4] *LD g = 1F "

t+at

* Z%E [M] ({9(*}1: +A%;{q*}t> ¥ {FM“}tm (6:1:?) N

N indicates the total number of iterative cycles required for "convergence"
during a given At time step. The pProcedure startg (superscript "o") with

an initial estimate (p o}t+At of the pseudo-load vector. It is natural to

use the extrapolated load from the previous two increments as the first
estimate; hence,

Pt iy

Then a value of the displacement vector is obtained from Eq. 6.109

[A] {?* i}tmt i iB} ' { Fmojtmt o

where

At (6.110)

[.AJ = (K?B‘[MJ +[K] (6.112)




{8} - {'F}tmt ¥ Z%{ [m] <Hx}t+f€{"f‘}t) (€113

NLl
{r }t+At of the psoudo-load
veetor can bo obtained, and then a now ostimato {
of

cud
From this valuo {qw }t+At' a how catimata

q*z}t+At from tho solution
gt 3] 774
[A] % teAt E F teat (6.114)

can also be obtained, and so on. This iterative process is continued

until either convergence of two successive displacement vectors is noted

or a spetified number of iterations is reached. The method of successive

substitutions is severely limited by its inability to converge for problems
exhibiting a significant degree of nonlinearity.

For a one-degree-of-freedom system:

Aq*’ =F (q*‘) (6.115)

it is easy to show that if F(q*) possess a continuous derivative, it is

necessary for convergence of the method of succegsive substitutions, that

aa—;;-(o() £ A (6.116)

where o is a root of Eq. 6.115, Moreover, since the gradient matrix ([A]

stays constant during the iteration, this method has a very slow rate of

convergence when it does converge. Furthermorc, when unloading of an

clastic~plastic solid occurs, even the Newton-Raphson mothod (which has

proven itself to be one of the bost solution methods available for static,

geometrically nonlinecar analysis) fails to converge in many casos, ag
pointed out by Stricklin and Haisler [198], who anticipate that thig
lack of convergence arises from the discontinuity broduced by elastic

unloading.
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A naestod double, itoration proceduro using an inner loop Hewton-
Raphson precedure has boen omployod successfully in matorially nonlincar
static analysis by Bushnoll (199). Tho outor loop updatos (for a givon
value of the load) the material properties and strain compononts whilo
the inner one ensures cquilibrium for that sot of material proporties.
The problems solved in Ref. 199 did not involve cases of severe unloading
and were not dynamic, Stricklin and Haisler [198] conclude "The research
conducted to date tends to indicate that additional refinements are
necessary before the direct application of the Newton~Raphson method can
be made for plasticity problems with complex loading and unloading
patterns",

For the present work, the following compromise procedure was devised.
Knowing in advance that the method of successive substitutions will fail
to converge for the complex geometrically and materially nonlinear dynamic
problem being analyzed (that involves complex loading and unloading
patterns), it is still hoped that the first few iterations will be
"asymptotically convergent" in the sense that the first few estimates of
the solution may be closer and closer to the solution until the method
beqgins to diverge. Monitoring the rate of convergence, the iteration

loop is stopped once divergence commences and the last "converged"

estimate of the solution is taken as the solution (in "equilibrium®) for

that time step. 1In order to monitor the convergence, two criteria were
applied. The first criterion is
)Z
{E

)= (5™,
([CS)S

where IIfQ*n}t+At|| is the Euclidean norm of the vector {g*"}

(6.117)

teat’

1C M ECANTC )
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It is oasy to show that tho convergonee ariterion Eq. 6,117 in moxre
} ‘ stringent (by a factor of 2) than the convorgence criterion obtainod
from tho difforonco of the Euclidoan normn:

5 [{8" "o
i | ” {q”}tvl\t"

ﬂiﬂ - }mrt" " “ {‘1 v }t-mt
{97},

which, for small € is approximately:

_"_{3* M}m“ - {q“}u& " L

*n ~- <> E 6.12
(8" kol 2 o

Hence, if convergence criterion Eq. 6.117 (used in the present work) is

2
< {+€ (6.119)

{Vive -4 (6.120)

satisfied to a given tolerance €, then convergence c¢riterion Eq. 6.121

(used, for example, in Ref. 200) is satisfied to % €. In the present work,

the convergence criterion was taken to be
-4
E= 41x 410 (6.122)

The second convergence criterion examined in the present study was:

"{?*"“}HM-{QM‘}M&“_ < 6
"{?* n}tmt

It is casy to show that this convergence criterion is more stringent than

(6.123)

the previous ones, sinec, from the triangle inequality:
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z, (6.124)

or

(6.125)

| S RC A W U W IS [T W N RO

i Hence, if the Eq. 6.123 criterion is met within a given solerance §, it

certainly meets criterion Eq. 6.121 to within a smaller or equal tolerance.
) The convergence criterion Eg. 6.123 is to be preferred to Eq. 6.121

I'H'l}

since, for any norm ||{g - {q"}|| is a measure of the deviation of

the approximation in vector space.
In the present work, the quantity § was taken to be

& = |x \0"‘4 (6.126)

If the iteration scheme were convergent, it would take a certain number
of iterations to meet a given criterion; however, since the present
iteration scneme will not always converge, the following test is made:
if the condition of Eq. 6.117 or Eg. 6.123 is not met, the iterative
process 1s continued if

(s ™ 3- 0D, wm lsmal)
Qi (0D

for Eq. 6.117, or if

o bl ™l o I8 7ha (4L
+A + < wst oAt 6. 128
o II{q*“'m o

for Eq. 6.123.
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Othorwine, if conditions Bq. 6,127, 6,128 aro not satinfied, the
itoration proconn ie ntoppod, and

* &N
i% } = {(* } (6.127)
trat ttat

the provious estimato that saticfiod Eq.
"oquilibrium"

6.127 or 6.128 is takon as tho
solution for that time stop.
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BECTION 7

EVALUATION AND DISCUSHION

1.1 Intraduction

In ordor to ovaluato the pronont finito-ntrain formulation and implo=
mentod computational procoduro for prodicting tranniont otructural
rouponuou produccd by sovare transiont oxtornal loads or impaet, suvoral
well=defined problems for which independont prodictions and/or roliable
expoerimental data are avallable for comparison are investlgated. This
discussion is divided, for convenience and clarity, into two categories:
(1) impulsively-loaded structures and (2) fragment-impacted structurcs.
Further, under cach of thuse categories, there are two types of structural
response and modeling: (a) two-dimensional (or planar) and (b) three-
dimensional (non-planar) structural deflections.

Impulsively-loaded structures discussed in subsections 7.2, 7.3, and
7.4, respectively, are a narrow plate (or beam), an initially circular ring,
and an initially-flat square thin aluminum plate with all four sides
ideally-clamped. These first two structures exhibit essentyally two-
dimensional deformation behavior, while the third one involves distinct
three-dimensional structural deflections as well as large levels of strain.
These examples are especially important since the conditions responsible
for producing the large transient deflections are very clear and well
defined -- each represents a well-defined initial=value problem.
Accordingly, these examples provide a clear and stringent test of the
accuracy and reliability of the present finite~strain formulation and
computational procedure.

Discussed in Subsections 7.5 and 7.6 are structural responses
produced by fragment impact. A steel containmeni ring which was
subjected to simultaneous impact by 3 equal-size bladed-disk fragments
from a T58 aircraft engine turbine rotor is examined in Subsection 7.5,
and is found to exhibit essentially two-dimensional structural responsc.
Hence, this containment ring was represcnted for analysiy by curved-ring

finite elcoments which pertain strictly to two~dimensional rcsponse.
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Considored in Subnection 7.6 in a harrow aluminum platr having hoth
andn ddeally elamped, both nides froo, and subjocvad to porpondiculay
impact at Ltn midwidth-midnpan location by a nolld atool pphorn of l=inch

diamotor,  Noar tho "impnct station" tho ntructure oxhibltn novore throo-

dimonsional utructural doformationg) aloowhore, oxcopt very noar tho

¢lampod ondo, the spoeimon dioplays ogoontial two-dimonsional doflection
behavior. Accordingly, this narrow-plate spocimon wag analyzed in two
difforent ways, Pirst, the structure and the attacking fragmont were
idealized as a strictly 2-D problem-- tha structure vas modeled with 2-p
beam cloments and tho fragment was rogarded as being a solid cylindrical
fragment: extending across the entire width of the beam. In the seccond
analysis, the structure was ropresented by flat-plate elements which can
accommodate three-dimensional structural deflection behavior, and the
fragment was represented ag a non-deformable sphere of l-inch diameter.
Bach of these cases is discussed in the following.

7.2 Impulsively~Loaded Narrow Plate
7.2:1 Problem Definition

To provide a well~defined initial-value problem which would furnigh
reliable experimental data on large-deflection elastic-plastic transient
structural responses involving significantly large peak and permanent
strains, narrow aluminum plates with both ends ideally clamped and both
sides free were subjected to known impulse loading [l]; s&ee Pig. 8. 1In
particular, a 6061~1651 aluminum harrow plate (or beam) specimen denoted
as CB-4 with 8.005-in span, 1.497-in width, and 0.102-in thickness was
loaded uni formly impulsively over its entire width and a 1.80-in spanwige
region centered at midspan by the sheet explosive loading technique.

This resulted in cssentially a uniform initial lateral velocity of

10,590 in/scc of the loaded portion of the specimen; accordingly, the

initial kinetic energy was 3930 in-lb. Spanwise oricnted strain gages

were attached to the upper (non-loaded) surface at various distances
mcasured from the midspan location. These strains were displayed and
recorded photographically from oscilloscopes. Post-test measuremcnts

of the permanently-deformed configuration were made. Large transient and
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pormanont deflectionn were produced, Theao data are reported in Reof, 1.
Uniaxl ) atatle tensilo teat spocimons whone axes ware parallel to
the spanwiso diroetion of apocimon CB-4 wore mado from the thiek-plato
Htock from which spocimen CB-4 wan proparod. High=elongation strain gagon
wore used to moamure tho ralative clongation Eu of thono apoeimono in
gtatic tenoilo tocto as a function of tho appliod load Py  tho initlial
crogu=gogtional aroa Ao of cach spoeimen waoc known. For uso in tho
"small otrain" and in tho "finite strain" caleulations, the uniaxial
static stress-strain information is approximatod as describod in Subuoction
7.2.2 for beam-finite-elomont modeling and in Subscction 7.2.3 for plate=
finite-elomont modeling of the CB-4 narrow-plate spocimon.
Finite clement analyses of specimen CB=-4 have boon carried out to
compare predictions based upon (a) the (provious) small-strain procedure
and (b) the present consistent finito-strain procedure versus the experi-

mental results. Further, for each case the specimen hag beon finite-
@lement modeled in two ways: (1) by assumed-displacement cubic-cubic (CC)
beam elements and (2) by assumed-displacement linear-linear=-cubic (LLC)
flat plate eleqents. These two types of finite element modelings of
narrow-plate specimen CB-4 and the resulting predictions are discussed in
Subsectiona 7.2,2 and 7.2.3, respectively.

7.2.2 Comparison of Small=-Strain vs Finite-Strain Predictions

for Structural Modeling by Beam Finite Elements

Since there is symmetry about the midspan location y = 0, only the
half gpan of specimen (B-4 was modeled by 4 DOF/node beam type finite
elements. The use of beam elements implies the assumption that the dis-
placement behavior is two-dimensional (or planar)., Studies reported in
Refs. 28 and 30 indicate that the use of 20 equal-length 4 DOF/node beam
elements provides a reasonable modeling - permitting one to obtain

essentially converged predictions for the displacements., 'The use of a
finer mesh in order to obtain converged strain predictions would have boen
preferable, but the unduly large computing time for a significantly finer
mesh was outside the range of what the present financial resources would
allow.
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Far analysin tho uniaxial tenaile ntatic atress-strain bohavior of
thin lot of 6061~T651 aluminum (seo Flg. 29a of Rof. 2 and Fig. 18 of
Raf. 30) was modelod by piccowise lincar fagmants for uso in the mechanical
sublayor modol, Thia strain-hardoning model, as implemented in tho
small-strain JETI computor program [24], roquiros that tho stresge-ity.in
curve being modeled wust bo monotonically increasing =~ the stross assoOC-
iated with tho stress-gtrain cuwrve must not dacrease with increasing
gtrain -= and unloading must proceed elastically at the same slope or
modulus as the original elastic modulus. Since the uniaxial Kirchhoff
stress Tu versus uniaxial Lagrangian strain Yu exhibits Ehis type of mono-
tonic behavior whereas the 2nd Piola-Kirchhoff stress Su does not, the
uniaxial tensile static stress-strain data. from Fig. 29a of Ref. 2 was
cast into the form T = Op (1 + Eu) vs Yy and fitted in a piecewise linear
fashion by the folloging sgress-strain pairs (Tu, Yu) = (0,0), (41,000 psi,
0:0041 in/in), (45,000 psi, 0.0120), and (53,000%s1, 0.1000); note that
cé = P/Ao is the uniaxial engineering stress and Eu is the axial relative
elgngation: Eu = [(1+ .’ZYu)l/2 - 1] =% ~Zo)/20. In the JET 3 computer
Program [24) used for the analysis, the resulting stress Tu was used as
Playing the role of the broper second Piola-Kirchhoff stress Su {or E)
upon which the basic finite-element formulation was based. Since the
JET 3 computer code is valid only for small strains, this is consigtent
because for small strains Tu o Su' In view of the above considerations as
well as the data scetter in experimental uniaxial stress~-strain measure-
ments, this adopted compromise procedure (not fully consistent) was

believed 1likely to provide reasonable predictions of structural response
involving small strains, but was expected to be significantly in error at
large strain levels. At what strain levels these computer-implemented
approximations lead to unreliable predictions was (until now) very
uncertain.  Accordingly, thig Compromise procedure has been termed the
"small-strain analysis" here and in Ref., 30. Also, it is assumed that

strain rate cffects can be approximated satisfactorily by an expression of
the form
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a,ti =st:° (i'\" ___‘_g’_L_ %) (7.1)

8.y

Y
and Tu

where BTu are, respoctivoly, the static and the strain-rate-

dopendentoyield stress of the gth elastic, perfectly-plastic mochanical

sublayer, and Y gt Yu = material rate of the uniaxial Green (Lagrangian) ,
strain Yy The strain rate constants d and p for aluminum as cited in
-1

Refs. 201 and 202 were used as: d = 6500 sec
For a consistent f£inite strain representation and computer implementa-

and p = 4.

tion of tne correct stress-strain behavior, the uniaxial tensile stress-

m

%
2nr=
o

gtrain data of Fig. 29a of Ref. 2 was vecast into Tu versus e*
logarithmic ("natural® or "true") strain E Zn (1 + E ) This curve
was then fitted in a piecewise-linear fashion by the following Tu' e pairs
for use in the mechanical-sublayer model: (T , e ) = (0,0), (44 200 psi,
0.00442 in/in), (49,200 psi, 0.076), and (76 400 psi, 0.618). It is

assumed that strain-rate effects can be approximated by:

slt:," s?::o (i + _j—; %> (7.2)

where
Qty = gtatic (subscript "o") uniaxial yield stress of
Y the sth elastic, perfectly-plastic mechanical
sublayer
aty = gtrain-rate-dependent yield stress of the sth
u mechanical sublayer
oLy g
€, g T longitudinal component of the rate of

deformation tensor

For illustrative purposes, the material strain rate constants 4 and p for
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aluminum eited in Rofa. 201 and 202 are usod: d = G500 uouﬂl, and p = 4,

For analysin, tha half span of spocimon CR-4 was modaled by using 20
aqual-length 4 DOF/node (cuble-cubie) assumod-displacement finite eloments,
and symmotry conditions woro imposed at midspan. Four spanwise and four
dopthwiso Gausgian statlons were used for the volﬁmo integration of the
finite-aloment property equations. A consistont mass (CM) matrix was
umployed for cach eloment., A time increment size of 0.25 mierosvconds
(approximately cqual to 1.6/w»max where W ax is the maximum natural
frequency of the finite-clement model or the structure for purely linear
behavior) was used; the explicit central-difference timewise finite
difference operator was used to solve the unconventional form of the
equations of motion. The aluminum material was treated as behaving in an
elastic, strain hardening (EL~SH) rate-independent fashion or as EL~SH-SR
where SR denotes strain-rate sensitive behavior; the material rate constants
were assumed to be d = 6500 sec-l and p = 4. The mass per unit volume po'
was taken as 0.25384 x 10-3 (1b-secz)/in4.

Response predictions were carried out by the "small-strain procédure"
and by the "finite-strain procedure" as follows:

Small-Strain Procedure

(a) The uniaxial static tensile stress-strain data for 6061-
T651 aluminum [2] were expressed as ‘1'u vs Yu and fitted in
a plecewise linear fashion as described earlier.

(b) sStrain-displacement relation Type C in conjunction with an
assumed displacement field which is valid for small membrane
strains (see Eq. 490) was used. Hence, this equation is valid °

for arbitrarily large rotations but only for "small strains".

Pinite-Strain Procedure

(a) The uniaxial static tensile streoug~strain data were
cxpressed as Tu vs e: and fitted in a piecewise-linear
fashion as dcscgibed earlier.

(b) Strain-displacoment relation Type F given by Eq. 4.14b for
finite strains, arbitrarily large rotations,; and incompres=-
sible material behavior was used.

(c) ‘The proper transformations of the stresses and strains
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to the forma domanded by the correct finite-element formu~
lation (Eqs. 4.173 ~ 4.176) werc employed as described in
Subscction 4.3,
Indicated in the following tabulation are the comparisons of these two
predictions with each other (and/or versus experimental data) as shown in
the indicated figures for the time histories of the longitudinal Green
strain tensor component Y on the upper (non-loaded) and/or the lower

(tmpulsively-loaded) surface at various spanwise stations of narrow=plate
(or beam) specimen CB-4:

Time Histories of Yg on Surface:
Figure Station Iyl (in) Upper (U) or Lower (L)
Predicted Measured
9a 0 (midspan) U and L -
9b 1.4 U and L u
9¢ 2.2 1) U
94 3.0 U u

At all stations except for the midspan, the plotted strain is the average

of the values given by the two elements at those nodal-junction station
locations. At midspan, the predicted strain is the value at the element

node located there. Each of these stations is located at a nodal station

of the finite element model.

It is seen that, of the spanwise stations shown, the major differences

between the two procedures occur at the midspan station y = 0 in, where

the finite-strain formulation shows that between 150 lsee¢ and 500 Hsec the

lower (loaded) surface experiences larger strains than the upper surface

while the former "small-strain® formulation indicates the opposite behavior.

Also, at this midspan station, the strains predicted by the finite-strain

*

Beam specimen CB-4 was originally straight; hence, 1/R = 0 and,
22 =
fore, y Y2 Y22

there-
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brocedure are considerably larqger than the straina prodicted by tho small-
astrain procodura, At tho other atations, where smaller astrains occur, tho
difforonces botwoon the two predictions are corregpondingly ﬂmallox.

Shown in Pig. 90 ia the spanwise atrain distribution at t = 300 Haea
fromy = Q in (mid;pan) to y = 4.00 in (clampod end) of the upper (non-
loaded) surface. This time anstant is taken as typical, since the
strains have alrcady achioved their beak and about 97% of the initial
kinetic energy has been transformed inte strain cnergy by that time. The
strains predictod by the finite-strain formulation are larger than those
predicted by the small-strain formulatlcn with the exception of a region at
the end of the impulsively-loaded zone {(y = 0.9 in) and a rogion at the
middle of the halfwspan (y = 2.0 in to Y = 2.4 in).  The nodal strain
discontinuities typical of the 4 DOF/node finite element (employed in the
JET 3 and CIVM~-JET 4B programs) are evident from the graph. This
assumed-displacement finite-clement model involves cubic polynomials in
the assumed-displacement field for v (the axial displacement) and w (the
lateral displacement), The degrees~of-freedom (DOF) involved at each end
of the fln1te~element are the displacements v and w and the displacement
gradients ¥ = ﬂ + - and P = g—-~ %u These degrees-of-frecdom provide
continulty of displacement (v and w) and continuity of membrane strain
(2= X + 1/2 X% + 1/2 4) but the bending strain (t% = ¢ )<1+x3+¢%1)
is not continuous at the nodes since %ﬂ and ~X‘are not degrees-of~freedom.
Hence, strain jumps appear at each finite-ulement node since inside each
¢lement the displacement function is continuous to derivatives of all
orders but at the nodes only continuities of displacement and its first
derivative are preserved.* The strain-displacement equations (Egqs. 4.146

and 4.90) involve the displacement gradicnts x = and § = LA Y and

8v

5 5 Bn R an R
their derivatives Sw-and 5% The degrec of the polynomial involved in tho
displacement gradients X and ¥ is quadratic for an initially-straight beam.

The degree of the polynomial involved in the represontation of the first

*
see Ref. 28 for an ovaluation of a formulation which includes clemont-
junction continuity of beniding strain.
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dorivatives of tho displacomant gradionts %%~ﬁ Qf%'~ gﬁ'(—d and
gﬁ 82v + 5“ (R) i8 of tho first ordor or linoag for an initially-
ﬂtraigﬂt boam (using the 4 DOF/nodo cubic~cublic oloment) . From Fig, 90 it
in obsorved that the degroe of the polynomials involvod in the spanwiso
atrain distribution is (mainly) cither quadratic or linoar.

Tt is also obsarved that the largest discontinuitios ocour at locations
where bending strains are largoest: at the end of the impulsively=-loaded
zone (y = 0.9 in) and at the immediate zone adjacent to the clamped end
(y = 3.8 in toy = 4.0 in). At the clamped zone, a very large straih
discontinuity is evident. The reason for this is that this region
involves high levels of nonlinearity. The strain discontinuity at the
clamped zone is significantly larger with the finite~strain formulation,
which involves a more nonlinear representation of the behavior than the
vgmall-strain" formulation. It is evident that a finer mesh of finite
elements is needed in this clamped-zone region to represent accurately this
nonlinear behavior. However, time and fund restrictions have prevented a
more thorough study of this matter at thig time.

The predicted transient midspan transverse displacement w for each of
these EL-SH-SR predictions is shown in Fig. 10. It is seen that the
finite-strain formulation and small-strain formulation predictions are in
fairly good agreement with each other.

The computing time required for the two formulations for explosively-
impulsed beam CB-4 is displayed conveniently in the following tabulation
for 4000 time steps with a time step size of 0.25 microseconds; all runs
were conducted on an IBM 370/168 computer with double precision arithmetic:

No. of Gauésian Total No.

Formulation No. of Sta. per Elem. of Unknown
FE Spanwise Depth DOF
Small Strain 20 4 4 79
Finite Strain 20 4 4 79
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strain-piapl, ) . CPY R
Formulation Ralation Mag1) No. of Time _LPU_(min)_

o 7 " Type vMatr}x'””Fyélgg'v (min) (Dgh) (Cycleon)
small Strain ¢ (B, 4.90) CM 4000 8.63 27.3 x 10"6
Finito Strain ¥ (Eq.4.146) oM 4000 11.07  35.0 x 107°

The effects on CPU time of the more lengthy expressions used and manipu-
lations required for the finite-strain calculaﬁions are evident from an
inspection of the last column. Note here that the efficient "unconven-
tional" formulation of the equations of motion was used for both the

small- and finite-strain procedures.

Finally, compared in Fig. 1l are finite-strain predictions for the

transient w-displacement at the midspan location of specimen CB-4 for the
same modeling as before but for the two cases in which the 6061-T651
aluminum material is assumed to behave as (a) EL-SH-SR or (b) EL~SH, where
the latter case assumed no strain rate effect upon the mechanical behavior
of the material. It is seen that the predicted midspan deflection w is
much larger for the EL-SH than for the BEL-SH-SR case even though the rate-
sensitivity used for the EL-SH-SR is rather “"weak" since large strain-
rates are present. Note that the finite-strain EL-SH~-SR prediction
compares favorably with the observed experimental permanent deformation.
It is evident also that the strains predicted for the finite-strain EL-SH
are much larger than for the finite strain EL-SH-SR case. Accordingly,
the former are not shown since the latter have been displayed and demon~
strate the behavior adequately =~ and also have been shown to compare
favorably with experiment.

7.2.3 Modeling by Plate Finite Elements

7.2.3.1 Modeliﬁg.Descr;ption and Outline of Analysis

Impulsively-loaded narrow plate specimen CB-4 was also analyzed by
using a finite-element model consisting of initially-flat platc clements « £
the assumed displacement type [31}. These elements consisted of rectang-
ular flat plate clements with lincar in-plane (u,v) and cubic out~of-planc

(w) displacements for the assumed displacement field; accordingly, each
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corner nade has 6 degroes of froodom.* To "minimiza" the computations,
only one quarter of specimen CB~4 was modeled: 27 unifom=-length olements
covered the half span, with each olement extending from the midwidth to the
froo odge of narrow-plate CB-4. This modeling provides a comparable
humber of degrees of freedom in the v,Ww plane as used for the beam-

element modeling. For the 4 DOF/node beam element, with 20 elements in the
axial "y" direction, thera are [4 x (20+1) - 5) = 79 unrestrained degrees
of freedom, while the linear~linear cubic:plate element is "equivalent" to
a 3 DOF/node beam element when u ='%ﬂ g;a = 0 having then [3 x (27+1)-5])
= 79 unrestrained degrees of freedom. Thus, the assembled "unrestrained®
finite element model consisted of 336 DOF, which reduced to 238 DOF by'
imposing (1) symmetry condltions along x.= 0 and y = 0 and (2) the ideally-
clamped condition at the end. With this FE model, it turns out that the
maximum natural frequency of this mathematical model is wma = 0.739 x 107
rad/sec. Thus, if one were to predict the transient response of this
finite element model by using the very convenient explicit central-
difference timewise operator, the At required to avoid calculation
instability would be At £ 0. 8

= 0.2 microseconds. Sinte one may
need to study the structural response for a time duration of up to perhaps
900 microseconds, one would need to carry out some 4500 solution time steps
on this 238 DOF nonlinear system; this may be viewed in some circles as a
rather substantial calculation.

dn the other hand, one might be able to use some other finite-
difference operator which would permit the use of a substantially larger
time step At while still providing "proper results". For stiff systems
such as the present one involving large deflections and nonlinear material
behavior with many regions of loading, unloading, reloading, ete., one has
available a number of implicit-type finite-difference opekators which are
unconditionally stable (At is not limited by calculation stability or blow
up) for linear systum response analysis but which become ill-behaved for
the present type of nonlinear system if At is "too large". Nevertheless,

2
The POF are u, v, w, g ' gw' and &+ Bxay
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it turns out that nome of these oparators will permit one to use a much
larger At than needed for the ceptral-difference oporator while atill
providing transioent rosponse prodictions which compare favorably with
(converged) contral-difforonce predictions. Bocause thesc operators arco
of tho implicit type, the solution procedure at cach time step must omploy
cither (a) iteration (hopefully to convergonce) or (b) oxtrapolation of
"intornal force" information, The latter, of course, represents an approxi-
mation to the correct internal force terms needed for the proper solution;
this approximation becomes worse as one attempts to use a larger and larger
At.

Many iteration methods are available for the solution of simultancous
nonlinear equations. Unlike single degree-of-freedom nonlinear equations,
always-convergent methods are just not available for solution of systems of
nonlinear equations. Convergende itself is such a serious problem for
systems of nonlinear equations that if the initial approximation is not
quite close to the solution, the method will not converge. One of the most
simple methods, the method of successive substitution (als; called Piccard's
method) enjoys'linear convergehce (under some conditions). Examples of
higher-order methods are the Newton method, that has quadratic convergence
and the secant or quasi-Newton methods (like the BFGS method [203,204]) that
possess superlinear canVergence (which is faster than linear but slower than
quadratic convergence). The higher order methods (like the BFGS or the
Newton methods) use variable-gradient matrices that may become singular
(for example, in the course of unloading in elastic-plastic broblems, these
gradients become discontinuous), and may impede convergence of the method,
The computational effort for iteration methods is large, as compared with

extrapolation of the nonlinear internal pseudo forces.

The point at which an iteration method would be competitive computa-
tionally with the extrapolation method would be for large time step sizes;
however, under those corndition, the path-dependency of elastic-plastic

strain-rate-dependent transient response problems could be significantly
lost (because of integration error that iteration methods cannot reduce --

see Subsection 6.3.2,2) unless higher order integration rules (like the
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fourth ordor Rungo~Kutta mothod) are utilized t

0 integrato the difforon-
tial equations of planticity.+

Moroover, tho use of g auitably lax
convergence critorion can give ono tho illusion of having achiaved

convergence when this has not actually baon accomplishad,
Among the attractive implicit methods aro tl
Houbolt [206), Park (194], and othors.
174, and 194 indicate that the Houbolt m
type provides "well-bechaved predictionsg"
needed for comparsble pexformance by Newm
comparable to those needed for park'

1080 of Nowmark [205],
8ince studies roeported in Rofs, 23,
ethod for problems of the present
for (a) At sizes larger than

ark B = % operator or (b)

8 operator -- and also since the

ograms ([24,31] available using the

it was decided to employ this timewise solution operator

authors have appropriate computer pr
Houbolt operator,

for the cB-4 narrow-plate transient response predictions reported in the

‘Similar studies involving the use of the very attractive

Park operator [194] would be useful, but time and effort constraints have
not permitted this in the present investigation.
In this study,

following.

calculations have been carried out to demonstrate the
necessity for using double-precision calculations with the present

solution method when one uses a digital computer with the significant-
figure retention capability of the IBM 370

these calculations, Fer this demonstration,

At = 1 psec ang linear extrapolation (not iter
loads" were utilized.

/168 at MIT, which was used for
the Houbolt Operator with

ation) for the "internal

Calculations were carried out for both the small-
strain procedure and the

finite-gtrain pProcedure, and are discussed in
Subsection 7.2.3.2.

Next, a study was made to investigate the use of:

(a) the linear-extrapolation brocedure for At values
ranging from 0.5 to 20 Usec; and

+Howaver, a subincrementation procedure (see

Subsection 5.3.2.5) as used
in this study partly relieves thig problem.
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(b) the uso of iteration during a given At timo ntop -~
again for At valwes ranging from 0.5 to 20 pmoa,

Bocaunn of the uan of vary difforent At valuon, tho strain-rato informa-
tion availablo in those varioun calenlationn will not bo of comparablo
accuray and meanidug, Accordingly, for those comparisons, tho CB-4
narrow plate matorial was agsumod to bo EL-SH; that in, indopondont of
strain rato. Only in this way can onc make a valid comparison among tho
predictions when one uses various fixed timu-step sizes At, These
studies are discussed in Subsection 7.2.3.3.

Finally, having selected double-precision calculations, an appropri-
ate solution procedure, and an appropriate At, prodictions were carried
out to compare small-strain formulation predictions versus finite-strain
formulation predictions, and are discussed in Subsection 7.2.3.4.

7.2.3,2 Single~Precision vs Double-Precision Predictions
Stated conecisely in the following are the modeling and solu-
tion features employed in these cal:-ulations:

Finite Element Model: Quarter plate modeled by 27 flat-plate LLC
elements with 6 DOF/node; consistent mass

matrix.
Material Behavior EL-SH-SR with the mechanical sublayer stregs-
for both Small- strain fit given by:
(44,200 psi, 0.00442)
- *
Strain and Finite (sru , eu) = (49,200 psi, 0.07500)
Strain Calculations (¢] (76,400 psi, 0.61500)

Strain rate constants: d = 6500 sec&l and
p = 4 for all mechanical sublayers are used
for illustrative purposes.,

Timewise Pinite Houbolt with At = 1.0 microsecond and linear

bifference Opérator extrapolation of pseudo-loads.
and Solution

Procedure
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Tha conptant atiffnans ﬂormT of tha equationn of motion wan uaed with

tha Houbolt operator,  From Rq. 6.90, thin expronsion at time t+At im:

((LZT:?[M] ¥ [K_D { gf#'}’ewta {F }t;t. { i NL}uM:

w2 MI({§ ]2 1L

where [M] is the global (constant) mass matrix, [K]sis the usual small

(7.3)

strain, linear-olastic, global (constant) stiffness matrix,{F} is the
et e t+At
load vector representing prescribed externally~applied distributed or con-

centrated loads, evaluated at time t = t+At; and {FNL}t+At is a pseudo-

Joad vector representing internal forces.
For the small-strain computational procedure, the "conventional®

form of the equations of motion (BEg. 6.68) was utilized. The vector

{FNL}t+At for the "conventional" formulation is

{FNL}uAe ) {FPL }m.‘. * {F: L}tm‘" {F;L}au (7.4)

where {Fzé}t+At is a veccor arising from the nonlinear texms in the strain-

L NL .
displacement equations, and {Fp}t+At and {Fp }t+At are pscudo-load vectors

arising from plastic (small) strains and associated, respectively, with the

st e ot

linear and uonlinear terms of the strain-displacement relations. The

reader is reminded that EQ. 7.4 is valid only for small strains.

+Also referred to herein as the modified unconventional form.
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________ mputational proeedurn, tha "madifind
Hncanvontional" form of the nquationn

of motion wan amployod,  Tho vactor
{FNL}

trAe FOr the "modified uneonventional® formulation in

{FNL}HA».G[K] {%*.}tmt - {.I}tmt (7.5)

whare (K] ig tho game global (eenstant) atiffnosg matrix appearing on tho
loft-hand side of Eq. 7.3, and {1}

internal foreos used for the
of motion, Bq. 6,72,
form of the

t+pe 18 the samo puoude~lead vector of
"unconventional" ve

ctor form of tho equationg
It turns out that the "

modificd unconventional®
cquations of motion can he used for both small and finite

strains, requires less computation, snd is also better conditioned numoey -

ically than the "conventional® form (Eq. 7.4, which cannot be used for

finite strains).
Note that the pseudo-load vector {FNL}t+At appearing in Eq. 7.3
*
depends upon the displacements {q }t+At at time instant t = t4At, but these

remain to be determined; thus these "forces" are approximated by linearly

revious time instants t = t,
1) as:s

{F™ e 2{F"), - {F™)

£-at (7.6)

extrapolating the known pseudo-forees at two P
and t = t-At (as explained in Subsection 6.4,2

This expression has the same inherent order of error as in the
Houbolt uperator approximations for both the accele
the velocity (Eq. 6,93)

NL
bseudo- load vector {F }t+At‘

ration (Bq. 6,92) and

hence, it is a consistent approximation of the

Note that the pseudo~

.

force extrapolation for the modified unconven-
h procedure (MULE) is dircc

used for solving the conventional form of the equatio
small-

tional lineax extrapolatio tly dnulogous to that

ns of motion for

strain problems -- only the pseudo-force vector {FNL} is extrapolated,
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the conatant etiffnops form praviding much hettor Atabllity proportion
than 1f onn attompted to extrapolate tho entire paoudo-forae veator {1}
Ltanlf in a vaator form of tho equationn of mation (By., G.34),
tional ﬂkpoximantn confimod thin axpootation, '

Comparod in Fig,

Computan

12 aro thn singlo=precinion and tho deuble~procinion

prodictions for tho tranalont latoral dloplacoment w at tho plato-contoxr

location (x,y) = (0,0) for the cmall~gtrain oguacionn and procoduro. It
is soon that tho singlo-procision caleculation dotoriorateg badly boyond a

timo of about 300 micromoconds.  The doublo-procision prodiction appoars
to be well behaved and comparcs favorably with tho oxporimentally-obsorved
pormanent deflection at thig location. Although transient strain prodio-
it is evident that thoge predic-
tho  computed results do show

tions are not shown hore for these cases,

tions must diffor groatly from each othor;
this.

For the finite-strain equationg and procedure, Pig. 13 shows the

single-precision and the double-precision predictions for the transiont
lateral displacement w at the plate-center location (x,y) = (0,0).
this case the single~precision Prediction appears to behave in a more

plausible fashion than for the small-strain calculation but also has
"stabilized"

In

to a permanent deflection value much less than both the

double~precision prediction and experiment show. While the finite~strain

equations using MULE are much better conditioned numerically than the

"conventional equations of motion" employed for the small-strain prediction,

the necessity of employing double-precision arithmetic with these equationsg
using the IBM 370/168 system at MIT is evident.

Although the aspect ratio of the finite elements. in the present mesh
is certainly responsible in part for the inadequacy of single~precision
arithmetic for thesc caleulations, many other investigators have concluded
in the past that double~precision arithmetic is hecessary when using the
IEM machine to produce accurate results for the types of transient non-
linear response preblems being studied here.
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Pinally, compared in Fig. 14 are the singlo~procision prodictions faor

woat (x,y) = (0,0) for (1) the rmall-strain procedure varsus (2) thae
finlto-ntrain procodura, Hlero it in apparont that. the lattor prodiction

is much bottor bohavnd than the formay (ainco many fowor computationn arco

formulation than for thae
formulation of tha equations of motion),
tiong are in sorious disagrecmont with exporiment.

roquired for the "modifiod unconventional®

"conventional but both predic-

Acvordingly, all othor

calculatiens in this work have been performed with double-precision arith-

metic on tha IBM 370/168,

7.2.3.3 Time Increment Size Effects

In using an implicit timewise finite-difference operator (the
Houbolt operator) to solve the modified unconvent

ional equations of motion
for finite strain,

one can (1) employ the convenient (linear)
extrapolation procedure for the pseudo-
convergence'

"explicit"

loads or (2) resort to "iteration to
within each time step At before proceeding for

the next time
step in the timewise solution process.

LINEAR EXTRAPOLATION
the modified unconventional linear extrapolation procedure (MULE) ,
it is evident that this approximation for the pseudo-~ NL}
will become Poorer and poorer as At increases.
of the largest At which will provide "

For

force vector {F

On the other hand, the use
accurate" transient response
predictions will be highly desirable in order to minimize the computing

time and expense for a given time duration in which the transient response

must be predicted so as to provide, for example, the peak transient

strains. To study this "At effects question”, only EL-SH material
behavior is taken intoe dccount-=~ gince for time-depundent EL-SH-SR
material behavior it is obvioug that the time increment size At will have

a definite effect on the solution behavior, Further, all modeling and

computing features used how are the same ag summarized in Subscction

7.2.3.2 except that At values of 0.5, 2, 10, and 20 pscc are used for the
finite-~gtrain MULE Procedure,
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Comparod in Fig. 15 are finite~atrain MULE prodictionn of tho
tranniont. w displacemont at tho plato~contor location (x,y) = (0,0) for
At valuog of 0.5, 2, 10, and 20 microsocondn. For At = 0.5 and 2 micro~
soconda, the prodicted transiont displacement appoars to be rolativoly
woll behaved for the first 300 psoc. Howevor, for At = 10 and 20 micro-
scconds, tho pseudo-forces have boon badly overestimated and the transient
response 18 geon to deviate gsubstantially from the "proper" behavior.

For At = 10 pscc this predicted transiont w displacoment became "very
smooth” and peaked at a value of about 2.01 in at about 740 Jsec; for At =
20 usec this predicted transient response was similar but a peak value of
1.82 in was reached at t £ 700 usec.

Observe from Fig. 15 that after 300 Usee there are significant differ-
ences betwoen the At = 0.5 and 2 microseconds predictions. Also, observe
that the transient w displacement at the plate center location does not
grow monotonically with increasing time increment size At. In fact, the
peak transient displacement prediction is smaller for At = 2 Hsec than for
At = 0.5 nsec; it is larger for At = 10 HUsec than for At = 2 lsec and
At = 0.5 usec; and it is smaller for At = 20 Hsec than for At = 10 usec.
Therefore, no monotonic exponential instability is observed, but rather the
predictions become less and less accurate as At increases -~ in an
oscillatory form. ‘This agrees with the results obtained by McNamara [165])
for the Houbolt operator, but with a different formulation of the equations

of motion and for a problem with geometrical nonlinearities and with linear
material behavior.

These calculations confirm the expectation that large At values will
lead to poor estimates of the proper pseudo-forces when the lincar extrapo-
lation estimate is used. Btricklin et al. [162]) observed that quadratic~
extrapolation predictions lead to less well-behaved results than do lincar-
extrapolation predictions; for a given "not-too-small" timo stop size At,
for nonlinvar dynamic problema. Of course, one could omploy higher order
extrapolation vstimatus for the pseudo-forves at the cost of additional
storage and computing; however, the benefits of such procedires are

uncertain and may well be problem-dependent,
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Hence, in view of the MULE Predictions shown (1) here for EL~-SH

behavior with At values of 0.5 and 2 psec and (2) in Subsection 7.2.3.2 for
EL~SH~SR prodictions with a At value of 1 usec,
well

it appears that plausible

~behaved transient responses are provided by the finite-strain Houbolt-
MULE procedure for At values of at least up to about 1} usec.
there is no proof that one has obtained essentially a "
tion; conversely,

However
converged” predic-
it is certain that such has not been achieved, but the
Predicted response might very wéll be close ehough to convergence for all
Practical engineering purposes. That assessment could be made, if
required, by using the central-difference timewise solution operator
together with a suitably small At to solve the unconventional form of the

equations of motion; for this case, a At of about 0.2 microseconds would

be required. Whereas with MULE and the Houbolt operator, an *
prediction apparently is achieved by using a 5 times larger At:

adequate"

hamely,
At = 1 usec ~~but the computational saving is not as large as this factor
because of the greater required storage and computation needed for ioubolt-
MULE vs the central-difference scheme described.,

Finally, the merit of Houbolt~MULE becomes evident when one considers

transient response problems of the present type but with a finite element
model involving perhaps 10 times as many DOF. For such a case the
required At for a central-difference solution might well be :!.0"3 usec

whereas a satisfactory Houbolt~MULE solution might need a At of only about
1 usec.

ITERATION SOLUTION
Compared here are predicted transient displacements of umpulsively-
loaded narrow-plate CcB-4 specimen obtained by (1) iteration as required

4during each At time interval during Houbolt operator solution of the

modified unconventional equations of motion for finite strain (as

*»
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oxplained in Subsection 6.4.2.2) and (2) the Houbolt~MULE (non~iterativo
linecar axtrapolation) procedurea. '

shown on Pig. 16 arc Houbolt aquilibrium-iteration and Houbolt~MULE
transient w-displaccment solutions at (x,y) = (0,0) for the 27-elcmont
plate modol of specimen CB-4, both with At = 0.5 puscc. Tho itoration

*
convergence criterion used in this case was (sec Eq. 6.117),

R N)E(C0™) P
§ (“{.%*m}tme“)l 7.7

* n X 2
where ||{q }t+At}|| is the Euclidean . L°) norm of the vector

* n
la oae
given time step interval At.

Superscripts n and n+l denote iterations n and n+l during a

puring a response time of 294.5 lisec (589 At cycles), 41 iteration
loops (or 7% of the total number of iteration loops) did converge to a

mean ratio of o = 4.7 X 10_5

(with a standard deviation of 2.7 x 10-5).
There were 3.4 equilibrium iterations in the mean (with a standard
deviation of 1.2) during these 41 iteration loops that satisfied criterion
Bq. 7.7, Howevey, as was expected, most iteration loops (548 iteration
loops or 93% of the total number of iteration loops) could not satisfy the
convergence criterion Eq. 7.7. In these cases the procedure outlined in
Egs. 6.120 - 6.122 was employed. As soon as divergence of the iteration
procedure was Jdetected, the iteration loops were stopped (after a mean
number of 4.0 iterations with a standard deviation of 1.4), and the
previous "convergent" estimate was taken to be the "equilibrium" solution
for that time step. This previous "converged" estimate satisfied a mean
convergence ratio of a = 2.7 % 10-3 (with a standard deviation of 9.3 x
IO-BL from this figurc, the iteration gsolution is seen to differ some-

what from the Houbolt=-MULE linear extrapolation prediction.

*
Also sce Eq. 6.121.
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A furthexr compaxinon of these predictions is glven in Fig., 17 whore
included also are central~diffaorence predictions with At = 0.25 usec for
the half span of spocimen CB~4 modeled by 20 4 PoF/node beam olements.
Although the finite clement models used are difforont, it is interesting
to note that tho explicit central-difforence beam prediction comparcs vory
well with the Houbolt-MULE linear oxtrapolation pradiction, and the
modified successive substitution iteration method seems not to have
"converged" to the correct solution.

Similar plate finite-element finite-strain equilibrium iteration vs
Houbolt-MULE linear-extrapolation predictions are shown on Fig. 18a for
At = 2 usec. These two predictions are very close to each other for the

300 microsecond time span shown. Later on in time, however, as Fig. 18b

" shows, these two predictions exhibit pronounced differences.

Finally, for a At of 20 usec, Houbolt-MULE linear-extrapolation
predictions as well as equilibrium iteration solutions obtained by using
two different iteration convergence criteria are shown in Fig. 19. Also
shown in Fig. 19 is the Houbolt-MULE linear-extrapolation prediction for
the transient w at (x,y) = (0,0) using a At of 0.5 Usec; this prediction
should be "accurate" and serves as a yardstick against which to weasure the
"worth" of the other predictions shown. Of the two At = 20 usec predic-
tions, only the equilibrium iteration scheme in which

= IH %* w}tﬂt _ {3’* m}tm “ & 4x10™
A T Tl

is used for "iteration convergence" appears to be plausible over the entire

time span shown. Even this prediction exhibits an “excessively smooth"

transient response profile, and also seriously overprcdicts the permanent
deflection. Clearly At = 20 usec is much too large to provide an accept-
able transiont response prediction for this structural response problem.

The present (modified successive substitution) iteration procedure
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does not provide accurate results. Further, the attendant. computational
expense for tho iteration schame is mueh larger f¢ a "given prediction
accuracy" than the Houbolt~MULE linear~extrapolatic. procedure. It would
be uscful to investigate the efficiency and practi ;ality of employing the
BPGS iteration method cited in Subsection 7.2.3.1.

7.2.3.4 Small-Strain vs Finite-Strain Predictions

Having determined the necessity of using double-precision arith-

metic for the present calculations on the IBM 370 and the superior
accuracy/efficiency of using the Houbolt operator -vith linear extrapolation
(compared with the iteration schemes studied), caaculations for narrow-
plate specimen CB-4 were then carried out using the Houbolt operator and
linear extrapolation with a conservative At of 1 usec. Stated concisely,
used were:

Houbolt Operator with Linear extrapolation

Double Precision IBM 370/168

27 LIC Elements for the Quarter Plate

Consistent Mass Matrix

EL-SH-SR with d = 6500 sec *, p = 4 and the

s
T, ., e* piecewise-Linear Fit
u,’ Tu

_given in Subsection 7.2.3.2
At = 1 microsecond _
SMALY, STRAIN: von Karmén's Strain-Displacement Equations
for Plates (see Egs. 5.118 = 5.123)
Small-Strain Plasticity Theory
“corventional® Formulation

FINITE STRAIN: Finite-Strain Strain-Displacement Equations
(see Egs. 5.118 = 5.123)
Finite-Strain Plasticity Theory
"Modified Unconventional® Formulation

For the finite-strain predictions, the terms containing the second~-oxder
derivatives of u and v in the strain-displacement equations. Eqs. 5.118 -

5,123, are obviously equal to zero for the assumed displacement element
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which has linecar (u) - linecar (v) = cubic (w), Although for gonoral
purposes a higher order (cubic-cublc-cubic) plato clement should be usod to
treat arbitrarily~large rotation problems, studios conducted in Rof. 28
o reveal that the socond~order derivativos of the in~plane displacements u and
[ ' and v havae a voery small influence in the predicted strains for the presont
kind of problems (impulsively-loaded narrow-plate CB-4 being discussed now
and fragment-impacted narrow-plate CB-18 to be discussed lator).

Predictions for both the small-strain procedure and the finite-strain
Procedure were made, and are compared here with each other and/or with
experimentally-measured data for the permanent deflection and for transient
strains at various midwidth spanwise stations on the upper (non-loaded)
and/or on the lower (loaded) surface of explosively-impulsed narrow-plate
CB-4.

The computing time on the IBM 370/168 for 900 lsec with the same
At = 1 usec and the Houbolt operator was:

FINITE STRAIN ("MODIFIED UNCONVENTIONAL"
FORMULATION) 71 min

SMALL STRAIN ("CONVENTIONAL®
FORMULATION) 70 min

Shown in Pig. 20 are the small-strain and the finite-strain predic-
tions of the w displacement at the plate~center location (x,y) = (0,0);
shown also is the observed permanent deflection at this location. It is
seen that -these two predictions compare very well with each other, and
apparently also fairly well with the experimental permanent deflection.
This displacement vs time comparison is shown here since this type of
comparison is an almost-standard one found in the open technical literaturce;
however, it is a notoriously insengitive measure of the pruediction accuracy

of any method for the present type of geometrically and materially non-
lincar elastic-plastic transioent responso problem.

i A much more meaningful and sensitive comparison involves predicted vs

measnred straing since for ductile materials the strains are a much better

indicator of impending rupture than are displacements. Accordingly,
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shown in the following figures are the amall~atrain and finlte~atrain

predictions of the spanwisc-diraction Green 5train Y2 on the uppor and/or
i W

the lower surface of spacimen CB-4 (sce Fig. 8) at the indicated atations

vs the measured strain:

v Time Histories of Yi on Surface
Figure Station Iyl, (in) Upper (U) or Lower (L)
Predicted Measured

22a,22b 4.00 uU,L -

22¢ 3.80 L L

224 3.80 u U

22e 3.00 U U

22€ 2,20 U 4]

229 1.40 U v
22h, 221 0.0 u,L ~

At the clamped end station (Ix], ly]) = (0,4.00 in), at the lower
(loaded) surface, a maximum strain Y; = 40.18 is predicted by the small~
strain procedure; see Figs. 22a and 22b.

Station |y| = 3.8 in is near the clamped end (|y| = 4.00 in); hence,
the strain YZ on each surface (see Figs. 22c and 22d) consists of a sig-
nificant "bending contribution" in addition to the "membrane part" of the
strain. Thus, as expected, this strain exhibits a larger tensile
transient peak value at the lower (loaded) surface than on the upper (non-
loaded) surface. Further, on this lower surface where larger strains
occur, it is seen that the consistent finite-strain prediction differs
significantly from the small-strain prediection, and the finite-strain
prediction agrees much better with experiment than does the latter. On

the upper surface at lyl = 3.80 in where smaller levels of strain occur,

* R
Or Y,,» since beam CB-4 is initially flat, ¥ = v2 =y,

n
To assist in interpreting these results, Fig. 21 shows a schematic of the

finite element model and element numbering.
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thage two prodictions aroe much closer to cach other (soe Fig. 22d4), Tho

largo strains that oceur at tho lowoer (loaded) surfaco, at tho clampod end

ly\ = 4.00,|x| = 0.00 have a very significant influcnco on tha bohavior of

tho strains at 0.2 in from tho clamped end, tho finite strainas rosults

being much closor to the experimental values.

f on the upper surface at gstation y = 3.00 in, those two prodictions

: compare well with each othor in an ovarall sense as heen from Fig. 22e,
but the puak strain prodicted by the "proper" finite-strain prediction
procedure is about 20 per cent larger than the small-strain calculation
result. The experimental value, however, appears to be even larger up to

the instant at which the strain trace was lost == probably becausc of broken

T

lecad wires. Note that the finite strain results are closor to the
predicted strains of the beam finite elements (Fig. 9d).

At station Iyl = 2,20 in, the strains consist mainly of membrane
behavior with a small bending contribution. Figure 22f shows that the
‘finite-strain and the. small-strain predictions for the upper-surface
gtrain are close to each other. However, the finite-strain prediction is
again oloser‘to the overall behavior predicted by the peam finite element
modeling (Fig. 9c) since it does not exhibit the strange behavior at
t = 300 usec that the small-strain results display.

Station |y| = 1,40 in is necarer than any of the others to the end
(Iyl = 0.90 in) of the spanwisc region to which uniform lateral impulsc

loading was applied. Honce, one expects to see an important bending
contribution here in addition to the dominant membrane behavior; accord-
ingly, somewhat greater differences are geen and are cxpected here between
finite-strain and small-strain prodictions than at lxl = 2,20 in=--which is
moru remote from station |x| = 0.90 in. Largor strains arce predicted by
the Finite-strain than by the small-strain procedure at lxl = 1.40 in as
scen from Fig. 22¢g. llowover, it appears that the peak experimental
strain is cven larger ~= poasibly by some 30 per cent than the (botter)
finite=-strain procedure predicts.

Finally, at the plate~center (midspan) station (x,y) = (0,0), one

observes from Figs. 22h and 22i for the upper gurface and the lower surfacy,
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raspectivaly, that thore is carly-time agioemant hotween the finita-atrain
and the small~strain pradictions. Bayond about 200 microsoconds, howavor,
thore are some distinct difforences in the charactor of those predictions,
Observe that both the small-strain and tho finite-strain predictions at the
plate center using plate finite-clement modeling agree with the finite-
strain predictions at the same location when using beam finite-element
modeling (Fig. 9a), in that they predict a reverse bending that occurs
between 100 psec and 400 usec. S

Additionally, let it be noted that although many of the traces of the
experimentally-measured strains on specimen CB-4 were terminated before the
peak values were reached, it appears that the experimental peaks would have
been somewhat larger in nearly every case than predicted by the plate
finite elements. The cubic-cubic beam finite elements show better strain
results. Improved predictions could be achieved by using a greater num-
ber of the present (too stiff) linear-linear-cubic (LLC) assumed-displace~-
ment elements or by using the fundamentally-better but more costly cubic-
cubic~cubic (CCC) assumed-displacement element for the u, v, w displace-
ment fields. As shown in Refs. 23 and 28 and numerous other references,
the use of balanced-polynomial assumed-displacement elements leads to
predictions of superior accuracy for the present kind of problems c¢ompared
with unbalanced-polynomial elements. An extension of the present investi-
gation, therefore, is recommended to utilize and assess the benefits to be
achieved by the use of CCC elements for finite-strain predictions in the
present type of nonlinear transient response problem.

7.3 Impulsively-Loaded Free Circular Ring

Sought is a more stringent test and evaluatioh of the present finite-
strain predictions vs small-strain predictions vs experiment. Tnis is
afforded by the experimental data from Ref. 207 for an impulsively-loaded
free initially-circular aluminum ring since

(1) larger compressive strains are present (and over a larger

circumferential region);

{2) much larger rotations are present; and

(3) bending rather than stretching dominates the response of

the structurc.
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7.3, Problem Pefinition

An roported in Ref, 207 a froe initially~-circular 60G1-TG aluminum
ring (called F15) of 2,937-in midaurface radiua, 0.124-in thicknons, and
a 1.195=1n width was loadnd impulaively uniformly ovor a 120-degroo

soctor (contorod at O o Oo) of ito oxtorior, rooulting in an inward initial

valocity of 6853 in/soc for that loaded rogion. High spocd photegraphic
measurcments were made of the deforming ring. Also, transiont strains
were measured at various circumfercntial stations on the innor surface and/
or the outer surface of the ring. Static uniaxial stress-strain tests
were conducted on coupons of the 6061-T6 aluminum from which the ring was
made., The mass per unit volume of this material is assumed to be

po = (0,0002526 (lb-secz)/in4.

For the small-strain analysis, strain-displacement relation Type C
which is valid for arbitrarily large rotations but only small strains was
employed and the following [23,28] stress-strain pairs (T ,Y ) were used
for mechanical sublayer fitting of the static stress-straig data: (7 a' Yy ) =
(42,000 psi, 0 00476 in/in) and (58,219 psi, 0.2000 in/in). The material
was assumed to be strain rate sensitive; strain rate constant values
d = 6500 sec»l and p = 4 were assumed for illustrative purposes.

For the finite~strain analysis, strain-displacement relation Type F
which is valid for finite strains and finite cotations was used and the
static uniaxial stress-strain data were recast into Tu vs a:where
Tu (l + E ) and e =n(l + B ). A piecewise liflear fit of this
Tuovs Cu data of Ref, 207 was made as follows for use in the mechanical-
sublayer material model: (Tu ' E ) = (42,974 psi, 0.0040679), (52,150 psi,
0.07000) , and (107,383 psi, 8 615) For this calculation alse, it was
assumed for illustrative purposes that the material strain rate constants
woere d = 6500 sec_l and p = 4,

7.3.2 Comparison of Small-Strain vs Finitc-Strain Predictions

Por economy and convenicnce recasons in both calculations, advantage
was taken of symmetry by modeling the half ring with 18 uniform-length
CC 4DOF/node curved-ring elements, thereby resulting in 72 unknown DOF.

The finite clement properties were evaluated numerically by Gaussian
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quadrature with 4 spanwige and 4 depthwino Gaunsian ntationn in each
ulemont, A consiatont manss watrix was used, Both calculationns employed
tho convral-difforence timowine opexator with At = 0.6 miecrosacondy for
this modal wmax = 2.5730 % 106 rad/nea, ra 0.8 (z/mmax) = 0.62 ynoc han not
hoon oxcondnd by tho aelocted At

Comparinons of prodictaed circumforential Groen ntraln Yg for both tho
small=otrain and the finlto-strain procoduro aye shownh voxnué cach othor
and/or oxporimont in the following indicated figures at various ciroums=
forontial locations © on the inner (non-loadod) surface or on the outor

(loaded) surface:

Figure p-Location (deg, min) Inn:irfagiter
23a 92° 30° %

23b 92° 30° X
230 87° 20" x

234 86° 10

23e 176°

23f 16° x

23g 16° x

At all of these locations except for 0 = 16°, the predicted and measured
strains indicate the presence of a very significant bending contribution --
the inner-surface and the outer-surface strains are of significant magni-
tude and of opposite sign. It 1s seen that finite-strain predictions in
nearly all cases differ considerably firom the small-strain predictions, and
also are in better agreement with experiment than are the latter predictions.
At 6 = 160, note that membrane compression behavior is dominunt --at
both surfaces the predicted Yg is compression and the values of Yi on the
inner surface differ little from those on the outer surface. At these
0 = 16° inner-surface and outer-surface locations, it is seen that the
finite-strain and the small-strain predictions are in better agreement with
each other than at the other locations - where bending behavior is very

prominent.
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Shown in Fig. 24 is a comparimon of moasuromants va prodictionn of
time hintory of the ring's midplano eontexrlino noparation dintanco, Rath
prodictions are in falirly good agrooment with meanured valuon,  Tho finite~
atrain prodiction shown a smallor extrome soparation dintanco than tho
amall-ntrain prediction and occurs at about 1260 micronocends whilo that
for tho nmallestraln calculation occurn aﬁ about 1400 unne.

Noto that ncar 1500 psee, the ring in in a goveroly deformed stato,

At this condition, it s of somo interost to oxamine the elrecumfierentinl
distribution of the ecircumfercntial strain YZ along both the outur surface
and the inner surface. Iinite-strain prodictions for this information oo
well as measured values arc shown in Fig. 25, 1t ds scen that in the
region 3 °©<0z% 105° there are vory soverc spatial gradients in the strain
along each surfaca. Regions of (a) mainly membrane, (b) mainly bending,
and (¢) combined behavior are evident. Despite the severe spatial
gradients in the strain, it is seen that the finite-strain predictions are
in reasonably good ajreement with measurements at this time instant.,

7.3.3 Comments

This imbulsively-loaded free initially-circular ring is of special
interest in the present finitc-strain study since not only are strains of
significant magnitude produced but also certain regions of the ring under-
go very larage rotations -- conditions which are accommodated properly in
the present theory and analysis. Now one finds significantly improved
qualitative and quantitative agreement between measurements and finite-
strain predictions compared with the former small-strain predictions.

The large differences between the small-strain and the finite~strain
predictions at 0 = 92° 30", @ = 87° 20', and 6 = 86° 10' take place
because these locations are close to a region* where compressive strains
of more than 14% are present, and hence these locations are also affected
appreciably.

Finally, note that in both cascs the vector (unconventional) form of

the equations of motion was uscd and solved with the timewise central-
differchce operator.,

* .
At 8 = 60°.
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7.4 _Impulsively~Loaded Square Thin Flat Plate

7,4.1 Problom Definiticn

As xoportad in Rof, 2, sgquarce thin G0GL-TGS) aluminum flat pancls
(nominally 0,060 by 8,00 by 8,00 in =~ mea Flg. 26) wlth all four alden
idoally clawmpad wore oubjoetod to lmpulnive leadlng on thn lowor nurfaco

ovar a 2=in by 2=in rogion contorod at tho pancl-gontor location
(x,y) = (0,0). A schomatiec of t*is oxporiment in glvon Ln kig. 29,

Solocted for oxamination horo io elampod pancl opoeimon CP=2; ito
dimensiono are 0.0623 in by 8,00 in by 8.00 in. Tho oxplosively-impartod
impulse resultod in an "initial volocity" of 16,325 in/sce for the 2-in
by 2=-in HE-loadod region (2], This condition produced a very large
pormanunt dofloction of the panol, measuromonts f£or which are reportoed
in Ref. 2. In addition, a portion of tho upper surface of specimen CP-2
had on it a mechanically lightly-scribed closely=-gpaced grid whose pre-
test and post-test spacings were measured, thereby providing permanent
relative elongation data. Also, at various (x,y) locations on the upper
surface at indicated orientations 0 (see Fig. 26), high-elongation strain
gages were attached and used to measure transient relative elongations;
these transient strains were displayed and recorded photographically from
oscilloscopes. Finally, permanent relative clongations were measured
from all surviving strain gages.

Thic problem provides a well-defined initial-value problem for a 3-D
structural response situation wherein measurements have been made success-
fully of transient strains as well as large permanent deflections and
strains. Moreover, the maximum permanent straing produced are very close
to the rupture threshold; in fact near (x,y) = (~0.65 in, =0.7 to +0.7 in)
incipient cracking occurred. At a corresponding location (i.e. X = +0.65
in and =-0.7 Sy < 4+0.7 in) very severe straining but no evidence of
cracking wis observed. Accordingly, specimen CP-2 serves as a stringent
test of the accuracy and reliability of the present finite-strain formula-

tion and calculation procedure.
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7.4.2 Comparison of pinito-gtrain Pradictions va. Experiment

7.4.2,1 FiniteStrain and Finito-Eloment Analyeis Model
For computational oconomy and officicnay, advantage was takon of

doublo symmotry for this Cp-2 plate problem; honce, only one quarter of
the platc was modeled by f£inite clemonts. Tho rosulting 11 by 11 mesh
of 121 quadrilateral flat-plate LLC clomonts is shown in Pig. 28, includ-
ing element dimengions, node numbering, and elemont numbering. Notc that
the impulsively-loaded 1-in by 1l=in quartor-plate rogion centered at
(x,y) = (0,0) has been modeled by 4.5 elements in each direction. Thus,
the assembled-structure nodes lying inside this dotted region account
for the plate mass to which was imparted a uniform w-direction velocity
&o = 16,325 in/sec; accordingly, eech of the cited nodes was given this
ﬁo' thereby defining an initial kinetic energy (KE)° for both the actual
plate and the finite-element model of the plate to be 8,402 in-1b, where
the 6061-T651 aluminum material is assumed to have a mass per unit initial
volume po of 0.000253828 (lb—secz)/ind.

with the available funds and computing system, this 11 by 1l mesh
of finite eléments ig about the largest feasible size. The .222=in by
.222-in element size selected for the impulsively-loaded region where
gevere straining occurs was expected to be nearly adequate, although
ccc elements rather than the pfesent LLC elements would provide a much
better rupresentation of the behavior. Also, a continuation of this
element size to (x,¥) = (2,2) would have permitted a better modeling of
the expected strain behavior in this region; however, the resulting total
number of degrees of freedom and computer storage would have exceeded
that currently wailowable" at the computer facility used. Thus, a
coarser mesh was used beyond (x,¥) = (1.111, 1.1l1), as indicated in
Fig. 28. Hence, the gelected finite-element mesk resulted in a total
of 144 nodes at 6 DOP/Node or ge4 DOF. Since 23 nodes at 6 DOF/Node
are ideally-clamped (along x = 4, y = 4), a total of 20 nodes involve
symmetry at 3 DOF/Node, and the center node at (x,¥) = (0,0) has double
symmetry imposed at 5 DOF/Node, a total of 203 restrained DOF are
involved. Hence; the total number of unknown DOF = 864-203 = 661 DOF.
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As renorted in Ref. 2, static uniaxial stress~atrain measurcments
wore conducted on coupons of matorial whosa axen were (1) parallel
(1oﬁgitudinal, L) with or (2) porpondicular (transverse, T to the plate-
roll dircction of the thick-plate stock of 6061=-T651 aluminum material
from which specimen CP-2Z was prepared; the x and the y dircotion of
gpocimen CP-2 corresponds, respectively, to the T and the L direction.
These static stress-strain tests revealed that this 6061-1651 plate-stock
material is not oxactly isotropic, as Figs. 29a and 29b of Ref.2 show for
the L- and the T-direction, respectively. However, since the analysis
and the computer program employed assume that initially the material is
isotropic, the cited Ref. 2 data were recast into Ty ® K_ (1 +E ) vs.

c* =N (L +8 ) and the average data were fitted inoa piecewise-linear
fashion by the following (T e*) pairs for use in the mechanical-sublayer
model: (t, ,€%) = (0,0}, (43 600 psi, .0045), (52,400 psi, .0960), and
(72,000 psi, .585)

Note should be taken of additional informaticn pertaining to the
"non-isotropic" character of this 6061-T651 aluminum pléte material.
First, static tensile tests of coupons revealed that the static relative
elongations at fracture were about .75 and .40 for the L and T specimens,
respectively; hence, the T-direction exhibits rupture at a substantially
smaller level of strain than does the L-direction. Accordingly, incipient
rupturing of "T-direction fibers" in a plate specimen such as CP-2 would
be expected first before rupturing of "L-direction" fibers; this indeed
was the case for specimen CP-2 which exhibited threshold rupturing of
T-direction material at x = -0.65 in along y = ~-,70 to s y = 4,70 in.

PBecause of the very severe impulsive loacding to which specimen Cp-2
was subjected, certain regions of this specimen will experience very high
strain rates at least at early times. Thus, even though the 6061-1651
aluminum might not be particularly strain-rate sensitive, one expects
nevertheless a significant effect of the strain rate on the transient
structural response. Accordingly, two calculations were carried out
(a) one for zero strain-rate sensitivity: * = p = 0 or EL-SH and (b)

EL-SH-SR where tho strain rate parametex values assumed were d = 6500 sec:m1
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and p = 4. For case (a) caleculations for 600 micromeconds of structural
rasponge were carried out, but only 300 psec for case (b) because of the
computational oxpense involved. For this PE modeal, it was found that
uhax = .354328x107 rad/sec; honce, 0.8 (2/whax) = 0.452 usac. .

Finally, it should bo noted that the present LLC assumed displacoment
element 18 too stiff and displays only a statc of constant displacement
gradients+; a higher order clement such as a CCC would be better from the
viewpoint of accuracy as well as reducing roundoff crror but time has not
permitted including that type of better element in the present study.

7.4.2.2 Transient Strain Comparisons and Transient Displacements

In the following listed figures, measured transient relative clonga-
tions at the indiéated (x,y) locations and accqmpanying O~orientations
on the upper (non-loaded) surface of flat-panel specimen CP-2 are compared
with finite-strain predictions obtained from a timewise solution of the
modified unconventional equations of motion together with linear extrapola-
tion of the pseudo loads (MULE) and the use of the Houbolt operator with
At = 1.0 usec:

Upper-Surface Location | Distance from | Strain Gage Data [2]
) Plate Center Peak
Figure | x(in) y (in) ©(deg) (in) Gage No. Transient
Rel. Elong.
(per cent)
2%a 0 1.50 90 1.50 3, 18% 5.3, 6.7
2% 0 2.00 20 2,00 4 2.7
29¢ 1.061 1.061 45 1.50 6 6.1
29d 1.414 1.414 45 2.00 - -
29%e 1.50 1.50 45 2,121 7 2.2
29f 2.00 2.00 45 2.828 8 1.03
*Gage 18 was located at (x,y,0) = (0, -1.50 in, 270 deg.)

Figurcs 29a and 29b show predicted (EL-SH and EL-SH-SR) and measured
trangient relative elongations on the upper surface of specimen CP-2 along
the O = 90-deg. direction at (x,y) = (0, 1.50) and (0, 2.00 in), respec-
ti;ely. Since the Fig. 29b location is at a greater distancc from the

+The LLC assumed-displacement element used provides displacement gradients
u and v which are constant in the x direction, and displacement
gfgdients'xu v and v which are constant in the y direction.

' ’
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plate centor than the Fig., 29a location, one oxpects for this problom
that. the peak transient strain at the FPig. 29b location will bo signifi-
cantly smallor than that for the Fig. 29a location. Both meoasuromants
and predictions confirm this expectation. For the (x,y) = (0, 1.50)
location for the Fig. 29a display, one sees that the poak prodictéd
relative elongation for the EL-SH calculation is about 15 per cent and
occurs at about 100 usec, whereas the peak measured values arc about 5.2
and 6.2 for gages 3 and 18, respectively, and occurred at about 85 |iscc.
However, the EL-SH-SR early peak predicted is about 6.9 per cent and
occurs at about 60 lUsec. Hence, the EL-SH prediction appears to over-
estimate the magnitude of this early peak very substantially, whereas

the BEL-SH~SR prediction is in reasonably good agreement with the measured
early péak. Note that although the measured relative elongation traces
were obtained successfully onliy to about 150 pusec, the EL~SH-~SR predicted
transient response appears to be in good agreement both qualitatively and
quantitatively with the measured responses.

At the more distant location (x,y,0) = (0, 2.00 in, 90 deg.), the
EL-SH and the EL-SH-SR prediction give time histories in good qualitative
and quantitative agreement with each other. Further, these two finite-
strain predictions are in fairly good agrement with.the measured transient
response data (see Fig. 29b). Also, the longer duration EL-SH prediction
indicates that a predicted permanent relative eléongation here would be
about 2.5 per cent; the measured [2] permanent relative elongation at
that locationh was 1.8 per cent.

Figures 29¢, 29d, 29e, and 29f pertain to measured and'predicted
upper~-surface transient relative elongations along a ray at 6 = 45 deg
from the plate center at distances, respectively, of 1,50, 2.00, 2.121,
and 2.828 inches. At these locations the peak and permanent relative
elohgations are expected to decrease at these 4 "successively more distant
locations"; the mcasured data show this to be the case, as the above-
tabulated measured peaks show. |

Note that the measured veak relative clongation at 1.50 in £tom the
plate center along 0 = 90 deg and 0 = 45 deg (see Fig. 29¢) are in close
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agreoment) gages 3 and 18 at 0 = 90 dag indicato, rospectively, 5.3 and
6.7 per cont while gage 6 at 0 = 45 dag indicates a peak of about 6.1 por
cont, Pigure 29c also shows that the FL-8H-SR tranaiont rosponso predic-
tion ig in much betteor agrooment with tho meagured responso than is the
EL-SH prodiction.

observe from Figs. 29a and 29c, whoere both locations aro 1,50 in
from the plate conter but the former is orionted at 0 = 90 deg while the
jatter is oriented at 6 = 45 deg, that the general magnitude of the
measured relative clongation time histories is "the same" but the carly
portion of the time history at these two "equivalent locations" is
distinctly different. Note that the EL-SH-SR prediction also exhibits
this qualitatively different early~-time response == in agreement with
measurements. From Fig. 29c¢ where a “measured strain trace" was obtained
from O to about 340 usec, one sees that the peak (6.1 per cent) was
reached before 150 jisec and the strain level changed very little there-
after. It is expected that had this trace been obtained for a much
longer duration, very little change in this "suabsequent" strain level
would have been seen; this is consistent with the fact that this strain
gage showed a permanent relative elongation of 5.4 per cent at this
location.

At a 2-in distance from the plate center, Fig 29b shows measured and
predicted transient relative elongations at (x,y,0) = (0, 2.00 in, 90 deq)
while Fig. 29d shows only predictions at (x,v,0) = (1.414, 1.414 in,

45 deg). For the former, generally good theoretical-experimental agree-
ment is observed; note also that the measured peak (2.7 per cent) is
reached before 170 usec and the subsequent strain level does not change
very much, but the predictions would indicate a somewhat larger value.

At the Fig. 29d 2-in location (along 9 = 45 deg) no transient responsc
measurement was obtained (only a permanent relative elongation of 2.5 per
cent was measured), but the EL-SH and EL-SH-SR predictions appear to be
plausible qualitatively compared with the Fig. 29¢ predictions at the
1.50 in distance along 8 = 45 deg. However, the "predicted permanent
strain levels" are much higher than one expects (and measures) at this

2,00«in location.

w
=
(921
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Figure 29e shown measurements and prodictions at a somewhat greater
dintance (2.12 in) from the plate cantor along 0 = 45 deg., Heore tho
measured strain trace roachos a poak (3 2.2 per cont) befora about 170
usoc and changos ita Jevel vory littlo thoreaftor) this gago gave a
parmancnt relative olongation of 1.7 por cont. Tho EL-8H~8R prodiction
appears to be plausible far porhaps the first 200 of tha 300 usec duration
shown; but the “"stoady level" achicved before 200 peec is at about 4 por
cent strain level (vs. about 2 per cont experimentally) . On the otherx
hand, the RL-SH prediction shows a peak strain lovel (at about 300 usec)
which is significantly larger than that of this same EL-SH prediction at
the closer-in 2.00-in location shown in Fig. 20d. Hence, it is apparent
that at these “"more distant locations", the EL-SH calculation is exhibit-
ing a numerical deterioration. _

pronounced evidence of this vjate time" numerical deterioration is
exhibited in Fig. 29f where the measured transient relative elongation
at the 2.828-in distance: (x,y,0) = (2.00, 2.00 in, 45 deg) is shown
and compared with EL-SH and EL-SH-SR predictions at this location.
Experiméntally, a peak strain of about 1.03 per cent was reached at about
220 usec, and the strain level changed very little thereafter. On the
other hand, at this location the relative elongation predicted by the
EL-SH calculations behaves plausibly and exhibits a reasonable level of
strain for about the first 200 psec, but then exhibits an almost-~
exponential growth with time -- reaching 20 per cent at about 500 usec.
The EL-SH-SR calculation, on the other hand, does not exhibit this type
of clear deterioration during its 300 usec duration, but it indicates
a “"permanent strain level® of about 3 per cent which is much larger than
measured at this location. Based upon the Fig. 29e results (and those of
Fig. 29f), the EL-SH and the EL-SH-SR predictions must be regarded with

suspicion in the wouter zone" spanned by the finite element region
venclosed" by clements 8 through 10 and 78 through 111 at times beyond
about. 200 usec.

Information supplementing these indications of numerical deteriora-
tion (despite the use of double precision on the IBM 370/168) is given
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in Tables 3 and 4 for the EL-SH and tho BL-8SH-SR ealeculation, rogpoctivoly,
Shown in thome tablos are the timo historios of tho upper-surfaco yi
troon strain at oach nodal atation along v = 0. Also shown ara the uppor~
surface principal Greon strains at the contors of oloment 1 through 6.
These tabulations show that Plausible timo historios of gtrain are
predicted at all timos for (a) the "closc-in nodal stations" (that is,
X 5~l.00 in) and (b) the contors of clements 1 through 6 for both the
EL-SH and the BL-SH~SR calculation, although tho values predicted by
the latter are much more reasonable. At nodal locations beyond about
X = 1,00 in (except at node 12 (x = 4.00 in)}, one observes a progressive
deterioration in that the predicted strains continue to grow implausibly
to unrealistically large levels.

Shown in Figs. 30a, 30b, and 30c arc the EL-SH and EL-SH=-SR predicted
time histories of the principal strain at the center, respectively, of

elements 1, 3, and 6; these olements (see Fig. 28b) lie adjacent to the
Y = 0 symmetry line and their centers_are located at the following respec-
tive locations (x,y) = (.111, .1l11 in), (.333, .111), and (1.298, .111).
At the first' two locations, these principal strains increase quickly and
reach a "plateau" by about 80 Usec, and change very little thereafter;
further, in both cases, the "plateau principal strain" levels are substan-
tially smaller for the EL-SH-SR than for the EL~SH calculation, as
expected. At the center of element 6, the principal strain time. history
for the EL-SH calculation is similar to those for.elements 1 and 3;
however, the EL-SH-SR predicted principal strain First rises rapidly and
then increases slowly for the remainder of the 300 psec time history
rather than reaching a plateau. To supplement this information, the
principal strain at the center of elements 1 through 6 is given at various
time instants in Tables 3 and 4 for, respectively, the EL-SH and the
EL-SH-SR calculation.

It is instructive also to examine tho spatial distribution of the
predicted strain in tho panel at various fixed instants in time. Accord-
ingly, shown in Figs., 30d and 30e, respectively, are EL-SH and BL-SH-SR

predictions of the x-direction upper=~surface Green strain Yi at nodes 1
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through 12 (see Fig. 28a) along the y = 0 aymmetry lino from the panael
centor (x,y) = {0,0) to tho clampnd odge (x,y) = (4.00, 0)) this informa-
tion is also givon in Tablos 4 and 4, xospoctivoly.

For tho EL-SH calculation, FPig. 304 shown that Yi va., X at G0 HURog
is of tho oxpectod form for this physical situation == dinplaying smoothly
varying largo values within and just beyond the 1.00-in odge of the
impulsive-loading zone, and then decrcasing rapidly to small valucs for
x > 1.50 in. At 100 usec, the strain has incrcascd significantly at
station x = 1,111 and 1,486 in but remains close to the 60 usec values
at the other locations. At 200 usec, the Yl strain distribution remains
similar to that at 100 usec except that a substantial increase in the Yl
strain occurs at stations x = 1.861 and 2.486 in where the values are,
respectively, 13.21 and 5.17 per cent. At location x = 1.861 in (which
is remote from the impulsive-loading zone), this strain value should be
very similar to (or perhaps between) those exhibited in Figs. 29a (at
x,y =.0, 1.50 in) and 29b (at x,y = 0, 2.00 in) since these locations
"span" the station in question, where the respective EL-SH predicted

values are 5.7 and 3.7 per cent and the measured values are X 4.0 and 2.0
per cent, whereas a value of 13.2 per cent is EL-SH predicted at station
X = 1.861 in, For this x = 1.86l-in station, an examination of Table 3
indicates that a numexical deterioration of the calculation is occurring
here beyond about 120 usec since as time progresses the EL-SH predicted
strain continues to grow "unrealistically" and reaches a value of 31.2
per cent at 600 Usec, whereas the measured peak [2] at the “spanning
stations" did not exceed about 6 and 2.5 per cent, respectively. Further

evidence of this calculation deterioration in the mesh region spanned by
nodes 8 through 11 and 85 through 121 ¢an be seen by examining (a) the
plotted predicted strain profiles at t = 300 ysec and 600 psec in Fig. 30d
and (b) the time histories of the predicted strains at these nodal
stations as given in Tablc 3. Further, the measured permanent strains

at x > 1.4 in were smaller by at least a factor of 4 than the predicted
values listed in Table 3 at t = 600 usec. Also, observe that the
predicted strains in the region 0 <x < 1.11 in quickly reached fairly
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large values and essentially "rotained" thase valuos throughout tha 600
Hesee tima poriod; straine in this region, thexeforo, aro heliaved to he
valid and not affectod by tho eited timewise progrosaive numerical
dotorioration of the calculation in the ‘ndicated mosh portion of this
largo-DOF problem.

Figure 30c shows a similar soquonce of prodicted strain profilos for
the EL-8H~SR calculation, Al‘hough thc magnitudos of tho predicted
strains arc considorably smaller than for the corresponding locations
and times in the EL-SH calculation, the timewise trends are similar to
those of Fig. 30d. For the EL-SH-SR calculation also, there is evidence
from Fig. 30e and Table 4 of a progressive deterioration of the numerical
predictions in the region spanned by nodes 8 through 11 and 85 through 121.

Given in Tables 3 and 4 for the EL~SH and the EL-SH-SR calculation,
respectively, are the values of Green strain Yi at the nodal stations
along y = 0 (nodes 1 through 12) at about 20-pUsec. intervals. Note that
the péak and the permanent strains from nodes 1 through 7 are reached
within about 140 usec. For stations 8, 9, 10, and 11 one observes a
“deterioration" in the strain behavior beyond about 120, 240, 350, and
450 usec for the EI-SH calculation, and beyond about 100 and 260 Usec
for stations 8 and 9 for the EL-SH-SR calculation which was carried out
for only 300 usec. Thus, in the region beyond x = 1.86 in (or in the
mesh zone bounded by nodes 8 through 11 and 85 through 121) the strains
become unrealistically huge. Aas a result, the gross w displacement time
history at "all nodal stations" also degenerates in the sense that these
displacdements continue to grow in the region 0 < x < 2.5 in in a vigorous
manner even though nearly all of the initial kinetic ehergy has been
absorbed already by plastic¢ work; the time history of the quarter-plate
kinetic energy is shown in Fig. 31. fhis "degenerate" w-displacement
time history is shown in Fig. 31 at (x,y) = (0,0) for the EL-SH and the
EL-SH-SR calculations; both calculations indicate w digplacement values
which are much larger than observed experimentally. The oxcessively
large strains predicted in the mesh rogion spanned by nodes 8 through 11

and 85 through 121 because of "numerical deterioration" cause the
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w-displacement in the .xegion 0 < x < 3.0 in to bocome unrealistically
largo also. Clearly this is a numorical-degenoration problem incurred
dogpita tho use of doubla-preociaion arithmotic on tho IBM 370/168 at MIT,
Furthar study is neaded to rosolve this diffieulty.

7.4.2.3 Pormanont Defloctions and Strains

Bacausc of the alroady-citod progressive timowise numorical
deterioration of the valculation, the present calculations do not provide
valid estimates of the permanent deflection of the CP~2 impulsively=-loaded
thin aluminum panel. However, it may be of interest to compare EL=-SH vs.
EL-SH~SR predicted w-displacement profiles vs. x along the fixed-y
locations y = 0, 1.111, and 2.486 in at a fixed instant in time. Such
comparisons are shown for illustration in Fig. 32a at t = 300 pscc.
Because of "strain-rate stiffening", one observes that the EL~SH deflec-
tions tend to be much larger than those for the EL-SH-SR calculation
along y = 0 and y = 1.111 in. However, along y = 2.486 in, the reverse
is true because the "stiffer EL~SH-~SR structure" has responded more
rapidly‘(peaks sooner) than has the "EL-SH structure" at this y = 2.486 in
station,

That these predicted w-displacement profiles at various fixed-y
locations are of generally plausible character (although of invalid
too-large magnitude) can be seen by examining the experimentally-measured
permanent w-deflection profiles plotted vs. x in Fig. 32b for various
fixed-y stations. Note that a permanent plate~center deflection of about
1.1 in occurred on this 0.0623 by 4 by 4-in square clamped-sided panel.
It is evident from these permanent-deflection profiles that very large
strains must be present over about a central 1.5 by 1l.5-in region.

Shown in Fig. 32c are the measured permanent relative elongations
on the upper surface of panel specimen CP-2 as a function of pretest
distance x from the plate center along y = 0 from mechanically-scribed
upper-surface grid measurements. Also included are permanente-elongation
data from strain gage measurements (2]. Permanent relative elongation
estimates from each of the two present calculations are shown alse on
Fig. 32c.
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A atudy of the transient atrain predictiona for tha EL~8H cana

indicated that the atrain at the conter of the amall olomonta in the row

adjacant to y = 0 had aﬂmantiallg reachad tho final state by about 300

useay in fact an wable 3 nhows, tho atraina at nodal atatlons for

0% < 1.00 {n romain almost unchanged te tha 600 usoc ond of tho BEL-SH
' caloulation. .Thus, the ralativa olongations at nodan 1 through 5 at
600 jsoe were chosen for tho pormanont gtrain catimato., For gtations
with x > 1.00 in, it is believed that the associatud rolatively coarsac
finite eloment mesh makes the predictod strains unreliable) accordingly,

no permancnt strain estimates from nodal gtrains are made in this region.

However, at the location of upper-surface strain gage 3: (%,y,0) =
(0, 1.50 in, 90 deg), the EL~SH predicted transient relative elongation

as shown in Pig. 29a was used to estimate a permanent y-direction relative
elongation there of 6.5 per cent. strains in the region of evident
numerical deterioration are unreliable and, hence, are not employed in

& making these permanent-strain ostimates. It is seen that these predicted
EL-SH permanent relative elongations tend to be larger than the measured
values.

For the EL-SH-SR calculation which was carried out to only 300 useC,
the permanent relative elongation at this time was used as the "permanent-
} strain estimate" for nodal and element center stations at 0 < % < 1,00 in.
Tncluded also was the permanent relative elongation (at 300 Usec) at the
outer-surface center of element 6. It is seen that these predicted
EL-SH-SR permanent relative elongations are (1) considerably smaller
than from the EL-SH prediction and (2) in reasonably good agreement with
measured values with a tendency of being in the mean, perhaps, gsomewhat

smaller.
1t should be noted that the LLC assumed-displacement elements used

provide displacement gradients u'x, V,x which are constant in the Xx
dircction, and displacement gradients u’y. V,y which are constant in the
y direction. This element iz much too stiff; however, the use of a much
finer mesh of the LLé oloments could improve the prediction, but at the

cost of greatexr storage and computing expense.
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An evaluation was madoe of the prinaipal atrains and assoaiated
diractions (OP) on the upper surxface at the conter of tha "amall” elemonta
(soa Fig. 28Bb) for hoth the J~8H and the EBL~8H-8R calculation. »n
illuatration aof thono finite-strain-pradictod maximum prinaipal strain
ragulta are givon in.Tablo 5. An inspoction of thaose valuog indicaton

that. the most oxtromo values occur at tha conter of the following olomonts
in cach row:

EL-8H EL~-SH=-8R
Row Element Value Element Value
(Pexr Cent) (Paxr Cent)
1 5" 37.2 ' 1 14.3
2 16 40.0 12 13.0
3 27 38.0 23 . 10.6
4 38 30.4 38 9.5
5 57 12.3 56 8.8

Finally, it is of interest to note that the pre-teét and pogt~test
measurements of the spacing of the mechanically lightly-scribed grids
on the upper surface of specimen CP-2 permitted determining that the
permanent relative elongation close to ‘but not exactly at) the location
of incipient rupture (x = 0.65 in and -0.7 <y £ 0.7) was about 26.4
per cent for this hi- or tri-axial strain state whereas in the "uniaxial
coupon static tests", the rupture value of the relative elongation in
the corresponding direction (the transverse, T, direction) averaged about
40 per cent. It would be useful to assess the experimental Cp-2
incipient rupture conditions with respect to an independent strain based
incipient rupture criterion for tkis type of aluminum alloy: 6061-T651
and its attendant mill proparation. This matter is left for future
study.

The computing times required to carry out the finite~strain
Houbolt=-MULE predictions of the transient responses of explosively~
impulsed 6061-1651 aluminum thin panel speciimen CP-2 are summarized in
the following for the EL-SH and the EL-SH--SR calculations. These
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cemptations were performed in daouble precision on the IBM 370/169 at
MIT; At = 1 peec was uged for bulh ealaulations,

Matl. Na. of Total No. of CRU

PO (min
Bohavior Plate FE Unknown Cyclon  Timo 55§=é§3i%5
noP (min)
=
EL~SH 121 661 600 260,49 656.8 & 10 6
BL-SH~8R 12l 661 300 131.88  665.1 x 10

Similar comparisons for othor oxamples in the present study are given in
Subsections 7.,6.8.1 and 7.6.6.

7.5 _ Containment-Ring Responso of T58 Turbine Rotor Tri-Hub Burst Attack
7:5:1 Problem Definition

At the Naval Air Propulsion Center, various aircraft engine rotors
have been zmployed in 8pin chamber tests in which the rotor hag been
caused to fail in various ways whlle rotating at high rpm [208~210). fthe
resulting rotor fragments have impacted containment rings of single~layer
or multi-layer multi-material construction. High speed photography has
been used to observe the ring-fragment impact and interaction from initial
impact until quite late in the response history. Tiansient strain and
permanent strain measurements at various locations have been made on Bome
of the rings. Also, the permanently deformed ring configurations have
been measured.

Selected for analysis hare is NAPTC Test 201 in which a 4130 spin-
cagst steel containment ring of 0.625-in thickness, 1.50-in axial length,
and 15.00~in inside diameter and weighing 12.83 pounds rested horizontally
on smooth support wires and encircled a 758 turbine rotor which was caused
to fail in three equal 120-degree segments at'about 19,859 rpm and to
impact against this containment ring. Given in Table 2 are the weight
and geometric data defining the containmontlring, the rotor burst tragment
properties, and the test conditions for NAPTC Test 201 [208,209].

- .
From ACIPCO killet No.2,
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Bach fragment conalated of A 120~dagree mrctor of the rim with aevon-
teon attachod blades; the distanaeo from tho axin of rotation of the rotor
to thn CG of the fragment wan 2,797 in. At the rotor burat rpm of 19,869,
the trannlational velocity at the €G of cach fragmont wan 14,557,2 in/noc,
Tho romalting total kinotic onorgy of tho throe reloanod fragmontn wan
908,820 in-1lk, of which 476,766 in-lb wao trannlational and 432,054 in-=1lb
wan rotatieaal. Honca, cach fragmony had nominally 158,922 in=1b of
translational and 144,018 in-1lb of rotational !inctic onorgy.

The rooults of an oxtonoilve analysio of thiu tuct and of various
small-gtrain prodictions for the rosponsow of the containment ring and the
attacking fragments arce reported in Ref. 30, For prusent purpoaas,
howevar. only onc of the analysis models considered in Ref. 30 will be used.
In particuldr, each fragment is idcalized as conuilsting of a rigid
"eylindrical disk" of 2,555«in radius having a mass and a mass moment of
inortia matching the actual fragment at its instant of pre-impact release
from the rotor; also, the translation velocity at the €6 of the idealized
fragment and its rotational velocity match those of the actual fragment,
The entire :ing was modeled (as depivted in FPig. 33) by 48 equal-length
4DOF/node ring elements.i Local ring-fragment impact was treated as being
perfectly elastic; hence, a coefficient of restitution e = 1 was used.
Further, it is assumed for present purposes that the impact-interaction
between each fragment and the xing is frictionless.

7.5.2 Comparison of Small-8train vs Finite-Strain Predictions

For the gmall-strain calculations reported in Ref. 30, National Forge

billet static tensiis stress-strain data supplied by the NAPTC [209] were
used to analyze the Test 201 ring siﬁce according to Ref., 209 the Test 201
ring material is almost identical to the National Forge billet. Accoxd~
ingly, those Tu vs Yu statie uniax. a' tensile stress-strain data+ were
approximated.byopiecewiae-linear segments defined by (Tu ,Yu) = (0 psi,

0 in/in)) (80,950 pri, 0.00279); (105,300 psi, 0.0225)7 and (121,000 psi,
0.2000) for use in the mechanical subloyer material model.  The material

*Material rupture occurred at Yu = 52,3 per cent.
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in ansumed to he atrain rato ponsitive with d = 40.4 acc and p = 5 which
in roported to bo applicable [201] to mild steal. Also, stralu~diaplace-
mant rolation Type B and tho CTVM-JET 4B computor program [27) which
employa tho timowine central-differonco operator was used for the small-
strain analysis.

For the finite~strain analyaia+ the basic finito elomont method and

impact-intoraction conditions werc the same as befora. However, straine-
displacement relation Type F was used. Also, the National Forge billet
B (1 +
Eu) vs e: Z 4n (L + Eu)' and fitted by piecewise-linear Begmengs with the
u ,ea) = (0,0), (84 240 psi, 0.002890),
(107,500 psi,°0.0225), (118,008 psi, 0.0600), and (172,700 psi, 0.557).
This FE-modeled ring consists of 196 unknown DOF. Taking the mass

uniaxial static tensilc stress-strain data were recast into L

h* .
following (Tu ,bu) pairs: (T

per unit initial volume po as 0.000733 (lb--secz)/in4 for the 4130 cast steel
ring, it was found that the highest natural frequency of this mathematical
ring model for small-displacement linear-elastic behavior was Wrax =
0.4121789 x 106 rad/sec. To avoid calculation instability, one must select
At < 0.8 (2/@max) = 3.88 Usec; for convenience a At of 2.50 Usec was used.
The central-difference operator is used to solve the vector (unconventional)
form of the equations of motion. Finite element properties are evaluated
numerically with threc spanwise and four depthwise Gaussian stations.

It was found that the deformed ring configuration and fragment
locations in this two~dimensiocnal impact-response problem are very nearly

the same at a given time after initial impact for (a) the small-strain
prediction and (b) the finite~strain prediction. Hence, such comparisons
are omitted here. However, of much greater interest and importance are
the circumferential inner-surface and outer-surface straing Yg. Small-

strain [30], vs finite-strain predictions” of the inner-surface and the

outer-surface Y; strains at the midspan stations of clements 1, 4, 6, 9,

11, and 47 are shown; respectively, in Figs. 34a, 34b, 34c, 34d, 34e, and

4
A finite-strain-modified version of CIVM-JET 4B was employed; this version
is called CIVM-JEY 4C )..4).

+
+l?'or the present finite strain calculation, Lpf = 0.497 in was chosen since
this value was used for the small strain caléufations of Ref. 30.

the "fore plausible" value Leff = 2h = 1,25 in would have been preferred.
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34f1, Shown in #ig, 356 for a timo after initial impact of 1180 unoa+ are
the small-atrain and the finite~gtrain prodictiona of the elrcumfarential
distribution of outex~surface ntrains Yg. .

Hore 1t is scen that thore are distinet difforoncos betwoon tho
finito-stroin prodictions and the amall-ntrain prodictionn at some locationa
and vory littlo difforonce in othora. Gonorally, howevor, largor strains
arc prodictod by the consistont and valid finito-strain formulation-and-
Aolution procodure compared with the formor small-~strain procedure, which
is consistont with the fact that for tensile strains the finite-strain
procedure should predict larger strains than the small-strain procedure if
the same stress-strain data i3 used as input for both procedures.

7.6 _Steel-Sphere-Impacted Narrow Plate
7,6.1 Problem Definition

As reported in Ref. 1, initially-flat narrow 6061-T651 aluminum plates
with both ends ideally clamped have been subjected each to perpendicular
impact at its midwidth-midspan location by a l-inch diameter steel sphere

at various velocities, ranging from 1893 to 3075 in/sec. ‘These narrow
plates weée of nominal 0.1-in thickness, 1.5-in width, and 8.0-in span.
Sphere pre-impact velocities in the range 2485 in/sec to about 2800 in/sec
were found to produce moderate to large permanent deformaticns in the
plates; rupture of the plate was observed for steel sphere velocities
above about 2870 in/sec,

It was noted that except in the near vicinity of the location of
initial impact, the narrow-platé specimens exhibited egssentially 2-D
deflections; for those regions, the 2-D impact-response codes GCIVM-JET 4B
(27} and/or CIVM-JET 5B [29] would appear to provide useful approximate
bredictions. However, significant 3-D deformations are present near the
"impact location"; hence, modeling of the bchavior of the structure by
Plate rather than beam finite clements would appear to permit one to make
more realistic predictions of the actual structural response both near and
far from the initial-impact location. Accordingly, small-strain and
finite~strain calculations were carried out for both (1) 2-D beam modeling
and (2) 3~D plate modeling of the structure.

+This is essentially the time of occurrence of peak straining
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- spherce fragment will be mode

To illustrate thoso prodictionns and thoir comparinon with oxpoerimont,
Harraw-plate spocimen CB-18 of Rof., 1 will bo analyzoed, This plate wan
of 0,097-in thicknona, 1.498~in width, and 8,002-in apan, A l-in diamotor
ataol nphoro woighing 66.810 gramn with a pro-impact valocity of 2794 in/
soc impactod apocimen CB-18 approximately 0.06-in from the plate~-contor
location. A schematic of the modol showing global coordinato directions
is givon in Fig. 30. In this tost transiont relative olongation data
wera measured succossfully with strain gages along the y-axis (midwidth
location) at y = t 0.6=in (upper. surface), y = 1.2-in {upper surface),

y = =1.5-in (upper surface), and Yy = l.5=in (upper and lower surfaces) .

For both the small-strain and tho finite-strain calculations, the
uniaxial static stress-strain data for this material were taken to be the
same as deséribed in Ref. 30 and in Subscction 7.2.3.2; namely, (Tu ,e:) =
(0,0), (44,200 psi, 0.00442 in/in), (49,200 psi, 0.075 in/in), and °©
(76,400 psi, 0.615 in/in) for use in the mechanical sublayer material

model. For this 6061-165]1 material, the rupture level of Green strain Yu

st specimens was found (2] to be about 105 percent.

Finally, since both small-strain and finite-gtrain predictions were
reported in Ref. 30 for the impact-

for uniaxial static te

induced transient response of specimen

CB-18 -~ and those calculations were made for 2-D beam element modeling and

for EL-SH behavior only == the predic¢tions to be pPresented in this report
will include mainly BI,

~SH behavior for the material of harrow-plate
specimen CB-18,

First, in Subuection 7.6.2, 2-D beam-element and idealigzed 2-p impact=-

interaction modeling and response will be discussed.  Next in Subsection

7.6.3, the harrow-plate spec.aen (CB-18) will be modoled with plate

elements to accommodate 3-D structural response;  also, the éttacking solid-

led faithfully as a spherical fragmont (rathoy
than as an “equivalent ¢ylindrical fragment ay in tho 2=D modeling case).
7.6.2 Modeling by Beam Finite Elements

In modeling the cB-18 harrow plate by beam elements, the structural

fesponse is being approximated as leing gtrictly two-dimensional (2-b).
Honee, consistent with this, the

attacking fragment is dlso idealized as a

2-D fragment; that is, the fragment rather than being a l-inch diamoter
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ftphare ia idealizod and vinualizod concoptually as o solid non~deformable
eylindrical fragmont of l-inch diameter and axtending ac ona the ontire
width of tho narrow-plata apoecimon. Thin idealiacd fragmont in defined to
have the same total mass as tho actual fragment.

The entiro span of narrow~plato spocimen CR-18 has boen modelod by 43
oqual-longth (0,186=in) ' cubic-cubic assumed~digplacoment beam cloments with
ANOF/nodo -- based upon oxtonsive studics reported in Ref. 30.  The mass per
unit initial volume po of the CB-18 material is assumed to be 0.253B4 x 10-3
(1b-secz)/1n4. As a result, the finite=-clement model consists of 157
unknown DOF and its maximum linear-system frequency is Wax = 0.2326 x lO7
rad/sec. Accordingly, since the CIVM-JET 4B computer program (and
modified versions thereof) utilize the timewise central-difference operator,
one must choose a time increment size At of about 0.8 (2/wmax) = 0,688 lisec
or less to avoid calculation instability; for convenience a At of 0.50
Usec was employed and provided converged results. Finally, at each impact
between the fragment and the structure, the structure is assumed to receive

an impact-imparted momentum increment (see Ref. 27) on a spanwige length of

At(E/f_Jo)l/2 = 0.0993-in on either side of the station of impact; since
initial perpendicular impact occurred at the midspan station of the center
element, this criterion resulted (with the resident computer program logic)
in the imparting of velocity increments to the two end nodes of that
element. Each of these assembled-structure nodes "account for mass" from
half of the center element and half of the next element; hence, the

effective region of impact influence is one full element length or 0.186~in

on each side of the station of impact. This effective region is consistent
with that estimated in Ref. 30 on stress-wave propagation arguments as
approximately 2h = 2 (0.097) = 0.194 inch.

For the small-strain and the finite-strain calculation, strain-
displacement relation Type B (Eq. 4.90) and Type F (Eq. 4.146), respectively,
was omploycad. In both cases, three spanwise and four depthwise Gaussian
stations were used for the volume numerical integration for the finite-
element property matrices. Also, a diagonhalized (lumped) mass matrix for

cach element was used.
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Thoso calculations and modeling apply to bath the small-strain and
the finite~atrain pradictions, Accordingly, those 2-D predictiong can not
mateh tho oxporimental rosults noar tho impact atation whore distinet 3~D
structural response ocecurred, Howover, olsowhoro (oxcept poasibly necar
tho clamped onds), one can oxpoct to find reasonablo agreemont. botwoan
these predictions and eoxporimont.

7.6.3 Modeling by Plate Finite Blements

To simulate the actual physical situation of the CB-18 steel-gphere-
impacted narrow plate morc faithfully -- to accommodate the 3-D type of
structural or plate deformations which arc dominant -~ gpecimen CB-18 was
modeled with plate finite clements of the LLC type with 6DOF/node. For
computational thrift and economy, only one quarter of specimen CB-18 was
modeled by flat-plate elements; symmetry conditions were imposed along
both the midspan and the midwidth station: {x,y) = (0,0), and ideally~
clamped conditions were imposed at the clamped end. Initial perpendicular
impact of a l-inch diameter non-deformable spherical fragment was assumed

tc occur at (x,y) = (0,0) -~ rather than about 0.06-in from this point as

seen in the éB—le experiment. The element mesh of flat~plate elements
employed was the same as reported earlier ([210] for the small-strain calcu-
lation; namely, the quarter plate was represented by two rows of 11 span-
wise flat plate elements each of 0.375-in width and each with spanwise
lengths as depicted in Fig. 37a; later calculations used the "refined"
finite element mesh shown in Pig. 37b. The flat plate elements used werc
the same LLC elements as described in Subsection 7.2.3.1.

For the FE plate modeling of specimen CB-18, the small-strain calcu-
lations employed the von Karman strain-displacement relations (Egs. 5.118 =
5.123 and the attendant following paragraph) while the finlto-strain
caleulation utilized the more comprehensive strain-displacement relations
given in Eqs. 5.118 - 5,123 (without the terms involving the second order
derivatives of the in-plane displacements u and v, since the assumed °
displacement ficld for the LLC finite-clement is bilinear in u and V). In

both cases, three Gaussian stations in cach spanwise dircction and four
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depthwise Gaussian atations wore used in ocach flat-plate clement to
evaluate, by volume numerical integration, tho proportian of ocach element.
Also, a diagonalized (lumped) mass matrix was usod for cach element.,

The maximum lincar-system froquency wmax of tho Fig. 37a finitoe~
cloement model was found to be 0.2372 x 10° rad/sec. Thus, if one were to
tomputo the impact-induccd transient response by using the timewisc contrale-
difference operator, a At of about 0.8 (2/wmax) = 0,67 uscc would be
required to avoid calculation instability. However, these predictions
were carried out by using the CIVM-PLATE program in which the Houbolt
operator is employed. Accordingly, a convenient At of 1.0 lsec was
employed which earlier experience and discussion indicated would provide
"reliable converged predictions®.

At each impact between the fragment and the plate, it is assumed that
momentum is transferred by a perfectly-elastic collision to a plate region
(from the fragment) defined by a circle of radius Loes = At[%oll/2 =
0.1985=-in centered at the impact location; other more rational selections

for Le could be employed, but this one is used for present illustrative

££
purposes.’

7.6.4 Comparison of Beam-Model vs. Plate-Model Predictions

First, it is useful to compare small-strain vs. finite-strain predic-
tions for the 2-D idealization {with beam finite elements) of the cB~18
impacted narrow plate. Next, similar comparisons will be made for the
case in which the proper 3-D structural response is accommodated by
plate~type fianite elements and a spherical impacting fragment of the
proper size and shape. Finally, it is illuminating to compare 2-D vs.

3-b predictions only for the consistently formulated and implemented
finito-strain 1nalysis.
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7.6.4.1 Strain Comparisons

y 8ince primary interost centors on tha predicted and measured atrains,

comparisons of longitudinal Green strain Yg are made in tho following

P indicated figures at the spocimen midwidth location at various spanwiso
locations on the upper (non-impacted) or lower (impacted) surface:

Location of Y; Strain Data

Prediction
Upper Lower

X

X

Exéeriment
ppeY  Lower
x -
X -
X -
- X
P -
- p
P -
- p

| FE Model St:;i;f?i;vpe
Figure |Beam. Plate Small- Finite | Station
At At (in)
0.5 1.0
Usec \sec
38a X - X X 0
38b X - X X
38¢c X - X X - 0.3
38d X - X X 0.3
38e X - X X 0.6
38f X - X X 1.20
38g X - X X 1.50
38h X - X X 1.50
38i X - X X 3.00
38j X - X X 3.00
38k X - X X 3.70
382 X - X X 3.70
38m X - X X 4.00
38n X - X X 4.00
P denotes that only permanent strain information was obtgined.
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Location y = 0 in (at the midapan of the boam) colncidon with the midapan
Gaunsian intogration atation of a finite elemont, Iocation y = t 4.0 in
1a at the clamped ond of tha beam and coincides with a finito oloment node
at which clamped-ond conditionn have boon imposod {namoly that the displace-
monts v and w and tha latoral~displacemont gradiont ¢ are zoro). All othor
stations occur at locations intormediata hotwoen tho end and tho midspan
of a finite eloment, and do not coincide with spanwisc Gaussian integra-
tion points. Also, moasured permanent strains arc indicated on these
figures where available. ‘

These figures show that the strains Yg predicted (a) by the current
"finite-gtrain procedure" and (b) by the former "small-strain procedurec"
agree reasonably well with each other and/or with experiment at all of
these stations except y = 0, 3.7, and 4.0 in. Large strains do occur at
both y = 0 and y = 4.0 in; also, the occurrence of large strains at
Y = 4.0-in exerts a distinct and pronounced effect at "nearby station®
Y = 3.7 in (located in the element adjacent to the finite element at which
the clamped end condition has been imposed). Although the calculations
have been carried out for only 900 microseconds, it appears that the
current "finite strain procedure" would provide better permanent strain
comparisons with measurements at all spanwise stations (if carried out
long enough in time) than by the former “small-strain procedure",

Figure 39 shows that the time histories of the midspan lateral
deflection w from these two predictions for beam CB-18 are very close to

each other. Finally, the time histories of the support reactions M

S
x' Tz’

and Fy at station x = 4.0 in are shown in Figs. 40a, 40b, and 40¢,
respectively, for these two predictions. fThe agreement between these

two predictions is very good for the longitudinal support reaction force
Fy (agsociated with the membrane strains), but one observes some differ-
ences in the transverse support reaction (shear) force Sz and large
differences for the support reaction bending momecnt Mx’ These differences
are caused by the fact that the expressions of CIVM-JET 4B for the bending
part of the strain are valid only for small rotations and small strains,

whilé the finite strain version of the program does not have this
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restriction, Of courso, tha support reaction banding moment. Mx is most
influencod by the bending part of the atrain-displacement relations,
Tha computing time requirad to analyze stool-aphore~impactod beam
CB~18 hy tho two procedures, under othorxrwiso~identical conditions, is
conveniontly displayed in tho following tabulation (for a time stop of

0.50 microsccond; all runs worc conducted on an IBM 370/168 computor):

No. of No. of Gaussian Total No.
Formulation Beam FE Sta. per Elem, of Unknown
Spanwise Depth DOF
Small Strain 43 3 4 170
Finite Strain 43 3 4 170
Strain-Displ. Mass Nc. of CPU CPU(min)
Formulation Relation Matrix Cycles Time (DOF) (Cycles)
Type (min)
small Strain B DM 2250 5,11 13.4 x 10°°
Finite Strain F DM 1850  6.81 21.7 x 10°°

Here again, the finite~-strain-formulation calculations require more CPU
time per (DOF) (cycle) than the small-strain formulation. The smaller CPU
time per (DOF) (cycle) noted here for steel-sphere-impacted narrow plate
specimen CB-18 compared with explosively-impulsed narrow plate specimen
CB-4 arises from the use in the latter of the more-heavily populated
consistent mass matrices vs. diagonalized mass matrices for the CB-18
calculations, and the use of 3 rather than 4 spanwise Gaussian stations
for the CB-18 calculations.

It appears that (a) the use of the proper (second Piola-Kirchhoff)
stress tensor in the constitutive equations by making proper transforma=
tions of certain stress and strain measures, (b) the use of Tu vs. aa.for
representing the monotonic strain-hardenihg antisymmetric (in tension and
compression) mechanical bchavior of the material by the mechanical

sublayer model, and (c¢) the use of a finite-strain strain-displacement
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equation, and (d) the inclusion of thickness changos provida significantly
1mpro§qd prodictions of translent strains (the moat important and senaitive
quantitiaa),

' Next, considor the plato-model prodictions) sce Fig, 41:

7

FE Model Analysis Location of Y§ Strain Data Along
Stgain Typo the Plate Midwidth Station
Figurc | Beam Plate | Small Finite | station| Prodiction Experimant
0.25 1.0 y (in) Upper Lower| Upper Lower
Hsee usac
4la - X X X 0 X - - -
41b - X X X 0 - X - -
4lc - X X X 3.40 X - - -
414 - X X X 3.70 X - p* -
4le - X X X 3.70 - X - P
41£ - X X. X 4.00 X - - -
41g - X X X 4.00 - X - -

At the plate-center location (x,y) = (0,0) where initial impact occurs,

it is seen that the transient strain provided by the consistent finite-

strain predicﬁion is substantially larger. than that given by the (now

unreliable) small-strain calculation+. A similar result is observed at

station (x,y) = (0, 3.70 in) and (0, 4.00 in) which are, respectively,

near and at the clamped end.

However, at station (x,y) = (0,3.40 in)

which is more "remote" from the clamped end, one observes a much smaller

level of impact-induced structural-response strain; a lesser but still

significant difference exists between the strains predicted'by these two

schemes.

7.6.4.2 Deflection Comparisons

Since only permanent deflection data (no transient deflections) were

measured in the €B-18 experiment, only permanent deflections can be used

*
Only permanent strain was recorded at this location.

Note that the static-test uniaxial rupture level for Y for this material
[2] is about 1.05 or 105 per cent.

334




to comparo predictions with experimont,

Howaver, it in inatructive also

to compare varioun trannient displacomont predictions with cach other,

Accordingly, such dofloction comparinonn are shown on figuroa indicatnd
in the following tabulation:

Expt. Porm.
Analysis Strosg Prodicted Dinpl.

PE Modol Stroin Typo | Strain w=Diapl, Location
Figurc | Beam Plate [Small Finito| Approx. |Location (x,y) (x,y), in
42a X - X - EL~SH y = 1,00 Avg. at

and y = 1,00
EL~SH=SR
42b X - X X BEL-SH X =0 -
42¢ - X X X EL-SH (0,0) (0,0)
424 - X X - EL-SH At X=0 Along x = 0
840 usec
vs. y x=0.375
Along x=0,75
(Estimated
Permanent)
42e - X - X EL-SH At %x=0 Along x = 0
840 Usec
vs. y =0, 375
Along x=0,75
(Bstimated
Permanhent)
42£ - X X X EL-SH Along x = 0 Along x = 0

at t = 840 usec

In Fig. 42a it is scen that tho FE beam model small-strain prediction

for the transicnt w-digplacoment at "2-D location y = 1.00 in" exhibits a

larger peak for the EL-SH than for the EL-SH~SR representation of the

material behavior; it is seen also that the BL-SH-SR proediction for the
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Pexmanent displacament at thig etation ig in ¢
axporimentally-~chrerved rasult,

he better agroement with the

Finitoa~natrain predictions vaorsus amalleatrain prodic
tranalont 2-p we=displacomont for tha boam~nlement modalod
compared at the midapan "impact ntation" in Fig. 42b, fTha
prodictions comparo woll with cach other in overall tranaiont rasponno,

in pecak rasponso, and in tho pormanont-deformation ostimata,
a3 noted oarlicr, tho prodicted transiont g
different for the small~gtrain vg,

important regions which are nhear mi

tlonn for the
strueturn aro
a0 two midopan

Howavar,
traine are significantly
the finite-strain caleulation at the
aspan and near the ¢lamped end,

For the more-realistic flat plate finite-eloment modeling of the
CB-18 structure, the transient 3-p Houbolt~MULE w~displacement predictions

at the plate-center location (x,y) = (0,0) for the small-strain vs. the

finite strain calculation are shown in Flg. 42¢ for BL-sH material behavior.

ch othar but a iarqer peak and
ite-strain calculation.

Again these predictiong compare wall with ea
bPermanent deflection ig predicted by the fin

The 3-D character of the predicted w-di
plate-elément model calculation ig shown in rig, 424.
Msec, the w-displacement is shown as a Functi

Here at t = 840

on of spanwise distance from
midspan to the clamped end along the node lines at the Plate midwid:h
(centerline) station, half-way to the free ed

ge, and along the free edge.
Beyond about station Y = 1.50 in, the w-displacement ig seen to be nearly

identical along these three widthwise stations, and thus indicates
essentially 2-p displacement behavior in this region of the
Closer to the plate-center impact location,
of the w-displacement is clearly evident.

structure.
however, the 3-p character

A similar "displacement profile"
finite-strain plate-element-model cal

plot is shown in Fig. 42e for the

culation at t = gqq Usec. Both
qualitatively and quantitatively these profiles are similar to ¢

in Fig. 42d, Finally, the FE plate model small-strain vs. the finite~

strain prediction for w is compared only along the midwidth location in

Flg. 42f. The more realistic finite strain prediction is seen to exhibit

a slightly more "bulgy" profile than the small-strain pPrediction. ag
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hoted earljeor, hawever, the atrain pradictions are aignificantly diffaront

batwoon the finito-atrain and tha amall-atrain caleulation, with the
formor boing in much Lattey agroomont with axporimental moasurements.

7.6.5 Finito-Strain Prodiationn for a_Rofinad ldomont- Mooh Modol
8ince tho finito olomont modoling ghown in Pigns 37a and 37b for ona
quarter of narraw-plato npoeimoen CB=-18 wag

rothor coarno and thoreby
limitod the rosponso dotail whicﬁ could be accomnodatod, Lt wan doeidad
to employ a "rofinod FB mosh" of LLC plate olamcnks to roprosent the
qQuartor plate as dopicted in Figo. 37¢ and 37d. In thig rofined=-mesh
modol, elements of 0, l-in by 0.1-in arc used near the "initial impact
station" (x,y) = (0,0); also nvar the clamped end (y = 4.00 in), cwe rows
of 0.l-in spanwisu length LLC eloments are employed.
are those in which pronounced 3-D response effacty and
gradients are to be expected.

These two regions
pronounced gtrain

The refined-mesh model shown in Fig. 37¢ consists of 75 LLC quadri -
lateral plate elements. The assembled structuye has 96 nodes with

6 DOF/Node, giving a total of 57 DOF. Symmetry conditions are invoked

along the two sides at x = 0 and y = 0, while clamping is imposcd along

Y = 4.00 in; accordingly, the restrained DOF are: 5 from double symmetry

at node 1, 3 each at 19 single-symmetry nodes, and 6 at 6 clamped-end

nodes. Hente, the unknown DOF = 576-5—(3)(19)—6(6) = 478, PFor these

calculations a diagonalized (lumped) mass model was used. ‘Thug, the
maximum linear-system frequency of the Fig. 37c¢ fing

te-element model wasg
found to be 13.19775 x 10° rad/sec.

1f one were to compute the impact=-
induced transient response by using the timewise central)-~differonce

operator, a At of about 0.8 (2/bhax) = 0.12 lUgee would be required to

avoid calculation instability. However, the present predictions were

carried out by using the CIVM-PLATE program in whiech the Houbolt ope;

vator
is employed. Accordingly, a convenient At of 1.0 psec was employed, which

earlier computational experience with Houbolt-MULE had indicated would
provide “converged predictiong",

At cach impact between the fragment and the plute, it is assumed that
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momentum ia tranaforred by a parfectly-elastic collislon to a plato ragion
(from the fragm:nt) daefined by a airole of radius meﬂ cantorad at the
impact lacation. IFrom stress-wave Propagation argumonts glvon in Suhaoc-
tion 2.2 aof Ref. 30, Lnff han bean chonan to be twico the thicknonn h of
narrow-plato opocimon CB-18; [hfﬁ s 2(,007) s 0,134 in,

For this rofinod=monh FR modol, all other finlta strain formulation-
and-culeulation provedurog, utraip-dioplacemont volations, und othor data
wore tho name as for the eearso-mush £inito-olomont Plate modol computas
tion.

Shown in Fig. 43 arc tho coargse-mach va. rafined-mesh plate=-oloment
finite-vtrain EL-SH prodictions of the plata~centor, (x,y) = (0,0),
displacomont w of gtoecl-osphorae=-impacted 6061=T651 alieinum narrow=plate
specimen CB-18. As expected, the refined-mosh model wxhibito a largus
puak deflection latur in time comparecd with the coarse-mesh model prodic-
tion:

FE Plate Modol Peak w(in) Time at Peak (lsee)
Coarse Mesh 0.970 690

Refined Mesh 0.987 750

However, as noted earlier, transient (or permanent) digplacements are not
a sensitive indicator of the accuracy and/or reliability of the predic-
tion. Strains on the other hand are of primary interest and doncern, and
provide a much more sensitive and meaningful indication of prediction
adequacy. Hence, strain predictions are examined next.

Compared in Figs. 44a through 440 are coarse-mesh vs. refined-mesh
blate-element-model finite-strain predictions of transient longitudinal
Green (Lagrangian) strain Yg on the surface at various spanwise stations
of steel-sphere-impacted 6061-P651 aluminum harrow-plate specimen Cm-18,
Experimental trahsient and/or permanent strains, as appropriate and avail-
able, are included zlgo. Summarized in the following are the figure
humber and associated station/surface at which these Yg strains are
compared: |
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Plate Location of 72 Straln Data Along the
Piguro PE Madel Plateo Midwidtﬁ (x=0) Station

Coarse Rofinod  Station Pradiction Expoximant
y (in) Uppor Lowor Uppor Lowor

44a X X 0 X - - -
44b X X 0 - X - -
44c X X 0,30 X - - -
444 X X 0.30 - X - -
44c X X 0.60 X - X -
44¢ X X 0.60 - X - -
44g X X 1.20 X - X -
44h X X 1.50 X - X -
44i X X 1.50 - X - X
443 X X 3.00 X - 4l -
44k X X 3.00 - X - p*
448 X X 3.70 X - p* -
44m X X 3.70 - X - p*
44n X X 4.00 X - - -
440 X X 4.00 - X - -

*Only permanent strain was recorded at this location.

Figure 44 shows that at the upper (non-impacted) suxface at the
initial-impact station (x,y) = (0,0), the refined-mesh plate-element
model predicts a peak Yg strain of about 59.7 per cent at time after
initial impact TAII = 750 usec, while the corresponding coarse-mesh model
predicts a peak Yg strain of about 35.6 per cent at TA1I = 690 usec. A
similar disparity is seen (Fig. 44b) at the lower surface at station
(x,¥) = (0,0), but the refined-mesh model predicts a compressive strain
peak of much smaller magnitude than that from the coarse-mesh model.
Hence, the refined-mesh model predicts larger membranc strains at
(x,¥) = (0,0).

At station (x,y) = (0, 0.30 in), the more accurate refined-mesh model
prediction of Yi differs significantly from the coarse-mesh model
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prodiction, as Piga, 44c and 444 shaw. Evidence of "xeversed curvaturae"
is present -~ the lowor surface oxperioncen a largor peak atrain than
doos tha- upper surface, and hoth aro tenalle. '

At atation (x,y) = (0, 0,60 in) which ims more remote from tha
faitial=impact station, the predictod poak Y; (longitudinal) strains aro
of tonnilo charactor on both surfacos (seo Figs. 44c and 44f£),; tho poak
Y§ atrain for thoe refined=mesh modol va. the coarsc~mesh model iz about
9.0 and 17.5 por cent highor for, rospectively, the upper and the lower
surface, whore the refined-mesh result is used as a refercnce. For the
uppor surface (Fi¢ 44e), tho experimental transient strain trace agrees
reasonably well with both predictions until about 500 microseconds when
the experimental strain trace was lost. On the upper surface, permanent
strain measurements of 2.24 and 2.36 per cent were obtained at respective
stations (0, +0.60 in) and (0, -0.60 in); it is evident that the "refined-
mesh prediction" of the permanent strain would be close to these values.

It should be noted, however, that for computational ~fficiency and
economy reasons, only one quarter of narrow-plate specimen CB-.8 was
modeled.by finite elements. Furthermore, it was assumed in these calcula-
tions that initial impact occurred at station (x,y) = (0,0); in the actual
experiment, however, initial impact occurred at about (x,y) = (+.057, -.019
in). Therefore, the locations of strain gages relative to the actual
impact location are different from those wich respect to the "assumed"
initial-impact location (x,y) = (0,0). Therefore, the computed and the
measured strains compared here are actually at somewhat different distances
from the initial impact point. Accordingly, this effect should be respons-
ible in part for the discrepancies between measured and predicted strains,
especially at those stations near the initial impact location. At more
distant stations, however, this factor assumes a lesser to negligible
importance,

On the upper surface at station (%,y) = (0, 1.20 in), rig. 44g shows
that the peak Y; strain from the coarse-mesh calculation is about 36 per
cent smaller than that for the refined-mesh prediction (3.13 per cent).
From 0 to 200 usec, the measured strain trace agrees very well with both
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praedictions; from 300 to 475 jmoe, it agrees botter with tho coarac-mesh
rosult; and boyond about 475 psec, tho measured trannlont strain ig in
bottor agreement with the refinod-mosh prodiction. The measured pormanont
atrain agrons reasonably woll (and bost) with tha coarse-menh calculation.
Although the rofinod-mosh prodiction was carried out to only 800 jisoe, it
appoars that tho "indicated" pormancnt strain ﬁould bo largor than
moasured; this offoct is not anoxpocted at this particular (less important)
location sinco a rather large. (0.50~-in long) finite element was used and
contains that (x,y) = (0, 1.20 in) station -~ the usc of smaller elements
to span this region would likely improve the prediction in this region of
relatively small strains,

More distant from the initial-impact location is station
(x,y) = (0, 1.50 iﬁ) where Yi predictions and measurements are shown in
Figs. 44h and 441, respectively, for tne upper and the lower surface. At
this location, the coarse-mesh calculation indicates larger peak Y§
strains on both surfaces than given by the refined-mesh prediction; in
both cases the peak values are less than 2.5 per cent. The measured
transient Yg strain oh the. upper surface is largér than either prediction,
but at the lower surface the measured information is in reasonably good
agreement with predictions. Finally, the measured permanent strain at
(1) upper-surface stations (x,y) = (0, 1.50 in) and (%,y) = (0, -1.50 in)
was 1.48 and 1.13 per ceni, respactively and (2) the lower-surface
stations (x,y) = (0, 1.50 in) and (x,y) = (0, -1.50 in) was 1.31 and 1.27
per cent, respectively; the refined-mesh prediction is seen to be in good
agreement with those measurements.

Coargse-mesh and refined-mesh predictions for the transient Yg strain
at station (x,y) = (0, 3.00 in) are shown in Figs. 443 and 44k, respec-
tively, for the upper and the lower surface. Here the peak strains are
small, and the coarse-mesh calculation predicts somewhat larger peak
values than does the refined-mesh computation. On the upper surface-the
refined-mesh prediction indicates the closer agreement with the measured
strain.

0f yreater importance and interest are the strains at stations close

to the clamped end. Here significant spatial strain gradients and strain
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valuas themselvos must oceur. Hence, stationa (x,y) = (0, 3,70 in) and
(x,y) = (0, 4.00 in) are of particular interest. Coarse~mesh and fina~
mosh transient Yg atrain predictions are shown in Figa. 442 and 44m for
atation (x,y) = (0, 3.70 in) and in Figs. 44n and 440 for atation

(x,y) = (0, 4.00 in) at, respoctively, the appor and the lowor surfaco
for ecach station. Since, a finor cloment mosh is used in this rogion
for the refinod-mesh modol comparcd with tho coarse=mesh model, tho
former is expected to provide substantially more rcliable predictions,
especially at the clamped end (x,y) = (0, 4.00 in).

On both the upper and the lower surface at station
(x,y) = (0, 3.70 in), the peak strains predicted by the refined-model
calculation are much smaller than €rom the coarse-mesh prediction. The
measured permanent strains on the (1) upper surface at (x,y) = (0, 3.70 in)
and (x,y) = (0, =3.70 in) were 0,56 and 0.68 per cent, respectively, and
(2) lower surface at (x,y) = (0, 3.70 in) and (x,y) = (O, =3,70 in) were
1.07 and 0.47 per cent, respectively. It is seen t¥at the refined-mesh
predictions are in close agreement with these measured permanent strains.

At the clamped-end station (x,y) = (0, 4.00 in), very severe bending
strains occur. As Fig. 44n shows, the upper surface at this station
experiences sequential transient compression, tension, compression, and
finally tension as the membrane effect overwhelms the bending contribution
-~ according to the (more reliable) refined-mesh prediction. The coarse-
mesh prediction shows a similar sequence except that the final state is
one of compression rather than the tension predicted by the refined-mesh
calculation.

On the lower surface at (x,y) = (0, 4.00 in), very large tension
strains Yg are expected from the additive effect of membrane and severe
bending; this is seen to be the case from the predictions shown in
Fig. 44o. Note that the . coarse-mesh calculation predicts a peak tensile
YZ strain of 11,5 per cent at this location while ;he more reliable
refined-mesh computation predicts a peak tensile Y, gtrain of 22.6 per
cent. Although no strain measurements were made at the lower surface at
(x,y) = (0, 4.0 in), it is evident from visual inspection of the
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spocimons that the pammaneont straing tharao .(at the clamped-and lower
surfaco) aro larga. Nonhomogeneous deformation is present with an orango-
peal kind of surface; this kind of surface was noticed in atat.ic uniaxial
tensile tosts of the samo batch of 6061~T65) aluminum used for tho cB-18
plato spocimen fo% tensile strains of about 18 por cont or more. Recall
that the initial-impact station, the rofined-mesh calculation predicts
a poak tongile Yg strain of 59.7 per cent. Hence, it is apparaont that
the 3~D structural rcsponse behavior accommodatod by the plateo=-finite-
element model would result in predicting incipient rupture of the presont
type of steel-gphere-impacted 6061-T651 aluminum narrow plate to occur
at the midspan initial-impact station rather than at the clamped end as
predicted by the 2-D model (compare Figs. 38a and 38n at stations y = 0
and 4.00 in, respectively). The experimental specimen CB-16 did break [1]
near the point of impact rather than at the clamped end, when subjected
to steel-sphere impact with a velocity slightly higher than than the cB-18
velocity.

One point that deserves further investigation is the "exact distxibu-
tion" of strain in the impact region. While the computer predictions

" indicate that the maximum strain occurs at the initial~impact point (the

midpoint of the plate), the actual experiments show that the maximum
strain takes place at about 0.2 in Ffrom that location. One reason for
this discrepancy might be the presence of transverse shear straing at
that location (the computer predictions do not take this type of straining
into account). Another reason may be that the local impact-interaction
details between the steel sphere and the plate involve contact and stress
wave propagation details that the present impact procedure does not take
into account; instead a high simplified-interaction model is used -- as
described, for example, in Refs. 23, 27, and 30.

The computing time required to carry out the finite-strain Houbolt-

MULE predictions of tle transient responses of steel-sphere-impacted.
6061-T651 aluminum narrow-plate specimen GB-18 on the IBM 370/168 in
double precision at MIT are summarized in the following for both the

coarse-mesh and the refined-mesh finite elemcnt model; At = 1 Usec was
us~d in both cases:
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FE Modal  No, of Total  No. of  Cpy CPU(min)
Plate FE  Unknown Cyclen Time DOF Cyales
pOR (min)
Coarse -G
Mesh 22 157 900 65.4 462.8 x 10
Rofined -G
b Mogh 75 478 800 202.6 529.,8 x 10

As pointed out in Subsection 7.6.4.1, the computing time in terms of CBU

time per (DOF) (cycle) for the finite-strain prediction of specimen
CB-18's response when modeled by (2-D) beam elements was 21.7 x 10-6.
t Thus, it is seen that the plate-element finite-strain 3~D structural

; response is about 24 times "more expensive" than the simpler,
‘ reliable 2-D model and calculation.
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SECTION 8

SUMMARY AND CONCLUSTONS

8.1 Summary
Tha proscnt study io dovotod principally to developing and validating

a method of analysis for thin structures (beams, rings, plates, and sholls)
that incorporatas finite-strain, oclastic-plastic, gtrain-hardening, time-

dependent material behavior implemented with respect to a fixed reference
configuration (total Lagrangian formulation) and which is consistently valid
for finite strains and finite rotations. As a result, accurate finite-element
predictions of transient strains and large transient deformations of beams,
rings, and plates subjected to Known forcing functions have been demonstrated
(see Section 7). A practical problem to which the present method of analysis
Has been applied is that of structural (containment) ring response to engine
rotor-fragment impact.

The theory is formulated systematically in a body-fixed system of
convected coordinates with materially-embedded vectors that deform in common
with the continuum, and in the traditional space-fixed system of variable
coordinates and constant vectors used by most books on ¢ontinuum mechanics.
Tensors are considered as linear vector functions, and use is made of the
dyadic representation (instead of simply considering tensors as a collection
of components), because these conoise tools are helpful to clarify the
physical laws under which materials deform. The kinematics of a deformable
continuum is treated in considerable detail, carefully defining precisely
all quantities necessary for the analysis.

The finite-strain plasticity theoxy of Hill is extended to include very
complex material behavior (1ike elastic-plastic unloading, the Bauschingnrx
effect, and hysteresis) by means of the "mechanical sublayer method" ploneered
by Prandtl, Timoshenko, and Duwez. Strain-hardening and complex strain-rate
dependence of the material are easily accormodated by this model. This"
plasticity theory is referred to quantities associated with a fixed referencc
configuration by means of proper transformations between the tensors associated

with the present and with the reference configuration.
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Strain~displacomont equations which are valid for finite strains and
rotations and which inelude thinning effects are darived for beams, rings,
plates, and shells.,

Tho finito olemont concopt is usod in conjunctios with tho Principlo
of Virtual Work and D'Alembart's Principle to obtain tho equations of motion
of a gonecral solid continuum which is pormittod to undorgo arbitrarily largo
rotations and strains. A new constant stiffnoss formulation of tho finito
clement cquations of motion is dovoloped. This now formulation ia moroe
cfficient computationally and better conditioned numerically than the
conventional pseudo-force formulation. Furthermore, this new formulation
is valid for finite-strain behavior of any kind of material, while the
conventional pseudo-force formulation is valid only for small-strain elastic-
plastic materials.

The resulting equations of motiun consist of a finite-size system of
second order ordinary (coupled) nonlinear differential equations with the
unknowns to be determined being the values of the degrees of freedom
(displacements and displacement gradients) at the nodes of the finite-element
assemblage‘which represents the continuum. This set of equations is solved
stepwise in time by using a numerical integration scheme with an appropriate
finite~difference time operator.

An assessment of this method of analysis is made by means of a sequence
of problems for beam, ring, and plate structures which are subjected to initial
impulsive loading or to impact by rigid fragments. The present finite-strain
predictions are compared with reliable experimental data and with small-strain-
theory predictions. The central-difference operator and the Houbolt finite-
difference operator are used for the timewise calculations. Either linear
extrapolation of the nonlinear internal forc¢es or iteration of the nonlinear
equations of motion is employed when the (implicit) Houbolt operator is used.

The predictions of the finite-element computer programs that incorporate
the findte-utrain elastic-plastic time-dependent theory developed are compared
with experimental data. fThe missiles and targets introduced in these experi-
ments (steel-sphere missile, ¢ .wped-end thin beams, and thin square panels

with all four =ides ideally clamped) pose well-defined configurations and
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conditions far which tranaient, ntrain, permanont atrain, and permanont

defloction data of high quality have boon ohtained,
There test conditions have ineluded

-mpulse loading ox fragment impact
with volocitios sufficiont to produc

@ rasponnon of various sovarition up to
and including throeshold rupture conditionn; efton finita ntrald

na well beyond
tha "omall atrain® ¥ango wore observed,

Prom theoe comparisons it appoara that the uvsa of tho prosont. finite-
strain clastic-plastic formulation can provide significantly improved predic~

tions of transiont strains (tho most important and sensitive quantitios) in

thin 2-D and 3~D structures which are subjected to geverc impulse or impact

loads, compared with tho previously~-cmployed small-strain procedure.

8.2 Conclusions

On the basis of the present study, the following conclusions may
be stated;

(1) For general application, finite-strain theory rather than small-
strain theory should be uged in nonlinear analysis of transient
response by computer methods since the former is valid for all

levels of strain whereas the latter is valid for only a poorly-
defined small level of strain,

\2) Large differences between the finite-strain theory results and
the small-strain theory results are found in the cases studied
herein for (a) strains of the order of about 5 per cent and
larger and (b) at regions where significant strain gradients

occur (where the peak strains are larger than about 10 per cent).

(3) The use of the bpresent finite-strain formulation for thin
structures (beams, rings, and plates) provides physically
realistic and superior strain results compared with small-strain

formulation predictions, as the bresent theorectical-experimental
comparisonyg show.

(4) The use of the present finite-strain formulation involves pbractically
no additional cost over the use of the small-strain formulation for

the present types of nonlincar transient structural response problems.,
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Finito-atrain elastic-plastic theory can be (and has heen)
implemonted easily in a total Lagrangian roference framej thin

appoars not to have been demonntrated and implemented heorvetoforo,

whoroas the use of tha propar-and-consistont finito-atrain analynin
and procedurs appears to affoct the proaictoa trannlont dinplacomonts
very little comparod with small=-ptrain caleulations, the prodictod
strains (tho most important data) are affcoted significantly.

The theorctical-experimontal comparisons for the finitc-strain

calculations show generally good agreement for thin structures

subjected to explosive-impulse loadings or to impact by a rigid
£ragment.

The Kirchhoff stress (not to be confused with the lst or the 2nd
Piola-Kirchhoff stress) should be used in the formulation of finite-

strain plascicity problems because of:

(a) theoretical considerations «- based on the simplicity of the
thermodynamic equations which employ the Kirchhoff stress,
as well as the existence of a rate potential, and

(b) numerical considerations -- the existence of an incremental
variational principle and a symmetric tangent stiffness
matrix.

Additional merits include:

(¢) the Kirchhoff stress is easily measured in experiments such
as, for example, the classical experiments of G.I. Taylor
and A. Nadai, and

(d) the Kirchhoff stress represents the actual behavior of the

material in simpler terms than by other stress measures.

The mechanical sublayer model of plasticity is superior theoretically
to the popular isotropic and kinematic hardening rules of'plasticity.
The present strain—rate sensitive mechanical sublayer model of finite
strain elasto-viscoplasticity provides a very powerful tool to
describe the complex problems of impact and explosive loading of

structures.
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(10)

(11)

(12)

The now (finito astrain) conptant Atiffnean formulation of the
finite elomont equations wams shown to ha wore officiont computa-
tionally and bottor conditioned numorically than the econvontional
(nmall-ntrain) pnoudo~forca conatant ntiffnona foxmulation for tho
problems teostod in thio work,

The ropultn (displacomenta and strainn) of tho analyasis (2-p and
3-D) of tho oxplosivoly=-impulsod aluminum ptructurcs wore much
closor to the experimontal results whon the aluminum alloy wag
analyzed as buing strain-rate sengitive than as strain-rato
inscnsitive. fThis ig 80, even thouyh there is considerable
uncartainty in the appropriateness of the strain-rate constants
used {n the analysig. As far as how representative these values
are of the actual material Properties, and how appropriate it is
to consider these strain-rate "constantg as being constant over
widely different levels of strain-rate and strain encountered in
the course of the transient response remain uncertain. Moreover,
the gtrain-rate dependence was congidered to be isotrepic, while

in the actual material this strain rate dependence could be
anisotropic.

The 2-D analysis of steel-gphere impacted narrow beams is quite
satisfactory as far as the transient displacement response predic-~
tions are concerned. Howevar, if detailed transient and permanent
strain information is needed, and in particular if the occurrence
of rupture is to be predicted adequately, a 3-D analysis is
necessary. In effect, while the 2-p analysis ({2-D structure and
2-D fragment) predicts that the highest strains (and hence rupture)
of the narrcw beams will occur at the clamped ends, the 3-D
analysis predicts that the largest strains occur at the region of

impact, which agrees with hoth experimental results and expecta-
tions,
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8.3 Buggostions for Futura Rerearah
It is advinable to purpue the inclueion of the following aspecta Lu

futura analynin dnvnldpmantﬂ:
1. To mtudy tho implicit Park oporator, that appoarn to ponsans hottor
falno=danplng and frogquoncy-diatortion foatures than those of the
Houbolt operator, but ito porformance costa have not bhoon eomplotaly

assosood for tho prosent catogery of problema.

2. To invaotigeto the utilization of guasi-Nowton itoration mothods
(Like Broyden's mothod or the BFGS mothod) within cach timo stop
as required to achievo convergenca in accoxd with specificd eritoria
of the nonlinear equations that have to bo solved with implicit

opecators like the Houbolt or Park operatoru.

3. The development and implementation of an efficient shell £inite-
olement analysis of finite-strain elastic=-viscoplastic problems.

4. The inclusion of transverse shear deformations.

5, The inclusion of anisotropic material effects.
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TABLE 2

DATA CHARACTERIZING NAPTC TEST 201 FOR T88 TURBINE ROTOR
TRI-HUB BURST AGAINST A STEEL CONTAINMENT RING

Containment Ring Data

Inside Diameter (in) 15.00

Radial Thickness (in) 0.625

Axial Length (in) 1.50

Material 4130 cast steel

Elastic Modulus (psi) 29 x 108
4130 Cast Steel

Fragment Data¥®

Type T58 Tri-Hub Bladed Disk Fragments
Material Disk: A-~-286 Blades: SEL-15

Outer Radius (in)
Fragment Centroid fiom Rotor Axis (in)
Fragr wnt Pre-Test Tip Clearance from Ring (in)
Fragment CG to Blade Tip Distance (in)
Fragment Weight Each (1bs)
Fragment Mass Moment of Inertia about its .
CG (in 1lb sec 2)
Rotor Burst Speed (rpm)
Fragment Tip Velocity (ips)
Fragment CG Velocity (ips)
Fragment Initial Angular Velocity (rad/sec)
Fragment Translational KE (in-lb)
Each Fragment
Total for Three Fragments
Fragment Rotational KE (in 1lb)
Bach Fragment
Total for Three Fragments

*
Applies to each fragment unless specified otherwise.
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7.00
2.797
o.so
4.203
3.627

666x1L0"3
19,859
14,557.2
5816. 7
2079.6

158,922
476,766

144,018
432,054
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TABIE 3 -~ CONCLUDED (EIL-8H)

UPPER-SURFACE PRINCIPAL GREEN STRAIN (PER CENT)

Elemont 1 2 3 4 5 6
Centor :
Loc., x(in) J111 .333 555 17 .999 1.298

Time

(usec)

* 20 .35 1.01 5.15 10.29 34.50 .12
40 3.92 7.93 12,10 21.16 35,54 10.06
60 16.73 20,94 24.61 23.24 37.02 10,81
80 21,06 26,21 23,57 22.16 37.17 11.02

100 21.13 26.12 23.17 21.40 36,99 11.44

120 21,11 26,05 23.24 21.28 36.12 10,93

140 21.08 26.11 23.35 21.43 35.18 10.94

160 21.07 26.15 23.38 21.56 34.96 10.60

180 21.06 26.20 23.42 21.52 34.58 10.27

200 21.06 26,20 . 23,37 21.48 34.63 10.04

220 21.06 26.22 23,42 21.57 34.69 10.17

240 21.05 26.18 23.36 21.52 34.72 10.25

260 21.05 26.18 23,37 21.50 34.66 10.22

280 21.05 26.18 23.38 21.49 34.64 10.18

300 21.06 26.20 23.37 21.46 34.63 10.20

350 21.07 26.20 23,37 21.47 34.68 10.27

400 21.08 26.20 23,38 21.44 34.65 10.29

450 21.08 26.21 23.38 21.43 34,68 10.34

500 21.09 26.23 23.41 21.47 34.74 10.42

550 21.09 26.26 23.43 21.56 34.79 10.61

600 21.10 26.26 23.42 21.57 34.82 10.71
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TARLE 4 == CONCLUDED (EL-8H-8R)

UPPER-SURFACE PRINCIPAL GREEN STRAIN (PER CENT)

Elemont . 2 3 4 ) 6
Co;xter '
Loc., x(in) 2111 .333 . 555 7 .999 1.298
Time
(usec)
20 .89 3.00 6.12 6.68 4.90 1.39.
40 10.28 10.93 10.52 8,98 6.30 4.69
60 13.87 12.73 10.03 7.65 8.44 5,99
80 14.27 12,90 9.44 7.27 8.60 6.25
100 14,07 12.86 9.77 7.37 7.41 6.78
120 14.01 12.91 9,92 7.50 7.04 7.25
140 14.13 12.87 9.59 7.30 7.39 7.22
160 14.08 12,90 9.77 7.50 7.28 7.36
180 14.14 13.00 9.88 7.45 7.23 7.56
200 14,05 12.82 9.63 7.44 7.49 7.61
220 14.15 12.97 9.76 7.42 7.55 7.94
240 14.05 12.87 9.74 7.51 7.49 8.24
260 14.09 12.84 9.59 7.35 7.66 8.38
280 14.11 12.88 9.63 7.34 7.59 8.66
300 14.11 12.87 1 .65 7.39 7.59 8.81
375




TABLE 5

FINTTE-STRAIN PREDICTTON OF THE MAXIMUM PRINCIPAL ATRAING
AND ASSQCTATED DIRECTIONS ON THE UPPER SURFACE AT
THE CENTER OF CERTAIN FLEMENTE OF EXPLOSIVELY~
IMPULSED G061=T651 THIN ALUMINUM PANEL CP-2

l _Pripcipal Groan gtrain
Blemont EL~BUH BL~SH=8R

No. contor Location value Oriont. valuo Oriont.
x(in) y(in)  0(doeq) (in/in) Op(dog) (in/in) .Op(dog)

, 1l 111 111 45,00 .2113 45,08 . 1427 45,00
2 .333 " 18.43 « 2626 13.86 .1300 9.91
3 .555 " 11.31 . 2461 4.59 . 1085 3,59
f 4 777 " 8.13 .2324 1.28 .0898 2.14
5 .999 " 6.34 + 3717 1.87 ,0860 16.40
é 1.298 " 4,89 +1144 1.70 ,0881 37.51
12 .111 .333 71.57 .2719 76.78 L1301 80.09
13 .333 " 45.00 .1910 45,00 ,09¢1 45.00
14 +555 . 30.96 1611 11.06 . 08239 2.87
15 717 " . 23,20 .2179 3.44 . 0850 2.54
16 .999 " 18,43 . 3997 5,72 . 0880 28.00
17 1.298 " 14.40 + 1234 26.74 .0803 -32.78

23 111 .555 78.69 . 2466 85.15 .1055 86.42 .
24 .333 " 59,04 L1611 78.94 .0899 87.13
25 .555 . 45.00 .1345 45,00 .0688 45.00
26 i " 35.54 . 1776 8.72 .0828 -6.62
27 999 " 29.05 .3798 8.09 .0864 16.95
28 1.298 " 23.17 .0722 -41.32 .0712 31.15
34 111 L7111 8l.87 .2324 88.72 .0898 87.86
35 . 333 " 66.80 .2179  86.56 . 0850 87.46
36 .555 " 54.46 1776 g8l.28 ,0828 -83.38
37 177 " 45,00 .1103 45,03 .0700 =45.00
kY:] 999 " 37.87 . 3036 14.23 ,0946 26.92
39 1,298 " 30.93 .0995 20.93 0661 9,39
45 111 999 83.66 .3733 88,15 . 0860 73.60
46 .333 » 71.57 . 3997 84.28 ,0880 62.00
47 +555 " 60.95 .3798 81.91 .0864 73.05
48 177 " $2.13 . 3035 75.77 . 0946 63.11
49 .999 " 45,00 L2155 44,79 .0738 45,04
50 1.298 " 37.61 .1053 22,061 . 0809 31.79
56 .11l 1.2908 85.11 .1142 £18.31 , 0882 52,53
57 0333 " 75.60 .l£3l 63019 00806 "570 24
58 . 555 " 66.83 .0716 -43.97 .0668 72.03
59 177 " 59.07 .1002 68.43 0661 80.52
60 999 " 52.39 .1059 52.48 .0806 58.09
61 1.298 " 45,00 L0710 46.6) .0482 ~=44.88
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FIG.1l NOMENCLATURE FOR SPACE COORDINATES AND DEFORMATION
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Schematic of loading, Unloading, and
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APPENDIX A

DEPINITION OF THE FPINITE ELEMENTS USED IN THE TEXT

A.l_ Variaoble=Thicknong Arbitrarily-Curved Boam Finite Elomontn
conaidor an ilnitially-undoformod, arbitrarily~ourved, variablo-thicknann,

ninglo-layor boam or ring subjoctod to proseribod tranmiont extornally=appliod
surfaco loadn and to only D'Alombort body forens (incrtia leado). Lot it bo
agsumed that tho ring conoioto of ductilo motal and that a iurgo-dufloetion,
alastic-plastic transiont rosponsc will bo producod., For analysis tho
structuro will be ropresented by a compatibly-joined asscmblage of N finite
clements, one of which is depicted in Pig. A.l where lts geometry and
nomonclaturce are shown and where the deformation plane is n, ﬁoy the cvoordi=
nate N along and co normal to the centroidal reference axis of the beam are
omployed as the reference coordinates for this curved beam element.

It is useful and convenient to use the following geometry to Qescribe
this typical curved beam element and to approximate the actual given complete
beam or ring by a finite number of these "typical elements". Note first
that a global Y,2 Cartesian reference axis system as well as a local y,2z
Cartesian reference axis system are defined; for the latter, the +y axis
passes through the ends (that is, nodes i and i+l) of the element and makes
an angle +a (for this ith element) with the +Y axis., The slope, ¢, of the
reference circumferential axis 1, which is the angle between the tangent
vector a to n and the y-axis of the local-reference Cartesian frame may be
approximated by a second degree polynomial in n, as follows [17]:

¢(n) = b, + b ¢ + "z’(z (a.1)

where the congtants bo' bl' and b2 can be determined from the geometry of
the curved beam element as described next. Assume that the change in
element slope ¢ between nodes i and i+l is small such that

c:os( ¢m 4’¢) = | (A.2a)
and

sin (&, - ¢) = Poar = @ (A.2b)
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This reatxicta the slope change within an element to 515 dagraeea, The arc
longth, Ny of eloment i 1s approximated to be the same an the length of a

elraular are passing through the nodal points at the nlopon ¢i and ¢i+1'
honee, n, io qivon by

L, (oim #)

74 = . (r . ; 7, ) (A, 3a)

whare Li is tho longth of the chord joining nodes i and i+l, and is given by

Ll = [(ZH‘- Z‘ )2-1- (Ym - Yt)z J? (A, 3b)

Thé three constants in Eq. A.l are then determined from the relations
po) = 9
¢(7) = .

% d
[ sin bty dy = [ ¢lr) dy = o

4

(A.4)

From BEq. A.4, the constants in Eq. A.l are found to be

b= 4 |
-2 (4":-“" 4’4)/7; (A.5)
b, = 3( Post * 4’.‘)/(:2‘)2

Accordingly, the radius of curvature, R, of the centroidal axis may be

expressed as R = -(3¢/8n)-1 = -(b1+2b2n)-1, and the coordinates Y(n) and
Z{n) of the centroidal axis are given by

K4
Yy = Y+ [ cos[o(x)+ ] dy

o
n

(A.6a)
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and
1
Zogy=Z, + | sin[c0) +o] d (n. b

whoro

Zz-u - Z& ate)
Y - Y‘ A.6c

()

0( = t‘ar:'

The thickness variation h(n) along the element ié approximated as being
linear in' n between nodes i and i+l listed, respectively, at n=0 and n=n,:

h(x)=h, (l - ';:‘) +h, ";Z—‘“ (a.7)

This completes the needed description of the geometry of the curved beam.
element.,

The displacement field Vv, W of the beam, was derived in Subsection 4.2,
and was shown to be valid for arbitrarily large strains and rotations., fThe
displacements V and W anywhere in the beam are specified by the displacements
v(n) and w(n) at the centroidal axis (£°=0) of the beam, and the associated
displacement gradients X and V, respectively, as:?

(2,5) = va) - —2
[1 42 %200 ]

W (z)

(A.8)
“(13) = wod + %° [1+ x.(f)J -3
where [, t2 Y‘O‘)]
1T . OW v
Yo = 500 -g @) e

L) = S0 +F-0)

+Recall that Co denotes the {-direction location of a particle in the

initial undeformed state.
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A cubic~cubic polynomial intorpolation function with the inclusion of rigid-
body modes ropresented oxplicitly in torms of the angle ¢, is chosen for
the assumed displacement field v, w as follows:

Ppl\

v cos$  sing '(Z'Zt)“’G"’“)*(Y'Y;)""’M*“) 7 0o 0 7[“ '73'1 A

W -5ing cosd (Z~Z‘)sin(¢+o‘)+(¥-X)€6(¢4d) o ,(z 7[3 o © Vi
4178

(A.9a)

v

or in more compact matrix form, Eq. A.9 becomes

{u}={"}= -g:-((’f-:f {p}s[u@]{p} .o

The generalized displacements {q} are selected so that there are four

degrees of freedom v, w, Y, X at each node of the element:

T
{3}"‘_"1 w; ¥ xg Vet Vit Fial ’X".“ j:[A]{ﬁ} (A.10)

where
cosd, sin¢; o) o o o o .1
~sing, cos P o) o o o o (o)
) ) l o o o o o
[Al=| © o o | o o o o
cosd,, smd, As © © 7w
~sindy, cos Ty Ais © 7&2 7:‘3 | © o
0 o 1 () 2 3% 7e), 16,
| o o o 1 -7 b ‘7;’(¢'),& 2y, 3%
(A.10a)

506




L
|

and

A= (7:”- Y) sin(#,+ %) ~(Z - Z) cos ($,,+ )
AéS“ (Yu-r X) “5(4,‘*‘4'“) * (Zu: Z‘ ) 5'."(4,""‘ ¥ d>

Ceresponding to the assumed displacement field Eq. A.9 (and recalling that

{A.10b)

E = - _ﬁ)' one finds the following expressions for the displacement gradients

ST

X
Y = leJ{ﬁ}

_ ‘34’ ¢ 2 372 l
676} ©9° (’Za" ¢ (A.11b)

|
Hoo'@ # o st () @)

The following strain-displacement relations (type F) were derived in

(A.lla)}

Subsection 4.2, and are valid for arbitrarily large strains and rotations:

: 3 3
Y, = Y: + — 7{ (A.12)
(I +2 T,)
3 | {
Xaf- 2 ‘ o - | (n.13)

Y:=X'=X=X':X3:72=X’=o (A.14)

where superscript "o" refers to guantities evaluated at {°=0. The membrane

strain ?i is defined in terms of the displacement gradients X and { as
follows:
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3 —

(-4 I l 2
X: = X + ra 1 + =z W (A.15)
where

el (A5} =12 )
1= LGxJ{ﬂ} G ) [AT 5}= LDJ{i}

Employing Eqs A.ll and A.10, the membrane strain $ becomes:

=D, ] {‘}} +5 ) %J{D } {‘5} | (A.17)
+'z'L$' {D.} :J{?}

The “curvature" K appearing in Eq. A.12, is defined in terms of the
displacement gradients X and Y as:

( )(H‘ 1) +\y—-—-— (a.18)

The derivatives %% and'gé of the displacement gradients X and Y can be

(A.16)

expressed as:

v _ S
2:( D

or

3__,) v _ovze F (A.19)

M{ﬂ} [Gmn ]-'{? =lD,J{%} (A.20)




gwe ¥

R Pl 2y P 2 L
or ;x | .,

3_{-5161,’(”& =[Gz»’(“A]{7'} = ,.D‘g._‘{?} (A.23)
where

(A.24)

Therefore, the "curvature" K ¢an be expressed as

K- (s DBl el s} o

A.2 Plate Finite Elements

The geometry and nomenclature of a typical rectangular plate element
are shown in Fig. A2. The element has constant thickness, h, and spanwise
dimensions a and b in the x and y directions, respectively, with the origin
of the element xyz coordinate system located at element node number 1.

The midsurface displacements u, v, and w are approximated within each
element by assuming a bilinear interpolation for the inplane displacements
u and v, and a bicubic Hermetian interpolation for the transverse displace-
ment, w. The interpolations written in terms of element x,v,2 coordinates

are
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u(x,y)=ﬂ,+~ﬂ,+m+xy&§lGaJ{p} - (A.26)
Vs fo+ xbkyby v xy b= | Gy | {8}

(2.27)

2
wony) e f+xf,+yfy txyfet x Bs * 7V fs
*"‘7‘ fs * 2B+ x* Y By * xaﬂw + Yst

3 X 3 8 3
_“'x’yﬁu-i- Xy ﬂz, +x3}'zgz + xzy leza + X Yé".

5’ LGWJ {é} A | B (a.28)

where Bl' 82 62 4 8re unknowr parameters which will be related to the
generalized nodal displacements ql, Agr see q2 4

In order to obtain a set of generalized nodal displacements {q} which

can be related to the 24 B i's, the generalized nodal displacements chosen
2
ow dw 9w
x 8 %’ w'y 8 3-9-, and w,xy sm at each of
ttie four corner nodes of the element. The nodal displacement vector, {q},
for the element is thus

{8}=lgl=le v w @9 &) &)

are the parameters u, v, w, W
’

o (3] BB w2 33
e ), &, 65

By evaluating Eqs. A,26, A.27, and A.28, and

_Da_":'_ = l Gw"‘ J{P} (3. 30)
AL L GW;Y J{F} (A.31)

510



1 V- ey

-'%‘%’; = l’ GW:*V J{p} (A.32)

(obtained by differontiating Eqs. A.28) at the nodes, a unique (invertible)
relation between {q} and {B} is obtained:

{2} =[B]{]

The 24 Bi's can be related to the 2¢ qi's by inversiop of Eq. A.33 so that

(¢} =[]

and the displacement interpolation (Eq. A.28) can be written in terms of
nodal generalized displacements, {q}.

Therefore, one can write: .

Jfe} =16 BT {4}

G {8} =1 6.1[BT {3} -
w=leJ{ﬁ}=LGwJ[B]"{3} -
$r=loulfs}=16. 8] {5}
"“'5“ vy {8} =1 G, I[B ] () -
55,= G el =160, (BT 9} et

.’.
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The following strain-displacemont relations which are valid for
arbitrarily large displacements and strains wera dorived in Soction 5

(Bqe. 5.115-5.126)"
[-]

YNP = B:‘P +—;'&"7f“p = éﬁ +—%— kxﬁ (A.41)
:
-5 (%-") .

. 2
A=(+28)+2 %)) - (2Y,) (8.43)

Here, the gdﬁ are the (membrane) strains at the middle surface. They are

defined as follows in terms of the displacement gradients:

R
, .

gzzz -—( ) (;;) "*"'%(35';(' (A.45)
z S;:z:'-' zilz oy (’ Qu) (‘ > 2;;/ % (a.46)

Also, in Eg. A.4l1 the changes of curvature Kll and K22 in the x and y

directions, and the "torsion' K12 are expressed as follows in terms of the

2 x* (A.47)

displacement gradients:

Ko=) (3

7( _ w + 2« 2\/
z[-« _gyz P 7 (A.48)
o 2 (2
= - -+ - m—— .
/(iz “( 2%y * ( 57oy) TUN\" Sxoy (A.49)
+Note that z = Co = initial undeformed z-direction location of a particle.
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where
l ou - ov
¥=1+3% oy ' ' (A.50)
ow oV dw v
f="3 (H 3y)+ oy ox | (A.51)
S 2wy, P\, Ow 2u
(o oy (H' ax) * % o (A.52)

Since the strains are defined in terms of the displacément gradients, the

following derivatives are derived by differentiation of the displacement

expressions A,26-A.28 in order to compute YGB:

‘g'% =ftyf,= L‘;u,xj{p}’:‘.@u,x}[B }-I {?} (A.33)
$o=lou el = 6., 1[B] (3} wse

’5‘5’ = J. Gy, x J {ﬁ} = LG\,’,‘ J[B].lff} (A.55)
% = ,'GV’YJ {#} = l Gv,yJ [B]., {3»} (A.56)

3

22 = [ Gu, )} =1Gul[B] {3} 50
Y Gw,yy {F} w,yy [B] {3} (A-59)

;-;;-y “)"}’J{ﬁ} u,xy [B] {%} (A.59)
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il KR 0 R R | ' R

u S« oy Sty - )
TE— R e W rm— me— A.61
o x% % oxE = dy . (

Since a bilinear polynomial assumption ig used for the in-planc latgral

3 u 82u 32 Bzv

displacements u and Vv, the second derivatives 5 =5 —-—7 and -~z
2 2 2

ax? dy° ox dy

are necessarily equal to zero. bending expressions Kll and

Therefore, the
Kzz, become

' *w
/(n = g -5 (A.62)

]{ *w ) (A.63)
22 ~ o(( 3)"' :

2

axa of the in~plane lateral displacements,
are equal to constants for this assumed-bilinear-di

finite element. However,
the "torsion" K

The mixed derivatives 3h—- and s—z—~

splacement rectangular
they are neglected as well for the computation of
12° The strain-displacement relations become

v B o*w |
%.%*T“ﬁﬁ)

F) % (A.64)
° *w
F3
b 3 ()
o 2w
z
V.= ¥ +7°‘(‘7:37) .69
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The membrane straina ﬁll' ?22, and ?lz aro defined am in Eqs. A.44-A.46 and
arce valid for arbitrarily large atrains and rotations. The axpressions A
and o aro dofined by Bas. A.43 and A.50, respoctivoly., 8ince the sccond
derivatives of u and v are neglocted in these strain-displacoment
rolations, tho bonding oxpressions K

2 and K., aro not valid for

, K
arbitrarily large rotatlons. Howevoif thiso @traiigdiﬁplacomont relationn
A.64~A.,66 aro useful for situations where finltc membrane strains may occur,
and whoroe large rotations are associated with small curvatures. The aerror
assoclated with this approximation in the analysis of large deformation of
beams, has been investigated in References 28 and 212. 1In effect, studies
conducted in Ref. 28 revealed that the.second derivatives of the
in-plane displacements u and v have a comparatively small influence in the
predicted strains for severely loaded* aluminum alloy beams clamped at both
ends. Also, observe that the factor A in Egs. A.64-A.66 includes the effects
of finite membrane strains in the reference surface as well as change-of~

thickness effects due to finite membrane strains.

*
Both by explosive loading and rigid-fragment impact.
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REFERENCE CONFIGURATION
(INITIAL OR UNDEFORMED)

; N .
Fu ELEMENT NODE
) [:] NUMBER
/71 46
/ i
- Py - X,
- -] -
15% < by ~ 0y 20
~180° < ¢, < 180°
2
¢(n) = b, + by n+ b, n
R(n) = -<a¢/an)‘1 NODE i: n = 0
' = IR I DE i+l =
h(m hi (1 n') + hi+1 A NO t n ni
1 i
LOCAL SYSTEM CARTESIAN REFERENCE
&M L - COORDINATES Y,2 .- GLOBAL
COORDINATES
VoW, U, X -  DISPLACEMENTS voz - LocaL
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APPENDIX B

FPINITE FLEMENT FORMULATION AND TMPLEMENTATION FOR A UIGHER
ORDER PLATE FINITE BLEMENT (48 DG#)

B.1l Aulogtion of tho Ansumed Displacamont Finld

Tho styxain=dioplacoment volationo for large ntralno and rotatlionn of
platos involva socond ordor dorivatives of all throo dioplacomont
components (vertical displaccmont w and in-planc displaccmonty u and v).
This implics that, in order to o%tain a finite valuo for thu strain onergy
from the gtrain eneigy exprossion, at least the firet order dorivatives of
the displacoments u, v, and w should be continuous everywherc (e.g. across
finite clement boundaries). Otherwise, the elements would be incompatible.

The requirement that the slope of the three displacemont components
to be continuous across the element boundaries (continuity inside the finite
elemonts is ensured by selection of continuous polynomials as interpolation
functions), plus the reguirements of including constant strain and rigid
body modes lead to bicubic (in x and y) polynomial displacement interpola=
tion field for each of u, v, and w. This finite element with a bicubic in
u, v, and w is a rectangular element consisting of 4 nodes, with 12 degrees
of freedom (DOF) per node and hence a total of 48 DOF for the element.

2
The deqgrees of freedom at the nodes are u.-%%,-%%. é%%%; vy %%. %%,

2

2
%%%% and w, %%"%3"&%%%’ It is easily shown that the derivatives of the

displacements with respect to x and y are continuous across the element
3%u 32v and 92w
oxdy’ oxdy’ oxady

are all continuous. The remarkable thing is that this extra degree of

boundaries. Furthermore, even the cross derivatives

continuity (not reqguired in the variational prineiple to obtain a finite

energy) does not seem to follow from the usual arguments. (The functions

2 2 2
;lg;, ;;;; and g;;; are quadratic along each edge, and only the values of

0o 2 2
ﬁ;ﬁ%. g%g%. and 5%53 at the two endpoints are automatically held in common) .
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Tha 48 DOF Hexrmita hicubic, bicubie, bicubic, alemant is formulated as a
'roctangla, but by aubparametric tranaformation [Rof. 213, Page 89] can he
tranaformed into a genoral quadrilatoral with straight sides but arbitrary
angloan,

The PLATE and CIVM=-PLATE pPrograms [31] usc rectangular finitc elements
with a total of 24 DOF; tho agsumad-displacement interpolation fiold ig
bicubic in w and bilinecar in u and V. This lower order element presents

ow Ow

slope continuity (%=, == and JilL across the element boundaries only for the
‘ ox' dy IRy

vertical displacement w, but not for the in-plane Aisplacements u and v.
Also, since the assumed-displacement interpolation field is only bilinear
for the in-plane displacemengs u and v, the terms that involve the second
derivatives of these displacements (present in the large strain and
rotation strain-displacement equatidns), cannot be computed in an analysis
that would make use of this finite element. It is clear that this 24 DOF
element is accurate only for problems where the vertical displacement w is
much more important than the in-plane displacements u and v,

It is also clear that in a general large strain and rotation program,
the three displacement components deserve to share equal importance in the
assumed-displacement f£ield. Also, [Ref. 213, page 215] the condition
number* for cubics is only slightly worse than for linear elements, so that
the roundoff errors for a given element size (h) are comparable. The
discretization error, however, is an order of magnitude smaller for cubics.
Therefore, at the cross over point where roundoff prohibits any further
improvement coming from a de¢rease in h, the cubic element is much more
accurate. This applies especially to the computation of strains, where
differentiation (or differencing) of displacements introduces an extra
factor h“l (h-2 for bending) into the numerical error.

One can express the displacement field u, v, w inside an element by
Hermitian polynomials (¢) that interpolate in terms of the generalized
displacefient degrees of freedom at the nodes (q's). Hence, one may write

- A
This is the ratio of the raximum eigervalue to the minimum eigenvalue of
the mathematical model of the lincar structural system.
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w=[2l{a} veleUs} w-lE){s} oo

IXie 16 Xi | X1e (6X] I X16 1exi

Similarly, the derivatives may bo writton as

ou _ﬁ‘fj{ } Su | ¥ y .
Gx - O sE e s LRy o P e
I1X16 16Xl IX16 16X

Therefore, one has to store matrices (L@J ' Lé;gj » etc.) that involve only
16 terms per element instead of 48 because exactly the same interpolation
polynomials are nceded for each of the three displacement components u, v,
and w. This is a very attractive feature of the large strain formulation
when a bicubic displacement field is used for all three displacement
components.

B.2 PFinite Element Formulation and Solution Procedure

As noted in Section 6, the finite element formulation and solution
procedure used herein is based upon the Principle of Virtual Work including
D'Alembert inertia forces; further the undonventional form of the egquations
of motion (see Eqse. 6.55 and 6.69) are utilized rather than the conventional
form (Eq. 6.68) given in Subsection 6.2,3.

In the process of a finite element dynamic solution, the mass matrix
is necded. Mass matrices may be formed in various ways: (a) "consistent"
or non-diagonal and (b} "lumped" or diagonal. Diagonal mass matrices can
be formed using an intuitive physical approach (e.g. by "placing masses" at
the displacement DOF) or by using a scheme to diagonalize the consistent
mass matrix according to sclected rules. The consistent mass motrix is
eobtained from the ciprossion for the kinetie encrgy through volume integra-
tion of tho interpolation functions,

Both the mass and stiffness do not change during the transient solution

and arc not a function of the strain or stress at a given time or location.
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Thase matricas have dimensions of 48 x 48 (2304 entries) for the 48 DOF
finito olement to be usod in the numorical analysis. Taking into account
symmetry about the diagonal, thore im a total of possibly [(48 x 48 - 48)/
2 4+ (48)] = 1176 differont ontrios for cach of these matricos.

Because of the throo fold symmetry in tho interpolation polynomials
botwoen tho displacoment components u, v, and w (the same Hormitlian
interpolation polynomials arc required for cach displacement component),
the number of different entries is reduced dramatically. The exact integra-
tion of the element consistent mass matrix [m) (Eq. 6.38) has revealed only
33 different entriecs (out of a possible 1176). The excet integration of
the element linear stiffness matrix [k) (Eq. 6.63) has revealed only 123
different entries (out of a possible 1176).

Next, note that the consistent externally-applied prescribed loads
vector {f} for each elcment arises from (a) the non-inertial body forces

fi and involves an integration over the reference volume Vo of the elenent

n
and (b) the applied surface tractions gi involving an integral over the

reference surface area Ao , as indicated by Eg. 6.41l.

The remaining terms ?n Eq. 6.37 for the unconventional formulation
pertain to 8U .(Eq. 6.18-6.19) the variation of the work of the internal
stresses Sij. From Eq. 6.37 it is seen that the element-level contributions
from SU to the equaticns of motion consist of {p} and [h] {q}. Also note
that the evaluation of {p} and of [h] involves an integration of the
stresses Sij and strain-variation quantities over the reference volume of
the element Von. When applied to plate or shell analysis, these integra-

tions are performed conveniently ir -erms of stress resultants:

L“F(g',%t) = S“F(g',s‘, 35t)d3’ (5.3a)

‘P 1 2 i “? ' 2 o ) o
M (f)S)t)::d S (g,g,;,t)j d¥ (B.3b)
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where ;9 is the Lagrangian or material thickness ccoxdinate. 8ince g®
changes with time, numerical integration through tho thlckness is used to
evaluate LQB, MGB
integration is performed over the x,y or the 51.52 region of the clement.
It is worth pointing out at this stage, that another attractive feature
of the 48 DOF element is that it requires the same number of integration
pointg'as the lower order (and hence lower accuracy) element which has 24
DOF. The reason for this is that the highest order polynomial in the 24
DOF element (namely the complete bicubic in w) has exactly the same order
as the polynomials in the 48 DOF element (complete bicubics in u, v and w)
Instead of proceeding in a routine fashion, taking the variation and
computing. the resultant terms in a straightforward way, the terms are

; also to complete the volume integration, pumerical

grouped, together so as to minimize the number of operations and storage
in the computation of the work of the internal forces. Also, the use of
Hermitian interpolation polynomials and the threefold symmetry of the 48
DOF element also helps to reduce significantly the amount of storage and
computation.

In this vector formulation, one can express the internal force arising
from the linear stiffness and the geometric and material nonlinearities
simply as a column vector {I(t)} defined by

. 48x1
{I(t)} = {P(t)} + [%(t)] { ?(ﬂ} (8.4)
48 X! 48 X 48 x 48 48 X !

Note that {I(t)} consists of 3 column vectors {Iu(t)}, {Iv(t)}. and {Iw(t)}

48x1 16x1 16x1 16x1

that correspond to the displacement components u, v, and w, respectively.
Further the game 16x1 interpolation matrix is used for each of the sub-
matrices {Iu}' {Iv}' and {Iw}' Applying Egs. 5.115-5.126 and B.l to

Eq. 6.19, one obtains:

{I} =JJ({%§-(1,V)}Huft,y,t)+{-§—$("7)}Hu$r,y,t) +{Fount} p 0o t)) dxdy

16 X\ e xi 16 %1 16 X1 (B.5a)

+That is, at least 3 by 3 or 9 x,y Gaussian stations, and 4 depthwise
Gausgian stations at each of these 9 Gaussian stations; hence, there
would be a total of 36 stations per element.
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{I (t) Jj( (x,y) (”;%t)""{’y “’”}Hsx,y,t)'i'{F(x,y,t)}’((’m‘)d"dy (B.5h)

le Xt 16 X1 16X lext
{ I(t)} ”( --(x,y)}H (w,t)-v{a&}H (',y,t)-»{ Fouy g} atopd)dedy
X1 16 X1 % X1 16 %) (8.5c)
where
$dy 22 P
{Foyu}= e t)({ 57 Mo *{‘;‘Y?}M Ak 'z'“‘}M "(’;”::)

P u oW
Hus"y)t) = H“(")Y:‘)(l *3%(’:»"))“’}'7‘,‘0)”‘)'37' + vax,y,t) - Jv(x) Y;t}’g(wt)

(B.5e)

Hews) = Ho(1435) +H, 55 + 35

22 9y
(B.5f)
2 b4
H (:’1“) H,z(l"")v ""H" 3: + Ju?“;"
(B.5q)
v P
Hfnmt) = H, (1435) +H 3% +J,, - J, 2%
(B.5h)
v
H (x,y,'t) - Hu ox T leT - J"(H' )* Jv%
(B.51)
- - ow ow
up T ST M3 - ) s 3
(B.53)
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J (hy, ) A(,,y;; [(‘::t)M”'f( )Mzt (Zaxay) ] (B.5K)
Jv(x,v,t)c—ji-—-[ :‘:z 9 zz( ;x:y) ] (B.58)

den=k [ eI ]

H b

i

2 (472 )

(B.5n)
=2 1. n 22 2 #
(A)z[M K,, + M 722 +M (2 .z)] (B.50)

(*F jS"U;’ : M“p-"-fS“';‘A;‘; I«g__jsxp(ﬁ. if e
Awsd= (2B ont)(1 42 o) (200t o

and o, B, n, KaB' ard Y:B have been defined in the strain-displacement
relations: Egs. 5.115-3.126,

For the transient response solution, it is recommended that one employ
the vector form of the equations of motion as described by Eqs. 6.89, 6.90,

and 6.91. These cquations may be solved by using an appropriate timewise
finite-difference (or finite-element) operator such as the Houbolt; the

Park, ctc. == in conjunction with (a) extrapolation of the nonlinear

internal-loads torms without iteration or (b) by iterating to convergence
(1f possible) within a given time step At by, for example, the BFGS wmethod
[204] or a quasi-Nowton method [215]).
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APPENDIX C

ASSESSMENT OF STRESS-8TRAIN PROPERTIES FROM UNIAXIAL-TEST
MEASUREMENTS OF INITIALLY-ISOTROPIC MATERIAL

As indicated in Subsection 2.8, the axial relative elongation Eu of a
uniaxial test specimen is defined as (Eq. 2.401):

E = change in gage length = 2—20 (c.1)
u ~ original gage length lo *

Eu is also called the engineering or nominal strain, and it is a quantity
or measurement which extensometers or strain gages can provide. One can

*
compute the logarithmiec strain €, of a uniaxial test specimen in terms of
Eu as (Egqs. 2.407 and 2.410):

652: = An (ﬁ + Ei‘) = I£Nv<éi%' (c.2)

The engineering stress UE of a uniaxial test specimen is defined as

(Eq. 2.443):
P

O = A, (c.3)

where P is the force transmitted across the cross-sectional area of the
uniaxial specimen (the applied load) and Ao is the original cross-sectional

area of the specimen. The engineering stress OE is also called the nominal
or lst Piola-Kirchhoff stress.

One can compute the Kirchhoff stress Tu of a uniaxial test specimen in
terms of % and Eu as (Bq. 2.432):

Tu.:' G'E(l“l'Ea)::—A-—O-FEa) (C.4)

Observe that the Kirchhoff sgtress T, can be very easily obtained from
experimental measurements of: the original cross=scctional area Ao' the
applied load P, and the axial relative elongation Eu {(obtained from strain

gages or extensometers). These quantities (P, Ao' and Eu) are the quantities
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that have been and are most often measured in exporiments. Many authors
have referred to the Kirchhoff stress Tu as tho "true" stroms, sinece the
Kirchhoff stress Tu is defined as (Eqs. 2.425, 2.427, and 2,432)

> P fo
1:; = 'é%:’(}'# E;) = j;— e B -};~ Cg_ (c.5)

whaere OT = % is the "true" or cauchy stress. (Eq. 2.427), po (p) is the
original (present) mass density, and mass consorvation given by pvoQo = PAL
has been used. Hence, if there were no change in the mass density (that is,

p = po), the Cauchy stress would be equal to the Kirchhoff stress. It is
important to note that what many authors plot as an approximate "true" stress
(undexr the assumption p < po) is really the exact measurement of the Kirchhoff
stress,

Yor example, in Eq. 8.3 of Nadai's "Theory of Flow and Fracture of
Solids" [115), the stress measure used is the Kirchhoff stress (although not
so gtated) and, therefore, the stress measure labeled as “true stress" in
the graphs pertaining to experiments in Nadai's book is really the Kirchhoff
stress.

Similarly, G.I. Taylor used the Kirchhoff stress. For example, in
Ref. 114, it is not clearly stated what stress measure is used. However,
one can deduce what is the stress measure used by G.I. Taylor from the

following paragraph (page 308, Ref. 114):

"The condition for fracture by imstability owing

to the formation of a local "neck" is
‘-%—"%< I er j(AI) < | (c.6)
(4~ %)

where T is the stress, EO is the original length of the specimen, and { is

the present length of the specimen. The condition for "necking® is:
d % . d O
e or £ O (.7
AdE, dZ
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Sinca the englneoring stresas UE is related to the Kirchhoff streas Tu by
T £
(1+E,) Y

4
dl

is equivalent to

(% %) o

then

< O (C.9)

(c.10)
dt
or '
4 4T 4(7) c
7 27 + T A < © (c.11)
| dT, T .
T 14 77 £ O (C.12)

J’Z’ Tu
(c.13)
Al L
Therefore, one obtaihs the following inequalities in terms of the Kirchhoff
stress:
A d(4T.)
< | or 7
T, 41 4l 7.)
(-]
These inequalities are exactly the same as Taylor's inequalities if one sets

‘T' — ’t‘u (C.15)

The stress measure T used by G.I. Taylor is the Kirchhoff stress. Obviously,

L | (C.14)

the stress measure T cannot be the true stress OT because
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and only if tho donnity in canatant,

i l'/f> = O : (c.17)

‘Zﬂ fv

1% _ 45T F < o
—— c.16

) (C.16)

will tho true stross OT bu equal to T ¢

.

p=pL — T:_—o_'r:’Z; (c.18)

Also observe that J.F. Bell (page 543, Chapter IV of Ref. 216) is incorrect
when he states that "Taylor found that results from simple tension and
compression tests on polycrystalline copper coincided when nominal or
Piola=-Kirchhoff stress T (referred to original area) was plotted against
logarithmic or "natural" strain (true strain)", Because, as just shown, T
is the Kirchhoff stress Tu (and to a good approximation is the true stress
UT); T is not the nominal stress OE in Taylor's classic work (Ref. 114) .

In preparing the uniaxial static tensile test data in Kirchhoff stress

*
Tu + versus logarithmic strain (eu) form, the data in the strain region
o

where necking occurs (that is, beyond the peak in engineering stress
OE = P/Ao) should be modified appropriately to "correct for necking*,
because after necking occurs a multiaxial state of stress is developed,
Various schemes for making such corrections have been developed. See, for
example, thc procedure and correction factor proposed by Bridgman [217]

based upon extensive experimental work. For more information on necking,

see the book by Lubahn and Felgar [218). Recent work on computer simulations
of tension tests of ductile metals is reported by Norris et al. [219] and

by Saje [220]. An excellent recent survey article on this subject was
prepared by Hutchinson {221].

+Subscript "o" refers to static conditions.
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One approach te approximate the unlaxial bohaviar boyond the incipiont.
hocking condition (peak in OE) i8 to aspume a atraight~line fit botwoen that
point and the rupturo condition. Aftor necking ocourn, it {gm hopoless to
try to moasuro the rolativa olongation Eu with oxtonsemotors or atrain qagon,
alneo tho procise locatlon of the necking station ls not known boforohand
for uniform spoacimens, and because of the non-uniform state of strain in
tho nock rogion, Howaevar, the croas-sactional arca Af of the spacimon at
the rupture station can bo measurad after rupturc. Hence, onc can estimate
the truc strosg (o,r)f at rupture (ignoring any elastic recovery, assuming
a uniform stregy through the crosg-sectional area Af, and ignoring the
multiaxial stress conditions) from the knowledge of the load Pf at rupture
and the cross-sectional area Af: (OT)F = Pf/Af. In oxder to compute the
logarithmic strain after necking occurs, from a knowledge of the cross

sectional area, it is hecessary to assume incompressibility, since,

€L = e (10E) =t [F

(C.19)

and for incompressibility (po S~ p) e
A
e-* - ,Z”' A (C.20)
u A

*
Hence, one can estimate the logarithmic strain (eu)f at rupture (since at
the associated large plastic strains, the ductile material may be regarded
as behaving in an incompressible fashion) by

(éf)f = 5 A (c.21)

Ay

Similarly, one can estimate the Kirchhoff stress ('tu)f at rupture, assuming
incompressibility by °

JA .
=7 a5 (= (&) e ney
1
('Z;o)f = ——E:- (c.22)
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Finally, the "corrected" valun to be used for (Tu)f in aalled (Tu ) e
[} o

and may be computed, for example, by using Bridgman's [217] aarxection
factor by (noo Bg, 5.8 of [2)A])1

(T“) _ EF/Af (c.23)
"4 (,+22-)A(¢+'E_;.)

a = radius of the (assumed to be circular) rupture cross section

where

R = lateral final radius of curvature of the tensilc test specimen’
at the rupture station.

Bridgman [217) presents data plots (from extensive experiments) from which
one can determine the ratio &/R from a knowledge of AO/Af. Other correction
alternatives may be found in Refs. 218-221.

As noted in Subsection 3.3.4, the static uniaxial stress-strain data

*
expressed in Tu versus eu form (inecluding the data points at incipient
o

necking and at the rupture condition as just described) can be fitted in a
piecewise~linear fashion for use in the mechanical-sublayer material model.
Further, data from uniaxial stress-strain tests at various strain-rate
levels may be obtained and analyzed to deduce the approximate rate constants
d and p (or ®4 and Bp) indicated in Eg. 3.64 (or Eg. 3.43).
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