

Than remoarch wan garctod out by the Arrondastio and structurof Rombroh Laboratory, Dopartmont of Acronaution and Antronaution, Mansachunoten Instituto of Pocinology, Cambridgo, Manonchunotion uncore NASA Grant No. NGR 22mo09-339 from tho Lowis Ronoarch Contor, National Aoronaution ancl Space Administration, clovoland, ohio as part of tho NAsA Rotor Burst Protoction Program. Dr. Arthur G. Holms and Mr. Solomon Woiga of NASA-LeRC served as tochnical monitors, the valuable advice and cooperation from these individuals is acknowledged most gratefully.

The authors are also indebted to their colleagues for stimulating discussion, advice, and assistance in this effort: Dr. Robert L. Spilker, Dr. Denny Meredith, Mr. Thomas R. Stagliano, Mrs. Susan E. French, Dr. John W. Leech, and Mr. Fred Merlis. The computations were carried out at the Information Processing Center of MIT.

The use of SI units (NASA Policy Directions NPD 2220.4, September 14, 1970) was waived for the present document in accordance with provisions of paragraph 5 d of that Directive by the authority of the Director of the Lewis Research Center.

This report was submitted to NASA-Lewis for pre-publication review in August 1979. The authors wish to thank Dr. M.S. Hirschbein and Dr. C.C. Chamis of NASA-Lewis for their thoughtful review and for constructive suggestions on this report. Subsequently, the authors carried out necessary report revisions which were completed in July 1980. Report reproduction fnllowed immediately thereafter.

PREOWMに

CONTENTS

Pago
soction,1
1.
1
1
1.1 Bakkground
G
G
1.2 Jurpono of the study
6
6
1.3 symopinif of tho prosent study
1.3 symopinif of tho prosent study 9
GENPRAL FORMULA'TION
GENPRAL FORMULA'TION
9
2.1 Introduction 10
2.2 Notation
11
2.3 Review of tensor Analysis
11
11
2.3.1 Vectors
15
15
2.3.2 Tensors
1.5
1.5
2.3.2.1 Linear Vector Functions
2.3.2.1 Linear Vector Functions 19
2.3.2.3 Covariant Differentiation of a Tensor 21
2.4 Kinematics of a Deformable Medium 24
2.4.1 General Description 24
2.4.1.1 Double Tensors 28
2.4.1.2 The Unit (Metric) Tensor 28
2.4.1.3 The Displacement vector 28
2.4.1.4 The Velocity Vector 29
2.4.2 Deformation and Strain Tensors 30
2.4.2.1 The Deformation Gradient Tensor 30
2.4.2.2 The Spatial Deformation Gradient Tensor 33
2.4.2.3 Rotation, Stretch, and Strain Tensors 36
2.4.3 Deformation Rate Tensors 44
2.4.3.1 The Rate-of-Deformation Tensor 44
2.4.3.2 Relations between Strain Rate 'Tensors 45
2.4.3.3 The Spin Tensor 49
2.4.3. . The Spatial Velocity Gradient Tensor 50
2.5 Stress Tunsors 51
2.5.1 The Cauchy Stress Tensor 52
Soction Page
2.5.2 The Kirchhoff Stroan Ionnor 52
2.5.3 Tho socond plolamKixchhoff gtronn Tonmor 54
2.5.4 Tho First Plolamkirchhoff strona Tonnor 57
2.5.5 Rolations botwoon Strean Tonsora 58
2.6 Streas Ratos and Kates of Socond Order Tensors in General 60
2.6.1 Rates of the Unit Tensor 61
2.6.2 Rates of the Cauchy Stress Tensor 66
2.6.2.1 Fixed-Observer Rate 66
2.6.2.2 Convected Rates 68
2.6.2.3 Co-Rotational Rate 70
2.6.3 Rates of a Second Oxder Tensor 71
2.6.3.1 Fixed-Observer Rate 71
2.6.3.2 Co-Rotational Rate 71
2.6.3.3 Convected Rates 72
2.6.3.4 Relations between Rates of Second Order Tensors 73
2.6.4 Co-Rotational Rate of the Kirchhoff Stress Tensor 74
2.6.4.1 Co-Rotational Rate of the Kirchhoff Stress Expressed in Terms of the Second Piola-Kirchhoff Stress and the Green Strain for a Convected Coordinate System 75
2.7 Energy Equation 76
2.8 Specialization: Homogeneous Uniaxial Irrotational Deformation 80
2.8.1 Deformation and Strain Tensors 83
2.8.2 Deformation Rate Tensors 88
2.8.3 Stress Tensozs 90
2.8.4 Stress Rates 95
Sostion Pago
2.ll.5 pnorqy bquation 48
1 CON: iTTMIITTVF FSOATTONA 102
3.1. Introducthon 102
3.: Roviow of Gmallmatrain flant Latey Thomy 102
3.2.d Roviow of Prinolpal Conoopta 1.02
3.2.2 The Mochanical-Sublayod-Modol 109
3.3 Plasticity Thoory for Finito Strains 110
3.3.1 Introduction 110
3.3.2 Genural Concopts 111
3.3.3 A Finite-Strain Elastic-plastic Strain-Rate- Dependent Theory 116
3.3.4 Computation of Mochanical-Sublayer-Model Weighting Factors 123
3.3.4.1 Application to Uniaxial Stress- Strain Conditions 123
3.3.4.2 Application to Multiaxial Stress Strain Conditions 125
3.3.5 Comments on Strain-Rate-Behavior Modeling 127CURVED BEAMS AND RINGS135
4.1 Introduction 135
4.2 Strain-Displacement Relations for Finite Strains and Rotations 135
4.2.1 Strain-Displacement Relations for the BernouillimEuler Displacement Field 1.35
4.2.1.1 Formulation 135
4.2.1.2 Membrane, Bending, and polar Decompositions 143
4.2.1.3 Specialization to Small Membrane Strains 151
4.2.2 Inclusion of Thickness Change Associated with Finite strains 157
4.2.3 Summary of Strain-Displacoment bquations 163
4.2.3.1 Strain-Difoplacomont Rolationg for Smal. Gtxalna 163
A.2.3.2 Strain-Dinplacomnnt Rnlationn for Finito straing and Finito Rotations 164
4.3 Constitutive Equations for Finite Strains and Rotations 166
4.3.1 Introduction 166
4.3.2 Constitutive Equations 1.66
5 pLATES AND SHELLS 173
5.1 Introduction 173
5.2 Strain-Displacement Relations for Finite Strains and Rotations 174
5.2.1 Formulation for General Shells 174
5.2.2 Strain-Displacement Relations for Plates 189
5.3 Constitutive Equations for Finite Strains and Rotations 195
5.3.1 Introduction 195
5.3.2 Constitutive Equations 195
5.3.2.1 Plane Stress Assumption for Thin Shells at Finite Strains 195
5.3.2.2 von Mises Strain-Rate-Dependent Loading Function for Plane Stress and Finite Strains 200
5.3.2.3 "Elastic" Fart of the Constitutive Relations for plane Stress and Finite Strains 205
5.3.2.4 "Plastic" Part of the Constitutive
Relations for plane stress and Finite Strains 214
5.3.2.5 Incremental Procedure for the Evaluation of Stresses 221
Gnotion Pagn
G GOVERNING RGUATIONG AND BOLUTTON PROCEDUREG 2.29
6.1 Introdaction 2.29
G. Dr Fuationn of Motion 230
fi.t.i Variational Formulation 230
G.2.2 Pinito Elomont Formulation for tho Annumed Displacemont Modol 234
G.2.3 Computational stratogioa 238
6.2.3.1 Pure Vector Form 242
6.2.3.2 Constant stiffnesg Form 246
6.2.3.3 Tangent Stiffness Form 249
6.3 Finite Difference Operators 252
6.3.1 Linear Dynamic Systems 252
6.3.2 Nonlinear Dynamic Systems 256
6.3.2.1 Implicit Methods without Iteration 258
6.3.2.2 Implicit Mpthods with Iteration 261
6.4 Solution of the Governing Eyuations 263
6.4.1 Explicit Solution Process of the Equations of Motion 264
6.4.2 Implicit Solution Process of the Equations of Motion 269
6.4.2.1 Extrapolation 27.2
6.4.2.2 Iteration and Convergence 274
7 EVALUATION AND DISCUSSION 280
7.1 Introduction 280
7.2 Impulsively-Loaded Narrow Plate 281
7.2.1 Problem Definition 28.1
7.2.2 Comparison of Small-Strain vs Finite-Strain Predictions for Structural Modeling by Boam Finite Elcments 282
Soction Pago
7.2.3 Modoling by Flato Finito Elomonta 289
7.2.3.1 Modoling Dosoription and Gutilinn of Analymin 295
7.2.3.2 Sing lomprootaton Vn Doublomproditon Prodictions 293
7.2.3.3 Time Incromont sizo Rffocto 297
7.2.3.4 Small-strain va. Finitemstradn Predictions 302
7.3 Impulsively-Loaded Freo Circular Ring 306
7.3.1 Problem Definition 307
7.3.2 Comparison of Small-Strain vs Finite-strain Predictions 307
7.3.3 Comments 309
7.4 Impulsively-Loaded Square Thin Flat Plate 310
7.4.1 Problem Definition 310
7.4.2 Comparison of Finite-Strain Predictions vs. Experiment 311
7.4.2.1 Finite-Strain and Finite-Element Analysis Model 311
7.4.2.2 Transient Strain Comparisons and Transient Displacements 313
7.4.2.3 Permanent Deflections and Strains 320
7.5 Containment-Ring Response to 158 Turbine Rotor Tri-Hub-Burst Attack 323
7.5.1 Problem Definition 323
7.5.2 Comparison of Small-Strain vs. Finite-Strain
Predictions 324
7.6 Steel-Sphere-Impacted Narrow Plate 326
7.6.1 Problem Definition 326
7.6.2 Modeling by Beam Finite Elements 327
7.6.3 Modeling by Plate Finite Elements 329
Soction Page
7.6.4 Compatinon of Boam-Modol va, plato-Modal Frodictiona 330
7.6.4.1 Strain Comparinoma 331
7.6.A.A Dotilention bombardmonn 334
 Bilomont-Mubh Moudol 137
3 GUMMARY NNI (CINC'INHION: 335
H. 1. summary 345
8.2 Conclumioma 347
8. 3 suggostiom fox puture Rosearch 350
RUFERENCES 351
TABLES 369
ILLUSIRATIONS 377-502
Appendices
A DEFINITION OF THE FINTTE ELAMENTS USED IN THE TEXT 503
A. 1 Variable-Thickness Arbitrarily-Curved Beam Finite Elements 503
A. 2 plate Finite Elements 509B FINITE ELEMENT FORMULATION AND IMPLEMENTATION FOR AHIGHER ORDFR PLATE FINITE ELEMENT (48 DOF)518
B. 1 Selection of the Assumed Displacement Field 5.18
B. 2 Finite Element Formulation and Solution Procedure 520
C ASSESSMENT OF STRESS-STRAIN PROPERTIES FROM UNIAXIAL- TEST MEASUREMENIS OF INITIALLY-ISOTROPIC MATERIAL 525

4IST OF ILLUSRRATIONS

Pigura Pagn
1 Nomonclature for: Spaon coordinaton and proformation 377
2 Ampoximation of a Indiaxial Atronm-Btain curvo by thoMochandcal-Gulanays Madna378
3arain Curvon340
Th Luntration of Lonition, Digplanomont, and Baoo Vocturafor tho Roforunco and tho probont confidguration382
5 Bexnoulldetulor Digplacomont Field and Polar Ducompositionof tho Displacomont Gradionts x and Ψ384
678Measurements and/or Predictions of Transient LongitudinalGreen (Lagrangian) Strain on the Surface for variousSpanwise Stations of Explosively-Impulsed 6061-T651Aluminum Narrow-Plate (Beam) CB-4 Modeled by BeamElements388Beam-Element Model EL-SH-SR SmalĺStrain and Finite-Strain Predictions for the Transient Midspan Dis-placement w of Explosively-Impulsed Narrow-PlateSpecimen CB-4Beam-Element Model EL-SH and EL-SH-SR Finite-StrainPredictions for the Transient Midspan Displacement wof Explosively-Impulsed Narrow-Plate Specimen CB-4393394

J.TST OF JLLUGTRATIONG (continued)

Plgura

Paqn

Comparison of Beam-Element Model Central-Difference Predictions vs. Plate-Element Model Predictions by Houbolt-MULE and by "Equilibrium Iteration" with the Houbolt Operator for the finite-Strain Transient plateCenter Displacement w of Explosively-Impulsed NarrowPlate Specimen CB-4400

Plaitamitradn Platominmont Modna Prodiotiona for tho Trantant Pato-contor Dlfulaomont wof Fixplom
 "Eupllilar hum Ttomation" with the Imubolt Oporator fir
 Miorommeondf

Compaibon of Patcomamont Modod finltometrain Prodictione for tho Cransicnt rlatomentor Dioplaco -
 CB-4 by Uoling Δt - 20 Microgoconds with "Equidibrium Iteration" Houbolt and with Houbolt-mULs, and for Houbolt-MULE with $\Delta t=0.5$ Microbecona
Comparison of Finitemstrain ve. Smali-strain platoElement Model Prodictions for the Transient FlatoCenter Displacement w of Explosively-Impuloed NarrowPlate Specimen $\mathrm{CB}-4$
Plate-Element Morel of the Quarter-Plate of ExploaivelyImpulsed Narrow-Plate Specimen CB-4
Comparison of Finite-Strain Predictions, Small-Strain Predictions, and Measurements of the Transient Longitudinal Strain at Various Spanwise Stations on the Upper- and/or the Lower-Surface of Explosively-Impulsed Narrow-Plate Specimen $\mathrm{CB}-4$
Comparisons of Experimental and Predicted Strains on the Inner and Outer Surfaces of Impulsively-Loaded Free Circular 6061-T6 Aluminum Ring Fl5

LIGT OF ThLugTRNTMONG (Continuod)

[^0]?A Comparifon of Expordmontal and Prodictod Conterilno
 otrcular gogindi nluminum ging pls
 Alumdnusn lamod Modal cle-?

Schomatic of Impuladvomoading dugts on 6061-T651 Aluninum Panclo with clamped sideo

38 Geometry, Finite Elomont Mosh, Node Numbers, $1:$: mont whore for Ono हuarter of Square Clampod-Edg: \because :. . $6: \%$ Thin Aluminum Panel CP-2 Explosively Impulsod over a Centered $2-i n$ by $2-i n$ Region

Comparison of Finite-Strain-Predicted vs. Measured Transient Relative Elongations on the Jpper (Non-Loaded) Surface of ExplosivelyImpulsed 6061-T1651 Thin Aluminum Panel CP-2

Finite-Strain Prediction of Upper-Surface Strains at Various Stations and Times for Explosively-Impulsed 6061-T651 Aluminum Panel $\mathrm{CP}-2$

FinitewStrain-predicted and Measured w-Displacemont profiles and Permanent Strains of Explosively-Impulsed 6061-T651 Aluminum Square panel CP-2 with All Foux Stdes Ideally Clumped

LIST OF IJLUSTRATICNS (Continued)

Figura

Paga

33 Gnomotrif, Toat, and Modnling Data for tho 4130 steal Containmont Ring Subjoctod to Trimbuk Ths Rotor Burnt in NAPTC Toot 201443

34 Comparison of Finite-Strain ve. Small-Strain Prodictione for the Inner-Surface and Outex-murfaco Transiont Circumforontial strains of the NAPTC Test 201 steel Containment Ring444

35 Comparison of Finite-Strain vs. Small-Strain Predictions for the Deformed Configuration and for the Inner-Surface and Outer-Surface Circumferential Distributions of Circumferential Strain at TAII $=1180 \mu \mathrm{sec}$ for the NAPTC Test 201 steel Containment Ring

Schematic of a 6061-T651 Aluminum Narrow-Plate Model Subjected to Midspan Perpendicular Impact by a One-Inch-Diameter Solid Steel Sphere

Plate-Element Mesh Selections Used to Model the QuarterPlate of Steel-Sphere-Impacted 60f i-T651 Aluminum Narrow-Plate Specimen CB-18

Measurements and/or Predictions of Transient Longitudinal Green (Lagrangian) Strain on the Surface for Various Spanwise Stations of Steel-SphereImpacted 6061-T651 Aluminum Narrow-Plate Specimen CB-18

Predicted Transient Deflection at the Midspan Station ($Y=0$) of steel-Sphere-Impacted 6061-M651 Aluminum Narrow-plate Specimen $\mathrm{CB}-18$

Figura

		Page
40	Finita-Elomont Prodictiona of Support Reactionn of Sten1-Sphere-Impactod Narrow-Plato CB-18	471
41	Moasuromonts and/or Prodiction of Transiont Longitudinal (iroon (Lagrangian) Strain on the Surfaco for Various Spanwiso Stations of Stoel-Sphoro-Impactod 6061-T651 Aluminum Narrow-Plato Specimen CB-18	474
42	Comparison of Predictions and Measurements of the w-Displacement at Various Spanwise Stations of Steel-Sphere-Impacted 6061-T651 Aluminum NarrowPlate Specimen CB-18	481
43	Coarse-Mesh vs. Refined-Mesh Plate-Element FiniteStrain Predictions of the Transient Plate-Center Displacement w of Steel-Sphere-Impacted 6061-T651 Aluminum Narrow-Plate Specimen CB-18	487
44	Coarse-Mesh vs. Refined-Mesh Plate-Element FiniteStrain Predictions of Transient Longitudinal Green (Lagrangian) Strain on the Surface for Various Spanwise Stations of steel-Sphere-Impacted 6061-T651 Aluminum Narrow-Plate Specimen CB-18	488
A. 1	Nomenclature for Geometry, Coordinates, and Displacements of a Curved-Beam Finite Element	516
A.	Geonetry and Nomenclature for a uniform-Thickness Rectangular Plate Element	17

Tablo P19gO1 Comparifoon of Notationn Fmployod in Difforent fooknand Paporet369Rotor Wrim-llub Iurat Againat a stool Containment Ring371.

Comparinom of Notationt Rmploynd in Difforont Hookn and Baporetstations Mlom yan and principal sitains at soluotodLidement-Centex Locations of Panel (r-a372
EL-Sil-SR predicted Upper-Surfaco $\gamma_{1}^{\frac{1}{1}}$ strains at NodalStations Along $\gamma=0$ and Principal strains at SelectedElement-Conter Locations of Fanel CP-2374
Finite-Strain prediction of the Maximum Prinoipal Strainsand Associated Directions on the Upper Surfice at theConter of Cortain Elements of Explosively-Impulsed6061-T651 Thin Aluminum Panel CP-2376

LILT OF SYMBOLS

Symbol	Dafinition	Page
a	Dotominant of the roforonco surfaco motrite tonsor in tho roforanco configuration	1.76
${ }^{\alpha}{ }_{\alpha \beta}$	Motric tonsor covarlant compononto of the roferonce surfaco in the roferonco configuration	176
$a^{\alpha \times 3}$	Samo as above but contravariant compononts	176
\bar{a}_{α}	Covariant base vectors of the reference surfaco in the reference configuration	175
$\mathrm{a}^{-\alpha}$	Same as above but contravariant	176
A	Cross-sectional area in the present configuration	90
dA	Differential element of area in the present configuration	51
A	Determinant of the reference surface metric tensor in the present configuration	176
A_{0}	Cross-sectional area in the reference configuration	91
dA_{0}	Differential element of area in the reference configuration	51
${ }^{\text {A }}{ }_{t}$	Boundary surface area in the reference configuration with prescribed surface traction $\overrightarrow{\mathrm{t}}$	232
A_{s}	Weighting factor of sublayer s in the mechanicalsublayer model of plasticity	117,123
${ }^{A} \alpha^{\beta}$	Metric tensor covariant components of the reference surface in the present configuration	176
$A^{\alpha \beta}$	Same as above but contravariant components	176
\bar{A}_{α}	Covariant base vectors of the reference surface in the prosent configuration	176
$\bar{A}^{-(\chi)}$	Same as above but contravariant	176

Symbol	Dafinition	Page
$\left(\mathrm{c}^{-1}\right)^{i \cdot 1}$	Contravariant components of the inverno of the CauchymGroon Doformation Tonsor at the roforence surface in the raforonco configuration	204
d	Matorial strain-rato conotant (viscosity coofficient)	122
${ }^{8}$	Material atrain-rate constant (viscosity cocfficient) of sublayer s in the mechanical-sublayer model of viscoplasticity	119
$\overline{\mathrm{D}}$	Rate of Deformation Tensor (also called stretching)	44
D_{J}^{I}	Mixed components of the Rate of Deformation Tensor in convected coordinates in the present configuration	45
spp	Plastic part of the Rate of Deformation Tensor, pertaining to sublayer s of the mechanical-sublayer model of plasticity	118
$\mathrm{s}={ }^{\text {c }}$	"Elastic" part of the Rate of Deformation Tensor, pertaining to sublayer s of the mechanical-sublayer model of plasticity	117
= ${ }^{\text {D }}$	Deviatoric part of the Rate of Deformation Tensor	119
D_{u}	Uniaxial component of the Rate of Deformation Tensor	89,125
e	Almansi Strain Tensor, also called Eulerian Strain Tensor	40
E	Young's (elastic) modulus	124
E_{u}	Axial relative elongation, also called engineering or nominal strain	87
$\mathrm{E}_{\mathrm{S}}^{T}$	Tangent modulus associated with sublayer s of the mechanical-sublayer model of piecewise-linear plasticity	124

Symbo 1	parinition	Pago
雼	Fourth-ordor "Elantic" (Stiefnose) Tonsor	122
	Fourthoordor "Elantle" (stiffnoff) Tonnor portaining to mubiayor, a of tho mechandoal-aublayor modod of piooowinominoar plantilelty	11.7
$\mathrm{E}_{\mathrm{KI}}^{\mathrm{IJ}}$	Mixed componenter of tho fourtlimordor "Elantic" (Stiffnoss) Fonoor in convected coordinatos in tho prosont configuration	206
\{f]	Individual finite olement generalized load vector expressed in local coordinates accounting for externally-applied distributed or concentrated loads and body forces	243
$\left\{f^{*}\right\}$	Same as above but expressed in terms of global reference coordinates	244
\{F\}	Same as above but pertaining to the complete (global) finite element structure: the sum of the individual finite element contributions	246
$\left\{\mathrm{F}_{\mathrm{q}}^{\mathrm{NL}}\right\}$	Global pseudo-load vector arising from the nonlinear terms in the strain-displacement relations in the conventional formulation of the equations of motion	247
$\left\{\mathrm{F}_{\mathrm{p}}^{\mathrm{L}_{\mathrm{p}}}\right\}$	Global pseudo-load vector due to plastic strains, and associated with the linear terms of the straindisplacenent relations in the conventional formulation of the equations of motion	247
$\left\{\mathrm{F}_{\mathrm{p}}^{\mathrm{NL}}\right\}$	Same as above, but associated with the nonlinear terms of the strain-displacement relations	247
$\left\{\mathrm{F}^{\mathrm{NL}}\right\}$	Global psoudo-load vector representing internal. forces arising from (small and finite) elastic-	

Symbol	Definition	Pago
	plaptio strains as woll as all (linoar and nonlincar) torme of the etrain-dinplacoment relationn, in tho modifind unconventional formulation of tho oquations of motion	269
P	Doformation Gradiont ronoor	30
g	Detorminant of the fundamontal motric tonsor in the referonce configuration	27.179
$9_{i j}$	Covariant components of the fundamontal metric tonsor in the reforence conflguration	27
$g^{i j}$	Same as above but contravariant components	27
\bar{g}_{1}	Covariant base vectors of the body-fixed (convected) coordinate system in the reference configuration	26
\bar{g}^{i}	Same as above but contravariant	26
G	Determinant of the fundamental metric tensor in the present configuration	27
G_{IJ}	Covariant components of the fundamental metric tensor in the present configuration	27
$G^{\text {IJ }}$	Same as above but contravariant components	27
${ }_{\mathbf{G}}{ }_{I}$	Covariant base vectors of the body-fixed (convected) coordinate system in the present configuration	27
$\bar{G}^{\mathbf{I}}$	Same as above but contravariant	27
h	Mean curvature of the reference surface in the reference configuration	178
[h]	Individual finite element pseudo-stiffness matrix expressed in local coordinates arising from elastice plastic strains as well as the nonlinear terms of the strain-displacement relations, in the unconventional form of the equations of motion	243

Symbol	pefinition	Page
$\left[h^{*}\right]$	Same an above 'but oxpronaod in tarms of global reforence goordinataf	244
${ }^{1}$	Rogarithmic atrain tonfor, alno angociated with the namo of Honcky	42
$\mathrm{H}_{\mathrm{J}}^{\mathrm{I}}$	Mixod compononto of tho logardehmic arradn toneor胃, in the body-fixod convootod coordinato syatem in tho prosont configuration	4.1
$\left.{ }_{\left(H_{J}\right)}^{I}\right)^{e}$	Samo es above but pertaining to the claptic component of the strain of the s sublayer in the mechanical-sublayer model of plasticity	167
$s\left(H_{J}^{I}\right)^{p}$	Same as above but pertainiag to the plastic component of the strain of the s sublayer in the mechanical-sublayer model of plasticity	167
\{1\}	Individual iinite element pseudo-load vector expressed in local coordinates, representing all of the internal forces arising from elastic as well as plastic strains and the linear as well as the nonlinear terms of the strain-displacement relations in the unconventional form of the equations of motion	244
$\left\{i^{*}\right\}$	Jame as above but expressed in terms of global reference coordinates	244
\{I\}	Same as above but pertaining to the complete (glopal) finite-element structure: the sum of the individual finite element contributions	245
$\mathrm{I}_{2}^{\text {D }}$	Second invariant of the deviatoric rate-ofdeformation tensor	128
${ }^{s_{1}}{ }_{2}^{p}$	Second invariant of the plastic part of the rate-of-deformation tensor of sublayer s of the mechanical-sublayer model of viscoplasticity	128

Symbal	Dofinition	Page
J_{2}	Socond invariant of the doviatorio atreas tannor	104
\mathbb{B}_{2}	Socond invardant of tho doviatoric Kirchhoff atrona tonnox of \& 'gayor f of the mochandandaublayor modol of vincoplantloity	128
k	Gaunalan curvaturo of tho roferonen aurfaco in tho roforoneo confleuration	278
[k]	Individual finito ...omont conotant stiffnoco matrix exprossod in local coordinatos arising from linear olastic effects in the conventional form of the equations of motion	247
[k^{*}]	Same as above but expressed in torms of global reference coordinates	247
[K]	Same as above but pertaining to the complete (global) finite-element structure: the sum of the individual finite-element contributions	247
$\left[k^{T}\right]$	Individual finite element tangent (variable) stiffness matrix arising from elastic as well as plastic strains and the linear as well as the nonlinear terms of the strain-cisplacement relations in the tangent stiffness foru of the equations of motion	251
$\left[K^{T}\right]$	Same as above but pertaining to the complete (global) finite-element structure: the sum of the individual finite-element contributions	250
K	Gaussian curvature of the reference surface in the present configuration	178
$s_{k_{0}}$	Yield stress in pure shear, under static conditions of sublayer s in the mechanical-sublayer model of plasticity	128

Symbol	Dafinition	Page
ℓ	Axial length in the prement aonfiguration	81.
$\dot{\mathbf{R}}$	Materdal rata of l	81
ℓ_{0}	Axial longth in tho roforengo (ordqinal or undoformad) conflduration	81.
m	Mana	53
[m]	Individual giniteoolmont mang matrix oxprobeod in local coordinatos, ardatng from inoxtial offocts in tho oquations of motion	242
$\left\lfloor\mathrm{m}^{\star}\right\rfloor$	Samn as above but oxprosbod in terms of global. referonce coordinatos	244
[M]	Same as above but pertaining to tho complete (global) finite-element structure: the sum of the individual finite-olement contributions	245
\bar{n}	Unit normal base vector to the reference axis in the reference configuration	137
$\overline{\mathrm{n}}$	Undt normal base vector to the reference surface in the reference configuration	174
$\stackrel{\sim}{N}$	Unit normal base vector to the reference axis in the present configuration	137
$\overline{\mathbf{N}}$	Unit normal base vector to the reference surface in the present configuration	175
$\left\lfloor N_{i}\right\rfloor$	Assumed interpolation vertor function for assumed displacement u_{i}	236
p	Material constart in Uxrainmrate power law	122
${ }^{8} \mathrm{p}$	Same as above but pertaining to sublayer s of the mechanical-sublayer model of viscoplasticity	119

Symbol	Definition	Page
\{p\}	Individual finitemelement paeudo-load vector axpreased in lacal coordinatea, reproanating intornal forcon ariating from olastio as woll as plantla straing and linoar as wald an nonlinoar torme of the ntrain-dinplaconont rol,ationn in tho unconventionad.	
$\left\{p^{*}\right\}$	form of tho oquationn of motion Same an abovo but oxprooned in tormn of globad rodoroneo coordinatog	243 244
(a)	Voctor of nodal gonoralizod dipplacomonte dofinod in terms of tho locil coordinate aystom of oach Einito olomont	236
\{a	Vector of independent global genoralizod displacoments defined in terms of global raforence coordinates for the structural system as a whole	24
$\left\{\right.$ *** *	Material rate of $\left\{q^{*}\right\}$; the vactor of independent global generalized velocities	243 265
$\left\{\ddot{q}{ }^{*}\right\}$	Material rato of $\left\{\ddot{q}^{*}\right\}$, the vector of independent global generalized accelerations	265 243
$\bar{\square}$	Position vector from the oxigin of the fixed-inspace (inertial) system to the material point inder consideration, in the reference configuration	26
\bar{r}_{0}	Position vector from the origin of the fixed-inspace (inertial) system to the curved beam reference axis, in the reference configuration	137
r_{0}	Position vector from the origin of the fixed-inspace (inertial) system to the shell reference surface, in the referenco configuration	174
R	Position vector from the origin of the fixed-in space (inertial) system to the material point under consideration, in the present configuration	26

Symbol	pefinition	Page
\bar{R}_{0}	Pasition vaotor from the origin of the fixod-inapaen (inortinl.) ayetem to the aurved homam raferanco axita, in the profiont aonfigufation	137
\widetilde{R}_{0}	position vaotos fron tho origin af the fixad-inapace (Anoredad) nyntom to tho ahodi, roforonan auxifaco, in tho pronont confituration	175
dis	Difforontal inno olomont in tho poforanco conflguration	37
CL	Difforontial inno olumont in tho progont configurazion	37
8	Doformod arc longth	146,149
号	Second Piola-Kirchhoff gtreas	54
S	Material rate of the sucond fiola-Kirchhoff gtress	117
$s^{1 j}$	Contravariant components of the Second Piolam Kirchhoff stress, in the body-fixed (convected) coordinate system in the reference configuration	54
$\dot{s}^{\text {ij }}$	Material rate of $\mathrm{s}^{\text {i.j }}$	75
t	Time	24
t_{0}	Reference or initial time	24
u	Displacement component of the displacement vector of the reference surface of the plate or shell, In one of the body-fixed convected coordinates that defines the reference surface	189
$\stackrel{\rightharpoonup}{4}$	Displacement vector	28
\bar{u}_{0}	Displacement vector of the reference axis of the curved beam	139
\bar{u}_{0}	Displacement vector of the reference surface of plate or shell	175

Symbol	Definition	Page
$\overline{\bar{u}}$	Fight gtratch Tenmar	36
$\begin{aligned} & \mathrm{o} 2 \\ & \mathrm{u}_{2} \end{aligned}$	Mixed componont of tho right atretch tennor at the reforenco aria	140
U	Intornal anorgy	76,231
du	Virtual wask of the intornal ntroanen	231
翑	Plantic powor por unit mann of aublayor a in tho mochandcalmbublayor moded of viocoplantidety	120
\bar{v}	Volod ty vactor of matorial pointo of a moving continuum (matorial timo derivative of tho dieplacement vector)	29
v	Displacomont component of tho displacoment vector of tho reforenco axis, in the body-fixed convected coordinate that defines tho reference axis of tho curved beam	139
v	Displacement component of the displacement vaetcr of the reference surface of the plate or shell, in one of the body-fixed convected coordinates that defines the reference surface	189
v	Left stretch tensor	36
v	Volume in tile present configuration	53
ν_{0}	Volume in the reference (initial or undeformed) configuration	53
w	Displacement component of the displacement vector of the reference axis, in the body-fixed convected coordinate perpendicular to the reference axis of the curved beam	139
w	Displacemont component of the displacement vector of the relerenco surface of the plate or shell, in	

Symbol Definition Page
the body-fixed convaoted coordinata porpandicular to tho raforanco aurfaoo 18.5
Virtual work done by tho oxtornal forcen (body forcos and durface tractions) 231
Matorial (Lagrangian) roctanguiar Cartosian coordim nate dofining the roforonco surface of the plato 189Matorial (Lagrangian) coordinates belonging to thefixed-in-space (inertial) rectangular cartesiancoordinate systom defining the position of thepoints of the continuum in the reference configura-tionSpatial (Eulerian) coordinates belonging to thefixed-in-space (inertial) rectangular Cartesiancoordinate system defining the present positionof the points of the continuumMaterial (Lagrangian) rectangular Cartesian coordi-nate defining the reference surface of the plate189
$\alpha$$\alpha$
Parameter in the strain-displacement relations for curved beams related to changes in the thickness or in the lateral dimensions due to finite membrane strains
Expression appearing in the bending strain part of the strain-displacement relations for plates193
parameter in the strain-displacement relations for curved beams related to changes in the thickness or in the lateral dimensions due to finite membrane strains
Expression appearing in the bending strain part of the strain-displacement relations for plates

Symbol	Definition	Paga
$\stackrel{\rightharpoonup}{\gamma}$	Graon (Lagrangian) strain tennor	38
$\stackrel{\dot{\mu}}{\gamma}$	Matorial rate of tho Groon (Lagrangian) Atrain tonzor	46
$\gamma_{1, j}$	Covariant emponents of the Groon (Lagrangdan) strain tonmor in the body-fixad convocted coordinate sygtem in the roferonco configuration	39
$\dot{Y}_{i j}$	Material rate of $\gamma_{i f}$	46
$\stackrel{\stackrel{\ominus}{\gamma}}{2}$	Mixed component of the Green (Lagrangian) strain tensor at the body-fixed reference axis of the curved beam in the reference configuration	140
$\stackrel{\circ}{\gamma}_{\alpha \beta}$	Covariant components of the Green (Lagrangian) strain tensor at the body-fixed reference surface of the plate or shell, in the reference configuration	188
síre	"Elastic" part of the material rate of the Green (Lagrangian) strain of sublayer s of the mechanicalsublayer model of viscoplasticity	208
$\operatorname{s\dot {\tilde {j}}\mathrm {p}}$	Plastic part of the material rate of the Green (Lagrangian) strain of sublayer s of the mechanicalsublayer model of viscoplasticity	208
ε_{u}^{*}	Uniaxial logarithmic (natural, true, or Hencky) strain	88
$\dot{\dot{E}}_{\mathbf{u}}^{*}$	Material rate of E_{u}^{*}	89
${ }^{\mathbf{s}_{\mathrm{u}}^{u}}$	Coordinate " s " of the uniaxial logarithmic strain ε_{u}^{*} in the plecowisu-1inoar approximation of the static stross-strain curve for tho muchanicalsublayer model of plasticity	123

Symbol	Deilnition	Pago
5°	Lagranginn, matarial, on ambodded aoordinate that meanuras tho distance along an outwardly-dirocted normal to tho roferenco axis of the curved boam, in the reforonce configuration of the body-fixed systom	136
r^{0}	Lagrangian, matorial, or embeddod coordinato that measures the distance along an outwardiy-directed normal to the reference surface of the plate or shell, in the reference configuration of the bodyfixed system	174
η	Lagrangian, material, or embedded coordinate that defines the (curvilinear) reference axis of the curved beam, in the reference configuration of the body-fixed system	136
η	Expression appearing in the bending part of the strain-displacement relations for plates	193
θ	Rotation angle of a material point at the reference axis of the curved beam	145
λ	parameter associated with the thickness change of the curved beam because of finite strains	137
λ^{*}	Parameter associated with the thickness change of the curved beam because of finite strains	137
λ_{0}	Parameter associated with the thickness change of the curved beam because of finite membrane strains	158
λ	Parameter associated with the thickness change of the plate or shell because of finite strains	175
λ_{0}	Parameter associated with the thickness change of the plate or shell because of finite membrane strains	184

Symbul	Definition	Pago
$\dot{\lambda}$	Scalar faotor of proportionality (not a matorlal comatant) in plantioity	1.05
${ }^{3} \lambda$	scalar factor of proportionality (not a matorial eonatiant: dorropponding to mublayor fin tho mochaniona-bublayor model of vincoplanticity	118,121
${ }^{8} \lambda^{*}$	--	216
μ	Paramoter in tho strain-displacoment rolations for curvod beams associated with changes in the thickness or lateral dimensions because of finite membrane strains	165
μ	Expression appearing in the bending part of the strain-displacement relations for plates	193
v	(Elastic) Poisson's ratio	127.:06
ξ^{i}	Lagrangian, material, or embedded curvilinear coordinates which identify the material points of the medium, in the body-fixed system	25
5^{α}	Lagrangian, material, or embedded curvilinear coordinates which define the reference surface of the plate or shell in the body-fixed system	1.74
ρ	Mass density of the material in the presont configuration	53
p_{0}	Mass density of the material in the referenco (initial or undefomed) configuration	53
$\overline{0}$	Cauchy stress tensor, also called Eulurian stress tonsor	52
v_{E}	Uniaxial engineoring stross, also called nominal or lat piola-Kirchboff atross	95
${ }^{\prime} \mathrm{T}$	Uniaxial "true" stress, also called Cauchy stress	91

Symbol	Definition	Page
T	Kirchhoff atresa tensor	52
${ }^{\mathbf{R}}$	Same as above, but portaining to aublayor s of tho mechanical-sublayor model of viscoplanticity	117
兑	Co-rotational (Zaromba-Jaumann) rate of the Kirchhoff stross	74
s菏	Same as above, but pertaining to sublayer a of tho mochanical-sublayor model of viscoplasticity	117
Sp	Deviatoric part of ${ }^{\boldsymbol{8}} \boldsymbol{\tau}$	118
${ }^{\mathbf{s}} \tau_{J}^{I}$	Mixed components of ${ }^{\boldsymbol{g} \mathbf{x}}$ in the present configuration of the body-fixed convected coordinate system	201
$\mathrm{s}_{\mathrm{T}}^{\mathbf{O}} \mathrm{T}$	Mixed components of $\frac{8}{\tau}$ in the present configuration of the body-fixed convected coordinate system	205
τ_{u}	Unlaxial Kirchhoff stress	92
$\mathbf{s}_{\mathbf{T}} \mathbf{Y}$	Rate-dependent uniaxial yield stress of sublayer s in the mechanical-sublayer model of viscoplasticity	119,125
${ }^{s} \tau_{u_{0}}^{Y}$	Static (rate-independent) uniaxial yield stress of sublayer s in the mechanical-sublayer model of plasticity	119,124,127
${ }^{s} \tau_{u_{0}}$	Coordinate "s" in the plecewise-linear approximation of the static stress-strain curve for the mechanical-sublayer model of plasticity	123
Φ	Yield surface (boundary in stress space which defines the elastic domain in the theory of plasticity)	103

Symbol	Dafinition	Pago
${ }^{\circ}{ }_{\phi}$	Yiold surface in Kirchofe strons apace of the a sublayex in the mochanical nublayor modol of viscoplasticity	1.218
X	Displacomont gradiont for curvod boams	140
ψ	Displacement gradient for curved boams	140

The torminology "mechanical-sublayer model of plasticity" and "mechanicalsublayer model of viscoplasticity" has been used interchangingly according to whether the quantity in question was considered as rate independent or rate dependent, respectively.

Definition of the Table 1 Symbols Used in This Report

| \bar{D} | Rate-of-Deformation tensor, also called stretching |
| :--- | :--- | :--- |, 44

pofindition

Page

Mixed componenta of tho double tonsor T_{T} in tho body-fixod convoctod coordinato aystom in tho roforonce and pronont conflqurations57

Roctangular cartosian compononts of the doublo tonsor ${ }^{\text {T }}$ in the fixed-in-spaco (inortial) coordinato systom in tho roforence and present configurations

Tho objoct of the inveatigation raportad heroin was to devalop a mothod of analyain far thin structures (boamr, ringe, platoa, and sholids) that incorporatos finito strain, olastic-plastic, atradn-hardoning, timo-dopondont. matorial bohavior implomontod with roapoct to a fixad roforenco configuration (total Lagrangian foxmulation) and is consintontly valid for finito strains and finito rotations.

Tho theory is formulatod systomatically in a body-fixod systom of convocted coordinatos with materiallymombodded vectors that deform in common with the continuum. Tonsors are considored as innar vector functions, and use is made of the dyadic represontation (instaad of simply considering tensor as a collection of compononts) because these conciso tools are helpful to clarify the physical laws under which matorials deform. The kinematics of a quantities necessary is treated in detail, carefully defining precisely all quantities necessary for the analysis.

The finite atrain plasticity theory of Hill is extended to include very complex material behavior (like the Bauschinger effect and stiain rate dependence) by means of the "mechanical sublayer method". This plasticity theory is referred to quantities associated with a Eixed reference configura tion by means of proper transformations.

Strain-displacement equations for bearns, rings, plates, and shells, valid for finite strains and rotations and including thinning effects are derived.

A new constant stiffness formulation of the finite element equations of motion is developed. This new formulation is more efficient computationally and better conditioned numerically than the conventional pseudo-force formulaof any kind of valid only for small-strain elastionventional pseudo-force formulation is
plastic materials.
The predictions of the finite element computer piograms that incorporate the finite-strain elasticioplastic time aependent theory developed are compared with experimental data conducted at the MIT-ASRL and the Picatinny Arsenal. These include impulsive loading of beams, rings, and plates, and impact tests of steel spheres against aluminum beams and plates.

The results from the finite-strain analysis are compared with the results from the small-strain theory of plasticity to ascertain the range of v.idity of small-strain theory for the nresent kind of problems.

It is shown that, for the problems investigated, the finite-strain theory developed in this report gives much better predictions and agreement with experiment than does the traditional small-strain theory, and at practically no additional cost. This represents a very significant advance in the capablility for the reliable prediction of nonlinear transient gtructural responses, including the reliable prediction of strains large enough to produce ductile-metal rupture.

SECTION 1

INTRODUCTTION

1. 1 Background

Concorn for tho ablility of atructuron to withetand axtromo loadings aesootatod with aocidont oonditiona in rocoiving inoroanod attontion lirom onginonrs. To dotermino tho degroo of eafoty angociatod With tho ability of thoir dosigns to suatain damago and absorb onorgy. ongineors must now study the dynamic laxgo-dofloction alastic-plaotic responses of structuros subjoctod to those impact and transient loads which may occur in an accident. For instance, aircraft and aircraft engine designers are now studying the responses of turbojet engine contajnment structures which may be subjected to impact by engine rotor fragments following the potential failure of high-energy rotating engine parts (caused by the ingestion of birds or other foreign objects, low cycle and high cycle fatigue, etc.).

The power industry is concerned with cumponents and equipment of conventional and nuclear powerplants which may be subjected to impact from a wide variety of "internally generated" missiles such as rotor blades, rotor disk segments, pipe or valve segments, etc. or to "externallygenerated" missiles such as tornado-propelled pipes, rods, planks, utility poles, and automobiles, or to impact by aircraft or other such vehicles. Naval vehicles, such as submarines, must be designed to undergo significant transient undersea environmental loadings. Nonlinear transient response analysis is also employed in studies of offshore drilling platforms, response of buildings to seismic loadings, energy-absorbing capacity of automobiles, aircraft crashworthiness design and assessment, etc.

The loadings and/or fragment sizes, masses, geometries, and especially the attendant impact velocities for these "threats" are in an analysis domain quite different from those of "military missiles or loadings". Therefore, the extensive impact, penetration, perforation, and response data which have been collected for the military in experiments on various
motallic, roinforced conorote, or other target matoriala, cannot ancve as a basif for atruotural donign againat tho oited civilian throata.

Although many ntructuron may bo donignad to withatand anvore loadf by incroaning thotr bulk, the adaltion of axconnivo woight may introduco novorn oconomic ponaltion or dogradation in porformanon for many applitam thonn, for offigannt minimum woight dondgn, dit lif thon nogonnary to takn bottor advantagn of tho onorgymabnorbing apacition of matordaln by pormitting thom to undorgo largo plantio atralne and doformationf. Tho complox and nonlinoar character of auch atructural problomis, howovor, makue it imposadblo to dovalop a clandcal analytical oolution, and attention has been directod at approximato mothods. Tho computor has provided a practical means of obtaining meaningful pradictions for these types of complex problems, and corresponding numerical analyais procedures have been doveloped and expanded.

In order to provide detailed transient response data of the high resolution and accuracy required for a definitive assessment of the varioue predictive methods, a variety of impulsive loading and impact experiments has been conducted at the MIT-ASRL, including impact tests of steel spheres against or impulse loading of aluminum beams [1]* and aluminum panels [2]. The missiles and targets introduced in these experiments pose well-defined impact configurations and conditions for which transient strain, permanent strain, and permanent deflection data of high quality have been obtained. These test conditions have included impulse loading or impact velocities sufficient to produce responses of various severities up to and including threshold rupture conditions; often finite strains well beyond the "small strain range" were observed.

To date, an accurate and rational accounting of theoretical transient structural response prediction methods capable of incorporating the effects of large strains and deformations in metallic structures subjected to impact or impulse loading has not been demonstrated. No comparisons betwoen small strain theory predictions and finite strain theory results

[^1]have been found in the literature to ascertain the range of validity of small atraln thaory.

The compartsonf of predictions ve, expertmente in the litaratire unually involyo only dinplacomonta. With one axcoption $[31$, no compartinonf have boon found which nhow gtraln mofulta va. oxporimontal moanuromonto for ftrainn that axn outalan tho "madil ntrain" range. it in to bo notod that difflagemont monultif are a much pooser banda of ontablinhing tho valdaty of a findto olomont fommation that tho uno of disoot ritadn comparinonn. Etridinn tnvolve anclvation of dinplacomonta and, honce, aro a much finor moanuro of accuracy of numorieal mothodo. furthormoro, tho Btradne thembolvon aro uoually of primary intoront and olgndifteance. sinco tho stroag-otrain eurvos for many otructural materiala are usually vory f lat in the plagtio range, a amall error in the gtrain will. produce a mallex erxer in the etregs, whereas, a small error in the etregs will produco a much larger exror in the gtrain. for this reason, strainbasod criteria for neoking and fractura are more "sensitivo" and moro roliable than aro stress.based corresponding criteria.

It is evidant that finite strains are present in impulsively-loaded or impacted ductile metal structures deformed to the threshold of rupture. For example, the steel-sphere impacted and explosively-loaded beams and panels reported in Refs. 1 and 2 suffered large strains. Some of them slightly exceeded the rupture threshold, while other specimens experienced large strains but did not rupture. In addition, static uniaxial tensile, compressive, and cyclic loading tests have been conducted at the MIT-ASRL on the same aluminum material employed in the beam, plate, and shell large strain elastic-plastic transient response experiments. These teats revealed that the 6061-T651 aluminum material used for the impulsively loaded and steel-sphere impacted beam and plate specimens fractures at strains that cannot be considered "sma11". The 6061-T651 aluminum test coupons that were machined parallel to the plate-stock roll direction (or longitudinal, " L ", specimens) fractured in static uniaxial tests at relative elongations $E_{u}=0.8$, where $E_{u}=\frac{\ell_{f}}{\ell_{0}}-1, \ell_{f}\left(\ell_{\sigma}\right)$ being the final
(initial) gaga length. Large permanent strains (recorded using mochandoally lidghty-acribed marka) in the impulaivelympaded and stond日here impacted plates reached $E_{u} \approx 0.3$ for the apecimonn that were at the rupture throshold.
nocogniaing that finite ntrain affacta aro pronont in thom problome, roliable prodiotlonn domand that nuch offoctn be Inoludnd rationality and proporely in tho amilynita.

Vardoun fosmulationn havo boon mmphoyd to tenat nondinoar fentala and/os dynamde problomo dnvolving Lazqu wotatdonn, Largo baradnn, and path-indopondont or path-dopondont matordal nondinoardedoof voo for oxample, tho axticion of Batho ot al. [4]. Nomat-Naouor [5], and strieklin and Haloler [6], All of those fomulations uoe oithor throo-dimonolonal continuun equations (most of thom reatrdetod to plano strain, plano otroge, or axisymotric solides or the mombxane theory of plates and shollo (rootrictod to very thin oholis). Furthomore, only laotropic and/or Kinematic hardening rulos aro prosont in theso finitomatrain elasticplastic formulations, and it soems that none of the computer implementations of these formulations employ a (total Lagrangian) Eixed reference configuration for the analysis of finite-atrain plasticity.

Of course, the strain-displacement equations which are valid for finite strains and large displacements of a three-dimensional continuum ${ }^{a}$ have been known for more than a century [7, page 270] being due to. Cauchy [8,9,10 and 11, for example] who fulily elaborated the theory of small strain, obtaining it by specialization from his general theory of finite strain. The history of the membrane theory of plates and shells goes back to tile eighteenth century [12]. However, the equations for large strains of thin bodies involving both membrane and bending effects are more difficult to derive and are not found in explicit form at least in the readily accessible engineering literature. Koiter [13, page 2]
a: And, consequently, the even simpler strain-displacement equations of a three-dimensional continuum under the simplifying assumptions of plane strain, plane stress, or axisymetry are also well known.
recognizes that the strain-displacement relations for large dofiections ${ }^{a}$ of shella are "extromely oomplicatad". It in the proanco of seand dertvativoa and tho largor numbor of torma in curvod boamn, platon, and aholla that rontriota the axtonaiua litarature in findte atrain analyala to tho oguationa of throandimonatomad oontinua and thoir fimplifiad voradonf, of toomomann thoory. Thn only mothod of analyaln of tranatont,

 to Lo tho FPTROG [14-2d] 'fosion of oodun dovolopod in tho portod 1960-107!.

Jhoro aro many eundimontal differoneol botwoen tho Eomulationo uood In tho pronont otudy and that od tho oaxdioz work of pwrios. Thu prouent oguations aro golvod by tho apatial findtomolumont mothod while Elikos du a opatiad findto-dieforonco computor eodo. Also, adi of tho equationo in tho presunt analysis aro oast in the roforuntial description of motion taking a fixod (indepondunt of time) placoment as rieferonee, whille perroos usos essuntially tho presont ${ }^{\text {d }}$ placomont as the reforenco. Also, these two analysea differ in the type and implementation of finita strain plastieity theory used.
a: Kolter defines "lartge deflactions" as being charactardzod by the absence of restrictions as to tha magnitude of the displacoments, which is different from the engineering definition of "large deflections" -usually understood as deflections larger than the thickness of the thin body but smaller than its spanwise dimensions.
b: still called the Lagrangian degeription of motion, especially by hydrodynamicists, although it was first introduced by Euler.

C: The choice of this reference placement is arbitrary, it can be any configuration that the body has or might occupy, but usually one chooses the original, undeformed configuration. Truesdeli [22, page 79] writes about the referential description: "Some form of it is always used in classical elasticity theory, and the best studies of the Eoundations of classical hydrodynamics from Euler's day to the present have employed it almost without fail".
d: Truesdell calls it the "relative" description [22, page 89] and it should not be confused with the spatial description of motion, known as "Eulerian" by hydrudynamicists.

Bettor choicos of strana and atrans rate are made in thr prosent analyaia. In the pant two deardes the numbor of publications concorned with finite strain plantidity haf grown eromondousiy and algnificant ndvancon have beon mado in the finld of conntitutive oquations. The pronent ntudy providos a morn syentomatic and conflitont pronontation, formulation, and implomontation of tho concopts involvod than has boon found in the tochnical litezuture. On tho othor hand, tho following usoful foatures Of PETROS: (1) tho strain-rato dopondont mochandcal-aublayor-model for time-dependent plasticity (the present analysis, however, does not include relaxation effects and is restrictod to isothermal conditions) and (2) a body-fixed gystem of convected (intrinsic) coordinates, axe employed in the present analysis.

1.2 Purpose of the present Study

The present work extends to the realm of finite strain the work done by the MIT-ASRL on developing finite difference methods [14-21] and finite-element methods [23-31] of structural analysis to predict largedisplacement, elastic-plastic transient response. The object is to develop a finite element analysis for thin structures (beams, rings, plates, and shells) that incorporates Einite-strain, elasticmplastic, time-dependent material behavior implemented with respect to a fixed reference configuration, and is valid for finite strains and rotations. The results obtained from this analysis are compared with experimental datz as well as with results obtained from "small strain" largedisplacement analysis in order to ascertain the range of validity of the "small strain" approximation.

1.3 Synopsis of the present study

Section 2 contains the concepts that are necessary for the development of a general finite strain theory for thin bodies with path-dependent and time-dependent material nonlinearities. The theory is systematicaliy rormulated in a body-fixed system of convected coordinates with materially-embedded vectors that deform in common with the continuum. A parallel development is presented in the traditional fixod-in-space

Byatom of conntant voctors omployod in the large majority of books in continuum moohanion. Aftox a vory brinf rofronhor of tonnor analyfib, tho kinomation of a deformable continum aro treatod in mome dotail, dafininy duformation and itrain tomporn and thode raton, an woll an forom tomorn and tho difforent ntrome raton that ado obtadnod acoording to alfforont obourvori.

Many pitfadin in tho anadymon of varioun invomticjationm aro fimbleatod. A vory important point that has boon conniatontily moglootod by many analystes and computor brograme is to indicato prodboly in what form tho comtitutivo proportios havo to ba input. Most invostigatora after an olaborate treatment of a gonoral theory in tonsor notation, Leave undefined tho constitutivo equations to bo measured in the laboratory, In Subsection 2.5 the homogencous uniaxial irrotational doformation of a continum is treated, with at least two purposes in mind: (1) to give a clear physical understanding of the quantitios involved in the analysis (which is not possible to obtain through the tensor index notation) and (2) since the most common material tost is the uniaxial test, to identify precisely what are the quantitics that one should measure in the laboratory (as woll as how to express these data to conform with tho constitutive equations used in the theoretical material model).

The general form of the constitutive equations employed in the analysis is presented in section 3.

In Sections 4 and 5 , the previous developments of sections 2 and 3 are utilized to derive consistent strain-displacement equations and constitutive equations which are valid for finite strains and rotations of thin bodies. Some of these equations seem to be original (have not been found in the literature by the authors).

Discussed in proper perspoctive in section 6 are the different forms of analysis currently utilized to analyze transiont rosponse problems with material and goometric nonlinuaritios, as well as several differont timowise finite difference operators usod to integrate the transiont rosponso equations. Also, the form of analysis utilizod in the computer program and the solution of the governing oquations are discussed.

In Soction 7 tho prodictions of the finito oloment computer programe that incorporate the finitomerain olastio-plastic timo-dopondont theory doveloped in the provious noctione are compared with oxporimental data for canes of impulaivo loading as well as impact loading that producod - tranaiont nonlinear atructural rosponses. It in shown that for the probleme invostigated, the finito straln theory dovelopod in this report givos much botter prodictions than tho traditional small strain theory -- and at no additional cost. These probleme contain the nonlinoar path-dependent and time-dependont response charactoristics typically experienced by ductile metal structures when full advantage is taken of their.energy absorbing capacities.

The entire study is summarized and pertinent conclusions are drawn in Section 8.

Finally, those readers who are interested in the principal results obtained and a discussion of those results (without the developmental details) need read only Sections 7 and 8.

SECTION 2

GENERAL FORMULATION

2.1 Introduation

In thia soction tho concopts, oquations, and rolationshipn necossary for tho numorical analyain of tho transiont atructural. rosponsob of thin bodion with nonlinoar timo-dopondont and path-dopondont matorial behavior as woll an with finite strains and rotations, aro prosentod systomatically and consistontly. Uso is mado of the genoral approach to continumm mechanios that has been responsiblo for tho significant advances in continuum mechanics in the last threo dt des. Reforences that have influenced this write-up are: Truesdell et al. [7,22,32-40], Sedov et al. [41-49], Malvern [50], Jaunzemis [51], Leigh [52], Eringen [53-54], Biot [55], Green et al. [56-58], Prager [59], and Fung [60].

Tensors are considered as linear vector functions, and use is made of the dyadic representation (instead of simply considering tensors as a collection of components) because these concise tools are helpful to Ciarify the physical laws under which materials deform.

The brisf refresher on tensor calculus, Subsection 2.3, follows Malvern [50], Other more extensive references on this subject are the classic works of Schouten [61], Eisenhart [62], McConnell [63], and Synge and Schild [64], as well as the boaks of Sokolnikoff [65] and Willmore [66]. Designed especially for students of continuum mechanics are the monograph of Ericksen [67], the modern treatment of tensor analysis by Bowen and Wang [68], and the clear and lucid presentation by Sedov [41, 42
and 45].

When considering finite defornations, it is essential to distinguish between a present configuration and a reference configuration which for many purposes one identifies as the original configuration. The concept of finite strain admits infinitely many definitions, but only a handful of theso are useful for the solution of general probloms. In the formulation of rate-type constitutive equations, the concopts of stress, stress rate, and strain rate, which admit infinitely-many defintions as well.
havo to bo dofinod proporly. It. turne out that tho ntrain, ntrosa, ntrain rato, and ntann rato moanuros whioh a physicaliymalid thoory of findo doformation of an olantiomplantio continumm unon aro not (unfortumately) tho bamo meanuson wheh aro convoniont for the numosidal computation of tho problom, and that both of thono meanuron (tho moanuron that tho phyadoally-valid thosy and tho numotical wolution mons) aro not tho tamo as tho guantition that ono uaualily moasuron in a laboratory. Honco, it 18 of groat importance to dofinn all of thoso quantition in a consistont and ratiomal way, and to define the rolationshiph that transform one sot of quantities into another. If this ia not dono proporly and consistentily in overy area of analysis (the physical formulation, the numerical analysis of the problem, and the experimental measuroments of the quantitios that are necessary for the solution of the problom), then the results are not going to be fruitful.

Since the theory and analysis used in the present work is of considerable generality, a great many definitions are necessary. The work of laying down the foundations of this analysis has been exhaustive and time consuming. Unfortunately, many of the results present in Section 2 are scattured in a number of references, some of them of difficult access, and other results are just not present in any work.

2. 2 Notation

Scalars (zero order tensors) are identified simply by letters; for example, the volume V, the mass density p, and the mass m.

Vectors (first order tensors) are identified by letters with an overbar: the displacement vector \bar{u}, tha velocity vector \bar{v}, and the position vector $\overline{\mathrm{R}}$.

Second order tensors are identified by lettors with double overbars; for example, the Cauchy stress tonsor ${ }_{\sigma}^{\sigma}$, the Groen (Lagrangian) strain tensor $\vec{\gamma}$, and the spin tensor $\underset{\mathcal{W}}{\mathcal{W}}$.

The scalax components of tensors are denoted by attaching indices to a kernel lotter without ovorbars. Hinis kernel letter is the same lettor used to denote the tonsor quantity. These indices are lowor case letters
whon tho tonaor in oxprosead in enrme of tho baso vectora of tho curvilimoar: coordinato nystom of the roforonco (undoformod or initial) configuration. Thay aro oapital lattors when the tonsor in expreanod in torme of the bano voators of tho curvilinnar coordinato aymtom of the proaent (deformod or curront) configuration. Sinco tho bano voctorg of a roctangular cartosian syatem are constants (with respact to apaco and timo), tho baso voctors of tho Cartosian syatems tho roforonce and prosent configuration are tho samo. Honco, it is an arbitrary choico to assign either lowor casc or capital lottors to the indices of a tensor component in a Cartosian system. Usually this choice is dono according to the most froquently used curvilinear representation of the tensor .

When the components of tonsors are referred to a rectangular Cartesian coordinate system, they are identified by a circumflex sign "^" (a "hat") on top of the kernel letter. Components of tensors referred to a curvilinear coordinate system do not have the circumflex sign (they do not wear hats).

For example $\overline{\bar{A}}$ is a second order tensor; $A_{i j}$ are its components* in a curvilinear coordinate system related to the reference configuration, A $_{\text {IJ }}$ are its components* in a curvilinear coordinate system related to the present configuration; and $\hat{\mathrm{A}}_{i j}$ are $i t s$ components in a rectangular Cartesian coordinate system.

In order to help the reader, Table 1 relates the notation ucilized in this review with the notation utilized in some treatises of continuum Mechanics. The number in parenthesis indicates the page in which the quantity is defined or first appears.

2.3 Review of Tensor Analysis

2.3.1 Vectors

In an n-dimensional vector space any set of n linearly independent vectors $\bar{b}_{1}, \bar{b}_{2}, \ldots \bar{b}_{n}$ is called a basis. Any \bar{v} in the space can be expressed as a uniquo linear combination of the n base vectors of the basis:

[^2]\[

$$
\begin{equation*}
\nabla=\sum_{k=1}^{n} v^{k} \bar{b}_{k} \equiv v^{k} \bar{b}_{k} m v^{\prime} \bar{b}_{1}+v^{2} \bar{b}_{2}+\ldots . .+v^{(n)} \bar{b}_{(n)} \tag{2,1}
\end{equation*}
$$

\]

The coefficients v^{k} are called the contravariant components die., With superscript: k of the vector $\stackrel{t}{ }$ with respect to the basis \bar{b}_{k}. Note that the base vectors \bar{b}_{k} need not be unit vectoring, and they nod not bo orthogonal.

If the Euclidean vector space is referred to a basis, then

$$
\begin{equation*}
\bar{u}=u^{r} \bar{b}_{r} . \quad \bar{v}=v^{s} \bar{b}_{s} \tag{2.2}
\end{equation*}
$$

and then

$$
\begin{equation*}
\bar{u} \cdot \bar{v}=u^{r} v^{s} \bar{b}_{r} \cdot \bar{b}_{s} \tag{2,3}
\end{equation*}
$$

where $\bar{u} \cdot \bar{v}$ is the dot or scalar product of the vectors \bar{u} and \bar{v}.
Let

$$
\begin{equation*}
g_{r s} \equiv \bar{b}_{r} \cdot \bar{b}_{s} \tag{2.4}
\end{equation*}
$$

then it follows from Eq. 2.3 that

$$
\begin{equation*}
\bar{u} \cdot \bar{v}=u^{r} v^{s} g_{r s} \tag{2,5}
\end{equation*}
$$

Note that $g_{r s}$ is symmetric; that is,

$$
\begin{equation*}
g_{r s}=g_{s r} \tag{2.6}
\end{equation*}
$$

since the dot product of two vectors is commutative:

$$
\begin{equation*}
\bar{b}_{r} \cdot \bar{b}_{s}=\bar{b}_{s} \cdot \bar{b}_{r} \tag{2.7}
\end{equation*}
$$

Dual (or reciprocal) base vectors $\bar{b}^{-q}(q=1,2, \ldots n)$ are defined for each given set $\bar{b}_{p}(p=1,2, \ldots n)$ of base vectors in Euclidean vector space as the set of vectors satisfying

$$
\begin{equation*}
b_{p} \cdot \bar{b}^{q}=\delta_{p}^{q} \tag{2.8}
\end{equation*}
$$

where the kronecker delta δ_{B}^{x} is defined by $\delta_{B}^{x}=\left\{\begin{array}{l}1 \text { if rms } \\ 0 \text { if } x \neq \beta\end{array}\right.$
For the important case of ordinary vectors with $\mathfrak{n}=3$ ono can oxprose the dual base vectors \bar{b}^{k} in forme of the original basis \bar{J}_{k} by using the cross product ($\bar{u} \times \overline{\mathrm{v}}$) as follows:

$$
\begin{equation*}
\bar{b}^{1}=\frac{\bar{b}_{2} \times \bar{b}_{3}}{\bar{b}_{1} \cdot\left(\bar{b}_{2} \times \bar{b}_{3}\right)} \quad b^{2}=\frac{\bar{b}_{3} \times \bar{b}_{1}}{\bar{b}_{1}\left(\bar{b}_{2} \times \bar{b}_{3}\right)} \quad \bar{b}^{3}=\frac{\bar{b}_{1} \times \bar{b}_{2}}{\bar{b}_{1} \cdot\left(\bar{b}_{2} \times \bar{b}_{3}\right)} \tag{2.9}
\end{equation*}
$$

If the given basis is orthonormal (composed of mutually orthogonal unit vectors), then $\bar{b}_{1} \cdot\left(\bar{b}_{2} \times \bar{b}_{3}\right)=1$ (for a right-handed system) and the dual basis is identical to the given basis. When the base vectors of the given basis are mutually orthogonal but not orthonormal, then the magnitude of each of the dual base vectors is then the reciprocal of the corresponding base vector in the given basis:

$$
\begin{equation*}
\left|\bar{b}^{k}\right|=\frac{1}{\left|\bar{b}_{k}\right|} \quad \text { where } \quad\left|\bar{b}_{k}\right|=\sqrt{\bar{b}_{k} \cdot \bar{b}_{k}} \tag{2.10}
\end{equation*}
$$

Covariant components v_{k} (i.e. subscript k) of the vector $\stackrel{v}{ }$ with respect to the basis $\mathrm{b}^{-\mathrm{k}}$ are defined as

$$
\begin{equation*}
\bar{V}=V_{k} \bar{b}^{k}=V^{k} \bar{b}_{k} \tag{2.11}
\end{equation*}
$$

Note that

$$
\begin{align*}
& v_{p}=\bar{v} \cdot \bar{b}_{p} \tag{2.12}\\
& v^{q}=\bar{v} \cdot \bar{b}^{q} \tag{2.13}
\end{align*}
$$

The fundamental-tensor components $g_{i j}, g^{i j}, g_{j}^{i}, g_{j}^{\prime i}$ are defined as follows:

$$
\begin{equation*}
g_{i j} \equiv \bar{b}_{i} \cdot \bar{b}_{j} \quad g^{i j} \equiv \bar{b}^{i} \cdot \bar{b}^{j} \quad g^{i} \cdot j \equiv \bar{b}^{i} \cdot \bar{b}_{j} \quad g_{i}^{i} \equiv \bar{b}_{i} \cdot \bar{b}^{j} \tag{2.14}
\end{equation*}
$$

Obacrvo that tho following relations are matiafiod:

$$
\begin{equation*}
g_{i j}=g_{j i} \quad g^{i j}=g^{j i} \quad g_{j}^{i}=g_{j}^{i}=\delta_{j}^{i} \tag{2.15}
\end{equation*}
$$

Therefore, ono can exprose tho contravariant compononta v^{i} and the covariant compononten $v_{i j}$ of a vector \vec{v} in corm of the reciprocal compononta and tho fundamontal-tengor compononta, as follow:

$$
\begin{align*}
& v_{i}=\bar{v} \cdot \bar{b}_{i}=v^{j} \bar{b}_{j} \cdot \bar{b}_{i}=v^{j} g_{i j} \\
& v^{i}=\bar{v} \cdot \bar{b}^{i}=v_{j} \bar{b}^{j} \cdot \bar{b}^{i}=v_{j} j^{j j} \tag{2.16}\\
& v^{i}=\bar{\cdot} \cdot \bar{b}^{i}=v^{j} \bar{b}_{j} \cdot \bar{b}^{i}=v^{j} g_{j}^{i}=v^{j} \delta_{j}^{i} \\
& v_{i}=\bar{v} \cdot \bar{b}_{i}=v_{j} \bar{b}^{j} \cdot \bar{b}_{i}=v_{j} g^{j} i=v_{j} \delta_{i}^{j}
\end{align*}
$$

Evidently the various sets of quantities $g_{i j}, g^{i j}, g_{j}^{i} \cdot$ and $g_{j}^{\prime i}$ have the property that when they are used as the coefficients of a linear transfermation operating on the covariant or contravariant components of a vector, they yield as a result of the operation the components of the same vector (covariant or contravariant components, depending on which set is used). These quantities are therefore components of the unit (secondorder) tensor $\overline{1}$ such that

$$
\begin{equation*}
\bar{v}=\bar{v} \cdot \overline{\overline{1}}=\overline{1} \cdot \bar{v} \tag{2.17}
\end{equation*}
$$

The unit tensor $\overline{\overline{1}}$ is also called the fundamental tensor or the metric tensor* of the space. The $g_{i j}$ are its covariant components, $g^{i j}$ its contrivariant components, and $g_{j}^{i}=g_{j}^{\cdot i}=\delta_{j}^{i}$ its mixed components. The process of raising or lowering indices can also be performed on the base vectors themselves:

$$
\begin{equation*}
b^{j}=g^{j i} b_{i} \quad b_{j}=g_{j i} b^{i} \tag{2.18}
\end{equation*}
$$

[^3]Tho matricos [$q^{i j}$] and $\left[g_{i j}\right]$ are invorse to each othor:

$$
\begin{equation*}
\left[g^{i j}\right]=\left[g_{i j}\right]^{-1} \tag{2,19}
\end{equation*}
$$

By dofinition, tho detorminanta of thono matricon are

$$
\left.g \equiv \operatorname{det}\left[g_{i}\right]\right] \frac{1}{g}=\operatorname{det}\left[g^{i j}\right]
$$

2,3.2 Tonuors

2.3.2.1 Linoar Voctor Functions

A socond ordor tonsor \mathbb{T} is a linear voctor function associating with cach argument voctor anothor vector, e.g.,

$$
\begin{equation*}
\bar{u}=\bar{T} \cdot \bar{v} \tag{2.20}
\end{equation*}
$$

For any given basis $\bar{b}_{1}, \bar{b}_{2}, \ldots \bar{b}_{n}$ either of the two vectors may be represented by either covariant or contravariant components v_{j} or v^{j} and u_{i} or u^{i}. There are, thus, four possible suts of n^{2} coefficients for the four different linear transformations

$$
\begin{equation*}
u_{i}=T_{i j} v^{j} \quad u_{i}=T_{i}^{i} \cdot v_{j} \quad u^{i}=T^{i j} v_{j} \quad u^{i}=T_{i, j}^{i \cdot v^{j}} \tag{2.21}
\end{equation*}
$$

involving, respectively, the

$$
\begin{array}{ll}
\text { covariant components } & T_{i j} \\
\text { contravariant components } & T^{i j} \\
\text { or mixed components } & T_{j}^{i} \text { or } T_{i}^{j}
\end{array}
$$

Since in general $T_{j}^{1} \neq T_{j}^{*}$, it is necessary to observe carefully the order of the indices.

One can also express thesc tensor components as the dot products of the base vectors and the second order tensor, using Eqs. 2.12 and 2.13, as follows, Observe that since $u_{i}=\overline{\mathrm{b}}_{i} \cdot \overline{\mathrm{u}}$ and $v_{j}=\overline{\mathrm{b}}_{j} \cdot \overline{\mathrm{v}}$, then

$$
\begin{array}{ll}
T_{i k}=\bar{b}_{i} \cdot \bar{T} \cdot \bar{b}_{k} & T^{i k}=\bar{b}^{i} \cdot \overline{\bar{T}} \cdot \bar{b}^{k} \\
T_{i} \cdot k=\bar{b}_{i} \cdot \overline{\bar{T}} \cdot \bar{b}^{k} & T^{i} \cdot k=\bar{b}^{i} \cdot \overline{\bar{T}} \cdot \bar{b}_{k} \tag{2,22}
\end{array}
$$

A gymnotrio tenor ${ }^{W}$ is defined as ono that in operationally donation to ito trangpofo T^{T}, so that if T_{T} i. symmetric:

$$
\begin{equation*}
\overline{\bar{T}} \cdot \bar{\nabla}=\bar{\nabla} \cdot \overline{\bar{T}} \tag{2.23}
\end{equation*}
$$

Also, its components obey!

It is convenient to write the mixed components of a symmetric tensor ${ }^{\text {P }}$ as:

$$
\begin{equation*}
T_{j}^{i} \equiv T_{\cdot j}^{i}=T_{j}^{i} \tag{2.25}
\end{equation*}
$$

But note, that, in general (even for symmetric and antisymmetric tensors)

$$
\begin{equation*}
T_{j}^{i} \neq T_{i}^{j} \tag{2,2.6}
\end{equation*}
$$

For a symmetric tensor, the matrix of covariant or contravariant components is symmetric while the mixed component matrices are not in general symmetric, because the third equation relates elements of the two different matrices of mixed components instead of symmetrically placed elements of the same matrix. To make this point clear, and for convenient reference, these matrices* are, for $n=3$:
*The symbol || || is standard notation for matrices in books on tensor analysis (for example, see Refs. $7,22,40,41,42$, and 61).
or

$$
\left\|T^{i}: j\right\|=\| \|_{i}!\|^{\top}
$$

$$
\left\|T^{i} \cdot j\right\| \neq\left\|T^{i} \cdot j\right\|^{T}
$$

In offongt, indopondentiy of itn porition, whother up or down, tho first. Indox of an alement of the matrix dnnotan tho numbar of the xiw, and tho aocond tho number of tha golumn corronponding to that olomont.
na sodov peintin put [41], thu oporationn of addition, of multiplitoam thon by a numbor, and of sadiar multiplication of tongorif of the nociond rank oorronpond to analogoun opoxationo on matricenf honoo, tho wio of mothodo and ronults of matrix calouluo paediltatod tho dovolopmont of tho thoory of tonnor functiono.
 (号 and 5) produces a second oxdor tonsor ($\overline{\text { P }}$) such that

$$
\begin{equation*}
\overline{\bar{p}}=\bar{\top} \cdot \overline{\bar{S}} \tag{2.32}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\overline{\bar{p}} \cdot \bar{v}=(\overline{\mathrm{F}} \cdot \overline{\mathrm{~s}}) \cdot \cdot \overline{\mathrm{v}}=\overline{\mathrm{T}} \cdot(\overline{\mathrm{~S}} \cdot \overline{\mathrm{v}}) \tag{2.33}
\end{equation*}
$$

Its components are given by

$$
\begin{align*}
& P_{i j}=T_{i}^{\prime k} S_{k j}=T_{i k} S_{\cdot j}^{k} \cdot \tag{2.34}\\
& P_{j}^{j}=T_{i}^{i} S^{k j}=T^{k} S_{k}^{j} \tag{2.35}\\
& P_{i j}^{i}=T_{i}^{i} S_{j}^{k} S_{j}^{j} \tag{2.36}\\
& P_{i}^{j}=T_{i}^{k} \cdot S_{k}^{j} .
\end{align*}
$$

Two scalar products (i.e., T: 覀 and $\frac{T}{T} \cdot \frac{\bar{T}}{5}$) of two second order tensors can be defined. The scalar product Tis is produced by a double contraction of the outer product as follows:

Note that the two first suffixes are the game, while the two second Indices are the game,

Tho scalar product $\underset{\text { To }}{\vec{B}}$ is defined as follows:

$$
\begin{equation*}
T_{0} \operatorname{Tan}^{4} T^{4} S_{j i}=T_{i j} G^{i^{2}} T_{i j}^{i} S_{i} \operatorname{Si}_{i} T_{i} S_{j}^{i} \tag{2,39}
\end{equation*}
$$

Note that the two inside Indices are equal and the two outadan ind icon

2.3.2.2 Dyad ie Popronentation of a honor

Tho opon product or tenor product $\overline{\operatorname{tb}}$ of two vockore \bar{a} and $\overline{\bar{b}}$ dr o cad tod a dyad. A dinoar combination of much dyads do eadiod a dyadic. higherorder open products arr callod polyadu and linoar combinations of polyado are called polyadics (ali polyads in a polyadio must bo of tho game order). All usual multiplicative ruloa of olomontaxy algebra hold for polyada, axcopt that open multiplication is not commutative, that is, in general

$$
\begin{equation*}
\bar{a} \bar{b} \neq \bar{a} \bar{a} \tag{2.40}
\end{equation*}
$$

Also, the single lot product of two dyads is not comutitive:

$$
\begin{equation*}
\overline{a b} \cdot c d+\bar{c}+\bar{d} \cdot a b \tag{2.41}
\end{equation*}
$$

The scalar projuct (or double dot product) of two dyads denoted by $\overrightarrow{a b}: \overline{\mathrm{c}}$ is defined as the scalar obtained by multiplying together the two scalar products $\bar{a} \cdot \bar{c}$ and $\bar{b} . \bar{d}$. Note that the first vector of the first dyad multiplies the first vector of the second dyad, and the second vector of the first dyad multiplies the second vector of the second dyad. The scalar product is commutative:

$$
\begin{align*}
\bar{a} \bar{b}: \bar{c} \bar{d} & =(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})=(\bar{c} \cdot \bar{a})(\bar{d} \cdot \bar{b}) \tag{2.42}\\
& =\bar{c} \bar{d}: \bar{a} \bar{b}
\end{align*}
$$

The double dot notation with the two dote on the game level denotes the product obtained by multiplying the two outside vectors together and the two inside vactora together:

$$
\begin{equation*}
a b \cdot c \cdot c=(\bar{a} \cdot d)(\bar{b} \cdot \bar{c}) \tag{2.43}
\end{equation*}
$$

Ivory anon order tongor can bo ropronontod as a dyadic, a $11 n n a r$ combination of tho n^{2} dyada formed from n linearly indopondont banjo vectors of the n-dimensional vector apace on which tho tensor in defined. For example, in throe dimensions ($n=3, n^{2}, 9$) with base vectors $\overline{\mathrm{b}}_{1}, \overline{\mathrm{~b}}_{2}$, \vec{b}_{3}, on c may write any second order tensor ${ }_{T}$ as:
or

$$
\begin{align*}
& T=T T^{11} b_{1} b_{1}+T^{12} b_{1} b_{2}+T^{13} b_{1} b_{3} \tag{2.44}\\
& +T^{21} \bar{b}_{2} \bar{b}_{1}+T^{22} \bar{b}_{2} \bar{b}_{2}+T^{23} \bar{b}_{2} \bar{b}_{2} \\
& +T^{31} b_{3} b_{1}+T^{32} E_{3} b_{2}+T^{33} E_{3} E_{3}
\end{align*}
$$

$T=T^{r s} \bar{b}_{r} b_{s}$
where the $T^{r 8}$ are the contravariant components of the tensor with respect to the basis $\bar{b}_{r} \vec{b}_{s}$. In Euclidean vector space, by introducing the dual basis \bar{b}^{-k}, one obtains additional representations for \mathbb{T}^{2}

$$
\begin{equation*}
T=T^{r s} \bar{b}_{r} b_{s}=T_{r s} b^{r} b^{s}=T_{r} \cdot D_{r} b^{s}=T_{r} \cdot b^{r} D_{s} \tag{2,46}
\end{equation*}
$$

The convention of upper and lower indices does not guarantee a unique tensor for a given set of components, since, for example, in general

$$
\begin{equation*}
T^{r} \cdot \operatorname{Dr}_{r} \not \mathrm{~B}^{s} \operatorname{Tr}^{r} \mathrm{~B}^{s} \mathrm{~B}_{r} \tag{2.47}
\end{equation*}
$$

For definitiveness, the convention that the first index on the tensor component goes with the first vector of the dyad is adopted as, for example:

$$
\begin{equation*}
\bar{F}=T^{r} \cdot \bar{G}_{r} \bar{b}^{s} \neq T^{r} \cdot \bar{b}^{s} \bar{b}_{r} \tag{2.48}
\end{equation*}
$$

 thu thoosy of oporatiom on tunmox, particularly in tho thoory of Uffurentiation of tomons with monpoct to coordinaton or moalar param moterst whon tho voctorn of the banon aro virinalo, and orpeojally whon a fiven tomma han to bo comadomed mimultamourly in difeuront banof moving with rompoot to ono anothor.

2.3.2.3 Covariant Difforentiation of a fommor

Hhe sot of partial derivatives (with rospoct to tho boordinates) of a covariant vector, in genoral, is not a tensor.

Whe covariant derjvatives of a tonsor component are defined in such a way that they are tonsor components which reduce to the usual partial dorivatives in rectangular cartosian coordinatos. The covariant derivative appoars naturally when the partial durivative of a vector is taken, and in the process cortain non-tonsor, throo-indox quantities, called Christoffel symbols ariso naturally whon partial dorivatives of the base vectors are taken; since the base vectors are functions of position, they cannot be treated as donstants in differentiation. The derivative of the covariant and contravariant base can be shown to be:

$$
\begin{align*}
& \frac{\partial \bar{g}_{m}}{\partial \bar{\xi}^{n}}=\left\{\begin{array}{cc}
s & n \\
m & n
\end{array}\right\} \bar{g}_{s} \tag{2.49}\\
& \frac{\partial \bar{g}^{m}}{\partial \xi^{n}}=-\left\{\begin{array}{cc}
m \\
n & s
\end{array}\right\} \bar{g}^{s} \tag{2.50}
\end{align*}
$$

whore tho (nontensor) three indox quantities called christoffel symbols of the second kind are

$$
\left\{\begin{array}{c}
s \tag{2.51}\\
m n
\end{array}\right\} \equiv \frac{1}{2} g^{r s}\left(\frac{\partial g_{n r}}{\partial \xi_{m}^{m}}+\frac{\partial g_{r m}}{\partial \varepsilon_{n}}-\frac{\partial g_{m n}}{\partial \varepsilon_{r}}\right)
$$

If the coordinate system in Cartesian, ie. the base voctora are combatants, then the Christoffel symbols of the second kind are identically zero:

$$
\left\{\begin{array}{ll}
k & \\
i & j
\end{array}\right\}=0 \quad \text { for a Cartesian coordinate system. }
$$

Therefore, the covariant derivative (denoted by $a_{i, j}$) of a covariant vector component a_{i} is:

$$
\begin{align*}
& \bar{a}=a_{i} \bar{g}^{i} \tag{2.52}\\
& \frac{\partial \bar{a}}{\partial \varepsilon_{j}}=\frac{\partial a_{i} \bar{g}^{i}}{\partial \varepsilon_{j}^{j}}+a_{k} \frac{\partial \bar{g}_{k}^{k}}{\partial \xi_{j}}=\frac{\partial a_{i}}{\partial \varepsilon_{j}^{j}} \bar{g}^{i}-a_{k}\left\{\begin{array}{c}
k \\
i
\end{array}\right\} \bar{g}^{i} \\
&=\left(\frac{\partial a_{i}}{\partial \bar{\xi}_{j}^{j}}-a_{k}\left\{\begin{array}{l}
k \\
j
\end{array}\right\}\right) \bar{g}^{i} \equiv a_{i, j} \bar{g}^{i} \\
& a_{i, j}=\frac{\partial a_{i}}{\partial \xi_{j}^{j}}-a_{k}\left\{\begin{array}{l}
k \\
i
\end{array}\right\} \tag{2.53}
\end{align*}
$$

Similarly, the covariant derivative (denoted by $a^{i}{ }_{j}$,) of a contravariant vector component a^{i} is:

$$
\begin{align*}
& \overline{\bar{a}}=a^{i} \bar{g}_{i} \\
& \begin{aligned}
& \frac{\partial \bar{a}}{\partial \xi^{j}}=\frac{\partial a^{i}}{\partial \xi^{\prime}} \bar{g}_{i}+a^{k} \frac{\partial \bar{g}_{k}}{\partial \xi_{j}^{j}}=\frac{\partial a^{i}}{\partial \xi^{j}} \bar{g}_{i}+a^{k}\left\{\begin{array}{cc}
i \\
k & j
\end{array}\right\} \bar{g}_{i} \\
&=\left(\frac{\partial a^{i}}{\partial \xi_{j}^{j}}+a^{k}\left\{\begin{array}{cc}
i \\
k & j
\end{array}\right\}\right) \bar{g}_{i}=a_{, j}^{i} \bar{g}_{i} \\
& a_{, j}^{i}=\frac{\partial a^{i}}{\partial \xi_{j}^{j}}+a^{k}\left\{\begin{array}{cc}
i \\
k & j
\end{array}\right\}
\end{aligned} \tag{2.54}\\
& \text { Furthermore, } \\
& \frac{\partial \bar{g}_{m}}{\partial \xi_{n}}=\frac{\partial \bar{g}_{m}}{\partial \xi_{i}} \frac{\partial \xi^{i}}{\partial \xi_{n}}=\frac{\partial \bar{g}_{m}}{\partial \xi^{i}} g^{n i}=g^{n i}\left\{\begin{array}{ll}
n & i
\end{array}\right\} \bar{g}_{s} \tag{2.55}
\end{align*}
$$

and

$$
\frac{\partial \bar{g}^{m}}{\partial \bar{\varepsilon}_{n}}=-g^{n i}\left\{\begin{array}{c}
m \tag{2.57}\\
s
\end{array}\right\} \bar{g}^{m}
$$

nine

$$
d E^{i}=g^{n i} d E_{n}
$$

Covariant derivatives of highor order tensor components appear quito naturally when the partial derivative of the polyadic is taken. For example, if

$$
\overline{\bar{T}}=T^{r s} \bar{g}_{r} \bar{g}_{s}=T_{r s} \bar{g}^{r} \bar{g}^{s}=T_{\cdot s}^{r} \cdot \bar{g}_{r} \bar{g}^{s}=T_{r}^{\cdot s} \cdot \bar{g}^{r} \bar{g}_{s}
$$

then

$$
\begin{aligned}
\frac{\partial \xi^{p}}{\partial \xi^{p}} & =\frac{\partial T^{r s}}{\partial \xi^{p}} \bar{g}_{r} \bar{g}_{s}+T^{k s} \frac{\partial \bar{g}_{k}}{\partial \xi^{P}} \bar{g}_{s}+T^{r k} \bar{g}_{r} \frac{\partial \bar{g}_{k}}{\partial \xi_{p}} \\
& =\frac{\partial T^{r s}}{\partial \xi^{p}} \bar{g}_{r} \bar{g}_{s}+T^{k s}\left\{\begin{array}{l}
r \\
k
\end{array}\right\} \bar{g}_{r} \bar{g}_{s}+T^{r k}\left\{\begin{array}{c}
s \\
k
\end{array}\right\} \bar{g}_{r} \bar{g}_{s}(2.59) \\
& =T_{r p}^{r s} \bar{g}_{r} \bar{g}_{s}=\left(\frac{\partial T^{r s}}{\partial E^{r}}+T^{k s}\left\{\begin{array}{c}
r \\
k
\end{array}\right\}+T^{r k}\left\{\begin{array}{l}
s \\
k
\end{array}\right\}\right) \bar{g}_{r} \bar{g}_{s}
\end{aligned}
$$

hence,

$$
T^{\prime \prime}, p=\frac{\partial T^{r^{*}}}{\partial E^{p}}+T^{k s}\left\{\begin{array}{l}
r \tag{2,60}\\
k
\end{array}\right\}+T^{r k}\left\{\begin{array}{l}
k_{k}^{s} p
\end{array}\right\}
$$

Similarly,

$$
\begin{align*}
& T_{r s, p}=\frac{\partial T_{r s}}{\partial \xi_{p}^{p}}-T_{k s}\left\{\begin{array}{c}
k \\
r
\end{array}\right\}-T_{r k}\left\{\begin{array}{l}
k \\
s
\end{array}\right\} \tag{2.61}
\end{align*}
$$

whore,

$$
\begin{equation*}
\frac{\partial \overline{\bar{T}}}{\partial \bar{\varepsilon}^{p}} T^{r s}, p \bar{g} r \bar{g} s=T_{r s, p} \bar{g}^{r} \bar{g}^{n}=T^{r} \cdot s, p \bar{g}_{r} \bar{g}^{s} \tag{2.63}
\end{equation*}
$$

2. 4 Kinematice of a Deformable Modium

Motion is always dotorminod with rospect to some roforonce coordinate systom. A corrospondence botwoen numbors and spatial pointe is established with the aid of a coordinato system. A continuous medium represents a continuous accumulation of matorial points. By definition, knowledge of the motion of a continuous medium implies knowledge of the motion of all material points. For this purpose, one must treat individually distinct material points.

In kinematics, a continuous medium may be conceived of as an abstract geometrical object, and not merely a material body. For instance, it may sometimes be agreed to represent by points in a plane the prices of some products and to study the motion of prices in economics by the methods of the kinematics of continuous media.

Besides the concept of laws of motion and coordinate systems, one must still introduce for the description of the motion of continuous media certain other concepts, in particular, that of velocities of particles of a continuum medium. Strain tensors are fundamental characteristics which arise in the deformation of bodies, and they enter into the basic equations which describe the motion of continua. Strain tensors compare two states of a medium, while the rate-of-deformation tensor is a characteristic of the medium at a given instant of time.

2.4.1 General Description

Lower case letters are used for quantities that identify the points of the medium at some reference instant of time t_{0}. Capital letters are used for quantities that correspond to the points of the medium at the current time t.

Considor arbitracy dibphacomonts of a continuum. Lot tho position of tho points of the continuum bo dofinod in a rectangular cartonian byatem of spatial. (Fulorian) coordinaton $X_{I} x_{1}, X_{2}, X_{3}$ and the roforonco position of the pointe of the continum by the roforontial (also callod Lagrangian or matorial) coordinaton $x_{i} \equiv x_{i}=x_{1}, x_{2}, x_{3}$ (hero, for oxample, it is convoniont to adopt $X_{1} \Xi X_{1}$ ao as to difforontiate botwoon x_{1} and x_{1}). This systom of cartoaian coordinatos is fixad-inmepaco, or inertiad, and 1 t has orthonormal baso vactora: $\bar{i}=\bar{i}^{T}=\bar{i}_{i}=\bar{i}^{i}$.

Also, it will be convoniont to uso tho convocted body-fixod (also called intrinsic) systom of (Lagrangian, material or embodded) curvilinear coordinates ξ^{i} which moves with the points of the mediun, has base vectors \bar{g}_{i} in the reference configuration and base vectors $\bar{G}_{I} \equiv \dot{\bar{g}}_{I}$ in the deformed configuration. These two systems can be displayed conveniently as follows; for a three-dimensional Euclidean space:

Note that the (Lagrangian) coordinates ξ^{i} are "frozen" into the medium, and they deform with it so that a given material point is always identified with its material coordinate ξ^{1}. When motion is wonaidored, all throe bases (\bar{i}_{i}, \bar{g}_{i}, and \bar{G}_{I}) can coincide at some instant of time, but the rato of change of thess bases with respect to the motion of a fixed point of the medium will bo different.

Position vectors \bar{r} and \bar{R} (see Fig. 1) from the origin of the Cartesian system X_{I} to the undeformed curvilinear system ξ^{1} with base vectors \bar{g}_{i} and to the deformed curvilinear system ξ^{i} with base vectors $\bar{G}_{I^{\prime}}$ respectively, are defined as

$$
\begin{gather*}
\bar{r}=x_{i} \bar{i}_{i} \quad \bar{R}=X_{I} \bar{i}_{i} \\
d \bar{r}=d x_{i} \bar{i}_{i}=d \xi^{i} \bar{g}_{i}=d \xi_{i} \bar{g}^{i} \tag{2.64}\\
d \bar{R}=d X_{I} \bar{i}_{i}=d \xi^{i} \bar{G}_{I}=d \xi_{i} \bar{G}^{I}
\end{gather*}
$$

observe that, for any time t,

$$
\begin{array}{lll}
\bar{g}_{I}=\bar{G}_{I} & \bar{g}_{i}=\bar{G}_{i} & \bar{g}_{i} \neq \bar{G}_{I} \tag{2.65}\\
x_{i}=X_{i} & x_{i} \neq X_{I} \\
\text { a that } & x_{i} & \bar{i}_{I}=\bar{L}_{i}
\end{array} z^{i}=z^{I}
$$

and that

$$
\bar{g}_{i}=\bar{G}_{I}\left(t=t_{0}\right) \quad x_{i}=X_{I}\left(t=t_{0}\right)
$$

The base vectors of the undeformed and deformed configuration, in the convected system can be expressed as:

$$
\begin{equation*}
\bar{g}_{i}=\frac{\partial \bar{r}}{\partial \xi^{i}}=\frac{\partial x_{j}}{\partial \xi^{i}} \bar{i}_{j} \quad \bar{G}_{ \pm}=\frac{\partial \bar{R}}{\partial \xi^{i}}=\frac{\partial X_{ \pm}}{\partial \xi^{i}} \bar{i}_{j} \tag{2.66}
\end{equation*}
$$

The motric tensor components in the undeformed and the deformed configuration ara

$$
\begin{equation*}
g_{i j}=\bar{g}_{i} \cdot \bar{g}_{j} \quad G_{I J}=\bar{G}_{I} \cdot \bar{G}_{J} \tag{2,67}
\end{equation*}
$$

The determinants of those matrices are defined as

$$
\begin{equation*}
g \equiv \operatorname{det}\left[g_{i j}\right] \quad G \equiv \operatorname{det}\left[G_{i \sigma}\right] \tag{2.68}
\end{equation*}
$$

The reciprocal base vectors are

$$
\begin{align*}
& \bar{g}^{i}=\frac{\partial \bar{r}}{\partial \xi_{i}}=\frac{\partial x_{i}}{\partial \xi_{i i}} \bar{G}_{j}=\frac{\partial \bar{R}}{\partial \bar{E}_{i}}=\frac{\partial X_{J}}{\partial E_{i}} \bar{L}_{j} \tag{2.69}\\
& \bar{g}^{1}=\frac{\bar{g}_{2} \times \bar{g}_{3}}{\sqrt{g}} \quad \bar{q}^{2}=\frac{\bar{g}_{3} \times \bar{g}_{1}}{\sqrt{g}} \quad \bar{q}^{3}=\frac{\bar{g}_{1} \times \bar{g}_{2}}{\sqrt{g}} \tag{2.70}\\
& \bar{G}^{1}=\frac{\bar{G}_{2} \times \overline{G_{3}}}{\sqrt{G}} \quad \bar{G}^{2}=\frac{\bar{G}_{3} \times \bar{G}_{1}}{\sqrt{G}} \quad \bar{G}^{3}=\frac{\bar{G}_{1} \times \bar{G}_{2}}{\sqrt{G_{G}}}
\end{align*}
$$

The contravariant components of the metric tensor are:

$$
\begin{equation*}
g^{i j}=\bar{g}^{i} \cdot \bar{g}^{j} \quad G^{ \pm J}=\overline{G^{I}} \cdot \bar{G}^{J} \tag{2.72}
\end{equation*}
$$

Also, the following relationships are satisfied:

$$
\begin{array}{ll}
{\left[g^{i j}\right]=\left[g_{i j}\right]^{-1}} & {\left[G^{I v}\right]=\left[G_{I J}\right]^{-1}} \\
\frac{1}{g}=\operatorname{det}\left[g^{i j}\right] & \frac{1}{G}=\operatorname{det}\left[G^{I J}\right] \tag{2.74}
\end{array}
$$

2.4.1.1 Double Tonsora

Lot M bo a matorial point idontifiod by $\bar{r}=x_{i} \bar{I}_{1}$ in ita original pofition and $\vec{R}=X_{T} \tilde{I}_{i}$ in ita final ponition in Euclidoan apaon. Tho
 formation law for a tonnor of typo $\mathrm{T}_{\mathrm{K}}^{\mathrm{K}} \mathrm{F} . \mathrm{M}$ when the X_{I} coordinaton aro transformod, and for a tonnor $\mathrm{T}_{\mathrm{p}} \mathrm{p} . . . \mathrm{m}^{\mathrm{m}}$ whon the x_{1} coordinaton aro trannformod. As a apocial caso, it follown that tho compononte of a doublo tonsor of tho type $T_{\text {P.... }} \mathrm{M}$ trannform as gealarg under x_{i} transeormatione. In othor words, ordinary tonsor ficlds aro includod as a gpocial kind of doublc ficlds.

2.4.1.2 The Unit (Metric) Tensor

The unit second order (metric) tensor \bar{I} can be expressed as:

Observe that the mixed components are the same in any coordinate system.

2.4.1.3 The Displacement Vector

A displacement vector \bar{u} can be defined as the vector difference between the position vector \bar{R} defining the present location of a material point and the position vector \bar{r} defining the reference (undeformed) location of that same material point:

$$
\begin{equation*}
\bar{u}=\bar{B}-\bar{r} \tag{2.76}
\end{equation*}
$$

with components

$$
\begin{equation*}
\bar{u}=u_{i} \bar{g}^{i}=u^{i} \bar{g}_{i}=G_{I} \bar{G}^{I}=G^{I} \bar{G}_{I}=\hat{u}_{i} \bar{L}_{i} \tag{2.77}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\hat{u}_{i}=X=X \tag{2.78}
\end{equation*}
$$

[^4]
2.A.1.4 Tho Velocity Vector

Tho velocity vector $\overrightarrow{\mathbf{v}}$ of material points of a moving continuum in dofinod by tho material time derivative* (time derivative holding tho material coordination constant) of the dieplacoment vector \bar{u} :

Notice that

$$
\begin{equation*}
\dot{\bar{r}}_{=} \dot{\bar{g}}_{i}=\dot{\dot{g}}^{i}=\overline{0} \quad \dot{g}_{i j}=\dot{g}^{i j}=0 \tag{2,80}
\end{equation*}
$$

This velocity vector $\overline{\mathrm{v}}$ has components:

$$
\begin{align*}
& \bar{v}=v_{i} \bar{g}^{i}=v^{i} \bar{g}_{i}=\hat{v}_{I} \bar{i}_{i}=V_{I} \bar{G}^{x}=V^{I} \bar{G}_{I} \tag{2.81}\\
& \hat{v}_{x}=\dot{\dot{u}}_{i}=\dot{X}_{I} \quad v_{i}=\dot{u}_{i} \quad v^{i}=\dot{u}^{i} \tag{2.82}
\end{align*}
$$

By differentiating with respect to time t keeping $\xi^{i}=$ constant, one obtains the time derivative of the deformed base vectors from Eds. 2.64, 2.66, 2.79, and 2.53-2.55:

$$
\dot{\bar{G}}_{I}=\frac{\partial \stackrel{\dot{R}}{\partial \xi^{i}}}{\partial}=\frac{\partial \bar{V}}{\partial \xi^{i}}=V_{, I}^{J} \overline{G_{J}}=V_{J, I} \overline{G^{J}}
$$

From differentiation of the scalar product $\bar{G}^{I} \cdot \bar{G}_{J}=\delta_{J}^{I}$ the derivatives of the contravariant base vectors are found to be:

$$
\dot{\bar{G}}^{x} \cdot \bar{G}_{J}+\bar{G}^{x} \cdot \dot{\bar{G}}_{J}=\dot{\delta}_{J}^{x}=0
$$

[^5]\[

$$
\begin{align*}
& \dot{\bar{G}}^{*} \cdot \bar{G}_{J}=-\bar{G}^{x} \cdot \dot{G}_{v}=-\bar{G}^{\mp} \cdot\left(V_{, v}^{k} \bar{G}_{k}\right)=-V^{k}{ }_{, N} \delta_{k}^{x} \\
& \dot{\bar{G}}^{x} \cdot \bar{G}_{J}=-V^{x}, \text { J } \tag{2,84}\\
& \overline{G^{x}}=-V_{, v}^{x} \vec{G}^{J}=-V^{x} \bar{G}_{J}
\end{align*}
$$
\]

2.4.2 Deformation and Strain Tensors

2.4.2.1 The Deformation Gradient Tensor

Thu deformation gradient tensor ${ }^{\text {F }}$ is tho simplest to define in terms of the deformation equations and it includes more information about the motion than do the strain tensors.

The deformation gradient tensor is denoted by \bar{F}, and 1 ts transpose by \vec{F}^{T}. The deformation-gradient \bar{F} is defined as the tensor whose rectangular Cartesian components are the partial derivatives $\frac{X_{I}}{\partial x_{j}}$ and which operates on an arbitrary infinitesimal material vector $d \bar{r}$ at $\bar{x} x_{j}$ to associate with it a vector $d \bar{R}$ at \bar{R} as follows:

$$
\begin{equation*}
d \bar{R}=\overline{\bar{F}} \cdot d \bar{r}=d \bar{r} \cdot \overline{\bar{F}} T \tag{2.85}
\end{equation*}
$$

Also,

$$
\begin{gather*}
\bar{G}_{I}=\overline{\bar{F}} \cdot \bar{g}_{i}=\bar{g}_{i} \cdot \overline{\bar{F}} r \tag{2.86}\\
\overline{\bar{F}}=\bar{G}_{I} \bar{g}^{i}
\end{gather*}
$$

Evidently \bar{F} measures rotation as well as deformation since a vector \bar{g}_{i} deforms and rotates to become \bar{G}_{I}. Because the deformation gradient $\bar{F}^{\mathbf{F}}$ includes the rotation as well as the deformation, constitutive equations employing it will have to be constructed so that they will not predict a stress arising from pure rigid body rotation.

The deformation gradient tensor \bar{F} operates on the vectors $\overline{\mathrm{r}}$ and \bar{g}_{1}, associated with the reference configuration, to produce the vectors $\bar{d} \bar{R}$ and \bar{G}_{I}, rospoctivoly, which are associated with the present configuration. Therefore, $\overline{\bar{F}}$ is a double tensor (previously defined in subsection 2.4). components of theta double tensor ana:

$$
\begin{aligned}
& \overline{\bar{F}}=\hat{F}_{x j} \bar{L}_{i} \bar{L}_{j}=F^{-x_{j}} \bar{G}_{x} \bar{g}_{j}=F_{x_{j}} \bar{G}^{\boldsymbol{m}} \tilde{g}^{j}=F_{j} \bar{G}_{x} \widetilde{g}^{j} \\
& =F_{x} \cdot \bar{G}^{x} \bar{g}_{j}=F^{i j} \bar{g}_{i} \bar{g}_{j}=F_{i j} \bar{g}^{i} \bar{g}^{j}=F_{\cdot j}^{i} \cdot \bar{g}_{i} \bar{g}_{m} F_{i} \cdot \dot{j}^{i} \bar{g}_{j}
\end{aligned}
$$

From Egg. 2.85, 2.64, and 2.87, ono can obtain oxprooolono for the components of F , as follows:

$$
\begin{equation*}
d \bar{R}=\overline{\bar{F}} \cdot d F=d X_{I} \bar{L}_{i}=\left(\hat{F}_{x_{j} \bar{j}_{i} \bar{L}_{j}}\right) \cdot\left(d x_{k} \bar{i}_{k}\right)=\hat{F}_{I j} d x_{j} \bar{L}_{i} \tag{2.88}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\hat{F}_{I j}=\frac{\partial X_{I}}{\partial X_{j}} \tag{2,88a}
\end{equation*}
$$

From Eq. 2.78, one can express the components of \bar{F} in a rectangular Cartesian fixed-in-space frame in tertis of the displacement vector:

$$
\begin{equation*}
X_{I}=x_{i}+\hat{u}_{i} \tag{2.89}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\hat{F}_{x j}=\delta_{i j}+\frac{\partial \hat{u}_{i}}{\partial x_{j}} \tag{2.90}
\end{equation*}
$$

One can also express F in terms of components in the convected system, by employing Eq. 2.86 as follows:

$$
\begin{equation*}
\bar{G}_{v}=\bar{F} \cdot \bar{g}_{j}=\left(F_{x} x_{i} \bar{G}_{x} \bar{g}^{*}\right) \cdot \bar{g}_{j}=F_{j}^{x} \cdot \bar{G}_{x} \tag{2,91}
\end{equation*}
$$

Hance,

$$
\begin{equation*}
F \cdot j=S_{j}^{i} \tag{2.92}
\end{equation*}
$$

Thonctrorni

$$
\begin{align*}
& F^{x j}=g^{i j} \tag{2.93}\\
& F_{ \pm j}=G_{x v} \tag{2.94}\\
& F_{ \pm j}=a_{x k} g^{k j} \tag{2.95}
\end{align*}
$$

Also, Fe an be expressed in terms of components of the displacement vector in a convected system, as follows:

$$
\begin{equation*}
\bar{G}_{v}=\bar{F} \cdot \bar{g}_{j}=\left(F_{i}^{i} \cdot \bar{g}_{i} \bar{g}^{k}\right) \cdot \bar{g}_{j}=F_{i j}^{i} \bar{g}_{i} \tag{2.96}
\end{equation*}
$$

From Eqs. $2.76,2.77,2.69,2.52,2.53,2.54$, and 2.55 , one obtains:

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial \xi_{j}}=\frac{\partial \bar{R}}{\partial \varepsilon_{j}}-\frac{\partial \bar{r}}{\partial \xi_{j}}={\overline{Q_{J}}}^{\partial}-\bar{g}_{j}=u_{, j}^{i} \bar{g}_{i}=u_{i, j} \bar{g}^{i} \tag{2.97}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{G}_{v}=\bar{g}_{j}+u_{i, j}^{i} \bar{g}_{i}=\left(\delta_{j}^{i}+u_{j, j}^{i}\right) \bar{g}_{i} \tag{2.98}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\delta_{j}+u_{j j}^{i}\right) \bar{g}_{i}=F_{i}^{i}{ }_{j} \bar{g}_{i} \tag{2.99}
\end{equation*}
$$

Therofore,

$$
\begin{equation*}
F_{\cdot j}^{i}=\delta_{j}^{i}+u_{, j}^{i} \tag{2.100}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& F_{i j}=g_{i k}\left(\delta_{j}^{k}+u_{, j}^{k}\right)=g_{i j}+u_{i, j} \tag{2,201}\\
& F^{i j}=g^{j k}\left(\delta_{k}^{i}+u_{, k}^{i}\right)=g^{i j}+u_{, j}^{i} \tag{A.10n}\\
& F_{i}^{\prime j}=g_{i} g^{k j}\left(\delta_{k}^{l}+u_{, k,}^{l}\right)=\delta_{i}^{j}+u_{i,}^{j}
\end{align*}
$$

2.9.2.2 Tho Spatial Doformation Gradiont Tonsor

The upatial deformation gradiunt tenvor F^{-1} in the invorso of the deformation gradient tonsor 8 . It opurates on the quantitides assodiated with the presont configuration ($\mathrm{A} \overline{\mathrm{R}}$ and $\overline{\mathrm{G}}_{\mathrm{I}}$) to produce the quantitiou associatod with tha roforonce conilguration ($\overline{a r}$ and \bar{g}_{i}), as follows

$$
\begin{align*}
& d \bar{r}=\overline{\bar{F}}^{-1} \cdot d \bar{R}=d \bar{R} \cdot\left(\overline{\bar{F}}^{-1}\right)^{\top} \tag{2.104}\\
& \bar{g}_{i}=\overline{\bar{F}}^{-1} \cdot \bar{G}_{x}=\bar{G}_{x} \cdot\left(\overline{\bar{F}}^{-1}\right)^{\top} \tag{2.105}
\end{align*}
$$

components of the spatial defoxmation gradient tensor F^{-1} are:

$$
\begin{align*}
\bar{F}^{-1} & =\left(\hat{F}^{-1}\right)_{i J} \bar{i}_{i} \bar{G}_{j}=\left(F^{-1}\right)^{i J} \bar{g}_{i} \vec{G}_{J}=\left(F^{-1}\right)_{i J} \bar{g}^{i} \vec{G}^{J} \\
& =\left(F^{-1}\right)_{\cdot J}^{i} \cdot \bar{g}_{i} \bar{G}^{J}=\left(F^{-1}\right)_{i} \cdot J \bar{g}^{i} \bar{G}_{J}=\left(F^{-1}\right)^{I J} \bar{G}_{I} \bar{G}_{J} \tag{2.106}\\
& =\left(F^{-1}\right)_{I J} \bar{G}^{I} \bar{G}^{J}=\left(F^{-1}\right)_{\cdot J}^{I} \cdot \bar{G}_{x} \bar{G}^{J}=\left(F^{-1}\right)_{I}^{\cdot J} \cdot \bar{G}^{x} \bar{G}_{J}
\end{align*}
$$

Utilizing Eqa. 2.104, 2.105, 2.G4, and 2.106, ono can obtain oxpromaiona for thane compononta, an followes

$$
d \bar{r}=\overline{F-1} d \vec{R}=d x_{i} \bar{i}_{i}=\left[\left(\hat{F}^{-1}\right)_{i} \bar{T}_{i} \bar{L}_{j}\right] \cdot d X_{k} \vec{i}_{k}=\left(\hat{F}^{-1}\right)_{i} d X_{i} \bar{L}_{i}
$$

Honce,

$$
\begin{equation*}
(\hat{F}-1)_{i j}=\frac{\partial x_{i}}{\partial X_{i}} \tag{2.107}
\end{equation*}
$$

Also, from Eq. 2.78:

$$
\begin{equation*}
x_{i}=X_{I}-\hat{u}_{i} \tag{2.108}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left(\hat{N}^{A}-1\right)_{i j}=\delta_{i j}-\frac{\partial \hat{u}_{i}}{\partial X_{-j}} \tag{2.109}
\end{equation*}
$$

From Eqs. 2.105 and 2.106:

$$
\bar{g}_{j}=\overline{\bar{F}}_{-1} \cdot \bar{\zeta}_{J}=\left[\left(F^{-1}\right)_{i}^{i} \cdot \bar{g}_{i} \bar{G}^{K}\right] \cdot \bar{\zeta}_{J}=\left(F^{-1}\right)_{\cdot J}^{i} \bar{G}_{i}
$$

Hence,

$$
\begin{equation*}
\left(F^{-1}\right)^{i} \cdot \pi=\delta_{j}^{i} \tag{2.110}
\end{equation*}
$$

Therefora,

$$
\begin{align*}
& (F)^{i v}=G^{I \tau} \tag{2.111}\\
& \left(F^{-1}\right)_{i J}=g_{i j} \tag{2.112}
\end{align*}
$$

$$
\begin{equation*}
\left(F^{-1}\right)_{i}^{T}=g_{i k} G^{k \pi} \tag{2.113}
\end{equation*}
$$

Ayain, from Eqt. 2. 105 aml 2. 106 :

$$
\bar{g}_{j}=\overline{\bar{F}}^{-1} \cdot \bar{G}_{J}=\left[\left(F^{-1}\right)^{I} \cdot \bar{K}_{X} \bar{G}^{k}\right] \cdot \bar{G}_{J}=\left(F^{-1}\right)^{x} \cdot J \bar{G}_{I} \text { (2.111 }
$$

From Faf. 2.76, 2.77, 2.g6 and 2.52-2.55, ono obtatim:

Then

$$
\begin{equation*}
\bar{g}_{j}=\bar{G}_{J}-U_{, \tau}^{I} \bar{G}_{x}=\left(\delta_{j}^{i}-U_{, J}^{x}\right) \bar{G}_{I} \tag{2.116}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\delta_{j}^{i}-U^{I}, J\right) \bar{G}_{I}=\left(F^{-1}\right)^{I} \cdot \overline{G_{I}} \tag{2,117}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(F^{-1}\right)_{\cdot J}^{\mathbf{I}}=\delta_{j}^{i}-U_{, J}^{I} \tag{2.118}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& \left(F^{-1}\right)_{I J}=G_{I k}\left(\delta_{j}^{k}-U^{k}, J\right)=G_{x J}-U_{I, v} \tag{2.119}\\
& \left(F^{-1}\right)^{x J}=G^{J K}\left(\delta_{k}^{i}-U_{, k}^{x}\right)=G^{x J}-U^{x,}, \tag{2.120}
\end{align*}
$$

2.1.2.3 Rotation, Strotch, and Btrain Tonsorn

Tho polar decompogition thoorm* indionton that any invortibin ifmar trannformation F han two uniuue multiplifontivo docompositions

$$
\begin{equation*}
5=T \cdot|,| \tag{2.122}
\end{equation*}
$$

 tho right atrotch tonnox, and \bar{V} is tho laft atrotch tongor of tho daformation. .

Ono may considor tho doformation of an infinitosimal volume clement at. \bar{x} to consist of the succossive application of:
(1) A strotch by the operator \mathbb{U}, and
(2) a rigid body rotation by the operator $\stackrel{R}{R}$.

Alternatively, the samo deformation can bo produced by the successive application of:
(1) A rigid body rotation by \bar{R}, and
(2) a stretch by ${ }^{2 /}$.

It can be shown that the following relations are valid:

$$
\begin{equation*}
\bar{U}^{2}=\bar{U} \cdot \bar{W}=\overline{\bar{W}} \cdot \overline{\bar{V}}{ }^{2} \overline{\bar{m}} \cdot \overline{\bar{V}}=\bar{F} \cdot \bar{F} \tag{2.123}
\end{equation*}
$$

Cauchy-Groen Deformation Tensors

The square of tho right stretch tensor

is callod the right Cauchy-Groen deformation tonsor. The square of the left stretch tensor

[^6]\[

$$
\begin{equation*}
\overline{\bar{B}}=\overline{\bar{V}}^{2}=\overline{\bar{V}} \cdot \overline{\bar{V}}=\overline{\bar{F}} \cdot \overline{\bar{F}}^{T} \tag{2.125}
\end{equation*}
$$

\]

is called the left Cauchy-Groen ton nor of deformation. It. dan he wanly, shown that.

$$
\begin{equation*}
\overline{\overline{\mathrm{B}}}=\overline{\overline{\mathrm{R}}} \cdot \overline{\overline{\mathrm{C}}} \cdot \overline{\bar{R}}^{\top} \tag{2.126}
\end{equation*}
$$

The right Cauchy-Greon deformation tensor $\stackrel{\rightharpoonup}{C}$ is associated with tho roforenco configuration, and it gives the now squared length (as) ${ }^{2}$ of the difforontial line element $d \bar{R}$ into which the given differential olomont $d \bar{r}$ is deformed:

$$
(d S)^{2} \equiv d \overline{\bar{R}} \cdot d \bar{R}=(d r \cdot \bar{F} \bar{F}) \cdot(\overline{\bar{F}} \cdot d \bar{r})=d \bar{r} \cdot(\bar{F} \cdot \bar{F} \cdot \bar{F}) \cdot d \bar{r}=d \bar{r} \cdot \bar{C} \cdot d \bar{r}(2 \cdot 127)
$$

The inverse of the left Cauchy-Green deformation tensor $\overline{\bar{B}}$, denoted by $\overline{\bar{B}}^{-1}$ gives the initial squared length (as) of a deformed differential line element $d \bar{R}$

$$
\begin{align*}
(d s)^{2} & =d \bar{r} \cdot d \bar{r}=\left(d \bar{R} \cdot\left(\overline{F^{-1}}\right)^{T}\right) \cdot\left(\overline{\bar{F}^{-1}} \cdot d \overline{\mathrm{R}}\right)=d \overline{\mathrm{R}} \cdot(\overline{\mathrm{~F}} \cdot \overline{\mathrm{~F}})^{\prime} \cdot d \overline{\mathrm{R}} \\
& =d \overline{\mathrm{R}} \cdot \overline{\bar{B}}^{-1} \cdot d \overline{\mathrm{R}} \tag{2.128}
\end{align*}
$$

The right Cauchy-Green deformation tensor has components

$$
\begin{equation*}
\bar{C}=\hat{C}_{i j} \bar{i}_{i j} \bar{T}_{j}-C^{i j} \bar{g}_{i j} \bar{g}_{j}=C_{i j} \bar{g}^{i} \bar{g}^{j}=C_{j}^{i} \bar{g}_{i} \bar{g}^{j} \tag{2.129}
\end{equation*}
$$

and from Eqs. 2.124, 2.88, 2.90-2.95 and 2.100-2.103, one can express \bar{C} in terms of the displacement vector components, as follows:

$$
\begin{align*}
\hat{\mathrm{C}}_{i j} & =\left(\hat{F}_{i k}\right)^{\top} \hat{F}_{K j}=\hat{F}_{K i} \hat{F_{K j}}=\frac{\partial \bar{X}_{K}}{\partial x_{i}} \frac{\partial X_{k}}{\partial x_{j}} \tag{2.130}\\
& =\left(\delta_{i k}+\frac{\partial \hat{u}_{k}}{\partial x_{i}}\right)\left(\delta_{k j}+\frac{\partial \hat{u}_{k}}{\partial x_{j}}\right)=\delta_{i j}+\frac{\partial \hat{u}_{i}}{\partial x_{j}}+\frac{\partial \hat{u}_{j}}{\partial x_{i}}+\frac{\partial \hat{u}_{k}}{\partial x_{i}} \frac{\partial \hat{u}_{k}}{\partial x_{j}}
\end{align*}
$$

$$
\begin{align*}
& C_{i j}=\left(F_{i k}\right)^{\top} F_{\cdot j}^{k}=F_{k i} F_{j}^{k}=G_{x s}=\left(g_{y+}+u_{k, j}\right)\left(\delta_{j}^{k}+u_{j, j}^{k}\right) \\
& =g_{i j}+u_{i, j}+u_{j, i}+u^{k, j} u_{k, i} \tag{2.131}\\
& C_{j}^{i}=\left(F_{i}^{i} \cdot\right)^{\top} F^{k} \cdot j=F_{k}^{i} \cdot F_{j}^{k} \cdot j=g^{i k} G_{k s} \tag{2.132}\\
& =\left(\delta_{k}^{i}+u_{k}{ }^{i}\right)\left(\delta_{j}^{k}+u_{, j, j}^{k}\right)=\delta_{j}^{i}+u_{, j}^{i}+u_{j}{ }^{i}+u_{k}{ }^{i} u^{k}, j \\
& C^{i j}=\left(F_{i}^{i}\right)^{\top} F^{k_{j}}=F_{k}^{i} \cdot F^{k_{j}}=g^{i g^{i}} j^{j k} G_{L k} \tag{2.133}\\
& =\left(\delta_{k}^{i}+u_{k},{ }^{i}\right)\left(g^{k j}+u^{k}, j\right)=g^{i j}+u^{i, j}+u^{j,}, u^{k}, u_{k}{ }^{\prime},
\end{align*}
$$

Notice, that although $\bar{C} \neq \bar{F}$, from Eqs. 2.95, 2.132, 2.94, and 2.131, the following components are equal:

$$
\begin{align*}
& C_{j}^{i}=F_{j}^{i} \tag{2.134}\\
& C_{i j}=F_{x j} \tag{2.135}
\end{align*}
$$

The Green Strain Tensor

The Green* strain tensor $\overline{\mathcal{\gamma}}$ is defined as follows:

$$
\begin{equation*}
\overline{\bar{\gamma}}=\frac{1}{2}(\overline{\bar{c}}-\overline{\overline{1}}) \tag{2.136}
\end{equation*}
$$

[^7]Prom Eq. 2.124, it is sasily shown that equivalent expressions are:

$$
\begin{equation*}
\overline{\bar{\gamma}}=\frac{1}{2}\left(\overline{\bar{U}}^{2}-\overline{\overline{1}}\right)=\frac{1}{2}\left(\overline{\bar{F}}^{\top} \cdot \overline{\bar{F}}-\overline{\bar{I}}\right) \tag{2.137}
\end{equation*}
$$

This strain measure gives tho change in the gquarod length of tho material vector dr as follows from Eger. 2. 127 and 2.128:

$$
\begin{equation*}
(d S)^{2}-(d s)^{2}=d \bar{R} \cdot d \bar{R}-d \bar{r} \cdot d \bar{r} \tag{2.138}
\end{equation*}
$$

Expressing this in terms of the material vector $\mathrm{d} \overline{\mathrm{r}}$, ono obtains from Eq. 2.127:

$$
\begin{equation*}
(d S)^{2}-(d s)^{2}=d \bar{r} \cdot \overline{\bar{C}} \cdot d \bar{r}-d \bar{r} \cdot \overline{\bar{I}} \cdot d \bar{r}=d \bar{r} \cdot(\bar{C}-\overline{\overline{1}}) \cdot d \bar{r} \tag{2.139}
\end{equation*}
$$

Defining $\overline{\bar{\gamma}} \equiv \frac{1}{2}(\overline{\bar{C}}-\overline{\overline{1}})$, one obtains

$$
\begin{equation*}
\frac{(d S)^{2}-(d s)^{2}}{2}=d r \cdot \bar{\gamma} \cdot d \bar{r} \tag{2.140}
\end{equation*}
$$

Components of the Green strain tensor $\overline{\bar{\gamma}}$ are:

$$
\begin{equation*}
\overline{\bar{\gamma}}=\hat{\gamma}_{i j} \bar{i}_{i} \bar{j}_{j}=\gamma_{i j} \bar{g}^{i} \bar{q}^{j}=\gamma^{i j} \bar{g}_{i} \cdot \bar{g}_{j}=\gamma_{j}^{i} \bar{g}_{i} \bar{g}^{j} \tag{2.141}
\end{equation*}
$$

These components can be expressed in terms of the displacement vector components, from Eq. 2.136 and 2.130-2.133, obtaining:

$$
\begin{align*}
& \hat{\gamma}_{i j}=\frac{1}{2}\left(\hat{C}_{i j}-\delta_{i j}\right)=\frac{1}{2}\left(\frac{\partial X_{x}}{\partial x_{i}} \frac{\partial X_{x}}{\partial x_{j}}-\delta_{i j}\right)=\left(\frac{\partial \hat{u}_{i}}{\partial x_{j}}+\frac{\partial \hat{u}_{j}}{\partial x_{i}}+\frac{\partial \hat{u}_{x_{i}}^{\partial x_{i}} \partial \hat{u}_{j} k}{}\right) / 2 \\
& \gamma_{i j}=\frac{1}{2}\left(C_{i j}-g_{i j}\right)=\frac{1}{2}\left(G_{I J}-g_{i j}\right)=\left(u_{i, j}+u_{j, i}+u_{, j}^{k} u_{k, i}\right) / 2(2.142 a) \tag{2.142a}\\
& \gamma_{j}^{i}=\frac{1}{2}\left(C_{j}^{i}-\delta_{j}^{i}\right)=\frac{1}{2}\left(g^{i k} G_{k J}-\delta_{j}^{i}\right)=\left(u_{, j}^{i}+u_{j,}^{i}+u_{, j}^{k} u_{k,}^{i}\right) / 2 \\
& \gamma^{i j}=\frac{1}{2}\left(C^{i j}-g^{i j}\right)=\frac{1}{2}\left(g^{i l} g^{j k} G_{L k}-g^{i j}\right)=\left(u_{,}^{i j}+u^{j},+u^{k j}, u_{k}{ }^{i}\right) / 2 \tag{2.142c}
\end{align*}
$$

(2.142d)

Tho Almansi* strain tensor ${ }^{\circ}$ is defined as follows:

$$
\begin{equation*}
\bar{e}=\frac{1}{2}\left(1-\bar{B}^{-1}\right) \tag{2.143}
\end{equation*}
$$

Equivalent expras日iona for tho Almanai strain $\begin{aligned} & \text { 日 } \\ & \text { ara obtained from tho }\end{aligned}$ definition of the Loft Cauchy-Groon deformation tensor $\mathrm{B}, \mathrm{Eq}, \mathrm{2} .125$:

$$
\begin{equation*}
\overline{\bar{e}}=\frac{1}{2}\left(1-\left(\overline{\bar{V}}^{2}\right)^{-1}\right)=\frac{1}{2}\left(1-(F-1)^{T} \cdot F-1\right) \tag{2.144}
\end{equation*}
$$

The Almangi strain also gives tho change in the squared length of the material vector $\overline{d r}$ as follows, from Eqs. 2.138, and 2.128:

$$
(d S)^{2}-(d s)^{2}=d \bar{R} \cdot \mathcal{I} \cdot d \bar{R}-d \bar{R} \cdot \bar{B}^{-1} \cdot d \bar{R}=d \bar{R} \cdot\left(\overline{1}-\bar{B}^{-1}\right) d \bar{R}(2.145)
$$

Defining $\bar{e}=\frac{1}{2}\left(\overline{1}_{\bar{B}} \bar{E}^{-1}\right)$, one obtains:

$$
\begin{equation*}
\frac{(d S)^{2}-(d s)^{2}}{2}=d \bar{R} \cdot \overline{\bar{e}} \cdot d \bar{R} \tag{2.146}
\end{equation*}
$$

Components of the Almansi (Eulerian) strain tensor are:

$$
\begin{equation*}
\overline{\hat{e}}=\hat{e}_{ \pm v} \bar{i}_{i} \bar{L}_{j}=e_{I J} \bar{G}^{I} \bar{G}^{J}=e^{I v} \bar{G}_{I} \bar{G}_{I J}=e_{J}^{I} \bar{G}_{I} \bar{G}^{v} \tag{2,147}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{e}_{x v}=\frac{1}{2}\left(\delta_{i j}-\frac{\partial x_{k}}{\partial X_{I}} \frac{\partial x_{i}}{\partial X_{J}}\right) \tag{2.148}\\
& \hat{e}_{ \pm v}=\frac{1}{2}\left(\delta_{ \pm v}-g_{i j}\right) \tag{2.149}
\end{align*}
$$

[^8]\[

$$
\begin{align*}
& e_{J}^{x}=\frac{1}{2}\left(\delta_{j}^{i}-G^{x k} g_{k j}\right) \tag{2.1.50}\\
& e^{x J}=\frac{1}{2}\left(G^{x J}-G^{x+} G^{x k} g_{\ell k}\right) \tag{2.151}
\end{align*}
$$
\]

Observe that tho covariant components of the Groom $\bar{\gamma}$ and Almanni. $\overline{0}$ train connors with rospoat to the roforenco bane voctorn ${ }^{-1}$ and to the present base vectors \bar{G}^{-I}, ronpectivoly, are than sans:

$$
\gamma_{i j}=e_{x v}
$$

Therefore, from Eds. 2.140, 2.64, and 2.141:

$$
\begin{align*}
\frac{(d S)^{2}-(d s)^{2}}{2} & =d \bar{r} \cdot \overline{\bar{\gamma}} \cdot d \bar{r}=d \xi^{i} \bar{g}_{i} \cdot \overline{\bar{\gamma}} \cdot \bar{g}_{j} d \xi^{j} \\
& =d \xi^{i} \bar{g}_{i} \cdot\left(\gamma_{i j} \bar{g}^{i} \bar{g}^{j}\right) \cdot \bar{g}_{j} d \xi^{j} \\
\frac{(d S)^{2}-(d s)^{2}}{2} & =\gamma_{i j} d \xi_{i}^{i} d \xi^{j} \tag{2.152}
\end{align*}
$$

or

Also, from Eqs. 2.145, 2.64, and 2.146:

$$
\begin{align*}
& \frac{(d S)^{2}-(d s)^{2}}{2}=d \bar{R} \cdot \bar{e} \cdot d \bar{R}=d \xi^{i} \bar{G}_{I} \cdot \bar{e} \cdot \bar{G}_{v} d \xi^{j} \\
&=d \xi^{i} \bar{G}_{x} \cdot\left(e_{x v} \bar{G}^{x} \bar{G}^{j}\right) \cdot \bar{G}_{v} d \xi^{j} \\
& \frac{(d S)^{2}-(d s)^{2}}{2}=e_{x v} d \xi^{i} d \xi^{j} \tag{2.153}
\end{align*}
$$

of, course, although $\gamma_{i j}=e_{\text {jJ }}$, these are different tensors, and this equality does not hold in the absolute tensor notation:

$$
\overline{\bar{\gamma}} \neq \overline{\bar{e}}
$$

Other Strain Moasures

Stnce in Euclidean space distancos are measured by a quadratic form, tho Cauchymbroon doformation tensors, and tho Grean and nlmanei strain tnmors aro by far the most popular atrain meanurns. Howevex, an Wotmannberg [70] han obnorvod, any" moanuro suffitctont to dotormino tho diroctione of tho prinotpal nxen of ntrain and the magnitudos of the principal olongations may be employod and in fuliy goneral.
othor ntrain meanuros of intoront in the pxesont analynits are tho olongation tonsora (amociatod with tho namo of Biot (71, pago 1181) and E (associatod with the name of swaingor (72]) as woll as tho logarithmic strain toncors \tilde{n}, and $\frac{H}{H}$ (associated with the name of Honcky (73]). These strain tonsors aro dofined as folluws:

$$
\begin{align*}
& \overline{\bar{E}}=\overline{\bar{U}}-\overline{\bar{I}}=\sqrt{\vec{C}}-\overline{\bar{I}}=\sqrt{\overline{\bar{F}} \cdot \overline{\bar{F}}}-\overline{\bar{I}}=\sqrt{\bar{I}+2 \overline{\bar{\gamma}}}-\overline{\bar{I}} \tag{2.154}\\
& \overline{\bar{E}}=\overline{\overline{1}}-(\overline{\bar{V}})^{-1}=\overline{\bar{I}}-\sqrt{\overline{\bar{B}^{-1}}}=\overline{\bar{I}}-\sqrt{\overline{\overline{1}}-2 \overline{\bar{e}}} \tag{2.155}\\
& \overline{\overline{\mathrm{H}}}=\ln \overline{\bar{U}}=\frac{1}{2} \ln \overline{\bar{C}}=\frac{1}{2} \ln (\overline{\mathrm{~F}} \mathrm{~F} \overline{\mathrm{~F}})=\frac{1}{2} \ln (\overline{\mathrm{I}}+2 \overline{\bar{\gamma}}) \tag{2.156}\\
& \overline{\bar{H}} \equiv \ln \overline{\bar{V}}=\frac{1}{2} \ln \overline{\bar{B}}=-\frac{1}{2} \ln (\overline{\bar{I}}-2 \overline{\bar{C}}) \tag{2.157}
\end{align*}
$$

with components

$$
\begin{align*}
& \overline{\bar{E}}=\hat{E}_{i j} i_{j}=\tilde{E}_{i j} \bar{g}^{i} \bar{g}^{j}=\tilde{E}^{i j} \bar{g}_{i} \bar{g}_{j}=\tilde{E}_{j}^{i} \bar{g}_{i} \bar{g}^{j} \tag{2.158}\\
& \bar{E}=\hat{E}_{I \tau} \tau_{i} \tau_{j}=E_{x v} \bar{G}^{x} \bar{G}^{J}=E^{x s} \bar{G}_{s} \bar{G}_{j}=E_{J}^{x} \bar{G}_{x} \bar{G}^{J} \tag{2.159}
\end{align*}
$$

[^9]Rolationn Lotwoon stradn Tunnorn

 and $\frac{1}{11}$ all have tho namo principal axon of ntxain at \bar{R}, in the peroont
 at: $\overline{\mathrm{r}}$ duto principal axos of atrain at \vec{R}.

The tomors \vec{U} and $\stackrel{R}{V}$ havo tho wamo principal valuos. Ihose principal values, callod the principal strutchou $\lambda_{(x}$, are the ratios of the deformed lino olements ds in tho principal directions \bar{b}_{α} to the undeformed line olemonts ds α in tho yamo principal airoctions: $\lambda_{\alpha}=\frac{d s_{\alpha}}{d s_{\alpha}}$.

The tonsors $\stackrel{F}{C}$ and \bar{B} have the same principal values $\left(\lambda_{\alpha}\right)^{2}$, and those principal values are equal to the squares of the principal stretches λ_{α}. The principal values γ_{α} of the strain tensor $\overline{\bar{\gamma}}$ axe relatod to the principal stretches by: $\gamma_{\alpha}=\frac{1}{2}\left(\left(\lambda_{\alpha}\right)^{2}-1\right)$, while the principal values 0_{α} of the strain tonsor $=\operatorname{are~}_{\alpha}=\frac{1}{2}\left(1-\left(\lambda_{\alpha}\right)^{-2}\right)$. The principal values \tilde{E}_{α} of the elongation tensor $\overline{\tilde{E}}$ are related to the principal stretches by $\tilde{E}_{\alpha}=\lambda_{\alpha}-1$, while the principal values E_{α} of the elongation tensor $\overline{\bar{E}}$ are $E_{\alpha}=1-\left(\lambda_{\alpha}\right)^{-1}$. The principal values \tilde{H}_{α} and H_{α} of the tensors $\overline{\tilde{H}}$ and $\stackrel{E}{H}$ are equal; that is, $\tilde{H}_{\alpha}=H_{\alpha}$, and are related to tho principal stretches by $\tilde{H}_{\alpha}=H_{\alpha}=\ln \lambda_{\alpha}$. The mixed components of the tensor 黄 and the tensor $\overline{\bar{H}}$ in the reference base and the present base respectivoly, are equal:

$$
\begin{equation*}
T_{j}^{i}=T_{J}^{ \pm} \tag{2.162}
\end{equation*}
$$

If the axes of deformation are fixed and sevoral deformations are carried out succossively, each principal component of the tensors $\overline{\mathcal{H}}$ and诖 In the resultant doformation is oqual to the aum of the corresponding principal compononts for the several suceessive deformations. For the
tensors $\overline{\overline{\mathrm{H}}}, \overline{\mathrm{C}}, \overline{\bar{\gamma}}$ 部, and $\overline{\bar{V}}, \overline{\bar{B}}, \overline{\mathrm{E}}, \overline{\mathrm{E}}$ this property does not exist. The
 transcendental functions of the exponents of F, and hence in the solution of problems it ia unually better to uso component a of $\overline{\bar{\gamma}}, \overline{\bar{c}}$ and $\overline{\mathrm{E}}, \overline{\mathrm{B}}$ (sine
 and $\overline{\overline{I I}}$ an manure of ntrain.

2.4.3 Deformation Rato Pombetr

2.4.3.1 The Rato of-Doformation finger

 respect to that at time t, in tho limit an $a ; 0$ [22]:

$$
\begin{equation*}
\overline{L_{t}}(t)=\overline{\bar{V}}_{t}(t) \tag{2.163}
\end{equation*}
$$

where, in this notation the subscript t denotes that the present (time t) configuration has been chosen as the reference configuration. Also, in this notation [22]:

$$
\begin{equation*}
\left.\tilde{U}_{t}(t) \equiv \frac{\partial \bar{u}_{t}(\tau)}{\partial \tau}\right|_{\tau=t} \tag{2.164}
\end{equation*}
$$

If a fixed reference configuration is used, then

$$
\begin{equation*}
d \bar{R} \cdot \overline{\bar{D}} \cdot d \bar{R}=\frac{1}{2} \frac{d}{d t}\left[(d S)^{2}\right]=\frac{1}{2} \frac{d}{d t}[d \bar{R} \cdot d \bar{R}] \tag{2.165}
\end{equation*}
$$

Also, it can be shown that

$$
\bar{D}=\frac{1}{2} R \cdot\left(U^{-1}+U^{-1} \cdot() \cdot R^{T}\right.
$$

Components of \bar{D} are:

$$
\overline{\bar{D}}=\hat{D}_{I \pi} \bar{L}_{i} \bar{L}_{j}=D_{I F} \bar{G}^{x} \bar{G}^{J}=D^{x \pi} \bar{G}_{I} \bar{G}_{J}=D_{J}^{I} \bar{G}_{I} \bar{G}^{J}(2.167)
$$

since \bar{U}_{t} is symmetric, so is $\overline{\mathrm{D}}$, being ta derivative with ranpoct to a paramotar:

$$
\begin{equation*}
\overline{v=\hat{V}_{z} \tau_{i}=V^{x} \bar{G}_{x}=V_{x} \bar{G}^{x}, ~} \tag{2.169}
\end{equation*}
$$

Than:

$$
\begin{align*}
& \hat{D}_{x v}=\frac{1}{2}\left(\frac{\partial \hat{v}_{s}}{\partial X_{J}}+\frac{\partial \hat{v}_{\tau}}{\partial X_{I}}\right) \tag{2.1.70}\\
& D_{I J}=\frac{1}{2} \dot{G}_{I J}=\frac{1}{2} \frac{d}{d t}\left(\bar{G}_{x} \cdot \bar{G}_{J}\right)=\frac{1}{2}\left(\dot{\bar{G}}_{I} \cdot \bar{G}_{J}+\bar{G}_{I} \dot{\bar{G}}_{J}\right)_{(2.171)} \\
& =\frac{1}{2}\left(V_{ \pm, v}+V_{v, \pm}\right) \tag{2.172}\\
& D^{I \tau}=-\frac{1}{2} \dot{G}^{I v}=\frac{1}{2} G^{I L} G^{\mu K} \dot{G}_{K L}=\frac{1}{2}\left(V^{I v}+V^{\tau}\right)_{(2.173)} \\
& D_{J}^{x}=\frac{1}{2} G^{\pi k} \dot{G}_{\kappa J}=\frac{1}{2}\left(V^{x},{ }_{J}+V_{J},{ }^{J}\right) \tag{2.174}
\end{align*}
$$

2.4.3.2 Relations between Strain Rate Tensors

Observe that the covariant components $D_{I J}$ of the rate-of-deformation tensor $\overline{\mathrm{D}}$ in convected coordinates are equal to the material rate of the covariant components $\gamma_{i j}$ of the Green (Lagrangian) strain tensor $\bar{\gamma}$ and
alno am oqual to tho matorial rato of the covariant compononts ef of tho Almangi (Eularian) strain tensor $\underset{\text { E }}{\text { : }}$

$$
\begin{equation*}
D_{I_{w}}=\frac{1}{2} \dot{G}_{I T}=\frac{1}{n} \dot{C}_{n}=\dot{X}_{i j}=\dot{\theta}_{I \Xi} \tag{2.175}
\end{equation*}
$$

[int, thin dom not at all imply that the ratomofodoformation temor in nquat to the matortal ratoa of tho Groon and Nimanat atratn tonnorf. In Gaot, tho rootangular cortomian ompononta aro diferont:

$$
\begin{equation*}
\hat{D}_{x s} \neq \dot{\hat{\gamma}}_{i j} \neq \dot{\hat{e}}_{x v} \tag{2.176}
\end{equation*}
$$

and tho convoctod mixad eompenonton axo ateforont:

$$
\begin{align*}
& \dot{X}_{j}^{i}=g^{i k} \dot{X}_{k j}=g^{i k} G_{K L} D_{J}^{L}=C_{l}^{i} D_{J}^{L}=\left(S_{l}^{i}+2 \gamma_{l}^{i}\right) D_{J}^{L}(2.1 .77) \\
& \dot{e}_{J}^{I}=\left(G^{I K} e_{K L}\right)=\dot{G}^{I K} e_{K J}+G^{I K} \dot{e}_{K J}=-2 D^{I K} e_{K J}+D_{J}^{I} \tag{2.178}\\
& =-2 D_{L}^{x} G^{L K} e_{k J}+D_{J}^{I}=D_{J}^{x}-2 D_{L}^{I} e_{J}^{L}=D_{L}^{x}\left(\delta_{j}^{\ell}-2 e_{J}^{L}\right)
\end{align*}
$$

Then,

$$
\begin{equation*}
D_{J}^{x} \neq \dot{\gamma}_{j}^{i} \neq \dot{e}_{J}^{x} \tag{2.179}
\end{equation*}
$$

Also,

$$
\begin{equation*}
D^{ \pm \tau} \neq \dot{\gamma}^{i j} \neq \dot{e}^{I J} \tag{2.180}
\end{equation*}
$$

The material rate of the Green strain tensor can be expressed as

$$
\begin{equation*}
d \bar{R} \cdot \bar{D} \cdot d \bar{R}=\frac{1}{2}\left[(d S)^{2}\right]=d \vec{r} \cdot \overline{\bar{\gamma}} \cdot d \bar{r}=\left(d \bar{r} \cdot \bar{F} \bar{F}^{T}\right) \cdot \bar{D} \cdot(\bar{F} \cdot d r) \tag{2.181}
\end{equation*}
$$

or $\dot{\bar{\gamma}}=\overline{\bar{F}}^{\top} \cdot \overline{\bar{D}} \cdot \overline{\bar{F}}=\overline{\bar{U}} \cdot \overline{\bar{R}} \cdot \overline{\bar{D}} \cdot \overline{\overline{\mathrm{R}}} \cdot \overline{\bar{U}}$
with components

The relation between the mixed components of the deformation rate in the present configuration D_{J}^{I} and the rate of the Gran strain tensor faitor $\dot{\gamma}_{i f}$ or $\dot{\gamma}_{j}^{\prime}$ will bo of Ampurtanco in the formulation of the constitutive equations for Lu e fixed raformon configuration. Thin relation on be obtalnod am fallow ninon, from Fig. 2, 1.75:

$$
\begin{gather*}
\frac{1}{2} \dot{C}_{k j}=\dot{\gamma}_{k j}=D_{k J} \tag{2.284}\\
\frac{1}{2} g_{k l} \dot{C}_{j}^{l}=g_{k l} \dot{\gamma}_{j}^{l}=G_{k x} D_{J}^{x} \tag{2.185}\\
\frac{1}{2} \dot{C}_{j}^{l}=\dot{\gamma}_{j}^{l}=g^{k l} G_{k x} D_{J}^{x}=C_{i}^{l} D_{J}^{x}=\left(\delta_{i}^{l}+2 \gamma_{i}^{l}\right) D_{J}^{x(2,186)} \\
\dot{\gamma}_{j}^{i}=C_{k}^{i} D_{v}^{k}=\left(\delta_{k}^{i}+2 \gamma_{k}^{i}\right) D_{v}^{k} \tag{2.187}\\
D_{j}^{x}=\left(C^{-1}\right)_{l}^{i} \dot{\gamma}_{j}^{l}=\left(C^{-1}\right)^{l} \dot{\gamma}_{l j}
\end{gather*}
$$

The rate of the Almansi (Eulexian) strain tensor admits many interpretations, since this strain tensor is referred to the current (deformed) configuration. For example, the rate observed by an observer that remains fixed-in-gpace, ianoted by \bar{e}, constitutes a tensor with components

$$
\begin{equation*}
\stackrel{\square}{\tilde{e}}=\bar{e}_{x J} \bar{G}^{x} \bar{G}^{J} \underline{e}^{x J} \bar{G}_{I} \bar{G}_{J}=\bar{e}_{J}^{x} \bar{G}_{I} \bar{G}^{J}=\vec{e}_{x J} \bar{i}_{i} \bar{i}_{j} \tag{2.189}
\end{equation*}
$$

Since $\frac{d}{d t}\left(\bar{i}_{1}\right)=0$, it follows that
$\overline{\hat{e}_{x j}}=\dot{\hat{e}}_{x y}$

$$
\begin{align*}
& \overline{\bar{e}}_{x j} \equiv \dot{e}_{x v}-e_{x k} V_{, j}^{k}-V_{, x}^{k} e_{k v} \tag{2.191}
\end{align*}
$$

$$
\begin{aligned}
& =\dot{e}_{\cdot}^{x} \bar{\sigma}_{I} \bar{G}^{J}+e_{v}^{x}\left(V_{, x}^{\kappa} \bar{G}_{k}\right) \bar{G}^{J}+e_{v}^{x} \bar{G}_{x}\left(-V_{i k}^{J} \bar{G}^{k}\right) \\
& =\dot{E}_{j}^{x} \overline{\mathcal{G}}_{x} \bar{G}^{J}+e_{j}^{k} V_{, k}^{x} \bar{G}_{x} \bar{G}^{j}-e_{k}^{x} V_{, j}^{k} \bar{G}_{x} \bar{G}^{j}
\end{aligned}
$$

$$
\begin{equation*}
\bar{e}_{v j}^{x} \equiv \dot{e}_{j}^{x}-e_{k}^{x} V_{j v}^{k}+V_{j k}^{x} e_{v}^{k} \tag{2.192}
\end{equation*}
$$

Another rate is the change observed by an observer that rotates and deforms with the medium: the "convected rate". However, different tensors are obtained from convected differentiation of different representations (coritravariant, covariant, and mixed) of the same tensor. For example, the components obtained by differentiation of the covariant (convected) components $e_{I J}$:

$$
\stackrel{\Delta}{e}_{x J} \equiv \dot{e}_{I J} \quad \dot{e}_{v}^{I}=G^{I K} \dot{e}_{K J} \quad \stackrel{\Delta}{e}^{I \pi}=G^{I K} G^{T K} \dot{e}_{L K} \text { (2.193) }
$$

 cumbonenta M. ذ

$$
\begin{equation*}
\stackrel{\Delta}{e}_{e_{v}} \neq \hat{e}_{-v} \quad \hat{e}_{j} \neq \hat{e}_{i} \quad \hat{e}^{x+} \neq e^{\infty j} \tag{2.195}
\end{equation*}
$$

2.4.3.3. Spin Tumor:

Who amin tensor, \vec{W} (ales called vortiedety tomes) lat the ultimate rate of change of the rotation \bar{R} at \bar{R} from the present shape to one the body had just before or will have just afterward:

$$
\begin{equation*}
\overline{\bar{W}} \equiv \overline{\bar{R}}_{t}(t) \tag{2.196}
\end{equation*}
$$

Motions in which $\vec{W}=\overline{\bar{O}}^{*}$ are called irrotational. They form the main subject of study in classical hydrodynamics.

If a fixed reference configuration is used, more complicated formulae ensue:

$$
\begin{equation*}
\overline{\bar{W}}=\stackrel{\stackrel{\overline{\bar{R}}}{\bar{R}}}{ } \overline{\bar{R}}^{\prime}+\frac{1}{2} \overline{\bar{R}} \cdot\left(\overline{\bar{U}} \cdot \overline{\overline{U^{-1}}}-\overline{\bar{U}^{-1}} \cdot \dot{\bar{U}}\right) \cdot \overline{\bar{R}}{ }^{T} \tag{2.197}
\end{equation*}
$$

components of $\overline{\bar{W}}$ are:
$\overline{\bar{W}}=\hat{W_{I J}} \bar{i}_{i} \bar{i}_{j}=W_{I J} \bar{G}_{I} \bar{G}^{J}=W^{I J} \bar{G}_{I} \bar{G}_{J}=W^{I} \cdot \overline{G_{I}} \bar{G}_{I}^{J}=W_{I}^{\prime v} \cdot \bar{G}^{I} \bar{G}_{J}^{(2.198)}$
$\hat{W}_{I J}=\frac{1}{2}\left(\frac{\partial \hat{V}_{I}}{\partial X_{J}}-\frac{\partial \hat{V}_{J}}{\partial X_{I}}\right) \quad W_{I J}=\frac{1}{2}\left(V_{I, J}-V_{J, I}\right)$
$W_{\cdot v}^{I \cdot}=\frac{1}{2}\left(V_{, J}^{I}-V_{J,}^{I}\right) \quad W_{ \pm}^{\top}=\frac{1}{2}\left(V_{I,}^{J}-V_{, I}^{J}\right)$
$W^{I v}=\frac{1}{2}\left(V^{I J}, V^{J},\right)$

Differentiating the relation $\bar{R}_{t}(T) \cdot \bar{R}_{t}(T)^{T}=\overline{\overline{1}}$ with respect to T, and nutting $t a t$, one find that $\hat{\tilde{W}}$ in new:

$$
\begin{equation*}
\overline{\bar{W}}+{\overline{\bar{W}^{T}}}^{\mathrm{T}}=\overline{\overline{0}} \tag{2.200}
\end{equation*}
$$

 of the ilofomation grad ont timber $\overline{\mathrm{F}}$ at $\overline{\mathrm{K}}$ from the profont tape to ono the body had fate before or will have font afterward:

$$
\begin{equation*}
L=F_{t}(t) \tag{2.203}
\end{equation*}
$$

For a fixed reference configuration:

$$
\begin{equation*}
\bar{E} \equiv \overline{\bar{F}}, \overline{\bar{F}}-1 \tag{2.202}
\end{equation*}
$$

Also,*

$$
\begin{equation*}
\bar{L}=\operatorname{Grad} \dot{\bar{R}}=\operatorname{Grad} \bar{v} \tag{2.203}
\end{equation*}
$$

which justifies the name spatial velocity gradient.
Also, differentiating the polar decomposition

$$
\begin{equation*}
\overline{\bar{F}}_{t}(\tau)=\overline{\bar{R}}_{t}(\tau) \cdot \overline{\bar{U}}_{t}(\tau)={\overline{\overline{V^{t}}}}_{t}(\tau) \cdot \overline{\bar{R}}_{t}(\tau) \tag{2.204}
\end{equation*}
$$

with respect to τ, and then setting $\tau=t$, one finds that

$$
\begin{equation*}
\bar{L}=\overline{\bar{D}}+\overline{\bar{W}} \tag{2.205}
\end{equation*}
$$

This result shows that $\overline{\bar{D}}$ and \bar{W} are the symmetric and skew parts of the velocity gradient:

[^10]\[

$$
\begin{equation*}
D=\frac{1}{2}\left(\square+\bar{L}(T) \quad \bar{T}=\frac{1}{2}(\square-T\right. \tag{2,206}
\end{equation*}
$$

\]

It also exprenno日 tho fundamental Eulor-Cauchy-Stoken decomposition of tho ingtantanooun motion at $\overline{\mathbb{R}}$ and t into the mum of a pure ftrotching ($\overline{\mathrm{D}}$) along the mutually orthogonal axes and a rigid spin (W) of thono axon. Components of L ara:

2.5 Stress Tensors

At a typical material point M, consider a differential element of area dA in the present configuration, and a differential element of area dA in the reference configuration. The orientations of these differential elements of area are defined by their unit normal vectors $\overline{\mathrm{N}}$ (for dA) and \vec{n} (for $d A_{o}$).

The force transmitted across the differential element of area $d A$ at the material point M is $d \vec{P}$, and the corresponding traction vector is $\bar{T}=\frac{d \bar{p}}{d A}$. Also, it is convenient to define a fictitious force $d \overline{\widetilde{P}}=(\overline{\bar{F}})^{-1} \cdot d \overline{\mathrm{P}}$, or $d \overline{\widetilde{P}} \cdot \bar{G}_{I}=d \bar{P} \cdot \bar{g}_{i}$, a traction vector measured with respect to the undeformed area $\bar{E}=\frac{d \bar{P}}{d A_{0}}$, and a fictitious traction vector $d \overline{\mathscr{Y}}=\frac{d \overline{\tilde{P}}}{d A_{0}}$. These vectors have components:

$$
\begin{aligned}
& \bar{N}=\hat{N}_{I} \bar{i}_{i}=N^{I} \bar{G}_{I}=N_{I} \bar{G}^{I} \quad \bar{n}=\hat{n}_{i} \bar{i}_{i}=n^{i} \bar{g}_{i}=n_{i} \bar{g}^{i} \quad d \bar{P}=\overline{\bar{F}} \cdot \vec{d} \bar{P}
\end{aligned}
$$

$$
\begin{align*}
& \bar{T}=\frac{d \bar{F}}{d A}=\hat{T}_{I} \bar{i}_{i}=T^{ \pm} \bar{G}_{I}=T_{I} \bar{G}^{2} \tag{2.209}\\
& \bar{t} \equiv \frac{d \bar{P}}{d A_{0}}=\hat{t}_{I} \bar{i}_{i}=t^{I} \bar{G}_{I}=t_{I} \bar{G}_{I} \quad \overline{\tilde{t}} \equiv \frac{d \overline{\tilde{P}}^{\prime}}{d A_{0}}=\hat{t}_{i} \tilde{i}_{i}=\tilde{t}^{i} \bar{g}_{i}=\tilde{t}_{i} \bar{g}^{i}
\end{align*}
$$

2.5.1 Tho Cauchy Stzons Tansor

Tho Cauchy streas tensor, $\stackrel{\theta}{\sigma}$ (somotimes uallod Eulerian atreas in the onginooring litoratural if dofinod as

$$
\begin{equation*}
T=N \mathrm{~N} \cdot \mathrm{~m} \tag{2,210}
\end{equation*}
$$

Compononta of thin aymotric tonaor* aro

$$
\begin{equation*}
\bar{\sigma}=\hat{\sigma}_{I v} \bar{i}_{i} \bar{i}_{j}=\sigma^{I v} \bar{G}_{I} \bar{G}_{\pi}=\sigma_{I v} \bar{G}^{I} \bar{G}^{v}=\sigma_{v}^{I} \bar{G}_{I} \bar{G}^{v} \tag{2.2.11}
\end{equation*}
$$

Tho first subscript on a component of $\overline{5}$ idontifios the plano on which it acts, while the gecond subsoxipt identifics the direction of that component. The definition can bo expressed, in component form as:

$$
\begin{align*}
& \hat{T}_{I}=\hat{\sigma}_{ \pm \pi} \hat{N}_{ \pm} \tag{2.212}\\
& T^{I}=\sigma^{I T} \mathbb{J}_{J}=\sigma_{J}^{I} \mathrm{~N}^{J} \tag{2.213}\\
& T_{I}=\sigma_{I J} N^{\top}=\sigma_{I}^{\top} \mathrm{N}_{J}
\end{align*}
$$

or

$$
\begin{equation*}
\bar{T}=\hat{\sigma}_{I v} \hat{N}_{I} \bar{i}_{i}=\sigma^{I v}{\underset{N}{I}}^{G_{J}}=\sigma_{J I} N_{I} \bar{G}^{J} \tag{2.215}
\end{equation*}
$$

2.5.2 The Kirchhoff Stress Tensor

The Kirchhoff stress tensor $\overline{\bar{\tau}}$, can be defined conveniently in terms of the Cauchy stress tensor as:

[^11]\[

$$
\begin{equation*}
\overline{\bar{\tau}} \equiv \frac{\rho_{0}}{\rho} \bar{\sigma} \tag{2,?16}
\end{equation*}
$$

\]

or, equivalently;

$$
\begin{equation*}
\overline{\mathrm{T}}=\frac{\rho}{\rho} \cdot \overline{\mathrm{N}} \cdot \overline{\mathrm{z}} \tag{2.217}
\end{equation*}
$$

whore ρ_{o} in tho mane donglty of tho matorial in tho roforanco configuresion at $t \rightarrow t_{0}$ dosinod by:

$$
\begin{equation*}
\rho_{0}=\frac{d m}{d V_{0}} \tag{2.218}
\end{equation*}
$$

whore m is the mass and v_{0} the volume in the reference configuration.
The mass density ρ of the material in the present configuration at $t=t$ is defined by:

$$
\begin{equation*}
\theta=\frac{d m}{d V} \tag{2,219}
\end{equation*}
$$

Here, again, m is the mass, and V the volume in the present configuration. Observe that once a fixed reference configuration is chosen, ρ_{0} is a constant for a material point, while ρ is a function of time. The equation (2.219) for the mass-density expresses a relation between the body and such shapes as it may assume. To each shape of the body one may apply Eqs. 2.218 and 2.219 to obtain the same mass for the same part of the body:

$$
\begin{equation*}
m=\int \rho_{0} d V_{0}=\int \rho d T \tag{2.220}
\end{equation*}
$$

If one writes J for the absolute value of the Jacobian determinant, then a theorem of integral calculus* shows that

$$
\begin{equation*}
\int \rho_{0} d W_{0}=\int \rho \delta d T_{0} \tag{2.221}
\end{equation*}
$$

[^12]or
\[

$$
\begin{equation*}
J_{\equiv}|\operatorname{det} \bar{F}|=\frac{\rho_{p}}{p_{p}}=\frac{d V}{d V_{0}}=\sqrt{\frac{G}{g}} \tag{2.222}
\end{equation*}
$$

\]

Tharoforo, ono can alma axprobe the Kirchhoff strong $\frac{T}{T}$ an:

$$
\begin{equation*}
\left.\overline{\bar{\varepsilon}}=\frac{d V}{d V} \overline{\bar{\sigma}}=J \overline{\bar{\sigma}}=|\operatorname{det}| \bar{F} \right\rvert\, \overline{\bar{\sigma}}=\sqrt{\frac{G}{g}} \overline{\bar{\sigma}} \tag{2.223}
\end{equation*}
$$

Since the cauchy arose tensor σ is symmetric, tho Kirchhoff strobe toner is also gymatric. Components of this tensor ara:

$$
\begin{equation*}
\bar{\varepsilon}=\hat{\tau}_{x s} \tau_{i j}=\tau^{x} \bar{G}_{x} \bar{G}_{s}=\tau_{x v} \bar{G}^{x} \bar{G}^{\top}=\tau_{\bar{s}}^{\bar{s}} \bar{G}_{x} G^{x} \tag{2,224}
\end{equation*}
$$

The Kirchhoff stress tensor can be defined also from:

$$
d \bar{P}=\hat{\tau}_{I v}\left(\hat{n}_{i} d A_{0}\right) \bar{\tau}_{j}=\tau^{I J}\left(n_{i} d A_{0}\right) \bar{G}_{J}=\tau_{J}^{I}\left(n_{i} d A_{0}\right) \bar{G}_{i 2}^{J}
$$

since from Nanson's relation (page 169 of (50])

$$
\begin{equation*}
N_{I} d A=\frac{\rho_{0}}{p} n_{i} d A_{0}=J_{n i} d A_{0}=\sqrt{\frac{G}{g}} n_{i} d A_{0} \tag{2.226}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& \bar{t}=\frac{d \bar{P}}{d A_{0}}=\hat{\tau}_{I v} \hat{n}_{i} \bar{i}_{j}=\tau^{I J} \bar{n}_{i} \bar{G}_{J}=\tau_{J}^{I} n_{i} \bar{G}^{J} \tag{2.227}\\
& t^{J}=n_{i} \tau^{I v} \quad t_{J}=n_{i} \tau_{J}^{I} \quad \hat{t}_{J}=\hat{n}_{i} \hat{\tau}_{I J} \tag{2.228}
\end{align*}
$$

2.5.3 The Second Piola-Kirchhoff Stress Tensor

The Second Piola-Kirchhoff stress tensor $\overline{\bar{S}} 1 s$ defined as:

$$
\begin{equation*}
\overline{\tilde{t}}=\bar{n} \cdot \overline{\bar{S}} \tag{2.229}
\end{equation*}
$$

where $\overline{\tilde{f}}$ is a psoudo-traction vector relating a fictitious differential force $d \overline{\tilde{P}}$ to the original aron $d \lambda_{o}$ aE $\overline{\tilde{t}}=\frac{d \tilde{\mathrm{P}}}{d A_{0}}$. Thin preudo-traction vector in defined by the ale relation that ${ }^{\circ}$ relates tho differential of tho position vector to tho doformod configuration $d \vec{R}$ to the differential of the position vector to the undoformed configuration $\bar{d} \bar{r}$. From Egg. 2.85 and 2.86:
as then

$$
\begin{equation*}
d \bar{R}=\overline{\bar{F}} \cdot d \bar{r} \tag{2.230}
\end{equation*}
$$

$$
\text { and } \quad \bar{G}_{I}=\overline{\bar{F}} \cdot \bar{g}_{i}
$$

$$
\begin{equation*}
d \bar{P}=\bar{F} \cdot d \widetilde{P} \tag{2.231}
\end{equation*}
$$

and

$$
\bar{t}=\bar{F} \cdot \overline{\tilde{t}}
$$

or

$$
\begin{equation*}
d \overline{\widetilde{P}}=\overline{\bar{F}}-1 \cdot d \bar{P} \tag{2.232}
\end{equation*}
$$

and

$$
\overline{\tilde{t}}=\overline{\bar{F}}-1 \cdot \bar{t}
$$

Observe that these relations imply

$$
\begin{equation*}
d \bar{P} \cdot \bar{g}_{i}=d \overline{\widetilde{P}} \cdot \bar{G}_{I} \quad \bar{t} \cdot \bar{g}_{i}=\overline{\tilde{t}} \cdot \bar{G}_{I} \tag{2.233}
\end{equation*}
$$

Writing these expressions in component form:

$$
\begin{align*}
d P^{I} \bar{G}_{I} & =\overline{\bar{F}} \cdot d \tilde{P}^{i} \bar{g}_{i}=d \tilde{P}^{i} \overline{\bar{F}} \cdot \bar{g}_{i}=d \tilde{P}^{i} \bar{G}_{I} \tag{2.234}\\
t^{I} \bar{G}_{I} & =\overline{\bar{F}} \cdot \tilde{t}^{i} \bar{g}_{i}=\tilde{t}^{i} \overline{\bar{F}} \cdot \bar{g}_{i}=\tilde{t}^{i} \bar{G}_{I} \tag{2.235}
\end{align*}
$$

Hence

$$
\begin{equation*}
d P^{I}=d \tilde{P}^{i} \quad t^{I}=\tilde{t}^{i} \tag{2.236}
\end{equation*}
$$

But

$$
\begin{equation*}
d P_{x} \neq d \tilde{\pi}_{i} \quad t_{x} \neq \tilde{t}_{i} \tag{2.237}
\end{equation*}
$$

and, of course

$$
\begin{equation*}
d \bar{P} \neq d \overline{\widetilde{P}} \tag{2.238}
\end{equation*}
$$

$\bar{t} \neq \bar{t}$
The second Piola-Kirchoff atrese is a aymotrio tensor if tho cauchy strong tensor in symmetric.

Exprosading the Socond Plolamkirchhoff aron tenor ${ }^{\text {S }}$ in component. form:

Its definition (Eq. 2.229) can also be oxprosesod in component form as

$$
\begin{align*}
& \overline{\tilde{t}}=n_{i} S^{i j} \bar{g}_{j}=n_{i} S_{j}^{i} \bar{g}^{j}=\hat{n}_{i} \hat{S}_{i j} \bar{\tau}_{j} \tag{2.240}\\
& \tilde{t}^{j}=n_{i} S^{i j} \quad \tilde{t}_{j}=n_{i} S_{j}^{i} \quad \hat{\tilde{t}}_{j}=\hat{n}_{i} \hat{S}_{i j} \tag{2.241}
\end{align*}
$$

$$
\begin{aligned}
& \text { Observe, from Eq. 2.236, 2.241, and } 2.228 \text { that }
\end{aligned}
$$

$$
\begin{equation*}
\tilde{t}^{j}=t^{v} \tag{2.243}
\end{equation*}
$$

Then,

$$
\begin{equation*}
n_{i} S^{i j}=n_{i} \tau^{x J} \tag{2.244}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
S^{i j}=\tau^{\mathrm{rj}} \tag{2.245}
\end{equation*}
$$

The contravariant components $s^{i j}$ (with respect to the reference basis \bar{g}_{i}) of the Second Piola-Kirchhoff stress tensor $\overline{\bar{S}}$ and the contravariant components $\tau^{\text {JJ }}$ (with respect to the present basis \bar{G}_{I}) of the Kirchhoff
stress tensor \bar{T} are equal. However, this does not at all imply that the Kirchhoff stress and the Second Piola-Kirchhoff stress are equal.
2.5.4 Tho pint piola-Kirchhoff Strobe Tensor
 in a rouble tomor* defined af:

 with the roforonco configuration, to produce tho traction vector \bar{t} associated with tho present configuration. Tho First piola-Kirehhoff stress tensor is, in general, an unsymotric tensor. Components of this stress tensor are:

$$
\begin{aligned}
& =T_{i j} g^{i} \bar{g}^{j}=T^{i j} \bar{g}_{i} \bar{g}_{j}=T^{i} \cdot j_{j} \bar{g}_{i} \bar{g}^{j}=T_{i}^{i} \cdot g^{i} \bar{g}_{j}
\end{aligned}
$$

Truesdell and Noil [40] define the First Piula-Kirchhoff stress as the transpose of this definition (Eq. 2.246) and denote it with the symbol ${ }{ }^{R}$. employing the following components:

$$
\begin{equation*}
T_{R}=\bar{T}^{\top}=T_{R}^{J i} \bar{G}_{i} \bar{g}_{i}=T_{R}^{J} i i \bar{G}_{v} \bar{g}^{i}=T_{R i} \bar{G}^{\top} \bar{g}^{i} \tag{2.248}
\end{equation*}
$$

in their analysis.
The definition of the First Piola-Kirchhoff stress tensor \bar{T}, is, in component form

$$
\begin{equation*}
\bar{E}=n_{i} T^{i J} \bar{G}_{j}=n_{i} T_{i j}^{i} \bar{G}^{J}=\hat{n}_{i} \hat{T}_{i J} \bar{i}_{j} \tag{2.249}
\end{equation*}
$$

or

$$
d \bar{P}=T^{i J}\left(n_{i} d A_{0}\right) \overline{G_{J}}=T_{i} \cdot J\left(n_{i} d A_{0}\right) \bar{G}^{J}=\hat{T_{i J}}\left(\hat{n}_{i} d A_{0}\right) \dot{i}_{j}
$$

See Subsection 2.4 for a definition of a double tensor.

$$
t^{J}=n_{i} T i v \quad t_{T}=n_{i} T \cdot T \cdot \hat{t}_{T J}=\hat{n}_{i} \hat{T}_{i \pi}
$$

Obsorva that the mixed componenta af the Kirchhoff atragn tennor with rompoot to the preanont badia \vec{G}_{I}, and the following mixad compononta of tho firat pialamktrohhoff atrone with roopoot to tho moforonen and pronent configuration bania, ara oquads

Aloo, tho Eollowing contravarlant compononto of tho Kirchafl, Firat PLolawkirchioff, and Socond plola-Kirchhofe strons tongor aro cqual:

$$
\begin{equation*}
\tau^{1 \tau}=T^{i v}=S^{i j} \tag{2.253}
\end{equation*}
$$

2.5.5 Relations botweon Stress Tensors

The following relationships between the s tress tensors can bo shown to hold:

$$
\begin{align*}
& \overline{\bar{\tau}}=\frac{\rho_{0}}{\rho} \bar{\sigma} \tag{2.254}\\
& \overline{\bar{s}}=\frac{\rho}{\rho} \overline{\bar{F}}^{-1} \cdot \overline{\bar{\sigma}}^{\prime} \cdot\left(\bar{F}^{-1}\right)^{\top}=\frac{\rho_{0}}{\rho} \overline{\bar{u}}^{-1} \cdot \overline{\bar{T}}^{\top} \cdot \overline{\bar{\sigma}} \cdot \overline{\bar{R}} \cdot \overline{\bar{u}}^{-1} \tag{2.255}\\
& \overline{\bar{T}}=\frac{\rho_{0}}{\rho} \overline{\bar{F}} \cdot 1 \cdot \overline{\bar{\sigma}}=\frac{\rho_{\rho}}{\rho} \overline{\bar{U}}^{-1} \cdot \overline{\bar{R}}^{\top} \cdot \overline{\bar{\sigma}} \tag{2.256}\\
& \overline{\bar{\sigma}}=\frac{\rho}{\rho_{0}} \overline{\bar{\tau}} \tag{2.257}\\
& \overline{\bar{S}}=\overline{\bar{F}} \cdot-\overline{\bar{z}} \cdot\left(\bar{F}^{-1}\right)^{\top}=\overline{\bar{U}}^{-1} \cdot \overline{\overline{\mathrm{R}}^{\top}} \cdot \overline{\bar{\tau}} \cdot \overline{\overline{\mathrm{R}}} \cdot \overline{\mathrm{u}}^{-1} \\
& \overline{\bar{T}}=\bar{F}^{-1} \cdot \overline{\bar{z}}=\overline{\bar{U}}^{-1} \cdot \overline{\bar{R}}^{\top} \cdot \overline{\bar{\tau}}
\end{align*}
$$

(2.258)
(2.259)

$$
\begin{align*}
& \overline{\bar{\sigma}}=\frac{\rho_{\rho}}{\rho_{0}} \overline{\bar{F}} \cdot \overline{\bar{S}} \cdot \bar{F}^{\top}=\frac{\rho_{\rho}}{\rho_{0}} \cdot \overline{\bar{R}} \cdot \overline{\bar{u}} \cdot \overline{\bar{S}} \cdot \overline{\bar{u}} \cdot \overline{\bar{R}}^{\top} \tag{2.260}\\
& \bar{\tau}=\bar{F} \cdot \bar{S} \cdot \bar{F}^{\top}=\bar{R} \cdot \overline{\bar{U}} \cdot \overline{\bar{S}} \cdot \overline{\vec{U}} \cdot \overline{\bar{R}}^{\top} \tag{2.261}\\
& \overline{\bar{T}}=\overline{\bar{S}} \cdot \bar{F}^{T}=\overline{\bar{S}} \cdot \overline{\bar{U}} \cdot \overline{\bar{R}^{\top}} \tag{2,2G2}\\
& \overline{\bar{\sigma}}=\frac{\rho_{0}}{\rho_{0}} \overline{\bar{F}} \cdot \bar{T}=\frac{\rho_{0}}{\rho_{0}} \cdot \bar{R} \cdot \overline{\bar{u}} \cdot \bar{T} \tag{2.263}\\
& \overline{\bar{z}}=\overline{\bar{F}} \cdot \overline{\bar{T}}=\overline{\bar{R}} \cdot \overline{\bar{u}} \cdot \overline{\bar{T}} \tag{2.2GA}\\
& \overline{\bar{S}}=\overline{\bar{T}} \cdot\left(\overline{\bar{F}}^{-1}\right)^{\top}=\overline{\bar{T}} \cdot \bar{U}^{-1} \cdot \overline{\mathrm{R}}^{\top} \tag{2.265}
\end{align*}
$$

The ralation betwoen the mixed components of the kirchhoff stress in the present configuration, in the body-fixed convected coordinato system, τ_{k}^{I}, and the components of the Second piola-Kirchhoff stress ($s^{i j}$ or s_{j}^{i}) will be of importance in the formulation of the constitutive relations in the fixed refesence configuration used in this work. This relationship will be needer in later parts of the analysis.

Since the contravariant components of the Kirchhoff stress tensor component in the present configuration and the Second Piola-Kirchhoff stress tensor component in the reference configuration are equal:

$$
\begin{equation*}
\tau^{ \pm v}=S^{i j} \tag{2.266}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\tau_{k}^{x} G^{k J}=S_{l}^{i} g^{\ell_{j}} \tag{2.267}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{k}^{I}=S_{l}^{i} g^{l j} G_{J k}=S_{l}^{i} C_{k}^{l}=S_{l}^{i}\left(\delta_{k}^{l}+2 \gamma_{k}^{l}\right) \tag{2.268}
\end{equation*}
$$

Hence, the mixed components are related by:

$$
\begin{equation*}
\tau_{k}^{2}=C_{k}^{k} S_{k}^{i}=\left(\delta_{k}^{k}+2 \gamma_{k}^{k}\right) S_{k}^{i} \tag{2,269}
\end{equation*}
$$

or

$$
\begin{equation*}
\tau_{K}^{I}=C_{k l} S^{l_{i}}=\left(g_{k l}+2 \gamma_{k l}\right) S^{l i} \tag{2.270}
\end{equation*}
$$

2.6 Strobes Rato and Rato of second Ordo Tongore in General

The time derivative of tensor fields, such as tress, that are associated with the progent configuration, admits infinitely many definitions, depending upon the observer used to compute such time derivatives. Fox use in constitutive equations, it is convenient that the following conditions [76] should be satisfied:

1. The Leibniz rule of differentiation of a product.
2. The time derivative should be a tensor quantity of the same type as the original tensor; in particular, if the original tensor is symmetric, its time derivative should also be symmetric.
3. The derivative should be defined uniquely; i.e., starting from one definition, the same tensor should be obtained by differentiation of various representations of the same original tensor.
4. Vanishing of the time derivative of a tensor should induce vanishing of the time derivative of its arbitrary invariant.

5: The time derivative of the tensor should vanish when the material point of a continuum with its environment perform
a rigid borly motion and the tensor does not vary in time Intrinsically with respoot to tho material point,

Sineo the fimet time derivativa of a tonsor (dofinod in this fashion) wonstituten a now tombor finld, moond and highor time doriwativon onn bo dofinot by confidoring thin findd. It, thoraforn, mufiton to amalyon In detadi the dofdation of the fitat time dorivativo.
 obrarvor that ntaya flxad in an inortad. framo, (a) on omorvor that rotatwn and movon with tho borly, and (3) omaruarn that mova, rotatio, nut doforan (ta difforant fanifonn) with ino botly.

 timu durdvativo, dofinud fiom tho viownownt of an oburven that moves with the partiolo, partigipating in the rotutionad motion, wid bu codiluithe "co-rotationad rate".

Tho tima dexivative, defined from the viowpoiat of an obanrver that moves with tho paxticle, participating in des rotatory motion, and deforming in common with the continuum, will be called the "convected rate" (there existe more than one type of this dexivative accoraing to what one refines as "deforming in common" with the continuum).

2.6.1 Rates of the Unit Tensor

It is intuitive that a good definition of the time rate of a tensor would make the rate of the unit tensox $\ddot{1}$ vanish. It scems appropi iate, therefore, to investigate what time rates satisfy this condition.

(a) Fixed-Observer Reter

It will be shown that the fixed-olsserver rate, denoted by (${ }^{(1)}$), of the unit (metric) tensor vanishes:

$$
\begin{equation*}
\bar{I}=\frac{d}{d t}(\bar{I})=\overline{0} \tag{2.271}
\end{equation*}
$$

In the fixed-in-space Cartar an representation:

$$
\begin{equation*}
\overline{\underline{I}}=\frac{d}{d t}\left(\delta_{i j} \tau_{i} \tau_{j}\right)=\overline{0} \tag{2,272}
\end{equation*}
$$

since

$$
\begin{equation*}
\frac{d}{d t}\left(\tau_{i}\right)=\overline{0} \quad \text { and } \quad \frac{d}{d t}\left(\delta_{i j}\right)=0 \tag{2.273}
\end{equation*}
$$

In tho convoctod system, with tho reference configuration metric $g_{i f}$:
and similarly for

$$
\begin{equation*}
\overline{\overline{1}}=\frac{d}{d t}\left(g^{i j} \bar{g}_{i} \bar{g}_{j}\right)=\frac{d}{d t}\left(\delta_{j}^{i} \bar{g}_{i} \bar{g}^{j}\right)=\overline{\overline{0}} \tag{2.275}
\end{equation*}
$$

In the convected system, with the present configuration metric G IJ, this result is not trivial, since:

$$
\dot{G}_{x, v} \neq 0 \quad \dot{G}^{x y} \neq 0 \quad \dot{\bar{G}}_{x} \neq \overline{0} \quad \dot{\bar{G}}^{x} \neq \overline{0}
$$

Employing Eq. 2.84, one finds:

$$
\begin{align*}
& \overline{\overline{1}}=\frac{d}{d t}\left(G_{x v} \bar{G}^{x} \bar{G}^{v}\right)=\dot{G}_{x v} \bar{G}^{x} \bar{G}^{v}+G_{x v} \dot{\bar{G}}^{x} \bar{G}^{v}+G_{x v} \bar{G}^{x} \dot{\bar{G}}^{j} \\
& =\dot{G}_{x j} \bar{G}^{x} \bar{G}^{j}+G_{x v}\left(-V^{x} \bar{K}_{k}^{k}\right) \bar{G}^{j}+G_{x j} \bar{G}^{x}\left(-V_{, k}^{j} \bar{G}^{k}\right) \tag{2.276}\\
& =\dot{G}_{x v} \bar{G}^{x} \bar{G}^{J}-G_{k J} V_{, x}^{k} \bar{G}^{x} \bar{G}^{J}-G_{x k} V_{, v}^{k} \bar{G}^{x} \bar{G}^{J} \\
& =\left(\dot{G}_{x J}-G_{x k} V^{k}{ }_{2 J}-V^{k}{ }_{x} G_{k J}\right) \bar{G}^{x} \bar{G}^{J}=\bar{G}_{x v} \bar{G}^{x} \bar{G}^{J} \\
& \bar{G}_{x v}=\dot{G}_{x v}-G_{x k} V_{, v}^{k}-V_{i x}^{k} G_{k v}
\end{align*}
$$

But, from Eq. 2.172

$$
\begin{equation*}
\dot{G}_{x v}=V_{x, v}+V_{\sigma, I} \tag{2.278}
\end{equation*}
$$

It noe

$$
\begin{equation*}
\dot{G}_{I=}=0 \quad \frac{\square}{I}=\overline{\bar{O}} \tag{2.279}
\end{equation*}
$$

Also, for the mixed components:

$$
\begin{align*}
& =\delta_{J}^{I}\left(V_{, I}^{k} \bar{G}_{k}\right) \bar{G}^{J}+\delta_{v}^{I} \bar{G}_{I}\left(-V_{, k}^{J} \bar{G}^{k}\right) \\
& =\delta_{J}^{k} V_{, k}^{I} \bar{G}_{I} \bar{G}^{J}-\delta_{k}^{I} V_{, J}^{k} \bar{G}_{x} \bar{G}^{J} \\
& =\left(V^{I}, J-V^{x}, \tau\right) \bar{G}_{I} \bar{G}^{v}=\bar{G}_{J}^{I} \bar{G}_{I} \bar{G}^{\tau}=\overline{\overline{0}} \tag{2.280}
\end{align*}
$$

For the contravariant components:

$$
\begin{align*}
& \overline{\underline{I}}=\frac{d}{d t}\left(G^{I v} \bar{G}_{I} \bar{G}_{v}\right)=\dot{G}^{x v} \bar{G}_{I} \bar{G}_{J}+G_{I}^{I v} \dot{G}_{I} \bar{G}_{v}+G^{I v} \bar{G}_{I} \dot{\bar{G}}_{J} \\
& =\dot{G}^{x J} \bar{G}_{I} \bar{G}_{\tau}+G^{I v}\left(V^{k}, I \bar{G}_{k}\right) \bar{G}_{v}+\bar{G}^{I v} \bar{G}_{I}\left(V_{, J}^{k} \bar{G}_{k}\right) \\
& =\dot{G}^{x v} \bar{G}_{I} \bar{G}_{v}+G^{k v} V_{, k}^{I} \bar{G}_{I} \bar{G}_{v}+G^{I k} V_{, k}^{v} \bar{G}_{I} \bar{G}_{v} \\
& =\left(\dot{G}^{I v}+G^{I K} V_{, k}^{v}+V_{, k}^{I} G^{k v}\right) \bar{G}_{I} \bar{G}_{J}=\bar{G}^{x v} \bar{G}_{I} \bar{G}_{v} \\
& \dot{G}^{x v}=\dot{G^{\prime}}+V^{x}, v+V^{v}, \tag{2.281}
\end{align*}
$$

But, from Eq. 2.173

$$
\begin{equation*}
\dot{G}^{x v}=-\left(V^{I}, v+V^{v},\right) \tag{2.2E2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
G^{\square \sigma}=0 \quad \stackrel{\text { 口 }}{\stackrel{\rightharpoonup}{1}}=\overline{\overline{0}} \tag{2.283}
\end{equation*}
$$

(b) Convoctod Ratoon

The convected rato in tho time derivative of tho convoctod component a of the tensor, For example, for the unit tensor:

$$
\begin{equation*}
\frac{\Delta}{1}=\dot{G}_{x v} \bar{G}^{x} \bar{G}^{v} \equiv \dot{G}_{ \pm v} \bar{G}^{x} \bar{G}^{v} \tag{2:284}
\end{equation*}
$$

Hence, employing Eq. 2.172:

$$
\begin{align*}
& \stackrel{G}{G I v} \equiv \dot{G}_{I v}=2 D_{I v} \tag{2.285}\\
& \frac{\Delta}{d}=2 \bar{D} \tag{2.286}
\end{align*}
$$

Another convected rate, denoted by $(\nabla$; , can be obtained from the material rate of the contravariant components, as follows:

$$
\begin{equation*}
\frac{\nabla}{1}=\dot{G} x v \bar{G}_{x} \bar{G}_{v} \equiv \dot{G}^{\nabla v} \bar{G}_{x} \bar{G}^{v} \tag{2.287}
\end{equation*}
$$

From Eq. 2.173:

$$
\begin{equation*}
G^{\nabla v} \equiv \dot{G} x v=-2 D^{I v} \tag{.2.288}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\bar{\nabla}=-2 \overline{\bar{D}} \tag{2.289}
\end{equation*}
$$

Two other convected rates, denoted by (${ }^{\triangleleft}$) and $\left({ }^{\triangleright}\right.$) can be obtained from the material rate of the mixed components:

$$
\begin{equation*}
\overline{\overline{1}} \equiv \dot{\delta}_{J}^{I} \bar{G}_{I} \bar{G}^{J}=G_{I \cdot J}^{\Sigma} \bar{G}_{I} \bar{G}^{J} \tag{2.290a}
\end{equation*}
$$

Hence

$$
\begin{equation*}
Q_{I \cdot J}^{\Sigma} \equiv \dot{\delta}_{J}^{I}=0 \tag{2.290b}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \frac{1}{1}=0 \tag{2.290c}
\end{align*}
$$

Hence

$$
\begin{equation*}
G_{J}^{\Delta} \equiv \dot{\delta}_{v}^{I}=0 \tag{2.29lb}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{4}{1}=\overline{=} \tag{2,291c}
\end{equation*}
$$

which shows that only the "mixed" convected rates (${ }^{4}$) and ${ }^{\nabla}(1$ of the unit (metric) tensor do vanish; while the contravariant (${ }^{\nabla}$) and covariant convected (${ }^{\boldsymbol{\Delta}}$, rates of the unit (metric) tensor do not vanish.
(c) Co-Rotational,Rate

The co-rotational rate can be obtained from the additive decomposition of the velocity gradients, Eq. 2.205:

$$
\begin{equation*}
L_{\cdot J}^{I \cdot J} V_{, J}^{I}=D_{J}^{I}+W_{\cdot J}^{I} \tag{2.292}
\end{equation*}
$$

The expression for the fixed-observer rate (Eq. 2.277) in convected coordinates can be expressed as:

Rate
Therefore, the co-rotational rate (the rate observed by an observer that rotates but does not deform with the body) should be

Hence, from Eq. 2.172:

$$
\begin{equation*}
G_{I J}=0 \tag{2.29Ac}
\end{equation*}
$$

Similarly:

$$
\begin{align*}
Q^{I v} & =\dot{Q}^{I J}+G^{I K} \oiint_{k}^{J}+D_{k}^{I} G^{K v} \\
& =\dot{G}^{I v}+D^{I v}+D^{I v}=\dot{G}^{I v}+2 D^{I v} \tag{2,295a}
\end{align*}
$$

Hence, from Eq. 2.173:

$$
\begin{equation*}
\dot{\theta} I T=0 \tag{2.295b}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{0}{1}=\overline{0} \tag{2.295c}
\end{equation*}
$$

The co-rotational rate of the unit (metric) tensor does vanish.

2.6.2 Rates of the Cauchy Stress Tensor

2.6.2.1 Fixed-Observer Rate

The fixed-observer rate of the Cauchy stress tensor in Cartesian coordinates is simply:

$$
\begin{equation*}
\stackrel{\underline{\sigma}}{\sigma}=\frac{d}{d t}\left(\hat{\sigma}_{ \pm v} \bar{i}_{i} \bar{i}_{j}\right)=\hat{\sigma}_{I v} \bar{i}_{i} \bar{i}_{j} \quad \hat{\sigma}_{I v}=\hat{\dot{\sigma}}_{I v} \tag{2.296}
\end{equation*}
$$

Tho fixad-obanoves rato of tho Cauchy atrose tonaox in convected curviLinoax coordinator, in obtained by taking into account tho time rato of tho base vectors,

Contravartant compononta:

$$
\begin{align*}
& =\dot{\sigma}^{x v} \bar{G}_{I} \bar{G}_{J}+\sigma^{k j} V_{, k}^{x} \bar{G}_{I} \bar{G}_{v}+\sigma^{I k} V^{v}{ }_{k} \bar{G}_{I} \bar{G}_{J} \\
& =\left(\dot{\sigma}^{x J}+V_{, k}^{x} \sigma^{k J}+V_{j k}^{v} \sigma^{x k}\right) \bar{G}_{x} \bar{G}_{j}={ }^{n}{ }^{x x} \bar{G}_{x} \bar{G}_{s} \tag{2.298}\\
& \sigma^{x \tau}=\dot{\sigma}^{x \sigma}+V_{, k}^{x} \sigma^{k J}+\sigma^{I k} V_{, k}^{j}
\end{align*}
$$

Mixed Components:

Covariant Components:

$$
\frac{\underline{\bar{\sigma}}}{\underline{\sigma}}=\frac{d}{d t}\left(\sigma_{x v} \bar{G}^{x} \bar{G}^{J}\right)=\dot{\sigma}_{x v} \bar{G}^{x} \bar{G}^{J}+\sigma_{x v} \dot{\bar{G}}^{x} \bar{G}^{J}+\sigma_{x v} \bar{G}^{x} \dot{\bar{G}}^{J}
$$

2.6.2.2 Convected Rates

The time derivative of the contravariant components of the Cauchy stress tensor in convected coordinates, was named the "convected rate" by Oldroyd [77]. This is one of four different tensors that can be obtained by time differentiation of the four components (covariant, contravariant, and the two mixed components) of the Cauchy stress in convected coordinates.

This "Oldroyd" rate will be identified here as (∇). Therefore, in convected coordinates:
$\overline{\bar{\sigma}} \equiv\left(\frac{d}{d t} \sigma^{I v}\right) \bar{G}_{I} \bar{G}_{v}=\dot{\sigma}^{ \pm v} \bar{G}_{I} \bar{G}_{J}=\sigma^{\nabla \pi} \bar{G}_{I} \bar{G}_{J}$

$$
\begin{equation*}
\stackrel{\nabla}{0}^{\nabla} \equiv 0^{\circ} \pm v \tag{2.301}
\end{equation*}
$$

oldroyd [77] shows, . it in Cartesian coordinates:

$$
\stackrel{\stackrel{\nabla}{\sigma}}{ }=\stackrel{\nabla}{\sigma}_{I v} \bar{i}_{i} i_{j}
$$

$$
\begin{equation*}
\hat{\sigma}_{I v} \equiv \hat{\hat{\sigma}}_{I v}-\hat{V}_{I, K} \hat{\sigma}_{J K}-\hat{V}_{J, k} \hat{\sigma}_{I K} \tag{2.302}
\end{equation*}
$$

Another convected rate can be obtained from time differentiation of the covariant components of the Cauchy stress in convected coordinates. This stress rate, identified by $\left(\begin{array}{l} \\ \\ \end{array}\right)$ was analyzed by Cotter and Riving [78]. In convected coordinates:

$$
\begin{aligned}
& =\dot{\sigma}_{x v} \bar{G}^{x} \bar{G}^{j}+\sigma_{c \pi}\left(-V_{, \kappa}^{x} \bar{G}^{\kappa}\right) \bar{G}^{j}+\sigma_{x v} \bar{G}^{x}\left(-V_{, k}^{v} \bar{G}^{\kappa}\right) \\
& =\dot{\sigma}_{x J} \bar{G}^{x} \bar{G}^{J}-\sigma_{k v} V_{, x}^{k} \bar{G}^{x} \bar{G}^{J}-\sigma_{x k} V_{, ~}^{k} \bar{G}^{x} \bar{G}^{J}
\end{aligned}
$$

$$
\begin{align*}
& \bar{\sigma}_{x v}=\dot{\sigma}_{x v}-V_{j x}^{k} \sigma_{k v}-\sigma_{x k} V_{j v}^{k} \tag{2.300}
\end{align*}
$$

$$
\hat{\bar{\sigma}} \equiv\left(\frac{d}{d t} \sigma_{I J}\right) \bar{G}^{I} \bar{G}^{J}=\dot{\sigma}_{I J} \bar{G}^{I} \bar{G}^{J} \equiv \hat{\sigma}_{I J} \bar{G}^{I} \bar{G}^{J}
$$

cotton and Riviln [78] show that in cartomian coordinator:

$$
\stackrel{\Delta}{\sigma}^{\Delta}=\stackrel{\Delta}{O}_{I J} \bar{i}_{i} \bar{i}_{j}
$$

(2.304)

$$
\hat{\hat{\sigma}}_{I J} \equiv \dot{\hat{\sigma}}_{I J}+\hat{V}_{k, I} \hat{\sigma}_{K J}+\hat{V}_{k, j} \hat{\sigma}_{I, K}
$$

Other convected rates can be defined by time differentiation of the mixed components of the cauchy stress in convected coordinates, as shown by Masur [79 and 80]:

$$
\stackrel{\underline{\bar{\sigma}}}{\underline{\hat{\sigma}_{x \sigma}}} \bar{i}_{i} \bar{i}_{j}
$$

$$
\begin{equation*}
\hat{\sigma}_{x s}=\dot{\hat{\sigma}}_{z s}-\hat{v}_{x, k} \hat{\sigma}_{x s}+\hat{v}_{k, j} \hat{\sigma}_{x x} \tag{2.306}
\end{equation*}
$$

$$
\mathcal{\sigma}_{s,}^{\prime}: \equiv \dot{\sigma}_{s}^{\prime \cdot}:
$$

(2.307)

$$
\begin{align*}
& \stackrel{\Delta}{\sigma}=\stackrel{\Delta}{\hat{\sigma}}_{x \sqrt{i} \bar{i}_{i} \tau_{j}} \\
& \hat{\sigma}_{I \sigma} \equiv \dot{\hat{\sigma}}_{I v}+\hat{V}_{k, I} \hat{\sigma}_{k J}-\hat{V}_{J, k} \hat{\sigma}_{I k} \tag{2,300}
\end{align*}
$$

2.6.2.3 Com Rotational katy

The eorrotational ntrone rate here denoted by (${ }^{\circ}$), In the convoetod coordinate oybtom can bo obtained from the fixad-obnorvor rate in
 by D_{J}^{I} (thoroby eliminating the subtraction of the spin tensor W_{j}^{I}. from the convected rate). Hence, in convected coordinates:

$$
\begin{align*}
& \dot{\sigma}^{I J}=\dot{\sigma}^{I v}+D_{k}^{I} \sigma^{k J}+\sigma^{I K} D_{k}^{J} \\
& \dot{\sigma}_{J}^{I}=\dot{\sigma}: \dot{J}+D_{k}^{I} \sigma_{J}^{k}-\sigma_{k}^{I} D_{J}^{K} \tag{2.311}\\
& \stackrel{0}{\sigma}_{I v}=\dot{\sigma}_{I v}-D_{I}^{k} \sigma_{k J}-\sigma_{I K} D_{J}^{k} \tag{2.312}\\
& \dot{\hat{\sigma}}_{I V}=\dot{\hat{\sigma}}_{I v}-\hat{W}_{I K} \hat{\sigma}_{K J}-\hat{W}_{J K} \hat{\sigma}_{I K} \tag{2.313}
\end{align*}
$$

The cowrotational stress rate in Cartesian coordinates was first introduced by zaremba [81], and later on by Jaumann [82]. Noil [83] and Thomas [84] rediscovered this result. The comrotational frame is referred to as "kinematically preferred coordinate system" by Thomas [85] and the co-rotational stress rate is denoted as the "Jaumann stress rate" by Pager [86].

An altornativo way to obtain the comotational rats is from the avarage of tho convectod raton of the mixed componenta, an shown by Masur $[79,80]:$
2.6.3 Rateg of a Gocond Ordor Tonsor

Rwoapitulating, a nocond ordor tonnor $\overline{5}$ having componomes:
has the following rates.
2.6.3.1 FIXED-OBSERVER RATE 徔

$$
\begin{align*}
& \overline{\hat{\Omega}}_{x v}=\dot{\hat{\Omega}}_{x J} \tag{2,317}\\
& \bar{\Omega}^{x J}=\dot{\Omega}^{x s}+V^{x}, \Omega^{k s}+\Omega^{2 k} V^{J}, k \tag{2.318}
\end{align*}
$$

2.6.3.2 CO-ROTATIONAL RATE 号

$$
\begin{align*}
& \stackrel{\circ}{\Omega}_{I J}=\dot{\Omega}_{I J}-D_{I}^{k} \Omega_{K J}-\Omega_{X K} D_{J}^{k} \tag{2.326}
\end{align*}
$$

(2.32.5)

$$
\begin{align*}
& \overline{\hat{\Omega}}_{x j}=\dot{\hat{\Omega}}_{I \sigma}-\hat{V}_{x, k} \hat{\Omega}_{k J J}-\hat{V}_{J, k} \hat{\Omega}_{I K} \tag{2.328}\\
& \hat{\Omega}_{I V}=\dot{\Omega}_{I J} \tag{2.329}\\
& \hat{\hat{\Omega}}_{I v}=\dot{\hat{\Omega}}_{I J}+\hat{V}_{k, I} \hat{\Omega}_{K J}+\hat{V}_{k, J} \hat{\Omega}_{I K} \tag{2.330}\\
& \stackrel{\triangleright}{\Omega}: \dot{J}=\dot{\Omega}^{x} \cdot \dot{j} \tag{2.331}\\
& \hat{\hat{\Omega}}_{I J}=\dot{\hat{\Omega}}_{I J}-\hat{V}_{I, k} \hat{\Omega}_{k J}+\hat{V}_{k, J} \hat{\Omega}_{I k} \tag{2.332}\\
& \widehat{\Omega}_{j}=\dot{\Omega}_{j}^{x} \text {. } \tag{2.333}\\
& \widehat{\widehat{\Omega}}_{I J}=\dot{\hat{\Omega}}_{I J}+\hat{V}_{k, I} \hat{\Omega}_{K J}-\hat{V}_{J, K} \hat{\Omega}_{I K}
\end{align*}
$$

2.6.3.4 Relations betweren Ratos of Second ordor Teneore

The following relations botwen tho various raton of a gecond ordor tommor 』 can bo ahown to hold:

$$
\begin{equation*}
\overline{\widetilde{\Omega}}=\frac{\square}{\Omega}-\overline{\bar{W}} \cdot \overline{\bar{\Omega}}+\overline{\bar{\Omega}} \cdot \overline{\bar{W}} \tag{2,335}
\end{equation*}
$$

$$
\overline{\bar{\Omega}}=\overline{{ }_{\Omega}}-\bar{E} \cdot \overline{\bar{\Omega}}-\overline{\bar{\Omega}} \cdot \bar{L}
$$

$$
\frac{\bar{n}}{\bar{\Omega}}=\overline{\bar{\Omega}}-\overline{\bar{L}} \cdot \overline{\bar{\Omega}}+\overline{\bar{\Omega}} \cdot \overline{\bar{L}}
$$

$$
\frac{4}{\bar{\Omega}}=\overline{\bar{\Omega}}+\bar{E}^{\top} \cdot \overline{\bar{\Omega}}-\bar{\Omega} \cdot \overline{\bar{L}}^{\top}
$$

$$
\begin{equation*}
\frac{A}{\Omega}=\frac{0}{\bar{\Omega}}+\overline{\bar{D}} \cdot \overline{\bar{\Omega}}+\bar{\Omega} \cdot \overline{\bar{D}} \tag{2.339}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\bar{\nabla}}{\bar{\Omega}}=\frac{\circ}{\bar{\Omega}}-\overline{\bar{D}} \cdot \overline{\bar{\Omega}}-\overline{\bar{\Omega}} \cdot \overline{\bar{D}} \tag{2.340}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Delta}{\bar{\Omega}}=\frac{0}{\Omega}-\overline{\bar{D}} \cdot \overline{\bar{\Omega}}+\bar{\Omega} \cdot \overline{\bar{D}} \tag{2.341}
\end{equation*}
$$

$$
\begin{equation*}
\frac{4}{\bar{\Omega}}=\frac{0}{\bar{\Omega}}+\overline{\bar{D}} \cdot \overline{\bar{\Omega}}-\bar{\Omega} \cdot \overline{\bar{D}} \tag{2.342}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\circ}{\Omega}=\frac{1}{2}\left(\frac{\Sigma}{\Omega}+\frac{\Delta}{\Omega}\right)=\frac{1}{2}\left(\frac{\Delta}{\bar{\Omega}}+\frac{\square}{\bar{\Omega}}\right) \tag{2.343}
\end{equation*}
$$

Note: (1) The fixed-in-space observer rate, denoted by (\square, does not satisfy condition 5. For example, the fixed observer rate of the Cauchy stress tensor does not vanish when the body porforms a rigid body motion and the body remains unstressca.
(2) The convected rates identified by (∇) and (Δ) do not satisfy conditions 1 and 4.
(3) The convoctod ratof identifiod by $\left(^{4}\right.$, and (${ }^{(5)}$) produco ungymatric tonsors oven whon tho temor being ateforontaturd was orfaimaty bimmotric.

 "covardant time dorlvative" for the dompotatomal rate.
2. 6.4 Co-kotational Rato ot tha Kizchhotit sticess Ionsor Tho co-rotational rate ${ }^{\circ}$ of the kirchoff struss t with compononts $i^{I J}$ in the present voctor bases, is

Cartesian Components:

Contravariant Components:

$$
\begin{equation*}
\tilde{\tau}^{ \pm v}=\dot{\chi}^{I v}+D_{k}^{I} \tau^{k v}+\tau^{I K} D_{k}^{J} \tag{2.347}
\end{equation*}
$$

Mixed Components:

Covariant Components:

$$
\begin{equation*}
\dot{\tau}_{I J}=\dot{\tau}_{I J}-D_{x}^{k} \tau_{k J}-\tau_{x k} D_{J}^{k} \tag{2,349}
\end{equation*}
$$

2.6.4.1 ComRotational Rate of the Kirchhoff strean ExprosBed in Torma of the Gocond Plola-Kirchhoff strons and tion Greon Strain for a convootod coordinate syutom

Thin rolation if unoful in an analyain foxmulated in torme of a rofornneo configuration. Tho follcwing oxprongions aro uned (boo Eq月. 2.1.40, 2.175, 2.188, 2.266, nud 2.270):

$$
\begin{aligned}
& \dot{\mathcal{L}}^{x}=\dot{S}^{i j} \\
& C_{j}^{i}=g^{i k} G_{k J}=\delta_{j}^{i}+2 \gamma_{j}^{i} \\
& \tau^{ \pm v}=S^{i j}=g^{k_{j} S_{k}^{i}} \quad \dot{\gamma}_{j}^{i}=g^{i k} \dot{\gamma}_{k j}=\frac{1}{2} g^{i k} \dot{G}_{k J}=\frac{1}{2} \dot{C}_{j}^{i} \\
& G_{I k}=C_{i k}=g_{i k}+2 \gamma_{i k} \quad D_{I 5}=\ddot{\gamma}_{i j}=\frac{1}{2} \dot{C}_{i j} \quad\left(C^{-1}\right)^{i k}=G^{I k}
\end{aligned}
$$

From these equations, and Eq. 2.347, one obtains:
Contravariant Components:

$$
\begin{align*}
& \dot{\tau}^{ \pm v}=\dot{\tau}^{I v}+G^{I L} D_{L K} \tau^{k J}+\tau^{I K} D_{K L} G^{L J} \\
& \dot{\tau}^{I v}=\dot{S}^{i j}+\dot{\gamma}_{l k}\left[G^{I L} S^{k j}+S^{i k} G^{L J}\right] \\
& \dot{c}^{\underline{0} v}=\dot{S}^{i j}+S^{k m} \dot{\gamma}_{m l}\left[S_{k}^{i}\left(C^{-1}\right)^{k j}+\left(C^{-1}\right)^{i l} S_{k}^{j}\right] \tag{2.350}
\end{align*}
$$

Mixed Components:

One can obtain these components from any of the following relations:

$$
\begin{align*}
& \dot{\tau}_{ \pm}=\dot{\tau}^{I N} G_{N J} \quad \dot{\tau}_{J}^{I}=\frac{1}{2}\left[G_{k J} \dot{\tau}^{I K}+G^{k I} \dot{\tau}_{J K}\right] \tag{2.35:}
\end{align*}
$$

Employing the first of these relations, one obtains:

$$
\begin{align*}
& \dot{\tau}_{\tau}^{x}=\dot{S}^{i n} G_{N \sigma}+S^{\ln } \dot{\gamma}_{\rho p}\left[G^{x 1} G_{N J}+\delta_{n}^{i} \delta_{j}^{l}\right] \\
& =\dot{S}_{m}^{i} g^{m n} G_{N \sigma}+S_{m}^{k} g^{m n} \dot{\gamma}_{l}^{m} g_{k m} G^{x 1} G_{N T}+S^{i k} \dot{\gamma}_{l k} \delta_{j}^{l} \\
& =\dot{S}_{m}^{i}\left(\delta_{j}^{m}+2 \gamma_{j}^{m}\right)+S_{m}^{k} \dot{\gamma}_{l}^{m} G^{L I} G_{k \sigma}+S_{m}^{i} g^{m k} \dot{\gamma}_{j}^{m} g_{m k} \\
& =\dot{S}_{m}^{i}\left(\delta_{j}^{m}+2 \gamma_{j}^{m}\right)+S_{m}^{k} \dot{\gamma}_{l}^{m} G^{L T} G_{k \sigma}+S_{m}^{i} \dot{\gamma}_{j}^{m} \\
& =\dot{S}_{m}^{i}\left(\delta_{j}^{m}+2 \gamma_{j}^{m}\right)+S_{m}^{k} \dot{\gamma}_{l}^{m}\left[\delta_{k}^{i} \delta_{j}^{l}+G^{L x} G_{k \sigma}\right] \\
& =\dot{S}^{i m}\left(g_{m j}+2 \gamma_{m j}\right)+S^{k m} \dot{\gamma}_{m l}\left[\delta_{k}^{i} \delta_{j}^{l}+G^{i x} G_{k J}\right] \\
& \dot{\tau}_{v}^{x}=\dot{S}_{m}^{i} C_{j}^{m}+S_{m}^{k} \dot{\gamma}_{l}^{m}\left[\delta_{k}^{i} \delta_{j}^{l}+\left(C^{-1}\right)^{l i} C_{k_{j}}\right] \tag{2.352}\\
& \dot{\tau}_{v}^{x}=\dot{S}^{i m} C_{m j}+S^{k m} \dot{\gamma}_{m l}\left[\delta_{k}^{i} \delta_{j}^{l}+\left(C^{-1}\right)^{l^{i}} C_{k j}\right] \tag{2.353}
\end{align*}
$$

2.7 Energy Equation

The internal energy integral u over the present volume V can be expressed as a function of the Cauchy stress $\bar{\sigma}$ and the rate-of-deformation tensor $\overline{\bar{D}}$:

$$
\begin{equation*}
U=\int_{V} \int_{t} \overline{\bar{\sigma}}: \overline{\bar{D}} d t d V \tag{2.345}
\end{equation*}
$$

One may write U in terms of the following components in the Cartesian and in the convected coordinate system:

$$
\begin{align*}
& U=\int_{V} \int_{t} \hat{\sigma}_{I J} \hat{D}_{I J} d t d V=\int_{V} \int_{t} \sigma^{I J} D_{I J} d t d V \\
&=\int_{V} \int_{t} \sigma_{I v} D^{x J} d t d V=\int_{V} \int_{t} \sigma_{J}^{I} D_{I}^{J} d t d V \tag{2.355}
\end{align*}
$$

Tho anergy integral u over the volume V_{o} in the foforonco configuration at $t-t_{0}$, can bo zanily obtained from Eqf. 2.223 and 2.355 an:

$$
\begin{equation*}
U=\int_{t} \int_{V_{0}} \underset{\sigma}{\bar{\sigma}} \frac{\rho_{0}}{\rho} d V_{u} d t=\int_{t} \int_{V_{c}} \overline{\bar{\tau}} d V_{0} d t \tag{2.356}
\end{equation*}
$$

whore, as in bis. 2.218 and $2.219:$

$$
\rho_{0}=\frac{d m}{d V_{0}} \quad \rho=\frac{d m}{d V}
$$

Hence, the energy per unit mass $\overline{\mathrm{O}}$ is:

$$
\begin{align*}
& \bar{U} \equiv \frac{d U}{d m}=\frac{d U}{d V_{0}} \frac{d V_{0}}{d m}=\frac{1}{\rho_{0}\left(\bar{r}, t_{0}\right)} \frac{d U}{d V_{0}} \\
&=\frac{1}{\rho_{0}\left(\bar{r}, t_{0}\right)} \int_{t} \overline{\bar{\sigma}}: \overline{\bar{D}} d t \\
& \bar{U} \equiv \frac{d U}{d m}=\frac{d U}{d V} \frac{d V}{d m}=\frac{1}{\rho(\bar{R}, t)} \frac{d U}{d V} \\
&= \frac{1}{\rho(\bar{R}, t)} \int_{t} \overline{\bar{\sigma}}: \overline{\bar{D}} d t \tag{2.358}\\
& \overline{\bar{\tau}}: \overline{\bar{D}}=\rho_{0}\left(\bar{r}, t_{0}\right) \dot{\bar{U}} \tag{2.359}\\
& \overline{\bar{\sigma}}: \overline{\bar{D}}=\rho(\bar{R}, t) \dot{\bar{U}} \tag{2.360}
\end{align*}
$$

These equations express the important fact (for constitutive equations based on thermodynamics principles) that the scalar product $\overline{\bar{\tau}}: \overline{\bar{D}}$ is simply related by a constant (ρ_{0}) to the power per unit mass $\dot{\vec{U}}$, while the scalar product $\overline{\bar{\sigma}}: \overline{\overline{0}}$ is related by a variable (ρ, which depends on the deformation history) to the power per unit mass $\dot{\bar{U}}$.

It can be shown that equivalent expressions for the internal energy U arc:

$$
\begin{aligned}
U & =\int_{t} \int_{V} \overline{\bar{T}}: \overline{\bar{D}} d V d t=\int_{t} \int_{V_{0}} \overline{\bar{T}}: \overline{\bar{D}} d V_{0} d t=\int_{t} \int_{V_{0}}^{\bar{S}}: \dot{\bar{\gamma}} d V_{0} d t \\
& =\int_{t} \int_{V_{0}} \frac{1}{2}: \dot{\bar{S}} d V_{0} d t=\int_{t} \int_{V_{0}}(\bar{T})^{T}: \dot{\vec{F}} d V_{0} d t=\iint_{t V_{0}}^{\bar{T} \cdot \dot{\bar{F}} d V_{0} d t}{ }^{(2.361)}
\end{aligned}
$$

Therefore, ${ }^{\circ}$ and \bar{D} are conjugate variables for the internal strain power
 conjugate variables for the internal strain power per unit reference volume v_{0}.

For the conjugate variables $\overline{\bar{\tau}}$ and $\overline{\bar{D}}$, the energy expression in terms of the components in the cartesian and in the convected coordinate system in the present configuration read:

$$
\begin{align*}
U & =\int_{t} \int_{V_{0}} \hat{\tau}_{I J} \hat{D}_{I J} d V_{0} d t=\int_{t} \int_{V_{0}} \tau^{I v} D_{I J} d V_{0} d t \tag{2.362}\\
& =\int_{t} \int_{V_{0}} \tau_{I J} D^{I v} d V_{0} d t=\int_{t V_{0}} \tau_{J}^{I} D_{I}^{J} d V_{0} d t
\end{align*}
$$

For the conjugate variables $\stackrel{\stackrel{y}{\bar{S}}}{ }$ and $\dot{\bar{\gamma}}=1 / 2 \dot{\overline{\mathrm{C}}}$, the energy expression in terms of the components in the cartesian and in the convected coordinate system in the reference configuration read:

$$
\begin{align*}
U & =\int_{t} \int_{V_{0}} \hat{S}_{i j} \dot{\hat{\gamma}}_{i j} d V_{0} d t=\iint_{V_{0}} \int_{\gamma_{i j}} \hat{S}_{i j} d \hat{X}_{i j} d V_{0} \\
& =\int_{t} \int_{V_{0}} S^{i j} \dot{\gamma}_{i j} d V_{0} d t=\iint_{0} S_{r_{i j}} d \dot{X}_{i j} d V_{0} \\
& =\int_{t} \int_{V_{0_{0}}} S_{j}^{i} \dot{\gamma}_{i}^{j} d V_{0} d t=\int_{V_{0}} \int_{\gamma_{i}} S_{j}^{i} d \gamma_{i}^{j} d V_{0} \tag{2.363}\\
& =\int_{t} \int_{V_{0}} S_{i j} \dot{\gamma}^{i j} d V_{0} d t=\int_{V_{0}} \int_{\gamma^{i j}} S_{i j} d \gamma^{i j} d V_{0}
\end{align*}
$$

 mate byistem roan:

$$
\begin{align*}
& T=\int_{t} \int_{V_{0}} \hat{T}_{i J} \hat{F_{J}} d \bar{V}_{0} d t=\int_{V_{0}} \int_{\hat{F}_{J i}} \hat{T}_{i J} d \hat{F_{J i}} d V_{0} \\
& =\int_{t} \int_{V_{0}} T_{i j} \dot{F}^{j i} d V_{0} d t=\int_{V_{0}} \int_{F^{j i}} T_{i j} d F^{j i} d V_{0} \tag{2.364}\\
& =\int_{t} \int_{\nabla_{0}} T^{i j} \dot{F}_{j i} d V_{0} d t=\int_{V_{0}} \int_{F_{j i}} T^{i j} d F_{j i} d V_{0} \\
& =\int_{t} \int_{V_{0}} T_{i j}^{i} F^{\dot{-}} \cdot i d V_{0} d t=\int_{t} \int_{V_{0}} T_{i} \cdot \dot{F}_{j} \cdot \dot{p} \cdot d V_{0} d t
\end{align*}
$$

observe that since $D_{I J}=\dot{\gamma}_{i j}=\dot{e}_{I J}$, equivalent expressions are:

$$
\begin{align*}
& U=\int_{t} \int_{V} \sigma^{T r} \dot{X}_{i j} d V d t=\int_{V} \int_{X_{\mathrm{ij}}} \sigma^{x \pi} d X_{i j} d V \\
& =\int_{t} \int_{V} \sigma^{\pi T} \dot{e}_{T J} d V d t=\int_{V} \int_{e_{s}} \sigma^{T \nabla} d e_{x s} d V \tag{2.365}
\end{align*}
$$

However, note that $\overline{\bar{\sigma}}$ and $\dot{\bar{\gamma}}$, and $\overline{\bar{\sigma}}$ and $\dot{\bar{E}}$ are not conjugate variables, since, for example:

$$
\begin{aligned}
& U \neq \int_{t} \int_{T} \sigma_{v}^{x} \dot{\gamma}_{i}^{j} d V d t \quad U \neq \int_{t} \int_{-V} \sigma_{v}^{x} \dot{e}_{I}^{T} d V_{d t} \\
& U \neq \int_{t} \int_{V} \hat{\sigma}_{x s} \dot{\hat{X}}_{i j} d V d t \quad U \neq \int_{t} \int_{V} \hat{\sigma}_{x s} \dot{e}_{x s} \delta V_{d t}(1,366)
\end{aligned}
$$

This seemingly simple distinction has been the cause of confusion by many authors.

Observe, that since

$$
\tau^{x v}=S^{i j}=T^{i v}
$$

and

$$
D_{x \sigma}=\dot{\gamma}_{i j}=\dot{e}_{x \sigma}
$$

then, aquivalont axproasions are

$$
\begin{align*}
& U=\int_{t} \int_{V_{0}} \tau^{\text {In }} \dot{\gamma}_{i j} d V_{0} d t=\int_{V_{0}} \int_{\gamma_{i j}} \tau^{x \sigma} d \gamma_{i j} d V_{0} \\
& =\int_{t} \int_{V_{0}} \tau^{x J} \dot{e}_{x v} d V_{0} d t=\int_{v_{0}} \int_{e_{z v}} \tau^{x J} d e_{I v} d V_{0} \\
& =\int_{t} \int_{V_{0}} S^{i j} D_{x v} d V_{0} d t=\iint_{t} T_{V_{0}}^{i J} D_{I v} d V_{0} d t \\
& =\int_{t} \int_{V_{0}} S^{i j} \dot{e}_{x v} d V_{0} d t=\int_{V_{0}} \int_{e_{x j}} S^{i j} d e_{x j} d V_{0} \\
& =\int_{t} \int_{V_{0}} T^{i v} \dot{e}_{x v} d V_{0} d t=\int_{V_{0}} \int_{e_{x j}} T^{i v} d e_{I v} d V_{0} \tag{2.367}\\
& =\int_{t} \int_{\sigma_{0}} T^{i J} \dot{\gamma}_{i j} d V_{0} d t=\int_{V_{0}} \int_{\gamma_{i j}} T^{i v} d \gamma_{i j} d V_{0}
\end{align*}
$$

 and $\overline{\bar{T}}$ and $\dot{\bar{\gamma}}$ are not conjugate variables.

2.8 Specialization: Homogeneous Uniaxial Irrotational Deformation

The uniaxial tensile test is a common and simple way to characterize the stress-strain relation for a given material. Since the tensor components used in the constitutive relation will have to be related to this uniaxial test, and also to gain a physical understanding of the quantities involved in the analysis, it is both useful and instructive to express the tensor quantities previously discussed in terms of the uniaxial tension test variables. A homogeneous, uniaxial, irrotational deformation will be considered. Then, it is evident that the curvilinear convected coordinate ξ^{1} is equal to the Lagrangian Cartesian coordinate x_{1} for a bar with no initial curvature:

$$
\begin{equation*}
\xi^{1}=x_{1} \tag{2,368}
\end{equation*}
$$

Observe that ξ_{1}^{1} and x_{1} are not functions of time (they remain tho fame for a given material particle)

If tho original length of tho bar in l_{0}, and item present length is k, then tho Silurian Cartesian coordinate X_{1} in

$$
\begin{equation*}
X_{1}\left(x_{1}, t\right)=\frac{l(t)}{l_{0}} x_{1} \tag{2.369}
\end{equation*}
$$

If the unit vector directed along tho axis of deformation is \bar{I}_{1}, then

$$
\begin{equation*}
\bar{g}_{1}=\bar{g}^{1}=\bar{i}_{1} \tag{2.370}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{11}=g^{11}=1 \tag{2.371}
\end{equation*}
$$

The deformed base vectors are:

$$
\begin{equation*}
\bar{G}_{1 .}=\frac{l}{l_{0}} \bar{i}_{1} \quad \bar{G}^{1}=\frac{l_{0}}{l} \bar{i}_{1} \tag{2.372}
\end{equation*}
$$

and the metric of the deformed configuration:

$$
\begin{equation*}
G_{11}=\frac{l^{2}}{l_{0}^{2}} \quad G^{11}=\frac{l_{0}^{2}}{l^{2}} \tag{2.373}
\end{equation*}
$$

so that the unit.second order tensor is:

$$
\begin{align*}
\overline{\mathcal{1}} & =1 \bar{i}_{1} \bar{l}_{1}=1 \bar{g}_{1} \bar{g}_{1}=1 \bar{g}^{1} \bar{g}^{1}=1 \bar{g}_{1} \bar{g}^{1}=1 \bar{g}^{1} \bar{g}_{1} \\
& =\frac{l^{2}}{l_{0}^{2}} \bar{G}^{1} \bar{G}^{1}=\frac{l_{0}^{2}}{l^{2}} \bar{G}_{1} \bar{G}_{1}=1 \bar{G}_{1} \bar{G}^{1}=1 \bar{G}^{1} \bar{G}_{1} \tag{2.374}
\end{align*}
$$

The position vectors are:

$$
\bar{r}=\hat{r}_{1} \bar{i}_{1}=x_{1} \bar{i}_{1}=r^{1} \bar{g}_{1}=r_{1} \bar{g}^{1} \quad \hat{r}_{1}=r^{1}=r_{1}=x_{1}
$$

$$
\begin{aligned}
& \bar{R}=\hat{R}_{1} \Gamma_{1}=X_{1} \Gamma_{1}=R^{4} \bar{G}_{1}=R_{1} \bar{G}^{1} \\
& \hat{R}=X_{1}=\frac{l}{l_{0}} x_{1} \quad R^{1}=x_{1} \quad R_{1}=\frac{l^{2}}{l_{0}^{2}} x_{1}
\end{aligned}
$$

The displacement vector is:

$$
\begin{aligned}
& \bar{u}=\bar{R}-\bar{r}=\hat{u}_{1} I_{1}=u^{4} \bar{g}_{1}=u_{1} \bar{g}^{1}=U^{1} \vec{G}_{1}=U_{1} \bar{G}^{1} \\
& \hat{u}_{1}=\hat{R}_{1}-\hat{r}_{1}=X_{1}-x_{1}=\left(\frac{l}{l_{0}}-1\right) x_{1} \\
& u^{4}=u_{1}=\hat{u}_{1}=\left(\frac{l}{l_{0}}-1\right) x_{x_{1}} \\
& \bar{u}=R^{4} \bar{G}_{1}-r^{4} \bar{g}_{1}=x_{1} \bar{G}_{1}-x_{1} \bar{I}_{1}=x_{1} \bar{G}_{1}-\frac{l_{1}}{l} x_{1} \bar{G}_{1}\left(1-\frac{l}{l}\right) \times, \bar{G}_{1}^{(2)} \\
& U^{1}=\left(1-\frac{l}{h}\right) x_{1} \quad U_{1}=\frac{l^{2}}{l_{0}^{2}}\left(1-\frac{l_{2}^{2}}{l^{2}}\right) x_{1}
\end{aligned}
$$

The velocity vector is:

$$
\begin{aligned}
& \bar{v}=\left.\frac{\partial \bar{u}}{\partial t}\right|_{E_{1}^{\prime}=x_{1}=\text { cost. }}=\hat{v}_{1} \bar{i}_{1}=v^{1} \bar{g}_{1}=v_{1} \bar{g}^{1}=V^{1} \bar{G}_{1}=V_{1} \bar{G}^{1} \\
& \hat{v}_{1}=\left.\frac{\partial X_{1}}{\partial t}\right|_{x_{1}=\text { cones. }}=\frac{l}{l_{0}} x_{1} \\
& v^{1}=v_{1}=\hat{v}_{1}=\frac{\dot{l}}{l_{0}} x_{1} \\
& \bar{v}=\frac{\dot{l}}{l_{0}} x_{1} \bar{T}_{1}=V^{1} \bar{G}_{1}=V_{1} \bar{G}^{1}=V^{1} \frac{l}{l_{0}} \tau_{1}=V_{1} \frac{l_{l} \bar{i}_{1}}{(2,377)} \\
& V^{1}=\frac{\dot{l}}{l} x_{1} \quad V_{1}=\frac{l^{2}}{l_{0}^{2}} \frac{\dot{l}}{l} x_{1}
\end{aligned}
$$

Whe time ratos of the duformed bano vectors axo:

$$
\begin{align*}
& \frac{d \bar{G}_{1}}{d t}=\frac{\partial V^{1}}{\partial x_{1}} G_{1}=\frac{\dot{l}}{l} \bar{G}_{1}=\frac{\dot{l}}{l_{0}} T_{1} \tag{2.178}\\
& \frac{d \bar{G}^{4}}{d t}=-\frac{\partial V^{4}}{\partial x_{1}} \bar{G}^{4}=-\frac{\dot{l}}{l} \bar{G}^{4}=-\frac{l}{l} \frac{l}{l} \frac{l}{l} \bar{T}_{1}
\end{align*}
$$

2.8.1 Doformation and strain Tonsors

The componomta of tho doformation gradiont tomor $\overrightarrow{\mathrm{F}}$ ato:
cartosian Componont:

$$
\begin{equation*}
\hat{F}_{11}=\frac{\partial X_{1}}{\partial x_{1}}=\frac{l}{l_{0}} \tag{2.380}
\end{equation*}
$$

Double Tensor Components:

$$
\begin{align*}
& F^{I \cdot j}=\xi_{j}^{i} \\
& F^{I j}=F^{I} \cdot k g^{k j} \\
& F_{I j}=F^{K} \cdot j G_{K J} \tag{2.381}\\
& F_{I \cdot j}^{\cdot j}=F^{K \cdot l} G_{k I} g^{l j}
\end{align*}
$$

$$
\begin{aligned}
& F_{1}^{1}=1 \\
& F_{11}^{1}=\frac{1}{l^{2}} \\
& F_{11}=\frac{l^{2}}{l_{0}^{2}} \\
& F_{1}^{1}=\frac{l^{2}}{l_{0}^{2}}
\end{aligned}
$$

Components in the Convected Coordinate System in the Reference
Configuration are:

$$
\begin{gather*}
F_{\cdot k}^{i}=S_{k}^{i}+u^{i}, k \\
F^{1} \cdot 1=1+\frac{\partial u^{i}}{\partial x_{1}}=1+\left(\frac{l}{l_{0}}-1\right) \\
F_{1}^{1} \cdot F^{11}=F_{11}=F_{1}^{1}=\frac{l}{l_{0}} \tag{2.382}
\end{gather*}
$$

The components of the spatial deformation gradient tensor F^{-1} aron

Cartesian Component:

$$
\begin{equation*}
\left(\hat{F}^{-1}\right)_{11}=\frac{\partial x_{1}}{\partial X_{1}}=\frac{l_{0}}{f} \tag{2,383}
\end{equation*}
$$

Double Tonsor Componontr:

$$
\begin{align*}
& \left(F^{-1}\right)_{k}^{i}{ }_{k}=\delta_{k}^{i} \\
& \left(F^{-1}\right)^{4}: 1=1 \\
& \left(F^{-1}\right)^{i}=\left(F^{-1}\right)^{i} \cdot{ }^{k} G^{k L} \\
& \left(F^{-2}\right)^{\mu}=\frac{l^{2}}{l^{2}} \\
& \left(F^{-1}\right)_{j}^{2}=\left(F^{-1}\right)^{4 h} g_{i j} \\
& \left(F^{-1}\right)_{i}^{1}=\frac{R^{2}}{\ell^{2}} \\
& \left(F^{-1}\right)_{\mathrm{K}}=\left(F^{-1}\right)^{i} \mathrm{k}_{\mathrm{j}} \tag{2.384}\\
& \left(F^{-1}\right)_{11}=1
\end{align*}
$$

components in the convected coordinate System in the Present

Configuration:

$$
\begin{array}{ll}
\left(F^{-1}\right)_{\cdot K}^{I}=\delta_{K}^{I}-U^{I}, K & \left(F^{-1}\right)^{1} \cdot 1=1-\frac{\partial U^{1}}{\partial X_{1}}=1-\left(\frac{l-l_{0}}{l}\right)=\frac{l_{0}}{l} \\
\left(F^{-1}\right)^{I L}=\left(F^{-1}\right)_{\cdot K}^{I \cdot} G^{K L} & \left(F^{-1}\right)^{11}=\frac{l_{0}^{2}}{l^{2}} \frac{l_{0}}{l}=\frac{l_{0}^{3}}{l^{3}} \\
\left(F^{-1}\right)_{J K}=\left(F^{-1}\right)_{\cdot K}^{I} \cdot G_{x J} & \left(F^{11}=\frac{l^{2}}{l_{0}^{2}} \frac{l_{0}}{l}=\frac{l}{l_{0}}\right. \\
\left(F^{-1}\right)_{J \cdot L}^{L}=\left(F^{-1}\right)_{J K} G_{K L}^{12.385)}
\end{array}
$$

Since an irrotational deformation is being considered, then the orthogonal rotation tensor is the unit tensor:

$$
\begin{equation*}
\overline{\overline{\mathrm{R}}}=\overline{\overline{1}} \tag{2.386}
\end{equation*}
$$

And for this special case, the right and left stretch tensors $\dot{\tilde{U}}$ and \bar{V} become both equal to the deformation gradient tensor \bar{F} :

$$
\begin{equation*}
\overline{\widetilde{U}}=\overline{\bar{V}}=\overline{\bar{F}} \tag{2.387}
\end{equation*}
$$

Compononta of the right atroteh tonsor in the Cartesian fyptom and in tho roforonon configuration of tho convoctod coordinator nyntom ara:

$$
\begin{equation*}
\hat{u}_{u}=u^{14}=u_{A}^{1}=u_{A}=\frac{l}{l_{0}} \tag{2.388}
\end{equation*}
$$

Components of tho loft atrotch tenor in tho Cartoninn bytom and in tho pronont configuration of tho convoctod coordinator ayatom are:

$$
\begin{equation*}
\hat{V}_{4}=V_{1}^{4}=\frac{l}{l_{0}} \quad V^{4}=\frac{l}{l} \quad V_{4 A}=\frac{l^{2}}{l_{0}^{2}} \tag{2.389}
\end{equation*}
$$

Observe that the value of the stretch tensors is equal to unity for no deformation, and the possible range is

$$
\begin{equation*}
0<\hat{U}_{41}=U_{1}^{1}=\hat{V}_{41}=V_{1}^{1}<+\infty \tag{2.390}
\end{equation*}
$$

The right Cauchy-Green deformation tensor $\overline{\bar{C}}=\overline{\bar{U}}^{2}$ has the following components in the cartesian system and in the convected coordinate system in the reference configuration:

$$
\begin{equation*}
\hat{C}_{11}=C_{1}^{1}=C^{11}=C_{11}=G_{14}=\frac{l^{2}}{l_{2}^{2}} \tag{2.391}
\end{equation*}
$$

The left Cauchy-Green deformation tensor $\overline{\bar{B}}=\overline{\bar{V}}^{2}$ has the following components in the Cartesian system and in the convected coordinate system ins the present configuration:

$$
\begin{array}{ll}
\hat{B}_{11}=B_{1}^{4}=\frac{\ell_{1}^{2}}{l_{0}^{2}} \quad B^{4}=1 l^{4} \\
l_{0}^{4} \tag{2.392}
\end{array}
$$

Observe that the value of the deformation tensors is equal to unity for no deformation and that the possible range of values is:

$$
\begin{equation*}
0<\hat{C}_{11}=C_{1}^{1}=\hat{B}_{41}=B_{1}^{1}<+\infty \tag{2.393}
\end{equation*}
$$

Tho Green (Lagrangian) strain tensor $\overline{\bar{\gamma}}$ is defined as

$$
\begin{equation*}
\bar{X}=\frac{1}{2}(\overline{\bar{C}}-1) \tag{2,394}
\end{equation*}
$$

Therefore, it han tho following component in tho Cartnatan and in tho convected conrainato fantom in the rofranonon confer action:

$$
\begin{equation*}
\gamma_{u} \equiv \gamma_{11}-\gamma_{1}^{1}=\gamma^{11}-\gamma_{11}=\frac{1}{2}\left(\frac{f^{2}}{l_{0}^{2}}-1\right) \tag{2.395}
\end{equation*}
$$

Tho value of thin atrain tenor roducon to zero for no doformation, and tho posable range is:

$$
\begin{equation*}
-\frac{1}{2}<\gamma_{11}=X_{1}^{1}<+\infty \tag{2.396}
\end{equation*}
$$

The Almansi (Eulerian) strain tensor E Ls defined as

$$
\begin{equation*}
\overline{\mathrm{C}}=\frac{1}{2}(\overline{\overline{1}}-\overline{\mathrm{B}}-4) \tag{2.397}
\end{equation*}
$$

Therefore, it has the following components in the cartesian and in the convected coordinate system in the present configuration:

$$
\begin{align*}
& \hat{e}_{11}=e_{1}^{1}=\frac{1}{2}\left(1-\frac{l_{0}^{2}}{l^{2}}\right) \\
& e_{11}=\frac{1}{2}\left(\frac{l^{2}}{l_{0}^{2}}-1\right)=\gamma_{11} \\
& e^{11}=\frac{1}{2} \frac{l_{0}^{2}}{l^{2}}\left(1-\frac{l_{0}^{2}}{l^{2}}\right) \tag{2.398}
\end{align*}
$$

The value of this strain tensor also reduces to zero for no deformation, and it has a possible range:

$$
\begin{equation*}
-\infty<\hat{e}_{11}=e_{1}^{1}<+\frac{1}{2} \tag{2,399}
\end{equation*}
$$

The elongation strain tensor ${ }^{2}$ is defined as

$$
\begin{equation*}
\overline{\bar{E}} \cdot \overline{\bar{u}}-\overline{1} \tag{2.400}
\end{equation*}
$$

Therefore, it has tho following components in the Cartesian and in the convected coordinate system in the reference configuration

$$
\begin{equation*}
E_{u}=\stackrel{\hat{E}}{E_{11}}=E_{1}-E_{11}=\tilde{E}=\frac{1}{h_{0}}-1 \tag{2.401}
\end{equation*}
$$

OLforve that this uniaxial component fin oxactiy equal to tho nomoniled "ungtnonrtag gratin" by tho angibnosing idensatura that if moanurad in uniaxial tonolio tonto. Thin strain tenor alno roducon to moro for no deformation and it han the following poondblo mango of valion:

$$
\begin{equation*}
-1<E_{u}<+\infty \tag{2.402}
\end{equation*}
$$

The elongation strain tensor E is defined as:

$$
\begin{equation*}
E=\overline{\overline{1}}-\bar{V}-1 \tag{2.403}
\end{equation*}
$$

Wherefore, it has the following components in the Cartesian and in the convected coordinate system in the present configuration:

$$
\begin{equation*}
E 1=\frac{E_{0}^{2}}{E}\left(11=\frac{l_{0}^{2}}{i^{2}}\left(1-\frac{L_{0}}{\ell}\right) \quad\left[\frac{L_{0}}{d}\right.\right. \tag{2.404}
\end{equation*}
$$

This strain tensor also reduces to zero for no deformation and it has the following possible range of values:

$$
\begin{equation*}
-\infty<\hat{E}_{n}=E_{1}^{\prime}<+\frac{1}{2} \tag{2.405}
\end{equation*}
$$

The Logarithmic strain tensor $\tilde{\tilde{H}}$ is defined as:

$$
\begin{equation*}
\vec{F}=\ln \bar{L} \tag{2.406}
\end{equation*}
$$

Therefore, it has the following components in the Cartesian and in the convected coordinate system in the reference configuration:

$$
\begin{equation*}
\hat{H}_{u}-\tilde{H}_{i}=\tilde{H}^{u}-\tilde{H}_{u}=\ln \left(\frac{l}{2}\right) \tag{2.407}
\end{equation*}
$$

The logarithmic strain tensor, Ia defined as:
$F=\ln V$
Thoreforn, dit had the following component in the cartonian and in tho convoatod coordinate ayneom in tho pronont configurations

$$
\begin{aligned}
& \mathrm{F}_{11}=\operatorname{Hi}_{1}^{1}=\operatorname{mon}_{1}^{2}{\underset{10}{0}}_{0}
\end{aligned}
$$

These strain tensors also reduce t zero for no deformation and they heave the following possible range of values:

$$
\begin{gather*}
\varepsilon_{u}^{*}=\hat{H}_{11}=\hat{H}_{1}^{1}=\hat{H}_{11}=H_{1}^{1} \\
\varepsilon_{u}^{*}\left(\ell_{1} l_{0}\right)=0 \tag{2.410}\\
-\infty<\varepsilon_{u}^{*}<+\infty
\end{gather*}
$$

Observe that this strain tensor, unlike the other strain tensors, has a symmetric range in tension $\left(E_{u}^{*}>0\right)$ and compression ($E_{u}^{*}<0$). Also, this strain tensor is called the "natural strain" or "true strain" in uniaxial tension tests by the engineering literature.

2.8.2 Deformation Rate Tensors

The ratemof-deformation tensor 0 has cartesian components

$$
\begin{equation*}
\hat{D}_{11}=\frac{\partial \hat{V}_{1}}{\partial X_{1}}=\frac{\partial\left(\frac{i}{h_{0}} x_{1}\right)}{\partial x_{1}} \frac{\partial x_{1}}{\partial X_{1}}=\frac{i_{1}}{l_{0}} \frac{l_{0}}{l}=\frac{i}{l} \tag{2.411}
\end{equation*}
$$

and components in the convected coordinate system in the present configurecion:

$$
\begin{gather*}
D_{11}=\frac{1}{2} \frac{d}{d t}\left(\frac{l^{2}}{l_{0}^{2}}\right)=\frac{l^{2}}{l_{0}^{2}} \frac{\dot{l}}{l} \\
D_{1}^{1}=\frac{l}{l} \\
O^{11}=\frac{l_{0}^{2}}{l^{2}} \frac{l}{l} \tag{2,A1.2}
\end{gather*}
$$

Observe that tho material rate of the logarithmic strain component $E_{\mu}^{*} 1$ is equal to the mixed components of tho rato-of-deformation tensor

$$
\begin{equation*}
D_{u} \equiv \dot{\varepsilon}_{u}^{*} \equiv \frac{d}{d t}\left(\ln \frac{l}{l_{0}}\right)=\frac{\dot{l}}{l}=D_{1}^{1}=\hat{D}_{11} \tag{2.413}
\end{equation*}
$$

The material rate of the Green strain tensor has the following components in the Cartesian and in the convected coordinate system in the reference configuration:

$$
\begin{equation*}
\dot{\gamma}_{u} \equiv \hat{\gamma}_{11}=\dot{\gamma}_{1}^{1}=\dot{\gamma}_{41}=\dot{\gamma}^{11}=\frac{l^{2}}{l_{0}^{2}} \frac{\dot{x}}{l} \tag{2.414}
\end{equation*}
$$

The material rate of the Almansi strain tensor components in Cartesian and in the convected coordinate system in the present configurecion are:

$$
\begin{align*}
& \dot{\hat{e}}_{11}=\dot{e}_{1}^{1}=\dot{e}_{i}^{1}=\frac{l_{0}^{2}}{l^{2}} \frac{l}{l} \\
& \dot{e}_{11}=\frac{l^{2}}{l_{0}^{2}} \frac{\dot{l}}{l} \dot{e}^{11}=\frac{l_{0}^{2}\left(-1+2 \frac{l^{2}}{l^{2}}\right) \frac{\dot{l}}{l}}{l} \tag{2.415}
\end{align*}
$$

Observe that these convected rates are not components of one and the same tensor. However, the fixed-observer rate of the Almansi strain tensor components are components of one and the same tensor. For example, the components of the fixed-observer rate of the Almansi strain tensor in the deformed coordinate system are:

$$
\begin{equation*}
\vec{e}_{11}=\frac{\dot{l}}{\ell} \tag{2.416}
\end{equation*}
$$

$$
\stackrel{e}{e}_{1}^{1}=\frac{l_{0}^{2}}{l^{2}} \frac{\dot{l}}{l}
$$

$$
e^{11}=\frac{l_{0}^{4}}{l^{4}} \frac{d}{l}
$$

Folationshipn botwoon the components of the ratemof-doformation toner and the material rate of the Groan strain tensor can bo easily obtained for the uniaxial cases for example,

$$
\begin{gather*}
\dot{\gamma}_{11}=D_{11} \quad \dot{\gamma}_{1}^{1}=\frac{l_{0}^{2}}{l_{0}^{2}} D_{1}^{1}=\left(1+2 \gamma_{1}^{4}\right) D_{1}^{1} \\
D_{1}^{1}=\frac{\dot{\gamma}_{1}^{4}}{\left(1+2 \gamma_{1}^{1}\right)}
\end{gather*}
$$

2.8.3 Stross Tonsors

Tho unit normal vectors to the deformed and undeformed areas are one and the same unit vector directed along the bar axis, since the deformation is uniaxial and irrotational. Therefore,

$$
\begin{array}{cc}
\hat{N}_{1}=1 \quad \overline{\mathrm{~N}}=\bar{n}=\tau_{1}=\bar{g}_{1}=\bar{g}^{1} \\
& N^{1}=\frac{l_{l}}{l} \tag{2.418}\\
& \hat{n}_{1}=n_{1}=n^{1}=1
\end{array} \quad N_{1}=\frac{l}{l_{0}}
$$

The force transmitted across the cross-sectional area of the bar is $d \bar{p}$

$$
\begin{align*}
& d F=d P_{1}^{A} i_{1}=d P_{1} \vec{B}_{1}=d F_{1} \Gamma_{1}^{1} \\
& D_{1}^{A}=d P \\
& d P=\frac{4_{0}}{l} d P \tag{2.419}\\
& d P_{1}=\mathcal{H}_{0} d P
\end{align*}
$$

The fictitious force $\mathrm{d} \overline{\mathrm{P}}=(\overline{\bar{F}})^{-1}$, $\alpha \overline{\mathrm{P}}$ has components:

$$
\begin{equation*}
\tilde{\partial}_{1}=d \tilde{P}^{1}=d \tilde{P}_{1}=\frac{l_{0}}{l} d P \tag{2.420}
\end{equation*}
$$

Also, the corresponding traction vector components are:

$$
T_{1}=\frac{P}{A} \quad T^{1}=\frac{P}{A} \frac{l_{0}}{l} \quad T_{1}=\frac{P}{A} \frac{l}{l_{0}}
$$

$$
\begin{gather*}
\hat{t}_{1}=\frac{P}{A_{0}} \quad t^{1}=\frac{l_{0}}{l} \frac{P}{A_{0}} \quad t_{1}=\frac{l}{l_{0}} \frac{P}{A_{0}} \\
\hat{\tilde{t}}_{1}=\tilde{t}^{1}=\tilde{t}_{1}=\frac{l_{0}}{l} \frac{P}{A_{0}} \tag{2.421}
\end{gather*}
$$

The Cauchy stress tensor $\bar{\sigma}$ is defined as:

$$
\begin{equation*}
\bar{T}=\bar{N} \cdot \overline{\bar{\sigma}} \tag{2.422}
\end{equation*}
$$

Therefore, its Cartesian components are:

$$
\begin{gather*}
\frac{P}{A} \bar{i}_{1}=\bar{i}_{1} \cdot\left(\hat{\sigma}_{11} \bar{i}_{1} \bar{i}_{1}\right) \\
\hat{\sigma}_{11}=\frac{P}{A} \tag{2.423}
\end{gather*}
$$

which can also be expressed in terms of the reference area by the law of mass conservation:

$$
\begin{gather*}
\rho_{0} V_{0}=\rho V \quad \quad \rho_{0} A_{0} l_{0}=\rho A l \\
\frac{1}{A}=\frac{1}{A_{0}} \frac{l}{l_{0}} \frac{\rho}{\rho_{0}} \tag{2.424}
\end{gather*}
$$

Hence, *

$$
\begin{equation*}
Q \equiv \hat{U}_{11}=\frac{P}{A}=\frac{D}{0}^{D} \frac{P}{A_{0}} \frac{1}{\lambda_{0}} \tag{2.425}
\end{equation*}
$$

The components of the cauchy stress tensor in the convected coordinate system in the present configuration are obtained as:

[^13]\[

$$
\begin{equation*}
\frac{P}{A} \frac{l}{\ell} \bar{G}_{1}=\frac{l}{\ell} \bar{G}_{1} \cdot\left(\sigma_{1}^{4} \bar{G}^{4} \bar{G}_{1}\right) \tag{2.426}
\end{equation*}
$$

\]

Therefore,*

$$
\begin{align*}
& \nabla_{1}^{1}=\frac{P}{A}=P_{0} \frac{A_{0}}{A_{0}} \\
& O^{11}=\frac{D_{0}^{2}}{D^{2}} \frac{P}{A}=f_{0} \frac{p}{A_{0}} \frac{x_{0}}{x} \\
& O_{11}=\frac{d^{2}}{R_{0}^{2}} \frac{P}{A}=f_{0} \frac{P}{A_{0}} \frac{D^{3}}{X_{0}^{3}} \tag{2,427}
\end{align*}
$$

The Kirchhoff stress tensor is defined as

$$
\begin{equation*}
\eta=y_{0}= \tag{2.428}
\end{equation*}
$$

Therefore, it has the following components in the cartesian and in the convected coordinate system in the present configuration:

$$
\begin{align*}
& \hat{\tau}_{11}=\tau_{1}^{1}=\frac{\rho_{0}}{\rho} \frac{P}{A}=\frac{P}{A_{0}} \frac{l}{l_{0}} \tag{2.429}
\end{align*}
$$

Observe that the uniaxial component

$$
\begin{equation*}
Z_{u}=z_{1}=\hat{Z}_{11}=\frac{p}{A_{0}} \frac{1}{i_{0}} \tag{2.432}
\end{equation*}
$$

[^14]is tho stress actually computed in most uniaxial tension tests and is also inaccurately labeled ab "true stress", since it is usually assumed to bo equal to tho "true stress" because $\rho \approx \rho_{0}$ is satisfied almost identically for most metals in the plastic region.

The second Piola-Kirchhoff stress tensor da defined as

$$
\begin{equation*}
\overline{\tilde{t}}=\bar{n} \cdot \overline{\bar{S}} \tag{2.433}
\end{equation*}
$$

Therefore, its Cartesian components are:

$$
\begin{align*}
& \frac{P}{A_{0}} \frac{l_{l}}{l} I_{1}=\tau_{1} \cdot\left(\hat{S}_{11} \tau_{1} \tau_{1}\right) \\
& \hat{S}_{11}=\frac{P}{A_{0}} \frac{l_{0}}{l}=\frac{\rho_{0}}{\rho} \frac{P}{A} \frac{l_{0}^{2}}{l^{2}} \tag{2,434}
\end{align*}
$$

The components in the convected coordinate system in the reference configuration are:

$$
\begin{align*}
& \sum_{A_{0}} \frac{L_{0}}{p_{1}} \bar{\theta}_{1} \cdot \bar{g}_{1} \cdot\left(\sum_{1}^{1} \bar{g}^{1} \bar{q}_{1}\right) \\
& C_{1}=D_{1}^{11}=C_{11}=\frac{P}{A_{0}} \frac{L_{0}}{2}=\frac{P_{0}}{\rho} \frac{P}{A} \frac{i_{0}^{2}}{D^{2}} \tag{2.435}
\end{align*}
$$

Observe that the relation $\tau^{11}=s^{11}$ between the contravariant components of the Kirchhoff and the Second-Piola Kirchhoff stress tensors is satisfied.

The first Piola-Kirchhoff stress censor $\underset{T}{\operatorname{T}}$ is defined as:

$$
\begin{equation*}
t=\bar{n} \cdot \bar{T} \tag{2.436}
\end{equation*}
$$

Therefore, its Cartesian components are:

$$
\begin{align*}
& \vec{P}_{0} \vec{i}_{1}=\vec{i}_{1} \cdot\left(\hat{T}_{11} \vec{i}_{1} \bar{i}_{1}\right) \\
& \hat{T}_{11}=\frac{P_{1}}{A_{0}}=P_{0} \frac{P^{\prime}}{A} \frac{l_{0}}{l} \tag{2.437}
\end{align*}
$$

The component a of the double tensor \bar{T} referred to the convected coordinate system in the reforenco and prosont configuration are $\mathrm{m}^{1, J}, \mathrm{~T}_{1, \mathrm{~J}}$, $T_{i}^{1 .}$ and $T_{i} \cdot \sqrt{\text {. }}$ and are obtained ae

$$
\begin{align*}
& \frac{P}{A_{0}} l_{l} \bar{G}_{1}=\bar{g}_{1} \cdot\left(T i_{i} \cdot \bar{g}^{4} \bar{G}_{1}\right) \\
& T_{i}^{1}=\frac{P}{A_{0}} \frac{l}{l}=\frac{\rho_{0}}{\rho} \frac{P}{A} \frac{l^{2}}{l^{2}} \tag{2.438}\\
& \frac{P}{A_{0}} \frac{1}{\ell_{0}} \bar{G}^{4}=\bar{g}^{-1} \cdot\left(T_{i}^{i} \dot{g_{s}} \bar{G}^{4}\right) \\
& T \hat{1}_{i}=\frac{P}{A_{0}} \frac{l}{l_{0}}=\frac{\rho_{0}}{\rho} \frac{P}{A} \tag{2.439}\\
& \frac{P}{A_{0}} \frac{\ell}{\ell} \bar{G}_{1}=\bar{g}^{1} \cdot\left(T^{u \prime} \bar{g}_{1} \bar{G}_{1}\right) \\
& T^{11}=\frac{P}{A_{0}} \frac{l_{0}}{l}=\frac{\rho_{0}}{\rho} \frac{P}{A} \frac{l^{2}}{l^{2}} \tag{2.440}\\
& \frac{P}{A_{0}} \frac{l}{\ell_{0}} \bar{G}^{1}=\bar{g}_{2} \cdot\left(T_{\text {il }} \bar{g}^{1} \bar{G}^{1}\right) \\
& T_{11}=\frac{P}{A_{0}} \frac{l}{l_{0}}=\frac{\rho_{\rho}}{\rho} \frac{P}{A} \tag{2.441}
\end{align*}
$$

Observe that the relations $\tau_{1}^{1}=T_{1}^{1} \cdot 1$ and $\tau^{11}=T^{11}$ between the components of the Kirchhoff and the first Piola-Kirchhoff stress tensor are satisfied.

The components of the first Piola-Kirchhoff stress tensor referred to the reference configuration of the convected coordinate system are:

$$
\begin{equation*}
\frac{P}{A_{0}} g_{1}=g_{1} \cdot\left(T_{i} \div g^{1} g_{1}\right) \tag{2.442}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\sigma_{E}^{\prime}=\prod_{11}^{A}=\prod_{1} \cdot \frac{P}{A_{0}} \tag{2.443}
\end{equation*}
$$

This is tho so-called "ongineering stress" in tho engineering literature and it is tho easiest one to compute in uniaxial tests since it is just the load applied to the specimen divided by the original cross-sectional area A_{0} of the specimen.

The relationship between the components of the Kirchhoff and the second Piola-Kirchhoff stress tensors can be simply obtained:

$$
\begin{align*}
& \tau^{11}=S^{11} \\
& \tau_{1}^{1}=S_{1}^{1}\left(1+2 \gamma_{1}^{1}\right) \tag{2.444}
\end{align*}
$$

2.8.4 Stress Rates

Since an irrotational uniaxial deformation is considered,

$$
\begin{equation*}
\bar{R}=\overline{1} \quad \overline{\bar{W}}=\overline{\bar{W}} \quad \overline{\bar{W}}=\bar{L} \tag{2.445}
\end{equation*}
$$

Hence, from Eq. 2.335

$$
\begin{equation*}
\underline{\square}=\underline{\square} \tag{2.446}
\end{equation*}
$$

Fox this particular kind of deformation, the fixed-observer rate and the co-rotational rates of a second order tensor $\overline{\bar{\Omega}}$ are equal.

The co-rotational rate of the components of the Cauchy stress tensor in Cartesian coordinates is:

$$
\begin{equation*}
\dot{\hat{O}}_{11}=\dot{\hat{O}}_{11}=\frac{d}{d t}\left(\frac{P}{A}\right) \tag{2,447}
\end{equation*}
$$

The co-rotational rate of the components of the Cauchy stress tensor in convected coordinates is:

$$
\begin{align*}
& \dot{\sigma}_{1}^{1}=\dot{\sigma}_{1}^{1}+D_{1}^{1} \sigma_{1}^{1}-\sigma_{1}^{1} D_{1}^{1}=\dot{\sigma} 11 \\
& \dot{\sigma}^{11}=\dot{\sigma}^{11}+D_{1}^{1} \sigma^{11}+\sigma^{11} D_{1}^{1}=\dot{\sigma}^{11}+2 D_{1}^{1} \sigma^{11} \\
&= \frac{d}{d t}\left(\frac{P}{A} \frac{l_{0}^{2}}{l^{2}}\right)+2 \frac{\dot{l}}{l}\left(\frac{P}{A} \frac{l_{0}^{2}}{l^{2}}\right)=\frac{l_{0}^{2}}{l^{2}} \frac{d}{d t}\left(\frac{P}{A}\right)-2 \frac{P}{A_{0}} \frac{l_{0}^{2} l}{l^{2} l}+2 \frac{P}{A} \frac{l^{2} l}{l^{2}} \dot{l} \\
& \sigma^{11}=\frac{l_{0}^{2}}{l^{2}} \frac{d}{d t}\left(\frac{P}{A}\right) \tag{2.448}\\
&= \frac{d}{d t}\left(\frac{P}{A} \frac{l^{2}}{l_{0}^{2}}\right)-2 \frac{l}{l}\left(\frac{P}{A} \frac{l^{2}}{l_{0}^{2}}\right)=\frac{l^{2}}{l_{0}^{2}} \frac{d}{d t}\left(\frac{P}{A}\right)+2 \frac{P}{A} \frac{l^{2}}{l_{0}^{2}} \frac{l}{l}-2 \frac{P}{A} \frac{l^{2}}{l_{0}^{2} l} \frac{\dot{l}}{l} \\
& \dot{\sigma}_{11} \dot{\sigma}_{11}-D_{1}^{1} \sigma_{11}-\sigma_{11}^{1} D_{1}^{1}=\dot{\sigma}_{11}-2 D_{1}^{1} \sigma_{11} \\
& \dot{\sigma}_{11}=\frac{l^{2}}{l_{0}^{2}} \frac{d}{d t}\left(\frac{P}{A}\right) \tag{2,449}
\end{align*}
$$

The convected rates of the components of the Cauchy stress tensor in the convected coordinate system in the present configuration are:

$$
\begin{align*}
& \stackrel{\nabla}{\sigma}_{11}=\dot{\sigma}^{14}=\frac{d}{d t}\left(\frac{P}{A} \frac{l_{0}^{2}}{l^{2}}\right)=\frac{l_{0}^{2}}{l^{2}} \frac{d}{d t}\left(\frac{P}{A}\right)-2 \frac{P}{A} \frac{l_{0}^{2}}{l^{2}} \frac{\dot{l}}{l} \tag{2.450}\\
& \hat{\sigma}_{11}=\dot{\sigma}_{11}=\frac{d}{d t}\left(\frac{P}{A} \frac{l^{2}}{l_{0}}\right)=\frac{l^{2}}{l_{0}^{2}} \frac{d}{d t}\left(\frac{P}{A}\right)+2 \frac{P}{A} \frac{l^{2}}{\frac{2}{2}} \frac{d}{\ell} \tag{2.451}
\end{align*}
$$

Evidently these are not components of one and the same tensor. The corotational and convected rates of the Kirchhoff stress components referred to the convected coordinate system in the present configuration can be similarly obtained:

$$
\begin{align*}
& \dot{\tau}_{1}^{1}=\stackrel{D}{\tau}_{1}^{1}=\dot{\tau}_{1}^{1}=\dot{\tau}_{1}^{1}=\dot{\tau}_{i 1}^{1}=\dot{\hat{\tau}}_{11} \dot{\hat{\tau}}_{11}=\frac{d}{d t}\left(\frac{P}{A_{0}} \frac{l}{l_{0}}\right)(2.453) \\
& \tilde{r}^{\mu}=\frac{l^{2}}{R^{2}} \frac{d}{d t}\left(\frac{p}{A_{0}} \frac{l}{R_{0}}\right) \tag{2.454}\\
& \tilde{r}_{11}=\frac{l^{2}}{l^{2} d} \frac{d}{d t}\left(\frac{P}{A_{0}} \frac{l}{\rho_{0}}\right) \tag{2.455}\\
& \tilde{\tau}^{H}=\dot{\tau}^{H}=\frac{l^{2}}{l^{2}} \frac{d}{d t}\left(\frac{\mathrm{P}}{A_{0}} \frac{l}{R_{0}}\right)-2\left(\frac{\mathrm{P}}{\mathrm{~A}_{0}} \frac{l}{l_{0}} \frac{l^{2}}{R^{2}} \frac{l}{l}\right. \tag{2.456}
\end{align*}
$$

The relationship between the co-rotational rate of the Kirchhoff stress tensor mixed components in the convected coordinate system in the present configuration and the Second Piola-Kirchhoff stress tensor mixed components material rate can be easily obtained from Eq. 2.269:

$$
\dot{\mathscr{C}}_{1}^{1}=\dot{S}_{1}^{1}\left(1+2 \gamma_{1}^{1}\right)+2 S_{1}^{1} \dot{\gamma}_{1}^{1}=\dot{S}_{1}^{1} C_{1}^{1}+S_{1}^{1} \dot{C}_{1}^{1}
$$

Or, for this uniaxial, irrotational motion condition:

$$
\begin{array}{ll}
{\underset{C}{1}}_{1}^{1}=\dot{C}_{1}^{1}=\frac{d}{d t}\left(\frac{P}{A_{0}} \frac{l}{l_{0}}\right) & S_{1}^{1}=\frac{P}{A_{0}} \frac{l_{0}}{l} \\
\left.\gamma_{1}^{1}=\frac{1}{l_{0}^{2}}-1\right) & \gamma_{1}^{1}=\frac{l^{2}}{l_{0}^{2}} \frac{l}{l} \tag{2.458}
\end{array}
$$

Hence,

$$
\begin{equation*}
\dot{\tau}_{1}^{1}=\frac{d}{d t}\left(S_{1}^{1} \frac{l^{2}}{l_{0}^{2}}\right)=\dot{S}_{1}^{1} \frac{l^{2}}{l_{0}^{2}}+2 S_{1}^{1} \frac{l^{2}}{l_{0}^{2}} \frac{\dot{l}}{l} \tag{2.459}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\stackrel{\tau}{\tau}_{1}^{1}=\dot{S}_{1}^{1}\left(1+2 \gamma_{1}^{1}\right)+2 S_{1}^{1} \dot{\gamma}_{1}^{1} \tag{2.46a}
\end{equation*}
$$

2.8.5 Energy Equation

As previously noted in subsection 2.7, tho energy integral over the present volume V can be expressed as a function of tho Cauchy stress $\bar{\sigma}$ and the rate-of-deformation tensor \bar{D} as in Eqs. 2.354 and 2.355. In this uniaxial case, one obtains:

$$
\begin{align*}
& U=\int_{t} \int_{\sigma} \hat{A}_{\mu} \hat{D}_{s \mu} d V_{d t}=\int_{t} \int_{V} \sigma^{\mu} D_{s} d V_{d t} \\
& =\iint_{t} \int_{\sigma_{1}} D^{4} d V d t=\int_{t} \int_{V} \sigma_{1}^{4} D_{1}^{A} d V d t \tag{2.461}
\end{align*}
$$

Notice that, from Eqs. 2.411, 2.412 and 2.413:

Also, from Eqs. 2.425 and 2.427:

$$
\begin{equation*}
\hat{\sigma}_{11}=\sigma_{1}^{1}=\frac{P}{A} \quad \sigma^{11}=\frac{P}{A} \frac{l_{0}^{2}}{l^{2}} \quad \sigma_{11}=\frac{P}{A} \frac{l^{2}}{l_{0}^{2}} \tag{2.463}
\end{equation*}
$$

Therefore, Eq. 2.461 becomes:

$$
\begin{align*}
& =\iint_{l_{0}}^{l}\left(\frac{P}{A} \frac{l}{l} \frac{l_{0}^{2}}{l^{2}}\left(\frac{l^{2}}{R^{2}} \frac{l}{l}\right) d V=\iint_{l_{0}^{l}}^{l}\left(\frac{P}{A}\right)\left(\frac{d l}{l}\right) d V=\int_{l^{2}}^{l} P d l \frac{d V}{V} .\right. \tag{2.464}
\end{align*}
$$

which ahows that the area under the "true stross" ($\sigma_{T} \equiv \sigma_{1}^{1}=\frac{P}{A}$) and the logarithmio strain $\left(\epsilon_{u}^{*}=\ln \left(\frac{l}{l_{0}}\right)\right)$ in tho anorgy per unit pronont volume of the matorial.

An pointod out in subanction 2.7, the onorgy por unit rofinnnog volume of the matorlat, can bn candly obtainod from the Jaoobian dotermenant. of tho doformation, from Fq. 2. 356 :

$$
\begin{equation*}
U=\int_{\tau} \int_{V_{0}} \overline{\bar{\sigma}}: \bar{D} d V_{0} d t \tag{2.465}
\end{equation*}
$$

$$
\begin{aligned}
& \text { For the unjaxial case: }
\end{aligned}
$$

which shows that the area under the Kirchhoff stress $\left(\tau_{y}=\tau_{1}^{1}=\frac{p}{A_{0}} \frac{l}{l_{0}}\right)$ and logarithmic strain $\left(\varepsilon_{u}^{*}=\ln \left(\frac{l_{0}}{l_{0}}\right)\right.$ is the energy per unit reference volume of the material.

The area under the Kirchhoff stress and the logarithmic strain is simply proportional to the energy per unit mass of the material, the proportionality factor being the mass density ρ_{o} per unit reference voiume V_{0}, which does not depend on the deformation history.
the energy per unit reference volume of the material can also be expressed as a function of the second piola-Kirchhoff stress tensor $\overline{\bar{S}}$ and the Green strain tensor $\overline{\bar{\gamma}}$ or the right Cauchy-Green deformation tensor $\overline{\overline{\mathrm{C}}}$:

$$
\begin{equation*}
u-\int_{t} \int_{V_{0}} \overline{\bar{s}} \cdot \dot{\bar{\gamma}} d V_{0} d t=\iint_{t V_{0}} \frac{1}{\bar{\Sigma}}: \dot{\bar{c}} d V_{0} d t \tag{2.467}
\end{equation*}
$$

For the uniaxial case:

$$
\begin{aligned}
& \hat{S}_{14}=S_{1}^{1}=S^{\mu}=S_{11}=\frac{P}{A_{0}} \frac{l}{l} \\
& \dot{\gamma}_{41}=\dot{\gamma}_{1}^{1}=\dot{\gamma}^{H}=\dot{\gamma}_{11}=\frac{l^{2}}{l_{0}^{2}} \frac{l}{l}
\end{aligned}
$$

Honor,

$$
\begin{equation*}
U=\int_{0} \int_{l_{0}}^{l}\left(\frac{P}{A_{0}} \frac{l_{0}}{l}\right)\left(\frac{l^{2}}{l_{0}^{2}} \frac{d l}{l}\right) d V_{0}=\int_{V_{0}}^{l} \int_{l_{0}}^{l} P d l \frac{d V_{0}}{V_{0}} \tag{2.46B}
\end{equation*}
$$

Which show that tho aron under tho second plola-Kdrchhofe atria
 to the energy per unit reference volume of the material, proportional to the enorgy per unit mass of tho material.

Another expression for the energy per unit reference volume of the material relates the conjugate variables: the first piola-Kirchhoff stress tensor \bar{T} and the rate of the deformation gradient tensor \bar{T} :

$$
\begin{equation*}
U=\int_{t} \int_{V_{0}} \overline{\bar{T}} \cdot \dot{\bar{F}} d V_{0} d t \tag{2.469}
\end{equation*}
$$

For the uniaxial case (convected coordinate components in the reference configuration):

$$
\begin{aligned}
& \hat{T}_{11}=T^{1} \cdot 1=T_{1}^{1}=T^{11}=T_{11}=\frac{\dot{m}_{1}}{A_{0}} \sigma_{E} \text { ("engineering stress") } \\
& \dot{\hat{F}}_{11}=\dot{F}_{1}^{1} \cdot \dot{\dot{F}_{1}} \cdot 1=\dot{F}^{11}=\dot{F}_{11}=\frac{\dot{l}}{l_{0}}=\dot{E}_{u}
\end{aligned}
$$

$$
E_{u}=\tilde{E}_{1}^{1}=\hat{\tilde{E}}_{11}=\frac{l-l_{0}}{l_{0}} \quad \text { ("eosingexing strain") }
$$

Hence,

Which shown that the area under the flrst fiola-Kirchhoff ntrese (or
 is oqual to tho oncrgy por undt roforonoo volume of the material.

BECTION 3

GONETTTGITVE EQUATIONS

3.1 Introduation

In faction 2, tho aquatione neooafary for tho procifa trantmont aff conn atitutive aquationn wose pxonontad. In the pronont aoction, tha fluttoftrain phantitaty thoory unod in tho pronont amalyntio itr oxaminod and dian playod in the apdelt of moforn eontinuum mochanden.

3.2 Roviow of gmalleftradn Platedght Phoory

3.2.2 Roviow of Principal Conconto

Thoro aro two typor of plaotialty theoriob, bermod "Elow" and "deformation". The aufurmation thoory of plactelty assumes that, as in olartialty, thero oxiget a onumtomono correopondonce botwoon otroag and btrain. Who klow (also tarmed "rate-type") theory of plapticity statee that there is a functional rolation betwoon the stress ruto and the straln rate. Since thoso thoorles are concelved for smadimstrain conditions, the gtress, strain, etress rato, and stradn rate mesasures are left undotined for any straing that are not "small". Only for proportional loding where the stress ratio remains constant, and for a certain restricted range of loading paths other than proportional loading (through the assumption of the possibility of a singularity in the yield surface) does the deformation thenvy agree with the flow theory.

The behavior of an elastic-plastic material can be characterized by the following two ingredients. First, one assumes the existence of a boundary (yielding surface) in stress space which defines the elastic domain within the boundary the continum deforms elastically. The onset of plastic flow (drreversible deformation in a thermodynamic sense) is possible only at the boundary, and no meaning is associated with the region that is beyond the boundary. Second, one employs a flow rule which describes the behavior of the material after yielding has started, this rule gives the relation of plastic flow (strain rate) to the stress and the loading history.

Another basic assumption in the theory of an elastio-plastic continuum in the introduction of a plastic strain tensor. The plastic strain, $\gamma_{i j} \mathrm{p}$ ' is assumed to have tho name invarlanon proportion as door; the strain tenor, $\gamma_{i j}$. The quantity $\gamma_{i j}^{p}$ in galata to $\gamma_{1 j}$ by an elantio strain tensor $\gamma_{1 j, ~ i n ~}^{0}$ the form:

$$
\begin{equation*}
X_{i j}-X_{i j}^{e}+\gamma_{i j}^{p} \tag{3.1}
\end{equation*}
$$

Tho ntrann, $s^{i j}$, do related to tho olamtide atradn $\gamma_{k \ell}^{Q}$ by the omponontes $E^{1 t k l}$ of tho fourth order elastic modular tenor:
and

When the material is elastically isotropic, the $e^{i j k l}$ can be expressed as:

$$
\begin{equation*}
E^{i j k l}=\mu\left[g^{i k} g^{j l}+g^{i l} g^{j k}\right]+\lambda g^{i j} g^{k l} \tag{3.4}
\end{equation*}
$$

where μ, λ are the Lame constants.
The yield surface, ϕ, is assumed to be expressible in terms of certain variables and may be expressed as:

$$
\begin{equation*}
\Phi\left(S^{i j}, K_{0}\right)=0 \tag{3.5}
\end{equation*}
$$

for perfect plasticity behavior, where k_{0} is a constant. For strain hardening behavior:

$$
\begin{equation*}
\Phi\left(S^{i j}, \gamma_{i j}^{p}, K\right)=0 \tag{3.6}
\end{equation*}
$$

where $s^{i j}$ is the stress tensor (also undefined for finite strains) and k is a hardening parameter which depends on the strain history.

Various yield criteria have been proposed for the prediction of the onset of plastic flow. Arnong them is the Mises-Hencky yield criterion [89] which usually fits experimental observations better than the Tresca criterion [89], for instance, for polycrystalline metals and yet is mathematically simple. The Mises-Hencky rules will be discussed and adopted in the present
amaly:ith. Tho Minob-llonoky yiold aritorton may bo intorprotod an "Yiolding berine whonovor tho diatortion onergy por unit mans oquale tho distortion onorys por unit mass at plold in aimplo tonaion". Thus hydrostatic pronauro, for an nlanticaliy hotropic matorial in tonnion or compronaion doos not affoct tho yholding, plantio flow, and roultant hardening. Statod othorwine, no plantle work in dono by tho hydrontatic componont of the appliod ntwons. Thin implion that thoro in no plantic (or irrevorsibio) chango in volume. Thuti,

$$
\begin{equation*}
\gamma_{i i}^{p}=0 \tag{3.7}
\end{equation*}
$$

For an indtially-isotropic matorial, the Mises-Honcky yield function can bo writton in the form:

$$
\begin{equation*}
\Phi=J_{2}-\frac{1}{3}\left(\sigma_{0}\right)^{2}=0 \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{2}=\frac{1}{2} S_{j}^{D} S_{i}^{D}=\frac{1}{2}\left[S_{j}^{i} S_{i}^{j}-\frac{1}{3}\left(S_{k}^{k}\right)^{2}\right] \\
& S_{j}^{D}=S_{j}^{i}-\frac{1}{3} S_{k}^{k} S_{j}^{i} \quad \text { is the deviatoric stress }
\end{aligned}
$$

$$
\sigma_{0} \quad \text { is the yield stress in the uniaxial }
$$ stress-strain state

This represents a hypersurface in nine-dimensional stress space. Any point on this surface represents a point at which yield can begin.

Considering the elastic-perfectly-plastic solid, if the conditions (a) $\Phi<0$ or (b) $\Phi=0$ and $\dot{\phi}<0$, are satisfied, the state change can only be clastic; any plastic deformation (which may have been incurxed earlier) remains unchanged. Thus,

$$
\dot{X}_{i j}^{p}=0 \text { when } \begin{cases}\bar{\Phi}<0 & \text { (clastic doformation) } \tag{3.10}\\ \bar{\Phi}=0 \quad \dot{\Phi}<0 & \text { (unloading) }\end{cases}
$$

It is postulated that the plastic strain rate $\dot{\gamma}_{i f}^{p}$ is linearly related to the

[^15]gradient of ϕ in matrons taco, $\partial \Phi / \partial s^{i f}$, an follows:
$\dot{\gamma}_{i j}^{P}=\dot{\lambda} \frac{\partial \Phi^{i}}{\partial \Phi^{i j}}$ when $\Phi=0$ and $\dot{\Phi}=0 \quad$ (loading).
This is a consoquonce of Druckor's [90] stability postulate ${ }^{+}$; it: implion that the phatic ntrain-rato vector $\dot{\gamma}_{i j}^{p}\left(\psi_{i j}^{p}\right.$ can bo expressed an a vector. In a struin-rato pace with tho principal atrain-rato components as axes) is normal to the loading surface $\$$ (since $\frac{\partial \phi}{\partial s^{i j}}$ is the normal to tho loading surface ϕ in stress space with principal stress components as axes, and the principal axes of strain rate and stress arc assumed to coincide). Here $\dot{\lambda}$ is a scalar factor of proportionality; it is not a material constant, but varies with the doformation. The relation for the plastic strain rate $\dot{\gamma}_{i j}^{p}$ is independent of time as written, since it is dimensionally homogeneous in time.

Considering the elastic-plastic (strain hardening) solid, the state change is clastic if

$$
\dot{\gamma}_{i j}^{P}=0 \text { when }\left\{\begin{array}{lll}
\Phi<0 & & \text { (elastic deformation) } \tag{3.12}\\
\Phi=0 & \text { and } & \dot{\Phi}=0 \\
\Phi=0 & \text { (neutral loading) } \\
\text { and } & \dot{\Phi}<0 & \text { (unloading) }
\end{array}\right.
$$

It is postulated that the plastic strain rate $\dot{\gamma}_{i j}^{p}$ is linearly related to the gradient of Φ in stress space, as follows:

$$
\left.\dot{X}_{i j}^{P}=\dot{\lambda} \frac{\partial \Phi}{\partial S^{i j}} \quad \text { when } \Phi=0 \quad \text { and } \dot{\Phi}\right\rangle 0 \quad \text { (loading) }
$$

where the factor of proportionality $\dot{\lambda}$ can be expressed as:

$$
\begin{equation*}
\dot{\lambda}=G \dot{\Phi} \tag{3.13}
\end{equation*}
$$

[^16]\[

$$
\begin{equation*}
\ddot{\gamma}_{i j}^{p}=G \dot{\Phi} \frac{\partial \Phi}{\partial S^{i j}} \tag{3.14}
\end{equation*}
$$

\]

Tho factor G (an well as Φ) can be any scalar function of stross, strain, and strain history.

Notice that for $\dot{\phi}=0$ then $\dot{\gamma}_{i j}^{p}=0$, which is consistent with the proviours oxprossion for noutral loading.

Tho factor G is not supposed to bo a function of tho stress rate. This assumption, suggested by Hill (page 34 of [89]), is based on the considercion that in a crystal grain, a plastic strain rato is produced by a combinelion of shears along certain slip directions, depending on the orientation of the grain and its external constraint. For the operation of such a glide-system, a certain state of stress is needed and hence, as a statestical. average over all grains, a definite macroscopic stress exists. The stress rate enters only in determining the magnitude of the strain rate.

For the material to exhibit strain-hardening behavior, it implies that the yield surface will change in case of continued straining. beyond the initial yield. The change of the yield surface (or loading surface) that characterizes the strain hardening (or work hardening) behavior of the material depencis on the loading history.

There are several hardening rules available to describe the subsequent loading function. Among them are "isotropic hardening" and "kinematic hardening".

Isotropic hardening assumes that during subsequent yielding from a plastic state, the yield surface will expand uniformly with respect to the origin in stress space but will retain the same shape and orientation as it had initially. It does not take into account the Bauschinger effect [89]. Mathematically, the subsequent yield function for an isotropic hardening material can be put in the form:
and

$$
\begin{gather*}
\Phi=\Phi\left(S^{i j}, \gamma_{i j}^{P}, K\right) \tag{3.15}\\
K=K\left(W^{p}=\int_{0}^{\gamma_{i j}^{p}} S^{i j} d \gamma_{i j}^{p}\right) \quad \text { or } K=K\left(\sqrt{\frac{2}{3}} \int_{0}^{\gamma_{i j}^{p}} \sqrt{d \gamma_{i j}^{p} d \gamma_{i j}^{p}}\right)
\end{gather*}
$$

where W^{p} is the plastic work expended and the upper limit of the integral refers to the plastic strain at the current condition or time.

To account for the Bauschinger effect, Prager [91] introduced the "kinematic hardening rule" which postulates that during subsequent plastic
flow, the yield surface translates (as a rigid body) in foresee space and that it will retain the same size, shape, and orientation that it had initio ally. Mathematically, this can bo expressed as

$$
\begin{equation*}
\Phi=\Phi\left(S^{i j}-\alpha^{i j}\right)=0 \tag{3.16}
\end{equation*}
$$

where $\alpha^{i j}=\alpha^{i j}\left(\gamma_{i j}^{p}\right)$ represents the translation of tho reforoncod origin in stress space of the yield surface and depends on the degree of hardening. prager proposed that the direction of translation be normal to the yield surface:

$$
\begin{equation*}
\dot{0} \dot{i j}=c \cdot X_{i j}^{p} \tag{3.17}
\end{equation*}
$$

where c is a constant.
Ziegler [92] modified prager's rule by suggesting that

$$
\begin{equation*}
\alpha^{i j}=\dot{\mu}\left(S^{i j}-\alpha^{i j}\right) \tag{3.18}
\end{equation*}
$$

where $\dot{\mu}>0$. Geometrically, this means that the direction of motion of the: center of the initial yield surface agrees with the radius vector that joins the instantaneous center $\alpha^{i j}$ with the stress point $s^{i j}$.

These kinematic hardening rules considerably over-estimate the Bauschinger effect, and therefore in general practice do not represent an improvement over the isotropic hardening rule, as observed by Almroth [93] and by Hunsaker et al. [94]. One exception is the case when a bilinear stress-strain curve provides a satisfactory approximation, as observed, for example, by Almroth [93] and by Iwan [95]. However, few materials have a hysteresis loop that is truly bilinear.

A combination of kinematic and isotropic hardening, that translates in accordance with Ziegler's rule, and whose hardening modulus and yield surface size at any point in the deformation history are assumed to be functions only of the plastic work has met with some success. It can be expressed mathematically as:

$$
\begin{align*}
& \varnothing\left(s^{i j}-\alpha^{i j}\right)=K\left(\sqrt{\frac{2}{3}} \int_{0}^{\gamma_{i j}^{p}} \sqrt{d \gamma_{i j}^{p} d \gamma_{i j}^{p}}\right) \tag{3.19}\\
& \Phi\left[\left(s^{i j}-\alpha^{i j}\right), \eta\right]=0
\end{align*}
$$

and translates according to

$$
\begin{equation*}
\dot{\alpha}^{i j}=\dot{\mu}\left(S^{i j}-\alpha^{i j}\right) \tag{3.20}
\end{equation*}
$$

where $\dot{\mu}>0$. This combined Lsotropic-kinematic hardening file is usually used with a linear strain-hardoning assumption.

Another hardening rule is the "mechanical sublayer model" of White [96] ard Besseling [97]. In this model, the material at any point is conceived of as consisting of components, each component behaving as an elastic, perfectly-plastic medium, having common strain, but appropriately different yield stresses. If the components have the same elastic 4 iulus, the yield stress of the composite will be the same as that of the weakest of its components. However, since the other components can take additional load, the composite will exhibit strain hardening with a piecewise linear stressstrain curve. In contrast, to kinematic hardening, the mechanical sublayer model gives a hardening modulus at the outset of reversed yield which equals the hardening modulus at initial yield. This agrees well with experiments. Plastic anisotropy develops automatically in the model during loading in the plastic range. Use of only one sublayer results in the application of ideal plasticity; that is, elastic perfectly-plastic behavior. The use of two sublayers of which one has an infinite yield limit (in practice large but finite), results in the application of kinematic hardening with a bilinear stress-strain curve.

Mroz [98] introduced the concept of a "field of work-hardening moduli". A number of surfaces in stress space are introduced, and associated with each surface is the value of the work hardening modulus of the corresponding point in the uniaxial stress-strain curve of the material. On loading, all of the surfaces are shifted in stress space according to the rules of kinematic hardening. The hardening modulus obtained from the Broz model depends on how many of the moduli are currently active. The results obtained by . the use of the Mroz model are almost identical to those obtained by the use of the mechanical sublayer model [94]. While both models are practically identical for proportional loading, for nonproportional loading they differ in the following: under the Mroz [94] model the yield surfaces are not allowed to intersect, while under the mechanical-sublayer model the surfaces will intersect and corners will be created [97].

3.2.2 The Mochanical-Sublayor Model

Since the mochanicalmeublayor model is used in tho prosont analysis to model the finite strain, strain-hardening, strain-rato dopondent behavior of motals, a brief reviow of the origins of tho model will be given in this subsection.

The mochanical sublayor modol, has boen also callod tho "composito model", "subelement model", "subvolume model", "overlay model", and "distributed element model", according to tho way in which this model was physically motivated, but most of the mathematical formulations are similar for small strain conditions. The general idea is that the strain-hardening behavior (including the Bauschinger effect) of an elastic-plastic material can be represented by a number of ideal elastic, perfectiy-plastic elements having different yield limits but a common strain. As early as 1926, Masing [99] used this model to make some general statements about the behavior of materials; Prandtl [100] in 1928 used a mathematically equivalent model (but with a different physical representation of the model) as a vehicle for the application of kinetic theory to a rather wide range of problems associated with rate effects. The approach was suggested again in 1930 by Timoshenko [101]; in 1935, Duwez [102] applied the model of elastic, perfectly-plastic elements in series to single crystals and showed that the model could be made to give stress-strain curve and hysteretic energy loss results which were in close agreement with experiments.

The model seems to have received little attention until the early 1950's when White [96] in 1950 and Besseling [97] in 1953 used the model to represent elastic, perfectly-plastic behavior exhibiting the Bauschinger effect. Ivlev [103] in 1963 discussed the model, incorporating viscosity effects, and prager [104] in 1966 further extended Ivlev's work.

In numerical predictions of strain-rate elastic-plastic transient structural response, the mechanical sublayer method was applied first at MIT. This application was carried out by Leech, Balmer, and Witmer during 1962-64 and is reported first in 1964 [105], with more details in 1965 [106]
and 1966 [14]. In oarlier MIT work roportod in 1962 [107], a linearm olastic, linearmatrain-hardening approximation with similar rules for loading, unloading, roversed loading, and roloading was used to represent matorial behavior, however, atrictiy spoaking, this was not the mechanical aublayor model.

Druckor [108] has also discussod this model in 1966 and indicated some of itn advantages as woll as ite shortcomings. Tho modol was again appliod by Iwan [109, 95] in 1966 to modo] the hyateretic behavior of materials and structures. Zionkiewicz [110] considorod tho isoparametric finico-olomont implomontation of this model in 1972. Hunsaker ot al. [94] in 19\%3 compared the mechanical-sublaycr modol with other strain-hardening plasticity rules: isotropic hardening, kinematic hardening, and the Mroz model. The mechanicalsublayer model was again utilized in 1976 by McKnight and Sobel [111] to analyze the cyclic thermoplasticity which occurs in areas of strain concentration resulting from the combination of both mechanical and thermal stresses.

It is interesting tor note that in the mechanical-sublayer model, the characteristics of the numorical method are used to bypass the necessity for an explicit constitutive relationship. As a matter of fact, by using only elastic, perfectly-plastic sublayers, more satisfactory behavior patterns are achieved than those corresponding to isotropic or kinematic hardening rules; the Bauschinger effect is approximated well by the model.

A "physical" justification for the mechanical-sublayer model can be also found by analogy with a "micro" mechanics approach. The stress-strain behavior in strain-hardening can be attributed to the yielding of individual crystals, each of them experiencing elastiv, perfectly-plastic behavior but yielding, however, at different levels of stress.

3.3 Plasticity Theory for Finite Strains

3.3.1 Introduction

As previously noted, the quantities utilized in the small strain theory of plasticity (stress, strain, stress rate, and strain rate) are defined only within the assumption of "small strains". Yet the precise definition of what constitutes "small strain" is always left unstated. Whether or not the strains are "small" cannot be determined by "geometric considerations" a priori; the strains result from loading, and (in genexal) one cannot know in
advanco whothor for a givon loading of a matorial the "small ntrain" aspumption (always loft undofinod) will hold or not. of course, after the froblom is nolvod, thin san bo ontablinhod, but if ono han folved tho problom it if no longer vory important whothor tho strains aro mall or not. The quontion of whothor the amall-atrain approximations aro valid in advance in alwayn avoldod in tho "small ntrain" Iftomaturn. Furthormom, an R. H11] [112] polnts out, the roally typical plastic probloms involve ohangon in goometry that camot: bo atimogardod.

In the prosent aubnection, the guantitios involved in the particular finite-straln-plasticity theory choson for tho presont analyain aro discussed in dotail; they wore defined precisoly in Soction 2 . Now, howeiver, the reasons for this particular choice of variables aro statod in Subsoction 3.3.2.

3.3.2 General Concepts

The constitutive law to be used in the present analysis can be expressed in functional form as:

$$
\begin{equation*}
\stackrel{0}{\overline{\mathcal{L}}}=f(\overline{\bar{D}}, \overline{\bar{\tau}}) \tag{3.21}
\end{equation*}
$$

where the actual form of this function will be made explidit in the next subsection (the purpose of the present subsection is to show the reasons for this particular choice of variables). The quantity $\overline{\bar{T}}$ is the Kirchhoff stress, previously defined in Subsection 2.5.2 as:

$$
\begin{equation*}
\bar{z}=\frac{\rho_{0}}{\rho} \bar{\sigma} \tag{3.22}
\end{equation*}
$$

where $\overline{\vec{\sigma}}$ is the Cauchy ("true") stress tensor, and $\rho\left(\rho_{0}\right)$ is the mass density in the present (reference) contiguration. Also, the circle over \bar{F} denotes the co-rotational ${ }^{+}$stress rate defined in subsection 2.6.4. The rate-of-defor-mation tensor $\overline{\mathrm{D}}$ is defined in subsection 2.4.2.1.

This constitutive law (Eq. 3.21) involves quantities associated with the present configuration of the material, with the only exception boing the mass

[^17]density ρ_{0} which is a constant for a fixed reference configuration and, therefore, does not depend on the deformation history.

Tho Kirchhoff streas $\bar{\tau}$ is used ingtead of the Cauchy atrose $\overline{\bar{\sigma}}$, since it is known to be moro suitable for defining tho constitutive oquationis, particularly whon thormodymamio principlon aro uned to formulate a constitutivo rolation. Some of the roasons for tho use of thin otress manure aro:
(a) The Kirchoff gtress if tho stress (ansociatod with the prosent configuration of tho matorial) that in relatod to a unit of mass, instoad of a unit of volumc, sinco as shown in Subsection 2.7, the powor per unit mass is oxpressed simply by Power per Unit Mass $=\frac{\overline{\bar{\tau}}: \overline{\bar{D}}}{\rho_{0}\left(\bar{r}, t_{0}\right)}$
where ρ_{0} is a constant for the entire deformation process for a fixed reference configuration, while the power per unit mass expressed in terms of the Cauchy stress is ex-
pressed by:
Power per Unit Mass $=\frac{\overline{\bar{\sigma}}: \overline{\bar{D}}}{\rho(\bar{R}, t)}$
where $\rho(\bar{R}, t)$ is a variable in the deformation process.
(b) For this reason, the thermodynamic expressions that the constitutive relations must satisfy are simpler when expressed in terms of the Kirchhoff stress.
(c) The co-rotational rate of the Kirchhoff stress has a rate potential while the co-rotational rate of the Cauchy stress has not. As shown by Hill [113] Rate potential $=\frac{1}{2} \stackrel{\circ}{\bar{\tau}}: \overline{\bar{D}}$
(d) The existence of a rate potential is of importance in an incremental finite element analysis since it implies the existence of an incremental variational principle and symmetric tangent stiffness matrices.
(a) Tho Kirchhoff strose can bo oasily measurad in experimonta. ns ahown in Subsection 2.8.3, in uniaxial experiments it in simply expressed as

$$
\begin{equation*}
\tau_{u}=\frac{P}{A_{n}}\left(1+E_{u}\right) \tag{3.26}
\end{equation*}
$$

where P is the load appliad to the apooimen, A_{o} ta the original, crona anotional aroa and E_{u} fa tho ohange in longth divided by tho oxiginal length: $E_{u} \frac{l-\ell}{l_{0}}$, tho quantity that extonsometore and otrain gages can provido.
(f) The Kirchhoff stress is the quantity whioh was computed from experimental data and used in the presentation of results in many of the classic experiments in plasticity of metals Ly G.I. Taylor [114] and also by A. Nadai [115]. As a matter of fact, it is frequently confused with the true stress in experiments for metals, since for practical purposes one can assume incompressibility ($\rho=\rho_{0}$) for metals; hence, the Cauchy ("true") stress is approximately equal to the Kirchhoff stress.
(g) When used in conjunction with the logarithmic strain, it. produces an approximately symmetric stress-strain response for the uniaxial loading of metals*, unlike other stress measures, like the lst and 2nd Piola-Kirchhoff stresses which produce significantly asymmetric stressstrain responses for the uniaxial loading of metals.
The co-rotational rate (overscript "o") of the Kirchhoff stress ($\bar{\tau}$) is used instead of the fixed-in-space observer rate, convected rates, or other stress rates, since:
(a) It satisfies the principle of material frame-indifference as defined by Truesdell and Noll [40] when used in confunction with the (frame-indifferent) rato-of-doformation tensor in a constitutive law. One implication of this is that the

[^18]congtitutive law is invariant under arbitrary rigid boäy moti s) the oonrotational rate of the Kirohhoff atress $\frac{?}{T}$ vanifhea when a matorial point of the continuum with ita onvironmant performn a rigid-body motion and the Kirohhoff ntrann tonsor T doen not vary in timn intrinaloally with rompoct to the material point.
(b) Tho coarotational rate of tha firons tonfor in a tonnise quantity of the namn typn an the ordgdnal atrenn tonnox, Binco tho Kirehhoff ntronn tonoor T La nymmetrito, tho cow

(c) Vanishing of tho co-rotational dorivativo of a tonsor dndueus vanifhing of the co-rotational derivative of its arbitrary invariant.
(d) In a uniaxial, irrotational deformation, it reduces to the material rate of the tensor.

The rate-of-deformation \bar{D} is used in the constitutive expressions since It is defined completely and uniquely by the present state of the material and, unlike strain rates, its description does not involve any reference state. Since plasticity has some similarities* with a flow problem, and the rate-of-deformation tensor \bar{D} is the rate quantity used in hydrodynamics, the appropriateness of a description of large strain plasticity in terms of $\overline{\bar{D}}$ is seen at once.

In the case of a uniaxial, irrotational, homogeneous deformation, the rate-of-deformation tensor becomes the rate of the logarithmic strain tensor, as shown in Subsection 2.8.2. The logarithmic strain ranges in value between zero and infinity, both for tension and compression, as shown in Subsection 2.8.2. This provides a measure of strain which has "symmetric" properties for tension and compression. The relative elongation, the Green ("Lagrangian") strain, and the Almansi ("Eulerian") strains do not enjoy this useful property.

[^19]Also note that: the rate-of-anformation tensor $\overline{\mathrm{D}}$ is "conjugate" to the Kirshhoff atresf tangor. \bar{T} in the nense that thnir acalas product is proportional to the rate of work por unit mass, afs shown praviously.

Tho conftifutive law

$$
\begin{equation*}
\underset{\sim}{\sim}=f(\bar{D}, \bar{\approx}) \tag{3.27}
\end{equation*}
$$

In a byponinatio lnw (xofarnnonn in hyponinnticity arms pago 733. of [15], pagn 401 of [40], and [11G-722]). In the pemeral multtaxtal cano, it in a path-dopendent matorlal law, Blace it camnot be intogratodt In encmo of an Inltial and a fimnl atate; it depundo on the path connotimg theno bented.

 conotitutive law (that measures doformation by comparing a reforence and a prosent configuration, irrespectivo of the paing connocting these conflguram tions). It is mot difficult to include thls finfe-ulastic-strain responese in the constitutive law, for examplo, by including the Almangi gtrain e:

$$
\begin{equation*}
\stackrel{o}{\bar{\tau}}=g(\overline{\bar{\omega}}, \overline{\bar{e}}) \tag{3.28}
\end{equation*}
$$

as done by Lehmann [123], who assunced a 1inear relationship betwoen stress and strain, with no experimental basis for large-elastic-strains.

For metals, experiments have shown only small elastic strains, even for cases of unloading from large plastic strains. No experimental data seems to exist from which a finiterelasic strain law for metals could be deduced. Moreover, whether elastic strains ${ }^{++}$do exist at all for metals is still a matter of discussion. E. H. Lee $[124]$ indicates that under large strain-rate conditions, finite-elastic-strains can be expected in metals. However, these strains could be visco-elastic and not purely elastic, by the very nature of the strain-rate dependence. the experimental information available is not precise enough to determine if these strains are visco-elastic

[^20]or visou-hypoelastic. In view of the prenent atate of experimental information, tho hypoelsatic law will be ubed in the analyais, since it is acnveni-: ant for the numeriand analyala of the alastionplantic problems, ala, for amall alantio atrainn there ia practicaliy no diffaronon batwean hyponlafm tic and olantic lawn, afs nhown, for example, by Lohmann [123].

3.3.3 A Pinitn-Strain RAntioplantio Btrain-Rato-

 popondnnt ThogyThin nubnoction tin goncornod with the findtomerain olanticephantie noralnaxntordopondont thoory utihisod in thin aralynio. Tho conotitutivo oquationg of thin ehoory axo dincuovod in tho npixit of motarn oontinum muchanico. Tt ohould bo romarkod that ovon within tho Inmitation of tho infinitogimal or tho "small" otratn thoory of plaoticity, tharo dooe not appoar to bo eomplote agruomont among tho varloun gehoolo of plaotiledty in tho Unitod statoe, Great Britain, and tho Soviat Union, thoroforo, no attompe at roviewing tho idtorature in finito-atrain planticity will bo carriod out, sinco there is i1ttlo that has become widely accopted, and active theoretical research on tho subject $1 s$ gtill taking place. Rathor, the specific theory used in the numerioal analysis of the problems with which this work deals will be examined in detall. In the previous eubsection, the reasons why tho particular variables used in the constitutive equations were chosen were explained. The previous rough description 1.8 made precise in the present subsection.

The present description of the behavior of an elastic-plastic continuum is based on the work of Hill [112-113, 125-131] and of Lehmann [87, 123, 132-137], and can be intexpreted as a special case of the general theory of an elastomplastic continuum by Green and Naghdi [138]. However, strain-rate effects are included in the present analysis, and strainhardening behavior is treated with a "mechanical sublayer " method properly modifica to take into account finite strains.

The present subsection shows the theory in terms of the "primary" variaiolea:

$$
\stackrel{\Delta}{\overline{\widetilde{ }}}=f(\overline{\bar{D}}, \overline{\bar{\tau}})
$$

ds previously specifled in Eq. 3.21. However, it should be menlioned that

In tho actual implementation of the theory, this equation is transformed to

$$
\begin{equation*}
\stackrel{\Delta}{\bar{G}}=g(\overline{\bar{\gamma}}, \overline{\overline{5}} \overline{\bar{\gamma}}) \tag{3.29}
\end{equation*}
$$

according to tho tabor transformation rules of section 2 , aince the analysis in implomontod in tho roforontial (tugranglan) description of motion with a floe? roformen configuration. In Eq. 3.29, $\frac{\mathrm{S}}{\mathrm{S}}$ th the Socond Viola Kirchhoff strung tenor, $\frac{0}{0}$ in dea material rato, Y in tho Groon (Ingranghan) strain tensor, and γ in ito material rate.

Returning to Eq. 3.21 , it is assumed that tho Kirchhoff stress i at a material point can bo conaiderod as tho sum of n components (${ }^{8 \pi}{ }^{\circ}$; $s=1$ to 1) with weighting factors ${ }^{*} A_{s}$:

$$
\begin{equation*}
\bar{\tau}=\sum_{s}^{n} A_{s} \tag{3.30a}
\end{equation*}
$$

where prescript "s" refers to tho eth sublayer.
Since the weighting factors A_{g} are assumed to be independent of time, the co-rotational rata $\frac{\mathscr{T}}{\tau}$ of the Kirchhoff stress at a material point can also be considered as the sum of n components ($s \frac{q}{\tau}, s=1$ to n) with the same weighting factors $A_{s}: \quad 0 \quad A_{s}=A_{s}^{n}$

Each component ${ }^{\circ}{ }_{\tau}^{\circ}$ of the comrotational rate of the kirchhoff stress is assumed to be lInearly related through a fourth order" "elasticity tensor"喏 to a component "気e of an "elastic" rate of deformation tensor $\overline{\bar{D}}$:

$$
\begin{equation*}
s \stackrel{o}{\tau}=s s^{\underline{L}}: s \tag{3.31}
\end{equation*}
$$

*These weighting factors are discussed explicitly in subsection 3.3.4. ** This fourth order "elasticity" tensor has the same symmetric properties as does the usual elasticity tensor (since the $\stackrel{H}{\tau}$ with the ${ }_{\mathrm{D}}^{\mathrm{D}}$ have a posentil): this fourth order tensor is a "tensor-tensor", a quantity which plays the same role for tensors of second order as second-order tensors do for vectors (p. 145 of Schouton [61]).

The rate-of-deformation tensor \bar{D} is assumed to be decomposed into an

$$
\begin{equation*}
s \bar{D}=\bar{D}=s \bar{D}+s+p \tag{3.32}
\end{equation*}
$$

Observe that each sublayer "s" experiences the same rate of deformation
 decomposition of the deformation rato assumes different proportions in each sublayer "в". From Eq. 3.32 one can express Eq. 3.31 as:

$$
\begin{equation*}
s \frac{\theta}{\tau}=s \overline{\overline{\#}}:\left(\overline{\bar{D}}-s \overline{\bar{D}}^{p}\right) \tag{3.33}
\end{equation*}
$$

Next, the existence of a loading function ${ }^{s} \Phi$ (yield surface in stress space) is assumed to exist for each sublayer "s", as a function of the Kirchhoff stress component ${ }^{\mathbf{s e}} \boldsymbol{\tau}$ of that sublayer, and the total rate of deformation tensor $\overline{\overline{\mathrm{D}}}$:

$$
\begin{equation*}
\bar{\Phi}=s \Phi(s \overline{\bar{\tau}}, \overline{\bar{D}}) \tag{3.34}
\end{equation*}
$$

This loading function ${ }^{8} \Phi$ will define the "elastic" ${ }^{s-e}$ and plastic ${ }^{s=1} \mathrm{D}$ parts of the rate of deformation $\overline{\bar{D}}$ in each sublayer "s", according to the following rule:

$$
\begin{array}{ll}
s \overline{\bar{D}}^{p}=0 & \text { when }
\end{array}\left\{\begin{array} { c c }
{ s \Phi = 0 } & { \text { and } } \\
{ s \overline { \Phi } ^ { p } = s \dot { \lambda } \frac { \partial ^ { s } \Phi } { \partial ^ { s } \overline { \tau } } }
\end{array} \text { when } \left\{\begin{array}{c}
s \Phi=0 \text { and } \tag{3.36}\\
s \dot{\Phi}=0
\end{array}\right.\right.
$$

which implies that the plastic part sp ip of the rate-of-deformation tensor $\overline{\bar{D}}$, for sublayer "s" is normal to the loading surface ${ }^{s} \Phi$ of sublayer " s ". In the present work, a vo Miss loading function (yield surface in stress space) is assumed to exist. This loading function is most readily expressed in terms of the deviatoric stress ${ }^{s=D}$ defined as

$$
\begin{equation*}
s \overline{\bar{\tau}} \equiv s \overline{\bar{\tau}}-s \overline{\bar{\tau}} s p \tag{3.37}
\end{equation*}
$$

where ${ }^{\text {sinsp }}$ is the spherical (superscript "sp") stress, defined as

$$
\begin{equation*}
s \overline{\bar{\tau}}^{s} p=\frac{1}{3}(\operatorname{tr} s \overline{\bar{\tau}}) \overline{\overline{1}} \tag{3.38}
\end{equation*}
$$

and ($\operatorname{tr}^{5}{ }^{5}$) stands for the tracie operator:

$$
\begin{equation*}
\operatorname{tr}^{s} \overline{\bar{\tau}}=\overline{\overline{1}}: s \overline{\bar{\tau}}=s \overline{\bar{\tau}}: \overline{\overline{1}} \tag{3.39}
\end{equation*}
$$

Hone, tho doviatoric Kirchhoff stress of the eth sublayer is:

$$
\begin{equation*}
s \bar{\tau}=s \bar{\tau}-\frac{1}{3}\left(\operatorname{tr}^{s} \bar{\tau}\right) \tag{3.40}
\end{equation*}
$$

In terms of the deviatoric stress, the vo Misas loading function can be expressed as:

$$
\begin{equation*}
s \Phi=s \bar{\Sigma}: s \overline{\bar{\gamma}}^{s}-\frac{2}{3}\left(s \tau_{u}^{y}\right)^{2} \tag{3.41}
\end{equation*}
$$

where

$$
\begin{equation*}
s \tau_{u}^{y}=s \tau_{u}^{y}\left(\bar{ज}^{\infty}\right) \tag{3.42}
\end{equation*}
$$

is the deformation-rate-dependent yield stress of a specimen in uniaxial tension. Denoting by ${ }^{s} \tau_{0}^{y}$ the static (rate independent) yield stress of a specimen in uniaxial tension, the rate-dependent yield stress ${ }^{s}{ }^{\mathrm{r}}{ }_{u}$ is assumed to be related to the deviatoric rate-of-deformation tensor, \tilde{D}^{D} by where

$$
\begin{equation*}
{ }^{s} \tau_{u}^{y}==_{u_{0}}^{s}\left(1+\left(\frac{\sqrt{\frac{3}{2}\left(\bar{D}^{D}: \bar{D}^{D}\right)}}{{ }^{s} d}\right)^{\frac{1}{s p}}\right) \tag{3.43}
\end{equation*}
$$

$$
\begin{equation*}
\bar{D}^{D}=\overline{\bar{D}}-\frac{1}{3}(\operatorname{tr} \overline{\bar{D}}) \overline{\overline{1}} \tag{3.44}
\end{equation*}
$$

and s_{d} and s_{p} are material "rate" constants. Therefore, the vol Miss strain-rate dependent loading function becomes:

$$
\begin{equation*}
s \Phi=s{ }^{s} \bar{\tau}: \overline{\tau^{2}} D-\frac{2}{3}\left(s_{u_{0}}^{y}\right)^{2}\left(1+\left(\frac{\sqrt{\frac{3}{2}\left(\bar{D}^{D}: \bar{D}^{D}\right)}}{s d}\right)^{\frac{1}{s} p}\right)^{2} \tag{3.45}
\end{equation*}
$$

The gradient $\left(\partial\left({ }^{5} \Phi\right)\right) /\left(\partial\left(^{5=}\right)\right)$ of the loading function ${ }^{5} \phi$ of sublayer s, with respect to the Kirchhoff stress ${ }^{5 \%}$ also at sublayer " s ", will be needed in the analysis. For the vol Mise loading function ${ }^{5}{ }_{\Phi}$, one obtains:

$$
\begin{align*}
& \frac{\partial\left({ }^{(s} \bar{x}\right)}{\partial\left({ }^{(s} \bar{\tau}\right)}=\frac{\partial}{\partial\left({ }^{(s} \bar{\tau}\right)}\left({ }^{s} \bar{\tau}^{D}: s \bar{\tau}^{D}-\frac{2}{3}\left({ }^{s} \tau_{\bar{u}}^{y}\right)^{2}\right) \\
& =2^{s} \overline{\bar{\tau}}{ }^{D} \frac{\partial}{\partial\left(s^{\bar{\tau}}\right)}\left({ }^{s} \overline{\bar{\tau}}-\frac{1}{3}\left(\operatorname{tr}{ }^{s} \overline{\bar{\tau}}\right) \overline{\bar{I}}\right) \\
& =2^{s} \overline{\bar{\tau}}^{D}(1-0)=2^{s} \overline{\bar{\tau}}^{\dot{D}} \tag{3.46}
\end{align*}
$$

Also, from Eq. 3.36:

$$
\begin{equation*}
\overline{\bar{D}}^{\mathrm{D}}=s^{s} \dot{\lambda}^{s} \overline{\overline{\tilde{T}}} \mathrm{~B}^{2} \tag{3.47}
\end{equation*}
$$

Observe that the parameter ${ }^{\prime} \lambda$ can be expressed in terms of the plastic power per unit mass $\dot{\vec{v}}$ of sublayer s, as:

$$
\begin{aligned}
& s \dot{U^{p}}=\frac{1}{\rho_{0}}(s \overline{\bar{\tau}}):\left(s \bar{D}^{p}\right)=\frac{1}{\rho_{0}}(s \overline{\bar{\tau}}):\left(s \dot{\lambda}^{s \overline{\tau^{D}}}\right)
\end{aligned}
$$

Since

$$
\begin{gather*}
s \Phi=0, \\
\left(s \bar{亏}^{D}\right):\left(s \tilde{\tau}^{D}\right)=\frac{2}{3}\left(\tau_{0}^{y}\right)^{2}\left(1+\left(\frac{\sqrt{\frac{3}{2}\left(\tilde{D}^{\infty}: D^{\infty}\right)}}{s}\right)^{\frac{1}{x} p}\right)^{2} \tag{3.49}
\end{gather*}
$$

for

$$
\begin{equation*}
s \overline{\bar{D}} p=\overline{\overline{0}} \tag{3.50}
\end{equation*}
$$

Then, Eq. 3.48 becomes:

Hence, one can express ${ }^{\text {s }} \dot{\lambda}$ as:

Equation 3.52 implies. that the scalar parameter ${ }^{s} \lambda$ characterizes tho plastic dissipation sinh $^{\circ}$ of sublayer s, which in turn restricts ${ }^{5} \dot{\lambda}$ to be positive semidefinite:

$$
\begin{equation*}
{ }^{3} \dot{\lambda} \geqslant 0 \quad \text { sine } \quad \stackrel{\rightharpoonup}{U} p \geqslant 0 \tag{3.53}
\end{equation*}
$$

Finally, to summarize, one can express these finite strain, "elastic"plastic, strain-hardening, strain-rate-dependent constitutive equations
as:

$$
\begin{aligned}
& \overline{\bar{\tau}}=\sum^{n} A_{s}{ }^{s} \overline{\bar{\tau}} \\
& \stackrel{o}{\bar{\tau}}=\sum^{n} A_{s}{ }^{s} \overline{\bar{\tau}}
\end{aligned}
$$

$$
\begin{aligned}
& s \overline{\bar{\gamma}}^{s}=s \overline{\bar{\tau}}-\frac{1}{3}(\operatorname{tr} \overline{\bar{\tau}}) \frac{\overline{1}}{} \\
& \overline{\overline{\mathrm{D}}} \mathrm{D}=\overline{\bar{D}}-\frac{1}{3}(\mathrm{tr} \overline{\overline{\mathrm{D}}}) \overline{\overline{1}}
\end{aligned}
$$

$$
\begin{aligned}
& s \overline{\bar{D}}=\overline{\bar{D}}=s \overline{\bar{D}}^{e}+s \overline{\bar{D}}^{p}
\end{aligned}
$$

$$
\begin{aligned}
& s \frac{\circ}{\bar{\tau}}=s \overline{\bar{E}}: \overline{\bar{D}} \text { if } \quad\left\{\begin{array}{l}
s^{s} \Phi<0 \\
s \text { or } \\
s^{s}=0 \text { and } s \dot{\Phi}<0
\end{array}\right.
\end{aligned}
$$

whera: $\left\{\begin{array}{l}s_{\underline{E}} \\ A_{a} \\ a_{d} \text { and } s_{p} \\ s_{\tau} \tau_{u_{0}} \\ s_{\lambda}^{\circ}\end{array}\right.$
is the fourth order "elasticity" tensor of sublayer a
is the wtighting factor of aublayer a .. are material strain-rate constants of sublayer s
is the Kirchhoff stress at yield in uniaxial loading, in static conditions, of sublayer s
scalar factor that characterizes the dissipation of sublayer s.

It is evident that by considering different values of the material constants ${ }^{s} d$ and ${ }^{s} p$, and of the "elasticity" tensor ${ }^{s}{ }_{\underline{E}}^{E}$ for each sublayer s, a very complex material behavior could be represented. However, in the present numerical calculations these parameters have been considered to be the same for each sublayer s; that is,

for the present analysis.
In addition, for a few numerical calculations* the material has been considered to be strain-rate independent, in which case:
$s \Phi=(s \bar{z}):\left(s \overline{\tau^{2}}\right)-\frac{2}{3}\left(s \mathcal{c}_{0}\right)^{2}$
It should also be mentioned that the loading conditions of Eq. 3.35, 3.36, and 3.54 are not the actual loading conditions used in the numerical model, and for these, the reader should turn to Sections 4 and 5.

[^21]3.3.4 Computation of Machanical-Sublayer-Modol Weighting Factors 3.3.4.1. Application to Uniaxial Strese-Strain conditions

The determination of the mochanicalmsublayer-model weighting factor A_{s} will be considered in the following. As indicated in Eq .3 .29 , it is assumed that the kirchhoff stress τ at a material point can wo considered as the sum of n components $\left(\frac{8 E}{T}, ~ \& ~ a, \ldots, n\right)$ with weighting factors $A_{s}:$

$$
\begin{equation*}
\overline{\bar{\tau}}=\sum^{n} \mathrm{~A}_{\mathrm{s}}{ }^{s} \overline{\bar{\tau}} \tag{3.57}
\end{equation*}
$$

The weighting factors A_{s} may be selected for either one-dimensional, twodimensional, or three-dimensional stress conditions. Considering onedimensional stress conditions, the uniaxial (denoted by subscript u) static stress-strain curve of the material is assumed to be perfectly antisymmetric in Kirchhoff stress ($\tau_{u_{0}}$) versus logarithmic strain (ε_{u}^{*}) space, as shown approximately by the classic experiments of G.I. Taylor [114], among others. From Eq. 2.402, the logarithmic strain is

$$
\begin{equation*}
\varepsilon_{u}^{*}=\ln \left(\frac{l}{l_{0}}\right)=\ln \left(1+E_{u}\right) \tag{3.58}
\end{equation*}
$$

where $\ell\left(\ell_{0}\right)$ is the final (original) gage length and

$$
\begin{equation*}
E u=\frac{l-l_{0}}{l_{0}} \tag{3.59}
\end{equation*}
$$

is the relative elongation, or "engineering strain" that strain gage or extensometers can provide.

From Eq. 2.424, the uniaxial Kirchhoff stress is:

$$
\begin{equation*}
\tau_{u}=\frac{P}{A_{0}} \frac{l}{l_{0}}=\frac{P}{A_{0}}\left(1+E_{u}\right) \tag{3.60}
\end{equation*}
$$

This static stress-strain curve is first approximated by $n+1$ piecewiselinear segments which are defined at coordinates $\left[{ }^{s}\left(\tau_{u_{0}}\right),{ }^{s}\left(\varepsilon_{u}^{*}\right), s=1,2\right.$, ..., n]; see Fig. Ra. Next, the material is envisioned as consisting, at any point in the material, of n equally-strained sublayers of elastic,
perfactiy-plastic material, with each sublayer having the same ${ }^{+}$elastic modulus E as the idealized material, but an appropriately different Yield stress (denoted by superscript y). For example, the static (subscript o in $T_{u_{0}}$) yield stress (superscript y) of the s sublayer is given by (see Fig. Ab):

$$
\begin{equation*}
s\left(\tau_{u_{0}}\right)^{y}=E^{s}\left(\varepsilon_{u}^{*}\right) \tag{3.61}
\end{equation*}
$$

Then, the Kirchhoff stress value under static conditions, ${ }^{s}$ ($\tau_{u_{0}}$), associated with the eth sublayer can be defined uniquely by the strain history and the value of the strain ε_{u}^{*} at that material point. Taken collectively with an appropriate weighting factor A_{s} for each sublayer, the stress ($\tau_{u_{0}}$) at the material point corresponding to logarithmic strain $\left(\varepsilon_{\dot{u}}^{\star}\right)$ may be expressed as:

$$
\begin{equation*}
\tau_{u_{0 .}}=\sum_{s=1}^{n} A_{s}^{s}\left(\tau_{u_{0}}\right) \tag{3.62}
\end{equation*}
$$

where the uniaxial weighting factor A_{s} for the isth sublayer may readily be confirmed to be:

$$
\begin{equation*}
A_{s}=\frac{E_{s}^{T}-E_{3+1}^{T}}{E} \tag{3.63}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{1}^{T}=E^{(Y o u n g}{ }^{\prime} s \text { modulus of the material) } \\
& E_{s}^{T}=\frac{{ }_{s}^{s} \tau_{u_{0}}-{ }^{s-1} \tau_{u_{0}}}{{ }^{s} \varepsilon_{u}^{*}-{ }^{s-1} \varepsilon_{u}^{*}} \quad(s=2,3, \ldots, n) \\
& E_{n+1}^{T}=0
\end{aligned}
$$

The elastic perfectly-plastic and the elastic linear strain-hardening constitutive relations may be treated as special cases. In the case of

[^22]olastic perfectiy-plastic behavior, there is only one sublayor; in the case of linear strain-hardening materinl thoro are two sublayers and the limit of the second aublayer is taken sufficiently high so that the doformation in that fublayer remains olastic, Howover, tho main advantage of tho mechanical-sublayer method is roalized if three or more nublayern are utilized, since with propor adjustmont of the yiold atrosson ${ }^{a}\left(\tau_{u_{0}}\right)^{y}$ of the aublayers, complas material bohavior can bo roprosonted, including elastic-plastic unloading, the Bauschinger offoct, and hysteresis) see Fig. 2c.

For a strain-rate dependent, elastic strain-hardoning matorial, the rate dependence is described by ${ }^{+}$:

$$
\begin{equation*}
s\left(\tau_{u}\right)^{y}=s\left(\tau_{u}\right)^{y}\left(1+\left.1 \frac{D_{u}}{d}\right|^{\frac{1}{p}}\right) \tag{3.64}
\end{equation*}
$$

where D_{u} is the uniaxial component of the rate-of-deformation tensor:

$$
\begin{equation*}
I_{u}=\frac{\dot{l}}{l}=\dot{E}_{u}^{w}=\frac{E_{u}}{\left(1+E_{u}\right)} \tag{3.65}
\end{equation*}
$$

that is equal to the material rate of the logarithmic strain ε_{u}^{*} as previously shown in Eq. 2.405, and ${ }^{s}\left(\tau_{u}\right)^{Y}$ is the strain-rate dependent yield stress of sublayer s.

Equation 3.65 is the Cowper-Symonds strain-rate equation developed in 1957 [139] at Brown University to represent the strain-rate effect on the uniaxial stress-strain response of metals. The material strain-rate constants d and p are obtained from experiments. When the material strain-rate constants d and p are chosen to be equal for each sublayer, the stress-strain curve at a given deformation rate $\dot{\varepsilon}_{u}^{*}$ is simply a constant magnification of the static stress-strain curve along rays emanating from the Kirchhoff stress versus logarithmic strain origin (see Fig. 3).
3.3.4.2 Application to Multiaxial Stress-Strain Conditions

Generally, a somewhat different description for the mechanicalsublayer model is needed when multiaxial stress-strain conditions occur. Fowler [140] has derived the welghting coefficients based on a biaxial stress state using expressions given by Pian [141] in 1966. In

[^23]1974 stalk [142] derived the weighting coeffidente based on a triaxial Btrass atate.

Both Fowler and Stalk concludod that the differonces betwoen the stress-strain diagrams obtainod from the woighting coefficionta based on a uniaxtal stato of strosemstrain and tho diagrams obtained from tho coofficionts based on a multiaxial atate wore vory smail. Fowler [140] concludod "tho orror rosulting from thia aifforonce, oortainly, shoula bo amalier than that rosulting from tho une of a strajght-iino-sogmont approximation of the atresb-strain curvo, ... it 1 is concludod that tho use of the uniaxial model woights in a biaxial modol does not lead to any significant errors". Stalk [141] concluded that the orrors introduced by using the one-dimensional weights for three-dimensional stress states is of the order of 1 to 4 per cent in the sublayer weights.

More recently, Hunsaker et al. [143] discussed the calculation of the sublayer weights when multiaxial states of stress are present. No comparisons of stress-strain curves produced from weighting coefficients based on uniaxial and multiaxial states are shown, or even discussed. However, Hunsaker [144] obtained a closed-form solution for the case of a two sublayer (linear strain hardening) model. The example shown by Hunsaker [1.43]shows differences between the uniaxial and multiaxial procedures which are of the order of the typical experimental errors in the determination of the material properties.

Besseling [97] in 1953 had already obtained a closed form solution of the sublayer properties (for any number of sublayers) for a general state of stress-strain. It is easy to show that (when only two sublayers are presenti), Hunsaker's closed-form solution coincides with Besseling's formula.

One can readily show, that upon replacing the deviatoric strains and stresses by the total strains and stresses, Besseling's formulae become:

$$
\begin{align*}
\left(\tau_{u 0}^{y}\right)= & E\left(s_{u}^{*}\right) \\
& +\frac{E}{(1+\nu)}\left(\frac{1}{2}-\nu\right) \sum_{i=1}^{s}\left(1-\frac{E^{\top}}{E}\right)\left[i\left(\epsilon_{u}^{*}\right)-j-1\left(E_{u}^{*}\right)\right] \tag{3.66a}
\end{align*}
$$

$$
\begin{equation*}
A_{s}=1-\frac{\frac{2}{s}(1+\nu)}{\frac{E^{-}}{E_{s+1}^{\top}}-\frac{2}{3}\left(\frac{1}{2}-\nu\right)}-\sum_{j=1}^{s-1} A_{j} \tag{3.66b}
\end{equation*}
$$

It is easily soon from those equations, that for $v=1 / 2$ (1.0., assuming clastic incompressibility), the sublayer properties become identical with those derived from uniaxial stress-strain conditions (Eqs. 3.61 and 3.63). Also, it is interesting to rote that like difference between the sublayer properties derived from uniaxial (Eqs. 3.61 and 3.63) and multiaxial (Eqs. 3.66a and 3.66b) conditions is directly related to the factor $\left(\frac{1}{2}-V\right)$, which expresses the difference between the elastic ${ }^{+}$ (V) and plastic (assumed to be equal to $1 / 2$ in the analysis) poisson's ratios. Moreover, in the present analysis for beams, plates, and shells, incompressibility ${ }^{++}$is assumed in calculating the changes in thickness; hence, the calculation of sublayer properties from the uniaxial procedure (Eggs. 3.61 and 3.63) is consistent (under the incompressibility assumption) for the plate (and beam) FE calculations of this report.

3.3.5 Comments on Strain-Rate Behavior Modeling

Because of physical as well as theoretical reasons (as indicated, fur example, by Perzyna (145-152]), the plastic strain rate rather than the total strain rate should govern the dynamic (non-stationary) yield condition (Eq. 3.45) if the initial yield condition is to remain the

[^24]same as in plasticity theory. In ordor to relate the equation for tho dynamical yield condition of this work with the equatione of Perzyna [147], it if convenient to expross Eq. 3. 49 in terms of the following invarianta:
\[

$$
\begin{align*}
& J_{2}=\frac{1}{2} \tau^{0}: \sigma^{D}=\frac{1}{2}\left(\pi \cdot \tau^{D}\right)_{J}^{T}\left(\pi^{D}\right)_{T}^{T} \tag{3.67}\\
& I_{2}^{D}=\frac{1}{2} D D: D D=\frac{1}{2}\left(D^{D}\right)^{T}(D)_{T}^{D} \tag{3.68}
\end{align*}
$$
\]

and the yield otrobs in shoar, definod an:

$$
\begin{equation*}
{ }^{s} R_{0}=\frac{s \tau_{u_{0}}^{y}}{\sqrt{3}} \quad \text { or } \quad\left({ }^{s} R_{0}\right)^{2}=\frac{\left({ }^{5} \tau_{u_{0}}^{y}\right)^{2}}{3} \tag{3.69}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Then, from Eq. } 3.49^{+}
\end{aligned}
$$

$$
\begin{align*}
& s_{2}=\left({ }^{s} k_{0}\right)^{2}\left[1+\left(\frac{\sqrt{I_{2}^{D}}}{d / \sqrt{3}}\right)^{\frac{1}{\alpha \alpha}}\right]^{2} \tag{3.70}
\end{align*}
$$

or

$$
\begin{equation*}
\sqrt{J_{2}}={ }^{s} A_{0}\left[1+\left(\frac{\sqrt{I_{2}^{D}}}{s \gamma}\right)^{\frac{1}{5} \alpha}\right] \tag{3.72}
\end{equation*}
$$

which would be identical with Eq. 2.68 of Perzyna [147] if the second invariant of the plastic strain rate

$$
\begin{equation*}
s_{2}^{p} \equiv \frac{1}{2} s^{s} D^{p}: D^{p}=\frac{1}{2}\left({ }^{s} D^{p}\right)_{J}^{I}\left({ }^{s} D^{p}\right)_{I}^{J} \tag{3.72a}
\end{equation*}
$$

[^25]were used instead of the second invariant of the deviatoric strain rate $\mathrm{I}_{2}^{\mathrm{D}}$. Also obencue, that the relation botwenn tho viscosity coofficient in simple tension ${ }^{s} d$ and the viscosity coefficient in shear ${ }^{\text {s }} \gamma$ ifs the same as the relation botwoen tho yield intros in tension and in shear (compare with Eq. 3.69):
\[

$$
\begin{equation*}
{ }^{s} \gamma=\frac{{ }^{s} d}{\sqrt{3}} \tag{3.73}
\end{equation*}
$$

\]

The equation [3.52] for tho nodular factor of proportionality ni minting tho plastic neraln rato to tho dovidatorde peron:

$$
\begin{equation*}
s \overline{\bar{D}}^{p}=s \dot{\lambda} s \bar{\tau} 0 \tag{3.74}
\end{equation*}
$$

can also be related to tho equations of porzyna [147], by oxprobaing the dissipated (viscoplantic) work per unit mass as:

$$
\begin{equation*}
\dot{\bar{U}}^{p}=\frac{1}{\rho_{0}}{ }^{\overline{\#}} \tilde{\tau}^{0}: \dot{D}^{p}=\frac{2}{\rho_{0}} \sqrt{{ }^{s} J_{2}} \sqrt{s I_{2}^{p}} \tag{3.75}
\end{equation*}
$$

Then, using Eqs. 3.75, 3.72, 3.69, and 3.52, one obtains
or

$$
\begin{align*}
& s \dot{\lambda}=\frac{\rho_{0} \frac{2}{\rho_{0}} \sqrt{s J_{2}} \sqrt{{ }^{s} I_{2}^{p}}}{\frac{2}{3} 3\left(k_{0}\right)^{2} \frac{\sqrt{s J_{2}}}{s k_{0}}\left[1+\left(\frac{\sqrt{I_{2}^{p}}}{s \gamma}\right)^{\frac{1}{s} \alpha}\right]} \tag{3.76}\\
& s^{\dot{\lambda}}=\frac{\sqrt{{ }^{s} I_{2}^{p}}}{{ }^{s} k_{0}}\left[1+\left(\frac{\sqrt{I_{2}^{D}}}{{ }^{s} \gamma}\right)^{\frac{1}{s} \alpha}\right]^{-1} \tag{3.77}
\end{align*}
$$

which is identical with Eq, 2.77 of Perzyna [147] if I_{2}^{D} is replaced by ${ }^{s} \mathrm{I}_{2}$.

The strain rate equation ${ }^{+}$

$$
\begin{align*}
& \frac{\ln \text { rate equation }}{}{ }^{+} \tag{3.78}\\
& \tau_{u}^{v}
\end{align*}=1+\left|\frac{\dot{\epsilon}_{u}^{*}}{d}\right|^{\frac{1}{\alpha}}
$$

$\overline{T_{1 h i s s}}$ equation applies only for $\left(\dot{E}_{u}^{*}\right)^{p} \neq 0$; then, $r_{u}=T_{u}^{Y}>\tau_{u_{0}}^{Y}$.
used in the present work can represent secondary oxeep, since for canstalic stress

$$
\begin{equation*}
\dot{\tau}_{\mu_{\mu}}=0 \tag{3.79}
\end{equation*}
$$

the elastic fit ain rata in gera

Honcho, tho total efrain pate da quad ta the phatic atradn rato

$$
\begin{equation*}
\dot{E}_{u}^{n}=\left(\dot{\dot{E}_{u}^{n}}\right)^{n}+\left(\dot{\dot{E}_{u}^{*}}\right)^{p}=\left(\dot{E}_{u}^{*}\right)^{p} \tag{3.81}
\end{equation*}
$$

Thus, Eg. 3.78 caa bu gaprosood at

$$
\begin{equation*}
\left(\dot{E}_{u}^{*}\right)^{p}=d\left|\frac{\tau_{u}}{\tau_{u_{0}}^{y}}-1\right|^{\alpha} \tag{3.82}
\end{equation*}
$$

which 1 the pow ur lid (alow known ationton's law) of secondary creep. ${ }^{+}$ However, the strain rate equation used in the present work cannot represent relaxation effects. In affect, for relaxation, the total strain rate ls zero:

$$
\begin{equation*}
\dot{\epsilon}_{u}^{*}=0 \tag{3.83}
\end{equation*}
$$

and Eq. 3.78 expresses the condition that the stress τ_{u} relaxes instantaneously to the static yield stress $T_{u_{0}^{y}}^{y}$

$$
\begin{equation*}
\tau_{u}=\tau_{u_{0}}^{y} \text { for } \dot{E}_{u}^{*}=0 \tag{3.84}
\end{equation*}
$$

However, if the plastic strain rate $\left(\dot{\varepsilon}_{u}^{*}\right)^{p}$ rather than the total strain rate $\dot{\varepsilon}_{u}^{*}$ wore used in Eq. 3.78,

However, secondary creep is present only for $\tau_{u}>\tau_{u_{0}}^{Y} . A 1 s o, d$ and α
are temperature dependent.

$$
\begin{equation*}
\frac{\tau_{\mu}}{\tau_{u_{0}}^{\gamma}}=1+\left|\frac{\left(\dot{\epsilon}_{u}^{*}\right)^{p}}{d}\right|^{\frac{1}{\alpha}} \tag{3,65}
\end{equation*}
$$

Phon, for rolaxation:

$$
\begin{equation*}
\dot{\epsilon}_{u}^{*}=0=\frac{\dot{\tau}_{u}}{E}+d\left|\frac{\tau_{u}}{\tau_{u_{0}}^{\gamma}}-1\right|^{\alpha} \tag{3.86}
\end{equation*}
$$

For example, this equation can be solved for $\alpha=1$, yielding an exponential relaxation:

$$
\begin{equation*}
T_{u}=T_{u} e-\frac{t}{R}+T_{u}^{y} \tag{3.87}
\end{equation*}
$$

where the relaxation constant R is

$$
\begin{equation*}
R=\frac{\tau_{u_{0}}^{y}}{E d} \tag{3.88}
\end{equation*}
$$

If many sublayers are present rather than one, it can be shown that creep recovery, and primary as well as secondary creep, can be represented by Eq. 3.85.

Only total strain rates (rather than plastic strain rates) are usually measured in strain rate tests; therefore, it is necessary to assume that the elastic strain rates are small in those experiments, as indicated by Campbell (page 52 of [153]). for example. When the material strain-rate constants d and p are chosen to be equal for each sublayer, the present mechanical sublayer model produces as a result stress-strain curves at a given strain rate that are simply a constant magnification of the static (rate-independent) stress-strain curve along rays emanating from the origin of the Kirchhoff stress vs.
logarithmic strain curve. This is the behavior that was observed by MacGrogor [154] and by Wulf [155] in a number of oxporimonta, among others.

In any case, tho difference between the total and the plastic entrain rates can bo doducod from tho following argument for a uniaxial tort:

$$
\begin{array}{ll}
E_{u}=\frac{l-l_{0}}{l_{0}} & \text { relative elongation } \\
\varepsilon_{u}^{*}=\ln \left(1+E_{u}\right) & \text { total uniaxial logarithmic strain } \\
\dot{\varepsilon}_{u}^{*}=\frac{d}{d t}\left(\varepsilon_{u}^{*}\right) & \text { material rate of } \varepsilon_{u}^{*}
\end{array}
$$

$\left(\dot{\varepsilon}_{u}^{*}\right)^{e}, \quad\left(\dot{\varepsilon}_{\psi}^{*}\right)^{p} \quad$ elastic and plastic parts of $\varepsilon_{u^{\prime}}^{*}$ respectively $\tau_{u}=\frac{P}{A_{0}}\left(1+E_{u}\right) \quad$ uniaxial Kirchhoff stress
E Young's (elastic) modulus
Decomposing the total strain rate $\dot{\varepsilon}_{u}^{*}$ into elastic and plastic parts:

$$
\begin{equation*}
\dot{\varepsilon}_{u}^{*}=\left(\dot{\varepsilon}_{u}^{*}\right)^{e}+\left(\dot{\varepsilon}_{u}^{*}\right)^{p} \tag{3.89}
\end{equation*}
$$

where since

$$
\begin{equation*}
\left(\varepsilon_{u}^{*}\right)^{e}=\frac{1}{E} \tau_{u} \tag{3.90}
\end{equation*}
$$

the elastic strain rate $\left(\dot{\varepsilon}_{u}^{*}\right)^{e}$ is related to the stress as:

$$
\begin{equation*}
\left(\dot{\varepsilon}_{u}^{*}\right)^{e}=\frac{1}{E} \dot{\tau}_{u} \tag{3.91}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\dot{\varepsilon}^{*}=\frac{1}{E} \dot{\tau}_{u}+\left(\dot{\varepsilon}_{u}^{*}\right)^{p} \tag{3.92}
\end{equation*}
$$

Hence, one can express the plastic-strain rate $\left(\dot{\varepsilon}_{u}^{*}\right)$ p as

$$
\begin{align*}
\left(\dot{\varepsilon}_{u}^{*}\right)^{p} & =\dot{\varepsilon}_{u}^{*}-\frac{1}{E} \dot{\tau}_{u} \\
& =\dot{\varepsilon}_{u}^{*}-\frac{1}{E} \frac{d \tau_{u}}{d \varepsilon_{u}^{*}} \dot{\varepsilon}_{u}^{*} \tag{3.93}
\end{align*}
$$

Defining tho tangont modulus F^{T} an
ono obtains

$$
\begin{equation*}
E^{\top} \cdot \frac{d z_{n}}{d \varepsilon_{i}^{*}} \tag{3.94}
\end{equation*}
$$

$$
\begin{equation*}
\left(\dot{\varepsilon}_{u}^{*}\right)^{p}=\left(1-\frac{E^{T}}{E}\right) \dot{\varepsilon}_{u}^{*} \tag{3.95}
\end{equation*}
$$

Since the tangent modulus $E^{T}=\left(a \tau_{u}\right) /\left(d \varepsilon_{u}^{*}\right)$ of the Kirchhoff stress T_{u} versus logarithmic strain ε_{u}^{*} curve is small for most metals, the quantity $E^{T} / E=\left(d \tau_{u} / a \varepsilon_{u}^{*}\right) / E$ is small compared with unity. For example, the calculations in the present work have boon carried out with the following materials:

For 6061-T651 aluminum:

$$
\left.\begin{array}{rl}
\frac{E^{\top}}{E}= & \frac{1}{E} \frac{d \tau_{u}}{d \varepsilon_{u}^{*}}=0.00699 \\
& \left(\dot{\varepsilon}_{u}^{*}\right)^{p}=0.993 \dot{\varepsilon}_{u}^{*}
\end{array}\right\} \text { for } \quad .0044<\varepsilon_{u}^{*}<.076
$$

Therefore, for 6061-T651 aluminum, the relative difference $\frac{\dot{\varepsilon}_{u}^{*}-\left(\dot{\varepsilon}_{u}^{*}\right)^{p}}{\dot{\varepsilon}_{u}^{*}}$
between the total strain rate and the plastic strain rate is less than 0.7%.

For National Forge 4130 cast steel:

$$
\left.\begin{array}{rl}
\frac{E^{\top}}{E}= & \frac{1}{E} \frac{d \tau_{u}^{u}}{d \varepsilon_{u}^{*}}=0.04069 \\
& \left(\dot{\varepsilon}_{u}^{*}\right)^{p}=0.959 \dot{\varepsilon}_{u}^{*}
\end{array}\right\} \text { for } \quad .00289<\varepsilon_{u}^{*}<.02258
$$

$$
\left.\begin{array}{l}
\frac{E^{\top}}{E}=\frac{d}{E} \frac{d \tau_{u}}{d \varepsilon_{u}^{*}}=0.00378 \\
\quad\left(\dot{\varepsilon}_{u}^{*}\right)^{p}=0.996 \dot{\varepsilon}_{u}^{*}
\end{array}\right\} \text { for } \quad .060<\varepsilon_{u}^{*}<.557
$$

Ilonco, for this National Forge 4130 cast steel, the relative difference betwoon the total and plastic strain rates is 48 for strains smaller than 28, and the difference is less than 18 for strains larger than 2%. The experimental error in the calculation of total strain rates in strainrate experiments is of the same or larger order than the difference between the plastic and total strain rates.

CURVED BEAMS AND RINGS

4. 1 Introduction

Section 4 deals with the strain-displacement equations and the constitutive equations used for the numerical analysis of curved beams and rings.

These strain-displacemer.t relations for finite strains and rotations also take into account thickness change and seem to be "new" (not found in the literature). The decomposition of the total strain into a "membrane" and a "bending" part is discussed, and it is seen to be dependent on the definition of the strain measure. Also, the decomposition of the deformation gradient into a rotation and a pure stretch is shown for illustrative purposes. Equivalent equations for "small membrane strains" are displayed. Finally, the constitutive equations for curved beams are shown together with the corresponding incremental procedure which can be used in solving the equations of motion stepwise in amall increments Δt in time.

4.2 Strain-Displacement Relations for Finite Strains

and Rotations

4.2.1 Strain-Displacement Relations for the BernoulliEuler Displacement Field

4.2.1.1 Formulation

The previous general results of subsection 2.4 for the kinematics of a deformable medium are specialized to the case of a curved beam, as pictured in Figs. 4 a and 4 b , with the following definitions:

The coordinate $\eta \equiv \xi_{2}^{2}$ deines the (curvilinear) reference axis of the curved beam and $\zeta^{\circ} \equiv \xi^{3}$ measures the distance along an outwardly-directed normal to η. All deformations take place in the η, ζ° two-dimensional plane.

For the body-fixed convected system, the base vectors \bar{g}_{i} and \bar{G}_{I} are functions of the coordinates η and ζ°, and the \bar{G}_{I} are also functions of time t :

$$
\begin{equation*}
\bar{g}_{2}=\bar{g}_{2}\left(\eta, \tau^{0}, t_{0}\right) ; \quad \bar{G}_{2}=\bar{G}_{2}\left(\eta, z^{0}, t\right) \tag{4.1}
\end{equation*}
$$

Tho base vectors of tho bodymfixod convoctod nystom at the roforenco curvelinear axis $n\left(t h a t i a, ~ a t ~ r_{0}^{0} \rightarrow 0\right)$ are given special names:

$$
\begin{align*}
& \bar{a}_{2}=\bar{g}_{2}\left(\eta, \tau^{\prime}=0\right)=\bar{a}_{2}(\eta) \\
& \bar{A}_{2}=\bar{G}_{2}\left(\eta, z^{*}=0, t\right)=\bar{A}_{2}(\eta, t) \tag{4.2}
\end{align*}
$$

The base vectors associated with the coordinate $\zeta^{0} \equiv \xi^{3}$ are:

$$
\begin{equation*}
\bar{n} \equiv \bar{g}_{3} \quad \lambda \cdot \bar{N}=\bar{G}_{3} \tag{4.3}
\end{equation*}
$$

Here, \bar{n} is the unit normal vector to \bar{a}_{2} in the reference configuration and \bar{N} is the unit normal vector to \bar{A}_{2} in the present configuration. since they are unit vectors, they are only a function of the coordinate η :

$$
\begin{equation*}
\bar{n}=\bar{n}(\eta) \tag{4.4}
\end{equation*}
$$

$\bar{N}=\bar{N}(\eta, t)$
The quantity λ^{*} is a parameter that is associated with the thickness change of the curved beam, and hence is a function of ζ° as well as η :

$$
\begin{equation*}
\lambda^{*}=\lambda^{*}\left(\eta, \tau^{0}, t\right) \tag{4.5}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \bar{G}_{3}=\lambda^{*}\left(\eta, \tau^{0}, t\right) \bar{N}(\eta, t)=\bar{G}_{3}\left(\eta, \tau^{0}, t\right) \tag{4.6}\\
& \bar{g}_{3}=\bar{n}(\eta)=\bar{g}_{3}(\eta)
\end{align*}
$$

Any point in the reference configuration of the curved beam is located by the position vector \bar{r}_{0} to the reference axis η and the unit vector \bar{n} normal to the reference axis η in the form:

$$
\begin{equation*}
\bar{r}=\bar{r}_{0}+\sum_{0}^{0} \bar{n} \tag{4.7}
\end{equation*}
$$

Any point in the present (deformed) configuration of the curved beam is located by the position vector \bar{R}_{o} to the reference axis η and the vector $\bar{G}_{3}=\lambda \star \stackrel{\rightharpoonup}{\mathrm{N}}$ normal to the reference axis η in the form:

$$
\begin{equation*}
\bar{R}=\bar{R}_{0}+\tau_{0}^{0} \lambda \bar{N} \tag{4.8}
\end{equation*}
$$

The base vector \bar{a}_{2} at the reference axis η (at $t^{0}, 0$) in the reference configuration is the unit vector tangent to tho roforence axis coordinate η :

$$
\begin{equation*}
\bar{a}_{2}=\frac{\partial \bar{r}_{0}}{\partial \bar{q}_{2}^{2}}=\frac{\partial \bar{r}_{0}}{\partial \eta} \quad a_{22}=\bar{a}_{2} \cdot \bar{a}_{2}=1=a^{22} \tag{4.9}
\end{equation*}
$$

The base vector \bar{A}_{2} at the reference axis η (at $\zeta_{0}{ }^{0}=0$) in the present configuration is:

$$
\begin{equation*}
\bar{A}_{2}=\frac{\partial \bar{R}_{0}}{\partial \bar{\xi}_{2}^{2}}=\frac{\partial \bar{R}_{0}}{\partial \eta} \tag{4.10}
\end{equation*}
$$

and it is not (in general) a unit vector.
The covariant base vectors of the "curved beam space" in the reference configuration are:

$$
\begin{align*}
& \bar{g}_{2}=\frac{\partial \bar{r}}{\partial \varepsilon^{2}}=\frac{\partial \bar{r}}{\partial \eta}=\frac{\partial \bar{r}_{0}}{\partial \eta}+\tau^{0} \cdot \frac{\partial \bar{n}}{\partial \eta}=\bar{a}_{2}+\frac{\zeta^{0}}{R} \bar{a}_{2}=\left(1+\frac{\tau_{0}^{0}}{R}\right) \bar{a}_{2} \tag{4.11}\\
& \bar{g}_{3}=\frac{\partial \bar{r}}{\partial \varepsilon^{3}}=\frac{\partial \bar{r}}{\partial \tau_{i}^{0}}=\frac{\partial \bar{r}_{0}}{\partial \tau_{1}^{0}}+\bar{n}=\bar{n}
\end{align*}
$$

where R is the radius of curvature in the reference configuration, taken here positive when the center of curvature lies in the negative direction of \bar{n} (which is opposite in sign to that given in some books on tensors).

Note that:

$$
\begin{equation*}
\bar{a}_{2}=\bar{g}_{2}\left(\varepsilon^{0}=0\right) \tag{4.22}
\end{equation*}
$$

The (metric) tensor components of the unit tensor $\overline{\mathbf{I}}$ in the convected coordinate system are:

$$
g_{i j}=\bar{g}_{i} \cdot \bar{g}_{j}=\left\|\begin{array}{cc}
\left(1+\frac{\zeta_{i}}{R}\right)^{2} & 0 \| \tag{4.13}\\
0 & 1 \|
\end{array}\right\|
$$

The displacement field at any point $\varepsilon_{0}^{2}=n, \xi^{3}=r_{3}^{0}$ in a curved boat can bo expressed as follows (as depicted in Fig. Ab) :

$$
\begin{equation*}
\bar{u}\left(\eta, \tau^{0}\right)=\bar{u}_{0}(\eta)+\tau^{0}\left[\lambda\left(\tau^{0}, \eta\right) \bar{N}(\eta)-\bar{n}(\eta)\right] \tag{4.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{u}_{0}=\bar{R}_{0}-\bar{r}_{0}=\dot{u}^{2} \bar{a}_{2}+\dot{u}^{3} \bar{n} \tag{4.16}\\
& \bar{u}=\bar{R}-\bar{r}
\end{align*}
$$

or defining $v \equiv \mathrm{O}^{2}$ and $w \equiv \mathrm{O}^{3}$, one may write

$$
\begin{equation*}
\bar{u}_{0}=V \bar{a}_{2}+w \bar{n} \tag{4.17}
\end{equation*}
$$

In the case of no extension of the normals (no thinning or thickening of the beam):

$$
\begin{equation*}
\lambda=\lambda^{*}=1 \tag{4.18}
\end{equation*}
$$

Accordingly, one obtains a "Kirchhoff" or "Bernouili-Euler" displacement field (see Fig. 5):

$$
\begin{equation*}
\bar{u}=\bar{u}_{0}+\tau^{0}(\bar{N}-\bar{n})=v \bar{a}_{2}+\left(w-\zeta^{0}\right) \bar{n}+\tau^{0} \bar{N} \tag{4.19}
\end{equation*}
$$

It can be shown that ${ }^{+}$:

$$
\begin{equation*}
\tau^{0} \bar{N}=\frac{\tau^{0}}{U_{2}^{0}}\left[(1+\chi) \bar{n}+(-\psi) \bar{a}_{2}\right] \tag{4.20}
\end{equation*}
$$

[^26]where
$$
G_{2}^{2}=\sqrt{C_{2}^{2}}=\sqrt{1+2 \gamma_{2}^{2}}
$$
U_{2}^{2} mixed component of tho right ntrotah tenor at the roforonan. $\operatorname{axian} n\left(r^{\circ} \quad 0\right)$
C_{2}^{2} mixed component of the Cauchy-Groon tonnor at tho rofornnce axis $n\left(\zeta^{0}=0\right)$
$\hat{\gamma}_{2}^{2}=$ mixed component of the Grown strain tensor at the roforonce axis $n\left(5^{\circ}=0\right)$
\[

$$
\begin{equation*}
X=\frac{\partial v}{\partial \eta}+\frac{w}{R} \quad \psi=\frac{\partial w}{\partial \eta}-\frac{v}{R} \tag{4,22}
\end{equation*}
$$

\]

Hence,

$$
\begin{align*}
\bar{u} & =\left(v-\frac{\zeta^{0}}{\dot{u}_{2}^{2}} \psi\right) \bar{a}_{2}+\left[w+\frac{\zeta_{1}^{0}}{\dot{u}_{2}^{2}}(1+\chi)-\tau_{i}^{0}\right] \bar{n} \tag{4.23}\\
& =\tilde{v} \bar{a}_{2}+\tilde{w} \bar{n}
\end{align*}
$$

Then, the deformation gradient tensor $\frac{\tilde{F}}{\mathbf{F}}$ has the following components with respect to the base vectors of the reference configuration:

$$
F_{i j}^{i \cdot}=\left\|\begin{array}{cc}
(1+\chi)\left(1+\frac{z_{i}^{0}}{\left(\dot{u}_{2}^{2}\right)^{3}} K\right) & -\frac{\psi}{i U_{2}^{2}} \tag{4.24}\\
\psi\left(1+\frac{\tau_{1}^{0}}{\left(\dot{U}_{2}^{2}\right)^{3}} K\right) & \frac{(1+\chi)}{U^{0}} \| \\
& =\| F_{2}^{2 \cdot 2}
\end{array}\right\|
$$

where

$$
\begin{equation*}
K=\left(-\frac{\partial \psi}{\partial \eta}\right)(1+X)+\frac{\partial X}{\partial \eta} w \tag{4.26}
\end{equation*}
$$

From Eq. 4.24 and Eq. 2.132, the right cauchy-Groon deformation tenor components c_{j}^{1} in tho body fixed coordinate nyetom in the ref nronon oonflquration can bo obtained an follows:

$$
\begin{aligned}
& \overline{\bar{C}}=\overline{\bar{F}} \cdot \overline{\bar{F}}
\end{aligned}
$$

which reduces to

$$
\begin{equation*}
C_{j}^{i}=\|\left[(1+\chi)^{2}+\psi^{2}\right]\left[1+\frac{\zeta_{1}^{0}}{\left(\tilde{U}_{2}^{2}\right)^{3}} K\right]^{2} \quad 0 \tag{4.28}
\end{equation*}
$$

Hence, the right Cauchy-Green deformation tensor mixed components at the reference axis η (at $r_{0}^{0}=0$) are:

$$
\begin{equation*}
\dot{C}_{2}^{2}=C_{2}^{2}\left(\eta, \zeta_{1}^{0}=0\right)=(1+\chi)^{2}+\psi^{2} \tag{4.29}
\end{equation*}
$$

Also, note that

$$
\begin{equation*}
\dot{C}_{2}^{2}=\left(\dot{U}_{2}^{2}\right)^{2} \tag{4.30}
\end{equation*}
$$

Placing Eq. 4. 30 Into Eq. A. AB, one can express the mixed amponenta C_{j}^{1} of the right Cauchy-Groen deformation tenor anywhere in the curved boat apace $\eta, 5^{\circ}$ in terms of the mixed component ${ }_{\mathrm{c}}^{\mathrm{j}} \mathrm{j}$ at the roforange axing $\left(r^{0}=0\right)$, the "curvature" k, and the normal gooxdinato ζ°,

$$
C_{j}^{i}=\left\|\begin{array}{cc}
\dot{C}_{2}^{2}\left[1+\frac{\varepsilon_{1}^{0}}{\left(\dot{C}_{2}^{2}\right)^{3 / 2}} K\right]^{2} & 0 \tag{4.31}\\
0 & 1
\end{array}\right\|
$$

The classical Green (Lagrangian) strain tensor $\bar{\gamma}$ can be obtained readily from the right Cauchy-Green deformation tensor (Eqs. 2.136 and 2.140):

$$
\left.\begin{gather*}
\overline{\bar{\gamma}}=\frac{1}{2}(\overline{\bar{C}}-\overline{1}) \\
\gamma_{j}^{i}=\frac{1}{2}\left(C_{j}^{i}-\delta_{j}^{i}\right) \\
\gamma_{j}^{i}=\| \frac{1}{2}\left(\dot{C}_{2}^{2}\left[1+\frac{\tau^{i}}{\left(\bar{C}_{2}^{2}\right)^{3 / 2}} K^{2}-1\right)\right. \tag{4.32}\\
0
\end{gather*} \right\rvert\,
$$

ox, using Eq. 4.21, namely $\gamma_{2}^{O_{2}}=\frac{1}{2}\left(\mathrm{C}_{2}^{2}-1\right)$, then

whore the croon entrain component at the referee axils $\eta\left(r_{0}^{0}=0\right.$ muperfioript "a"), or tho mombrane strain component ta

$$
\begin{equation*}
\left.\gamma_{2}^{2}=x+\frac{1}{2} \psi^{2}+\frac{1}{2} \chi^{2}\right] \tag{A,34}
\end{equation*}
$$

4.2.1.2 Mombrane, Bnalnde and Polar Dnoompontiong

 have boom mario in $\mathrm{Eq} .4,33$. Ono gan docompono Eq. 4.33 additively an follows:

Otherwise, one can apply a multiplicative decomposition of the deformasion gradient tensor into a "membrane" part (defined at $\zeta^{\circ}=0$ and denoted by the superscript " 0 ") and a "bending" part (denoted by the over script " K ") :

Hence, the "membrane" right Cauchy-Green deformation tensor component $\mathrm{c}_{\mathrm{j}}^{\mathrm{i}}$ is:
or

$$
\ddot{C}_{j}^{i}=\left\|\begin{array}{cc}
{\left[(1+X)^{2}+\psi\right]^{2}} & 0 \tag{4.38}\\
0 & 1
\end{array}\right\|=\underbrace{\left\|\begin{array}{cc}
\dot{C}_{2}^{2} & 0 \\
0 & 1
\end{array}\right\|}_{\text {"MEMBRANE" }}
$$

Similarly, the "bending" right Cauchy-Green deformation tensor component $\mathrm{K}_{\mathrm{j}}^{\mathrm{i}} \mathrm{is}$:

or

Thun, in accordance with iq. A. 31

From the polar decomposition of the deformation gradient tensor, one can obtain expressions for the displacement gradients X and ψ in terms of (1) a rotation angle θ from the reference configuration and , 2) a stretch, (see Eq. 2.122):

$$
\begin{equation*}
F_{i}^{0} \cdot R_{i} i_{k} T_{j}^{k} \tag{4.42}
\end{equation*}
$$

or, in matrix form, Eq. 4.42 becomes

which shows that:

$$
\begin{align*}
(1+X) & =G_{2}^{2} \cos \theta \tag{4.44}\\
\psi & =U_{2}^{0} \sin \theta \tag{4.45}
\end{align*}
$$

Whono ralationa aro vory important in tho finito olomont analyain finco X and ψ are wand: (l) an nomo of the dogroon of frocalom of nach finito olomont and (a) in tho atrainodinplacomont rolntiona. It in noon from Hen. 4.44 and 4.45 that both X and ψ aro rolatod to the meroteh and to tho rotation.

Ohmorvo, that for "amali rotationn":"

$$
\begin{align*}
& \cos \theta \approx 1 \tag{4.46}\\
& \sin \theta \approx \theta
\end{align*}
$$

and, for "small mambrano strains":

$$
\begin{align*}
& E_{2} \tag{4.47}\\
& E_{2}^{0} \\
& E_{2}^{2} \\
& E_{2}+1 \\
& E_{2}^{0} \\
& 2 \\
& 1+2 \gamma_{2}^{2} \\
& 2
\end{align*}
$$

Honce, one obtains

$$
\begin{array}{ll}
X \approx E_{2}^{E_{2}} & \text { "rolative elongation" } \\
\psi \approx \theta & \text { "rotation" } \tag{4.48}
\end{array}
$$

This indicates that tho displacement gradient X is approximately the relative elongation, and the displacement gradient ψ is approximately the rotation angle θ only for small gtrains and gmall rotations. Observe, however, that for finite rotations, botn X and ψ are related to the strains and rotations. Also, note that one can obtain Eqs. 4.44 and 4.45 from geometrical arguments as indicated, for example, in Fig. 5 and the following observations:

$$
\begin{align*}
& U_{2}^{0} T_{2}^{2}+{\stackrel{\dot{L}_{2}}{2}}_{2}^{\Delta s}=U_{2}^{2} I_{2}^{2} \eta \tag{4.49}
\end{align*}
$$

[^27]Thn Dornoulli- Bulor-Kixahhoff dimplacomont flold may bo oxpanama an:

$$
\begin{align*}
& \tilde{v}=v-\tau_{i}^{0} \sin \theta \tag{1.51}\\
& \tilde{w}=w-\tau_{i}^{0}(1-\cos \theta) \tag{4.52}\\
& \cos \theta=\lim _{\Delta s \rightarrow 0}\left(\frac{\Delta \eta+\Delta v}{\Delta s}\right) \tag{4.53}\\
& \cos \theta=\lim _{\Delta \eta \rightarrow 0}\left(\frac{1}{\dot{U}_{2}^{0}} \frac{\Delta \eta+\Delta v}{\Delta \eta}\right)=\frac{1}{\tilde{U}_{2}^{0}}\left(1+\frac{\partial v}{\partial \eta}\right) \tag{4.54}\\
& \sin \theta=\lim _{\Delta s \rightarrow 0}\left(\frac{\Delta w}{\Delta s}\right) \tag{4.55}\\
& \sin \theta=\lim _{\Delta \eta \rightarrow 0}\left(\frac{1}{U^{0}} \frac{\Delta w}{\Delta \eta}\right)=\frac{1}{U_{2}^{2}} \frac{\partial w}{\partial \eta} \tag{4.56}
\end{align*}
$$

Hence, defining

$$
\begin{equation*}
\chi \equiv \frac{\partial v}{\partial \eta} \quad \psi \equiv \frac{\partial w}{\partial \eta} \tag{4.57}
\end{equation*}
$$

one obtains

$$
\begin{align*}
& \cos \theta=\frac{1}{\dot{U}_{2}^{2}}(1+\chi) \tag{4.58}\\
& \sin \theta=\frac{1}{\grave{U}_{2}^{2}} \psi \tag{4.59}
\end{align*}
$$

Thus, tho BornoullimeulormKirohhoff displacomont fiold bncomons:

$$
\begin{align*}
& \tilde{v}=v-\tau_{0} \frac{\psi}{\dot{u}_{2}^{2}} \tag{4.60}\\
& \tilde{w}=w+\tau^{0} \frac{(1+\chi)}{\dot{u}_{2}^{2}}-\tau^{0} \tag{4.61}
\end{align*}
$$

which compares with Eq. 4.23.
At this point it is convenient to use Eqs. 4.44 and 4.45 to show that the expressions for the right Cauchy-Green deformation tensor component C_{2}^{2} of Eq. 4.31 and the Green strain tensor component γ_{2}^{2} of Eq. 4.35 are, indeed, invariant under arbitrarily large rotations.

For this, it suffices to show that the right Cauchy-Green deformation tensor component C_{2}^{2} at the reference axis $\eta\left(\zeta^{\circ}=0\right)$, and the "curvature" K are invariants under rotation. From Eq. 4.29: $\quad \mathrm{C}_{2}^{2}=(1+\chi)^{2}+\psi^{2}$. Placing Eqs. 4.44 and 4.45 into this expression, one obtains:

$$
\begin{align*}
C_{2}^{2} & =\left(U_{2}^{2} \cos \theta\right)^{2}+\left(U_{2}^{2} \sin \theta\right)^{2}=\left(I_{2}^{2}\right)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =\left(U_{2}^{0}\right)^{2} \tag{4.62}
\end{align*}
$$

which is an identity, from Eq. 4.21. Hence C_{2}^{2} is invariant under arbitrarily large rotations. Next, from Eq. 4.26:

$$
\begin{equation*}
K=\left(-\frac{\partial \psi}{\partial \eta}\right)(1+\chi)+\frac{\partial \chi}{\partial \eta} \psi \tag{4.63}
\end{equation*}
$$

Placing Eqs. 4.44 and 4.45 into Eq. 4.63, one obtains:

$$
\begin{align*}
& \frac{\partial \psi}{\partial \eta}=U^{0} I_{2}^{2} \cos \theta \frac{\partial \theta}{\partial \eta}+\sin \theta \frac{\partial U_{12}^{2}}{\partial \eta} \tag{4.64}\\
& \frac{\partial \chi}{\partial \eta}=-U_{2}^{0} \sin \theta \frac{\partial \theta}{\partial \eta}+\cos \theta \frac{\partial U_{2}^{2}}{\partial \eta} \tag{4.65}
\end{align*}
$$

$$
\begin{align*}
& K=-\left(\dot{u}_{2}^{2} \cos \theta \frac{\partial \theta}{\partial \eta}+\sin \theta \frac{\partial \dot{u}_{2}^{2}}{\partial \eta}\right)\left(\dot{U}_{2}^{2} \cos \theta\right) \\
& +\left(-\dot{U}_{2}^{2} \sin \theta \frac{\partial \theta}{\partial \eta}+\cos \theta \frac{\partial \dot{u}_{2}^{2}}{\partial \eta}\right)\left(\dot{U}_{2}^{2} \sin \theta\right) \tag{4.66}
\end{align*}
$$

$$
\begin{aligned}
& +\dot{U}_{2}^{2} \cos \theta \sin \theta \frac{\partial \dot{u}_{2}^{2}}{\partial \eta} \\
& =-\left(\tilde{U}_{2}^{2}\right)^{2} \frac{\partial \theta}{\partial \eta}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=-\left(\tilde{U}_{2}^{2}\right) \frac{\partial \theta}{\partial \eta}
\end{aligned}
$$

Equation 4.66 shows that the "curvature" expression K of Eq. 4.26 is invariant under arbitrarily large rigid-body motions.

It can also be shown that the expression

$$
\begin{equation*}
K /\left(U^{0} I_{2}^{2}\right)^{3} \tag{4.67}
\end{equation*}
$$

appearing in the expressions for the deformation gradient tensor components of Eq. 4.24 and Eq. 4.36 and in the right Cauchy-Green deformation tensor, Eq. 4.31 and Eq. 4.40, is the actual curvature* $\partial \theta / \partial s$, as follows. since

$$
\begin{equation*}
G_{2}^{2}=\frac{\partial S}{\partial \eta} \tag{4.68}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \theta}{\partial \eta}=i^{0} I_{2}^{2} \frac{\partial \theta}{\partial s} \tag{4.69}
\end{equation*}
$$

[^28]One find from Eq. 4.66 that

$$
\begin{equation*}
K-\left(G_{2}^{0}\right)^{2} \frac{\partial \theta}{\partial M}=-\left(G_{2}^{2}\right)^{3} \frac{\partial \theta}{\partial s} \tag{4,70}
\end{equation*}
$$

Hone

$$
\begin{equation*}
\frac{2 \theta}{35}=\frac{K}{\left(T_{2}^{2}\right)^{3}}=\frac{K}{\left(\left(_{2}\right)^{3 / 2}\right.}=\frac{1}{\left.(1+2)_{2}^{2}\right)^{3 / 2}} \tag{4.71}
\end{equation*}
$$

Therefore, one can express Eq. 4.36 as:

Also, the expression for the right Cauchy-Green deformation tensor component C_{j}^{i}, Eq. 4.41, can be expressed as:

Equivalently, one can express the Green strain tensor component γ_{2}^{2}, from Eq. 4.35, as:

$$
\begin{equation*}
\gamma_{2}^{2}=\underbrace{\gamma_{2}^{2}}_{\text {MEMBRANE" }}-\tau_{\text {BENDING" }}^{0}\left(1+2 \gamma_{2}^{0}\right) \frac{\partial \theta}{\partial s}\left(1-\tau^{0} \frac{\partial \theta}{\partial s}\right) \tag{4.74}
\end{equation*}
$$

Or, defining a "curvature" measured per unit length of the reference configuration, as in Eq. 4.69:

$$
\begin{gather*}
\frac{\partial \theta}{\partial \eta}=\sqrt{1+2 \gamma_{2}^{2}} \frac{\partial \theta}{\partial s} \tag{4.75}\\
\gamma_{2}^{2}=\gamma_{2}^{0} \cdots \zeta_{1}^{0} \sqrt{1+2 \gamma_{2}^{2}} \frac{\partial \theta}{\partial \eta}\left(1-\zeta_{1}^{0} \frac{1}{\sqrt{1+2 \gamma_{2}^{2}}} \frac{\partial \theta}{\partial \eta}\right) \tag{4.76}\\
\gamma_{2}^{2}=\underbrace{\dot{\gamma}_{2}^{2}}_{\text {MEMBRANE" }}-\underbrace{\zeta^{0} \frac{\partial \theta}{\partial \eta}\left(\sqrt{1+2 \delta_{2}^{2}}-\zeta^{0} \frac{\partial \theta}{\partial \eta}\right)}_{\text {BEN }} \tag{4.77}
\end{gather*}
$$

This equation holds for arbitrarily large rotations and strains.

4.2.1.3 Specialization to Small Membrane Strains

If, instead of the exact equations for arbitrarily large rotations and strains, one assumes "small membrane strains" at the outset (a common assumption in the engineering literature ${ }^{*}$), the displacement field (Eq. 4.23) becomes altered. For convenient reference, Eq. 4.23 follows as Eq. 4.78:

$$
\begin{equation*}
\bar{u}=\left(v-\frac{\tau_{1}^{0}}{\dot{U}_{2}^{0}} \psi\right) \bar{a}_{2}+\left(w+\frac{\zeta_{1}^{0}}{\tilde{U}_{2}^{0}}(1+\chi)-\tau^{0}\right) \bar{n} \tag{4.78}
\end{equation*}
$$

For "small membrane strains", one has

$$
\begin{equation*}
\tilde{U}_{2}^{2}=1+{\stackrel{\circ}{E_{2}^{2}}}_{2}^{2}=\sqrt{1+2 \dot{\gamma}_{2}^{2}} \approx 1 \tag{4.79}
\end{equation*}
$$

Hence, Eq, 4.78 becomes

$$
\begin{equation*}
\bar{u} \approx\left(v-\tau^{0} \psi\right) \bar{a}_{2}+\left(w+\zeta^{0} \chi\right) \bar{n} \tag{4.81}
\end{equation*}
$$

In this (approximate) Bernoulli-Euler-Kirchhoff displacement field, the only assumption made is that the membrane strains are small, but no assumption is made regarding the magnitudes of the displacements.
*For example, as in Novozfiliov's book on the Nonlinear Theory of Elasticity [156], or as in [28].

From this displacomont field, one obtains the following deformation gradient tensor components:

$$
F^{i}!j=\left\|\begin{array}{ll}
\left(1+\chi-z^{\circ} \frac{\partial \psi}{\partial \eta}\right) & -\psi \tag{4.81}\\
\left(\psi+\zeta^{0} \frac{\partial \chi}{\partial \eta}\right) & (1+\chi)
\end{array}\right\|
$$

From $F_{\text {. }}{ }^{1}$, the following right Cauchy-Greon deformation tensor components are obtained:

$$
\begin{aligned}
& C_{j}^{i}=\left\|\begin{array}{cc}
\left\{\dot{C}_{2}^{2}+2 \zeta^{0} K_{+}+\left(\zeta_{0}^{0}\right)^{2}\left[\left(\frac{\partial \psi}{\partial \eta}\right)^{2}+\left(\frac{\partial \chi}{\partial \eta}\right)^{2}\right]\right\} & \zeta_{0}^{0}\left[\psi \frac{\partial \psi}{\partial \eta}+(1+\chi) \frac{\partial \chi}{\partial \eta}\right] \\
\zeta_{0}\left[\psi \frac{\partial \psi}{\partial \eta}+(1+\chi) \frac{\partial \chi}{\partial \eta}\right] & \dot{C}_{2}^{2}
\end{array}\right\|
\end{aligned}
$$

where, an before

$$
\begin{align*}
& \dot{C}_{2}^{2}=C_{2}^{2}\left(\eta, \zeta^{0}=0\right)=(1+\chi)^{2}+\psi^{2} \tag{A,B4}\\
& \xi=\left(-\frac{\partial \psi}{\partial \eta}\right)(1+\chi)+\psi \frac{\partial \chi}{\partial \eta} \tag{4.815}
\end{align*}
$$

Observe that the introduction of the "small membrane strains" assumption in the Bernoulli-Euler-Kirchhoff displacement field is responsible for producing spurious shear strains and normal strains*. The spurious normal strain is just as large as the membrane strain, although the shear and normal strains had been assumed to be zero. Also, the introduction of the "small membrane strains" assumption in the displacement field results in an expression for the quadratic terms in ζ° that needs the extra assumption of small membrane strain gradients $\left.\left((\partial)_{2}^{2} / \partial \eta\right) \ll(\partial \theta / \partial \eta)\right)$ to be correct.

From Eqs. 4.64 and 4.65, one finds that

$$
\begin{equation*}
\left(\tau^{0}\right)^{2}\left[\left(\frac{\partial \psi}{\partial \eta}\right)^{2}+\left(\frac{\partial \chi}{\partial \eta}\right)^{2}\right]=\left(\zeta^{0}\right)^{2}\left[\left(U_{2}^{2}\right)^{2}\left(\frac{\partial \theta}{\partial \eta}\right)^{2}+\left(\frac{\partial U_{2}^{2}}{\partial \eta}\right)^{2}\right] \tag{4.86}
\end{equation*}
$$

The Green strain tensor components can be obtained from this displacement field as:

$$
\gamma_{j}^{i}=\frac{1}{2}\left(C_{j}^{i}-\delta_{j}^{i}\right)
$$

Hence,

$$
\gamma_{j}^{i}=\| \begin{array}{cc}
\left\{\gamma_{2}^{2}+\zeta^{0} K^{0}\left\{+\frac{1}{2}\left(\zeta^{0}\right)^{2}\left[\left(\frac{\partial \psi}{\partial \eta}\right)^{2}+\left(\frac{\partial \chi}{\partial \eta}\right)^{2}\right]\right\}\right. & \frac{1}{2} \zeta^{0}\left[\psi \frac{\partial \psi}{\partial \eta}+(1+\chi) \frac{\partial \chi}{\partial \eta}\right] \| \tag{4.87}\\
\frac{1}{2} \zeta^{0}\left[\psi \frac{\partial \psi}{\partial \eta}+(1+\chi) \frac{\partial \chi}{\partial \eta}\right] & \gamma_{2}^{2}
\end{array}
$$

[^29]where, an before
\[

$$
\begin{align*}
& \dot{\gamma}_{2}^{\prime}=\chi+\frac{1}{2} \psi^{2}+\frac{1}{2} \chi^{2} \tag{4,88}\\
& k=\left(-\frac{\partial \psi}{\partial \eta}(1+\chi)+\psi \frac{\partial X}{\partial \eta}\right. \tag{4.89}
\end{align*}
$$
\]

Several subsets of the strain-diaplacoment equation for the Green strain tensor component γ_{2}^{2} were used and studied in Ref. 28.

For convenient reference, these relations are shown eonelbely in the following:

Strain-displacement relation Type "A" is used in the JET 3 computer program [24] . It is restricted by small strains and by small angles of rotation:

Strain-Displacement Relation Type "A" (JET 3):

$$
\begin{equation*}
\left.\gamma_{2}^{2}\right|_{A^{\prime \prime}}=\chi+\frac{1}{2} \psi^{2}+\zeta^{0}\left(-\frac{\partial \psi}{\partial \eta}\right) \tag{4.91}
\end{equation*}
$$

Placing Eqs. 4.44, 4.45, and 4.64 into Eq. 4.91, one obtains:

$$
\begin{align*}
\left.\gamma_{2}^{2}\right|_{" A} & =\sqrt{1+2 \gamma_{2}^{2}} \cos \theta-1+\frac{1}{2}\left(1+2 \gamma_{2}^{2}\right) \sin ^{2} \theta \\
& -\zeta^{0}\left[\sqrt{1+2 \gamma_{2}^{2}} \cos \theta \frac{\partial \theta}{\partial \eta}+\sin \theta \frac{\partial\left(\sqrt{1+2 \gamma_{2}^{2}}\right)}{\partial \eta}\right] \tag{4.92}
\end{align*}
$$

So that only, for small mombrano atraing:

$$
\begin{equation*}
1+<^{2} \approx 1 \tag{4,93}
\end{equation*}
$$

mali anglon of rotation:

$$
\begin{align*}
& \cos \theta \approx 1 \\
& \sin \theta \approx \theta \tag{4.94}
\end{align*}
$$

and small membrane strain gradients:

$$
\begin{equation*}
\theta \frac{\partial \gamma_{2}^{2}}{\partial \eta}<\frac{\partial \theta}{\partial \eta} \tag{4.95}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\left.\gamma_{2}^{2}\right|_{1 A^{\prime \prime}} \approx \gamma_{2}^{0}-z^{0} \frac{\partial \theta}{\partial M} \tag{0.96}
\end{equation*}
$$

Strain-displacement relation Type "B" is used in the CIVM-JET 4B computter program [27]. For strictly membrane deformations (no bending deformations at all), it is valid for large strains and rotations. otherwise, it is also restricted by small strains and small rotations, as follows:

Strain-Displacement Relation Type "B" (CIVM-JET 4B)

$$
\begin{equation*}
\left.\gamma_{2}^{2}\right|_{B_{B}^{\prime \prime}}=\gamma_{2}^{2}+z^{0}\left(-\frac{\partial \psi}{\partial \eta}\right) \tag{4.97}
\end{equation*}
$$

It was shown previously in Eq. . . 62 that the membrane part $\left.{ }_{\left(\gamma_{2}^{2}\right.}^{O_{2}}=\frac{1}{2}\left(\mathrm{C}_{2}^{2}-1\right)\right)$ of this strain-displacement equation is valid for large strains and large rotations. But the bending part is not. From Eqs. 4.64 and 4.97, one finds that

$$
\begin{equation*}
\left.\gamma_{2}^{2}\right|_{" B^{\prime \prime}}=\gamma_{2}^{0}+7^{0}\left[\sqrt{1+2 \gamma_{2}^{2}} \cos \theta \frac{\partial \theta}{\partial \eta}+\sin \theta \frac{\partial \sqrt{1+2 \gamma_{2}^{2}}}{\partial \eta}\right] \tag{4.98}
\end{equation*}
$$

It is obvious from this that, only for
(a) no rotations (and therefore no change of curvature)

$$
\begin{equation*}
\cos \theta=1 \quad \sin \theta=0 \quad \frac{\partial \theta}{\partial \eta}=0 \tag{4.99}
\end{equation*}
$$

or
(b) amati, mombanin strain:

$$
\begin{equation*}
1+2 \gamma_{2}^{2} \approx 1 \tag{4.100}
\end{equation*}
$$

and
(c) mall angion of rotation:

$$
\begin{equation*}
\cos \theta \approx 1 \quad \sin \theta \approx \theta \tag{1.101}
\end{equation*}
$$

and
(a) small membrane strain gradients:

$$
\begin{equation*}
\theta \frac{\partial \gamma_{2}^{2}}{\partial \eta}<\frac{\partial \theta}{\partial \eta} \tag{4.102}
\end{equation*}
$$

one obtains:

$$
\begin{equation*}
\left.\gamma_{2}^{2}\right|_{1 B^{\prime \prime}} \approx \gamma_{2}^{0}-\tau^{0} \frac{\partial \theta}{\partial \eta} \tag{4.103}
\end{equation*}
$$

For example, see Fig. 5, suppose that a clamped beam is bent at the free end by the application of pure moment, to 90°. In this case, one would obtain from the application of strain-displacement relalion type " B ":
For: $\theta=90^{\circ} \quad$ and $\quad \dot{\gamma}_{2}^{2} \approx 0, \frac{\partial \dot{\gamma}_{2}^{2}}{\partial \eta} \approx 0$
then

$$
\begin{equation*}
\left.\gamma_{2}^{2}\right|_{\|_{\mathbb{B}^{\prime}}}=0+\tau_{0}\left[\sqrt{1+0}(0) \frac{\partial \theta}{\partial \eta}+1(0)\right]=0 \tag{4.104}
\end{equation*}
$$

which indicates that strain-displacement relation type " B " would produce zero bending strain no matter how large the curvature $\partial \theta / \partial \eta$ is.

Eloarly, this is a spuriouf result produced by the use of tho equation beyond ites rango of validitiy,
 Eq, 4.90 that aro valid for arbitwarily largo rotationn aro ntradn-alfoplacnmont ralationa gypan "R" and "C", although thono rolationn apply for arptoraxm
 Whah in omployod to computen tho bonding ntratr implidon nmal. mumbrano ntradn.

A.2.2 Inclunton of Thloknong Chango Angoctatod with

 Elate StratngAo proviounly montioned, ho anoumet Lonis rogarding the marmilude of Bexatno and/or rotations aro prouent in fig. 4.31 and 4.33. Howovor, thute oquations aro subfect to the kinematical routrictions impound by the \quad. asoumodedioplacoment fiold of Eq . 4.23 which does not allow uny shour dow formations or noxmal (to tho roforence axis 17) straing, as is ovidont from the strain matrix displayod in Eq. 4.33, for example.

A theory of thin bodies which is gubjected to tho kinematic constraint that the thickness before and after deformation remains the same, is not realiotic whon finite strains are admitted in the deformation process. To enforce such a constraint, the density of the material would have to change in a special way during deformation. Since for most materials the ratio of the deformed to the undeformed mass density is very nearly equal to unity even for large strains, such an unrealistic density chance (as enforced by the constraint of constant thickness) cannot be admitted in the characterizam tion of the deformation prr sess of an actual material at finite strains.

The formulation to be presented here can be derived from the general shell formulation of section 5. Thiokness changes will be introduced in the formulation by means of the assumption of no volume change.

The assumed-displacement field will contain only the zeroth order term in a (thickncss-coordinate) asymptotic expansion of the factor $\lambda\left(\eta, \tau_{0}^{0}\right)$ appearing in Eq. 4.8. This zeroth order term provides ondy a symmetric thickness change (with respect to the xeference axis η) and excludes antisymmetric thickness changes that can be provided by higher ordor torms in the asymptotic series expansion.

It turne out that the retention of just the gerc. 1 order term is oquivalont to matisfying the incompreastbility oundition in an oxact fachion only at tho roforonoe axif η (at, r_{2}^{a} w) . Higher ordor terme in tho thicknofis
 the analyata unduly, Thofon hlahor ordor torme affoct tho axtal atratadhanlacomont oquation Ln torma of thn ordor of whe nquaro of tho thicknom onardinato and highor. For fueftatontly "thtn" bodinn, thono tormo nlinula

 fneomproonditithy anoumbion along the thicknoun of tho thin boty) to of quootlonable vallatty in a thoory ouch au tho prosont ono that dood not include any bhoar doformutions and io rootrietod to doformationo in $2-\mathrm{D}$ gpaco.

Lot an asymptotic expansion for the factor $\lambda\left(\eta_{1} r_{0}^{\circ}\right)$ of Eq .4 .8 bo assumod in the form:

$$
\begin{equation*}
\lambda\left(M, Z_{0}\right)=\lambda(m)+\sum_{0}^{0} \lambda(M) i_{1} \ldots(y)^{2} \tag{4.105}
\end{equation*}
$$

Keaping only the zeroth order term,

$$
\begin{equation*}
\lambda\left(\eta, \tau^{0}\right)=\lambda \cdot(\eta) \tag{4.106}
\end{equation*}
$$

Eq. 4.8 becomes

$$
\begin{equation*}
T_{0}=\mathbb{R}_{0}+\sum_{0} \lambda_{0} \tag{4.107}
\end{equation*}
$$

Also, Eq. 4.6 becomes

$$
\begin{equation*}
T_{3}=\frac{\partial P_{0}}{\partial z_{3}}=\frac{\partial R_{0}}{B}=\lambda_{0} \tag{4.108}
\end{equation*}
$$

Thus, the displacement field, Eq. 4.15 becomes:

$$
\begin{equation*}
\bar{U}\left(\eta, \infty^{0}\right)=U_{0}(\eta)+\tau_{0}\left[\lambda_{0}(\eta) N(\eta)-\bar{n}(\eta)\right] \tag{4.109}
\end{equation*}
$$

From Eq. 4.108, one can oktain the deformation and strain tensors in the thickness direction:

$$
\begin{equation*}
G_{33}=C_{33}=g_{33}+2 \gamma_{33}=\bar{G}_{3} \cdot \bar{G}_{3}=\left(\lambda_{0}\right)^{2} \tag{4.110}
\end{equation*}
$$

Since terms of ordor r_{3}° and higher wore nogloctod in the expansion given in Eq. 4.105, they should also be neglected in Eq. A. J. 10 to bo consistent, hone,

$$
\begin{align*}
& C_{33}=\left[\lambda_{0}(\eta)\right]^{2} \\
& C_{3}^{3}=C_{3}^{0}=C_{33}=C_{33}^{0}=\left(\lambda_{0}\right)^{2} \tag{4.111}
\end{align*}
$$

where

$$
\begin{aligned}
& \dot{C}_{3}^{3}=C_{3}^{3}\left(\tau_{i}^{0}=0\right) \\
& \dot{C}_{33}=C_{33}\left(\zeta^{0}=0\right)
\end{aligned}
$$

The thickness deformation is measured by the parameter λ_{0}. which is a function of the curvilinear axis coordinate η, and is not a function of the thickness coordinate ζ°. The thickness deformation is assumed to be homogeneous through the thickness. The deformation tensor component c_{3}^{3} has the same value anywhere in the thickness ζ° at a given location η. one can express the deformation tensor C_{3}^{3} in terms of the stretch tensor U_{3}^{3} as

$$
\begin{equation*}
\mathcal{U}_{3}^{3}=\dot{U}_{3}^{3}=\sqrt{C_{3}^{2}}=\lambda_{0} \tag{4.112}
\end{equation*}
$$

Imposing no volume deformation at the reference axis $\eta\left(\zeta^{\circ}=0\right)$ for this thin body deforming in $2 \rightarrow D$ space is tantamount to writing

$$
\begin{equation*}
U_{2}^{2} U_{3}^{3}=1 \text { at } \tau_{0}^{0}=0 \tag{4.113}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{U}_{2}^{2} \dot{U}_{3}^{3}=1 \tag{4.114}
\end{equation*}
$$

Employing Eq. 4.112, one obtains

$$
\begin{equation*}
\dot{U}_{2}^{2} \lambda_{0}=1 \tag{4.115}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lambda_{0}=U_{3}^{3}=-\frac{1}{\dot{U}_{2}^{2}}=\frac{1}{\sqrt{\dot{C}_{2}^{2}}}=\frac{1}{\sqrt{1+2 \dot{\gamma}_{2}^{2}}} \tag{4.116}
\end{equation*}
$$

which expresses the thickness change λ_{0} in terms of the membrane axial $\operatorname{strain} \gamma_{2}^{2}$.

Placing this result into the displacement field equation (4.109), one obtains

$$
\begin{equation*}
\bar{u}=\bar{u}_{0}+\frac{1}{\sum_{0}^{2}} \tau_{2}^{0} \bar{N}-\tau_{0}^{0} \bar{n} \tag{4.117}
\end{equation*}
$$

Hence, using Eggs. 4.19 and 4.20, Eq. 4.117 becomes

$$
\begin{align*}
\bar{u} & =v \bar{a}_{2}+\left(w-\tau^{0}\right) \bar{n}+\frac{\varepsilon^{0}}{\left(\tilde{U}_{2}^{2}\right)^{2}}\left[(1+\chi) \bar{n}+(-\psi) \bar{a}_{2}\right] \\
& =\left(v-\frac{\tau_{1}^{0}}{\stackrel{\circ}{C}_{2}^{2}} \psi\right) \bar{a}_{2}+\left[w+\frac{\varepsilon_{1}^{0}}{\stackrel{0}{C}_{2}^{2}}(1+\chi)-\tau^{0}\right] \bar{n} \\
& =\tilde{V} \bar{a}_{2}+\tilde{w} \bar{n} \tag{4.118}
\end{align*}
$$

Thus one obtains the following strain matrix (to the order of ζ°):

$$
\gamma_{j}^{i}=\left\|\begin{array}{ll}
\left(\gamma_{2}^{0}+\frac{\tau^{0}}{\left(1+2 \gamma_{2}^{2}\right)} \xi^{0}\right) & \left(-\frac{\tau_{1}^{0}}{\left(1+2 \gamma_{2}^{2}\right)^{2}} \frac{\partial \gamma_{2}^{0}}{\partial \eta}\right) \| \\
\left(-\frac{\tau^{0}}{\left(1+2 \gamma_{2}^{2}\right)^{2}} \frac{\partial \gamma_{2}^{2}}{\partial \eta}\right) & \frac{1}{2}\left[\frac{1}{\left(1+2 \gamma_{2}^{0}\right)}-1\right]
\end{array}\right\|
$$

(4.119)
whore $\stackrel{\circ}{\gamma}_{2}^{2}$ and is wore defined in Eq, 4.26 and 4.34.
This expression shows that nonzero transverse shoat firming are present away from the roforonco axis n (at $c^{\circ} \neq 0$). This transverse shear strain is caused by tho normal strain (thickness change) gradient in the η direction and disappears ontiroly when this gradient is zero (eeo Fig. 6 for this effect.): The expression for this transvorse shear strain can bo expressed either in terms of the membrane strain gradient $\partial \gamma_{2}^{2} / \partial \eta$ or in terms of the normal strain gradient $\partial \gamma_{3}^{3} / \partial \eta$ as follows:

$$
\begin{equation*}
\gamma_{3}^{2}=-\frac{\varepsilon_{1}^{0}}{\left(1+2 \gamma_{2}^{2}\right)^{2}} \frac{\partial \gamma_{2}^{2}}{\partial \eta}=\tau^{0} \frac{\partial \gamma_{3}^{0}}{\partial \eta}=\tau_{1}^{0} \frac{\partial \gamma_{3}^{3}}{\partial \eta} \tag{4.120}
\end{equation*}
$$

Since transverse shear deformations were neglected to start with, it will be assumed that the transverse shear strain produced by the normal strain gradient in the axial direction is negligible:

$$
\begin{equation*}
\gamma_{3}^{2}=\gamma_{2}^{3} \approx 0 \tag{4.121}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{0}^{0} \frac{\partial \gamma_{3}^{3}}{\partial \eta} \approx 0 \tag{4.122}
\end{equation*}
$$

Which implies the assumption that the membrane strain gradient is small enough:

$$
\begin{equation*}
\frac{\zeta^{0}}{\left(1+2 \dot{\gamma}_{2}^{2}\right)^{2}} \frac{\partial \dot{\gamma}_{2}^{2}}{\partial \eta} \approx 0 \tag{4.123}
\end{equation*}
$$

Hence, the transverse shear strain created by the normal strain gradient in the axial direction is neglected in the Principle of Virtual Work. Likewise, although normal strains are considered in the analysis, the terms that correspond to it in the principle of Virtual Work are neglected under the assumption of an approximate state of plane stress throughout the thin body. Or, what is equivalent, the normal (through-the-thickness direction) stresses are considered to be negligible.

An evident shortcoming of the present analysis is its restriction to two-dimensional space. In the physical world all phenomena take place in
a throe-dimonaional apace. Incomprosilibility for equivalently, no change in volume) is a throo-dimonsional concopt.

In the prosent analysis, incompressibility was imposed in a twodimensional space; that is, not allowing any deformations in the direction normal to this two-dimonsional η, r° surface. Ono can examine tho congoquences of satisfying incompressibility in the throe-dimensional case, In an approximate fashion, by replacing Eq. 4.114 by:

$$
\begin{equation*}
G_{1}^{0} G_{2}^{0} U^{2} I_{3}^{3}=1 \tag{4.124}
\end{equation*}
$$

where the index " 1 " refers to the ξ^{1} direction, normal to the $\xi^{2} \equiv \eta$ and $\xi^{3} \equiv \zeta^{0}$ directions. Therefore, from Eq. 4.112 and Eq. 4.124, one obtains:

$$
\begin{align*}
& U_{1}^{0} U_{2}^{0} \lambda_{0}^{2}=1 \tag{4.125}\\
& \lambda_{0}=\operatorname{I}_{3}^{0}=\frac{1}{T_{0}^{0} U_{1}^{1} U_{2}^{0}} \tag{4,126}
\end{align*}
$$

Assuming that

$$
\begin{equation*}
G_{1}^{0}=f\left(G_{2}^{0}\right) \tag{4.127}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda_{0}=\frac{1}{T_{2}^{2} \int_{2}^{2}\left(G_{2}^{2}\right)}=\frac{1}{0\left(T_{2}^{2}\right)} \tag{4.128}
\end{equation*}
$$

In the case of a very narrow beam, with isotropic properties, and with a width exactly equal to its thickness, it is natural to expect:

$$
\begin{equation*}
\mathcal{J}_{1}^{1}=\mathcal{I}_{3}^{0} \tag{4.129}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
L_{1}^{0}=\lambda_{0} \tag{4.130}
\end{equation*}
$$

Hence, from Eq. 4.125:

$$
\begin{gather*}
\dot{U}_{2}^{2}\left(\lambda_{0}\right)^{2}=1 \tag{4.131}\\
\lambda_{0}=\frac{1}{\sqrt{\dot{u}_{2}^{2}}}=\frac{1}{\left.\left(\mathcal{C}_{2}^{2}\right)^{2}\right)^{24}}=\frac{1}{\left(1+2 \dot{z}_{2}^{2}\right)^{1 / 4}} \tag{4.132}
\end{gather*}
$$

Placing λ_{0} into Eq. 4.109 for the displacement field, ono can obtain, after some manipulations the following atrain-displacement equations:

$$
\begin{equation*}
\gamma_{3}^{3}=\frac{1}{2}=\left[\frac{1}{2}=1\right] \tag{4.133.}
\end{equation*}
$$

$$
\begin{equation*}
X_{2}^{2}=0_{2}^{0}+\frac{2_{2}^{0}}{\left(1+2 \%_{2}^{2}\right)^{3 / 4}} 1 \tag{4.134}
\end{equation*}
$$

Here, O_{2} and K have the same definitions as in Eqs. 4.34 and 4.26, respectively.

In general, one would expect a behavior that is bounded between Eqs. 4. 134 and 4.119, that is, between the case in which (1) the strain in the ξ^{1} direction is equal to the strain in the $\xi^{3} \equiv \zeta^{0}$ direction and (2) that in which the strain in the ξ^{1} direction is equal to 0 .

4.2.3 Summary of Strain -Displacement Equations

For convenient reference, the strain-displacement equations for thin curved beams $\left(1+\left(\zeta^{\circ} / R\right) \sim 1\right)$ will be reproduced in the following for centain specific situations.

4.2.3.1 Strain-Displacement Relations for Small Strains

From Eq. 4.80, the assumed displacement field (implying small membrane strain) is:

$$
\begin{equation*}
\stackrel{u}{u}=\left(v-z^{0} \psi\right) \bar{a}_{2}+\left(w+z^{0} X\right) \bar{n} \tag{4.135}
\end{equation*}
$$

This field loads to the following strain-displacoment equation (Eq. 4.90):

where

$$
\gamma_{1}^{1} \approx \gamma_{3}^{3} \approx \gamma_{2}^{3} \approx \gamma_{3}^{2} \approx \gamma_{2}^{1} \approx \gamma_{1}^{2} \approx \gamma_{3}^{1} \approx \gamma_{1}^{3} \approx 0
$$

and

$$
\begin{aligned}
& X=\frac{\partial v}{\partial \eta}+\frac{W}{R}=\sqrt{1+2 \dot{\gamma}_{2}^{2}} \cos \theta-1 \\
& \psi=\frac{\partial W}{\partial \eta}-\frac{V}{R}=\sqrt{1+2 \dot{\gamma}_{2}^{2}} \sin \theta
\end{aligned}
$$

The displacement gradients are X and ψ_{1}, and θ is the angle of rotation of the reference axis $\eta\left(a t \zeta^{0}=0\right)$.

Note from Eqs. 4.74 and 4.77 that the bending contribution to the Green strain γ_{2}^{2} involves also the membrane strain $\stackrel{\circ}{\gamma}_{2}^{2}$. Hence, the bending contribution can be approximated in various ways depending upon one's assumption (in the bending part) concerning the size of $\stackrel{\circ}{\gamma}_{2}^{2}$. For example, if one assumes that $1+2 \stackrel{\gamma}{\gamma}_{2}^{2} \approx 1$ only in the bending part as in Eqs. 4.79 and 4.80 , the resulting strain-displacement relations are restricted, therefore, to small membrane strains insofar as the bending contribution itself is concerned; this applies to strain-displacement relations A, B, C, D, and E. For the membrane part of γ_{2}^{2}, arbitrarily large membrane strains and rotations are taken into account in Eq. 4.90 except for Type A. For the bending part of γ_{2}^{2} in Eq. 4.90, arbitrarily large rotations apply only for Types C and E. Type A is the curved-beam equivalent of vol Kirman's. nonlinear plate equations [157] and Sanders' nonlinear shell equations [158].

4.2.3.2 Strain-Displacement Relations for Finite Strains
 and Finite Rotations

An Deform, lot tho (iso mn ("Lagrangian") mombrano ntradn bo dofjnod an

$$
\begin{equation*}
\delta_{2}^{2}=X+\frac{1}{2} \psi^{2}+\frac{1}{2} X^{2} \tag{4.136}
\end{equation*}
$$

and tho "curvature" at

$$
\begin{equation*}
K=\left(-\frac{\partial \psi}{\partial \eta}\right)(1+\chi)+\psi \frac{\partial x}{\partial \eta} \tag{4.137}
\end{equation*}
$$

Tho following displacomont field:

$$
\begin{equation*}
\bar{u}=\left(v-\frac{\bar{\zeta}^{0}}{\left(1+2 \dot{g}_{2}^{2}\right)^{\alpha}} \psi\right) \bar{a}_{2}+\left(w+\zeta^{0} \frac{(1+\chi)}{\left(1+2 \dot{g}_{2}^{2}\right)^{\alpha}}-\tau^{0}\right) \bar{n} \tag{4.138}
\end{equation*}
$$

produces the following strain-displacement equations (to the order of ζ^{0}) :

$$
\begin{align*}
& 8_{2}^{2}=8_{2}^{2}+\frac{t^{0}}{\left(1+28_{2}^{2}\right)^{0}} k \tag{4.139}\\
& \gamma_{3}^{3}=\frac{1}{2}\left[\frac{1}{\left(1+2 \%_{2}^{2}\right) \beta}-1\right] \tag{4.1.40}\\
& X_{1}^{1}=\frac{1}{2}\left[\frac{1}{\left(1+2 \delta_{2}^{2}\right)} \mu-1\right] \tag{4.145}
\end{align*}
$$

with

$$
\gamma_{2}^{1} \approx \gamma_{1}^{2} \approx \gamma_{1}^{3} \approx \gamma_{3}^{1} \approx \gamma_{3}^{2} \approx \gamma_{2}^{3} \approx 0
$$

The following special cases dan bo identified:
(a) No changes in thickness or lateral dimensions $\left(\gamma_{1}^{1}=\gamma_{3}^{3}=0\right)$; then,

$$
\alpha=1 \quad \mu=0=0
$$

(b) Thickness change only $\left(\gamma_{1}^{1}=0, \gamma_{3}^{3} \neq 0\right)$; then,

$$
\alpha=1 \quad \mu=1 \quad \mu=0
$$

(c) Equal, strain in tho thicl:nonn and the intoral dirootions $\left(\gamma_{3}^{3}-\gamma_{1}^{1} \neq 0\right)$, than

Tho case in which o $a 1, \beta \in 1, \mu=0$ ia called attain diaplacomont relation Type F and is tho ono used in tho analysis of beams and rings of Suction 7: that is

$$
\left.\begin{array}{l}
\gamma_{2}^{2}=\dot{\gamma}_{2}^{2}+\frac{\tau_{1}^{0}}{\left(1+2 \dot{\gamma}_{2}^{2}\right)} K \\
\gamma_{3}^{3}=\frac{1}{2}\left[\frac{1}{\left(1+2 \dot{\gamma}_{2}^{2}\right)}-1\right] \\
\gamma_{1}^{1}=0 \tag{4,146}
\end{array}\right\} T_{Y P E} " F^{\prime \prime}
$$

This equation is valid for arbitrarily large membrane strains, rotations, and displacements for incompressible thickness-changing $B-E \quad 2-D$ structures with $\gamma_{1}^{1}=0$.
4.3 Constitutive Equations for Finite Strains and Rotations

4.3.1 Introduction

The general theory for finite-strain elastic-plastic strain-rate dependent deformations of a solid presented in Section 3 will be specialized to curved beams, for which only the axial (circumferential) component of stress is considered to be important.

4.3.2 Constitutive Equations

In the particular case in consideration, the stress-strain relation is one -dimensional (no shear strains are considered and normal through-thethickness stresses are disregarded, considering a state of plane stress). Hence, the problem simplifies considerably. The co-rotational rate of the mixed components of stress ir convected coordinates becomes equal to the
matordal rato of tho mixod rompononte of ntronn in convectod coordinaton. In eonvoctod ooordinatori:

$$
\begin{equation*}
\sin _{2}^{0}=\dot{\nu}_{2}^{2} \tag{4.1.47}
\end{equation*}
$$

Alno, tho mixod compononten of tho ratomofodotormation tonnor in convoctend coordinatos booomo oqual to tho matoriad zato of tho mixod eompononto of logarithmic straln in convoctod coordinaton:

$$
\begin{equation*}
D_{2}^{2}=\operatorname{I}_{2}^{2}=\dot{\mathscr{L}}_{2}^{2} \tag{4.148}
\end{equation*}
$$

Hence, Eq. 3.31 for the case of a one-dimensional stress-strain rolation in convected coordinates becomes*

$$
\begin{equation*}
\operatorname{si}_{2}^{2}=s E=\left(D_{2}^{2}\right)^{e} \tag{4.149}
\end{equation*}
$$

or, equivalently:

$$
\begin{equation*}
\operatorname{si}_{2}^{2}=s\left[\quad s\left(D_{2}^{2}\right)^{e}\right. \tag{4.150}
\end{equation*}
$$

Where

$$
D_{2}^{2}=s\left(D_{2}^{2}\right)^{e}+s\left(D_{2}^{2}\right)^{p}=I_{2}^{2}=\left(I_{2}^{s}\right)^{e}+\left(I_{2}^{2}\right)^{p}(4.151)
$$

Equation 4.150 can se integrated to obtain

$$
\begin{equation*}
s \tau_{2}^{2}(t)=s\left[s\left(T_{2}^{2}\right)^{e}(t)+\tau_{2}^{2}\left(t_{0}\right)\right. \tag{4.152}
\end{equation*}
$$

Therefore, in this specie" case of a one-dimensional stress-strain relation expressed in the body-fixed convected coordinates, the constitutive law (Eq. 3.27) does have an elastic potential:

$$
\left.s W=\frac{1}{\rho_{0}} \frac{1}{2} \tau_{2}^{2} s\left(T_{2}^{2}\right)^{2}=\frac{1}{\rho_{0}} \frac{1}{2} E^{s} r_{a}\left(T_{2}^{2}\right)^{e}\right]^{2(4.153)}
$$

[^30]and
whore ${ }^{\text {Hip }}$ In tho Holmholta froo intornal onorgy por unde mano, undor ino thormal conditiono, of nuldnyor. 0 .

Tho govoxning oquationo, oxpronood in tho body-ftxod convoctod coordinato aystom, aro (comparo with Eq. 3.54):

$$
\begin{align*}
& \tau_{2}^{2}=\sum^{m} A_{s}{ }^{s} \tau_{2}^{2} \\
& \dot{\tau}_{2}^{2}=\sum^{n} A_{s}{ }^{s} \dot{\tau}_{2}^{2} \tag{4.155}\\
& { }^{s} \Phi=\left({ }^{s} \tau_{2}^{2}\right)^{2}-\left({ }^{s} \tau_{u}^{y}\right)^{2}\left(1+\left|\frac{D_{2}^{2}}{d}\right|^{\frac{1}{p}}\right)^{2} \tag{4.1.56}\\
& s \dot{\tau}_{2}^{2}=E D_{2}^{2} \quad \text { if }\left\{{ }^{s} \Phi \leqslant 0\right. \tag{4.157}\\
& { }^{s} \tau_{2}^{2}=+^{s} \tau_{u_{0}}^{y}\left(1+\left|\frac{D_{2}^{2}}{d}\right|^{1 / p}\right) \text { if }\left\{s \tau_{2}^{s}>^{s} \tau_{10}^{y}\left(1+\left.\left|\frac{D_{2}^{2}}{d}\right|\right|^{\frac{1}{r}}\right)\right. \tag{4.158}\\
& { }^{s} \tau_{2}^{2}=-\tau_{u_{0}}^{y}\left(1+\left|\frac{D_{2}^{2}}{d}\right|^{1 / p}\right) \text { if }\left\{{ }^{s} \tau_{2}^{2}<-{ }^{s} \tau_{u_{0}}^{y}\left(1+\left|\frac{D_{2}^{2}}{d}\right|^{\frac{1}{p}}\right)\right.
\end{align*}
$$

(4.159)

Thono aquationa have to bo trarnformad to the atroan and attain quantitation and in the numerdent analyzing for thong, ono anon tho following proviounlydriven mquationn $(2.269,2,352$, and 2.188$)$ to obtains

$$
\begin{align*}
& \tau_{2}^{2}=S_{2}^{2}\left(1+2 \gamma_{2}^{2}\right) \tag{1.160}\\
& \dot{\tau}_{2}^{2}=\dot{\tau}_{2}^{2}=\dot{S}_{2}^{2}\left(1+2 \gamma_{2}^{2}\right)+2 S_{2}^{2} \dot{\gamma}_{2}^{2} \tag{4.161}\\
& D_{2}^{2}=\frac{\dot{\gamma}_{2}^{2}}{\left(1+2 \gamma_{2}^{2}\right)} \tag{4.162}
\end{align*}
$$

It will be shown that since each sublayer experiences the game strain as the actual material, the mechanical sublayor model is easily represented in terms of the second piola-Kirchhoff stress component S_{2}^{2} :

$$
\begin{align*}
& 2_{2}^{2} \sum_{s=1}^{m} A_{s}=2 \frac{2}{2} \\
& H_{2}^{2}=\cos _{2}^{2}\left(1+2 \gamma_{2}^{2}\right) \\
& S_{2}^{2}=5 S_{2}^{2}\left(1+2 \gamma_{2}^{2}\right) \tag{4.163}
\end{align*}
$$

Hence,

$$
\begin{align*}
S_{2}^{2}\left(1+2 \gamma_{2}^{2}\right) & =\sum_{s=1}^{n}\left[S_{2}^{2}\left(1+2 \gamma_{2}^{2}\right)\right] A_{s} \\
& =\left(1+2 \gamma_{2}^{2}\right) \sum_{s=1}^{m} A_{s}^{s} S_{2}^{2} \tag{4.164}
\end{align*}
$$

Therefore, also the Second piola-Kirchhoff stress S_{2}^{2} can be considorua as
the sum of n compononter ($\left.{ }^{\prime} B_{2}^{2}, \pi=1, \ldots, n\right)$ with the game weighting factors n_{B} an nod for tho Kirchhoff natron T_{2}^{2}

$$
\begin{equation*}
S_{2}^{2}=A_{1} \operatorname{SE}_{2}^{2} \tag{4,155}
\end{equation*}
$$

Now, oxpronning Eq. A. 1.57 in tam of tho Gocond Plolamkdrahoft ateum component S_{2}^{2} and tho Croon ntradr component γ_{2}^{2}, by wo op Her. A.160-4.162, ono obtaino

$$
\begin{equation*}
{ }^{s} \dot{S}_{2}^{2}\left(1+2 \gamma_{2}^{2}\right)+2^{s} S_{2}^{2} \dot{\gamma}_{2}^{2}=E \frac{\dot{\gamma}_{2}^{2}}{\left(1+2 \gamma_{2}^{2}\right)} \tag{4.1.66}
\end{equation*}
$$

$0 \times$

$$
d\left(S_{2}^{2}\right)=\frac{\left[E-2\left(1+2 \gamma_{2}^{2}\right)\left(S S_{2}^{2}\right)\right]}{\left(1+2 \gamma_{2}^{2}\right)^{2}} d\left(\gamma_{2}^{2}\right) \quad(1 \text { i. } 67)
$$

Integrating this differential expression by the trapezoidal rule, from the time instant $t-\Delta t$ to the incrementally close time instant t, and defining for the time being:

$$
\begin{align*}
s S & \equiv{ }^{s} S_{2}^{2} \tag{4.168}\\
\gamma & \equiv \gamma_{2}^{2} \tag{4.169}\\
\Delta^{s} S & \equiv\left({ }^{s} S_{2}^{2}\right)^{t}-\left({ }^{s} S_{2}^{2}\right)^{t-\Delta t} \tag{4.170}\\
\Delta \gamma & \equiv\left(\gamma_{2}^{2}\right)^{t}-\left(\gamma_{2}^{2}\right)^{t-\Delta t} \tag{4.171}
\end{align*}
$$

one obtains:

$$
\begin{equation*}
\Delta^{s} S=\frac{\left\{E-2^{s} S^{t-\Delta t}\left[\left(1+2 \gamma^{t}\right)-\Delta \gamma\right]\right\}}{\left[\left(1+2 \gamma^{t}\right)^{2}-\left(1+2 \gamma^{t}\right) \Delta \gamma+2(\Delta \gamma)^{2}\right]} \Delta \gamma \tag{4.172}
\end{equation*}
$$

An filuntration of the mothod of oomputing the axin] ntrona at a "lvin thru-thu-thteknomn intogration atation" in pronontod an follown.
 ath mblayor at the intogration ntation, and kho ntratn ducromont AY at tho name intogration ntation; thorofore, the atratn $\gamma^{\text {t }}$ at timo t at that dntoraration atation du aloo known.

Ono takuo a erial valuo (suporocript i) of ${ }^{5}{ }^{t}$ (tho blruca at sublayor 3 at time t) which ia computod by asouming an ineromontally-olaotic path:

$$
\begin{aligned}
\left({ }^{s} S^{t}\right)^{\top}= & s S^{t-\Delta t} \\
& +\frac{\left\{E-2^{s} S^{t-\Delta t}\left[\left(1+2 \gamma^{t}\right)-\Delta \gamma\right]\right\}}{\left[\left(1+2 \gamma^{t}\right)^{2}-\left(1+2 \gamma^{t}\right) \Delta \gamma+2\left(\Delta X^{2}\right]\right.} \Delta y^{\prime}
\end{aligned}
$$

A check is then F -furmed to see what the correct value of ${ }^{s} S^{t}$ must be: If

$$
\left[\left(s^{s}\right)^{t}\left(1+2 \gamma^{t}\right)\right]^{2} \leqslant\left(s^{s} \tau_{0}^{y}\right)^{y}\left(1+\left|\frac{\Delta \gamma}{d\left(1+2 \gamma^{t}\right) \Delta t}\right|^{\frac{\Delta}{p}}\right)^{2}
$$

then

$$
\begin{equation*}
{ }^{s} S^{t}=\left({ }^{s} S^{t}\right)^{\top} \tag{4.174}
\end{equation*}
$$

[^31]If

$$
\left(s^{s}\right)^{t}\left(1+2 \gamma^{t}\right)>^{s} \tau_{u_{0}^{y}}^{y}\left(1+\left|\frac{\Delta \gamma}{d\left(1+2 \gamma^{t}\right) \Delta t}\right|^{\frac{1}{p}}\right)
$$

then

$$
\begin{equation*}
s S^{t}=\frac{\left.s \tau_{u_{0}}^{y}\left(1+1 \frac{\Delta \gamma}{d\left(1+2 \gamma^{t}\right) \Delta t}\right)^{\frac{1}{p}}\right)}{\left(1+2 \gamma^{t}\right)} \tag{4.175}
\end{equation*}
$$

If

$$
\left({ }^{s} S^{t}\right)^{\top}\left(1+2 \gamma^{t}\right)<-{ }^{s} \tau_{u_{0}}^{y}\left(1+\left|\frac{\Delta \gamma}{d\left(1+2 \gamma^{t}\right) \Delta t}\right|^{\frac{1}{p}}\right)
$$

then

$$
\begin{equation*}
\left.s S^{t}=-\frac{s \tau_{s}^{y}\left(1+\left|\frac{\Delta \gamma}{d\left(1+\gamma^{t}\right) \Delta t}\right|\right.}{(1+2)^{t}}\right) \tag{4.176}
\end{equation*}
$$

This procedure is applied to all sublayers at that numerical integration station, and at every integration station.

SROTTON 5
PTAMW AND BIPHILS

9. 1 Introduction

Strain-diuplacomont rolations for gonoral thin sholls valid for Einito strains and rotations axe dorived horo. The main roforonces that havo boon consultod for this dorivation aro: Mar [159], Dugundji. [160], Koitor [161], and Biricikoglu and Kalning [162].

The classical theory of shells is subjected to the kinematic constraint that tho thicknoss of the shell before and after deformation remains the same, but this is not realistic when large strains are present. Since most materials which are capable of undergoing large strains are nearly incomprossible, the constraint of incomprossibility (no volume change) seems to be a physically-plausible and mathematically-convenient assumption; accordingly, this assumption is made in the present analysis. The analysis of thickness change by this kinematical constraint saves numerical computation and reduces tho number of degrees of freedom required to analyze a given problem (in comparison with the existing finite-strain three-dimensional finite element analyses). The assumption of incompressible bchavior of shells, as enforced in the present analysis, will not result in the existing critical numerical problem [163] associated with large severe thickness distortion associated with threedimonsional incompressible behavior present in the assumed-displacement finite-elcment analysis of large plastio strain three-dimensional, planestrain or aximymetric problems. The assumption of incompressibility is enforced in the analysis by moans of an asymptotic series expansion in powers of the nomal thickness coordinate. The corresponding finitestrain, finite-rotation, strain-displacoment relations aro bolieved to be original. These equations are thon spexialized to the case of an initially-flat wholl; that is, a "platu".

In Subsection 5.3, constitutive equations which are valid for (1) finite strains and rotations, (2) elastic-plastic materials with strainhardoning and strain-rato proporties -- are dorived undex the assumption
of. plano ntemen conditiona for goneral thin nholin. whono oquationn aro wiifiton in torma of tho variablen anouciatod with tho fixud rofornnon oonflguration, and tho finito olomont incromental procoduro for tho ovaluation of the atroanos is pronontod.

5. 2- Strainmisplacomont Rolationa for Findto Strains and Rotations

5.2.1 Formulation for Gonoral shells

Let the location of each material point of the continuum be dofinod by tho same two systems indicated in subsection 2.4, namoly, the spacefixed and the body-fixed (embodded) coordinate systems. A surface in throo-dimonsional Euclidean space is dofined by the curvilinear coordinatos ξ^{1} and ξ^{2} of the body-fixed coordinate system; this surface is called the "reforence surface"* of a "thin shel1". The coordinato $\xi^{3} \equiv \zeta^{0}$ measures the distance along an outwardly-directed normal to the reference surface $\left(5^{\circ}=0\right)$. The unit normal vactor to the reference surface in the reforence configuration is denoted by \bar{n}, while the unit normal vector to the reforence surface in the present configuration is denoted by $\stackrel{N}{N}$. Any material point p in the referonee configuration of the sholl is located by the position vector \bar{r}_{0} to the reforance surface $\left(r_{2}{ }^{0}=0\right)$ and the unit normal vector \bar{n} to the referonce surface, in the form (Fig. 7):

$$
\begin{equation*}
F\left(\xi_{1}^{1}, \xi^{2}, z_{0}^{0}\right)=F_{0}\left(\varepsilon_{1}^{1}, \xi^{2}\right)+z_{0}^{0} \bar{n}\left(\xi_{1}^{1} \xi^{2}\right) \tag{5.1}
\end{equation*}
$$

Observe that tho position vector \bar{r} (as well as \bar{r}_{0}) is not a function of time:

$$
\begin{equation*}
\bar{r}\left(\xi_{1}^{1}, \xi_{2}^{2}, \tau^{0}\right)=\bar{r}\left(\xi_{1}^{1}, \xi^{2}, z_{0}^{0}, t_{0}\right) \tag{5.2}
\end{equation*}
$$

Whore t_{0} is some reforenco (fixud) timo.
The fatorial point p in the refurence configuration of the ghell (at time t_{0}) is identified by the lottor p in the present configuration of the shell (at time t). The material point P is located by the position vector:

It turns out that the best loeation for: this surface for the purposes of this work is the midale surface of the sholl.

$$
\bar{R}\left(\xi_{7}^{1}, \xi_{7}^{2}, \tau_{0}^{0}\right)=\bar{R}_{0}\left(\xi_{1}^{1}, \xi^{2}\right)+\tau_{0}^{0} \lambda\left(\xi_{7}^{1}, \xi_{7}^{2}, \tau_{0}^{0}\right) \bar{N}\left(\xi_{1}^{1}, \xi^{2}\right)_{(1,3)}
$$

 of course:

$$
\begin{equation*}
\bar{R}\left(\xi^{1}, \xi^{2}, \zeta^{0}\right)=\bar{R}\left(\xi^{1}, \xi^{2}, \zeta^{0}, t\right) \tag{!,4}
\end{equation*}
$$

Equation 5.3 is: tantamount to the assumption that the resulting deformston is such that the lines nomad to the reference surface in tho reference conf induration remain normal to the present reference surface, but: the surfaces originally parallel to the roforonco surface at time to no od not remain parallel to the prescott reference surface at time t. Moreover, the distance of a material point to the roforoneo surface is permitted to change with tho deformation of the shell.

The displacement field at any point $i^{1}, i^{2}, i, 0$ in a shell may bo written as follows:

$$
\begin{align*}
\bar{u}\left(\xi_{1}^{1}, \zeta^{2}, \zeta^{0}\right) & =\bar{R}\left(\xi^{1}, \xi_{1}^{2}, \zeta^{0}\right)-\bar{r}\left(\xi^{1}, \xi^{2}, \zeta^{0}\right) \tag{5,5}\\
& =\bar{R}_{0}-\bar{r}_{0}+\zeta^{0} \lambda \bar{N}-\zeta^{0} \bar{n} \\
\bar{u} & =\bar{u}_{0}+\zeta_{0}^{0}(\lambda \bar{N}-\bar{n}) \tag{5,6}
\end{align*}
$$

The covariant base vectors of the reference surface in the reference and present configurations are, respectively:

$$
\begin{equation*}
\tilde{a}_{\alpha}=F_{0, \alpha}=\frac{B F_{0}}{\partial z_{0}} \quad A_{\alpha}=R_{0, \alpha}=\frac{B R_{0}}{D F_{0}} \tag{1;.7}
\end{equation*}
$$

[^32]thin base vector \bar{x}_{a} to the roforonoo nurface in the pronont configuration in tome of tho diaplacomont vector \vec{u}_{0} :
\[

$$
\begin{equation*}
\bar{A}_{\alpha}=\frac{\partial \bar{R}_{0}}{\partial \Sigma^{\alpha}}=\frac{\partial \bar{r}_{0}}{\partial \varepsilon^{\alpha}}+\frac{\partial \bar{u}_{0}}{\partial \varepsilon_{0}^{\alpha}}=\bar{a}_{\alpha}+\frac{\partial \bar{u}_{0}}{\partial \xi^{\alpha}} \tag{5.8}
\end{equation*}
$$

\]

The reference surface metric tensor components associated with theme base vectors are:

$$
\begin{aligned}
& a_{\alpha \beta}=\bar{a}_{\alpha} \cdot \bar{a}_{\beta} \\
& A_{\alpha \beta}=\bar{A}_{\alpha} \cdot \bar{A}_{\beta}=a_{\alpha \beta}+\bar{a}_{\alpha} \cdot \frac{\partial \bar{u}_{0}}{\partial z_{\beta}}+\bar{a}_{\beta} \cdot \frac{\partial \bar{u}_{0}}{\partial z_{\rho}^{\alpha}}+\frac{\partial \bar{u}_{0}}{\partial \bar{\xi}^{\alpha}} \cdot \frac{\partial \bar{u}_{0}}{\partial z^{\prime}(5.10)}
\end{aligned}
$$

One can introduce the contravariant base vectors $\bar{a}^{-\alpha}, \bar{A}^{-\alpha}$ by the relations:

$$
\begin{equation*}
\bar{a}^{\alpha} \cdot \bar{a}_{\beta}=\delta_{\beta}^{\alpha}=\bar{A}^{\alpha} \cdot \bar{A}_{\beta} \tag{5.11}
\end{equation*}
$$

where

$$
\delta_{\beta}^{\alpha}\left\{\begin{array}{lll}
1 & \text { if } & \alpha=\beta \tag{5.12}\\
0 & \text { if } & \alpha \neq \beta
\end{array}\right.
$$

is the previously defined Kronecker delta. Therefore, one can write the following tensor components:

$$
\begin{equation*}
a^{\alpha \beta}=\bar{a}^{\alpha} \cdot \bar{a}^{\beta} \quad A^{\alpha \beta}=\bar{A}^{\alpha} \cdot \bar{A}^{\beta} \tag{5.13}
\end{equation*}
$$

The determinants of these metric tensors are:

$$
\begin{align*}
& a=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-\left(a_{12}\right)^{2} \\
& A=\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|=A_{11} A_{22}-\left(A_{12}\right)^{2} \tag{5.14}
\end{align*}
$$

Tho contravariant boom voctox: $\boldsymbol{a}^{i v}$ and $\vec{\lambda}^{(x)}$ are rolatod to tho covariant hate voctosn an:

$$
\begin{array}{ll}
\bar{a}^{1}=\frac{\bar{a}_{2} \times \bar{n}}{\left(\bar{a}_{1} \times \bar{a}_{2}\right) \cdot \bar{n}} & \bar{A}^{1}=\frac{\bar{A}_{2} \times \bar{N}}{\left(\bar{A}_{1} \times \bar{A}_{2}\right) \cdot \bar{N}} \\
\bar{a}^{2}=\frac{\bar{n} \times \bar{a}_{1}}{\left(\bar{a}_{1} \times \bar{a}_{2}\right) \cdot \bar{n}} & \bar{A}^{2}=\frac{\bar{N} \times \bar{A}_{1}}{\left(\bar{A}_{1} \times \bar{A}_{2}\right) \cdot \bar{N}}
\end{array}
$$

It is also true that:

$$
\begin{equation*}
\left[\left(\bar{a}_{1} \times \bar{a}_{2}\right) \cdot \bar{n}\right]^{2}=a \quad\left[\left(\bar{A}_{1} \times \bar{A}_{2}\right) \cdot \bar{N}\right]^{2}=A \tag{5.17}
\end{equation*}
$$

Hence, one can express Eqs. 5.15 and 5.16 as:
and

$$
\begin{array}{ll}
\bar{a}^{1}=\frac{\bar{a}_{2} \times \bar{n}}{\sqrt{a}} & \bar{A}^{1}=\frac{\bar{A}_{2} \times \bar{N}}{\sqrt{A}} \\
\bar{a}^{2}=\frac{\bar{n} \times \bar{a}_{1}}{\sqrt{a}} & \bar{A}^{2}=\frac{\bar{N} \times \overline{A_{1}}}{\sqrt{A}} \\
a^{11}=\frac{a_{22}}{a} & A^{11}=\frac{A_{22}}{A} \\
a^{22}=\frac{a_{11}}{a} & A^{22}=\frac{A_{11}}{A} \\
a^{12}=a^{21}=-\frac{a_{12}}{a} & A^{12}=A^{21}=-\frac{A_{12}}{A}
\end{array}
$$

The "second fundamental tensor of the reference surface" is the tensor that expresses the curvature of th reference surface; its
components ara obtained od thor by difforontiation of tho (tangent) bane voctorn of tho surface, or by differentiation of tho unit normal voctorn to tho nurfaco:

$$
\begin{align*}
& b_{\alpha \beta} \equiv \bar{n} \cdot \frac{\partial \bar{a}_{\alpha}}{\partial \xi_{\beta}}=-\bar{a}_{\beta} \cdot \frac{\partial \bar{n}}{\partial \xi^{\alpha}}=-\bar{a}_{\alpha} \cdot \frac{\partial \bar{n}}{\partial \xi^{\beta}} \tag{5.23}\\
& B_{\alpha \beta} \equiv \bar{I} \cdot \frac{\partial \bar{A}_{\alpha}}{\partial \xi^{\beta}}=-\bar{A}_{\beta} \cdot \frac{\partial \bar{N}}{\partial \xi^{\alpha}}=-\bar{A}_{\alpha} \cdot \frac{\partial \bar{N}}{\partial \xi^{\beta}} \tag{5.24}
\end{align*}
$$

Associated with this tensor are two important sets of invariants (k, h, b and K, H, B):

$$
\begin{align*}
& k=\frac{b}{a} \tag{5.25}\\
& h=\frac{1}{2} a^{\alpha \beta} b_{\alpha \beta}=\frac{1}{2} b_{\alpha}^{\alpha} \\
& b=\left|b_{\alpha \beta}\right|=b_{n} b_{22}-\left(b_{12}\right)^{2} \tag{5.26}\\
& K=\frac{B}{A} \tag{5.27}\\
& H=\frac{1}{2} A^{\alpha \beta} B_{\alpha \beta}=\frac{1}{2} B_{\alpha}^{\alpha} \tag{5.28}\\
& B=\left|B_{\alpha \beta}\right|=B_{11} B_{22}-\left(B_{12}\right)^{2}
\end{align*}
$$

Here k and k are the "Gaussian curvatures" of the reference surface in the reference and present configurations, respectively, while h and H are the "mean curvatures" of the reference surface in the reference and present configurations, respectively.
 to bo:

$$
\begin{align*}
& d c G_{0}=\left|\bar{a}_{1} \times \bar{a}_{2}\right| d \xi^{1} d \xi^{2}=\sqrt{a} d \xi^{1} d \xi^{2}(\text { (1.20) } \\
& d A O=\left|\bar{A}_{1} \times \bar{A}_{2}\right| d \xi^{1} d \xi^{2}=\sqrt{A} d \xi^{1} d \xi^{2} \tag{5.30}
\end{align*}
$$

in the reference and present configurations, respectively. Thus, the ratio of the determinants of the metric tensors of the reference and present configurations is equal to the ratio of the differential elements of area:

$$
\begin{equation*}
\sqrt{\frac{a}{A}}=\frac{d c t_{0}}{d c t_{0}} \tag{5.31}
\end{equation*}
$$

Likewise, one defines base vectors of the "shell space" $\overline{9}_{\alpha} \bar{g}_{3}$, that are tangent to surfaces at a distance ζ° from the reference surface in the reference configuration:

$$
\begin{equation*}
\bar{g}_{\alpha}=\frac{\partial \bar{r}}{\partial \xi^{\alpha}} \quad \bar{g}_{3}=\frac{\partial \bar{r}}{\partial \xi^{3}}=\frac{\partial \bar{r}}{\partial z_{0}^{0}} \tag{5.32}
\end{equation*}
$$

and base vectors $\bar{G}_{\alpha}, \bar{G}_{3}$, that are tangent to surfaces at a distance τ, ${ }^{0}$ from the reference surface in the present configuration:

$$
\begin{equation*}
\bar{G}_{\alpha}=\frac{\partial \bar{R}}{\partial \bar{E}^{\alpha}} \quad \bar{G}_{3}=\frac{\partial \bar{R}}{\partial \bar{\zeta}^{0}} \tag{5.33}
\end{equation*}
$$

These base vectors have the following determinants:

$$
g=\left|\begin{array}{lll}
g_{11} & g_{12} & g_{13} \tag{5.34}\\
g_{12} & g_{22} & g_{23} \\
g_{13} & g_{23} & g_{33}
\end{array}\right|
$$

$$
G=\left|\begin{array}{lll}
G_{11} & G_{12} & G_{13} \tag{5.35}\\
G_{12} & G_{22} & G_{23} \\
G_{13} & G_{23} & G_{33}
\end{array}\right|
$$

The base vectors $\overline{\mathrm{G}}_{1}, \overline{\mathrm{~g}}_{2}, \overline{\mathrm{~g}}_{3}$ as well as $\overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}, \overline{\mathrm{G}}_{3}$ describe the metric proportion of three dimensional Euclidean space. The base vectors \bar{a}_{1}, \bar{a}_{2} describe the metric properties of the reference surface embedded in the three dimensional space.

It is interesting to observe that the unit (metric) tensor \bar{I} of the three-dimensional Euclidean space can be expressed as:

$$
\begin{align*}
\overline{\overline{1}} & =g_{i j} \bar{g}^{i} \bar{g}^{j}=\delta_{j}^{i} \bar{g}_{i} \bar{g}^{j}=g^{i j} \bar{g}_{i} \bar{g}_{j} \tag{5.36}\\
& =G_{ \pm \sqrt{ }} \bar{G}^{ \pm} \bar{G}^{v}=\delta_{j}^{i} \bar{G}_{I} \bar{G}^{v}=G^{I J} \bar{G}_{I} \bar{G}_{v} \\
& =a_{\alpha \beta} \bar{a}^{\alpha} \bar{a}^{\beta}+\bar{n} \bar{n}=\delta_{\beta}^{\alpha} \bar{a}_{\alpha} \bar{a}^{\beta}+\bar{n} \bar{n}
\end{align*}
$$

And that:

$$
\begin{equation*}
\sqrt{\frac{g}{a}}=1-2 \tau^{0} h+\left(\tau^{0}\right)^{2} k \tag{5.37}
\end{equation*}
$$

The differential elements of volume are:

$$
\begin{align*}
& d V_{0}=\sqrt{g} d \xi^{1} d \xi^{2} d \zeta^{0} \tag{5.38}\\
& d V=\sqrt{G} d \xi^{1} d \xi^{2} d \zeta^{0} \tag{5,39}
\end{align*}
$$

in the reference and present configurations, respectively.
One can express the base vectors of the "shell space" in terms of the base vectors of the reference surface as:

$$
\begin{equation*}
\bar{g}_{\alpha}=\frac{\partial \bar{r}}{\partial \xi^{\alpha}}=\frac{\partial \bar{r}_{0}}{\partial \xi^{\alpha}}+\tau_{0}^{0} \frac{\partial \bar{n}}{\partial \xi^{\alpha}}=\bar{a}_{\alpha}+\tau^{0} \frac{\partial \bar{n}}{\partial \Sigma_{\alpha}} \tag{5.40}
\end{equation*}
$$

$$
\begin{align*}
& \bar{g}_{3}=\frac{\partial \bar{r}}{\partial \tau_{0}^{0}}=\bar{n} \tag{3.41}\\
& \bar{G}_{\alpha}=\frac{\partial \bar{R}}{\partial \xi^{\alpha}}=\frac{\partial \overline{R_{o}}}{\partial \xi^{\alpha}}+\tau^{0} \frac{\partial(\lambda \bar{N})}{\partial \xi^{\alpha}} \\
&=\bar{A}_{\alpha}+\tau^{0} \frac{\partial \lambda}{\partial \xi_{\alpha}^{\alpha}} \bar{N}+\tau_{i}^{0} \lambda \frac{\partial \bar{N}}{\partial \xi^{\alpha}} \tag{5.42}\\
& \bar{G}_{3}=\frac{\partial \bar{R}}{\partial \tau_{0}^{0}}=\tau^{0} \frac{\partial \lambda}{\partial \tau_{i}^{0}} \bar{N}+\lambda \bar{N} \tag{5.43}
\end{align*}
$$

Likewise, these expressions can be written in terms of the curvature tensors and the base vectors, by means of Eqs. 5.23 and 5.24 , obtaining:

$$
\begin{align*}
& \bar{g}_{\alpha}=\bar{a}_{\alpha}-\tau^{0} b_{\alpha}^{\beta} \bar{a}_{\beta} \tag{5.44}\\
& \bar{g}_{3}=\bar{n} \tag{5.45}\\
& \bar{G}_{\alpha}=\bar{A}_{\alpha}-\tau^{0} \lambda B_{\alpha}^{\beta} \bar{A}_{\beta}+\tau^{0} \frac{\partial \lambda}{\partial \xi^{\alpha}} \bar{N} \tag{5.46}\\
& \bar{G}_{3}=\left(\lambda+\tau^{0} \frac{\partial \lambda}{\partial \tau_{3}^{0}}\right) \bar{N} \tag{5.47}
\end{align*}
$$

where

$$
\begin{align*}
& B_{\alpha}^{\beta}=B_{\alpha \gamma} A^{\gamma \beta} \tag{5.48}\\
& b_{\alpha}^{\beta}=b_{\alpha \gamma} a^{\gamma \beta} \tag{5.49}
\end{align*}
$$

Finally, with these equations, one can write the metric tensor components, from which the Cauchy-Green deformation tensor, or the Green strain tensor can be easily obtained as follows. Since

$$
\begin{array}{ll}
\bar{a}_{\alpha} \cdot \bar{a}_{\beta}=a_{\alpha \beta} & \bar{A}_{\alpha} \cdot \bar{A}_{\beta}=A_{\alpha \beta} \tag{5.50}\\
\bar{a}_{\alpha} \cdot \bar{n}=0 & \bar{A}_{\alpha} \cdot \bar{N}=0
\end{array}
$$

then:

$$
\begin{align*}
& g_{\alpha \beta}=\bar{g}_{\alpha} \cdot \bar{g}_{\beta}=a_{\alpha \beta}-2 \zeta^{0} b_{\alpha \beta}+\left(r_{0}\right)^{2} b_{\alpha}^{b} b_{\beta \beta} \tag{5.51}\\
& g_{\alpha s}=0 \tag{5.52}\\
& g_{33}=1 \tag{5.53}\\
& G_{\alpha \beta}=\bar{G}_{\alpha} \cdot \bar{G}_{\beta}=A_{\alpha \beta}-2 Z^{\circ} \lambda B_{\alpha \beta} \\
& \left.+\left(\zeta^{0}\right)^{2} B_{\alpha}^{5} B_{\beta \beta}(\lambda)^{2}+(\zeta)^{0}\right)^{2} \partial \lambda \frac{\partial \lambda}{\partial \xi_{j}} \partial \xi^{0} \\
& G_{3 \alpha}=\tau^{0} \lambda \frac{\partial \lambda}{\partial \xi^{\alpha}}+\left(\zeta^{0}\right)^{2} \frac{\partial \lambda}{\partial \xi^{\prime}} \frac{\partial \lambda}{\partial \xi^{\circ}} \tag{5.55}\\
& G_{33}=(\lambda)^{2}+2 \tau_{0}^{0} \lambda \frac{\partial \lambda}{\partial \pi^{0}}+\left(\zeta^{0}\right)^{2}\left(\frac{\partial \lambda}{\partial \Sigma^{0}}\right)^{2} \tag{5.56}
\end{align*}
$$

The assumption of no change in volume can be expressed mathematically as:

$$
\begin{equation*}
\frac{d V_{0}}{d V}=\sqrt{\frac{g}{G}}=1 \tag{5.57}
\end{equation*}
$$

This assumption will be utilized to express the parameter λ in terms of the variables at the reference surface. From Eqs. 5.51-5.53, one finds

$$
g=\left|\begin{array}{ccc}
g_{11} & g_{12} & 0 \tag{5,5,3}\\
g_{12} & g_{22} & 0 \\
0 & 0 & 1
\end{array}\right|=g_{11} g_{22}-\left(g_{12}\right)^{2}
$$

Thorofore,

$$
\begin{align*}
g & =a-2 \tau^{0}\left(b_{11} a_{22}+b_{22} a_{11}-2 b_{12} a_{12}\right) \\
& +\left(\zeta^{0}\right)^{2}\left[b_{1}^{6} b_{61} a_{22}+b_{2}^{6} b_{82} a_{11}+4 b_{11} b_{22}\right. \\
& \left.-2 b_{1}^{6} b_{82} a_{12}-4\left(b_{12}\right)^{2}\right]+0\left(\tau^{0}\right)^{3} \tag{5.59}\\
g & =a\left[1-2 \zeta^{0} h+\zeta^{0} k\right]^{2} \tag{5.60}
\end{align*}
$$

Also, from Eggs. 5.54-5.56, one finds that

$$
\begin{aligned}
& G=A(\lambda)^{2}-2 \zeta^{\circ} C(\lambda)^{3}+2 \zeta^{0} A \lambda \frac{\partial \lambda}{\partial \tau_{0}^{0}} \\
&+\left(\zeta_{0}^{0}\right)^{2}\left\{A\left(\frac{\partial \lambda}{\partial \tau_{0}^{0}}\right)^{2}+(\lambda)^{4}\left[B_{1}^{\delta} B_{61} A_{22}+B_{2}^{\delta} B_{52} A_{11}\right.\right. \\
&+4 B_{11} B_{22}-2 B_{1}^{5} B_{52} A_{12}-4\left(B_{52}\right)_{(5.61)}^{2]} \\
&\left.-4(\lambda)^{2} \frac{\partial \lambda}{\partial \tau_{0}^{0}} C\right\}+0\left(\zeta_{0}^{0}\right)^{3}
\end{aligned}
$$

where:

$$
\begin{equation*}
C \equiv B_{11} A_{22}+B_{22} A_{11}-2 B_{12} A_{12} \tag{5.62}
\end{equation*}
$$

To solve Eq. 5.57 in terms of λ, the following asymptotic expansion is assumed:

$$
\begin{equation*}
\lambda\left(\xi^{\prime}, \xi^{2}, \xi^{2}\right)=\lambda_{0}\left(\xi^{\prime}, \xi^{2}\right)+\xi^{\circ} \lambda_{1}\left(\xi^{\prime}, \xi^{2}\right)+\left(\xi^{0}\right)^{2} \lambda_{2}\left(\xi^{\prime}, \xi^{2}\right)+\cdots \tag{5.63}
\end{equation*}
$$

Thin asymptotic expansion will turn out to be a Taylor series expansion in powers of ζ_{a}^{0} around $\zeta_{a}^{a}=0$:

$$
\begin{equation*}
\lambda\left(\zeta^{0}\right)=\lambda\left(\zeta^{0}-0\right)+\zeta^{0}\left[\frac{\partial \lambda}{\partial \zeta^{0}}\left(\zeta^{0} 0\right)\right]+\ldots \tag{5.64}
\end{equation*}
$$

It din easy to now, tuning Eq. 5.57, 5.59, 5.61, and 5.64, by oxpannion matching, that:

$$
\begin{align*}
& \lambda_{0}=\lambda\left(\zeta^{0}=0\right)=\sqrt{\frac{a}{A}} \tag{5.65}\\
& \lambda_{1}=\frac{\partial \lambda}{\partial \zeta^{0}}\left(\zeta^{\prime}=0\right)=\frac{1}{2}\left[\frac{C a}{(A)^{2}}-\frac{c}{\sqrt{a A}}\right] \tag{5.66}
\end{align*}
$$

where

$$
\begin{equation*}
c=b_{11} a_{22}+b_{22} a_{11}-2 b_{12} a_{12} \tag{5.67}
\end{equation*}
$$

Hence, from Eq. 5.63:

$$
\begin{equation*}
\lambda\left(\tau^{0}\right)=\sqrt{\frac{a}{A}}+\frac{\tau^{0}}{2}\left[\frac{C_{a}}{(A)^{2}}-\frac{c}{\sqrt{a A}}\right]+O\left(\tau^{0}\right)^{2} \tag{5.68}
\end{equation*}
$$

is the asymptotic expansion for λ in integral powers of ζ^{0} that satisfies the condition of no change in volume.

Observe that substituting this expression for λ into Eq. 5.6, one obtains the following displacement field:

$$
\begin{equation*}
\bar{u}=\bar{u}_{0}+\tau^{0}\left(\sqrt{\frac{a}{A}} \bar{N}-\bar{n}\right)+\left(\zeta_{1}^{0}\right)^{2} \lambda_{1} \bar{N}+O\left(\zeta_{1}^{0}\right)^{3} \tag{5.68}
\end{equation*}
$$

whore λ_{1} is defined ia Eq. 5.66. Also, substituting Eq. 5.68 into Eqs. 5.54-5.56, one obtains the metric tensor components of the present configuration:

$$
\begin{aligned}
G_{\alpha \beta}= & A_{\alpha \beta}-2 \zeta^{0} \sqrt{\frac{a}{A}} B_{\alpha \beta}-2\left(\zeta^{0}\right)^{2} \lambda_{1} B_{\alpha \beta} \\
& +\left(\zeta^{0}\right)^{2} \frac{a}{A} B_{\alpha}^{\delta} B_{5 \beta}+\left(\zeta_{0}^{0}\right)^{2} \frac{\partial(\sqrt{A})}{\partial \xi^{\alpha}} \frac{\partial\left(\sqrt{\frac{a}{A}}\right)}{\partial \xi_{3}^{\beta}}+0\left(\zeta_{0}\right)^{3} \\
G_{3 \alpha}= & \zeta^{0} \sqrt{\frac{a}{A}} \frac{\partial \sqrt{\frac{a}{A}}}{\partial \xi^{\alpha}}+\left(\zeta^{0}\right)^{2} \lambda_{1} \frac{\partial \sqrt{\frac{a}{A}}}{\partial \zeta^{\alpha}} \\
& +\left(\zeta^{0}\right)^{2} \sqrt{\frac{a}{A}} \frac{\partial \lambda_{1}}{\partial \xi^{\alpha}}+\left(\zeta^{0}\right)^{2} \frac{\partial \sqrt{\frac{a}{A}}}{\partial \xi^{\alpha}} \frac{\partial \sqrt{\frac{a}{A}}}{\partial \xi^{0}}+O\left(\zeta_{(0)}\right)^{3} \\
G_{33}= & \frac{a}{A}+4 \zeta^{0} \sqrt{\frac{a}{A}} \lambda_{1}+O\left(\zeta^{0}\right)^{2}
\end{aligned}
$$

The curvature tensor components $B_{\alpha \beta}$ were defined in Eq. 5.24 in terms of the reference surface base vectors and the normal to the reference surface in the present configuration. Hence, all that remains in order to write the metric tensor components of the present configuretin in terms of the reference surface displacements is to express the normal $\overline{\mathrm{N}}$ and vectors $\overline{\mathrm{A}}_{\alpha}$ as a function of those displacements. The reference surface displacement field in terms of its components u_{0}^{a} alone the coordinates ξ^{∞} and its component w along the normal to the reference surface is:

$$
\begin{equation*}
\bar{u}=u_{0}^{\alpha} \bar{a}_{\alpha}+w \bar{n} \tag{5.72}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\bar{A}_{\alpha}=\frac{\partial \bar{R} \bar{R}_{0}}{\partial \xi_{0}}=\bar{a}_{\alpha}+\frac{\partial}{\partial \xi}\left(\alpha_{0} \bar{a}_{\gamma}+w \bar{n}\right) \tag{5.73}
\end{equation*}
$$

*These expressions are shown to illustrate the nature of the terms involved when all terms to a given order of ζ^{0} are retained. llowevor, these expresm sions are not intended to form a consistent approximation to the strain energy.

Bingo

$$
\begin{align*}
& \frac{\partial \bar{a}_{\alpha}}{\partial \varepsilon_{j}^{\prime}}=\left\{\begin{array}{c}
\delta \\
\alpha
\end{array}\right\} \bar{a}_{\delta}+b_{\alpha \beta} \bar{n} \tag{5.74}\\
& \frac{\partial \bar{n}}{\partial \xi^{\beta}}=-b_{\beta}^{\sigma} \bar{a}_{\sigma} \tag{5.75}
\end{align*}
$$

where

$$
\left\{\begin{array}{cc}
\delta \tag{5.76}\\
\alpha & \beta
\end{array}\right\} \equiv \bar{a}^{\delta} \cdot \frac{\partial \bar{a}_{\alpha}}{\partial \xi^{\beta}}
$$

are the surface Christoffel symbols, Eq. 5.73 becomes

$$
\bar{A}_{\alpha}=\bar{a}_{\alpha}+\left(u_{0}^{\sigma}, \alpha-w b{ }_{\alpha}^{\sigma}\right) \bar{a}_{\sigma}+\left(\frac{\partial w}{\partial z_{\alpha}}+u_{o}^{\gamma} b_{\gamma \alpha}\right) \bar{n}^{(5.77)}
$$

Thus, defining the displacement gradients:*

$$
\begin{align*}
& \theta_{\cdot \alpha}^{\sigma} \equiv u_{0, \alpha}^{\sigma}-w b_{\alpha}^{\sigma} \tag{5.78}\\
& \theta_{\alpha} \equiv \frac{\partial w}{\partial \varepsilon^{\alpha}}+u_{0}^{\gamma} b_{\gamma \alpha} \tag{5.79}
\end{align*}
$$

one obtains:

$$
\begin{equation*}
\bar{A}_{\alpha}=\bar{a}_{\alpha}+\theta_{0}^{\sigma} \bar{a}_{\sigma}+\theta_{\alpha} \bar{n} \tag{5.80}
\end{equation*}
$$

The components of the deformation gradient tensor of the surface

$$
\begin{equation*}
f_{\alpha}^{\sigma \cdot \alpha}=\delta_{\alpha}^{\sigma}+\theta^{\sigma} \cdot \alpha \tag{5.81}
\end{equation*}
$$

[^33]are alno μ manful, and onablo ono to write:
\[

$$
\begin{equation*}
\mathcal{A}_{\alpha}=\boldsymbol{A}^{\sigma} \cdot \bar{a}_{\sigma}+\theta_{\alpha} \bar{n} \tag{5,8,2}
\end{equation*}
$$

\]

Since

$$
\begin{equation*}
\bar{N}=\frac{\bar{A}_{1} \times \bar{A}_{2}}{\sqrt{A}} \tag{5.83}
\end{equation*}
$$

substituting Eq. 5,82 for \bar{A}_{α} into this equation for \bar{N}, one obtains:

$$
\begin{align*}
& \bar{N}=\sqrt{\frac{a}{A}}\left[\left(\theta_{\lambda} \ell^{\lambda \cdot}-\theta_{\mu} \lambda^{\lambda \cdot \lambda}\right) a^{\mu \nu} \bar{a}_{\nu}\right. \\
& +\frac{1}{2}\left(\lambda^{\lambda} \cdot \lambda d \cdot \mu-\lambda \cdot \mu \cdot \mu \cdot \lambda\right) \bar{n} \cdot \lambda \tag{5.84}\\
& =\sqrt{\frac{a}{A}}\left[\left(\lambda_{1}^{1 \cdot d^{2} \cdot 2}-\boldsymbol{l}_{2}^{2} \cdot d^{1} \cdot 2\right) \bar{n}\right. \\
& +\left(\theta_{2} l_{1}^{2}-\theta_{1} l^{2}\right) \bar{a}^{1} \\
& \left.+\left(\theta_{1} x^{1} \cdot 2-\theta_{2} l^{1} \cdot 1\right) \bar{a}^{2}\right] \tag{5.85}
\end{align*}
$$

This is an exact expression for the normal to the reference surface in the present configuration and is completely independent of the assumeddisplacement field.

From Eq. 5.82, one can obtain the expression for the metric tensor of the reference surface with components $A_{\alpha \beta}$ in the present configuration, as a function of the displacements:

$$
\begin{equation*}
A_{\alpha \beta}=\bar{A}_{\alpha} \cdot \bar{A}_{\beta}=a_{\sigma \gamma} \mathcal{l}_{\alpha}^{\sigma \cdot} \|_{\beta}^{\gamma}+\theta_{\alpha} \theta_{\beta} \tag{5.90}
\end{equation*}
$$

Hence, one can define the components of a Green strain tensor at the reference surface as:

Also, the ratio of the determinants of tho metric tensor of the reference surface in the present and reference configurations can be cxprossed in terms of the reference surface strain components as*
or

$$
\begin{equation*}
\frac{A}{a}=\left(1+2 \dot{\delta}_{1}^{1}\right)\left(1+2 \dot{\gamma}_{2}^{2}\right)-\left(2 \dot{\gamma}_{2}^{1}\right)\left(2 \dot{\gamma}_{1}^{2}\right) \tag{5.93}
\end{equation*}
$$

Where ${ }^{\circ} \gamma_{\beta}^{\alpha}$ are the mixed components of the Green strain tensor:

$$
\begin{equation*}
\dot{\gamma}_{\beta}^{\alpha}=\frac{1}{2}\left(a^{\alpha \sigma} A_{\sigma \beta}-\delta_{\beta}^{\alpha}\right) \tag{5.94}
\end{equation*}
$$

Differentiating Eq. 5.82 covariantly with respect to ξ^{β}, one obtains:

$$
\begin{align*}
& \frac{\partial \bar{A}_{\alpha}}{\partial \xi^{\beta}}=\frac{\partial l_{\cdot \alpha}^{\sigma}}{\partial \xi^{\beta}} \bar{a}_{\sigma}+l_{\cdot \alpha}^{\sigma \cdot \alpha} \frac{\partial \bar{a}_{\sigma}}{\partial \xi^{\beta}}+\frac{\partial \theta_{\alpha}}{\partial \xi^{\beta}} \bar{n}+\theta_{\alpha} \frac{\partial \bar{n}}{\partial \xi^{\beta}} \tag{5.95}\\
& \frac{\partial \bar{A}_{\alpha}}{\partial \xi^{\beta}}=\left(\frac{\partial l_{\cdot \alpha}^{\sigma}}{\partial \xi^{\beta}}-b_{\beta}^{\sigma} \theta_{\alpha}\right) \bar{a}_{\sigma}+\left(\frac{\partial \theta_{\beta}}{\partial \xi^{\beta}}+b_{\sigma \beta} l_{\cdot \alpha}^{\sigma \cdot}\right) \bar{n} \tag{5.96}
\end{align*}
$$

From Eqs. 5.96, 5.85, and 5.24, one can express the curvature tensor components $B_{\alpha \beta}$ in terms of the displacements as:

$$
\begin{align*}
& B_{\alpha \beta}=\sqrt{\frac{a}{A}\left[\frac{1}{2}\left(l^{\lambda} \cdot \lambda l^{\mu} \cdot \mu-l^{2} \cdot \mu l^{\mu} \cdot \lambda\right)\left(\frac{\partial \theta_{\alpha}}{\partial \xi^{\prime}}+b_{\sigma \beta} l^{\sigma} \cdot \alpha\right)\right.} \tag{5.97}\\
& \left.+\left(\theta_{\lambda} \lambda^{\lambda \cdot \sigma}-\theta_{\sigma} \lambda^{\lambda \cdot \lambda}\right)\left(\frac{\partial \chi^{\circ \cdot \alpha}}{\partial \varepsilon^{\beta} \beta}-b_{\beta}^{\sigma} \theta_{\alpha}\right)\right] \\
& \text { *Were } \varepsilon^{\alpha \beta}=1 \text { if } \alpha=1, \beta=2 ; \varepsilon^{\alpha \beta}=-1 \text { if } \alpha=2, \beta=1 \text {; and } \varepsilon^{\alpha \beta}=0 \\
& \text { if } \alpha=\beta \text {. }
\end{align*}
$$

Thosofort, one gan oxprone tho Grown entrain toner componontr ans

$$
\begin{align*}
& \gamma_{\alpha \beta}=\frac{1}{2}\left(G_{\alpha \beta}-g_{\alpha \beta}\right) \tag{5.98}\\
& \gamma_{3 \alpha}=\frac{1}{2} G_{3 \alpha} \tag{5.99}\\
& \gamma_{33}=\frac{1}{2}\left(G_{33}-1\right) \tag{5.100}
\end{align*}
$$

Finally, using Eqs. 5.97, 5.93, 5.91, 5.90, 5.81, 5.79, 5.78, 5.71, 5.70, 5.69. $5.66,5.62$, and 5.14, one can relate these strain components to the displacements for general thin shells.

5.2.2 Strain-Displacement Relations for Plates

At this point, these equations are specialized for a shell with no initial curvature; that is, a plate. The reference surface coordinates ξ^{1} and ξ^{2} and the normal coordinate ζ° are chosen so as to form a rectangular Cartesian coordinate system (in the reference configuration). where:

$$
\begin{array}{cc}
\xi^{1} \equiv x \quad \xi^{2} \equiv y & g_{\alpha \beta}=a_{\alpha \beta}=\delta_{\alpha \beta} \\
b_{\alpha \beta}=b_{\sigma}^{\delta}=b^{\gamma \lambda}=0 & u_{0}^{1} \equiv u \quad u_{0}^{2}=v \tag{5.101}\\
g=a=1 & c=h=k=0
\end{array}
$$

Expression 5.68 for the parameter λ that characterizes the thinning or thickening of the plate becomes

$$
\lambda\left(\zeta^{0}\right)=\sqrt{\frac{1}{A}}+\frac{\zeta^{0}}{2}\left[\frac{B_{11} A_{22}+B_{22} A_{11}-2 B_{12} A_{12}}{(A)^{2}}\right]+O\left(\xi^{0}\right)^{2}(5.102)
$$

Taking the middle surface as the reference surface of the plate, the zeroth order term in ζ° characterizes the (symmetric) thinning due to membrane strains; while the first order term in r° characterizes the
(antisymmetric) thinning produced by changes of curvature, Defining a "curvature" $\kappa_{\alpha \beta}$ as

$$
\begin{equation*}
K_{\alpha \beta} \equiv-\sqrt{A} B_{\alpha \beta} \tag{5.103}
\end{equation*}
$$

one can obtain, after some manipulations, the following expressions for the components of the Green strain tensor:

$$
\begin{align*}
& \gamma_{\alpha \beta}= \gamma_{\alpha \beta}+\frac{\zeta_{0}^{0}}{A} K_{\alpha \beta}+\frac{1}{2}\left(\zeta^{0}\right)^{2} \frac{1}{(A)^{3}}\left\{(\delta _ { \alpha \beta } + 2 \gamma _ { \alpha \beta }) \left[\left(K_{12}\right)^{2}\right.\right. \\
&\left.\left.-K_{11} K_{22}\right]+\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{\alpha}}\right)\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{3}}\right)\right\}+O\left(\zeta^{0}\right)^{3} \\
& \gamma_{3 \alpha}=-\frac{\zeta^{0}}{(A)^{2}}\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{\alpha}}\right)+O\left(\zeta^{0}\right)^{2} \tag{5.105}\\
& \gamma_{33}= \frac{1}{2}\left(\frac{1}{A}-1\right)+\frac{\zeta^{0}}{(A)^{3}}\left\{\left(1+2 \gamma_{22}\right) K_{11}+\left(1+2 \gamma_{22}^{0}\right) K_{22}\right. \tag{5.206}\\
&\left.-2 K_{12} 2 \gamma_{12}\right\}+O\left(\zeta^{0}\right)^{2}
\end{align*}
$$

Observe that the transverse shear strain $\gamma_{3 \alpha}$ is associated with the strain gradient with respect to the ξ^{α} coordinates on the reference surface:

$$
\begin{aligned}
& \gamma_{3 \alpha}=-\frac{z^{\circ}}{(A)^{2}}\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{\alpha}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.-2\left(2 \gamma_{12}\right) \frac{\partial\left(2 \dot{\gamma}_{12}\right)}{\partial \xi^{\alpha}}\right) \tag{5.107}
\end{align*}
$$

and that it can also be expressed in terms of the gradient of the transverse normal strain γ_{33} :

$$
\begin{gather*}
\gamma_{3 \alpha}=-\frac{\zeta_{0}^{0}}{2(A)^{2}} \frac{\partial A}{\partial \xi^{\alpha}}=\frac{\tau^{0}}{2} \frac{\partial(A)^{-1}}{\partial \xi^{\alpha}}=\frac{\zeta^{0}}{2} \frac{\partial\left(2 \gamma_{31}\right)}{\partial \xi^{\alpha}(5.108)} \\
\gamma_{3 \alpha}=\zeta_{0}^{0} \frac{\partial \gamma_{33}}{\partial \xi^{\alpha}} \tag{5.109}
\end{gather*}
$$

In the present analysis, the following simplifying assumptions are made:
(a) The second order terms in the thickness coordinate ζ^{0} in the expression for $\gamma_{\alpha \beta}$ are negligible

$$
\begin{align*}
K_{\alpha \beta}>\frac{1}{2} \frac{z_{1}^{0}}{(A)^{2}}\{ & \left(S_{\alpha \beta}+2 \gamma_{\alpha \beta}^{0}\right)\left[\left(K_{12}\right)^{2}-K_{11} K_{22}\right] \tag{5.110}\\
& \left.+\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{\alpha}}\right)\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{\beta}}\right)\right\}
\end{align*}
$$

and hence Eq. 5.104 reduces to:

$$
\begin{equation*}
\gamma_{\alpha \beta}=\ddot{\gamma}_{\alpha \beta}+\frac{\zeta^{0}}{A} K_{\alpha \beta}+O\left(\zeta^{0}\right)^{2} \tag{5.111}
\end{equation*}
$$

(b) The "thinning" parameter λ can be characterized by:

$$
\begin{equation*}
\lambda=\frac{1}{\sqrt{A}}+0(2) \tag{5.112}
\end{equation*}
$$

and hence Eq. 5.106 reduces to:

$$
\begin{equation*}
X_{33}=\frac{1}{2}\left(\frac{1}{A}-1\right)+0(2) \tag{5.113}
\end{equation*}
$$

and (c) the transverse shear strains are small:

$$
\begin{equation*}
\gamma_{3 \alpha}=\zeta^{0} \frac{\partial \gamma_{33}}{\partial \xi^{\alpha}}=-\frac{\zeta^{0}}{(A)^{2}}\left(\frac{1}{2} \frac{\partial A}{\partial \xi^{\alpha}}\right) \approx C \tag{5.114}
\end{equation*}
$$

Assumptions (a) and (b) are made since tho present formulation is intended to apply to thin shells, and for problems in which tho symmetric (with respect to the middle surface) part of the transverse normal strain is the dominant factor in the thickness change. Assumption (c) is made since otherwise (as shown in the next subsection) a general state of multiaxial and Piola-Kirchhoff stress would exist in the shell (even though a state of plane Kirchhoff stress may exist simultaneously). Assumption (c) precludes a detailed analysis of necking. The incorporation of thinning effects under assumptions (a), (b), and (c) does not represent any extra effort in the analysis. The only quantity that needs to be computed to include thinning effects ($A^{1 / 2}$) would have to be computed anyway for finite strains even if thinning effects were not included, as is evident from Eq. 5.97.

Under these simplifying assumptions, the following plate equations, for finite strains and rotations, and including approximate thinning effects are expressed finally in terms of the reference surface displacemints (u, v) and the displacement component (w) along the unit normal to the reference surface, along the Lagrangian (material) vectors \bar{a}_{1}, \bar{a}_{2} and $\overline{\mathrm{n}}$, respectively:

$$
\begin{gather*}
\gamma_{\alpha \beta}=\gamma_{\alpha \beta}+\frac{\tau^{0}}{A} K_{\alpha \beta} \tag{5.115}\\
\gamma_{33}=\frac{1}{2}\left(\frac{1}{A}-1\right) \tag{5.116}\\
A=\left(\frac{d c 0_{0}}{d c 0_{0}}\right)^{2}=\left(1+2 \gamma_{11}^{0}\right)\left(1+2 \gamma_{22}^{0}\right)-\left(2 \gamma_{12}^{\gamma_{12}}\right)^{2} \tag{5.117}
\end{gather*}
$$

where $\dot{\gamma}_{11}, \dot{\gamma}_{22}, \dot{\gamma}_{12}$ are the "membrane" strains at the middle surface. These strains are given by:*

[^34]\[

$$
\begin{align*}
& {\underset{\gamma}{\gamma}}_{22}=\frac{\partial v}{\partial y}+\underbrace{\frac{1}{2}\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2}} \begin{array}{r}
2 \dot{\gamma}_{12}^{0}=2 \dot{\gamma}_{21}^{0}=\frac{\partial u}{\partial y}\left(1+\frac{\partial u}{\partial x}\right)+\frac{\partial v}{\partial x}\left(1+\frac{\partial v}{\partial y}\right)+\frac{\partial w}{\partial x} \frac{\partial w}{\partial y}
\end{array} . \begin{array}{r}
\sim
\end{array} l \tag{5.119}
\end{align*}
$$
\]

and the "bending" expressions k_{11}, K_{22}, and κ_{12} are:

$$
\begin{align*}
& K_{11}=\alpha\left(-\frac{\partial^{2} w}{\partial x^{2}}\right)+\beta\left(-\frac{\partial^{2} u}{\partial x^{2}}\right)+\eta\left(-\frac{\partial^{2} v}{\partial x^{2}}\right) \tag{5.121}\\
& K_{22}=\alpha\left(-\frac{\partial^{2} w}{\partial y^{2}}\right)+\beta\left(-\frac{\partial^{2} u}{\partial y^{2}}\right)+\eta\left(-\frac{\partial^{2} v}{\partial y^{2}}\right) \tag{5.122}\\
& K_{12}=K_{21}=\alpha\left(-\frac{\partial^{2} w}{\partial x \partial y}\right)+\beta\left(-\frac{\partial^{2} u}{\partial x \partial y}\right)+\cdots\left(-\frac{\partial^{2} v}{\partial x \partial y}\right) \tag{5.123}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha \equiv 1+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \tag{5,124}\\
& \beta \equiv-\frac{\partial w}{\partial x}\left(1+\frac{\partial v}{\partial y}\right)+\frac{\partial w}{\partial y} \frac{\partial v}{\partial x} \tag{5.125}\\
& \eta_{n} \equiv-\frac{\partial w}{\partial y}\left(1+\frac{\partial u}{\partial x}\right)+\frac{\partial w}{\partial x} \frac{\partial u}{\partial y} \tag{5.126}
\end{align*}
$$

Subscripts 1, 2 and 3 stand for the Lagrangian (material) coordinates x, y, and ζ_{0}^{0}, respectively.

The terms underlined by \sim are terms not appearing in vo Kirman's equations [157] for "large displacements". The much-used vo Karman nonlinear plate equations [157], and the popular sanders shell equation
for "modoratoly small rotations" [158] an wold an Koitor'n nonlinear shell equation for "small finite dofloctions" [161], despite its succosnos, have those inhoront limitations: (a) smalls strain, (b) moderately small rotations, and (c) no transvorso normal strains. Those equation ara very important for analytical purposes, but for a general numerical analysis, tho more comprehonaivo expressions 5.115 through 5.126 should bo used, since the extra amount of numerical computation is amply compensated for by the generality of arbitrarily large rotations and finite strains that one accommodates by the use of these equations.

Observe that the following displacement field is associated with expressions 5.115 through 5.126:

$$
\begin{align*}
& \bar{u}=u^{\alpha} \bar{a}_{\alpha}+u^{3} \bar{n} \tag{5.127}\\
& u^{1}=u-\frac{z_{0}^{0}}{A} \eta \tag{5.128}\\
& u^{2}=v-\frac{z_{0}^{0}}{A} \beta \tag{5.129}\\
& u^{3}=w+\frac{\tau_{0}^{0}}{A} \mu-z_{0}^{0} \tag{5,130}
\end{align*}
$$

where

$$
\begin{gather*}
\mu \equiv \alpha+\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \tag{5.131}\\
\eta^{2}+\beta^{2}+\mu^{2}=A \tag{5.132}\\
\sqrt{\left(\frac{y}{\sqrt{A}}\right)^{2}+\left(\frac{\beta}{\sqrt{A}}\right)^{2}+\left(\frac{\mu}{\sqrt{A}}\right)^{2}}=1 \tag{5.133}
\end{gather*}
$$

5.3 Constitutive Equations for Finito Straing and Rotations

15.3.1 Introduction

Constitutive oquations which aro valid for findto atralna and largo dioplacomonta aro dorivod for gonoral thin shodin undor tho annumpton of plano strons. This ansumption in critically oxaminod in torms of the "psoudo-stross" moasure (tho 2nd Piola-Kirchhoff stross) unod in tho prosont analysia. Tho von Mises strain-rate dopondent loading function introduced in section 3 is derivod in terms of the stress and strain quantities associated with the roference configuration for the case of plane stress. The "elastic" and plastic parts of the constitutive relations for strain-hardening, strain-rate dependent materials are shown in explicit form in terms of the stress and strain measures associated with the reference configuration as well as the material constants (to be measured experimentally). Finally, the incremental procedure for the evaluation of the stresses in the finite element analysis is shown. Note that, although the present work is concerned with the numerical analysis of initially flat plates, the theory presented is valid for general thin shells.

5.3.2 Constitutive Equations

5.3.2.1 Plane Stress Assumption for Thin Shells at Finite Strains

An approximate state of plane stress is assumed to exist in the shell. F. John [164] has established that the state of stress in an elastic thin shell, in the absence of surface loads, is indeed approximately plane, by means of concrete estimates of the errors involved. Exploiting modern developments on the behavior of the solutions of elliptic systems of partial differential equations, he published a rigorous proof that the state of stress in the interior domain of an elastic shell (i.e., at a sufficient distance from the edge of a shell) and in the absence of surface loads is approximately plane with an approximately linear distribution through the thickness of the stress parallel to the middle surface. The approximato equations of F. John hold for any magnitude of the deflections, provided the strains romain small everywhere. Unfortunately,
a similar proof for largo derain donn not appear to oxtist. It nome roanonablo that, if a nato of plano atone should oxift. for a thin find for finite atralna, that atato of plan natron should bo oxpronnod in forme of tho Kirchhoff Boron componontis

$$
\begin{equation*}
\tau_{3}^{3}-\tau_{2}^{3}=\tau_{3}^{2}=\tau_{1}^{3}-\tau_{3}^{1}=0 \tag{3.134}
\end{equation*}
$$

With roopoct to the prosent configuration that io,

$$
\begin{align*}
& \bar{z}=\mathcal{Z}_{ \pm} \overline{G_{土}} \bar{G} \tag{5.135}\\
& \tau^{3}=\tau_{3}^{J}=0 \tag{5.136}
\end{align*}
$$

If this condition should be satisfied at all times, the co-rotational rate of the out-of-plane Kirchhoff stress components should vanish:

$$
\begin{equation*}
\overbrace{}^{0} \frac{\tau_{3}}{0}=0 \tag{5.137}
\end{equation*}
$$

Since the present analysis is formulated in terms of the reference configuration, these plane-Kirchhoff-stress equations are expressed in terms of the ind Piola-Kirchhoff stress components and the Green (Lagrangian) strain, from Eq. 2.270 as:

$$
\begin{align*}
\tau_{K}^{x}= & \left(g_{k l}+2 \gamma_{k l}\right) s^{l i} \tag{5.138}\\
\tau_{3}^{3}=0 & =\left(g_{3 l}+2 \gamma_{3 l}\right) S^{l_{3}} \\
& =\left(1+2 \gamma_{33}\right) s^{33}+2 \gamma_{23} s^{23}+2 \gamma_{13} s^{13} \tag{5.139}\\
\tau_{2}^{3}=0 & =\left(g_{2 l}+2 \gamma_{2 l}\right) S^{l_{3}} \\
& =\left(g_{22}+2 \gamma_{22}\right) s^{23}+2 \gamma_{12} s^{13}+2 \gamma_{23} s^{33} \tag{5.140}
\end{align*}
$$

$$
\begin{align*}
\tau_{3}^{2}=0 & =\left(g_{3 l}+2 \gamma_{3 l}\right) S^{l 2} \\
& =\left(1+2 \gamma_{33}\right) S^{23}+2 \gamma_{13} s^{12}+2 \gamma_{23} s^{22} \tag{5.241}\\
\tau_{1}^{3}=0 & =\left(g_{1 l}+2 \gamma_{1} l\right) S^{l 3} \\
& =\left(g_{11}+2 \gamma_{11}\right) s^{13}+2 \gamma_{12} s^{23}+2 \gamma_{13} s^{33} \tag{5.142}\\
\tau_{3}^{1}=0 & =\left(g_{3 l} l+2 \gamma_{3 l}\right) S^{l 1} \\
& =\left(1+2 \gamma_{33}\right) S^{13}+2 \gamma_{23} s^{12}+2 \gamma_{13} s^{11} \tag{5.143}
\end{align*}
$$

It is clear that the condition of "plane end Piola-Kirchhoff stress"

$$
\begin{equation*}
S^{33}=S^{22}=S^{32}=0 \tag{5.144}
\end{equation*}
$$

satisfies Eqs. 5.139, 5.140, and 5.1.42, but still Eqs. 5.141 and 5.143:

$$
\begin{align*}
& \gamma_{3}^{2}=0=2 \gamma_{13} S^{12}: 2 \gamma_{23} S^{22} \tag{5.145}\\
& \tau_{3}^{1}=0=2 \gamma_{23} S^{12}+2 \gamma_{13} S^{11} \tag{5.146}
\end{align*}
$$

are not satisfied, in general, unless the transverse shear strains are negligible:

$$
\begin{equation*}
\gamma_{13}=\gamma_{23}=0 \tag{5.147}
\end{equation*}
$$

From Eq. 5.109, this is equivalent to:

$$
\begin{equation*}
\zeta_{0}^{0} \frac{\partial \gamma_{33}}{\partial \varepsilon_{3}^{4}}=\tau_{0}^{0} \frac{\partial \gamma_{33}}{\partial \varepsilon_{3}^{2}}=0 \tag{5.14日}
\end{equation*}
$$

which are natiofiod oxactity at tho fuforonen surface (ζ_{5}° mo) .
Then quaneition (γ_{13} and γ_{23}) con bn made an fatal an ono platen by rontricting the whole. thickness to bo nufficionely thin. If the conditions

$$
\begin{align*}
& S^{33}=S^{23}=S^{13}=0 \tag{5.149}\\
& \gamma_{13}=\gamma_{23}=0 \tag{5.150}
\end{align*}
$$

are satisfied at all times, then the material rates of these quantities also vanish; hence,

$$
\begin{gather*}
\dot{S}^{33}=\dot{S}^{23}=\dot{S}^{13}=0 \tag{5.151}\\
\ddot{\gamma}_{13}=\dot{\gamma}_{23}=0
\end{gather*}
$$

and; therefore, the co-rotational rate of the out-of-plane Kirchhoff stresses vanishes:

$$
\begin{equation*}
\stackrel{0}{c}_{\pi}^{3}=\stackrel{0}{\tau}_{3}^{\pi}=0 \tag{5.153}
\end{equation*}
$$

as can be shown from Eq. 2.353:

$$
\begin{equation*}
\stackrel{i}{¿}_{J}^{ \pm}=E_{i m}^{i m} C_{m j}+\frac{1}{2} S^{k m} \dot{C}_{m l}\left[\delta_{k}^{i} \delta_{j}^{l}+\left(C^{-1}\right)^{l i} C_{k j}\right] \tag{5.154}
\end{equation*}
$$

In this expression, $C_{i j}$ and $\left(C_{i j}\right)^{-1}$ are defined as:

$$
\begin{equation*}
C_{i j}=G_{I J}=g_{i j}+2 \gamma_{i j} \tag{5.155}
\end{equation*}
$$

$$
\begin{equation*}
\left(C^{-1}\right)^{i j}=\left(g_{i j}+2 \gamma_{i j}\right)^{-1} \tag{5,155}
\end{equation*}
$$

whore

$$
\begin{equation*}
C_{13}=C_{23}=\dot{C}_{13}=\dot{C}_{23}=\left(C^{-4}\right)^{23}=\left(C^{-4}\right)^{23}=0 \tag{5,117}
\end{equation*}
$$

with matricoos:

$$
\begin{align*}
& \left\|C_{i j}\right\|=\left\|\begin{array}{ccc}
C_{11} & C_{12} & 0 \\
C_{12} & C_{22} & 0 \\
0 & 0 & C_{33}
\end{array}\right\|=\left\|\begin{array}{ccc}
\left(g_{11}+2 \gamma_{11}\right) & 2 \gamma_{12} & 0 \\
2 \gamma_{12} & \left(g_{22}+2 \gamma_{22}\right) & 0 \\
0 & 0 & \left(1+2 \gamma_{33}\right)
\end{array}\right\|_{(5.158)} \\
& \left\|\left(C^{-1}\right)^{i j}\right\|=\left\|\begin{array}{ccc}
\left(C^{-1}\right)^{11} & \left(C^{-1}\right)^{12} & 0 \\
\left(C^{-1}\right)^{12} & \left(C^{-1}\right)^{22} & 0 \\
0 & 0 & \left(C^{-1}\right)^{133}
\end{array}\right\|=\left\|\begin{array}{ccc}
C_{22} & -\frac{c_{12}}{d e c t} & 0 \\
-\frac{c_{12}}{d d^{2} t} & \frac{C_{22}}{d e t} & 0 \\
0 & 0 & \frac{1}{C_{33}}
\end{array}\right\|_{(5.159)} \tag{5.159}\\
& \operatorname{det} \equiv C_{11} C_{22}-\left(C_{12}\right)^{2}=\left(g_{11}+2 \gamma_{11}\right)\left(g_{22}+2 \gamma_{22}\right)-\left(2 \gamma_{12}\right)^{2}
\end{align*}
$$

(5.160)

From Eqs. 5.157 and 5.151, it follows that

$$
\begin{aligned}
\dot{\tau}_{J}^{3} & =\dot{S}^{3 m} C_{m j}+\frac{1}{2} S^{k m} \dot{C}_{m l}\left[S_{k}^{3} \delta_{j}^{l}+\left(C^{-1}\right)^{\ell_{3}} C_{k j}\right] \\
& =0 \\
\dot{\tau}_{3}^{x} & =\dot{S}^{i m} C_{m 3}+\frac{1}{2} S^{k m} \dot{C}_{m l}\left[\delta_{k}^{i} \delta_{3}^{l}+\left(C^{-1}\right)^{l_{i}} C_{k_{3}}\right] \\
& =0
\end{aligned}
$$

Hone,

$$
\begin{align*}
& S^{33}=S^{23}=S^{13}=0 \\
& \gamma_{13}=\gamma_{23}=0 \tag{5.161}
\end{align*}
$$

are sufficient conditions for the existence of a state of plane stress and ares assumed in the present analysis to hold at all times.

5.3.2.2 vo Mises Strain-Rate-Dependent Loading Function for Plane Stress and Finite Strains

In the finite-strain elastic-plastic strain-rate dependent theory displayed in Subsection 3.3.3, a loading function Φ (yield surface in stress space) was assumed to exist for each sublayer s of the mechanical sublayer model. This loading function ${ }^{\mathbf{s}} \Phi$ was assumed to be expressible in terms of the deviatoric Kirchhoff stress ${ }^{8}{ }_{\tau}{ }^{D}$ of sublayer s and a parameter ${ }^{s} \tau_{u}$ which depends on material properties of sublayer s and the deviatoric rate of deformation tensor $\bar{D} D$, as expressed in Eq. 3.45 and repeated here for annvenience:

$$
\begin{equation*}
s \Phi=s \overline{\bar{\tau}}^{D}: s \overline{\bar{\tau}} D-\frac{2}{3}\left({ }^{5} \tau_{u_{0}}^{y}\right)^{2}\left(1+\left(\frac{\sqrt{\frac{3}{2} \overline{\bar{D}}^{D}: \overline{\bar{D}}^{D}}}{s d}\right)^{\frac{1}{s p}}\right) \tag{5.162}
\end{equation*}
$$

This loading function ${ }^{5} \Phi$ will be expressed in terms of the nonzero components of stress $s^{i j}$ and strain $C_{i j}$ under the plane stress condition of Eq. 5.161. Equation 5.162 can be rewritten as:

$$
\begin{align*}
s \Phi & =\frac{2}{3}\left(\frac{3}{2} s \overline{\bar{\gamma}}^{s}: s \overline{\bar{\gamma}}^{s}-\left(s \tau_{u}^{y}\right)^{2}\right) \tag{5.163}\\
& =\frac{2}{3}\left(s \Phi_{1}-s \Phi_{2}\right)
\end{align*}
$$

The first term of this expression, namely (subscript "1")

$$
\begin{equation*}
s \Phi_{1} \equiv \frac{3}{2} s \overline{\bar{\tau}}: s: \overline{\bar{\gamma}} \tag{5.164}
\end{equation*}
$$

(rill low wifllon an

$$
\begin{align*}
s \Phi_{1} & =\frac{3}{2}\left(s \overline{\bar{\tau}}-\frac{1}{3}\left(t r r^{s} \overline{\bar{\tau}}\right) \overline{\overline{1}}\right):\left(s \overline{\bar{\tau}}-\frac{1}{3}\left(t_{r}{ }^{3} \overline{\bar{\tau}}\right) \overline{\overline{1}}\right) \tag{1.1,1,1}\\
& =\frac{3}{2}\left(s \overline{\bar{\tau}}: s \overline{\bar{\tau}}-\frac{1}{3}\left(t_{r} s \overline{\bar{\tau}}\right)^{2}\right) \tag{5.166}
\end{align*}
$$

$$
\begin{align*}
& \overline{\overline{1}}: \overline{\overline{1}}=3 \tag{5.167}\\
& s=\overline{\overline{1}}: \overline{\overline{1}}: s \overline{\bar{z}}=\text { tr } s \overline{\bar{z}} \tag{5.168}
\end{align*}
$$

Equation 5.160 for ${ }^{8} \Phi_{1}$, can bo waition in torms of the components of ${ }^{8} 5$ in the prosont confiquation of the hody-fixed convocted conraimate system:

Hence,

$$
\begin{equation*}
\Phi_{1}=\frac{3}{2}\left({ }^{s} \tau_{J} \operatorname{s}_{I}-\frac{1}{3}\left(\tau_{K}^{K}\right)^{2}\right) \tag{5.170}
\end{equation*}
$$

Or

$$
\begin{equation*}
s \Phi_{1}=\frac{3}{2} s^{2} \tau_{\tau} \tau_{I}^{J}-\frac{1}{2}\left(\tau_{k}^{k}\right)^{2} \tag{5.171}
\end{equation*}
$$

Under plame strebs

$$
\begin{equation*}
\tau_{3}^{3}=\tau_{2}^{3}=\tau_{3}^{2}=\tau_{3}^{1}=\tau_{1}^{3}=0 \tag{5.172}
\end{equation*}
$$

W4. 1. 171 becomest
$s \Phi_{1}=\left(\tau_{1}^{1}\right)^{2}+\left(\tau_{2}^{2}\right)^{2}+3\left(\tau_{2}^{1}\right)\left(\tau_{1}^{2}\right)-\tau_{1}^{s} \tau_{2}^{1} \tau_{(1,1 \%)}^{2}$

Since, from Eq. 2.270:

$$
\begin{equation*}
\tau_{k}^{I}=C_{k l} S^{l_{i}} \tag{5.174}
\end{equation*}
$$

and, from Eds. 5.161 and 5.165:

$$
\begin{gathered}
S^{33}=S^{23}=S^{13}=0 \\
C_{13}=C_{23}=0
\end{gathered}
$$

then, Eq. 5.173 is equivalent to:

$$
\begin{align*}
& s_{\Phi_{1}}=\left(C_{11} S^{11}\right)^{2}+\left(C_{22} S^{22}\right)^{2}+\left[\left(C_{12}\right)^{2}+3 C_{11} C_{22}\right]\left(S^{12}\right)^{2} \\
& +\left[C_{11} S^{11}+C_{22} S^{22}\right] 4 C_{12} S^{12}+\left[3\left(C_{12}\right)^{2}-C_{11} C_{22}\right] s^{11} S^{22} \tag{5,175}
\end{align*}
$$

where the components $C_{i j}$ of the right cauchy-Green deformation tensor were defined in Eq. 5.158 in terms of the components $\gamma_{i j}$ of the Green strain tensor.

The second term in the loading function ${ }^{\mathbf{3}} \mathbf{\Phi}$ is (from Eq. 5.163):

$$
\begin{equation*}
s_{\Phi_{2}}=\left(s_{q_{u}^{y}}^{2}=\left(s_{u_{0}}^{y}\right)^{2}\left(1+\left(\frac{\sqrt{\frac{3}{2} D^{D} D^{D}}}{s d}\right)^{\frac{1}{2} p}\right)^{2}\right. \tag{5.176}
\end{equation*}
$$

where ${ }^{s} T_{\text {vo }}$ is the static (rate independent) Kirchhoff stress yield of a specimen in uniaxial tension, and ${ }^{s} d$ and ${ }^{s} p$ are material strain-rate constants, as discussed in subsection 3.3. Equation 5.176 can bo rewritten as:

$$
\begin{equation*}
\Phi_{2}=\left(s \tau_{u_{0}}^{y}\right)^{2}\left(1+\left(\frac{\sqrt{D}}{s d}\right)^{\frac{1}{s p}}\right)^{2} \tag{5.177}
\end{equation*}
$$

where D is an "equivalent deformation rate" defined by:

$$
\begin{equation*}
D=\frac{3}{2} \equiv D: D \tag{5.178}
\end{equation*}
$$

Which, being the scalar product of two doviatoric tensors, can bo expressed as:

$$
\begin{align*}
& D=\frac{3}{2} D_{\frac{x}{y}}^{x} D_{\mathrm{I}}^{J}-\frac{1}{2}\left(D_{k}^{k}\right)^{2} \\
& \overline{\bar{D}}=D_{s}^{x} \bar{G}_{x} \bar{G}^{J} \tag{6.179}
\end{align*}
$$

just: as the scalar product of the doviatorio Kirchhoff strong tensor: were expressed in the form of kq . 5.171 , bim Hg . 2.188 one dan expos the components D_{j}^{I} of tho rate-of-doEnmation tensor in toms of the material. rate of tho (Freon strain components $\dot{\gamma}_{i f}$:

$$
\begin{equation*}
D_{J}^{I}=\left(C^{-1}\right)^{i l} \dot{\gamma}_{l j} \tag{5.180}
\end{equation*}
$$

where the components $\left(C^{-1}\right)$ il were defined in -1.5 .159 . since

$$
\begin{equation*}
\left(C^{-1}\right)^{\alpha^{3}}=\dot{\gamma}_{\alpha 3}=0 \quad \alpha=1,2 \tag{5.181}
\end{equation*}
$$

from Eq. 5.157, then:

$$
\begin{equation*}
D_{3}^{1}=D_{1}^{3}=D_{3}^{2}=D_{2}^{3}=0 \tag{5.182}
\end{equation*}
$$

and hence. Eq. 5.179 becomes:

$$
\begin{equation*}
D=\left(D_{1}^{1}\right)^{2}+\left(D_{2}^{2}\right)^{2}+3\left(D_{2}^{1}\right)\left(D_{1}^{2}\right)-\left(D_{1}^{1}\right)\left(D_{2}^{2}\right)+D_{3}^{3}\left(D_{3}^{3}-D_{1}^{1}-D_{2}^{2}\right) \tag{5.183}
\end{equation*}
$$

Since the present analysis is formulated in corms of the strain components $\gamma_{\text {if }}$, Eq. 5.183 will be expressed in terms of these quantities. From Lis. 5.180 and 5.158:

$$
\begin{equation*}
\left.D_{3}^{3}=\left(C^{-1}\right)^{33} \mathscr{\gamma}_{33}=\frac{\dot{\gamma}_{33}}{C_{33}}=\frac{\mathscr{\gamma}_{33}}{\left(1+2 \gamma_{33}\right.}\right) \tag{5.184}
\end{equation*}
$$

It can bo shown, after some tedious aloha, that

$$
\begin{aligned}
D_{3}^{3}= & -\left(\stackrel{C}{C}^{-1}\right)^{11} \frac{d}{d t}\left(\gamma_{11}\right)-\left(\dot{C}^{-1}\right)^{22} \frac{d}{d t}\left(\stackrel{(}{\gamma}_{22}\right) \\
& -\left(\dot{C}^{-1}\right)^{12} \frac{d}{d t}\left(C_{12}\right)
\end{aligned}
$$

where

$$
\begin{align*}
& \stackrel{\circ}{C}_{i j}=a_{i j}+2 \dot{\gamma}_{i j} \tag{5.186}\\
& \left\|\dot{C}_{i j}\right\|=\left\|\begin{array}{lll}
\dot{C}_{11} & \dot{C}_{12} & 0 \\
\dot{C}_{12} & \dot{C}_{22} & 0 \\
0 & 0 & C_{33}
\end{array}\right\|=\left\|\begin{array}{ccc}
\left(a_{11}+2 \dot{\gamma}_{11}\right) & 2 \dot{\gamma}_{12} & 0 \\
2 \dot{\gamma}_{12} & \left(a_{22}+2 \dot{\gamma}_{22}\right) & 0 \\
0 & 0 & \left(1+2 \gamma_{33}\right)
\end{array}\right\|(5.187)
\end{align*}
$$

$$
\begin{aligned}
& C_{33}=1+2 \gamma_{33}=\frac{a}{A}=\frac{1}{\left(1+28_{1}^{\prime}\right)\left(1+2 \dot{g}_{2}^{2}\right)-\left(2 \gamma_{2}^{8}\right)\left(2 \gamma_{1}^{2}\right)^{(5.189)}}
\end{aligned}
$$

and

$$
\begin{align*}
D= & {\left[\left(C^{-1}\right)^{11} \gamma_{11}\right]^{2}+\left[\left(C^{-1}\right)^{22} \dot{\gamma}_{22}\right]^{2} } \\
& +\left\{\left[\left(C^{-1}\right)^{12}\right]^{2}+3\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{22}\right\}\left(\dot{\gamma}_{12}\right)^{2} \\
& +4\left[\left(C^{-1}\right)^{11} \dot{\gamma}_{11}+\left(C^{-1}\right)^{22} \dot{\gamma}_{22}\right]\left(C^{-1}\right)^{12} \dot{\gamma}_{12} \tag{5.190}\\
& +\left\{3\left[\left(C^{-1}\right)^{12}\right]^{2}-\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{22}\right\} \dot{\gamma}_{11} \dot{\gamma}_{22} \\
& +D_{3}^{3}\left[D_{3}^{3}-\left(C^{-1}\right)^{11} \dot{\gamma}_{11}-\left(C^{-1}\right)^{22} \ddot{\gamma}_{22}\left(C^{-1}\right)^{12} \dot{\gamma}_{12}\right]
\end{align*}
$$

whore the components $\left[C^{-1}\right]^{i t}$ are defined in El. 5.159 and D_{3}^{3} is defined by Eq. 5.185. Therefore,

$$
s \Phi=\frac{2}{3}\left({ }^{s} \Phi_{1}-s \Phi_{2}\right)
$$

is defined in terms of $s^{i j}, \gamma_{i j}$ and $\dot{\gamma}_{i f}$ by, Has. 5.175, 5.158, 5.177, 5.185, 5.187, 5.188, 5.159, and 5.190.
5.3.2.3 "Elastic" Part of the Constitutive Relations for Plane
stress and Finite Strains
Consider Eq. 3.31; namely,

$$
\begin{equation*}
s \overline{\bar{\tau}}=s:^{s} s^{e} \tag{5,191}
\end{equation*}
$$

where ${ }^{80}$ is the co-rotational rate of the Kirchhoff stress ${ }^{5} \mathrm{~T}$ of sublayer s. SE is the fourth order "elasticity tensor", considered here to be the same for each sublayer s:

$$
\begin{equation*}
E=\leq \tag{5.192}
\end{equation*}
$$

and $\ddot{7}^{\circ}$ the "elastic" part of the rate-of-defomation tensor. Expression below will bo made explicit in toms of the components in the present continuation of the body -fixed convected comadhato :y stem:

$$
\begin{equation*}
s \frac{0}{\mathcal{C}}=5 \stackrel{\circ}{\mathcal{C}}_{J}^{G_{I}} \bar{G}^{J} \tag{5.193}
\end{equation*}
$$

$$
\begin{align*}
& { }^{s} \overline{\bar{D}^{e}}={ }^{s} D_{k}^{l} \bar{G}_{L} \bar{G}^{k} \tag{5.194}
\end{align*}
$$

Honce, one obtains

$$
\begin{equation*}
s \stackrel{O}{U}_{J}^{0}=E_{J}^{I}{ }_{K}^{K}\left(s D^{e}\right)_{K}^{L} \tag{5.196}
\end{equation*}
$$

For plane-stress conditions of an isotropic material, the classical planestress elasticity relations are generalized to finite strains and rotations as follows:

$$
\begin{align*}
& s{\underset{\tau}{1}}_{0}^{1}=E_{11}^{11}\left(s D^{e}\right)_{1}^{1}+E_{12}^{12}\left(s D^{e}\right)_{2}^{2} \tag{5.197}\\
& s \stackrel{\tau}{\tau}_{2}^{0}=E_{22}^{22}\left(s D^{e}\right)_{2}^{2}+E_{21}^{21}\left(s D^{e}\right)_{1}^{1} \tag{5.198}\\
& s_{2}^{0}{\underset{\tau}{2}}_{1}=E_{212}^{12}\left(s D^{e}\right)_{2}^{1} \tag{5.199}\\
& s \dot{\tau}_{1}^{0}=E_{12}^{2}\left(s D^{e}\right)_{1}^{2} \tag{5.200}
\end{align*}
$$

where the mixed components of the fourth order clasticity tensor $\overline{\text { 皀 are }}$

$$
\begin{aligned}
& E_{11}^{11}=E_{22}^{22}=\frac{E_{2}}{\left(1-\nu^{2}\right)} \\
& E_{12}^{12}=E_{21}^{21}=\frac{E_{\nu}}{\left(1-\nu^{2}\right)}=\nu E_{11}^{11} \\
& E_{21}^{12}=E_{21}^{21}=\frac{E}{1+\nu}=E_{11}^{11}-E_{12}^{12}=(1-\nu) E_{11}^{11}
\end{aligned}
$$

IUN physitoal compononts* of a fourth ordor tonnor aro,

$$
\begin{equation*}
\left(E_{J L}^{I K}\right)^{p h y \Delta i c a l}=\sqrt{\frac{G_{K K}}{G_{L L}} \frac{G_{I x}}{G_{J J}}} E_{J L}^{I K} \tag{5.204}
\end{equation*}
$$

Honeo.

$$
\begin{aligned}
& \left(E_{11}^{11}\right)^{\text {physical }}=\sqrt{\frac{G_{11}}{G_{11}} \frac{G_{11}}{G_{11}}} E_{11}^{11}=E_{11}^{11} \\
& \left(E_{22}^{22}\right)^{\text {phycical }}=\sqrt{\frac{G_{22}}{G_{22}} \frac{G_{22}}{G_{22}}} E_{22}^{22}=E_{22}^{22} \\
& \left(E_{12}^{12}\right)^{\text {plycical }}=\sqrt{\frac{G_{22}}{G_{22}} \frac{G_{11}}{G_{11}} E_{12}^{12}=E_{12}^{12}}
\end{aligned}
$$

$$
\begin{equation*}
\left(E_{21}^{21}\right)^{p \text { physical }}=\sqrt{\frac{G_{11}}{G_{11}} \frac{G_{22}}{G_{22}}} E_{21}^{24}=E_{21}^{21} \tag{5.208}
\end{equation*}
$$

$$
\begin{equation*}
\left(E_{21}^{12}\right)^{\text {phrical }}=\sqrt{\frac{G_{22}}{G_{11}} \frac{G_{11}}{G_{22}}} E_{21}^{12}=E_{21}^{12} \tag{5.209}
\end{equation*}
$$

$$
\left(E_{12}^{21}\right)^{\text {phypal }}=\sqrt{\frac{G_{11}}{G_{22}} \frac{G_{22}}{G_{11}}} E_{12}^{21}=E_{12}^{21}
$$

[^35]The components $\mathrm{E}_{\mathrm{TL}}^{\mathrm{IK}}$ in Eq. 5.197-5.200 axon, indond, physical components and, thoroforn, E and v taro Young'a modulus and pol mon'n ratio, ronpoce lively, an measured from oxporimentr.

Expressions 5.197-5.200 are written in terms of the en-rotiational Kirchhoff athos rato and tho rato-of-doformation tumor, both quantities associated with the prosent configuration. Since the prosont finite oloment analysis is formulated in terms of a roforonce configuration, one has to express Eqs. 5.197-5.200 in forme of the and Piola-Kirchioff stress and the Green strain.

Before doing this, an important point will be mentioned. In section 3, Eq. 3.32, the following additive decomposition of the rate-of-defomation tensor $\overline{\bar{D}}$ was assumed:

$$
\begin{equation*}
s \overline{\bar{D}}=\overline{\bar{D}} s=\overline{\bar{D}}^{e}+\overline{\bar{D}}^{p} \tag{5.211}
\end{equation*}
$$

From Eq. 2.182:

$$
\begin{equation*}
\dot{\overline{\bar{\gamma}}}=\overline{\bar{F}} T \cdot \overline{\bar{W}} \cdot \overline{\bar{F}} \tag{5.212}
\end{equation*}
$$

Hence, one can express the additive decomposition of the rate-of-deformatimon tensor $\overline{\bar{D}}$ in terms of the material rate of the Green strain tensor $\stackrel{\dot{4}}{\gamma}$ as follows:

$$
\begin{aligned}
& \dot{\bar{\gamma}}=\overline{\bar{F}} T \cdot \overline{\bar{D}} \cdot \overline{\bar{F}} \cdot \overline{\bar{F}} T \cdot\left(s \overline{\bar{D}}^{e}+s \overline{\bar{D}}^{p}\right) \cdot \overline{\bar{F}} \\
& \dot{\overline{\bar{\gamma}}}=\overline{\bar{F}} \cdot s_{\overline{\bar{D}} e \cdot \overline{\bar{F}}+\overline{\bar{F}}^{T} \cdot s \overline{\bar{D}}^{p} \cdot \overline{\bar{F}}}
\end{aligned}
$$

If one wishes, one may define the "elastic" Green strain rate as:

$$
\begin{equation*}
s^{\overline{\delta_{\gamma}}} e \equiv \overline{\bar{F}}^{T} \cdot s \overline{\bar{D}} e \cdot \overline{\bar{F}} \tag{5.214}
\end{equation*}
$$

and the "plastic" Green strain rate as:

$$
\begin{equation*}
s \overline{\overline{\bar{\gamma}}}^{P}=\overline{\bar{F}}^{T} \cdot s \overline{\overline{\bar{D}} p} \cdot \overline{\overline{\bar{F}}} \tag{5.215}
\end{equation*}
$$

Thorofore, from Eq, 5.213:

$$
\begin{equation*}
\bar{\gamma}=s \bar{\gamma} e+s \bar{\chi} \tag{5.216}
\end{equation*}
$$

tho Grown strain material rato $\dot{\vec{\gamma}}$ can bo docomposod, as wold as $\overline{1 D}$, into additive elastic and plastic parts.

Since this was shown to bo true in the absolute tensor notation, it is true for any coordinate system. In particular, for the body-fixed convected coordinate system one obtains:

$$
\begin{gather*}
D_{J}^{I}=s\left(D_{J}^{I}\right)^{e}+s\left(D_{J}^{I}\right)^{p} \tag{5.217}\\
D_{J}^{I} G_{I K}=s\left(D_{J}^{I}\right)^{e} G_{I K}+s\left(D_{J}^{I}\right)^{p} G_{I K} \tag{5.218}\\
D_{J K}=s\left(D_{J K}\right)^{e}+s\left(D_{J K}\right)^{p} \tag{5.219}
\end{gather*}
$$

From Eq. 2.175:

$$
\begin{equation*}
\ddot{\gamma}_{i j}=D_{I I} \tag{5.220}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\dot{\gamma}_{i j}=s\left(\dot{\gamma}_{i j}\right)^{e}+s\left(\ddot{\gamma}_{i j}\right)^{p} \tag{5.221}
\end{equation*}
$$

or, from Eq. 2.188:

$$
\begin{equation*}
D_{J}^{I}=\left(C^{-1}\right)^{i l} \ddot{\gamma}_{L_{j}} \tag{5.222}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
J_{J}^{I}=\left(D_{J}^{I}\right)^{e}+\left(D_{J}^{T}\right)^{P}=\left(C^{-1}\right)^{i l} s\left(\gamma_{l j}\right)^{e}+\left(C^{-1}\right)^{i l} s\left(\dot{\gamma}_{\ell_{j}}\right)^{p} \tag{5.223}
\end{equation*}
$$

whore

$$
\begin{align*}
& \left(J_{j}^{2}\right)^{e}=\left(C^{-1}\right)^{i l}\left(\dot{\gamma}_{l j}\right)^{e} \tag{5.224}\\
& \left(D_{J}^{2}\right)^{P}=\left(C^{-1}\right)^{i l} s\left(\gamma_{\ell j}\right)^{p} \tag{5.225}
\end{align*}
$$

Note, that the deformation gradient tensor \bar{F} appearing in expressions $5.213,5.214$, and 5.215 is the total deformation gradient tensor that measures the total deformation from the reference configuration to the present configuration. Also, the Cauchy-Green deformation tensor components $\left(C^{-1}\right)$ il appearing in expressions $5.223,5.224$, and 5.225 are the total deformation tensor components. The decompositions

$$
\begin{align*}
& \overline{\bar{D}}=s \overline{\bar{D}}^{e}+s \overline{\bar{D}}^{p} \tag{5.226}\\
& \dot{\bar{\gamma}}=s \dot{\bar{\gamma}}^{e} e+s \dot{\bar{\gamma}} p \tag{5.227}
\end{align*}
$$

are exact. The first decomposition (Eq. 5.226) measures the "elastic" and plastic deformation rates with respect to the differential length of the differential line element in the present configuration, while the second measures it with respect to the reference configuration differential line element.

The basic assumption is that the differential line element as in the present configuration can be decomposed into "elastic" and "plastic" parts:

$$
\begin{align*}
& (d S)^{2}=d \bar{R} \cdot d \bar{R} \tag{5.228}\\
& d S={ }^{s}(d S)^{e}+{ }^{s}\left(d S^{\prime}\right)^{p} \tag{5.229}
\end{align*}
$$

Homos, tho material rato of the difforontial lino aloment dis in the prosont an figuration can alpo bo ducomponod into atlantic and plastic patio:

$$
\begin{align*}
& \frac{d}{d t}(d S)=d \dot{S} \tag{5.230}\\
& d \dot{S} \dot{S}^{\prime}={ }^{s}(d \dot{S})^{e}+{ }^{s}(d \dot{S})^{p} \tag{5.232}
\end{align*}
$$

Dividing this relation by tho longth of tho differential line element in the prosent configuration, ono obtains tho additive decomposition of the rate-of-deformation tensor ($\mathrm{Eq}, 5.226$):

Since the Green strain tensor compares lengths in the present and reference configurations:

$$
\begin{align*}
& \gamma=\frac{1}{2}\left(\frac{(d S)^{2}-(d s)^{2}}{(d s)^{2}}\right)=\frac{1}{2}\left(\frac{(d S)^{2}}{(d s)^{2}}-1\right) \tag{5.233}\\
& C=\frac{(d S)^{2}}{(d s)^{2}}=1+2 X=(U)^{2} \tag{5.234}
\end{align*}
$$

its material rate is:

$$
\begin{align*}
& \dot{\gamma}=\frac{d}{d t}\left(\frac{1}{2}\left(\left(\frac{d S}{d s}\right)^{2}-1\right)\right)=\frac{d s}{d s}\left(\frac{d \dot{s}}{d s}\right) \tag{5.235}\\
& \dot{\gamma}=\frac{1}{2} \dot{C} \tag{5.236}
\end{align*}
$$

Multiplying Eq. $5.2311 y C=1+2 Y=\left(\frac{d S}{d s}\right)^{2}$, one obtains :

$$
\begin{align*}
& \frac{\Delta}{\bar{\gamma}}=s \frac{\theta}{\bar{\gamma}} a+s+\frac{\Delta}{\gamma} p \tag{5,238}
\end{align*}
$$

which in equivalent to:

Therefore, the additive decomposition of the rate-of-deformation tensor
 decomposition of the material rate ($\mathrm{a} \dot{\mathrm{S}}$) of the differential line element as in the present configuration into "elastic" (da's) and plastic (asp) parts, which are measured with respect to the total differential line element as in the present configuration. The additive decomposition of the material rate $\stackrel{\stackrel{\rightharpoonup}{\gamma}}{\gamma}$ of the Green strain tensor $\bar{\gamma}$ into "elasti cns $\stackrel{=}{\gamma}$ and plastic ${ }^{s}{ }^{p}$ parts is tantamount to the additive decomposition of the material rate ($\mathrm{d} \dot{\mathrm{S}}$) of the differential line element (aS) in the present configuration into "elastic" (die) and plastic ($\mathrm{d} \mathrm{s}^{\mathrm{s}}$) parts, which are measured with respect to differential in e element ids in the reference configuration.

Consider, for the moment, that the deformation in sublayer s is totally elastic, then

$$
\begin{align*}
& s\left(D_{j}^{I}\right)^{e}=D_{J}^{I} \tag{5.240}\\
& \left(\gamma_{i j}\right)^{e}=\dot{\gamma}_{i j} \tag{5.241}\\
& D_{J}^{I}=\left(c^{-i}\right)^{i l} \gamma_{2}{ }_{j} \tag{5.242}
\end{align*}
$$

By monna of Eq. G. 242 and Eq. 2.353, namnly,

$$
\dot{\tau}_{j}^{a}=\dot{S}^{i m} C_{m j}+\frac{1}{2} S^{k m} \dot{C}_{m l}\left[\delta_{k}^{i} \delta_{j}^{l}+\left(C^{-1}\right)^{l_{i}} C_{k j}\right]
$$

 somo dongthy algobra:

$$
\begin{aligned}
& s^{-11}=\dot{\gamma}_{11}\left\{E_{11}^{11}\left[\left(C^{-1}\right)^{11}\right]^{2}-2^{s} S^{11}\left(C^{-1}\right)^{11}\right\} \\
& +\left(2 \dot{\gamma}_{12}\right)\left\{E_{11}^{11}\left(C^{-4}\right)^{12}\left(C^{-1}\right)^{14}-{ }^{5} S^{12}\left(C^{-1}\right)^{11}-S^{51}\left(C^{-1}\right)^{12}\right\} \\
& +\dot{\gamma}_{22}\left\{E_{12}^{12}\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{22}+E_{24}^{12}\left[\left(C^{-1}\right)^{12}\right]^{2}-2^{5 S^{12}}\left(C^{-1}\right)^{12}\right\}(5.244) \\
& { }^{s} \dot{S}^{22}=\dot{\gamma}_{22}\left\{E_{11}^{11}\left[\left(C^{-1}\right)^{22}\right]^{2}-2^{s} S^{22}\left(C^{-1}\right)^{22}\right\} \\
& +\left(2 \dot{\gamma}_{12}\right)\left\{E_{11}^{11}\left(C^{-1}\right)^{12}\left(C^{-1}\right)^{22}-5 S^{12}\left(C^{-1}\right)^{22}-{ }^{5} S^{22}\left(C^{-1}\right)^{12}\right\} \\
& +\dot{\gamma}_{11}\left\{E_{12}^{12}\left(C^{-1}\right)^{12}\left(C^{-1}\right)^{12}+E_{21}^{12}\left[\left(C^{-1}\right)^{12}\right]^{2}-2^{5} S^{12}\left(C^{-1}\right)^{12}\right\} \\
& \text { (5.245) } \\
& s \dot{S}^{12}=\gamma_{11}\left\{E_{11}^{11}\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{12}-S^{11}\left(C^{-1}\right)^{12}-S^{12}\left(C^{-1}\right)^{11}\right\} \\
& +\frac{1}{2}\left(2 \dot{\gamma}_{12}\right)\left\{\left(E_{11}^{11}+E_{12}^{12}\right)\left[\left(C^{-1}\right)^{12}\right]^{2}+E_{21}^{12}\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{22}-2^{2} S^{12}\left(C^{-1}\right)^{12}\right. \\
& \left.\because^{-12}\left(C^{-1}\right)^{12}-S^{\prime \prime}\left(C^{-1}\right)^{22}-S^{22}\left(C^{-1}\right)^{11}\right\} \\
& +\dot{\gamma}_{22}\left\{E_{11}^{11}\left(C^{-1}\right)^{22}\left(C^{-1}\right)^{12}-S^{22}\left(C^{-1}\right)^{12}-S^{12}\left(C^{-1}\right)^{22}\right\}
\end{aligned}
$$

wherg

$$
\begin{align*}
& E_{11}^{11}=\frac{E}{\left(1-\nu^{2}\right)} \tag{5.247}\\
& E_{12}^{12}=\frac{\nu E}{\left(1-\nu^{2}\right)}=\nu E_{11}^{11} \tag{5.248}\\
& E_{21}^{12}=\frac{E}{1+\nu}=(1-\nu) E_{11}^{11} \tag{5.249}
\end{align*}
$$

as defined in Eqs, 5.201-5.203, and the inverse of the right Cauchy-Green deformation tensor $\left[C^{-1}\right]^{i j}$ was defined in Eq. 5.159. Compare Eqg. 5.2445.246 with their "small strain" approximation:

$$
\begin{align*}
& s \dot{S}^{11}=\dot{\gamma}_{11} E_{11}^{11}+\dot{\gamma}_{22} E_{12}^{12} \tag{5.250}\\
& s \dot{S}^{22}=\dot{\gamma}_{22} E_{11}^{11}+\dot{\gamma}_{11} E_{12}^{12} \tag{5.251}\\
& 5 \dot{S}^{12}=\dot{\gamma}_{12} E_{21}^{12} \tag{5.252}
\end{align*}
$$

to evaluate the errors incurred in such an approximation.

5.3.2.4 "Plastic" Part of the Constitutive Relations for Plane Stress and Finite Strains

From Section 3, Eq. 3.33, the constitutive relations of the sth sublayer is:

$$
\begin{equation*}
s \stackrel{0}{\tilde{\varepsilon}}=E:(\bar{D}-\bar{D}) \tag{5.253}
\end{equation*}
$$

or

$$
\begin{align*}
& s \stackrel{0}{\bar{\tau}}=\overline{\bar{E}} \cdot \overline{\bar{D}}-\overline{\bar{E}} \overline{\bar{D}}^{P} \\
& s \stackrel{0}{\tilde{\tau}}=\left(s^{\stackrel{0}{\tilde{c}}}\right)_{1}-\left(s^{\frac{0}{\tau}}\right)_{2} \tag{5.254}
\end{align*}
$$

The first part of this rolationship, namely,

$$
\begin{align*}
& \left(s \frac{0}{\mathcal{C}}\right)_{1}=E: \overline{\bar{E}} \tag{5,255}\\
& \left(s \stackrel{0}{\tau}_{J}^{J}\right)_{1}=E_{J L}^{K} D_{K}^{L} \tag{5.256}
\end{align*}
$$

was treatod extensively in the previous subsection, and was expressed in terms of the 2nd Piola-Kirchhoff stress components ${ }_{s}{ }^{i j}$ and the material rate of the Green strain tensor with components $\gamma_{i j}$ in Eqs. 5.244-5.246. In this subsection the second part of expression 5.254 ; namely, the term

$$
\begin{equation*}
(s \stackrel{0}{\bar{\tau}})_{2}=E: s \tag{5.257}
\end{equation*}
$$

will be studied.
From Eq. 3.47, the plastic rate-of-deformation tensor ${ }^{5}{ }^{5} \mathrm{p}$ of sublayer $\underline{S}^{\text {s }}$ can be expressed as:

$$
\begin{equation*}
s \overline{\bar{D}}^{p}=s \dot{\lambda}^{s} \overline{\bar{\tau}} p \tag{5,258}
\end{equation*}
$$

Hence, one can write Eq. 5.257 as

$$
\begin{equation*}
(s \stackrel{o}{\bar{c}})_{2}=\overline{\bar{E}}: s \dot{\lambda} s \tag{5.259}
\end{equation*}
$$

or, in the body-fixed convected coordinate system, in the present configuration:

$$
\begin{equation*}
\left(s^{s} \stackrel{0}{J}_{J}\right)_{2}={ }^{s} \dot{\lambda} E_{J L}^{I_{J}^{K}}\left(s \tau^{D}\right)_{k}^{L} \tag{5.260}
\end{equation*}
$$

For plane stress conditions, this equation becomes

$$
\begin{equation*}
\left(s \stackrel{0}{\tau}_{J}^{I}\right)_{2}={ }^{s} \dot{\lambda} E_{21}^{12}\left({ }^{s} \tau_{K}^{L}-\frac{1-2 \nu}{3(1-\nu)} \delta_{k}^{L}\left(s \tau_{1}^{1}+{ }^{s} \tau_{2}^{2}\right)\right) \tag{5,261}
\end{equation*}
$$

where, as before,

$$
\begin{equation*}
E_{21}^{12}=\frac{E}{1+\nu} \tag{5.262}
\end{equation*}
$$

Defining,

$$
\begin{equation*}
{ }^{s} \dot{\lambda}^{*}=\frac{1}{3} E_{21}^{12}{ }^{s} \dot{\lambda}=\frac{E}{3(1+\eta)}{ }^{s} \dot{\lambda} \tag{5.263}
\end{equation*}
$$

expression 5.253 becomes:

$$
\begin{align*}
& \left(s{\underset{\tau}{1}}_{1}^{0}\right)_{2}=s \lambda^{*}\left(3^{s} \tau_{1}^{1}-\left(\frac{1-2 v}{1-v}\right)\left(s \tau_{1}^{1}+s \tau_{2}^{2}\right)\right) \tag{5.264}\\
& \left(s{\underset{\tau}{c}}_{2}^{0}\right)_{2}=s \lambda^{*}\left(3^{s} \tau_{2}^{2}-\left(\frac{1-2 \nu}{1-\nu}\right)\left(s \tau_{1}^{1}+{ }^{s} \tau_{2}^{2}\right)\right) \tag{5.265}\\
& \left(s \stackrel{0}{\tau}_{2}^{0}\right)_{2}=s \lambda^{*} 3^{s} \tau_{2}^{1} \tag{5.266}\\
& \left(s \stackrel{0}{\tau}_{1}^{2}\right)_{2}=s \lambda^{*} 3^{s} \tau_{1}^{2} \tag{5.267}
\end{align*}
$$

Using Eq. 2.270, and the conditions of plane-stress (Eq. 5.161)

$$
\begin{align*}
& \mathcal{C}_{k}^{I}=C_{k l} S^{l i} \tag{5,268}\\
& S^{33}=S^{23}=S^{13}=0 \tag{5.269}\\
& X_{13}=C_{13}=X_{23}=C_{23}=0 \tag{5,270}
\end{align*}
$$

one obtains

$$
\begin{align*}
& s \tau_{1}^{1}=C_{12}^{s} S^{11}=C_{11}^{s} C^{11}+C_{12} s S^{12} \tag{5.271}\\
& s \tau_{2}^{2}=C_{21}^{s} S^{12}=C_{12}^{s} S^{12}+C_{22}^{s} S^{22} \tag{5,272}\\
& s \tau_{2}^{1}=C_{2 l} S^{s} S_{1}^{l_{1}}-C_{12} 5 S^{11}+C_{22}{ }^{5} S^{12} \tag{5.273}\\
& s \tau_{1}^{2}=C_{1 l}{ }^{s} S^{l_{2}}=C_{11} S^{12}+C_{12}^{s} S^{22} \tag{5.274}
\end{align*}
$$

Honce,

$$
\begin{align*}
& \left(\stackrel{\stackrel{~}{C}}{1}_{1}^{1}\right)_{2}=s \dot{\lambda}^{*}\left(3 C_{11}^{s} S^{11}+3 C_{12}^{s} S^{12}-\frac{(1-2 \nu)}{(1-\nu)}\left(C_{11}^{s} S^{11}+C_{22}^{s} S^{22}+2 C_{12}^{s} S^{12}\right)\right)_{5.275)} \\
& \left(s \dot{\tau}_{2}^{0}\right)_{2}={ }^{s} \dot{\lambda}^{*}\left(3 C_{22}^{s} S^{22}+3 C_{12}^{s} S^{12}-\frac{(1-2 \nu)}{(1-\nu)}\left(C_{11}^{s} S^{11}+C_{22}^{s} S^{22}+2 C_{12}^{s} S^{12}\right) S_{5.276)}\right. \\
& \left(s \dot{\mathcal{C}}_{2}^{1}\right)_{2}=s \dot{\lambda}^{*}\left(3 C_{22}^{s} S^{12}+3 C_{12}^{s} S^{11}\right) \tag{5.277}\\
& \left(s \stackrel{\circ}{C}_{1}^{2}\right)_{2}=s \dot{\lambda}^{*}\left(3 C_{11}^{s} S^{12}+3 C_{12}^{s} S^{22}\right) \tag{5.278}
\end{align*}
$$

Also, from Eqs. 5.197-5.200, 5.191 and 5.254, one obtains:

$$
\begin{align*}
& \left({ }^{s} \stackrel{0}{c}_{1}^{1}\right)_{1}=E_{11}^{11} D_{1}^{1}+E_{12}^{12} D_{2}^{2} \tag{5.279}\\
& \left({ }^{s} \stackrel{0}{c}_{2}^{0}\right)_{1}=E_{11}^{11} D_{2}^{2}+E_{12}^{12} D_{1}^{1} \tag{5.280}\\
& \left(s \dot{\tau}_{2}^{0}\right)_{1}=E_{21}^{12} D_{2}^{1} \tag{5,281}\\
& \left(\begin{array}{c}
s \\
\varepsilon_{1}^{2} \\
1
\end{array}\right)_{1}=E_{21}^{12} D_{1}^{2} \tag{5.282}
\end{align*}
$$

Hence,

$$
\begin{align*}
& s \stackrel{\tau}{c}_{1}^{0}=E_{11}^{11} D_{1}^{1}+E_{12}^{12} D_{2}^{2}-\left(s \dot{\tau}_{1}^{0}\right)_{2} \tag{5.283}\\
& s \stackrel{\varepsilon}{c}_{2}^{0}=E_{11}^{11} D_{2}^{2}+E_{12}^{12} D_{1}^{1}-\left(s \dot{\tau}_{2}^{0}\right)_{2} \tag{5.284}\\
& s \dot{\tau}_{2}^{0}=E_{21}^{12} D_{2}^{1}-\left(s \stackrel{0}{\tau}_{2}^{1}\right)_{2} \tag{5.285}
\end{align*}
$$

$$
\begin{equation*}
s \dot{\tau}_{1}^{2}=E_{21}^{12} D_{1}^{2}-\left(s \dot{\tau}_{1}^{2}\right)_{2} \tag{5.286}
\end{equation*}
$$

Ono can express Eqs. 5.283-5.286 in terms of the material rates of $\mathrm{s}^{\text {jj }}$ and $\gamma_{i f}$ by means of Eq. 2.188, which for these plane stress conditions

$$
\begin{gather*}
S^{31}=S^{32}=S^{33}=0 \tag{5.287}\\
\left(C^{-1}\right)^{13}=\left(C^{-1}\right)^{23}=C_{13}=C_{23}=0 \tag{5.288}
\end{gather*}
$$

becomes

$$
\begin{align*}
& D_{1}^{1}=\left(C^{-1}\right)^{11} \ddot{\gamma}_{11}+\left(C^{-1}\right)^{12} \ddot{\gamma}_{12} \tag{5.289}\\
& D_{2}^{2}=\left(C^{-1}\right)^{12} \ddot{\gamma}_{12}+\left(C^{-1}\right)^{22} \dot{\gamma}_{22} \tag{5.290}\\
& D_{2}^{1}=\left(C^{-1}\right)^{11} \ddot{\gamma}_{12}+\left(C^{-1}\right)^{12} \dot{\gamma}_{22} \tag{5.291}\\
& D_{1}^{2}=\left(C^{-1}\right)^{12} \ddot{\gamma}_{11}+\left(C^{-1}\right)^{22} \ddot{\gamma}_{12} \tag{5.292}
\end{align*}
$$

and by means of Eq. 2.353, which for the plane stress conditions (Eq. 5.287) becomes:

$$
\begin{align*}
s_{1}^{0}= & \dot{S}^{11} C_{11}+s \dot{S}^{12} C_{12} \\
& +\dot{\gamma}_{11}\left\{s^{11}+s S^{11}\left(C^{-1}\right)^{11} C_{11}+s S^{12}\left(C^{-1}\right)^{11} C_{12}\right\} \tag{5.293}\\
& +\left(2 \dot{\gamma}_{12}\right)\left\{s S^{12}+{ }^{s} S^{11}\left(C^{-1}\right)^{12} C_{11}-s S^{22}\left(C^{-1}\right)^{12} C_{22}\right\} \\
& +\ddot{\gamma}_{22}\left\{\left(C^{-1}\right)^{12}\left({ }^{5} S^{12} C_{11}+s S^{22} C_{12}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
& s \dot{\tau}_{2}^{2}={ }^{s} \dot{S}^{22} C_{22}+{ }^{5} \dot{S}^{12} C_{12} \\
& +\dot{\gamma}_{22}\left\{\left\{^{5} S^{22}+{ }^{5} S^{22}\left(C^{-1}\right)^{22} C_{22}+{ }^{5} S^{12}\left(C^{-1}\right)^{22} C_{12}\right\}\right. \\
& +\left(2 \dot{\gamma}_{12}\right)\left\{{ }^{s} S^{12}+{ }^{5} S^{22}\left(C^{-1}\right)^{12} C_{22}-{ }^{s} S^{11}\left(C^{-1}\right)^{12} C_{11}\right\} \tag{5.294}\\
& +\dot{\gamma}_{11}\left\{\left(C^{-1}\right)^{12}\left(s^{s} S^{12} C_{22}+{ }^{s} S^{\prime \prime} C_{12}\right)\right\} \\
& { }^{s} \dot{\tau}_{2}^{1}={ }^{5} \dot{S}^{\prime \prime} C_{12}+{ }^{s} \dot{S}^{12} C_{22} \\
& +\ddot{\gamma}_{11}\left\{\left(C^{-1}\right)^{11}\left({ }^{s} S^{\prime \prime} C_{12}+{ }^{5} S^{12} C_{22}\right)\right\} \\
& +\frac{1}{2}\left(2 \dot{\gamma}_{12}\right)\left\{{ }^{s} S^{\prime \prime}+{ }^{s} S^{\prime \prime}\left(C^{-1}\right)^{12} C_{12}+{ }^{5} S^{22}\left(C^{-1}\right)^{1} C_{22}\right\} \tag{5.295}\\
& +\dot{\gamma}_{22}\left\{{ }^{5} S^{12}+\left(C^{-1}\right)^{12}\left({ }^{5} S^{12} C_{12}+{ }^{5} S^{22} C_{22}\right)\right\} \\
& { }^{5} \dot{\tau}_{1}^{2}={ }^{5} \dot{S}^{22} C_{12}+{ }^{5} \dot{S}^{12} C_{11} \\
& +\ddot{\gamma}_{22}\left\{\left(C^{-1}\right)^{22}\left(s^{22} C_{12}+{ }^{s} S^{12} C_{11}\right)\right\} \\
& +\frac{1}{2}\left(2 \dot{\gamma}_{12}\right)\left\{S^{52}+{ }^{5} S^{22}\left(C^{-1}\right)^{12} C_{12}\right. \\
& \left.+S^{11}\left(C^{-1}\right)^{22} C_{11}\right\} \\
& +\ddot{\gamma}_{11}\left\{{ }^{s} S^{12}+\left(C^{-1}\right)^{12}\left(S^{5} S_{12}+{ }^{s} S^{\prime \prime} C_{11}\right)\right\}
\end{align*}
$$

and \dot{s}^{12}. Solving for tho and PiolamKirchoff stress rates $\dot{\mathrm{s}}^{11}, \dot{\mathrm{~s}}^{22}$ and $\dot{\mathrm{s}}^{12}$ in forms of the stresses, strain rates, and strains, one finally obtains;

$$
\begin{aligned}
s \dot{S}^{\prime \prime} & =\dot{\gamma}_{11}\left\{E_{11}^{11}\left[\left(C^{-1}\right)^{11}\right]^{2}-2^{s} S^{11}\left(C^{-1}\right)^{11}\right\} \\
& +\left(2 \dot{\gamma}_{12}\right)\left\{E_{11}^{11}\left(C^{-1}\right)^{12}\left(C^{-1}\right)^{11}-s S^{12}\left(C^{-1}\right)^{11}-s S^{11}\left(C^{-1}\right)^{12}\right\} \\
& +\dot{\gamma}_{22}\left\{E_{12}^{12}\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{22}+E_{21}^{12}\left[\left(C^{-1}\right)^{12}\right]^{2}-2^{s} S^{12}\left(C^{-1}\right)^{12}\right\} \\
& -\dot{\lambda}^{*}\left\{3^{s} S^{11}-\left(\frac{1-20}{1-1}\right)\left(C^{-1}\right)^{11}\left(s S^{11} C_{11}+{ }^{s} S^{22} C_{22}+2^{s} S^{12} C_{12}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
s \dot{S}^{22} & =\dot{\gamma}_{22}\left\{E_{11}^{11}\left[\left(C^{-1}\right)^{22}\right]^{2}-2^{s} S^{22}\left(C^{-1}\right)^{22}\right\} \\
& +\left(2 \dot{\gamma}_{12}\right)\left\{E_{11}^{11}\left(C^{-1}\right)^{12}\left(C^{-1}\right)^{22}-{ }^{5} S^{12}\left(C^{-1}\right)^{22}-S^{22}\left(C^{-1}\right)^{12}\right\} \tag{5.298}\\
& +\dot{\gamma}_{11}\left\{E_{12}^{12}\left(C^{-1}\right)^{22}\left(C^{-1}\right)^{11}+E_{21}^{12}\left[\left(C^{-1}\right)^{12}\right]^{2}-2^{5} S^{12}\left(C^{-1}\right)^{12}\right\} \\
& -5 \dot{\lambda}^{*}\left\{3^{5} S^{22}-\left(\frac{1-2 \eta}{1-\nu}\right)\left(C^{-1}\right)^{22}\left({ }^{5} S^{11} C_{11}+{ }^{5} S^{22} C_{22}+2^{5} S^{12} C_{12}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
s^{\dot{S}^{12}} & =\dot{\gamma}_{11}\left\{E_{11}^{11}\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{12}-{ }^{5} S^{11}\left(C^{-1}\right)^{12}-S^{12}\left(C^{-1}\right)^{11}\right\} \\
& +\frac{1}{2}\left(2 \dot{\gamma}_{12}\right)\left\{\left(E_{11}^{11}+E_{12}^{12}\right)\left[\left(C^{-1}\right)^{12}\right]^{2}+E_{21}^{12}\left(C^{-1}\right)^{11}\left(C^{-1}\right)^{22}\right. \\
& +\dot{\gamma}_{22}\left\{E_{11}^{11}\left(C^{-1}\right)^{-22}\left(C^{-1}\right)^{12}\left(C^{-1}\right)^{12}-5 S^{22}\left(C^{-1}\right)^{12}-C^{-1} S^{12}\left(C^{-1}\right)^{22}\right\} \\
& \left.-S^{22}\left(C^{-1}\right)^{11}\right\} \\
& \dot{\lambda}^{14}\left\{3^{5} S^{12}-\frac{(1-2 \nu)}{(1-\nu)}\left(C^{-1}\right)^{12}\left(s^{11} C_{11}+{ }^{5} S^{22} C_{22}+2^{s} S^{12} C_{12}\right)\right\}
\end{aligned}
$$

whoro

$$
\begin{aligned}
& \sum_{m=1}^{m}=\frac{E}{(1-\sqrt{2})} \\
& E_{12}^{12}=\frac{1 E}{\left(1-V^{2}\right)}=\sqrt{1}=11 \\
& E 12=\frac{E}{(1+V)}=(1-V) E 11
\end{aligned}
$$

as previously defined in Eqs. 5.201-5.203. The right Cauchy-Grean deformation tensor components $C_{i j}$ and their inverse $\left(C^{-1}\right)^{i j}$ are defined by Eqs. 5.158 and 5.159.

5.3.2.5 Incremental Procedure for the Evaluation of Stresses

In the following, the procedure employed to determine the stress components at any integration point in the volume integrals necessary for the finite element analysis, is described. In the previous subsection this procedure was described for the case in which differential changes in strains and stresses occur. In the present case, however, those rules are applied directly for finite incremental rather than differential changes. Hence, attention must be given to computational difficulties which might, therefore, arise. This matter will be discussed further, presently.

Let it be assumed that at time $(t-\Delta t)$, all stresses, strains, and displacements are known at all shell locations of interest. Further, let it be assumed that the displacement increments Δq_{q} and stiain increments $\Delta \gamma_{i j}$ from time $(t-\Delta t)$ to time t have been calculated. In order to integrate the differential expressions 5.297-5.299, a "mixed roctangle rule" which uses the Cauchy-Green deformation tensor components $\left(C^{-1}\right)^{i j}$ and $C_{i j}$ computed at time t, and the stress tensor components $s_{s}{ }^{i j}$ computed at time $t-\Delta t$ is employed. The trapezoidal rule would be ideally suited for this integration, since it entails a much lower truncation error than the integration method used. However, as it is evident from Eqs. 5.297-5.299,
that tho \quad system to be intogxatod has many corms (many moro than in the small strain approximation of the constitutive oquations) and it is highly coupled. In order to apply the trapezoidal rule (as proviously done in Section 4 for tho curved boam equation), this system of throe coupled equations would have to bo solved in terms of tho stress incromonta $\Lambda^{8} s^{11}, \Lambda^{8} s^{22}$, and $\Lambda^{8} s^{12}$. For the present analysis, these equations are expressed in incremental form by replacing:

$$
\begin{align*}
& s \dot{S}^{\prime \prime}=\frac{\Delta^{s} G^{\prime \prime}}{\Delta t} \quad s \dot{S}^{22}=\frac{\Delta^{s} S^{22}}{\Delta t} \dot{S}^{12}=\frac{\Delta^{s} S^{12}}{\Delta t} \tag{5.300}\\
& \dot{\gamma}_{11}=\frac{\Delta \gamma_{11}}{\Delta t} \quad \dot{\gamma}_{22}=\frac{\Delta \gamma_{22}}{\Delta t} \quad \dot{\gamma}_{12}=\frac{\Delta \gamma_{12}}{\Delta t} \tag{5.301}\\
& \left(C^{-1}\right)^{i j}=\left[\left(C^{-1}\right)^{i j}\right]_{t} \tag{5.302}\\
& \left.s S_{i j}^{i j}=\left[C_{i j}\right]_{t}^{i j}\right)_{t-\Delta t} \tag{5.303}
\end{align*}
$$

in Eqs. 5.297-5. 299.
It is convenient in the computational process for determining the stress components $\left(s s^{i j}\right)_{t}$ at time t to perform an initial examination by forming a trial value of the stress (overscript T) by assuming that the stress increment arises from wholly-"elastic" behavior:

$$
\begin{equation*}
\left(s S^{T} i j\right)_{t}=\Delta^{s} S^{i j}+\left(s S^{i j}\right)_{t-\Delta t} \tag{5.304}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta^{s} S^{\prime \prime} & =\Delta \gamma_{11}\left\{\frac{E}{\left(1-\nu^{2}\right)}\left[\left(C^{-1}\right)_{t}^{11}\right]^{2}-2{ }^{s} S_{t-\Delta t}^{11}\left(C^{-1}\right)_{t}^{11}\right\} \\
& +\left(2 \Delta \gamma_{12}\right)\left\{\frac{E}{\left(1-\nu^{2}\right)}\left(C^{-1}\right)_{t}^{12}\left(C^{-1}\right)_{t}^{11}-{ }^{s} S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{11}-{ }^{s} S_{t-\Delta t}^{11}\left(C^{-1}\right)^{12}\right\} \\
& +\Delta \gamma_{22}\left\{\frac{E, \nu}{\left(1-\nu^{2}\right)}\left(C^{-1}\right)_{t}^{11}\left(C^{-1}\right)_{t}^{22}+\frac{E}{1+\nu}\left[\left(C^{-1}\right)_{t}^{12}\right]^{2}-2^{s} S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{12}\right\} \tag{5.305}
\end{align*}
$$

$$
\begin{aligned}
\Delta^{s} S^{T 22} & =\Delta \gamma_{22}\left\{\frac{E}{\left(1-v^{2}\right)}\left[\left(C^{-1}\right)_{t}^{22}\right]^{2}-2 s S_{t-\Delta t}^{22}\left(C^{-1}\right)_{t}^{22}\right\} \\
& +\left(2 \Delta \gamma_{12}\right)\left\{\frac{E}{\left(1-v^{2}\right)}\left(C^{-1}\right)_{t}^{12}\left(C^{-1}\right)_{t}^{22}-s^{s} S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{22}-s S_{t-\Delta t}^{22}\left(C^{-1}\right)_{t}^{12}\right\} \\
& +\Delta \gamma_{11}\left\{\frac{\nu E}{\left(1-\nu^{2}\right)}\left(C^{-1}\right)_{t}^{22}\left(C^{-1}\right)_{t}^{11}+\frac{E}{1+v}\left[\left(C^{-1}\right)_{t}^{12}\right]^{2}-2^{s} S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{12}\right\} \\
\Delta^{s} S^{12} & =\Delta \gamma_{11}\left\{\frac{E}{\left(1-\nu^{2}\right)}\left(C^{-1}\right)_{t}^{11}\left(C^{-1}\right)_{t}^{12}-s S_{t-\Delta t}^{11}\left(C^{-1}\right)_{t}^{12}-S^{s} S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{11}\right\} \\
& +\frac{1}{2}\left(2 \Delta \gamma_{12}\right)\left\{\frac{E}{(1-\nu)}\left[\left(C^{-1}\right)_{t}^{12}\right]^{2}+\frac{E}{(1+1)}\left(C^{-1}\right)_{t}^{11}\left(C^{-1}\right)_{t}^{22}\right. \\
& \left.-2^{s} S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{12}-{ }^{s} S_{t-\Delta t}^{11}\left(C^{-1}\right)_{t}^{22}-{ }^{s} S_{t-\Delta t}^{22}\left(C^{-1}\right)_{t}^{11}\right\} \\
& +\Delta \gamma_{22}\left\{\frac{E}{\left(1-\nu^{22}\right)}\left(C^{-1}\right)_{t}^{22}\left(C^{-1}\right)_{t}^{12}-s^{s} S_{t-\Delta t}^{22}\left(C^{-1}\right)_{t}^{12}-s S_{t-\Delta t}^{12}\left(C^{-1}\right)_{t}^{11}\right\}
\end{aligned}
$$

It should be noted that the symmetry of these expressions is fully exploited in the computer implementation of the analysis.

Next, a test is performed to determine whether or not the ($\left.{ }^{s} \mathrm{~s}_{\mathrm{T}}^{\mathrm{ij}}\right)_{t}$ are within the "elastic" region bounded by the loading function $\left({ }^{s}\right)_{t}^{T}$ defined by Eqs. 5.175, 5.177, 5.185, and 5.190. Thus, one forms a trial (T) value of the loading function $\left({ }^{s}{ }^{T}\right)_{t}$ of the eth sublayer at time t :

$$
\begin{equation*}
\left(s \frac{T}{\Phi}\right)_{t}=\left(s \frac{T}{\Phi_{1}}\right)_{t}-\left[\left(s \tau_{u}^{y}\right)_{t}\right]^{2} \tag{5.308}
\end{equation*}
$$

where

$$
\left(s^{\frac{T}{\Phi}}\right)_{1}=\left[\left(C_{11}\right)_{t}\left(s S^{\prime \prime}\right)_{t}\right]^{2}+\left[\left(C_{22}\right)_{t}\left(s S^{22}\right)_{t}\right]^{2}+
$$

$$
\begin{align*}
& +\left\{\left[\left(c_{12}\right)_{t}\right]^{2}+3\left(C_{11}\right)_{t}\left(c_{22}\right)_{t}\right\}\left[\left(s^{\top} S^{12}\right)_{t}\right]^{2} \\
& +\left[\left(C_{11}\right)_{t}\left(s^{\top} S^{\top}\right)_{t}+\left(C_{22}\right)_{t}\left({ }^{s}{ }^{\top}{ }^{22}\right)_{t}\right] 4\left(C_{12}\right)_{t}\left(s^{\top} S^{12}\right)_{t} \\
& +\left[3\left[\left(C_{12}\right)_{t}\right)^{2}-\left(C_{11}\right)_{t}\left(C_{22}\right)_{t}\right]\left(s^{\top}{ }^{11}\right)_{t}\left(s^{s} S^{22}\right)_{t} \\
& {\left[\left({ }^{s} \tau_{u}^{y}\right)_{t}\right]^{2}=\left({ }^{s} \tau_{0}^{y}\right)^{2}\left[1+\left(\frac{\sqrt{D_{t}}}{d \Delta t}\right)^{\frac{1}{p}}\right]^{2}} \tag{5,310}\\
& D_{t}=\left[\left(C^{-1}\right)_{t}^{11} \Delta \gamma_{11}\right]^{2}+\left[\left(C^{-1}\right)_{t}^{22} \Delta \gamma_{22}\right]^{2} \\
& +\left\{\left[\left(c^{-1}\right)_{t}^{12}\right]^{2}+3\left(c^{-1}\right)_{t}^{11}\left(c^{-1}\right)_{t}^{22}\right\}\left(\Delta \gamma_{12}\right)^{2} \\
& +2\left[\left(C^{-1}\right)_{t}^{11} \Delta \gamma_{11}+\left(C^{-1}\right)_{t}^{22} \Delta \gamma_{22}\right]\left(C^{-1}\right)_{t}^{12} \Delta 2 \gamma_{12} \tag{5.311}\\
& +\left\{3\left[\left(C^{-1}\right)_{t}^{12}\right]^{2}-\left(C^{-1}\right)_{t}^{11}\left(C^{-1}\right)_{t}^{22}\right\} \Delta \gamma_{11} \Delta \gamma_{22} \\
& +\left(D_{3}^{3}\right)_{t}\left[\left(D_{3}^{3}\right)_{t}+\left(C^{-1}\right)_{t}^{11} \Delta \gamma_{11}+\left(C^{-1}\right)_{t}^{22} \Delta \gamma_{22}+\left(C^{-1}\right)_{t}^{12} \Delta 2 \gamma_{12}\right] \tag{5.312}\\
& \left(D_{3}^{3}\right)_{t}=\left(\dot{C}^{-1}\right)_{t}^{11} \Delta \dot{\gamma}_{11}+\left(\dot{C}^{-1}\right)_{t}^{22} \Delta \dot{\gamma}_{22}+\left(\dot{C}^{-1}\right)_{t}^{12} \Delta 2 \stackrel{\circ}{\gamma}_{12}
\end{align*}
$$

In these expressions:

$$
\begin{aligned}
{ }^{s_{\tau}} \tau_{u_{0}}^{y}= & \text { static yield (Kirchhoff) stress of the eth sublayer } \\
& \text { in an uniaxial test. } \\
d_{p}= & \text { material strain rate constants }
\end{aligned}
$$

If $\left(s_{\Phi}^{T}\right)_{t} \leq 0$, the trial stress state $\left(s_{\mathcal{G}}^{T H}\right)_{t}$ lies within the "elastic" domain bounded by the loading function (yield surface in stress space)
or It lion nxactly on it. Thorofore, for this timo ntop At, thoro han boon no plantio flow and the actual atrobn inoromonta $A\left(\varepsilon^{[1]}\right)$ did, in fact, artao from wholly-nlantic bohavior an indtaliy annumed in tho trfal oxamination. Honen, the actund nexann $\left({ }^{n} \mathrm{~s}^{1 j}\right)$ to aquat to the trial ntrom, thun,

$$
\begin{equation*}
\left({ }^{s} S^{i j}\right)_{t}=\left(s^{\top} S^{i j}\right)_{t}=\Delta\left({ }^{s} S^{i j}\right)+\left(s S^{i j}\right)_{t-\Delta t} \tag{5.313}
\end{equation*}
$$

 outside of the loading function (i.e., in the forbldden rogion). Thorofore, the trial assumption that the entiro strain incremont is an olastic strain incroment is not valid. plastic flow has occurred within this time step and the actual stress state $\left({ }^{s} s^{i j}\right)_{t}$ must lie on the loading function $\left({ }^{s} \Phi\right)_{t}=0$. Then the calculation proceeds as follows. As shown in expressions 5.221 and 5.239 , the total strain rate $\dot{\gamma}_{k \ell}$ can be decomposed exactly into elastic and plastic components for each sublayer s :

$$
\begin{equation*}
s \dot{\gamma}_{k l}^{e}=\dot{\gamma}_{k l}-s \dot{\gamma}_{k l}^{p} \tag{5.314}
\end{equation*}
$$

From expressions 5.297-299, one may see at once that the stress rate $s_{s} \dot{s}^{\text {ij }}$ can be decomposed into two parts, c :e dependent on the total strain rates $\dot{\gamma}_{k \ell}$ and another part dependent on the plastic strain rate ${ }^{\mathbf{s}} \dot{\gamma}_{k \ell}^{p}$ which is:

$$
\begin{equation*}
s \lambda^{*}\left\{3 S^{i j}-\frac{(1-2 \nu)}{(1-\nu)}\left(C^{-1}\right)^{i j}\left(s^{\prime \prime} C_{11}+{ }^{s} S^{22} C_{22}+2^{s} S^{12} C_{12}\right)\right\} \tag{5.315}
\end{equation*}
$$

Sjnce the stress $\left({ }^{s} s^{i j}\right)_{t-\Delta t}$ at the previous time increment $t-\Delta t$ gatisfied the loading function condition

$$
\begin{equation*}
\left({ }^{s} \Phi\right)_{t-\Delta t} \leqslant 0 \tag{5,316}
\end{equation*}
$$

Eq. 5.315 will be integrated during a finite time increment Δt by taking the stresses $\mathrm{s}^{i j}$ and strains $\left(\mathrm{C}^{-1}\right)^{1 j}, \mathrm{C}_{i j \mathrm{j}}$ to be

$$
\begin{align*}
{ }^{s} S^{4} & =\left(S_{S} S^{j}\right)_{t-A t} \tag{5,31.7}\\
\left(C^{-1}\right)^{4 j} & =\left(C^{-1}\right)_{t}^{4} \tag{5,318}\\
C_{i j} & =\left(C_{i j}\right)_{t} \tag{5.31,9}
\end{align*}
$$

Thorafore, ono obtain the following oxprobsion for tho actual patron increment $\Delta\left({ }_{S} g^{j / j}\right)$:

$$
\Delta\left(s^{s} S^{i j}\right)=\underbrace{\Delta\left(s^{s} S^{j}\right)}_{\text {due to }}-\underbrace{\Delta\left(\lambda^{*}\right) \overbrace{\left\{3^{k} S^{i j}\right)_{t-\Delta t}-\left(C^{-1}\right)_{t}^{i j s} S^{p}}^{s S^{j y}}}_{\begin{array}{c}
\text { due to } \tag{5.320}\\
\text { s } V P
\end{array}}
$$ $\Delta^{s} \gamma_{i j}$ ss y

where

$$
{ }^{\prime} S^{p} \equiv \frac{1-2 \nu}{1-1}\left[\left({ }^{5} S^{11}\right)_{t-\Delta t}\left(C_{11}\right)_{t}+\left({ }^{s} S^{22}\right)_{t-\Delta t}\left(C_{22}\right)_{t}+2\left(S^{(S 12}\right)\left(C_{t-\alpha}\right)\right]_{(5.321)}
$$

The actual stress at time t is

$$
\begin{align*}
& \left(s^{(j)}\right)_{t}=\Delta\left(S^{(s i)}\right)+\left(s^{5 j}\right)_{t-a t} \\
& =\left(s^{\top} S^{i j}\right)_{t}-\Delta\left({ }^{s} \lambda^{*}\right) \underbrace{}_{\left.\left(s^{s} s^{i j}\right)_{t-\Delta t}-\left(C^{-1}\right)_{t}^{i j s} S^{p}\right\}} \tag{5.322}
\end{align*}
$$

The parameter $\Delta\left(^{s} \lambda^{*}\right)$ will be obtained from the solution of a second degree polynomial in $\Delta\left({ }^{s} \lambda^{*}\right)$. This second degree polynomial is obtained from the condition that the actual stresses $\left({ }^{5} s^{i j}\right)_{t}$ at time t must satisfy the loading function $\left({ }^{s} \Phi\right)_{t}=0$. This condition insures that the stress $\left({ }^{s} s^{i f}\right)_{t}$ at time $t i s$, indeed, located exactly on the yield surface. Expressing this mathematically:

$$
\begin{aligned}
& (* \Phi)_{t}=0=\left[\left(C_{11}\right)_{t}\left({ }^{s} S^{\prime \prime}\right)_{t}\right]^{2}+\left[\left(C_{22}\right)_{t}\left(s^{52}\right)_{t}\right]^{2} \\
& +\left\{\left[\left(c_{12}\right)_{t}\right]^{2}+3\left(c_{11}\right)_{t}\left(c_{22}\right)_{t}\right\}\left[\left[S^{12} S_{t}\right]^{2}\right. \\
& +\left[\left(C_{11}\right)_{t}\left(s^{\prime \prime} S\right)_{t}+\left(C_{22}\right)_{t}\left(S^{42}\right)_{t}\right] 4\left(C_{12}\right)_{t}\left(S^{12}\right)_{t} \\
& +\left\{3\left[\left(C_{12}\right)_{t}\right]^{2}-\left(C_{11}\right)_{t}\left(C_{22}\right)_{t}\right\}\left(s^{\prime \prime}\right)_{t}\left({ }^{s} S^{22}\right)_{t} \\
& -\left[\left({ }^{s} \tau_{u}^{y}\right)_{t}\right]^{2}
\end{aligned}
$$

where $\left({ }^{s} T_{u}^{y}\right)_{t}$ is obtained from Eq. 5.310. Substituting Eq. 5.322 into Eq. 5.323 and solving for $\Delta\left({ }^{s} \lambda^{*}\right)$ one obtains the physically valid value:

$$
\Delta\left(s \lambda^{*}\right)=\frac{B-\sqrt{B^{2}-A C}}{A} \equiv \frac{C}{B+\sqrt{B^{2}-A C}}
$$

where:

$$
\begin{align*}
& A=\left[\left(C_{11}\right)_{t}\right]^{2}\left[{ }^{S}{ }^{D} 11\right]^{2}+\left[\left(C_{22}\right)_{t}\right]^{2}\left[S^{D} \stackrel{D}{S}^{22}\right]^{2} \\
& +\left\{\left[\left(C_{12}\right)_{t}\right]^{2}+3\left(C_{11}\right)_{t}\left(C_{22}\right)_{t}\right\}\left(s_{S^{12}}^{D^{2}}\right)^{2} \tag{5.325}\\
& +\left[\left(C_{11}\right)_{t}\left(s^{D} \mathrm{~S}^{11}\right)+\left(C_{22}\right)_{t}\left(s^{\mathrm{D}^{22}}\right)\right] 4\left(C_{12}\right)_{t}\left(\mathrm{~s}^{D}{ }^{12}\right) \\
& +\left\{3\left[\left(C_{12}\right)_{t}\right]^{2}-\left(C_{11}\right)_{t}\left(C_{22}\right)_{t}\right\}\left(S^{D} S^{11}\right)\left(S^{D}{ }^{22}\right) \\
& B=\left[\left(C_{11}\right)_{t}\right]^{2}\left({ }^{s} S^{\top}\right)_{t}\left(S^{P} S^{\prime \prime}\right)+\left[\left(C_{22}\right)_{t}\right]^{2}\left(s^{\top} S^{22}\right)_{t}\left(s^{D} S^{22}\right) \\
& +\left\{\left[\left(C_{12}\right)_{t}\right]^{2}+3\left(C_{11}\right)_{t}\left(C_{22}\right)_{t}\right\}\left(S^{\top} S^{12}\right)_{t}\left(s^{s} S^{12}\right)+\left[\left(C_{11}\right)_{t}\left(S^{\top} S^{\prime \prime}\right)_{t}\right.
\end{align*}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left\{3\left[\left(C_{12}\right)_{t}\right]^{2}-\left(C_{11}\right)_{t}\left(C_{22}\right)_{t}\right\}\left\{\left(s^{5} S^{\prime \prime}\right)_{t}\left(s^{N} S^{22}\right)+\left({ }^{5} S^{11}\right)\left(s^{\top} S^{22}\right)_{t}\right\}
\end{aligned}
$$

$$
\begin{equation*}
C=\left(s^{T} \Phi\right)_{t} \tag{5.327}
\end{equation*}
$$

The coofficiont C was already diaplayod in EqB. 5.308-5.312. Tho following requisomonts must be satiafiod:

$$
\begin{align*}
& B^{2}-A C \geqslant 0 \tag{5.328}\\
& B-\sqrt{B^{2}-A C}>0 \tag{5.329}
\end{align*}
$$

During the operation of the solution process for intense loading problems, instances of large strain increments may occur which lead to an imaginary value of ${ }^{s} \lambda^{*}$. A subincremental procedure to circumvent this difficulty as developed by Huffington [165] is employed. The basic time increment Δt, is divided into a number, say L, of equal subincrements; the size of the subincrements is chosen to be sufficiently smai? so that a positive real value of $\Delta^{s} \lambda^{*}$ for each subincrement can be derived successively, as follows. The value of the strain increments $\Delta \gamma_{\text {if }}$ during the time interval Δt are also divided into L equal parts, $\Delta \gamma_{i j} / L$. It is assumed that during each subincrement of length $\Delta t / L$ this change in strain is approximately correct. Then, by employing the previously mentioned procedure, a valid value for $\Delta^{s} \lambda^{*}$ along with stress increments $\Delta\left({ }^{s} s^{i j}\right)$ are calculated for each subinterval, and in the meanwhile, the stresses and plastic strains are kept updated. The process is continued until either (a) the information needed at time t is calculated or (b) a complex or negative $\Delta^{s} \lambda^{*}$ is encountered. In the latter case, the process is repeated from time ($t-\Delta t$) using a larger value of L. If the stresses at time t can be derived successfully, the solution procedure continues with L henceforth set to unity until an imaginary or negative $\Delta^{\mathbf{s}} \lambda^{*}$ is again encountered.

G. 1 Introluct Lon

In thin invosthation, attention in montrictod to mothodn for analy:ing
 reskmbes of atruetures which are subjocted to transiont extornal loads such as thos arisiny from gusts, blast, impact, ote. Fxpliaitiy exeluded from consideration is the "short time" or "early time" responso which is often called "material response", and which portains to the nature, propaqation, and offects of stress waves in the material as a result of severe impact or impulsive loads applied to the structure; roughly the time span of interost for this type of rosponse is of tho order of from 1 to 100 microseconds. only the "late time" response which is usually termed "structural rosponse" (in contrast with "maturial response") is discussed here; such responses involve times of interest extending from time gero to 1 mitlisecond or perhaps to several hundrod milliseconds; this type of response pertains to the transtent bending and/or stretehing behavior of overall structures or of structural components such as beams, rings, plates, and shells.

Furthormore, principal intorest in this study centors upon transient structural responses involving finite strains including large rotations and deflections, as well as path-dependent and time-dependent elasticplastic material bchavior. Sought is information on both the prak tranaient responses (doflections and strains, with primary intorest on strains) together with the time of occurronce of that poak and the pormanent deformation condition of the structure aftor subsidence of the extornally-appliod transient loading.

In this soction, the finite element equations of motion are derivad from a variational statemont consisting of the Frincinle of virtual Work
 ways: (a) the fure vector form (charactertatio of explicit solution by methods 1 ik , the contrat-difference operator), (h) the comstant at iffness,
and (o) tho tangont ntiffneen form thone lant two formn aro ofton unod with implicit oporatorf which oxhibit bottor atablility propertion than do oxplicit oporators.

For tho transiont, path-dopondont, timo-dopondont probloma of intorest in tho prosent work, tho first two forms aro usod, sinco thoy aro more officiont. computationally. For the "puro vector" form of the equations of motion, the so-calica "unconvontional" formulation is tho bost. to uso; howovex, for the "constant stiffnesis" form of the equations of motion, the resulting equations are doveloped in two forms: (a) the "conventional" form and (b) the "modified unconventional" form. The new "modificd unconventional" formulation is shown to be applicable for any kind of material behavior, while the usua? "conventional" formulation is valid only for small-strain, elastic-plastic materials. In addition, it is shown that the "modifiud unconventional formulation" is more efficient and economical (although it takes more computer storage) than is the conventional formulation.

A brief review is made of different timowise finite-difference operators suitable for the problem being investigated. Also, the solution of the governing equations of motion is discussed.

6. 2 Equations of Motion

6.2.1 Variational Formulation

In the present investigation, the assumed-displacement version of the finite element method was used. The finite-element method can be developed most systematically and conveniontly ..thin the framework of variational principles as shown, for example, by Pian and Tong [166]. Variational principles, as expressions of physical laws, have the following advantages: (a) thoy are statements about a system as a whole, rather than the parts that it comprises, (b) since thoy refer to the oxtremum of a sealar, they are invariant, and may be usod to derive the spucial forms appropriate to any particular doscription, (c) they imply boundary conditions as well as differential equations, (a) they automaticaliy include the effects of constraints, without requiring that the corrosponding reactions bo known,
(o) tho y have hourdatio value for nuquonfing gonoralisat tons, (f) they are
 tome.

 got of infinitesimal virtual displacements fou without violating the geometric boundary conditions. Tho displacement variations sure called virtual because they need not bo actual physical displacements \bar{u} which would occur under the given loads, but merely hypothetical, kinematically possible displacements. The Principle of Virtual Work* (page 595 of [71, 237 of [50], [167] and [168]) status that the virtual work, SW, done by the external forces (body forces and surface fractions), is equal to the virtual work, SU, of the internal stresses, i.e.,

$$
\begin{align*}
\delta U & =\delta W \tag{6,1}\\
\delta U-\delta W & =0 \tag{6,2}
\end{align*}
$$

with

$$
\begin{align*}
& \delta U=\int_{V_{0}} \overline{\bar{S}}: \delta \bar{\gamma} d V_{0} \tag{6,3}\\
&=\int_{V_{0}} S^{i j} \delta \gamma_{i j} d V_{0} \tag{6.4}\\
& \delta W=\int_{V_{0}} \rho_{0} \bar{B} \cdot \delta \bar{u} d V_{0}+\int_{A_{0} \bar{t}} \bar{E} \cdot \delta \bar{u} d A_{0} \tag{6.5}
\end{align*}
$$

[^36]or
\[

$$
\begin{equation*}
\delta W=\int_{V_{0}} \rho_{0} B^{i} \delta u_{i} d V_{0}+\int_{A_{0} \bar{E}} t^{i} \delta u_{i} d A_{0} \tag{6.6}
\end{equation*}
$$

\]

In this equation, $\mathrm{S}_{\text {is }}$ is the second Piola-Kirchhoff stress tensor, introduced in Subsection 2.5.3, \bar{B} is the body-force vector (inertia, gravitational, magnetic, etc.) per unit mass, $\overline{\mathfrak{t}}$ is the externally-applied surface traction vector, introduced in Subsection 2.5, Eq. 2.209, $\bar{\gamma}$ is the Green (Lagrangian) strain tensor, introduced in Subsection 2.4.2.3, \bar{u} is the displacement vector introduced in Subsection 2.4, Eq. 2.76, and ρ_{o} is the mass density in the reference conflguration, introduced in Subsection 2.5.2, Eq. 2.218, In the Eqs. 6.1-6.6 only displacement variations $\delta \bar{u}$ are permitted, and for that reason this principle also goes by the name "Principle of Virtual Displacements". By dividing through by δt, one obtains an alternative statement of the Principle of Virtual Work called the "Principle of Virtual Velocities", the only advantage of this formulation is that the virtual velocities $\delta \bar{u} / \delta t$ can be considered as arbitrary finite quantities, without invoking the imprecise notion of "infinitesimal" virtual displacements.

In the present formulation, all pertinent quantities used in the final form of the analysis are described consistently with respect to the fixed reference configuration. The integrations extend over the entire volume v_{0} in the reference configuration ${ }^{*}$ of the continuum which is bounded by the surface (area) A_{0} in the reference configuration. The boundary surface A_{0} may be divided into a prescribed surface-traction boundary $A_{\sigma_{t}}$, and a pre-scribed-displacement boundary $A_{\sigma_{u}}$.

[^37]By amploytur the conoopt of D'Alombort'A Princtplo, the body force vector B may borgarded as constating of dintombert forth forced vector (- $\because \ddot{O}$) and other body forcon \vec{r} (gravitational, magnetic, etc.). Thun, ono may write:

$$
\begin{align*}
& \bar{B}=-\dot{\ddot{u}}+\bar{f}=-\dot{\bar{V}}+\bar{f} \\
& B^{i}=-\dot{u}^{i}+f^{i}=-\dot{v}^{i}+f^{i} \tag{6.7}
\end{align*}
$$

where \vec{v} is the velocity vector, defined in Eq. 2.79 , and (${ }^{\circ}$) denotes the material rate. Observe that the \bar{u} appearing in the acceleration $\overline{\bar{u}}$ are not subject to variation since this pertains to the existing force.

The Green (Lagrangian) strain tensor $\overline{\bar{\gamma}}$ can be expressed as a function of the deformation gradient tensor $\overline{\bar{F}}$, from Eq. 2.133, as

$$
\begin{equation*}
\overline{\bar{\gamma}}=\frac{1}{2}(\bar{F} \cdot \bar{F}-\overline{1}) \tag{6.8}
\end{equation*}
$$

or, in the body-fixed convected coordinate system (Eq. 2.139) the tensor components are

$$
\begin{equation*}
\gamma_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}+u_{k, i} u^{k}, j\right) \tag{6.9}
\end{equation*}
$$

where (), i denotes covariant differentiation with respect to the convented coordinates ξ^{i} using the metric tensor $g_{i j}$ of the reference configuration (Eqs. 2.53 and 2.55). Then, the variation in the strain tensor $\overline{\bar{\gamma}}$ may be expressed as

$$
\begin{equation*}
\delta \overline{\bar{\gamma}}=\frac{1}{2}(\overline{\bar{F}} T \cdot S \overline{\bar{F}}+S \overline{\bar{F}} \cdot \bar{F}) \tag{6.10}
\end{equation*}
$$

or

$$
\begin{equation*}
B_{i} X_{i j}=\frac{1}{2}\left[\left(\sum_{i}^{k}+u^{k}, i\right) S_{i} u_{k j}+\left(\delta_{j}^{k}+u_{j}^{k}\right) S_{j}^{k} u_{k, i}^{k}\right] \tag{6.11}
\end{equation*}
$$

whore δ_{i}^{k} is the Kronecker delta defined by Eq. 2.8.
This basie variational formulation, the principle of virtual work, holds independently of the n atorial constitutive equations and the possible existence of potential functions for the external forces. Also, it embodies the equation of equilibrium of the continuum:

$$
\begin{equation*}
\operatorname{div}\left(\overline{\bar{S}} \cdot \overline{\bar{F}}^{T}\right)+\rho_{0} \bar{f}=\rho_{0} \ddot{\bar{u}}=\rho_{0} \dot{\bar{V}} \tag{6.12}
\end{equation*}
$$

whore "div" stands for the divergence operator with rospoct to the rooferonce configuration. This equation has the following components in tho body-fixed convected coordinate system:

$$
\begin{equation*}
\left[S^{j k}\left(\delta_{k}^{i}+u^{i}, k\right)\right]_{2 j}+\rho_{0} f^{i}=\rho_{0} \dot{u}^{i}=\rho_{0} \dot{v}^{i} \tag{6.13}
\end{equation*}
$$

and the prescribed surface traction boundary condition on $A_{\sigma_{t}}$ (Eq. 2.229, $2.246,2.262$) are

$$
\begin{align*}
& \bar{n} \cdot\left(\overline{\bar{S}} \cdot \overline{\bar{F}}^{T}\right)=\bar{t} \tag{6.14}\\
& \overline{\widetilde{t}} \cdot \overline{\bar{F}}=\bar{t} \tag{6.15}\\
& n_{j} S^{j k}\left(\delta_{k}^{i}+u^{i}, k\right)=t^{i} \tag{6.16}
\end{align*}
$$

where \vec{n} is the unit outward normal vector to the boundary surface in the reference configuration, and $\underset{t}{ }$ is the pseudo-traction vector both defined in Eq. 2.209.

6.2.2 Finite Element Formulation for the Assumed

 Displacement ModelIn the finite-element-analysis method, the entire domain of the continuum is subdivided into a finite number of regions called "finite elements" or "discrete elements", each having a finite number of "nodes" as control points. The behavior of the actual continuum which has an infinite number of degrees of freedom is thereby described approximately in terms of a finite number of degrees of freedom (DOF) at each of the finite number of nodes. The generalized displacements within each finite element are expressed in terms of (a) such variables called "generalized degrees of freedom" q which arc defined at the node points in conjunction with (b) suitably-selected interpolation functions to describe the distribution of each quantity throughout the interior of each finite clement. Applying
this approach within tho framework of tho Prinotplo of Virtual Work and D'Alombort' n principle ronulto in a finftomatand ayftom of pocond-ordor ordinary difforontial nquationn. The nknown in tho equation e are tho qonorallzod dogroos of froodom at each node of the complot annomblod Aisarotinod structure (or continuum).

In the assumed-displacoment-type of finito-oloment analysis, one selects appropriate interpolation functions "anchored to" control-point. values which are the nodal generalized displacements. Lot it be assumed that the continuum (or structure) being analyzed has bean subdivided conceptually into n finite elements. Then, one may write Eq. 6.1 as the sum of the contributions from each of the finite clements as follows:

$$
\begin{equation*}
\sum_{e=1}^{n}(\delta U)_{e}=\sum_{e=1}^{n}(\delta W)_{e} \tag{6.17}
\end{equation*}
$$

where for any element e:

$$
\begin{align*}
& (\delta U)_{e}=\int_{\left(V_{0}\right)} \bar{S}: \delta \bar{\gamma} d V_{0} \tag{6,18}\\
& =\int_{\left.V_{0}\right)} S^{i j} \delta X_{i j} d V_{0} \tag{6.19}\\
& (\delta W)_{e}=\int_{\left(V_{0}\right)_{e}} \rho_{0}(-\ddot{u}+\bar{f}) \cdot \delta \bar{u} d V_{0} \tag{6.20}\\
& +\int_{\left(A_{0} \bar{t}\right)_{e}} \bar{E} \cdot \delta \bar{u} d A_{0} \\
& =\int_{\left(V_{0}\right) e} \rho_{0}\left(-\ddot{i}^{i}+f^{i}\right) \delta u_{i} d V_{0} \tag{6.21}\\
& +\int_{\left(A_{0} \tau\right)_{e}} t^{i} \delta u_{i} d A_{0}
\end{align*}
$$

In those equations, $\left(V_{0}\right)$ e is the volume in the fixed reference configuration
of the oth diacrete elomont, and ($A_{\sigma_{t}}$) is the portion of tho aurfaco araa ($\left.A_{o}\right)_{o}$ in tho fixad raforenco aonfiguration of elament a, over which the surface traction tis proscribad. The summation \sum extonde ovar the n olomentes of the continuum.

For oach eloment c, lot an assumod diaplacomont flold u_{1} of tho following form be solected:

$$
\begin{equation*}
u_{i}\left(\sum^{j}, t\right)=\left[N_{i}(z j) \perp\{\alpha(t)\}\right. \tag{6.22}
\end{equation*}
$$

where $N_{f}\left(\xi^{j}\right)$ is an appropriately assumed incerpolation function expressed in terms of convected coordinates ξ^{j} of a generic point within the element (a row vector is identified here by the symbol $L J$). Also, \{ $\alpha(t)\}$ represents a colum vector (symbol $\}$) of independent parameters which are a function of time t only. Hence, it follows that the vector of nodal generalized displacements $\{q\}$ is defined in terms of the local coordinate system of each element and can be obtained by substituting the coordinates of the nodal points into Eq. 6.22. Accordingly, one may write:

$$
\begin{equation*}
\{q(t)\}=[G]\{\alpha(t)\} \tag{6.23}
\end{equation*}
$$

If one takes the same number of displacement parameters $\alpha(t)$ as the nodal generalized displacements $q(t)$, the transformation matrix [G] is a square matrix. By inverting Eq. 6.23 for $\{\alpha(t)\}$ and then substituting into Eq. 6.22, one has

$$
u_{i}(\xi, t)=\left[N_{i}\left(\xi^{j}\right)\right][G]^{-1}\{q(t)\}=\left[\Phi_{i}\left(\xi^{j}\right)\{q\}(6.24)\right.
$$

where ${ }^{*}$

$$
\begin{equation*}
\left\lfloor\Phi_{i}\left(\xi^{j}\right)\right\rfloor=\left\lfloor N_{i}\left(\xi^{j}\right)\right\rfloor[G]^{-1} \tag{6.25}
\end{equation*}
$$

* One should not confuse the interpolation function $\Phi_{1}\left(\xi^{1}\right)$ with the earlier Φ symbol used to denote the loading function (yield surface).

Bocauno N_{1} and G are a prior chosen functions expropmod in the ξ_{1}^{j} coordinates only, they are not aubjooted to variation, hone

$$
\begin{equation*}
\delta u_{i}=\left\lfloor\Phi_{i}\right\rfloor\{\delta q\} \tag{6.26}
\end{equation*}
$$

Also, the time dorivativon of Eq. G. 24 bogomos

$$
\begin{equation*}
\ddot{u}_{i}=\left\lfloor\Phi_{i}\right\rfloor\{\ddot{q}\} \tag{6.27}
\end{equation*}
$$

By using Eds. 6.9 and 6.24, one may obtain the corresponding strain $\gamma_{\text {if }}$ at any point in the element e as a function of position ξ^{k} and the nodal generalized displacements \{q\} as follows*:

$$
\gamma_{i j}\left(\xi^{k}, t\right)=\left[D_{i j}\left(\xi^{k}\right) \perp\{q(t)\}+\frac{1}{2}[q(t)]\left\{D_{l i}\left(\xi^{k}\right)\right\}\left\{D_{j}^{l}\left(\xi^{k}\right)\right]\{g\}(6.28)\right.
$$

It follows that

$$
\begin{equation*}
\delta \gamma_{i j}=\left\lfloor D_{i j}\right\rfloor\left\{\delta_{j}\right\}+\left\lfloor q_{1}\right\rfloor\left\{D_{i}\right\}\left\lfloor D_{j}^{2}\right\rfloor\{\delta q\} \tag{6.29}
\end{equation*}
$$

where $D_{i j}, D_{\ell i}$, and D_{j}^{ℓ} are the appropriate differential (gradient) operators which may be expressed symbolically in the form:

$$
\begin{align*}
& \left\lfloor D_{i j}\left(\xi^{k}\right)\right\rfloor=\frac{1}{2}\left\lfloor\Phi_{i, j}\left(\xi^{k}\right)+\Phi_{j, i}\left(\xi^{k}\right)\right\rfloor \tag{6.30}\\
& \left\lfloor D_{\ell i}\left(\xi^{k}\right)\right\rfloor=\left\lfloor\Phi_{\ell, i}\left(\xi^{k}\right)\right\rfloor \tag{6.31}\\
& \left\lfloor D_{j}^{l}\left(\xi^{k}\right)\right\rfloor=\left\lfloor\Phi^{l}, j\left(\xi^{k}\right)\right\rfloor \tag{6.32}
\end{align*}
$$

[^38]Employing Eq, 6. 24 through 6.32, Eq. 6.17, 6.19, and 6. 21 become:

$$
\begin{aligned}
& \left.-\iint_{\left(V_{0}\right)_{e}}\left\{\Phi_{i}\right\} f^{i} d V_{0}-\int_{\left(A_{0} \dot{t}\right)_{e}}\left\{\Phi_{b}\right\}^{i} d A_{0}+\int_{\left(V_{0}\right)_{e}}\left\{\underline{\Phi}_{i}\right\} \rho_{0}\left[\Phi^{i}\right] d V_{0}\{\ddot{q}\}\right)
\end{aligned}
$$

$$
\begin{equation*}
=0 \tag{6.33}
\end{equation*}
$$

where subscript "b" ia used to signify that the $\left\{\phi_{1}\right\}$ are evaluated along the element boundaries.

Equation 6.33 is a convenient finite-element form of the principle of Virtual Work and D'Alembert's Principle from which ono can obtain the "equations of motion".

6.2.3 Computation .11 Strategies

One can divide the numerical schemes for the solution of initial boundary-value problems into three categories which differ primarily in the preconditioning of the numerical solution, as pointed out by Argyris [170]. According to this criterion, one distinguishes between:
(i) The pure vector approach, describing the kinematic motion by state vectors without resorting to gradient matrices. This approach is characteristic of explicit forward strategies, like the central difference time operator.
(ii) The constant stiffness approach describes the solution path in terms of gradient matrices which remain constant. This is characteristic of combined explicit-implicit solution schemes, like the Houbolt implicit time operator with linear extrapolation of the nonlinear forms due to plasticity or geometry.
(iii) The variable stiffness approach (tangential stiffness method)
donoribon tho folution path in torme of qradiont matrion which are Ludaten with tho evolution of tho nolution. Thla in chaxnotorifitio of fully implicit iftratogion, likn tho uno of an impltait than aprator, with Nowton-Rnphnon Itorat lon of tho nonIInoar tormri.

Tho mura voctor approach in traditelonaliy unod in connoction with
 nyatem ntiffnous mateix din novor eonotructod, and the oquatedono of motion aro oxpmobnod oimply in torma of voctor: oguationa which road:

$$
\begin{equation*}
[M] \underbrace{\{\ddot{q}\}}_{\text {UNKNOWN }}=\underbrace{\{I(q)\}+\{F\}}_{\text {KKNOWN" }} \tag{6.34}
\end{equation*}
$$

whore [M] is the global mass matrix, $\{F$ \} represents the gonoralized nodal load voctor accounting for externally-applica diatributed or concontrated loads and body forces, and \{I\} is a vector of internal forces (elastic and plastic) and nonlinear geometric effects. The pure vector approach which results from the use of the explicit time-marching scheme has strict stability limitations and very rostrictive convergence behavior for the iterative solutton of nonlinear structural equilibrium equations. Therefore, the range of application is restricted to small inerements of time. It has the advantage that, for a given time step that provides stability and convergence, it presents the smallest computational effort of all of the computational techniques being reviewed. In some kinds of analyses (notably in the analysis of short-term shocks and wave propagation problems in which the higher frequencies play a significant role), it is the most effective technique.

The constant stiffness approach was the natural computational procedure to use at the time that finite elements were introduced into nonlinear analysis [23 and 173, for example], Just as in linear finite element analysis, a systom gradiont. matrix called the stiffnoss matrix [K] romains constant (henco tho namo "constant stiffness") during tho whole solution procedure. The effects of nonlinearitios are treated as pseudo forces: therefore, this method is also called the "psoudo forco mothod". These
prouda forces are functions of the diaplacomente $\{q]$ and are placed on the right-hand alde (the "known" nide) of the equatione of equilibetum. The bante equations of aquilibrtum, an obtainod by thif method, may bo oxe promind mothomatieally no:

whore $\left\{\mathrm{F}_{\mathrm{G}}^{\mathrm{NL}}\right\}$ io a phoudo-forco vector arioing erom nonlinoar goonotrie ofe focta and $\left\{F_{D}\right\}$, 10 a pooudo-fored voctor otomming from plastio ofeocto. since tho peedudo-foreos aro not known in advance, one regorto to elthor an extrapolation of tho peoudo forcos from previous ineromente (in an incromental procoduxa), or to an iterative corroction of this implicit prediction. Tho constant stiffnoss mothod, thus leads to a combinad implicitexplicit formulation of the equations of motion. Ono iterative schomo that keeps the gradient matrices (the matrices on the loft-hand side of the equation) constant is the method of successive approximations. However, this iteration scheme imposes restrictions on the anount of nonw Iinearities that the scheme can handle (if the structure stiffness becomes larger than the oxiginal stiffness, then the mathod will not converge). Also, the convergence rate is very slow. Further, self-correcting procedures can be utilized, as shown by stricklin [174]. Of course, the Newton-Raphson method can be utilized, but this will involve refactoring of the left-hand side of the equation.

Finally, the tangent stiffness approach [74 and 175, for example] follows the concept of tangential Inearization of the solution path by introducing time variable system properties. The form of the incremental equations is:

where $\left\{f_{u}\right\}$ is an unbalance load added to the right-hand side to satisfy equilibrium. Here $\left[\mathrm{K}^{\mathrm{T}}\right]$ is a tangent stiffness matrix that includes
nonlinoar goomotric affocta as wall an olaftiompantio affeota, Thin prom ondurn han boon unod, for nsampla, by MoNamara and Maronl [175] wion fhow that largar timo inoromonte can bo unod by thdf mothod than with tho proviouf onon. of courfo, a ónotdorabla amount of computor time in ino
 of tho oquation. In gonnoation with an uncondttionaliy atablen timo oporator and tho Nowton-Rnphoon Iteratiton, thits notutian mothed providon the mont rodidablo computatidonal tachudguo for dong texm ponponise analyonit wheh hargo nondinoarithog. Tho Nowton-Raphaon tochntguo to vory ofton modifiod in order to roduco tho eomputational uffort whoroby tho eyetom gradiontis axe updatod only occasionally. In thlo caso, nowaver, tho convergonce proportion duedrioreto (ln tho dimit, whon the dintedal atifineas matrix romains unaltorod, tho constant atiffous mothod is racovorod).

Finally, one can summarize the threo bchomos, as done by Argyais [170] by expreselng the rellability of the throo methods in terms of etablilty and convergence restrictions of the underlying nonlinear time-marching scheme and where the computational offort accounts for the programming effort as well as the numerical cost of the solution of typical reference problems:

Computational Procedure	Stability Properties	Convergence Behavior	Computational Effort
Pure Vector (Explicit Operators)	Very restric- tive	Very restric- tive	Small
Constant stiEf- ness (Implicit- Explicit)	Not restric- tive	Restrictive	Medium
Tangent Stiff-	Not restric- ness (Implicit)	Not restrivetive	

One can observe that the constant stiffness procedure ronverts nonlincar deviations from the ilncar prediction into equivalent pseudo-load

[^39]voctorn (nonlinoar aorroction), thoroby oombining the gimplicity of the voctor. formulation with tho rnliablility of tho gradient mothodn. For the purponen of tho pronont atudy, tho purn voctor appraach with tho aontraldifforonon oxpilcit timo oparator and tho conatant ntiffinan approach with tho implicit lloubole timo oporator axo unod. Thoan two approachon havo buon choom (1) becaufo of their inhoront numorical advantago (tho otiffe noon matrilx in novar formod or usod in the voctor approach, and it in formod and fuctorod only onco in the constant stiffnosis approach) and (2) sines the prosont study is concorncd with the otrain predictions of timedepondent plasticity.

Since the present class of nonlinear elastic-plastic transient structures exhibits strictiy path-dependent responses, it is impossible to guaranteo the return to the true solution path by residual correction at the end of the time increment without integration of the prior history. Hence, one has either to use small increments of time (as is necessary with the puro-vector approach and constant stiffness method) or to integrate the nonlinear history of deformation within each time increment, which will always involve numerical truncation errors. Morer fer, since higher frequencies are more important in the strain response than in the displacement response of the structure, it may be possible to follow the displacement response with fairly large increments, but to follow the strain response, smaller time increments are necessary.

6.2.3.1 Pure Vector Form

Observe that Eq. 6.33 may be written more compactly as follows
for the so-called "unconventional" formulation:

$$
\begin{equation*}
\sum_{c=1}^{n}\left\lfloor\delta_{q}\right\rfloor([m]\{\ddot{q}\}+\{p\}+[n]\{q\}-\{f\})=0 \tag{6.37}
\end{equation*}
$$

where the following are evaluated for each finite element:

$$
\begin{equation*}
[m]=\int_{\left(V_{0}\right)_{e}} \rho_{0}\left\{\Phi_{i}\right\}\left\lfloor\Phi^{\dagger}\right\rfloor d V_{0} \tag{6.38}
\end{equation*}
$$

$$
\begin{align*}
& \{p\}=\int_{\left(V_{2}\right)}\left\{D_{i j}\right\} S^{i j} d V_{0} \tag{6.39}\\
& {[h]=\int_{V_{V) e}}\left\{D_{\ell i}\right\} L D_{j}^{l} \int S^{i j} d V_{0}} \tag{6.80}\\
& \{f\}=\int_{\left.W_{0}\right)_{e}} \rho_{0}\left\{\Phi_{i}\right\} f^{i} d V_{0}+\int_{\left\{a_{0}\right\}_{e}}\left\{\Phi_{i}\right\} t^{i} d A_{0} \tag{6.11}
\end{align*}
$$

Note that $\{p\}$ and $[h]$ involve stress information, and that thoy are time depencient:

$$
\begin{align*}
& \{p\}=\{p(t)\} \tag{6.42}\\
& {[h]=[h(t)]} \tag{6.43}
\end{align*}
$$

Since the element nodal generalized displacements $\{d\}$ for different elements are not completely independent, a transformation is required to relate the element nodal displacements $\{q\}$ to independent global (or common) nodal generalized displacements $\left\{q^{*}\right\}$ for the discrete-element assemblage by

$$
\begin{equation*}
\{q\}=[z]\left\{q^{*}\right\} \tag{6.44}
\end{equation*}
$$

The quantity [J] includes the effect of transferring from local coordinates from each individual element to global reference coordinates for the system as a whole.

Applying Eq. 6.44 to Eqs. 6.38-6.41 to describe the syswem in terms of the independent global generalized displacements $\left\{q^{*}\right\}$, one obtains:
$\sum_{e=1}^{n}\left[\delta q^{*}\right]\left(\left[m^{*}\right]\left\{\ddot{q}^{*}\right\}+\left\{p^{*}\right\}+\left[h^{*}\right]\left\{q^{*}\right\}-\left\{f^{*}\right\}\right)=0$
whore

$$
\begin{align*}
& {\left[m^{*}\right]=[J]^{\top}[m][J]} \tag{6.46}\\
& \left\{p^{*}\right\}=[J]^{\top}\{p\} \tag{G.47}\\
& {\left[n^{*}\right]=[J]^{\top}[h][J]} \tag{6.48}\\
& \left\{f^{*}\right\}=[J]^{\top}\{f\} \tag{6.49}
\end{align*}
$$

Since the square matrix $[\mathrm{h}]$ is not a constant, and since both $\{p\}$ and [h] involve nonlinear geometric effects as well as plastic effects, there is no practical reason to calculate the matrix [h] explicitly in the analysis, and this is not done. It is more convenient to express

$$
\begin{equation*}
\left.L^{l}{ }_{j}^{l}\right\rfloor\{q\}=\left\lfloor D^{l} j\right\rfloor[J]\left\{q^{*}\right\} \equiv \chi_{j}^{l} \tag{6.50}
\end{equation*}
$$

and hence

$$
\left.\{i\} \equiv\{p\}+[h]\{q\}=\iint_{\left(V_{0}\right)_{e}}\left\{D_{i j}\right\} S^{i j} d V_{0}+\int_{\left(V_{0}\right)_{e}} D_{l_{i}}\right\} S^{i j} \chi_{j}^{\ell} d V_{0}(6.51)
$$

Therefore, Eqs. 6.37 and 6.45 become:

$$
\begin{align*}
& \sum_{e=1}^{n}[\delta q]([m]\{\ddot{q}\}+\{i\}-\{f\})=0 \tag{6.52}\\
& \sum_{e=1}^{n}\left[\delta q^{*} \cdot J\left(\left[m^{*}\right]\left\{\ddot{q}^{*}\right\}+\left\{i^{*}\right\}-\left\{f^{*}\right\}\right)=0\right. \tag{6,53}
\end{align*}
$$

where

$$
\begin{equation*}
\left\{i^{*}\right\}=[J]^{\top}\{i\} \tag{6.54}
\end{equation*}
$$

Porforming the \quad mumation in Fq. G. 53, invoking thr approprinte olement functon gonernladed diaplacoment compatibitition, and hocaugo tho \{ifak are Indopondent and arbitrazy, the following veetor nquationa of motton aro obtatned for tho complote angomblad dinorotizod atructure:

$$
\begin{equation*}
\left[M^{\prime}\right]\left\{\ddot{q}^{\prime}\right\}=-\{T\}+\{w\} \tag{6.55}
\end{equation*}
$$

whoro [M] is tho global mass matrix, $\{I\}$ is a voctor of intornal forcos associated with linear and nonlinear torms of the strain displacomont relations as well as elastic and plastic forocs; and \{F\} reprosunts the generalized load vector accounting for externally-applied distributed or concentrated loads. In terms of element information, [M], \{I\} and \{F\} may be expressed as:

6.2.3.2 Constant Stiffness Form

Two types of constant stiffness formulations will be presented. The first type is the "conventional" pseudo force formulation, which may be obtained by replacing the stress tensor $\mathrm{s}^{\text {jj }}$ in Eq. 6.33 by the following expression in terms of the strains $\gamma_{k l}$

$$
\begin{equation*}
s^{i j}=E^{i j k l}\left(\gamma_{k l}-\gamma_{k l}^{p}\right) \tag{6.59}
\end{equation*}
$$

where $E^{i j k \ell}$ consists of elastic constants and $\gamma_{k \ell}^{p}$ represents the components of the total plastic strain (or other given initial strains such as thermal strain, etc.). of course, it should be evident that this formulation is valid only for infinitesimal strains, since for finite strains $\mathrm{E}^{\text {ijkl }}$ be a constant, but it will depend on then not and plastic strain parts). For finite strains the decomposition of the total Green "elastic" strain will plastic parts is not a useful concept, since the Green "elastic" strain will not have the usual meaning of elastic strains, but will be a quantity affected by the total deformation.

By means of the strain-displacement equations (6.28), one can express Eq. 6.59 as:

[^40]
$\sum_{e=1}^{n} L S q^{*} J\left(\left[m^{*}\right]\left\{\ddot{q}^{*}\right\}+\left[k^{*}\right]\left\{q^{*}\right\}-\left\{f^{*}\right\}-\left\{f_{q}^{N+}\right\}-\left\{f_{p}^{k^{*}}\right\}-\left\{f_{p}^{N_{p}}\right]\right)=0$
whoro
\[

$$
\begin{align*}
& {\left[m^{*}\right]=[J]^{\top} \int_{\left(V_{0}\right)_{e}} \rho_{0}\left\{\Phi_{i}\right\}\left\lfloor\Phi^{i}\right\rfloor d V_{0}[J]} \tag{6.62}\\
& {\left[k^{*}\right]=[J]^{\top} \int_{\left(V_{0}\right)}\left\{D_{i j}\right\} E^{i j k l}\left\lfloor D_{k l}\right\rfloor d V_{0}[J]} \tag{0.63}\\
& \left\{f^{*}\right\}=[J]^{\top}\left(\int_{\left(V_{0}\right)_{e}}\left\{\underline{\Phi}_{i}\right\} f^{i} d V_{0}+\int_{\left(A_{0} \tau\right.}\left\{\Phi_{e} \underline{\Phi}_{i}\right\}_{b} t^{i} d A_{0}\right) \tag{6.64}
\end{align*}
$$
\]

$$
\begin{align*}
& \left\{f_{p}^{*}\right\}=-[J]^{\top} \int_{\text {(vole }}\left\{D_{i j}\right\} E^{i j k l} \gamma_{k l}^{P} d V_{0} \tag{6.66}
\end{align*}
$$

Performing the sumation invoking interoloment genoralized displacement compatibility, and because the variation $\left\{\delta q^{*}\right\}$ can be independent and arbitrary, the following conventional equilibrium equation, which is valid only for small strains is obtained:
whore [M] is the global mass matrix, [K] is tho usual mmall-ptrain linearelastic global (constant) atifenoan matrix, \{F\} ~ i s ~ t h e ~ g e n e r a l i z e d ~ l o a d ~ vector ropronenting oxtornalily applitod distributed or concontratod loads, $\left\{F_{q}^{N L}\right\}$ roprononts a pooudo load vector exining from the nonlinear terms in tho 日erain-diaphacomont equation, $\left\{F_{p}^{L_{j}}\right\}$ and $\left\{F_{p}^{N L}\right\}$ ara tho proud load vectors due to plastic (small) strains and are ansociatoa, rospoctivoly, with the linear and nonlinoar toms of tho stirain-displacomont equations. Not only does this formulation lave the drawback that $1 . s$ applicable only to small strains, but if an adequate description of the structural behavior requires one to employ nonlinear strain-displacement relations (specially for finite rotations of beams, plates, and shells), it is evident that the "conventional formulation" involves much more computational work than the "modified unconventional" formulation to be presented next. The "unconventional" formulation of Eq. 6.55 is valid for small!. 1 and finite strains, for any kind of material. The reason for this is that the "unconventional" formulation is an exact expression of the principle of Virtual Work. No assumptions whatsoever have been made in the "unconventional" formulation about the constitutive equations. On the other hand, the "conventional" formulation is valid only for the special! kind of material that obeys the constitutive equation given as Eq. 6.59, which is not valid for finite strains of elastic-plastic materials. However, the "unconventional" formulation, as expressed by Eq. 6.55, has stability and convergence problems, since the only gradient matrix (the matrix on the left hand side of the equation) is the mass matrix. Therefore, to be able to have stability and convergence properties similar to the constant stiffness method, while at the same time preserving the useful properties of the "unconventional" formulation, the small-strain linearelastic, constant-stiffness matrix [K] is added to both sides of the Eq. 6.55 to obtain the following modified unconventional form of the equations of motion:

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}+[K]\left\{q^{*}\right\}=[K]\left\{q^{*}\right\}-\{I\}+\{F\} \tag{6.69}
\end{equation*}
$$

Obsorvo that thin oquation in valla for finito ntraing, and for any kind of matorial, alnow no conntitutivn anmamptionn havo boon mado. Dofining

(6.70)
 bohavior as well an all (linoar and nonlinoar) torme of tho nerainaisplacoment equationg, ono can oxprose Eq. 6.69 as:

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}+[K]\left\{q^{*}\right\}=\left\{F^{N L}\right\}+\{F\} \tag{0.71}
\end{equation*}
$$

This expression is called the "modified unconventional" form of the equations of motion.

In the next subsection, this "modified unconventional" formulation is to be used with implicit time operators, while the "unconventional" formulation of Eq. 6.55 is to be used with explicit time operators.

6.2.3.3 Tangent Stiffness Form

The tangent stiffness form of the equations of motion will be derived here from the Principle of Virtual Work for completeness purposes, but the reader is reminded that the tangent stiffness formulation is not utilized in the present report for any computations or predictions.

The vector form of the equations of motion (Eq. 6.55 derived from the Principle of Virtual Work) at time instants t and $t-\Delta t$ may be written, respectively, as

$$
\begin{align*}
& {[M]\left\{\ddot{q}^{*}\right\}_{t}=-\{I\}_{t}+\{F\}_{t}} \tag{6.72a}\\
& {[M]\left\{\ddot{q}^{*}\right\}_{t-\Delta t}=-\{I\}_{t-\Delta t}+\{F\}_{t-\Delta t}} \tag{6.72b}
\end{align*}
$$

Subtracting Eq. 6.72b from Er 0.72 a , one obtains the following incremental form of the equations of motion:

$$
\begin{equation*}
[M]\left\{\Delta \ddot{q}^{*}\right\}=-\{\Delta I\}+\{\Delta \mathrm{F}\} \tag{6.720}
\end{equation*}
$$

whoro

$$
\begin{align*}
& \left\{\Delta \ddot{q}^{*}\right\} \equiv\left\{\ddot{q}^{*}\right\}_{t}-\left\{\ddot{q}^{w}\right\}_{t-\Delta t} \tag{6.72d}\\
& \{\Delta I\}_{t}=\{I\}_{t}-\{I\}_{t-\Delta t} \tag{6.720}\\
& \{\Delta F\} \equiv\{F\}_{t}-\{F\}_{t-\Delta t} \tag{6.72f}
\end{align*}
$$

Next, the increment of the internal force vector $\{\Delta I\}$ is treated as a differential:

$$
\begin{equation*}
\{\Delta I\}=\frac{\partial\{I\}}{\partial\left\{q^{\}}\right\}}\left\{\Delta q^{*}\right\}=\left[K^{\top}\right]\left\{\Delta q^{*}\right\} \tag{6.73}
\end{equation*}
$$

Hence, one obtains the following "tangent stiffness" form of the equations of motion:

$$
\begin{equation*}
[.1]\left\{\Delta \ddot{q}^{*}\right\}+\left[K^{\top}\right]\left\{\Delta q^{*}\right\}=\{\Delta F\}+\left\{f_{u}\right\} \tag{6.74}
\end{equation*}
$$

where the "unbalanced force" $\left\{f_{u}\right\}$ is aue to the error implicit in Eq. 6.73 and consists of writing the residual equation for Eq. 6.55:

$$
\begin{equation*}
\left\{f_{u}\right\}=-[M]\left\{\ddot{q}^{*}\right\}-\{I\}+\{F\} \tag{6.75}
\end{equation*}
$$

This error term consists of evaluating the terms at the state before the current incroment (if no errors had been introduced by previous increments the error would be equal to zero). By including this residual load correction in the cquations of motion, one may obtain convergent solutions
using time incromonta that are rolativoly large in oomparinon with tho nolutions obtained without the correction,

From Eau. G.37, 6.39, G. 30, and 6.51, ono obtatme

$$
\{i\}=\int_{(V) e}\left\{D_{i j}\right\} S^{i j} d V_{0}+\int_{\left(V_{0}\right)_{e}}\left\{D_{\ell i}\right\}\left\lfloor D_{j}^{l}\right\rfloor\{q\} S^{i j} d V_{0}^{(6.76)}
$$

and, Hinco, from Eq. 6.73

$$
\begin{equation*}
\left[d^{T}\right]=\frac{\partial\{i\}}{\partial\{q\}} \tag{0.77}
\end{equation*}
$$

it follows that

$$
\begin{align*}
& \left.\left[k^{\top}\right]=\int_{\left(V_{0}\right)_{e}}\left\{D_{i j}\right\}\left[\frac{\partial S^{i j}}{\partial \gamma_{k l}}\right] L \frac{\partial \gamma_{k l}}{\partial\{q\}}\right\rfloor d V_{0} \\
& \left.+\int_{\left(v_{0}\right)_{e}}\left\{D_{l i}\right\} L D_{j}^{l}\right\rfloor S^{i j} d V_{0} \tag{6.78}
\end{align*}
$$

By means of the strain-displacement equations, 6.28 , one can write:

Placing Eq. 6.79 into Eq. 6.78, one obtains the following tangent stiffness for finite element " e :

$$
\begin{aligned}
{\left[k^{\top}\right]=} & \int_{\left(V_{0}\right) e}\left\{D_{i j}\right\}\left[\frac{\partial S^{i j}}{\partial \gamma_{k l}}\right] L D_{k l} \perp d V_{0} \\
& \left.+\int_{\left(V_{0}\right)}\left\{D_{i j}\right\}\left[\frac{\partial S^{i j}}{\partial \gamma_{k l}}\right] L q d\left\{D_{c k}\right\} L D_{\ell}^{c}\right\rfloor d V_{0} / 2 \\
& \left.+\int_{\left(V_{0}\right)}\left\{D_{i j}\right\}\left[\frac{\partial S_{j}}{\partial \gamma_{k l}}\right] L q\right\rfloor\left\{D_{\ell}^{c}\right\}\left\lfloor D_{c k}\right] d V_{0} / 2
\end{aligned}
$$

$$
\begin{align*}
& \left.+\int_{\left(\text {OF }_{k}\right.}\left\{D_{\ell_{i}}\right\} L D_{j}^{f}\right\rfloor S^{i j} d V_{0} \tag{6.79}\\
& +\int_{\left(V_{0}\right)}\left\{D_{l}\right\}\left\lfloor D_{j}^{\prime} j\{q\}\left[\frac{\partial S^{j}}{\partial \gamma_{k q}}\right] L D_{k l}\right\rfloor d V_{0}
\end{align*}
$$

It snould be emphasized that this tangent stiffness matrix $\left[k^{T}\right]$ dopenis upon the current state of displacoment \{q\} and stress. Also, comparing Eqs. 6.79, 6.63, 6.76, and 6.70, it is ovident that moro calculations are involved in the formulation of the tangent stiffness matrix than in the formation of the internal forces for the modified unconventional and/or for the unconventional formulations.

6.3 Finite Difference Operators

6.3.1 Linear Dynamic Systems

For the timewise numerical solution of undamped linear dynamic structural problems, many finite-difference operators have been explored to assess their attributes and shortcomings. Some schemes are stable no matter how large the time increment Δt is chosen to be - - and hence are termed "unconditionally stable"; others are unstable for Δt larger than some critical value -- and thus are termed "conditionally stable". Some introduce (unintentionally) artificial or false ramping whereas otiaers do not exhibit this undesirable feature. All of these methods, however, usualiy* produce a phase-shift error in the predicted response, depending upon the size of the finite Δt used -- some schemes exhibit moro phascshift error than others for a given Λt. A concise tabulation [177] of

[^41]some of the foatures of the morn commonly-used varietian of thin mothod aro given dolow.

SUMMAKY OF GOMD PD OPDRATOR PFATPURGG
FOR INDAMPED LITNAR DYNAMTC BYBTLMG (MATH, MODDI)

The andaction of a suitable time increment aize At if governed by (a) the atability oritorion - - the oondition undor whioh the exponential axror grawth will bo bounded and (b) the onvergonon raquitenmant $-\cdots$ the clomnnonn of tho tomparal dinarntiation nolution to the axnot difforontial nquation malution an the timowime difoxatipation month dneroanon. The mathomatidad. foundationn for tho quontiono of gonvofgenen and atablidty of numardead mothodn aro woddedovolopna ondy for hanody fyotomi. Moroovor, tho problom or pragtidal eonvozgongo (tho rionomenn of tho aolutions for Pindto At) dib ofton noglogtod.

Ao proviounly dofinod, a findto-difforonce bohomo 10 gadid to bo convorgont, de aj.d valuoa of tho finitomaifforonco golution approach tho Bolution of tho difforontial oquation of tho continum as the finite diffuroned megh gize approachos zuro. tho finito-difforunco gehomo is said to bo consigtont if the findtemdifforenco oquation approaches tho differontial gquation as tho mesh size approachos zero. Although oonedstoncy might seem to ba automatienlly satisfied by tho raylor serias method of developing the finite-difficrence scheme, in fact it is not. The property of consistency is a subtle concept, since it is not concerned with the limit behavior of the whole solution of the differential equation but merely with the limit behavior of the individual terms (differentials) of the equation. For example, a finite-diffexence simulation of a differential equation may have consistent finite differences but not be convergent.

Lax [178] has stated an dquivalence theorem that has fundamental importance for linear systems of equations. This equivalence theorem, states that, for a consistent finite-difference scheme, stability is a necessary and sufficient condition for convergence:

Although early investigators like o'Brien, Hyman, and Kaplan \{179] as well as Eddy [180] have defined stability in terms of the growth or decay of roundoff errors, it is now genorally accepted that the definition of Lax and Richtmyer [178] is much to be preferred. This more general definition
of ntablilty requixon a boundad oxtant to which any componont of the initial data can ho amplefind th tho numoriond prociture (by any find of orror, dnatuding truncation orrar an woll an grnan orrorn).

 amoglated with tho name of von Noumann bin that ntabidity in to bo dotore minod fisom the docay or amplifitantan ar oach munde of a findto poundrar busdeo oxpanaton of tho bolution to a motad equation. Lax and Richtmyer (178) havis emonotrated that this in nufededunt for otabilitey der a ilncar byotom with conetant coufficlento. Rdehtmyot l182] pointa out that tho concope of atablidty doponds on tho cholec of tho norm used to moasuro y tablilty, and that the uus of wouricr analyois as in the von Noumann muthod implius a root moan uquaro norm, which is somowhat arbitrary.

One can readily construct mmpoint forward-differonce, centraldifference, or backward-difference oporatoris by taylor series representation of the acceleration \ddot{q} and/or valocitios \dot{q} in terms of displacement $q_{\mathfrak{m}}$ information at m instants in time the truncation error of each approximation thus selected may be identified, and depends upon the number (m, such as $1,2,3, \ldots$ etc.) of the time instants used. It can also be shown that: (1) all forward-difference operators are unconditionally unetable, (2) all central difference operators are conditionally stable (a critical Δt exists beyond which error blcrup will cecur), and (3) all backward difference operators are uncuiltionaliy stible. Krieg [183] has shown that there can be no explicit second order method which is unconditionaliy stable, and, in addition, no explicit second order inethod can have a critical time gtep laxger t an that of the central difference time operator. Morino et al. [18] have shown that the central difference method is the optimal method within the class of explicit n-step predictor methods with different nustep correctors, where $n 3$.

The Houbolt method is a four-point implicit baekward-difference method (that is, at time n, \ddot{q}_{n} and \dot{q}_{n} are expressed in terms of q_{n}, q_{n-1}, q_{n-2}, and q_{n-3}) this methoa, accordingly, is unconditionally stable. However, it introduces false damping.

While orror instability in avoldod by all of the unconditionaliy atalito mothods (permitting one to une as lasge a At as one wishos), the forcing function in a givon problom may have gevere variations such that one must use a fairly small At in order to follow and identify the sovero poaks, otc. in the response. Porhaps a Δt of some chosen fraction of the poriod of the highest significantiy-excited mode should be usod. Howover, the problem iE: can one make a rational a priori estimate of this aituation? In such cases the feature of unconditional stability may not be as much of an advantage over a conditionaliv-stable method as one might think at first sight. However, for "stiff" equations (a term used by numerical analysts to refer to equations containing widely varying frequency components) like structural dynamics equations, and in particular transient loadings which excite only the lowest modes of the atructure, the "larger $\Delta t^{\prime \prime}$ permitted by the unconditionally-stable methods compared with the "small Δt " required by the conditionally-stable methods (like the 3 point central-difference scheme) makes the unconditionally-stable methods attractive.

Although one can construct finite-difference operators of the implicit or expl!sit type having truncation errors as small as one wishes by using information at time stations ($t, t-\Delta t, t-2 \Delta t, \ldots$,) it is evident that one pays a price in the necessity of storing this information in oxder to march the solution ahead in time. Further, the use of an explicit operator circumvects the iterative (or extrapolation) type of calculation required for the solution of the equations of motion when an implicit time operator is used.

6.3.2 Nonlinear Dynamic Systems

The equivalence theorem of Lax is certainly important for linear systems, but, as Roache [181, p. 50] points out, its significance tends to be overemphasized. Some authors have based arguments for the convergence
 for lineav systems, "apparently out of desperation". While it is useful to s'udy linear systems as guidelines to nonlinear systems, Lax's equivale:ice theorem is simply not applicable to nonlinear systems. As Roache
[181, p. 50] point:i out, a procise stability critorion is not requirod mathomatically. Hicks [185] suggents akipping over the problems of atability oriteria and going directily to tho hoart of tho mattor which is, aftor all: convorgonce. Fundamentaliy, one wants the finite-difforonce solution to approach tho difforential oquation solution, and stability dofinitions aro of secondary nature.

None of the criteria or analyses of stability are really adequate for practical computations of nonlincar problems. Usually the stability conditions are applied locally. The shortcomings of this approach should be clear. Several authors [$182,186,187$, and 188] have reported instabilities caused by nonlinearity, or at least because of variable coefficients. Others [189] have reported the phenomena of time splitting of solutions (Section III-A-6 of [181]) which, though not an instability in the sense of producing unbounded solutions, is an instability in a practical sense of preventing iterative convergence.

It is of fundamental importance to realize that it may be impossible to distinguish between what one might call a "true" instability and just a very poor rate of convergence. In fact, preoccupation with tidy definitions of consistency, convergence, and stability as the mesh size goes to zero $(\Delta t \rightarrow 0)$ is sometimes rather futile, since computations are not run under these conditions. Various of the explicit methods have been applied to nonlinear problems -- with the corresponding linear system Δt limit being used as a guide for choosing an appropriate $\Delta t-$ - in typical practice some fraction, usually 0.8 and 0.9 , of the analytically-indicated maximum Δt for the linear system. In early time calculations, when transients are large, smaller fractions may be needed.

All of the finite-הi.fference operators which are unconditionally stable for the linear system provide degraded (grossly inaccurate) solutions for nonlinear problems if the time step is too large.

Since there is no reason to extrapolate to nonlinear problems the classical methods used to describe stability limits and convergence for simple linear systems, the complexity of the problem determines that the best way to examine the various approaches at the present time is by numerical means.

6.3.2.1 Implioit Mothodg without Itoration

stricklin ot al. [190] havo comparod tho oxplidet fourth ordor Rungom Kutta mothod with tho implicit Houbolt and Nowmark ($\beta=\frac{1}{4}$) mothods. The comparisons woro mado on problome with nonlinoar strain-dinplacomont rolations and linoar olastic matorial bohavior, solvod by tho finito aloment method. The "convontional" form of tho oquations of motion was used. Therefore, the equilibrium equations consisted o:: a constant stiffness matrix on the left-hand (unknown) side of the equations, and the nonlinear terms were expressed as pseudo-load vectors on the right-hand ("known") side of the equations. The nonlinear terms on the right-hand side of the equation were extrapolated from the previous increments, thus avoiding iteration. For the extrapolation of the pseudo-loads, both linear and quadratic extrapolations were explored. The 'inear extrapolation was felt to be more accurate since the quadratic extrapolation led to numerical instabilities. The Houbolt and Newmark $\left(\beta=\frac{1}{4}\right)$ implicit methods are unconditionally stable for linear problems, while the fourth order Runge Kutta method is explicit and conditionally stable. For the nonlinear response of an elastic shell of revolution subjected to a step pressure loading, direct preference was established for the Houbolt operator since it was stable and accurate for a larger time step Δt than that required for stability with the Newmark $\left(\beta=\frac{1}{4}\right)$ methoa. The time increment Δt demanded by the Runge-Kutta operator was extremely small in comparison with the other two. Later on, Stricklin et al. [191] extended their investigation to include elastic-plastic behavior.

Wu and Witmer [23] also compared the Houbolt and Newmark $\beta=\frac{1}{4}$ methods. They demonstrated that the Houbolt method is more accurate for a larger time increment Δt size than the Newmark method, for linear elastic or elastic-plastic, geometrically nonlinear structural probloms, and that the 3 point central-difference method remains conditionaliy stable but the stability criterion becomes more sovere (a smaller Δt is required) than for lincar problems. The equations of motion were cast in both the "unconventional" and the "convestional" form for use with the (explicit)
contral diffornoo timo operator, only* the "conventional" form of tho equations of motion could bo unod with tho (implicit.) Houbolt and Nowmark time oporators, and tho peoudo-loade woro extrapolated linoarly. Wowk: [192] oxamined the Houbolt, Nownark $\beta=\frac{1}{4}$, and contraldifforonce oporators. Based on a one-dogroo-of-frowdom systom, he showod that the Houbolt method provides accurate solutions for a largor time stop At-than the Nowmark $\beta=\frac{1}{4}$ method when linear extrapolation of the psoudoforcos is used. For the lincar elastic, geometrically nonlinear response of a cantilevered rod, the results obtained indicated the same characteristics as for the one-degree-of-freedom system, and with large time increments both the Houbolt and Newnark operators gave grossly inaccurate answers.

McNamara [193] studied the central-difference, Newmark, Houbolt, and Wilson time operators. Unlike the previously-mentioned authors, McNamara used the tangent-stiffness formulation of the equations of motion, where the stress-strain relations for nonlinear material behavior are suitabiy linearized during an increment, and all nonlinearities are taken together in one total stiffness matrix; this tangent stiffness matrix has to be reassembled and refactorized frequently throughout the solution. McNamara points out: "the computer time required can become substantial for large problems, and much thought has been given to avoiding this drawback". He proposes the pseudo-load extrapolation method with constant stiffness (the "conventional" formulation) as an alternative, bat does not use this ' method in the solutions presented. The tangent stiffness matrix was kept constant throughout the increment. When no equilibrium iteration was used, the Houbolt method again proved to be the method that gave accurate solutions for larger time steps of all the methods compared. The comparisons included a linear clastic beam clamped at both ends with a point step-load applied at the midspan of the beam. This problem is geometrically nonlinear. The Nuwmark $\beta=\frac{1}{4}$ and wilson $0=1.5$ methods became unstable,
*The "unconventional" form of the equations of motion cannot be used with an implicit operator, since the initial guess afforded by the "unconventional" method is quite poor because the gradient matrix is just the mass matrix.
whilo tho lloubolt mothod wat ntable for all chocked valuon (thono valuon of At woro an much an five timod largor than tho valuon of At that producod unatablo bohavior for tho Nowmark aposator, and thirty timon largor than the valuos that produced inetability for tho contral-difforenco oporator). Anothor comparison was ostablishod for an impulaivoly-loaded beam olampod at both unds, with olastic-plastic matorial bohavior, and deflections reaching a value of more than four times the original thicknoss. For this problem the Newmak ($\beta=\frac{1}{4}$) method proved to be the most "unstable" of the implicit operators examined, and again, the Houbolt operator was given an edge over all of the other operators examined.

Recently, Park [194] has devised an attractive implicit method. Two numerical examples are shown for the nonlinear dynamic response of structures. A shallow spherical cap with clamped edges under a step load at the apex was solved by the park and Houbolt operators. This problem has geometrical nonlinearities but the material is considered to be linear. park concludes that his method provides a maximum "stable" step size of $0.5 \mu \mathrm{sec}$, while this value is $0.3 \mu \mathrm{sec}$ for the Houbolt operator. Since these are the only two Δt values displayed, it is not clear what it is considered to be stable or unstable behavior in this case. Also, a simplysupported cylindrical shell under uniform external impulse, with nonlinear material (elastic-plastic) behavior as well as geometric nonlinearities was solved by the Park and Houbolt methods by the DYNAPLAS code. The same problem was solved by a different computer code, named sHORE, that utilizes the central-difference time operator. The solution of the SHORE code was utilized by Park as the bench-mark solution. Park concluded that the solution obtained with his method with $\Delta t=8 \mu \mathrm{sec}$ was more accurate than by the Houbolt method with $\Delta t=5 \mu \mathrm{sec}$. This conclusion is intriguing, since different computer codes are utilized, and again, only the Houbolt method solution for one Δt valuo is displayed. The equations of motion for this comparison are cast in the "conventional" form, and the pseudoloads are extrapolated linearly. Finally, park's operator is at least as stable locally and has less falso damping and frequency distortion than the lloubolt operator; accordingly, its use for the present class of honlinear transient response problems desurves further investiation.

6.3.2.2 Implifoit Mothoda with Itoration

It: La vory importane to dintingulah botwon two typun of quabintatac problome decording to tha pathodopondoneo wf tho nolution. An podntad out by nxgyeds [170], path-indopondont. probloms modialy lond thomaolvon to a total equildurium formulation in which tho incremontal linoarization orvora aro undor full contsol via rosidual load itoration. In contrast, pachdopendent problems (cor oxamplo, plastic problems) mako it impossibli: to computo residual loads without intogration of tho prior history. While path-independent problems guarantee a return to the true solution path within a given tolerance, path-dependent problems provide no possibility of reducing the numerical integration errors without reanalyzing the process with smaller incroments. The numerical solution of the pathdependent problems poses computational problems whioh are fundamentally different from path-independent problems. The error control and the development of time step strategies which assure accuracy as well es stability are far more complicated. It is a common mistake to belleve that residual correction at the end of the increment will guarantee the return to the true solution path. It is of fundamental importance that the truncation error cannot be reduced by residual iteration for pathdependent problems.

path-Independent Nonlinear Problems

Weeks [192] observed that, for the nonlinear, path-independent response of a one-degree-of-freedom system, the Houbolt operator provides more accurate solutions when linear extrapolation of the pseudo-loads is used than when (Newton-Raphson) iteration is used, for sufficiently large time step sizes Δt. The numerical damping of the Houbolt operator is compensated by the weak instability produced by the linear extrapolation of the pseudo-loads; thus, extrapolation provides more accurate solutions than iteration. Whon the Newton-Raphson ituration method was used to converge for a nonlinear solution at each timo step, the Nowmark and Houbolt operators wore always stable, at least for the time step sizos investiyated (time steps that were small enough to trace the responso adequately). In contrast, the Newmark oporator became unstable when using
load oxtrapolation and largor timo atopn, whoroan tho Houbolt oporator was alwaye atablo with load extrapolation.

For tho clantio (path-indopondont) nonlinoar rooponae of a cantilovorod boam, Wooks found that, tho Houbolt operator is atable (but oxhibite considorable damping) when Newton-Raphson itoration is ugod at oach time atop, while tine Nowmark method exhibites no artificial damping but doos exhibit a slight shift, and was stablo for the time stop sizes invostigated.

MoNamara [193] studied the linear elastic (path-independent) geometrically nonlinuar response of a beam clamped at both ends and subjected to a point'step-load at midspan. He used the tangent stiffness form of the equations of motion. The iteration method he used is the . so-called modified Newton-Raphson iteration. This method is Just the well-known method of succesive approximations, applied at each time step. The gradient matrix is the tangent stiffness matrix, which is kept constant within the time step, and hence, is kept constant within the iteration loop. He found the interesting results that (for large time steps Δt): (a) the Houbolt operator provides better results when iteration is not used and (b) the Newmark operator becomes stable for this nonlinear problem when iteration is used, but the results are not as accurate as the results obtained with the Howbolt operator.

Path-Dependent Problems

For the path-dependent (elastic-plastic) and geometrically nonlinear problem exam. i (the impulsive loading of a beam clamped at both ends) by McNamara [193], he could not achieve convergence for the iteration scheme used (the modified Newton-Raphson method).

However, Belytschko and Schueberle [195] report to have obtained "stable" results for the same problem. They also used the tangent stiffness form of the equations of motion, as well as the modified Newton-Raphson iteration scheme (the tangent stiffnoss is kept constant within each itcration loop, and recomputed at each time stop). Belytschko and Schoeberle used a different computational procedure which onsures that the energy is conserved within a given "energy error criterion". The
avoraqn numbor of itorationf par time ntop wan not roportod, but it in Foportid that: whon largo timo atopn arn unce, from jo to lon itorationn aro roquilrod in tho firnt timo ntop boonuno tho ytald valuo ta oxcoodnd quito a bit within that timo stop. Iho Nowmark β method wan unod, with values of $\beta=\frac{1}{4}, \frac{3}{8}$ and $\frac{1}{8}$, The Nowmaxk β a $\frac{1}{8}$ mothod 1 unatablo, just as for linoar syatems. Tho rosulta for $\beta=\frac{1}{4}$ and $\beta-\frac{3}{8}$ aro "stablo" but detoriorate as the timo stop sizo is incroanod, with tho anpil.tudo of the rosponsc increasing as the time step is increasud. The throe problems shown exhibit "stability" and "accuracy" for time stope much larger (101000 times) than the stability limit of the central-difference time operator. However, in order to have comparable computing times as for the central-difference time operator, time steps more than twenty times the size of the allowable time step size for the certralmifference operator were required for the implicit scheme. Belytschko and Schooberle conclude that the path-dependence for the problems investigated was guite weak, and that in problems with two or three dimensional states of stress, the accuracy will deteriorate more rapidly with increasing time step size. ${ }^{+}$

6.4 Solution of the Governing Equations

In order to obtain the timewise solution of a set of equations of dynamic equilibrium such as Eqs. $6.71,6.68$, or 6.55 , one may resort to analytical techniques or numerical techniques depending upon the mathematical (and/or physical) nature of the problem.

For small-deflection linear-elastic behavior, for example, one may recast these equations into normal mode form and solve the resulting equations of motion analytically, mode by mode if the forcing functions are modalily uncoupled or are properly sequentially coupled. Superposition of the forced responde of each mode then provides the total response of the systom. Alternatively, if desired, one may solve these equations by using a finite-difference numerical procedure whereby one obtains a recurrence equation which provides a solution step-by-step in finitewtime increments.

If the stiffness matrix varies with time as in the present class of nonlinear problems, the normal modes also vary in time; of course, ono

[^42]could fotain tho limoar part of tho intornat foreo torme monoby ddontifying timo-invariant "normal morlon" and troat tho romainder of tha Inturmat foreo tomme an puendowhade. Howover, the normad modo appronch may bocomo dmpractical. Accordingly, tho numortcal finteondfforonco mothod in omployod in the pronont otudy for molvine oquatilonn of motion Like Equ. 6.71, 6.68, or 6.55.

In particular, tho contral-difforonce finito-differonco time oparator Is omployad for purposos of illustrating the solution process for the "unconventional" formulation described in Subscction 6.4.1. Since the central-difforenco timo oporator is an oxplieit schome, the solution of the equations of motion is best handied by tho pure voctor form described in Subsection 5.2.3.1, which is denoted here as the "unconventional" formulation; of course, other methods like the constant stifeness method ("conventional" fommulation) can be and were used in the past, but these methods are not as efficient as the "unconventional" formulation.

In Subsection 6.4.2, the Houboit (finite-difference) time operator is employed to describe the solution process for the "conventional" or for the "modified unconventional" formulation.

6.4.2 Explicit Solution Process of the Equations of Motion

As indicated earlier, the equations of motior (Eq. 6.55) in the pure vector form are:

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}=-\{I\}+\{F\} \tag{6.72}
\end{equation*}
$$

where [M] is the global mass matrix, $\{I\}$ is a vector of internal forces assooiated with linear and nonlinear terms of the strain-displacement relations as well as elastic and plastic forces: and $\{F\}$ represents the generalized load vector accounting for externally-app d distributed or concentrated loads. These cquations are to be solved at a sequence of instants in time Δt apart y employing the following central-difference (explicit) (finite-difference) simulation for the acceloration \ddot{q}_{t} at any instant t :

Also, ono may approximate the volocdty \dot{q}_{t}^{*} at , time t by:

$$
\begin{equation*}
\dot{q}_{t}^{*}=\frac{q_{t+\Delta t}^{*}-q_{t-\Delta t}^{*}}{2 \Delta t}+O(\Delta t)^{2} \tag{6.74}
\end{equation*}
$$

Now note that at any time instant t, Eq. 6.72 can bo writ ton exactly as:

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}_{t}=-\{I\}_{t}+\{F\}_{t} \tag{6.75}
\end{equation*}
$$

In this equation, all quantities except $[M$ l change, in general, with time. If the solution has been obtained for earlier instants of time, one may compute $\left\{\ddot{q}^{*}\right\}_{t}$ from this equation (Eq. 6.75), and then use Eq. 6.73 to obtain $\left\{q^{*}\right\}_{t+\Delta t}$ as:

$$
\begin{equation*}
\left\{q^{*}\right\}_{t+\Delta t}=\left\{\ddot{q}^{*}\right\}_{t}(\Delta t)^{2}+2\left\{q^{*}\right\}_{t}-\left\{q^{*}\right\}_{t-\Delta t} \tag{6,76}
\end{equation*}
$$

Assuming that at $t=0$, the structure is at a known condition such as

$$
\begin{equation*}
\left\{q^{*}\right\}_{0}=\{0\} ;\left\{\dot{q}^{*}\right\}_{0}=\{A\} ;\left\{\ddot{q}^{*}\right\}_{0}=\{B\} \tag{6.77}
\end{equation*}
$$

one can readily obtain $\left\{q^{\star}\right\}{ }_{\Delta t}$ from the following Taylor series expansion:

$$
\left\{q^{*}\right\}_{\Delta t}=\left\{q^{*}\right\}_{0}+\left\{\dot{q}^{*}\right\}_{0} \Delta t+\left\{\ddot{q}^{*}\right\}_{0} \frac{(\Delta t)^{2}}{2}+O(\Delta t)^{3}(6.78)
$$

since $\{F\}_{0}$ is prescribed and all other quantities are known.
In the timewise step-by-step solution process involving geometric (path-independent) nonlinearities as well as material (path-dependent) elastic-plastic transient responses, the vector of internal forces $\{I\}_{t}$ changes with time and hence must be reevaluated, in general, at each instant in time. This vector, in turn, is composed by assembling the contributions (sec Eq. 6.51):

$$
\begin{equation*}
\{i\}=\int_{\left(V_{0}\right)}\left\{D_{i j}\right\} S^{i j} d V_{a}+\int_{\left(V_{i}\right) e}\left\{D_{l i}\right\} S^{i j} \chi_{j}^{l} d V_{0} \tag{6.79}
\end{equation*}
$$

whore

$$
\begin{equation*}
\chi_{j}^{1}=\left\{D^{4} \leq\{q\}\right. \tag{6.80}
\end{equation*}
$$

 seen that theso quantitios involvo volume intograle of information involving the stress state $s^{i y}$. In practice, these evaluations arc carried out by appropraito numorical intogration -- Gaussian quadrature. This requiros that the stresses $s^{i j}$ and displacement gradionts $\left\lfloor D_{j}^{l}\right\rfloor\{q\}$ be evaluated at a finite number of Gaussian integration points over the "spanwise" or "areawise" and the "depthwise" region of each finite element.

At any instant of time t, one needs to solve Eq. 6.75 for $\{\ddot{q}\}_{t}$, which is of the form:

$$
[M]\{x(t)\}_{t}=\{b(t)\}_{t} \text { for } t=0, \Delta t, 2 \Delta t, \ldots(6.81)
$$

where
[M] is a known banded positive definite symmetric matrix
$\{x(t)\}_{t}$ is a vector of unknowns which must be determined by solving Eq. 6.81
$\{b(t)\}_{t}$ is a known vector (representing all terms except [M] \{ $\left.\ddot{q}^{*}\right\}_{t}$ in Eq. 6.75)

In order to solve Eq. 6.81, the Choleski method is used. Briefly, the well known Choleski method [195] involves factoring the matrix [M] to form a lower triangular matrix and an upper triangular matrix, which is the transpose of the former. If a diagonal ("lumped") mass matrix is used, then the solution of Eq. 6.81 is trivial, and hence extremely fast.

An altormato solution achoo in tho tripla-factordmation and
 offidutat ami button uomdthanta numerically than tho standard Cholmakt
 with foquontital noluthon (not pp. 2 late of Raf. 297) and aonalnta of two major nope:

1. Thu global mane matrix dis factored into a triple product (telplo factorization or (Gaus-Doolittile docompoodtion).
2. Tho dioplacomonts are solved for goquontialiy, in three substeps.

The global mass matrixlM]is factored into the form:

$$
\begin{equation*}
[M]=[L][D][L]^{\top} \tag{6.8}
\end{equation*}
$$

where[L]is a lower triangular matrix with zeros in its upper triangular portion and unity on the diagonal, and[D]is a pure diagonal matrix. By direct substitution and comparison, one can show readily that

$$
\begin{equation*}
D_{m}=M_{m m}-\sum_{p=1}^{m-1} L_{m p}^{2} D_{p} \tag{6.82a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.L_{i m}=\frac{1}{D_{m}}\left[M_{i m}-\sum_{p=1}^{m-1} L_{i p} L_{\operatorname{mp}}\right]_{p}\right] \tag{6.82b}
\end{equation*}
$$

Note that for $m=1$, there are no summation terms. By the use of Eq. 6.82, Eq. 6.81 may be rewritten as

$$
\begin{equation*}
[L][D][L]^{\top}\{x\}=\{b\} \tag{6.83}
\end{equation*}
$$

Next, let

$$
\begin{equation*}
[L]\{R\}=\{b\} \tag{6.84}
\end{equation*}
$$

where

$$
\begin{equation*}
\{R\}=[D][L]^{\top}\{x\} \tag{6.84a}
\end{equation*}
$$

Solving Aq, G, 日A for $\{R\}$, ono obtains by forward nolution

$$
\begin{equation*}
R_{m}=\frac{L}{L_{m n}}\left[b_{m}-\sum_{p_{m}}^{m-1} L a n p R_{p}\right] \tag{G,G5}
\end{equation*}
$$

Nowt, rewrite Eq. G.84a an

$$
\begin{equation*}
[D]\{F\}=\{R\} \tag{6.86}
\end{equation*}
$$

whoso

$$
\begin{equation*}
[L]^{\top}\{x\}=\{p\} \tag{6.865}
\end{equation*}
$$

Solving Eq. 6.86, one finds

$$
\{r>\}=\left[D^{-1}\{R]^{2}\right\}=\left\{\begin{array}{c}
R_{1} / D_{1} \\
R_{2} / D_{2} \\
\vdots \\
R_{n} / D_{m}
\end{array}\right\}
$$

Finally. Eq. 6.86a is solved by backward subst:"ucicn to obtain:

$$
\begin{align*}
& x_{m}=\frac{P_{n}}{L_{m n}} \\
& x_{m-1}=\frac{1}{L_{m-1} n-1}\left(P_{m-1}-L_{m n-1} x_{n}\right) \tag{6,88}\\
& \vdots \\
& x_{1}=\frac{1}{L_{11}}\left(P_{1}-L_{21} x_{2}-L_{31} x_{3}-\ldots-L_{m-1} x_{m}\right)
\end{align*}
$$

Sequentially, the "computing and storing" process involves (a) solving Eq. 6. 84 for $\{R\}$ and replacing $\{b\}$ by $\{R\}$ (b) solving Eq. 6.86 for $\{P\}$ and replacing $\{R\}$ by $\{P\}$, and (c) solving Eq, $6.86 a$ for $\{x\}$ and replacing $\{p\}$ by $\{x\}$.
E.A.2 Implicit Golution Process of tho Equations of Motion Tho constant ntiffrons form of tho oquations of motion 10 to bo used With implitat oporatore. From Bqa. 6.71. and G.G日, thome equations of motion aso:

$$
\begin{equation*}
[M]\left\{\ddot{q}^{*}\right\}+[K]\left\{q^{*}\right\}-\{F\}+\{F N\} \tag{6.89}
\end{equation*}
$$

whoro [M] is the global mass matrix, [K] is the usual small strain, linearclastic, global (constant) stiffness matrix, and $\{F\}$ is the load vector representing externally applied distributed or concentrated lcads. The vector $\left\{\mathrm{F}^{\mathrm{NL}}\right\}$ is, for the "conventional" formulation

$$
\begin{equation*}
\left\{F^{N L}\right\}=\left\{F_{P}^{L}\right\}+\left\{F_{P}^{N L}\right\}+\left\{F_{q}^{N L}\right\} \tag{6.90}
\end{equation*}
$$

a pseudo-load vector representing internal forces, which for small strains can be decomposed into three vectors: $\left\{F_{q}^{N L}\right\}$ a vector arising from the nonlinear terms in the strain-displacement equations, and $\left\{F_{p}^{L_{n}}\right\}$ and $\left\{F_{p}^{N L}\right\}$ pseudo-load vectors due to plastic (small) strains and associated respectively, with the Iinear and nonlinear terms of the strain-displacement relations.

For the "modified unconventional" formulation, the vector

$$
\begin{equation*}
\left\{F^{N L}\right\}=[K]\left\{q^{*}\right\}-\{ \pm\} \tag{6,91}
\end{equation*}
$$

is a pseudo-load vector representing internal Eorces arising from (small and finite strain) elastic-plastio behavior as well as all (Iinear and nonlinear) terms of the strain-displacement relations. In Eq. 6.91, the matrix [K] is the same global (constant) stiffness matrix appearing on the left-hand side of Eq. 6.89, and $\{I\}$ is the same pseudo load vector of intornal forces used for the "unconventional" vector form of the equations of motion. Eq. 6.72. The "modifled unconventional" form of the equations of motion (Eq. 6.91) is more efficient than the "conventional" form of the equations of motion, as well as being valid for finite strain

[^43]material behavior of any kind, while the "conventional" form in valid only for amall-atrain nlanticmplantic material behavior.

The nolution of the dynamic equation of motion (Eq. 6.89) an be necompliahod by applying an implicit integration achomo. In thin nohome, tho time derivatives of tho nodal displacement vector $\left\{q^{*}\right\}$ (that la, $\left\{\ddot{q}^{*}\right\}$ and $\left\{d^{*}\right\}$) are expressed at a discrete time instant in terms of the nodal diuplacemonts at several nearby discrete time instants. When substituted into the governing equation of motion, a recurrence relation is obtained from which displacements can be calculated at each discrete time instant.

The acceleration $\left\{\ddot{q}^{*}\right\}_{t+\Delta t}$ at time $t+\Delta t$ is expressed by a 4 -point backward-difference formula in the Houbolt operator:

$$
\begin{aligned}
& \left\{\ddot{q}^{*}\right\}_{t+0 t}=\frac{1}{(\Delta t)^{2}}\left(2\left\{q^{*}\right\}_{t+0 t}-5\left\{q^{*}\right\}_{t}+4\left\{q^{*}\right\}_{t \Delta t}-\left\{q^{*}\right\}_{t+2 t a(0,92)}\right. \\
& +0(\Delta t)^{2}
\end{aligned}
$$

The velocity $\left\{\dot{q}^{*}\right\}_{t+\Delta t}$ at time $t+\Delta t$ can be expressed by the following 3-point backward-difference formula having the same truncation error as $\left\{\ddot{q}^{*}\right\}_{t+\Delta t}:$
$\left\{\dot{q}^{*}\right\}_{t+\Delta t}=\frac{1}{2 \Delta t}\left(3\left\{q^{*}\right\}_{t+\Delta t}-4\left\{q^{*}\right\}_{t}+\left\{q^{*}\right\}_{t-\Delta t}\right)+0(\Delta t)^{2}(6.93)$
For computational convenience, the terms in Eq. 6.92 can be regrouped so that $\{\ddot{q}\}_{t+\Delta t}$ at time $t+\Delta t$ can also be related to $\left\{\dot{q}^{*}\right\}_{t}$ at time t :

$$
\begin{align*}
&\{\ddot{q}\}_{t+\Delta t}= \frac{1}{(\Delta t)^{2}}\left[2\left(\left\{q^{*}\right\}_{t+\Delta t}-\left\{q^{*}\right\}_{t}\right)\right. \\
&\left.+\left(-3\left\{q^{*}\right\}_{t}+4\left\{q^{*}\right\}_{t \Delta t}-\left\{q^{*}\right\}_{t-2 \Delta t}\right)\right] \tag{6.94}
\end{align*}
$$

$$
\begin{equation*}
\{\ddot{q}\}_{t+\Delta t}=\frac{2}{(\Delta t)^{2}}\left(\left\{q^{*}\right\}_{t+\Delta t}-\left\{q^{*}\right\}_{t}\right)-\frac{2}{\Delta t}\left\{\dot{q}^{*}\right\}_{t} \tag{6.95}
\end{equation*}
$$

 timur + At. an

 to give

$$
\begin{aligned}
\left(\frac{2}{(\Delta t)^{2}}[M]+[K]\right)\left\{q^{*}\right\}_{t+\Delta t} & =\{F\}_{t+\Delta t}+\left\{F^{N_{L}}\right\}_{t+\Delta t} \\
& +\frac{2}{\Delta t}[M]\left(\left\{\dot{q}^{*}\right\}_{t}+\frac{1}{\Delta t}\left\{q^{*}\right\}\right\}_{t}^{(6.97)}
\end{aligned}
$$

The recurrence relation given by Eq. 6.97 can be solved at och same step for the unknown displacements $\left\{q^{*}\right\}{ }_{t+\Delta t}$ at time $t+\Delta t$, based on the know ledge of $\left\{F^{\prime}\right\}_{t+\Delta t^{\prime}}\left\{F^{N L}\right\}_{t+\Delta t^{\prime}}\{\dot{q}\}_{t^{\prime}}$ and $\left\{\mathrm{q}^{*}\right\} t^{\text {. }}$. The quantities $\{\mathrm{F}\}_{t+\Delta t^{\prime}}$ $\left\{\dot{q}^{*}\right\} t^{\prime}$ and $\left\{g^{*}\right\}_{t}$ on the right-hand side of the equilibrium equation (Eq. 6.97) are known at time $t+\Delta t$, but the vector of pseudo-forces $\left\{F^{N L}\right\}_{t+\Delta t}$ is a function of $\left\{4^{*}\right\}{ }_{t+\Delta t}$ and, thus, is not known. Consequently, either some form of extrapolation or iteration is required to calculate $\left\{F^{\mathrm{NL}}\right\}_{t+\Delta t}$ as will be discussed in Subsection 6.4.2.1 and 6.4.2.2.

Once $\left\{q^{*}\right\}_{t+\Delta t}$ is determined, the velocities, $\left\{\dot{q}^{*}\right\}_{t+\Delta t}$ can be obtained from Eq. 6.93, and the solution advanced to the next time instant. This process is repeated until some specified termination point is reached. The process is self-starting, since once the initial conditions, $\left\{\dot{q}^{*}\right\}_{0}$ and $\left\{q^{*}\right\}_{0}$ at time $t=0$ are specified, the solution for $\left\{q^{*}\right\}_{\Delta t}$ is obtained directly from Eq. 6.97. However, in order to evaluate the velocity $\left\{\mathrm{q}^{*}\right\} \Delta t$ at time $t=\Delta t$ (needed to calculate $\left.\left\{q^{*}\right\}, t+2 \Delta t\right)^{\prime}$ from Eq. 6.93, $\left\{q^{*}\right\}-\Delta t$ is needed but is not known. Thus, some form of "starting sequence" is requited. in the prosiont case, $\left\{q^{*}\right\}-\Lambda t$ is calculated from a dentral-difforonow expression for $\left\{i{ }^{*}\right\}_{0}$

$$
\left\{\dot{q}^{*}\right\}_{0}=\frac{1}{2 \Delta t}\left(\left\{q^{*}\right\}_{\Delta t}-\left\{q^{*}\right\}_{-\Delta t}\right)+O(\Delta t)_{(6.98)}^{2}
$$

which when solved for $\left\{q^{\star}\right\}-\wedge t$ given $^{\text {and }}$

$$
\begin{equation*}
\left\{q^{*}\right\}_{-\Delta t}=\left\{q^{*}\right\}_{\Delta t}-2 \Delta t\left\{\dot{q}^{*}\right\}_{0} \tag{6.99}
\end{equation*}
$$

and substituting this into Eq. 6.93 (for $t \sim 0$) gives tho required expression for $\left\{\dot{q}^{*}\right\} \Delta t$:

$$
\begin{equation*}
\{\dot{q}\}_{\Delta t}=\frac{2}{\Delta t}\left(\left\{q^{*}\right\}_{\Delta t}-\left\{q^{*}\right\}_{0}\right)-\left\{\dot{q}^{*}\right\}_{0} \tag{6.100}
\end{equation*}
$$

After the first time step, the solution progresses using Eq. 6.97 for $\left\{q^{*}\right\}_{t+\Delta t}$ and Eq. 6.93 for $\left\{\dot{q}^{*}\right\}_{t+\Delta t}$.

The matrices $[M]$ and $[K]$, and the time step size Δt, are held constant throughout the timewiso solution. In order to solve Eq. 6.97 for $\left\{q^{\star}\right\}_{t+\Delta t}$, the triple-factoring form of Gauss-Jordan elimination is used, as reviewed in Subsection 6.4.1. The matrix sum $\left(\frac{2}{(\Delta t)^{2}}[M]+[\mathrm{K}]\right)$ is thus formed and factored only once, prior to the first time step. At each time step, $\left\{q^{*}\right\}_{t+\Delta t}$ is obtained by back-substitution operations.

6.4.2.1 Extrapolation

Using a first order Taylor's series expansion about time t, one obtains:

$$
\left\{F^{N L}\right\}_{t+\Delta t}=\left\{F^{N L}\right\}_{t}+\frac{\partial}{\partial t}\{F N L\}_{t} \Delta t+O(\Delta t)^{2}
$$

Approximating the partial derivative $\frac{\partial}{\partial t}\left\{F^{N L}\right\}_{t}$ by a first-order backwards difference expression gives:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\{F^{M L}\right\}=\frac{1}{\Delta t}\left(\left\{F^{M}\right\}_{t}-\left\{F^{M L}\right\}_{t-\Delta t}\right) \tag{6.102}
\end{equation*}
$$

substituting this back into Eq. 6.101 produces the following "linear extrapolation expression":

$$
\begin{equation*}
\left\{F^{N L}\right\}_{t+\Delta t}=2\left\{F^{N L}\right\}_{t}-\left\{F^{N L}\right\}_{t-\Delta t} \tag{6.103}
\end{equation*}
$$

This oxpromaton has an inherent truncation error of order (At.) whit h L: the same as tho ordox of error inherent in tho noubolt approximations for both the acceleration (E1. 6.92) and the velocity (E4. 6.93); hence, it. is a consistent approximation of the penendo-load vector $\left\{\mathrm{fr}^{\mathrm{NL}}\right\}_{t+\Lambda t}$. Equation 0.103 corresponds to a linear extrapolation of the loads from tho two previous time instants.

Substituting expression 6.103 into tho recursive relation (Eq. 6.97) for the equations of motion with the Houbolt operator produces:

$$
\begin{aligned}
& \left(\frac{2}{(\Delta t)^{2}}[M]+[K]\right)\left\{q^{*}\right\}_{t+\Delta t}=\{F\}_{t+\Delta t} \\
& \quad+\frac{2}{\Delta t}[M]\left(\left\{\dot{q}^{*}\right\}_{t}+\frac{1}{\Delta t}\left\{q^{*}\right\}_{t}\right)+2\left\{F^{N L}\right\}_{t}-\left\{F^{N(1)}\right\}_{t-\Delta t}
\end{aligned}
$$

where:

$$
\begin{align*}
& \left\{F^{N L}\right\}_{t}=[K]\left\{q^{*}\right\}_{t}-\{I\}_{t} \tag{6.105}\\
& \left\{F^{N L}\right\}_{t-\Delta t}=[K]\left\{q^{*}\right\}_{t-\Delta t}-\{I\}_{t-\Delta t} \tag{6.106}
\end{align*}
$$

for the "modified unconventional formulation with linear extrapolation" (MULE) form of the equations of motion, and

$$
\begin{align*}
& \left\{F^{N L}\right\}_{t}=\left\{F_{p}^{L}\right\}_{t}+\left\{F_{P}^{\cdots}\right\}_{t}+\left\{F_{q}^{N L}\right\}_{t} \tag{6.107}\\
& \left\{F^{N L}\right\}_{t-\Delta t}=\left\{F_{P}^{L}\right\}_{t-\Delta t}+\left\{F_{p}^{N L}\right\}_{t-\Delta t}+\left\{F_{q}^{N L}\right\}_{t-\Delta t} \tag{6.108}
\end{align*}
$$

for the "conventional linear extrapolation" form of the equations of motion. The linear extrapolation of the pseudo-force vector arising from nonlinearitios has significant advantages: no iteration for convergence
is nocobsary, and only a vector ($\left\{F^{N L}\right\}{ }_{t-A t}$) needed to bo stored, rather than the complete Jacobian matrix, as it would be nocosaary with the Nowton-Rapheon method.

6.4.2.2 Iteration and convergence

The iteration method that is used in this work is the mothod of successive substitutions, also known as the method of successive approximations. This iterative technique, one of the easiest methods to apply, was used since it does not involve the formation and refactoring of the gradient matrix, which is consistent with the spirit of the constant stiffness form of the equations of motion. For the Houbolt operator, the equations of motion are (see Eq. 6,97):

$$
\begin{align*}
& \left(\frac{2}{(\Delta t)^{2}}[M]+[K]\right)\left\{q^{* n+1}\right\}_{t+\Delta t}=\{F\}_{t+\Delta t} \\
& +\frac{2}{\Delta t}[M]\left(\left\{\dot{q}^{*}\right\}_{t}+\frac{1}{\Delta t}\left\{q^{*}\right\}_{t}\right)+\left\{F^{N L}{ }^{n}\right\}_{t+\Delta t} \tag{6.109}
\end{align*}
$$

In this recursive relation, n denotes the nth iteration and the variable N indicates the total number of iterative cycles required for "convergence" during a given Δt time step. The procedure starts (superscript "o") with an initial estimate $\left\{\mathrm{NL}^{\mathrm{N}}\right\}_{t+\Delta t}$ of the pseudo-load vector. It is natural to use the extrapolated load from the previous two increments as the first estimate; hence,

$$
\begin{equation*}
\left\{F^{N L}\right\}_{t \tau \Delta t}=2\left\{F^{N L}\right\}_{t}-\left\{F^{N L}\right\}_{t-\Delta t} \tag{6.110}
\end{equation*}
$$

Then a value of the displacement vector is obtained from Eq. 6.109

$$
\begin{equation*}
[A]\left\{q^{* 1}\right\}_{t+\Delta t}=\{B\}+\left\{F^{N L} 0\right\}_{t+\Delta t} \tag{6.111}
\end{equation*}
$$

where

$$
\begin{equation*}
[A]=\frac{2}{(\Delta t)^{2}}[M]+[K] \tag{6.112}
\end{equation*}
$$

$$
\begin{equation*}
\{B\}=\{F\}_{t+\Delta t}+\frac{2}{\Delta t}[M]\left(\left\{\dot{q}^{*}\right\}_{t}+\frac{1}{\Delta t}\left\{q^{*}\right\}_{t}\right) \tag{6.113}
\end{equation*}
$$

From this value $\left\{q^{*}\right\}_{t+\Lambda t}$ a now estimate $\left\{F^{N L_{1}}\right\}_{t+\Lambda t}$ of the proudo-load vector can bo obtained, and then a new ostimato $\left.\left\{q^{*}\right\}^{2}\right\}_{t+\Lambda t}$ from tho solution
of of

$$
\begin{equation*}
[A]\left\{q^{* 2}\right\}_{t+\Delta t}=\{B\}+\left\{F^{N L} 1\right\}_{t+\Delta t} \tag{6.114}
\end{equation*}
$$

can also be obtained, and so on. This iterative process is continued until either convergence of two successive displacement vectors is noted or a specified number of iterations is reached. The method of successive substitutions is severely limited by its inability to converge for problems exhibiting a significant degree of nonlinearity.

For a one-degree-of-freedom system:

$$
\begin{equation*}
A q^{*}=F\left(q^{*}\right) \tag{6.115}
\end{equation*}
$$

it is easy to show that if $F\left(q^{*}\right)$ possess a continuous derivative, it is necessary for convergence of the method of successive substitutions, that

$$
\begin{equation*}
\left|\frac{\partial F}{\partial q^{*}}(\alpha)\right| \leqslant A \tag{6.116}
\end{equation*}
$$

where α is a root of Eq. 6.115. Moreover, since the gradient matrix [A] stays constant during the iteration, this method has a very slow rate of convergence when it does converge. Furthermore, when unloading of an clastic-plastic solid occurs, even the Newton-Raphson method (which has proven itself to be one of the best solution methods available for static, geometrically nonlinear analysis) fails to converge in many cases, as pointed out by strickling and Haislor [198], who anticipate that this lack of convergence arises from the discontinuity produced by elastic unloading.

A nested double. iteration procedure using an inner loop NewtonRaphson procedure has boon amployod suceoaafully in materially nonlinear static analysis by Bushnell (199). The outer loop updates (for a given value of tho load) the material properties and strain components while the inner one ensures equilibrium for that sot of material properties. The problems solved in Ref. 199 did not involve cases of severe unloading and wore not dynamic. Stricklin and Haisler [198] conclude "The research conducted to date tends to indicate that additional refinements are necessary before the direct application of the Newton-Raphson method can be made for plasticity problems with complex loading and unloading patterns".

For the present work, the following compromise procedure was devised. Knowing in advance that the method of successive substitutions will fail to converge for the complex geometrically and materially nonlinear dynamic problem being analyzed (that involves complex loading and unloading patterns), it is still hoped that the first few iterations will be "asymptotically convergent" in the sense that the first few estimates of the solution may be closer and closer to the solution until the method begins to diverge. Monitoring the rate of convergence, the iteration loop is stopped once divergence commences and the last "converged" estimate of the solution is taken as the solution (in "equilibrium") for that time step. In order to monitor the convergence, two criteria were applied. The first criterion is

$$
\begin{equation*}
\frac{\left(\left\|\left\{q^{* n+1}\right\}_{t+\Delta t}\right\|\right)^{2}-\left(\left\|\left\{q^{* n}\right\}_{t+\Delta t}\right\|\right)^{2}}{\left(\left\|\left\{q^{* n}\right\}_{t+\Delta t}\right\|\right)^{2}}<\varepsilon \tag{6.1.17}
\end{equation*}
$$

where $\left\|\left\{q *^{n}\right\}_{t+\Delta t}\right\|$ is the Euclidean norm of the vector $\left\{q{ }^{\left.*^{n}\right\}} t+\Delta t\right.$:

$$
\begin{equation*}
\left\|\left\{q^{* n}\right\}_{t+\Delta t}\right\|=\left(\sum_{i}\left[\left[^{i}\left(\left(q^{* n}\right)_{t+\Delta t}\right)\right]\right)^{1 / 2}\right. \tag{6.1.18}
\end{equation*}
$$

It in antsy to blow that tho convergonen arituxton Eq. G. 117 in more stringent. (by a factor of 2 than the convorgonco criterion obtained from tho difforonod of the Euclidean norma:

$$
\begin{equation*}
\left(\frac{\left\|\left\{q^{n+1}\right\}_{t+\Delta t}\right\|}{\left\|\left\{q^{n n}\right\}_{t+\Delta t}\right\|}\right)^{2}<1+\varepsilon \tag{6.119}
\end{equation*}
$$

which, for small E is approximately:

Hence, if convergence criterion Eq. 6.117 (used in the present work) is satisfied to a given tolerance ε, then convergence criterion Eq. 6.121 (used, for example, in Ref. 200) is satisfied to $\frac{1}{2} \varepsilon$. In the present work, the convergence criterion was taken to be

$$
\begin{equation*}
\varepsilon=1 \times 10^{-4} \tag{6.122}
\end{equation*}
$$

The second convergence criterion examined in the present study was:

It is easy to show that this convergence criterion is more stringent than the previous ones, since, from the triangle inequality:
or

Hence, if the Eq. 6.123 criterion is met within a given solerance δ, it certainly meets criterion Eq. 6.121 to within a smaller or equal tolerance.

The convergence criterion Eq. 6.123 is to be preferred to Eq. 6.121 since, for any norm $\left\|\left\{q^{n+1}\right\}-\left\{q^{n}\right\}\right\|$ is a measure of the deviation of the approximation in vector space.

In the present work, the quantity δ was taken to be

$$
\begin{equation*}
\delta=1 \times 10^{-4} \tag{6.126}
\end{equation*}
$$

If the iteration scheme were convergent, it would take a certain number of iterations to meet a given criterion; however, since the present iteration scheme will not always converge, the following test is made: if the condition of Eq. 6.117 or Eq. 6.123 is not met, the iterative process is continued if

for Eq. 6.117, or if

for Eq. 6.123.

Othorwtae, if gonditiona Eq, G. 127, G. 228 arn not gatinfled, tho itoxation proconm in ntoppod, and

tho provious artimato that oatlofiod Eg. G. 127 or 6.128113 takon as tho "equililbrium" nolution for that time gtop.

GECTION 7

EVALKATTON AND DTGCUGBTON

7.1 Introduction

In ordor to ovaduato tho pronont findtomntradn formudation and $1 m^{\prime}$ in mentod computational procoduro for prodiotidig tranniont otructural rooponsoo producod by govoro transdont oxtornal loads or impact, auvaral woll-definod problams for which indepondont prodictions and/or roliablo exporimental data are avallablo for comparison are invoetigatod. This discussion is divided, for convenience and clarity, into two categorias: (1) Impulsively-loaded structures and (2) fragment-impacted structures. Further, under each of those categories, there are two types of structural response and modeling: (a) two-dimensional (or planar) and (b) threedimenaional (non-planar) structural deflections.

Impulsively-loaded structures discussed in subsections 7.2, 7.3, and 7.4, respectively, are a narrow plate (or beam), an initially circular ring, and an initially-flat square thin aluminum plate with all four sides ideally-clamped. These first two structures exhibit essentially twodimensional deformation behavior, while the third one involves distinct three-dimensional structural deflections as well as large levels of strain. These examples are especially important since the conditions responsible for producing the large transient deflections are very clear and well defined-- each represents a well-defined initial-value problem.
Accordingly, these examples provide a clear and stringent test of the accuracy and reliability of the present inite-strain formulation and computational procedure.

Discussed in Subsections 7.5 and 7.6 are structural responses produced by fragment impact. A steel containmeni ring which was subjected to simultaneous impact by 3 equal-size bladed-disk fragments from a 158 aircraft engine turbine rotor is examined in subsection 7.5, and is found to exhibit essentially two-dimensional structural responsc. Hence, this containment ring was represcnted for analysis by curved-ring finite olements which pertain strictly to two-dimensional response.

Conadarod in Subnootion 7.6 in a narrow aluminum plato having both ondin thoally elampod, both fildra froo, and fubfoocon to porpondifolax: impaet at itn midwdedthandan loation by a rolide atool aphoren of latnoh diamotor. Noar tho "impnct atotion" tho ntructurn oxhiblte novoro thronm almonoional utwhetusal dofortationa, alnowhoro, excopt vary noar tho elamped ondo, tho apocimon dioplaya osaontial twowdmonatonal dofloction bohavior. Aecordingly, this narrow-plate apocimon was analyrod in two difforent ways. First, tho structuro and tho attacking fragmont wore idealized as a etrictily 2-D problem-- the structure vas modelod with 2-D boam oloments and tho fragment was rogarded as being a solid cylindrical fragment extending across the entire width of the beam. In the second analysis, the structure was ropresented by flat-plate elements which can accommodate threa-dimensional structural deflection behavior, and the fragment was represented as a non-deformable sphere of 1-inch diameter.

Each of these cases is discussed in the following.

7.2 Impulsively-Loaded Narrow plate

7.2.1 Problem Definition

To provide a well-defined initial-value problem which would furnish reliable experimental data on large-deflection elastic plastic transient structural responses involving significantly large peak and permanent strains, narrow aluminum plates with both ends ideally clamped and both sides free were subjected to known impulse loading [1]: see Fig. B. In particular, a 6061-r651 aluminum narrow plate (or beam) specimen denoted as $\mathrm{CB}-4$ with 8.005 -in span, 1.497 -in width, and 0.102 -in thickness was loaded uniformly impulsively over its entire width and a 1.80-in spanwise region centered at midspan by the sheet explosive loading technique. This resulted in ossentially a uniform initial lateral velocity of $10,590 \mathrm{in} / \mathrm{sec}$ of the loaded portion of the specimen; accordingly, the initial kinetic onergy was 3930 in-1b. Spanwise orionted strain gages were attached to the upper (non-loaded) surface at various distances measured from the midspan location. These strains were displayod and recorded photographically from oscilioscopes. Post-test measuremonts of the permanently-deformed configuration were made. Large transient and
pormanont dofinationa worn produond, Thono data arn roportod in Rof. 1. Undaxi 'L atatio tongiln tent apoolmona whonn axan worn parallod to the \quad ganwian dirootion of nenedmon CB-A woro madn from the thiok-plato atook Irom which apocdmen CB-4 wan proparod. High-olongation atrain gagon woro unod to moanure tho ralativo alongation F_{u} of thono mpogimono in atatio tonodio togte an a Punction of tho appldod load P1 tho indtad. aroou-doctional aroa A_{o} of oach gpoadmon was known. For uno in tho "gmall atrain" and in tho "finita atrain" calculationo, tho uniaxial statie stross-gtrain information is approximatod as dopcribod in subuection 7.2.2 for beamefinitemelomont modoling and in Subsoction 7.2.3 for platem finitemelomont modoling of tho $C B-4$ narrow-plato apocimon.

Finite element analyses of specimon CB-4 have boen carried out to compare predictions based upon (a) tho (provious) gmall-gtrain procedure and (b) the prosent consistent Einito-strain procedure vorsus the experimental results. Further, for each case the specimen has been finitealement modelad in two ways: (1) by assumed-displacemant cubic-cubic (cc) beam elements and (2) by assumed-displacement linear-jinearmcubic (LLC) flat plate elements. These two types of finite element modelings of narrow-plate specimen $C B-4$ and the resulting predictions are discussed in Subsections 7.2.2 and 7.2.3. respectively.
7.2.2 Comparison of Small-Strain vs Finite-Strain predictions
for Structural Modeling by Beam Finite Elements
Since there is symmetry about the midspan location $y=0$, only the half span of specimen CB-4 was modeled by 4 Dor/node beam type finite elements. The use of beam elements implies the assumption that the displacement behavior is two-dimensional (or planar). Studies reported in Refs. 28 and 30 indicate that the use of 20 equal-length 4 DOF/node beam elements provides a reasonable modeling - permitting one to ohtain essentilally converged predictions for the displacements, The use of a finer mesh in order to obtain converged strain predictions would have boen preferable, but the unduly large computing time for a significantly finer mesh was outside the range of what the present financial resources would allow.

For analyain tho uniaxial tonailo ntatic stronamatrain bohavior of thin lot of GOGI-TGS1 aluminum (100 Fig. 29a of Rof. 2 and Fig. 18 of Rof. 30) wan modrilod by plocowiso linoar sogmenta for uso in the mochanical nublayor modol. Thit eterain-hardoning modol, as implomentod in tho small-atrain JETS computor program [24], soquiroe that tho stressmatyin curve boing modoled must bo monotonically increasing mo the stress associated with the stross-strain curve must not decreaso with increasing strain -- and unloading must proceed elastically at the same slope or modulus as the original elastic modulus. Since the uniaxial Kirchhoff stress t_{u} versus uniaxial Lagrangian strain γ_{u} exhibits this type of monotonic behavior whereas the 2nd Piola-Kirchhoff stress S_{u} does not, the uniaxial tensile statio stress-strain data from Fig. 29a of Ref. 2 was cast into the form $\tau_{u} \equiv \sigma_{E}\left(1+E_{u}\right)$ vs γ_{U} and fitted in a piecewise inear fashion by the following stress-strain pairs $\left(\tau_{u}, \gamma_{u}\right)=(0,0),(41,000 \mathrm{psi}$, $0.0041 \mathrm{in} / \mathrm{in}),(45,000 \mathrm{psi}, 0.0120)$, and (53,000 $\left.{ }^{\circ} \mathrm{psi}, 0.1000\right)$; note that $\sigma_{E_{u}} \equiv P / A_{o}$ is the uniaxial engineering stress and E_{u} is the axial relative elongation: $E_{u}=\left(\left(1+2 Y_{u}\right)^{1 / 2}-1\right]=\left(\ell-\ell_{0}\right) / \ell_{0}$. In the JET 3 computer program [24] used for the analysis, the resulting stress τ_{u} was used as playing the role of the proper second Piola-Kirchhoff stress S_{u} (or $\overline{\mathcal{S}}$) upon which the basic finite-element formulation was based. Since the JET 3 computer code is valid only for small strains, this is consistent because for small strains $\tau_{u} \simeq S_{u}$. In view of the above considerations as well as the data scetter in experimental uniaxial stress-strain measurements, this adopted compromise procedure (not fully consistent) was believed likely to provide reasonabie predictions of structural response involving small strains, but was expected to be significantly in error at large strain levels. At what strain levels these computer-implemented approximations lead to unreliable predictions was (until now) very uncertain. Accordingly, this compromise procedure has been termed the "small-strain analysis" here and in Ref. 30. Also, it is assumed that strain rate offects can be approximated satisfactorily by an expression of the form

$$
\begin{equation*}
{ }^{s} \tau_{u}^{y}={ }^{s} \tau_{u_{0}}^{y}\left(1+\left|\frac{\dot{\gamma}_{u}}{d}\right|^{\frac{1}{p}}\right) \tag{7,1}
\end{equation*}
$$

where ${ }^{s} \tau_{u}^{Y}$ and ${ }^{s} T_{u}^{y}$ are, respectively, the static and the struin-ratodependent ${ }^{\circ}$ yield stress of the eth elastic, perfectiy-plastic mechanical sublayer, and $\dot{\gamma}_{u}=\frac{d}{d t} \gamma_{u}=$ material rate of the uniaxial Green (Lagrangian). strain γ_{u}, The strain rate constants d and p for aluminum as cited in Refs. 201 and 202 were used as: $d=6500 \mathrm{sec}^{-1}$ and $p=4$.

For a consistent finite strain representation and computer implementLion of the correct stress-strain behavior, the uniaxial tensile stressstrain data of Fig. 29a of Ref. 2 was recast into $\tau_{u_{0}}$ versus $\varepsilon_{u}^{*} \equiv \ln \frac{\ell}{\ell}=$ logarithmic ("natural" or "true") strain $\equiv \ln \left(1+E_{u}^{\circ}\right)$. This curve ${ }^{\circ}$ was then fitted in a piecewise-linear fashion by the following $\tau_{u_{0}^{\prime}} \varepsilon_{u}^{*}$ pairs for use in the mechanical-sublayer model: $\left(\tau_{u_{0}}, \varepsilon_{u}^{*}\right)=(0,0),(44,200 \mathrm{psi}$, $0.00442 \mathrm{in} / \mathrm{in}),(49,200 \mathrm{psi}, 0.076)$, and $(76,400 \mathrm{psi}, 0.615)$. It is assumed that strain-rate effects can be approximated by:

$$
\begin{equation*}
s \tau_{u}^{y}=s \tau_{u_{0}}^{y}\left(1+\left|\frac{\dot{\epsilon}_{u}^{*}}{d}\right|^{\frac{t}{p}}\right) \tag{7.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& s_{\tau_{u}}^{y}= \begin{array}{l}
\text { static (subscript "o") uniaxial yield stress of } \\
\text { the th elastic, perfectly-plastic mechanical }
\end{array} \\
& \begin{array}{l}
\text { sublayer }
\end{array} \\
& s_{\tau}^{y}= \begin{array}{l}
\text { strain-rate-dependent yield stress of the str } \\
\text { mechanical sublayer }
\end{array} \\
& \dot{\varepsilon}_{u}^{*} \equiv \frac{d \varepsilon_{u}^{*}}{d t}=\frac{i}{l}=\text { longitudinal component of the rate of } \\
& \text { deformation tensor }
\end{aligned}
$$

For illustrative purposes, the material strain rate constants d and p for
alumtnum citod in Rofa. 201 and 202 aro unod: $d=6500$ noc 0^{-1}, and $p=4$. For analyain, tho half npan of spocimon CB-4 waf modolod by uaing 20 oqual-length $4 \mathrm{nof} /$ nodo (cubicocubic) assumod-displacomont finito olomonta, and symmotry conditions woro imposed at midspan. Four spanwise and four dopthwiso Gaussian atations wore used for the volume integration of the finite-sloment proporty equations. A consistont mass (CM) matrix was employed for each element. A time increment size of 0.25 microseconds (approximately equal to $1.6 / \omega_{\max }$ where $\omega_{\max }$ is the maximum natural frequency of the finite-element model or the structure for purely linear behavior) was used; the explicit contral-difference timewise finite difference operator was used to solve the unconventional form of the equations of motion. The aluminum material was treated as behaving in an elastic, strain hardening (EL-SH) rate-independent fashion or as EL--SH-SR where $S R$ denotes strain-xate sensitive bchavior; the material rate constants were assumed to be $d=6500 \mathrm{sec}^{-1}$ and $p=4$. The mass per unit volume ρ_{0}. was taken as $0.25384 \times 10^{-3}\left(\mathrm{ib}-\sec ^{2}\right) / \mathrm{in}^{4}$.

Response predictions were carried out by the "small-strain procedure" and by the "finite-strain procedure" as follows:

Small-Strain Procedure

(a) The uniaxial static tensile stress-strain data for 6061T651 aluminum [2] were expressed as $\tau_{u_{0}}$ vs γ_{u} and fitted in a piecewise linear fashion as described earlier.
(b) Strain-displacement relation Type c in conjunction with an assumed displacement field which is valid for small membrane strains (see Eq. 490) was used. Hence, this equation is valid for arbitrarily large rotations but only for "small strains".

Finite-Strain Procedure

(a) The uniaxial static tensile stress-strain data were expressed as $\tau_{u_{0}}$ vs ε_{u}^{*} and fitted in a plecewj.se-linear fashion as described earlier.
(b) Strain-displacoment rolation Type F given by Eq. 4.14b for finite strains, arbitrarily large rotations, and incompressible material behavior was used.
(c) The proper transformations of the stresses and strains
to the forma domanded by the correct finitemeloment formulation (Eqs. 4.173-4.176) were omployed as described in Subscotion 4.3.

Indicated in the following tabulation are the comparisons of these two preddctions with each other (and/or versus experimental data) as shown in the indicated figures for the time histories of the longitudinal Green strain tensor component ${ }^{*} \gamma_{2}^{2}$ on the upper (non-loaded) and/or the lower (impulsively-loaded) surface at various spanwise stations of narrow-plate (or beam) specimen CB-4:

Figure	Station $\|y\|$ (in)	Time Histories of γ_{2}^{2} on Surface: Upper (U) or Lower (L)	
		Predicted	Measured
9 a	0 (midspan)	U and L	-
9 b	1.4	U and I	U
9c	2.2	U	U
9d	3.0	U	U

At all stations except for the midspan, the plotted strain is the average of the values given by the two elements at those nodal-junction station locations. At midspan, the predicted strain is the value at the element node located there. Each of these stations is located at a nodal station of the finite element model.

It is seen that, of the spanwise stations shown, the major differences between the two procedures occur at the midspan station $y=0$ in, where the finite-strain formulation shows that between $150 \mu \mathrm{sec}$ and $500 \mu \mathrm{sec}$ the lower (loaded) surface experiences larger strains than the upper surface while the former "small-strain" formulation indicates the opposite behavior. Also, at this midspan station, the strains predicted by the finite-strain

[^44]procoduro aro conaddorably largor than tho gtradn prodictod by tho mall"train procoduro. At tho other stations, whoro smallor ntraines ocour, tho diffornnoes botwon tho two predietioni aro corrospondingly smallox. Shown in Fig. 9: in tho spanwino atrain distribution at to 300 froce from y re o in (midspan) to $\gamma=1.00$ in (clampod ond) of tho uppor (nonloaded) surface. This time anstant is taken as typioni, sinco tho strains have alroady achioved their peak and about 978 of the initial kinetic onorgy has beon transformed into strain energy by that timo. The strains predictod by the finite-strain formulation are larger than those predictod by the small-strain formulation with the exception of a region at the end of the impulsively-loaded zone ($y=0.9$ in) and a roiton at the middle of the halfespan $(y=2.0$ in to $y=2.4 \mathrm{in})$. The nodal strain discontinuities typical of the 4 DOF/node finite element (employed in the JET 3 and CrVM-JET 4B programs) are evident from the graph. This assumed-aisplacement finite-element model involves cubic polynomials in the assumed-displacement field for v (the axial displacement) and w (the lateral displacement). The degrees-of-freedom (DOF) involved at each end of the finite-element are the displacements v and w and the displacement gradients $X=\frac{\partial V}{\partial \eta}+\frac{W}{R}$ and $\psi=\frac{\partial w}{\partial \eta}-\frac{V}{R}$. These degrees-of-freedom provide continuity of displacement (V and w) and continuity of membrane strain $\left.\stackrel{O}{2}_{2}^{\gamma_{2}}=\chi+1 / 2 \chi^{2}+1 / 2 \psi^{2}\right)$ but the bending $\operatorname{strain}\left(\zeta^{0} K=\zeta^{0}\left[\left(-\frac{\partial \psi}{\partial \eta}\right)(1+\chi)+\psi \frac{\partial \chi_{j}}{\partial \eta}\right)\right.$ is not continuous at the nodes since $\frac{\partial \psi}{\partial \eta}$ and $\frac{\partial \chi}{\partial \eta}$ are not degrees-of-freedom. Hence, strain jumps appear at each finite-element node since inside each clement the displacement function is continuous to derivatives of all orders but at the nodes only continuities of displacement and its first dorivative are preserved.* The strain-displacement equations (Eqs. 4.146 and 4.90) involve the displacement gradients $X=\frac{\partial v}{\partial \eta}+\frac{w}{R}$ and $\psi=\frac{\partial w}{\partial \eta}-\frac{v}{R}$ and their derivatives $\frac{\partial \psi}{\partial \eta}$ and $\frac{\partial x}{\partial \eta}$. The degree of the polynomial involved in the displacement gradients χ and ψ is quadratic for an initially-straioht beam. The degree of the polynomial involved in the represontation of the first
*Sed Ref. 28 for an evaluation of a formulation which inoludes elomente
junction continuity of bending strain.
dorivativen of tho dinplacomont gradionta $\frac{\partial \psi}{\partial \eta}=\frac{\partial^{2} w}{\partial \eta^{2}}-\frac{\partial}{\partial \eta}\left(\frac{v}{R}\right)$ and $\frac{\partial x}{\partial \eta}=\frac{\partial^{2} v}{\partial}+\frac{\partial}{\partial \eta}\left(\frac{w}{R}\right)$ is of the first ordor or linear, for an initialily strai.fltt baam (using the 4 DOF/nodo cubic-cubic oloment). From Fig. go it is obsorved that the degroe of the polynomiale involvod in the apanwian strain aistribution is (mainly) aither quadratic or iinoar.

It is also obsorvod that the largest discontinuitios occur at locations whero bending strains are largost: at the end of the impulsively-loaded zone $(y=0.9 \mathrm{in})$ and at the immediate zone adjacent to the clamped end $(y=3.8$ in to $y=4.0 \mathrm{in})$. At tho clamped zone, a very large strain discontinuity is evident. The reason for this is that this region involves high levels of nonlinearity. The strain discontinuity at the clamped zone is significantly larger with the finitemstrain formulation, which involves a more nonlinear representation of the behavior than the "smali-strain" formulation. It is evident that a finer mesh of finite elements is needed in this clamped-zone region to represent accurately this nonlinear behavior. However, time and fund restrictions have prevented a more thorough study of this matter at this time.

The predicted transient midspan transverse displacement w for each of these EL-SH-SR predictions is shown in Fig. 10. It is seen that the finite-strain formulation and small-strain formulation predictions are in faixly good agreement with each other.

The computing time required for the two formulations for explosivelyimpulsed beam $C B-4$ is displayed conveniently in the following tabulation for 4000 time steps with a time step size of 0.25 microseconds; all runs were conducted on an IBM $370 / 168$ computer with double precision arithmetic:

Formulation	No. of FE	$\begin{gathered} \text { No. of } \\ \text { sta. } \\ \text { Spanwise } \end{gathered}$	ussian Elem. Depth	Total No. of Unknown DOF
Small Strain	20	4	4	79
Finito Strain	20	4	4	79

Formulation	```Straln-DLspl. Rolation Typo```	Mann Matrix	No. of Cyclon	CPI Timo (min)	$\frac{C P(1)}{(\text { (mop })} \frac{(\operatorname{cyclon})}{}$
Small stuain	C (EM.4.90)	CM	4000	8.63	27.3×10^{-6}
Finito strain	17 ($\mathrm{Fq}, 4.146$)	CM	4000	11.07	35.0×10^{-6}

The offocts on CPU time of the more longthy uxpressions used and manipulations required for the finite-strain calculations are evident from an inspection of the last column. Note here that the efficient "unconventional" formulation of the equations of motion was used for both the small- and finite-strain procedures.

Finally, compared in Fig. 11 are finite-strain predictions for the transient w-displacement at the midspan location of specimen $\mathrm{CB}-4$ for the same modeling as before but for the two cases in which the 6061-T651 aluminum material is assumed to behave as (a) EL-SH-SR or (b) EL-SH, where the latter case assumed no strain rate effect upon the mechanical behavior of the material. It is seen that the predicted midspan deflection w is much larger for the EL-SH than for the EL-SH-SR case even though the ratesensitivity used for the EL-SH-SR is rather "weak" since large strainrates are present. Note that the findte-strain EL-SH-SR prediction compares favorably with the observed experimental permanent deformation. It is evident also that the strains predicted for the finite-strain EL-SH are much larger than for the finite strain EL-SH-SR case. Accordingly, the former are not shown since the latter have been displayed and demonstrate the behavior adequately - and also have been shown to compare favorably with experiment.

7.2.3 Modeling by Plate Finite Elements

7.2.3.1 Modeling Description and Outline of Analysis

Impulsively-loaded narrow plate specimen $\mathrm{CB}-4$ was also analyzed by using a finito-element model consisting of initially-flat plate clements if the assumed displacement: type [31]. These elements consisted of rectangular flat plate elements with lincar in-plane (u, v) and cubic out-of-plane (w) displacements for the assumed displacoment field; accordingly, each
corner nodo has 6 dogrees of froodom."
To "minimize" tho computations, only one quarter of specimen $C B-4$ was modalad: 27 uniform-length olemonts covered the half apan, with each olemont oxtonding from the midwidth to the froo odge of narrow-plate CB-4. This modeling provides a comparablo number of degrees of freedom in the v, w plane as used for the beamelement modeling. For the 4 DOF/node beam element, with 20 elements in the axial " y " direction, thera are $[4 \times(20+1)-5)=79$ unrestrained degrees of freedom, while the inear-linear cubic plate element is "equivalent" to a 3 DOF/node beam element when $u=\frac{\partial w}{\partial x}=\frac{\partial^{2} w}{\partial x^{2} y}=0$ having then $[3 \times(27+1)-5]$ $=79$ unrestrained degrees of freedom. Thus, the assombled "unrestrained" finite element model consisted of 336 DOF, which reduced to 238 DOF by imposing (1) symmetry conditions along $x=0$ and $y=0$ and (2) the ideallyclamped condition at the end. With this $F E$ model, it turns out that the maximum natural frequency of this mathematical model is $\omega_{\max }=0.739 \times 10^{7}$ rad/sec. Thus, if one were to predict the transient response of this finite element model by using the very convenient explicit centraldifference timewise operator, the Δt required to avoid calculation instability would be $\Delta t \leqslant 0.8 \frac{2}{\omega_{\text {max }}}=0.2$ microseconds. Since one may need to study the structural response for a time duration of up to perhaps 900 microseconds, one would need to carry out some 4500 solution time steps on this 238 DOF nonlinear system; this may be viewed in some circles as a rather substantial calculation.

On the other hand, one might be able to use some other finitedifference operator which would permit the use of a substantially larger time step Δt while still providing "proper results". For stiff systems such as the present one involving large deflections and nonlinear material behavior with many regions of loading, unloading, reloading, etc., one has available a number of implicit-type finite-difference operators which are unconditionally stable (Δt is not limited by calculation stability or blow up) for linear systum response analysis but which become ill-behaved for the present type of nonlinear system if Δt is "too large". Nevertheless,

[^45]It turns out that nomo of those oporatorn will permit one to une a much larger At than noodod for the contral-aifforenco oporator while atidi providing transiont rospones prodictions which comparo favorably with (convorgod) contral-diferonce prodictions. Bocause those operatora aro of tho implicit type, the solution proceduro at oach time stop must omploy eithor (a) itoration (hopefully to convergonce) or (b) axtrapolation of "intornal force" information. The latter, of course, represents an approximation to the correct internal force terms needed for the proper solution; this approximation becomes worse as one attempts to use a larger and larger Δt.

Many iteration methods are available for the solution of simultaneous nonlinear equations. Unlike single degree-of-freedom nonlinear equations, always-convergent methods are just not available for solution of systems of nonlinear equations. Convergence itself is such a serious problem for systems of nonlinear equations that if the initial approximation is not quite close to the solution, the method will not converge. One of the most simple methods, the method of successive substitution (also called piccard's method) enjoys linear convergence (under some conditions). Examples of higher-order methods are the Newton method, that has quadratic convergence and the secant or quasi-Newton methods (1ike the BFGS method [203,204]) that possess superlinear convergence (which is faster than linear but slower than quadratic convergence). The higher order methods (like the BFGS or the Newton methods) use variable-gradient matrices that may become singular (for example, in the course of unloading in elastic-plastic problems, these gradients become discontinuous), and may impede convergence of the method. The computational effort for iteration methods is large, as compared with extrapolation of the nonlinear internal pseudo forces.

The point at which an iteration method would be competitive computationally with the extrapolation method would be for large time step sizes; however, under those condition, the path-dependency of elastic-plastic strain-rate-dependent transient response problems could be significantly lost (because of integration error that iteration methods cannot roduce -see subsection 6.3.2.2) unless higher order integration rules (like the
fourth ordor RungomKutta mothod) aro utdidzod to intograto the difforonthal equations of platticity. ${ }^{+}$Moroovor, tho use of a nuitably lax convorgonce critorion can give ono tho illuaion of having achiovod convorgenco whon this has not actually been accomplishod.

Among tho aitractivo implicit mothods are those of Nowmark [205], Houbolt [206], Park [194], and others. Sinco studies roported in Rofs. 23, 174, and 194 indicate that the Houbolt method for problems of the present type provides "well-behaved predictions" for (a) Δt sizes larger than needed for comparable pex Lormance by Newmark $\beta=\frac{1}{4}$ operator or (b) comparable to those needed for Park's operator -- and also since the authors have appropriate computer programs [24,31] available using the Houbolt operator, it was decided to employ this timewise solution operator for the CB-4 narrow-plate transient response predictions reported in the following. Similar studies involving the use of the very attractive park operator [194] would be useful, but time and effort constraints have not permitted this in the present investigation.

In this study, calculations have been carried out to demonstrate the necessity for using double-precision calculations with the present solution method when one uses a digital computer with the significantfigure retention capability of the IBM $370 / 168$ at MIT, which was used for these calculations. For this demonstration, the Houbolt operator with $\Delta t=1$ Hsec and linear extrapolation (not iteration) for the "internal loads" were utilized. Calculations were carried out for both the smallstrain procedure and the finite-strain procedure, and are discussed in Subsection 7.2.3.2.

Next, a study was made to investigate the use of:
(a) the Iinear-extrapolation procedure for Δt values ranging from 0.5 to $20 \mu \mathrm{sec}$, and

[^46](b) than uno of itoration during a givon it timo fitop $-m$ again for at valuof ranging from 0.5 to 20 Haoc.
Bocauno of tho uno of vory dieforont At valuon, tho ntrain-rato information avadiablo in thono varloun oaloulationn wid not bo of comparablo accuraby and moantig. Accordingly, for thono comparinone, tho CB=A narrow plato matocial wan annumod to bo $\mathrm{BL}=\mathrm{SH}$; that da, indopondont of atrain rato. Only in this way can ono mako a valid conparison among tho predictions whon one usos various fixod timestap sizos Δt. These studies are discussed in subsection 7.2.3.3.

Finaliy, having selected double-precision calculations, an appropriate solution procedure, and an appropriate Λ, prodictions were carriod out to compare small-strain formulation predictions versus finite-strain formulation predictions, and are discussed in subsection 7.2.3.4.
7.2.3.2 Single-precision vs Double-precision Predictions Stated concisely in the following are the modeling and solution features employed in these cal rulations:
$\left.\begin{array}{l}\text { Finite Element Model: } \\ \text { Material Behavior } \\ \text { for both Small- } \\ \text { Strain and Finite- } \\ \text { Strain Calculations }\end{array}\right\}$

Quarter plate modeled by 27 flat-plate LLC elements with 6 DOF/node; consistent mass matrix.

EL-SH-SR with the mechanical sublayer stressstrain fit given by:
$\left({ }^{s} \tau_{u_{0}}, E_{u}^{*}\right)=\left(\begin{array}{l}(44,200 \mathrm{psi}, 0.00442) \\ (49,200 \mathrm{psi}, 0.07500) \\ (76,400 \mathrm{psi}, 0.61,500)\end{array}\right.$

Strain rate constants: $d=6500 \mathrm{sec}^{-1}$ and $p=4$ for all mechanical sublayers are used for illustrative purposes.
$\left.\begin{array}{l}\text { Timewise Finite } \\ \text { Difference Operator } \\ \text { and Solution } \\ \text { Procedure }\end{array}\right\}$
Houbolt with $\Delta t=1.0$ microsecond and linear extrapolation of pseudo-loads.

The constant ntiffnenn form ${ }^{\dagger}$ of the equations of motion war ufa with the Houbolit operator. From Ri. 6.90, thin axprogation at time $t+\Delta t$ if:

$$
\left(\frac{2}{(\Delta t)^{2}}[M]+[K]\right)\left\{q^{*}\right\}_{t+\Delta t}=\{F\}_{t+\Delta t}+\left\{F^{N L}\right\}_{t+\Delta t}
$$

$$
\begin{equation*}
+\frac{2}{\Delta t}[M]\left(\left\{\dot{q}^{*}\right\}_{t}+\frac{1}{\Delta t}\left\{q^{*}\right\}_{t}\right) \tag{7.3}
\end{equation*}
$$

where [M] is the global (constant) mass matrix, [K] 1 is the usual small strain, Inear-elastic, global (constant) stiffness matrix, $\{F\}_{t+\Delta t}$ is the load vector representing prescribed externalily-applied distributed or concentrated loads, evaluated at time $t=t+\Delta t_{i}$ and $\left\{F^{N L}\right\}_{t+\Delta t}$ is a pseudoload vector representing internal forces.

For the small-strain computational procedure, the "conventional" form of the equations of motion (Eq. 6.68) was utilized. The vector $\left\{\mathrm{F}^{\mathrm{NL}}\right\}_{\mathrm{t} \cdot \Delta \mathrm{t}}$ for the "conventional" formulation is

$$
\begin{equation*}
\left\{F^{N L}\right\}_{t+\Delta t}=\left\{F_{p}^{L}\right\}_{t+\Delta t}+\left\{F_{p}^{N L}\right\}_{t+\Delta t}+\left\{F_{q}^{N L}\right\}_{t+\Delta t} \tag{7.4}
\end{equation*}
$$

where $\left\{\mathrm{F}_{\mathrm{q}}^{\mathrm{NL}}\right\}_{\mathrm{t}+\Delta \mathrm{t}}$ is a vector arising from the nonlinear terms in the straindisplacement equations, and $\left\{F_{p}^{L}\right\}_{t+\Delta t}$ and $\left\{F_{p}^{N L}\right\}_{t+\Delta t}$ are pseudo -load vectors arising from plastic (small) strains and associated, respectively, with the linear and $\underline{1}$ ㅇńnear terms of the strain-displacement relations. The reader is reminded that Eq. 7.4 is valid only for small strains.

[^47]Por tho finito ftrain omputational procodurn, tho "modifiod

$$
\begin{equation*}
\left\{F^{N L}\right\}_{t+\Delta t}=\left[K^{m}\right]\left\{q^{*}\right\}_{t+\Delta t}-\{]_{t+\Delta t} \tag{7.5}
\end{equation*}
$$

wharo $[K]$ de tho gano ghobad (constant) atifenoou matrix appoaring on tho luftohand side of Eq. 7.3, and $\{I\} t+\Delta t$ its the gung pgoudombad voctor of inturnal forcos used for the "unconventional" vector form of the equatione of motion, Eq. 6.72. It turns out that the "modifiod unconventional" form of tho equations of motion can be used for both gmall and finite strains, requires less eomputation, and is also botter conditioned numorically than the "conventional" form (Eq. 7.4, which cannot bo used for Einite gtrains).

Note that the pseudo-load vector $\left\{\mathrm{F}^{\mathrm{NL}}\right\}_{t+\Delta t}$ appearing in Eq. 7.3 depends upon the displacements $\left\{q^{*}\right\}_{t+\Delta t}$ at time instant $t=t+\Delta t$, but these remain to be determined; thus these "forces" are approximated by linearly extrapolating the known pseudo-forces at two previous time instants $t=t$, and $t=t-\Delta t$ (as explained in Subsection 6.4.2.1) as:

$$
\begin{equation*}
\left\{F^{N L}\right\}_{t+\Delta t}=2\{F N L\}_{t}-\{F N L\}_{t-\Delta t} \tag{7.6}
\end{equation*}
$$

This expression has the same inherent order of exror as in the Houbolt operator approximations for both the acceleration (Eq. 6.92) and the velocity (Eq. 6.93): hence, it is a consistent approximation of the pseudo-load vector $\left\{\mathrm{F}^{\mathrm{NL}}\right\}_{t+\Delta t^{*}}$

Note that the pseudo-force extrapolation for the modified unconventional innear extrapolation procedure (MULE) is directiy analogous to that used for solving the conventional form of the equations of motion for small-strain problems-- only the pseudo-force vector $\left\{\mathrm{F}^{\mathrm{NL}}\right\}$ is extrapolated,
tho gonatant atifenoan form providing mugh bothor atabidity proportion than if ono attompted to oxtrapolato tho ontira pnoudomforon voator \{I\} 1tanif In a voation form of tho nquationn of motion 1Ry. 6.34). Computan thonal axpordmonto conftrmod thin ompockation.

Gomparod in Fig. 12 aro tho oing looprociaton and tho doublimprocioion prodiction for tho tranaiont latoral alaplacomont, w at tho platomeontor Location $(x, y)=(0,0)$ for tho cmalmatraln uguayomnand progodura. It da aoon that tho ainglomprocioion calculation dotorioratos bady boyond a timo of about 300 mierosoconds.. the doublo-procision prodiction appears to bo well bahaved and comparos favorably with tho exporimontally-obsorved pormanont defioction at this location. Although transient strain predic. tions are not shown here for those cases, it is evidont that those predictions must differ groatly from each othor; tho computed resulta do show this.

For the finite-strain equations and procedure, Fig, 13 shows the single-precision and the duble-precision predictions for the tranglent lateral displacement w at the plate-center location $(x, y)=(0,0)$. In this case the single-preciaion prediction appears to behave in a more plausible fashion than for the small-strain calculation but also has "stabilized" to a permanent deflection value much less than both the double-precision prediction and experiment show. While the finite-strain equations using MULE are much better conditioned numericaliy than the "conventional equations of motion" employed for the small-strain prediction, the necessity of employing double-precision arithmetic with these equations using the IBM $370 / 168$ system at MIr is evident.

Although the aspect ratio of the finite elements in the present mesh is certainly responsible in part for the inadequacy of single-precision arithmetic for these calculations, many other investigators have concluded In the past that double-precision arithmetic is necessary when using the IBM machine to produce accurate results for the types of transtent nonInear response prciblems being stuaied here.

Pinally, comparod in Fig. 14 aro the ninglo-procinion prodictione for w at $(x, y) m(0,0)$ for (1) tho nmallmatrain proceduro voraun (2) tha finitomatrain procodura. لloro it in apparont that tho lattor prodiotion i. 3 much bottor bohavod than tho formor (finco many fowor computation aro roquirod for tho "modifdod unconvontional" formulation than for the "convontional" formulation of tho equations of motion), but both prodictiong art in sorious disagreomont with oxporimont. Accordingly, all othor calculations in this work have been performed with double-precision arithmetic on tho IBM $370 / 168$.

7.2.3.3. Time Incremont Size Effects

In using an implicit timewise finite-difference operator (the Houbolt operator) to solve the modified unconventional equations of motion for finite strain, one can (1) employ the convenient (linear) "explicit" extrapolation procedure for the pseudo-loads or (2) resort to "iteration to convergence" within each tine step Δt before proceeding for the next time step in the timewise solution process.

LINEAR EXTRAPOLATION

For the modified unconventional If inear extrapolation procedure (MULE), it is evident that this approximation for the pseudo-force vector $\left\{\mathrm{F}^{\mathrm{NL}}\right.$ \} will become poorer and poorer as Δt increases. On the other hand, the use of the largest Δt which will provide "accurate" transient response predictions will be highly desirable in order to minimize the computing time and expense for a given time duration in which the transient response must be predicted so as to provide, for example, the peak transient strains. To study this " Δt effects question", only EL-SH material behavior is taken into account-- since for time-dependent EL-SH-SR material bohavior it is obvious that the time increment size Δt will have a definite effect on the solution behavior. Further, all modeling and computing featuros used now are the same as summarized in Subsection 7.2 .3.2 except that Δt values of $0.5,2,10$, and $20 \mu \mathrm{scc}$ are used for the finite-strain MULE procedure.

Comparod in Fig. 15 aro iinitembtrain MULE prodictionn of tho trambiont w diaplacomont at tho platomoontor location $(x, y)=(0,0)$ for At valmos of $0.5,2,10$, and 20 mioronocondn. Fur Λ te 0.5 and 2 microm moonds, tho probliotod tranaiont diuplacomont appuarn to bo rolativoly woll bohavod for tho first 300 fooc. Howovor, for Λ, $=10$ and 20 microReconds, tho peodo-forces have been badly overestimated and the transiont. fesponse is seen to deviate aubstantially from the "propor" behavior. For $\Delta t=10 \mu s o c$ this prodictod transiont w displacement became "very smooth" and peaked at a value of about 2.01 in at about $740 \mu \mathrm{sec}$; for Λ. $=$ 20 Hsec this predictod transient response was similar but a peak value of 1.82 in was reached at $t \doteq 700 \mu s e c$.

Observe from Fig. 15 that after $300 \mu s e c$ there are significant differences between the $\Delta t=0.5$ and 2 microseconds predictions. Also, observe that the transiont w displacement at the plate center location does not grow monotonically with increasing time increment size Δt. In fact, the peak transient displacement prodiction is smaller for $\Lambda t=2 \mu \mathrm{sec}$ than for $\Delta t=0.5, \mu \mathrm{sec} ;$ it is larger for $\Delta t=10 \mu \mathrm{sec}$ than for $\Delta t=2 \mu \mathrm{sec}$ and $\Delta t=0.5 \mu \mathrm{sec} ;$ and it is smallex for $\Delta t=20 \mu \mathrm{sec}$ than for $\Delta t=10 \mu \mathrm{sec}$. Therefore, no monotonic exponential instability is observed, but rather the predictions become less and less accurate as Δt increases-- in an oscillatory form. This agrees with the results obtained by McNamara [165] for the Houbolt operator, but with a different formulation of the equations of motion and for a problem with geometrical nonlinearities and with linear material behavior.

These caiculations confirm the expectation that large Δt values will lead to poor estimates of the proper pseudo-forces when the linear extrapolation estimate is used. Stricklin et al. [162] observod that quadratioextrapolation predictions lead to less well-behaved results than do linearextrapolation predictions; for a given "not-too-small" time stop sizo Δt, for nonlinear dynamie problems. of course, one could employ higher order extrapolation estimates for the pseuds-forces at the cost of additional storage and computing; howevor, the benefits of such procedures are uncertain and may well be problem-dependent.

Hence, in view of tho MULE pxedictions shown (1) here for EL-SH bohavior with Δt values of 0.5 and $2 \mu s e c$ and (2) in Subsoction 7.2.3.2 for FL-SH-SR prodictions with a Δt value of 1 Hsec, it appears that plausible well-behaved transient responses are provided by the finite-strain HouboltMULE procedure for Δt values of at least up to about $2 \mu \mathrm{sec}$. However; there is no proof that one has obtained essentially a "converged" prediction; conversely, it is certain that such has not been achieved, but the predicted response might very well be close enough to convergence for all practical engineering purposes. That assessment could be made, if required, by using the central-difference timewise solution operator together with a suitably small Δt to solve the unconventional form of the equations of motion; for this case, a Δt of about 0.2 microseconds would be required. Whereas with MULE and the Houbolt operator, an "adequate" prediction apparently is achieved by using a 5 times larger Δt; namely, $\Delta t=1 \mu s e c-b u t$ the computational saving is not as large as this factor because of the greater required storage and computation needed for llouboltMULE vs the central-difference scheme described.

Finally, the merit of Houbolt-MULE becomes evident when one considers transient response problems of the present type but with a finite element model involving perhaps 10 times as many DOF. For such a case the required Δt for a central-difference solution might well be $10^{-3} \mu \mathrm{sec}$ whereas a satisfactory Houbolt-MULE solution might need a Δt of only about 1 usec.

ITERATION SOLUTION
Compared here are predicted transient displacements of 4 mpulsivelyloaded narrow-plate $C B-4$ specimen obtained by (1) iteration as required during each Δt time interval during Houbolt operator solution of the modified unconventional equations of motion for finite strain (as
oxplained in subsection 6.4.2.2) and (2) the Houbolt-MULF (non-itorative lincar oxtrapolation) procodura.

Shown on Fig. 16 aro Houbolt oquilibrium-iteration and Houbolt-muLe transient w-displacoment solutions at $(x, y)=(0,0)$ for the 27 -olement plate modol of specimen $\mathrm{CB}-4$, both with $\Delta t=0.5$ psoc. Tho iteration convergence criterion used in this case* was (sec Eq. 6.117),

where $\left|\mid\left\{q^{*}\right\}_{t+\Delta t}\right\}\left|\mid\right.$ is the Euclidean , L^{2}) norm of the vector $\left\{q^{*}\right\}_{t+\Delta t}$. Superscripts n and $n+1$ denote iterations n and $n+1$ during a given time step interval Δt.

During a response time of $294.5 \mu \mathrm{sec}$ ($589 \Delta \mathrm{t}$ cycles), 41 iteration loops (or 78 of the total number of iteration loops) did converge to a mean ratio of $\alpha=4.7 \times 10^{-5}$ (with a standard deviation of 2.7×10^{-5}). There were 3.4 equilibrium iterations in the mean (with a standard deviation of 1.2) during these 41 iteration loops that satisfied criterion Eq. $7 . \%$ However, as was expected, most iteration loops (548 iteration loops or 93% of the total number of iteration loops) could not satisfy the convergence criterion Eq. 7.7. In these cases the procedure outlined in Eqs. 6.120-6.122 was employed. As soon as divergence of the iteration procedure was letected, the iteration loops were stopped (after a mean number of 4.0 iterations with a standard deviation of 2.4), and the previous "convergent" estimate was taken to be the "equilibrium" solution for that time step. This previous "converged" estimate satisfied a mean convergence ratio of $\alpha=2.7 \times 10^{-3}$ (with a standard deviation of $9.3 \times$ 10^{-3}). From this figure, the iteration solution is seen to differ somewhat from the Houbolt-MULE inear extrapolation prediction.

[^48]A furthor comparinon of these prodictions in given in Fig, 17 whore includad also aro oontral-difforanco prodictions with $4 t=0.25$ faco for the half span of spocimen CBm 4 modeled by 204 DOF/nodo beam olements. Although the finito olement models used are difforont, it is interosting to note that tho explicit. contral-difforonce boam prediction comparos vory well with the Houbolt-MULE linear extrapolation prediction, and the modificd successive substitution iteration method seems not to have "converged" to the correct solution.

Similar plate finite-element finite-strain equilibrium iteration vs Houbolt-MULE linear-extrapolation predictions are shown on Fig. 18a for $\Delta t=2 \mu \mathrm{sec}$. These two predictions are very close to each other for the 300 microsecond time span shown. Later on in time, however, as Fig. 18b shows, these two predictions exhibit pronounced differences.

Finally, for a Δt of $20 \mu s e c$, Houbolt-MULE linear-extrapolation predictions as well as equilibrium iteration solutions obtained by using two different iteration convergence criteria are shown in Fig. 19. Also shown in Fig. 19 is the Houbolt-MULE linear-extrapolation prediction for the transient w at $(x, y)=(0,0)$ using a Δt of $0.5 \mu s e c$; this prediction should be "accurate" and serves as a yardstick against which to neasure the "worth" of the other predictions shown. of the two $\Delta t=20 \mu \mathrm{sec}$ predictions, only the equilibrium iteration scheme in which

is used for "iteration convergence" appears to be plausible over the entire time span shown. Even this prediction exhibits an "excessively smooth" transient response profile, and also seriously overpredicts the pormanent deflection. Clearly $\Delta t=20 \mu \mathrm{sec}$ is much too large to provide an accoptable transient responso prediction for this structural rosponse problem. The present (modified successive substitution) iteration procedure
dons not provide accurate rosults. Further, the attendant computational expenso for tho iteration schame is much larger fc a "given prediction accuracy" than the Houbolt-MULE linear-extrapolatic: procedure. It would be useful to investigate the efficiency and practi alilty of employing the BFGS iteration method cited in subsection 7.2.3.1.

7.2.3.4 Small-Strain, vs Finite-Strain Predictions

Having determined the necessity of using double-precision arithmetic for the present calculations on the IBM 370 and the superior accuracy/efficiency of using the Houbolt operator •ith linear extrapolation (compared with the iteration schemes studied), casculations for narrowplate specimen CB-4 were then carried out using the Houbolt operator and linear extrapolation with a conservative Δt of $1 \mu s e c$. Stated concisely, used were:

For the finite-strain predictions, the terms containing the second-order derivatives of u and v in the strain-displacement equntions. Eqs., 5.1185.123, are obviously equal to zero for the assumed displacement element
which has Iincar (u) - Linoar (v) or cubic (w). Although for gonoral purposen a highor ordor (cubic-oubicmaubic) plato olement should bo usod to troat arbitrarily-largo rotation probloma, studion conductod in Rof. 28 revoal that the necond-order derivativon of the in-plane displacementer u and and v havo a vory small influonco in tho prodictod strains for the presont kind of problems (impulsively-loaded narrow-plato $\mathrm{CB}-4$ boing discussed now and fragment-impacted narrow-pluta $C B-18$ to be discussed later).

Predictions for both the small-strain procedure and the finite-strain procedure were made, and are compared here with each other and/or with experimentally-measured data for the permanent deflection and for transient strains at various midwidth spanwise stations on the upper (non-loaded) and/or on the lower (loaded) surface of explosively-impulsed narrow-plate $\mathrm{CB}-4$.

The computing time on the IBM $370 / 168$ for 900μ sec with the same $\Delta t=1 \mu \mathrm{sec}$ and the Houbolt operator was:

Shown in Fig. 20 are the small-strain and the finite-strain predictions of the w displacement at the plate-center location $(x, y)=(0,0)$; shown also is the observed permanent deflection at this location. It is seen that these two predictions compare very well with each other, and apparently also fairly well with the experimental permanent deflection. This displacement vs time comparison is shown hore since this type of comparison is an almost-standard one found in the open technical literature; however, it is a notoriously insensitive measure of the prodiction adcuracy of any method for the present type of geometrically and materially nonlincar elastic-plastic transiont responso problem.

A much more meaningful and sensitive comparison involves predicted vs measured strains since for ductile materials the strains are a much better indicator of impending rupture than are displacoments. Accordingly,
shown in the following figures are the amall-strain and finitembtrain predictions of the spanwiso-diroction Greon strain ${ }^{\star} \gamma_{2}^{2}$ on the uppor and/or the lower surface of specimen cB-4 (sce Fig. 8) at the indicated stations** ve the measured strain:

Figure	Station $\|y\|$, (in)	Time Histories of γ_{2}^{2} on Surface Upper (U) or Lower (L)	
		Predicted	Measured
22a, 22b	4.00	U, L	-"
22c	3.80	L	L
22d	3.80	U	U
$22 e$	3.00	U	U
$22 \pm$	2.20	U	U
22g	1.40	U	U
22h, $22 i$	0.0	U.L	--

At the clamped end station $(|x|,|y|)=(0,4.00 \mathrm{in})$, at the lower (loaded) surface, a maximum strain $\gamma_{2}^{2} \simeq+0.18$ is predicted by the smallstrain procedure; see Figs. 22a and 22b.

Station $|y|=3.8$ in is near the clamped end $(|y|=4.00 \mathrm{in})$; hence, the strain γ_{2}^{2} on each surface (see Figs. 22c and 22d) consists of a significant "bending contribution" in addition to the "membrane part" of the strain. Thus, as expected, this strain exhibits a larger tensile transient peak value at the lower (lnaded) surface than on the upper (nonloaded) surface. Further, on this lower surface where largex strains occur, it is seen that the consistent finite-strain prediction differs significantly from the small-strain prediction, and the finite-strain prediction agrees much better with experiment than does the latter. On the upper surface at $|Y|=3.80$ in where smaller levels of strain occur,
*or γ_{22}, since beam $C B-4$ is initially flat, $\gamma^{22}=\gamma_{2}^{2}=\gamma_{22}$.
** To assist in interpreting these results, Fig. 21 shows a schematic of the finite eloment model and element numbering.
thano two prodiotione aro much clonor to oach othor (noo Fig. 22a). Tho largo strains that occur at tho lowor (loadod) auriaco, at tho clampod ond $|y|=4.00,|x|=0.00$ hava a vory gignificant influenco on the boliavior of the straine at 0.2 in from tho clampod and, tho finito gtraine rusulte being much closor to the experimontal valuos.
on tio uppor surface at station $y=3.00 \mathrm{in}$, those two prodictions compare woll with each othor in an ovarall sonso as soon from Fig. $22 e$, but the poak strain prodicted by the "propor" finite-strain prodiction procedure is about 20 per cent larger than tho small-strain calculation result. The experimental value, however, appears to be even larger up to the instant at which the strain trace was lost-probably because of broken lead wires. Note that the finite strain results are closer to the predicted strains of the beam finite elements (Fig. 9d).

At station $|y|=2.20 \mathrm{in}$, the strains consist mainly of membrane behavior with a small bending contribution. Figure $22 f$ ghows that the finite-strain and the small-strain predictions for the upper-surface strain are close to each other. However, tho finitu-strain prediction is again closer to the overall behavior predicted by the beam finite element modeling (Fig. 9C) since it does not exhibit the strange behavior at $t=300 \mu \mathrm{sec}$ that the small-strain results display.

Station $|y|=1.40$ in is nearer than any of the others to the end $\langle | y \mid=0.90 \mathrm{in})$ of the spanwise region to which uniform lateral impulso loading was applied. Honce, one expects to see an important bending contribution here in addition to the dominant membrane behavior; accordingly, somewhat greator difforonces are seen and are expected here between finite-strain and small-strain predictions than at $|x|=2.20$ in --which is more remote from station $|x|=0.90 \mathrm{in}$. Largor strains are predicted by the finitemstrain than by the small-strain procedure at $|x|=1.40$ in as seen from Fiy. 22g. Howevor, it appears that the peak expeximental. strain is even laxger -a possibly by some 30 per cent than the (better) finite-strain procedure predicts.

Finally, at the plate-center (midspan) station $(x, y)=(0,0)$, one observes from Figs. 22 and $22 i$ for the upper surface and the lowes surface,
respectivoly, that thore in oarly-time agroement botwoen tho finito-atrain and the smallmatrain predictions. Boyond about. 200 miorosoconds, hownov, thore are some distinct difforonees in the charactor of those prodjetions, Obsorve that both the small-strain and tho finitomstrain prodictions at the plate center using plate findte-eloment modeling agree with the finitostrain predictions at the same location when using beam finite-element modeling (Fig. 9a), in that they predict a reverse bending that occurs between $100 \mu \mathrm{sec}$ and $400 \mu \mathrm{sec}$.

Additionally, let it be noted that although many of the traces of the experimentally-measured strains on specimen $C B-4$ were terminated before the peak values were reached, it appears that the experimental peaks would have been somewhat larger in nearly every case than predicted by the plate finite elements. The cubic-cubic beam finite elements show better strain results. Improved predictions could be achieved by using a greater number of the present (too stiff) linear-linear-cubic (LLC) assumed-displacement elements or by using the fundamentally-better but more costly cubic-cubic-cubic (CCC) assumed-displacement element for the u, v, w displacement fielas. As shown in Refs. 23 and 28 and numerous other references, the use of balanced-polynomial assumed-displacement elements leads to predictions of superior accuracy for the present kind of problems compared with unbalanced-polynomial elements. An extension of the present investigation, therefore, is recomended to utilize and assess the benefits to be achieved by the use of CCC elements for finite-strain predictions in the present type of nonlinear transient response problem.
7. 3 Impulsively-Loaded Free Circular Ring

Sought is a more istringent test and evaluation of the present finitestrain predictions vs smali-strain predictions vs experiment. This is afforded by the experimental data from Ref. 207 for an impulsively-loaded Free initially-circular aluminum ring since
(1) larger comprossive strains are present (and over a larger circumferential region);
(2) much larger rutations are present; and
(3) bending rather than stretching dominates the response of the structure.

7.3.1 Probiom Dafinition

An roported in Rof. 207 a froo initialiymaircular 60G1-TG aluminum ring (cailod Fli5) of 2.937 in midnurfaco radiun, 0.124 in thitoknona, and a $1.195=$ in width was loadnd impuladvely und formly ovor a 120 -dogron soctor (contorod at θ a 0°) of ita oxtorior, ronulting in an inward initial volocity of 6853 in/aoc for that loadod rogion. High spood photographic moasuroments wore mado of tho doforming ring. Also, transiont atrains Wero measured at various circumferential stations on the innor surface and/ or the outer surface of the ring. Static uniaxial stress-strain tests were conducted on coupons of the 6061-T6 aluminum from which the ring was made. The mass por unit volume of this material is assumed to be $p_{0}=0.0002526\left(1 b-\sec ^{2}\right) / i n^{4}$.

For the smadi-strain analysis, strain-displacement rolation Type C which is valid for arbitrarily large rotations but only small strains was employed and the following $[23,28]$ stress-strain pairs ($\tau_{u_{0}}^{\prime} \gamma_{u}$) were used for mechanical sublayer fitting of the static stress-strain data: ($\gamma_{u_{0}} Y_{u}$) = ($42,000 \mathrm{psi}, 0.00476 \mathrm{in} / \mathrm{in}$) and $(58,219 \mathrm{psi}, 0.2000 \mathrm{in} / \mathrm{in})$. The matierial was assumed to be strain rate sensitive; strain rate constant values $d=6500 \sec ^{-1}$ and $p=4$ were assumed for illustrative purposes.

For the finite-strain analysis, strain-displacement relation Type F which is valid for finite strains and finite cotations was used and the static uniaxial stress-strain data were recast into τ_{u} vs ε_{u}^{*} where $\tau_{u_{0}}=\sigma_{E}\left(1+E_{u}\right)$ and $E_{u}^{*}=\ln \left(1+E_{u}\right)$. A piecewise linear fit of this ${ }^{T}{ }_{u}{ }_{0} v s \varepsilon_{u}^{*}$ data of Ref. 207 was made as follows for use in the mechanicalsublayer material model: $\left(\tau_{u}, \varepsilon_{u}^{*}\right)=(42,974$ psi, 0,0040679$),(52,150 \mathrm{psi}$, 0.07000), and (107,383 psi, 8.615). For this calculation also, it was assumed for illustrative purposes that the material strain rate constants wore $d=6500 \mathrm{sec}^{-2}$ and $p=4$.

7.3.2 Comparison of Smal1-Strain vs Finitometrain Predictions

For economy and convenionco roasons in both calculations, advantage was taken of symmetry by modeling the half ring with 18 unfform-length CC 4DOF/node curved-ring elements, thereby resulting in 72 unknown DOF. The finito oloment properties were evaluated numerically by Gaussian
quadrature with A fapanwino and A dopthwinn Gaumfian ntatione in onch いlomont. A conalatont mana matrix wan unod, Both oalculations amplayod tho con.ral-difforonce timowino operator with At m 0.6 microngoond, for
 boon oxcondod by tho golncted At.

Compardmona of prodictad cixchmforonthal Groon ntrain γ_{2}^{2} for both tho fmadidatrain and the efint tometrain procoduro aro nhown voroun oach othor and/or axporimont in tho fodilowing indicatod elgures at varioun ciroumferontial locations θ on tho innor (non-loadod) susface or on tho outor (loaded) surface:

Figure	θ-Location (deg, min)	Surface	
$23 a$	$92^{\circ} 30^{\prime}$	x	
$23 b$	$92^{\circ} 30^{\prime}$		x
23 c	$87^{\circ} 20^{\prime}$	x	
23 a	$86^{\circ} 10^{\prime}$		x
23 e	176°		x
23 f	16°	x	
23 g	16°		x

At all of these locations except for $\theta=16^{\circ}$, the predicted and measured strains indicate the presence of a very significant bending contribution-the inner-surface and the outer-surface strains are of significant magnitude and of opposite sign. It is seen that finite-strain predictions in nearly all cases differ consilerably f:om the small-strain predictions, and also are in better agreement with experiment than are the latter predictions.

At $\theta=16^{\circ}$, note that membrane compression behavior is dominunt-at both surfaces the predicted γ_{2}^{2} is compression and the values of γ_{2}^{2} on the inner surface differ little from those on the outer surface. At these $\theta=16^{\circ}$ inner-surface and outer-surface locations, it is seen that the finitemstrain and the small-strain predictions are in better agreement with each other than at the other locations - where bending behavior is very prominent.

Shown in fig. 24 in a comparinon of manaromonta va prodictionn of timo hintory of tho ring's midplane contoriino noparation dintanon. Roth prodictiong aro in fatrly good agromment with moanurod valuon, The finitaatradn prodiction rhown a mallor oxtromo boparation diatanco than tho nmalimentain prodiction and ocourn at about 1.250 mitoronocondn whila that for tho malimbtradn calculation ogeurn at about d.400 Honc.

Noto that nuar 1500 Hase, tho ring in in a govoroly deformod atato. $n t$ this condjeion, it in of bomo inturout to oxamino tho oficumforentiaj aistribution of tho circumfesential strain γ_{2}^{2} along both tho outur burface and the innor eurfaco. linite-gtrain pxodictions for this information a:; woll as measured values aro shown in Fig. 25. It is soon that in tho region $3^{\circ} \leqslant 0 \leqslant 105^{\circ}$ there aro vory sovero spatial gradients in the straith along each surfaca. Regions of (a) mainly membrane, (b) mainly bending, and (c) combined bahavior are evident. Despite the sevore spatial gradients in the strain, it is seen that the finite-strain predictions are in reasonably good ajreement with measurements at this time instant.

7.3.3 Comments

This impulsively-loaded free initially-circular ring is of special interest in the present finico-strain study since not only are strains of significant magnitude produced but also destain reqions of the ring undergo very large rutations-- conditions which are accommodated properly in the present theory and analysis. Now one finds significantly improved qualitative and quantitative agreement between measurements and finitestrain predictions compared with the former small-strain predictions. The large differences between the small-strain and the finite-strain predictions at $\theta=92^{\circ} 30^{\prime}, \theta=87^{\circ} 20^{\prime}$, and $\theta=86^{\circ} 10^{\prime}$ take place because these locations are close to a region " where compressive strains of more than 24% are present, and hence these locations are also affected appreciabl.y.

Finally, note that in both cases the vector (unconventional) form of the equations of motion was uscd and solved with the timewise centraldifferonce operator.

[^49]
7. A Impulaivaly-Loadod square Thin Flat plato

7.4.1 Problom Dofinition

As roportad in Rof. 2, aquarn thin gogimTg5l aluminum fint pamin
 doadly alampod woso oubjoctod to impulitivo loadtag on the lowor nurface ovor a 2-dn by 2 ein pegton contorad at the panalmoontor looation $(x, y)=(0,0)$. A gohomatis of this oxporimont in givon in fig. 27.
solcetod for oxamination horo in elampod panol opocimon epenis its dimenoiono are 0.0623 in by 8.00 in by 8.00 in. Tho oxpluoively-impartod impulge rogultod in an "initial volocity" of $26,325 \mathrm{in} / \mathrm{goc}$ for the $2-1 n$ by 2 -in HE-loadod region [2]. This condition produced a very large pormanent dofloction of tho panol, meaguromonte firs which aro ropoztod In Ref. 2. In addition, a portion of the upper surface of specimen CP-2 had on it a mechanically lightly-scribed closely-gpaced gria whose pretest and post-test spacings were measurod, thereby providing permanent relative elongation data. Also, at varlous (x, y) locations on the upper surface at indicatad orientations θ (see Fig. 26), high-eiongation strain gages were attached and used to measure transient relative elongations; these transient strains were displayed and recorded photographically from oscilloscopes. Finally, permanent relative elongations were measured from all surviving strain qages.

This prohlem provides a well-defined initial-value problem for a 3-D structural response situation wherein measurements have been made successfully of transient strains as well as large permanent deflections and strains. Moreover, the maximum permanent strains produced are very close to the rupture threshold; in fact near $(x, y)=(\cdots 0.65 \mathrm{in},-0.7$ to +0.7 in$)$ incipient oracking occurred. At a corresponding location (i.e. $x=+0.65$ In and $\left.-0.7<\underset{\sim}{<}{\underset{\sim}{c}}^{\infty}+0.7 \mathrm{in}\right)$ very severe straining but no evidence of cracking was observed. Accordingly, spocimen CP-2 serves as a stringent test of the accuracy and reliability of the prosent finitemstrain formulation and calculation procedure.

7.4.2 Comparizon of Finitomatrain Prodictions va. Experiment

7.4.2.1 Findto-strain and Finito-Flomont Analysia Model

For computational oconomy and officioncy, advantage was takon of doublo aymotry for this CP-2 plate problem, hence, only one quartar of tho plato was modoled by finito olomonta. Tho rosulting 11 by 11 mesh of 121 quadrilateral flat-plate LLC olomonts ia ghown in Fig. 28, including olement dimensions, node numboring, and elemont numbering. Note that the impulaively-loaded 1 -in by 1 -in quartor-plate region centered at $(x, y)=(0,0)$ has been modeled by 4.5 elements in each direction. Thus, the assembled-structure nodes lying inside this dotted region account for the plate mass to which was imparted a uniform w-direction velocity $\dot{w}_{0}=16,325 \mathrm{in} /$ sec; accordingly, epch of the cited nodes was given this \dot{w}_{0}, thereby defining an initial kinetic energy (KE) for both the actual plate and the finite-element model of the plate to be 8,402 in-lb, where the 6061-T651 aluminum material is assumed to have a mass per unit initial volume ρ_{0} of $0.000253828\left(1 b-8 e c^{2}\right) /$ in 4.

With the available funds and computing system, this 11 by 11 mesh of finite elements is about the largest feasible size. The .222-in by .222-in element size selected for the impulsively-loaded region where severe straining occurs was expected to bs nearly adequate, although CCC elements rather than the present LLC elements would provide a much better rupresentation of the behavior. Also, a continuation of this element size to $(x, y)=(2,2)$ would have permitted a better modeling of the expected strain behavior in this region; however, the resulting total number of degrees of freedom and computer storage would have exceeded that currently "allowable" at the computer facility used. Thus, a coarser mesh was used beyond $(X, Y)=(1.111,1.111)$, as indicated in Fig. 28. Hence, the selected Einite-element mesk resulted in a total of 144 nodes at 6 DOF/Node or 864 DOF. Since 23 nodes at 6 DOF/Node are ideally-clamped (along $x=4, y=4$), a total of 20 nodes involve symmetry at 3 DOF/Node, and the center node at $(x, y)=(0,0)$ has double symmetry imposed at 5 DOF/Node, a total of 203 restrained DOF are involved. Hence; the total number of unknown $\operatorname{DOF}=864-203=661$ DOF.

An roportod in Rof. 2, static uniaxial stross-strain moasuromenta woro conductod on couponn of matorial whoso axen wore (1) paraliol (longitudinal, 4) with or (2) porpondicular (transvorse, T) to the platom roll direction of tho thick-plato atock of 6061-T651 aluminum material from which apecimen $\mathrm{CP}_{\mathrm{m}} 2$ was prepared; the x and the y dircotion of spocimen cl-2 corrosponds, respectively, to tho T and tho L direction. These static stress-strain tests revealed that this 6061-1651 platemstock material is not oxactly isotropic, as Figs. 29a and 29b of Ref. 2 show for the L - and the T-direction, respectively. However, since the analysis and the computer program employed assume that initially the material is isotropic, the cited Ref. 2 data were recast into $\tau_{u_{0}}=\frac{P}{A_{0}}\left(1+E_{u}\right)$ vs. $\varepsilon_{u}^{*}=\ln \left(1+E_{u}\right)$ and the average data were fitted in a piecewise-linear fashion by the following ($\tau_{u}, \varepsilon_{u}^{*}$) pairs for use in the mechanical-sublayer model: $\left(T_{u_{0}} \varepsilon_{u}^{*}\right)=(0,0),(45,000 \mathrm{psi}, .0045),(52,400 \mathrm{psi}, .0960)$, and (72,000 psi, .585).

Note should be taken of additional information pertaining to the "non-isotropic" character of this 6061-T651 aluminum plate material. First, static tensile tests of coupons revealed that the static relative elongations at fracture were about .75 and . 40 for the L and T specimens, respectively; hence, the T-direction exhibits rupture at a substantially smaller level of strain than does the L-direction. Accordingly, incipient rupturing of "T-direction fibezs" in a plate specimen such as CP-2 would be expected first before rupturing of "L-direction" fibers; this indeed was the case for specimen CP-2 which exhibited threshold rupturing of T-direction material at $x=-0.65$ in along $y=-.70$ to $\approx y=+.70$ in.

Because of the very severe impulsive loading to which specimen CP-2 was subjected, certain regions of this specimen will experience very high strain rates at least at early times. Thus, even though the 6061-1651 aluminum might not be particularly strain-rate sensitive, one expects nevertheless a significant effect of the strain rate on the transient structural response. Accordingly, two calculations were carried out (a) one for zero strain-rate sensitivity: $\quad=p=0$ or EL-SH and (b) EL-SH-SR where tho strain rate parameter values assumed were $d=6500 \mathrm{sec}^{-1}$
and $p=4$. For caso (a) calculations for 600 microseconds of structural responso wore carriod out, but only 300 Hsec for case (b) because of the computational oxponite involvod. For this Fe modol, it was found that $\omega_{\max }{ }^{\square} .354328 \times 10^{7} \mathrm{rad} /$ Bac; hanco, $0.8\left(2 / \mu_{\max }\right)=0.452 \mu \mathrm{soc}$. Finnlly, it ahould bo notod that tho prosent Lic assumed displacoment: element is too stiff and displays only a stato of constant displacement. gradients'; a higher order clement such as a CCC would be better from the viewpoint of accuracy as well as reducing roundoff error but time has not permitted including that type of better element in the present study. 7.4.2.2 Transient Strain Comparisons and Transient Displacements In the following listed figures, measured transient relative clongations at the indicated (x, y) locations and accompanying θ-orientations on the upper (non-loaded) surface of flat-panel specimen CP-2 are compared with finite-ṣtrain predictions obtained from a timewise solution of the modified unconventional equations of motion together with linear extrapolation of the pseudo loads (MULE) and the use of the Houbolt operator with $\Delta t=1.0 \mu \mathrm{sec}:$

	Upper-	urface	ocation	Distance from	Strain Ga	Data [2]
Figure	x(in)	y (in)	θ (deg)	plate Center (in)	Gage No.	Peak Transient Rel. Elong. (per cent)
29a	0	1.50	90	1.50	3, 18*	$5.3,6.7$
29b	0	2.00	90	2.00	4	2.7
29c	1.061	1.061	45	1.50	6	6.1
29d	1.414	1.414	45	2.00	-	-
29e	1. 50	1.50	45	2.121	7	2.2
29 f	2.00	2.00	45	2.828	8	1.03
*Gage 18 was located at ($x, y, \theta)=(0,-1.50 \mathrm{in}, 270$ deg.)						

Figuros 29a and 29b show predicted (EL-SH and EL-SH-SR) and measured transient relative elongations on the upper surface of specimen CP-2 along the $\theta=90-$ deg. direction at $(x, y)=(0,1.50)$ and $(0,2.00 \mathrm{in})$, respectively. Since the Fig. 29b location is at a greater distance from the
${ }_{\text {The }}$ LLC assumed-displacement element used provides displacenent gradients u, x and v, x which are constant in the x direction, and displacement gfaxdents' $x_{u}{ }_{y}$ and v, y which are constant in the y direction.
plato centor than the Fig. 29a location, ono oxpocta for thia problom that the peak transiont strain at tho Fig. 29b location will bo signifim cantily smallor than that for the Fig. 29a location. Both moasuromonte and prodictions confixm this expectation. For the (x, y) m $(0,1.50)$ location for the Fig. 29a display, one seos that tho poak prodicted relative elongation for the EL-SH calculation is about 15 por oent and occurs at about $100 \mu \mathrm{sec}$, whereas the peak measured values aro about 5.2 and 6.2 for gages 3 and 18, respectively, and occurred at about $85 \mu \mathrm{sec}$. However, the EL-SH-SR early peak predicted is about 6.9 per cent and occurs at about $60 \mu s e c$. Hence, the EL-SH prediction appears to overestimate the magnitude of this early peak very substantially, whereas the EL-SH-SR prediction is in reasonably good agreement with the measured early peak. Note that although the measured relative elongation traces were obtained successfully oniy to about $150 \mu s e c$, the EL-SH-SR predicted transient response appears to be in good agreement both qualitatively and quantitatively with the measured responses.

At the more distant location $(x, y, \theta)=(0,2.00 \mathrm{in}, 90$ deg. $)$, the EL-SH and the EL-SH-SR prediction give time histories in good qualitative and quantitative agreement with each other. Further, these two finitestrain predictions are in fairly good agrement with the measured transient response data (see Fig. 29b). Also, the longer duration EL-SH prediction indicates that a predicted permanent relative elongation here would be about 2.5 per cent; the measured [2] permanent relative elongation at that location was 1.8 per cent.

Figures 29c, 29d, 29e, and 29 f pertain to measured and predicted upper-surface transient relative elongations along a ray at $\theta=45$ deg from the plate center at distances, respectively, of $1.50,2.00,2.121$, and 2.828 inches. At these locations the peak and permanent relative elongations are expected to decrease at these 4 "succossively more distant locations"; the measured data show this to be the case, as the abovetabulated measured peaks show.

Note that the measured peak relative clongation at 1.50 in from the plate center along $\theta=90$ deg and $\theta=45$ deg (see Fig. 29c) are in close
agroomont, gagon 3 and 18 at θ a 90 deg indicate, rompoctivaly, 5.3 and 6.7 por cont whiln gage 6 at $0-45$ dog indicaton a poak of about 6.1 por cont. Fiquro 29 c also nhows that tho EL-SH-SR transiont rogponso prodiction in in much bottor agromont with tho moasurod rosponne than is the EL-SH prodiction.

Observe from Figs. 29a and 29c, whore both locations aro 1.50 in from the plate conter but the former is orionted at $\theta=90$ ded while the latter is oriented at $\theta=45$ deg, that the goneral magnitude of the measured relative elongation time histories is "the same" but the carly portion of the time history at these two "equivalent locations" is distinctly different. Note that the EL-SH-SR prediction also exhibits this qualitatively different early-time response -- in agreement with measurements. From Fig. 29c where a "measured strain trace" was obtained from 0 to about 340 भsec, one sees that the peak (6.1 per cent) was reached before 150μ sec and the strain level changed very little thereafter. It is expected that had this trace been obtained for a much longer duration, very little change in this "sabsequent" strain level. would have been seen; this is consistent with the fact that this strain gage showed a permanent relative elongation of 5.4 per cent at this location.

At a 2 -in distance from the plate center, Fig 29 b shows measured and predicted transient relative elongations at $(x, y, \theta)=(0,2.00 \mathrm{in}, 90$ deg) while Fig. 29d shows only predictions at $(x, y, \theta)=(1.414,1.414 \mathrm{in}$, 45 deg). For the former, generally good theoretical-experimental agreement is observed; note also that the measured peak (2.7 per cent) is reached before $170 \mu \mathrm{sec}$ and the subsequent strain lovel does not change very much, but the predictions would indicate a somewhat larger value. At the Fig. 29a 2-in location (along $\theta=45 \mathrm{deg}$) no transient rosponso measurement was obtained (only a pormanent relative elongation of 2.5 per cent was measured), but the EL-SH and EL-SH-SR predictions appoar to be plausible qualitatively compared with the Fig. 29 c predictions at the 1.50 in distance along $\theta=45$ deg. However, the "predicted permanent strain levels" are much higher than one expects (and measures) at this 2.00-in location.

Figurn 290 हhowf meaguremonta and prodictions at a gomewhat greator dintance (2.12 in) from the plate gontor along θ (45 digg. Here the moanurod Btrain trace roachos a poak (~ 2.2 por cont) baforo about 170 Hacc and changon its level vory ilttio thoreafterf this gago gavo a pormanont rolativo olongation of 1.7 por cont. Tho EL-SH-SR prodiction appoars to bo plausible for porhape tho first 200 of tho $300 \mu s o c$ duration shown: but tho "Bteady level" achiovod before 200 Hesc las at about 4 por cent strain lovel (vs, about 2 per cont experimentally). On the other hand, the EL-SH prediction shows a peak strain level (at about $300 \mu s e c$) which is significantly larger than that of this same EL-SH prediction at the closer-in 2.00-in location shown in Fig. 29d. Hence, it is apparent that at these "more distant locations", the EL-SH calculation is exhibiting a numerical deterioration.

Pronounced evidence of this "late time" numerical deterioration is exhibited in Fig. $29 f$ where the measured transient relative elongation at the $2.828-$ in distance: $(x, y, \theta)=(2.00,2.00 \mathrm{in}, 45 \mathrm{deg})$ is shown and compared with EL-SH and EL-SH-SR predictions at this location. Experimentally, a peak strain of about 1.03 per cent was reached at about $220 \mu \mathrm{sec}$, and the strain level changed very little thereafter. On the other hand, at this location the relative elongation predicted by the EL-SH calculations behaves plausibly and exhibits a reasonable level of strain for a'Jout the first $200 \mu s e c$, but then exhibits an almostexponential growth with time -- reaching 20 per cent at about $500 \mu \mathrm{sec}$. The EL-SH-SR calculation, on the other hand, does not exhibit this type of clear deterioration during its $300 \mu \mathrm{sec}$ duration, but it indicates a "permanent strain level" of about 3 pex cent which is much larger than measured at this location. Based upon the Fig. 29 e results (and those of Fig, 29f), the EL-SH and the EL-SH-SR predictions must be regarded with suspicion in the "outer zone" spanned by the finite element region "enclosed" by elements 8 through 10 and 78 through 111 at times beyond about: $200 \mu \mathrm{sec}$.

Information supplementing these indications of numerical deterioration (despite the use of double precision on the dBM 370/168) is given
in Tablos 3 and 4 for the RL-SH and tho ELMSH-SR caloulation, roapoctivoly. Shown in thono tablos aro tho timo historion of tho uppormurfaco $\gamma_{1}^{\frac{1}{1}}$ Groon strain at oach nodal atation along y e 0 . Also ahown aro the upporsurface principal Groon atrains at the contors of olomont 1 through 6 . These tabulations show that plausibla timo historios of atrain aro prodictod at all timos for (a) tho "closo-in nodal stations" (that is, $x \leqslant 1.00 \mathrm{in}$) and (b) the contors of olements 1 through G for both the EL-SH and tho EL-SH-SR calculation, although tho valuos prodictod by the lattor are much more reasonable. At nodal locations beyond about $x=1.00$ in (except at node $12(x=4.00 \mathrm{in})$), one observes a progressive deterioration in that the predicted strains continue to grow implausibly to unrealistically large levels.

Shown in Figs. 30a, 30b, and 30c are tio EL-SH and EL-SH-SR predicted time histories of the principal strain at the center, respectively, of elements 1. 3, and 6; these elements (see Fig. 28b) lie adjacent to the $y=0$ symmetry line and their centers are located at the following respective locations $(x, y)=(.111, .111 \mathrm{in}),(.333, .111)$, and (1.298, .111). At the first two locations, these principal strains increase quickly and reach a "plateau" by about $80 \mu s e c$, and change very little thereafter; further, in both cases, the "plateau principal strain" levels are substantially smaller for the EL-SH-SR than for the EL-SH calculation, as expected. At the center of element 6 , the principal strain time history for the EL-SH calculation is similar to those for elements 1 and 3 ; however, the EL-SH-SR predicted principal strain First rises rapidly and then increases slowly for the remainder of the $300 \mu \mathrm{sec}$ time history rather than reaching a plateau. To supplement this information, the principal strain at the center of elements 1 through 6 is given at various time instants in Tables 3 and 4 for, respectively, the EL-SH and the EL-SH-SR calculation.

It is instructive also to examine tho spatial distribution of the predicted strain in the panel at various fixed instants in time. Accordingly, shown in Figs. 30 d and 30 e , respectively, are EL-SH and EL-SH-SR predictions of the x-direction upper-surface Green strain γ_{1}^{1} at nodes 1
through 12 (see Fig. 28a) along tho $y=0$ nymmotry limn from the paral contor $(x, y)=(0,0)$ to the clampod odgo $(x, y)=(A, 00,0)$; thin informam tion is almo givon in Tablon i and 4 , rospoctivoly,

For tho EL-SH calculation, Fig. 30 a nhown that γ_{1}^{1} va. x at 60 froc is of tho oxpoctod form for this phybical aituation -w dinplaying smoothly varying largo valueg within and just boyond the 1.00 -in odge of the impulsive-loading zone, and then decroasing rapidy to small valuos for $x \geq 1.50 \mathrm{in}$. At $100 \mu \mathrm{sec}$, the strain has increased significantly at station $x=1.111$ and 1.486 in but remains closo to tho $60 \mu s e c$ values at the other locations. At $200 \mu \mathrm{sec}$, the γ_{1}^{1} strain distribution remains similar to that at 100μ sec except that a substantial increase in the γ_{1}^{1} strain occurs at stations $x=1.861$ and 2.486 in where the values are, respectively, 13.21 and 5.27 per cent. At location $x=1.861$ in (which is remote from the impulsive-loading zone), this strain value should be very similar to (or perhaps between) those exhibited in Figs. 29a (at $x, y=0,1.50 \mathrm{in}$) and 29 b (at $x, y=0,2.00 \mathrm{in}$) since these locations "span" the station in question, where the respective EL-SH predicted values are 5.7 and 3.7 per cent and the measured values are ≈ 4.0 and 2.0 per cent, whereas a value of 13.2 per cent is EL-SH predicted at station $x=1.861$ in. For this $x=1.861$ in station, an examination of Table 3 indicates that a numerical deterioration of the calculation is occurring here beyond about $120 \mu s e c$ since as time progresses the EL-SH predicted strain continues to grow "unrealistically" and reaches a value of 31.2 per cent at $600 \mu s e c$, whereas the measured peak [2] at the "spanning stations" did not exceed about 6 and 2.5 per cent, respectively. Further evidence of this calculation deterioration in the mesh region spanned by nodes 8 through 11 and 85 through 121 can be seen by examining (a) the plotted predicted strain profiles at $t=300 \mu$ sec and $600 \mu \mathrm{sec}$ in Fig. 30d and (b) the time histories of the predicted strains at these nodal stations as given in Tablc 3. Further, the measured permannent strains at $x \geq 1.4$ in were smaller by at least a factor of 4 than the predicted values listed in Table 3 at $t=600 \mu s e c$. Also, observe that the predicted strains in the region $0 \leq x \leq 1.11$ in quickly reached fairly
large valuos and emeontially "rotainod" thege values throughout tho 600 Hace time poriod, atraine in this rogion, thorofore, aro bollevod to bo valid and not affoctod by tho adend timowiae progronalvo numoriload dotoxioration of the calculation in the indicatod monh portion of thin laxgo-Dow problem.

Figure 300 shows a similar sequoneo of prodicted strain profilos for the EL-SH-SR calculation. Al:hough the magnitudes of tho prodictod strains aro considorably smallor than for tho corresponding locations and times in the EL-SH calculation, tho timewise trends are similar to those of Fig. 30d. For the EL-SH-SR calculation also, there is evidence from Fig. 30e and Table 4 of a progresslve deterioration of the numerical predictions in the region spanned by nodes 8 through 11 and 85 through 121.

Given in Tables 3 and 4 for the EL-SH and the EL-SH-SR calculation, respectively, are the values of Green straln γ_{1}^{1} at the nodal stations along $y=0$ (nodes 1 through 12) at about 20 - μ sec. intervals. Note that the peak and the permanent strains from nodes 1 through 7 are reachod within about 140 Hsec. For stations $8,9,10$, and 11 one observes a "deterioration" in the strain behavior beyond about 120, 240, 350, and $450 \mu \mathrm{sec}$ for the EL-SH calculation, and beyond about 100 and 260μ sec for stations 8 and 9 for the EL-SH-SR calculation which was carried out for only 300 usec. Thus, in the region beyond $x=1.86$ in (or in the mesh zone bounded by nodes 8 through 11 and 85 through 121) the strains become unrealistically huge. As a result, the gross w displacement time history at "all nodal stations" also degenerates in the sense that these displadements continue to grow in the region $0 \leq x \leq 2.5$ in in a vigorous manner even though nearly all of the initial kinetic energy has bean absorbed already by plastic work; the time history of the quarter-plate kinetic energy is shown in Fig. 31. This "degenerate" w-displacement time history is shown in Fig. 31 at $(x, y)=(0,0)$ for the EL-SH and the EL-SH-SR calculations; both calculations indicate w displacement values which are much laxger than observed experimentally. The oxcossively large strains predictod in the mesh rogion spanned by nodes 8 through 11 and 85 through 121 because of "numerical deterioration" cause the
w-displacoment in the region $0 \leq x<3.0$ in to bogome unroaliatioally largo also. Cloarly this in a numaxioal-dogonoration problom incurced dogpita tho uno of doublo-proctaion arithmotio on the TBM 370/168 at MIT. Furthor btudy in nooded to rosolve this difficulty.

7.4.2.3 Permanont Defloctions and Straina

Bocausc of the alroady-aj.tod progreseive timowise numerical dotorioration of the calculation, the presont calculations do not provide valid estimates of the permanent deflection of the CP-2 impulsively-loaded thin aluminum panel. However, it may be of interest to compare EL-SH vs. EL-SE-SR predicted w-displacement profiles vs. x along the fixed-y locations $y=0,1.111$, and 2.486 in at a fixed instant in time. Such comparisons are shown for illustration in Fig. 32a at $t=300 \mu s e c$. Because of "strain-rate stiffening", one observes that the EL-SH deflections tend to be much larger than those for the EL-SH-SR calculation along $y=0$ and $y=1.111 \mathrm{in}$. However, along $y=2.486 \mathrm{in}$, the reverse is true because the "stiffer EL-SH-SR structure" has responded more rapidly (peaks sooner) than has the "EL-SH structure" at this $y=2.486$ in station.

That these predicted w-displacement profiles at various fixed-y locations are of generally plausible character (although of invalid too-large magnitude) can be seen by examining the experimentally-measured permanent w-deflection profiles plotted vs. x in Fig. 32b for various fixed-y stations. Note that a permanent plate-center deflection of about 1.1 in occurred on this 0.0623 by 4 by 4 -in square clamped-sided panel. It is evident from these permanent-deflection profiles that very large strains must be present over about a central 1.5 by 1.5 -in region.

Shown in Fig. 32c are the measured permanent relative elongations on the upper surface of panel specimen CP-2 as a function of pretest distance x from the plate center along $y=0$ from mechanically-scribed upper-surface grid measurements. Also included are permanent-elongation data from strain gage measurements [2]. Permanent relative elongation estimates from each of the two present calculations are shown also on Fig. 32c.

A study of the tranotont strain prodiotiona for the EL-BH cabo Indicated that the atrain at the onter of tho fmall olamnntre in the row adjacont to y e 0 had anmentially reachad the final ftate by about 300 Heoci in fact an Sable 3 fhow, the otradina at nodal atatione for $0 \leq x \leqslant 1.00$ in romain almogt unchangod to tho 600 finno and of tha EL-SH calculation. Thue, the rolativo olongationo at nodon 1 through 5 at 600 Made wore chosen for tho pomanont atrain ontimato. por gtations with $x \geqslant 1.00$ in, it ia bellevod that tho ausociatod ralativoly coarbo finite element mesh makes the predicted gtraing unreliablas accordingly, no permanent strain estimates from nodal strains are made in this region. However, at the location of upper-surface strain gage 3 : $(x, y, \theta)=$ $(0,1.50 \mathrm{in}, 90 \mathrm{deg})$, the EL-SH predicted transient relative elongation as shown in Fig: 29a was used to estimate a permanent y-direction relative elongation there of 6.5 per cent. Strains in the region of evident numerical deterioration are unreliable and, hence, are not employed in making these permanent-strain estimates. It is seen that these predicted EL-SH permanent relative elongations tend to be larger than the measured values.

For the EL-SH-SR calculation which was carried out to only $300 \mu \mathrm{Eec}$, the permanent relative elongation at this time was used as the "permanentstrain estimate" for nodal and element center stations at $0 \leq x \leq 1.00 \mathrm{in}$. Included also was the permanent relative elongation (at $300 \mu \mathrm{sec}$) at the outer-surface center of element 6. It is seen that these predicted EL-SH-SR permanent relative elongations are (1) considerably smallex than from the EL-SH prediction and (2) in reasonably good agreement with measired values with a tendency of being in the mean, perhaps, somewhat smaller.

It should be noted that the LLC assumed-displacement elements uscd provide displacement gradients u, x, v, x which are constant in the x dircction, and displacement gradients $u, y^{\prime \prime} v, y$ which are constant in the y direction. This element ie much too stiff; however, the use of a much finer mesh of the LLC cloments could improve the prediction, but at the cost of greater storage and computing expense.

An ovaluation was mado of tho prinaipal atrains and asgooiated dixectione (θ_{p}) on the uphen surface at the contor of the "amali" olomenten (ana Fig. 2Bb) for both the Ft-sh and the RL-gH-gR calculation. in 411untration of thono finito-atrain-prodiatod maximum prinoipal atradn fanulea are givon in. Tablo 5. An ingpoction of thone valung indicaton that: the mont oxtromo valuon occur at tho conter of tho following olomontes in aach rew:

	EL-SH		EL-SH-SR	
Row ElementValue (Per Cent)	Element	Value (Per Cent)		
1	5	37.2	1	14.3
2	16	40.0	12	13.0
3	27	38.0	23	10.6
4	38	30.4	38	9.5
5	57	12.3	56	8.8

Finally, it is of interest to note that the pre-test and post-test measurements of the spacing of the mechanically lightly-scribed grids on the upper surface of specimen cp-2 permitted determining that the permanent relative elongation close to 'but not exactly at) the location of incipient rupture $(x=0.65$ in and $-0.7 \lesssim y<0.7$) was about 26.4 per cent for this bi- or tri-axial strain state whereas in the "uniaxial coupon static tests", the rupture value of the relative elongation in the correspondinq airection (the transverse, T, direction) averaged about 40 per cent. It would be useful to assess the experimental CP-2 incipient rupture conditions with respect to an independent strain based incipient rupture criterion for this type of aluminum alloy: 6061-T651 and its attendant mill preparation. This matter is left for future study.

The computing times required to carry out the finite-strain Houbolt-MuLE predictions of the transient responses of explosivelyimpulsed 6061-T651 aluminum thin panel specimen CP-2 are summarized in the following for the EL-SH and the EL-SH-SR calculations. These
computations were performed in double preciation on the IBM 370/169 at MIT; $\Delta t=1 \mu \operatorname{lig}$ was urad for buth oalculatione.

Matel. Dohavior	No. 0 g Plato RE	Total Unknown DOF	No. of Cyolon	CPU Timg (min)	$\frac{\mathrm{CPU}(m \ln)}{\text { DOF CyGLor }}$
ELPSH	121	661	600	260.49	656.8×10^{-6}
EL-SH-SR	121	661	300	1.31. 88	065.1×10^{-6}

Similax comparisons for othor oxampios in the present study are given in Subsections 7.6.5.1 and 7.6.6.

7.5 Containmont-Ring Response of T58 Turbine Rotor Tri-Hub Burst Attack
 7.5:1 Problem Defindition
 At the Naval Aic Propulaion Center, various aireraft engine rotors

 have beeli mployed in spin chamber tests in which the rotor has been caused to fail in various ways whlle rotating at high rpm [208-210]. The resulting rofor fragments have impacted containment rings of single-layer or multi-iayer multi-material construction. High speed photography has been used to observe the ring-fragment impact and interaction from initial impact until quite late in the response history. Transient strain and permanent strain measurements at various locations have been made on some of the rings. Also, the permanently deformed ring configurations have been measured.Selected for analysis here is NAPTC Test 201 in which a 4130 spincast steel containment ring ${ }^{*}$ of $0.625-$ in thickness, 1.50 -in axial length, and $15.00-$ in inside diameter and weigring 12.83 pounds rested horiz zontally on smooth support wires and encircled a 158 turbine rotor which was caused to fail in three equal 120 -degree segments at about $19,859 \mathrm{rpm}$ and to impact against this containment ring. Given in Table 2 are the weight and geometric data defining the containmont ring, the rotor burst fragment properties, and the test conditione for NAPTC Test 201 [208,209].

[^50]Bach fragmont conalatad of a 120-degran foctor of the rim with anvonm toon attachod hladen the dintanon from tho axif of ratation of the rotor to the co of tha fragment wan 2.797 in . Nt tho rotor burat xpm of 19, 859, tho tranalational voloolty at the $C G$ of cach fragmont wan $24,357.2$ in/anc. Tho fonultag total kinotig onorgy of tho throo roloanod fragmonto wan 908, 820 inmik, of which 476,760 in-1b wan tranndationad and 432,054 inmib wail motatibnal. Honce, onch fragmonk had nominaily 158,922 dnolb ot transhational and 244,018 in-lb of rotationad :inotic onosgy.

The fooulto of an oxtonolvo analyolo of this toet and of various gmali-etrain prodictions for tho rogponser of the contadnmont ring and ling attacking fragmonts axo reported in Ref. 30. For prosent purpoees, howover, only ono of the analygis modalo conoldored in Ref. 30 will bo uged. In particulax, each Exagmont ia idoalized as conelutilig of a rigid "cyilndrical aisk" of $2.555-$ in radius having a megs and a mass moment of incrtia matching tho actual Exagment at its instant of pre-impact reluase from the rotor; also, the translation velocity at the CG of the idealized fragment and ita rotational velocity match those of the actual Eragment. The entire ring was modeled (as depicted in Fig. 33) by 48 equal-length 4DOF/node ring elements. Local ring-fragment impact was treated as being purfently elastic; hence, a coeflicient of restitution e $=1$ was used. Further, it is assumed for present purposes that the impact-interaction between each fragment and the ring is frictionless.

7.5.2 Comparison of Smali-Strain vs Finite-Strain Piedictions

For the small-otrain calculations reported in Ref. 30, National Forge billet static tensile stress-strain data supplied by the NAPTC [209] ware used to analyze the Test 201 ring since according to Ref. 209 the Test 201 ring material is almost identical to the National Forge billet. Accordingly, those r_{u} vs γ_{u} static uniax.a: teneile stress-strain data ${ }^{+}$were approximated by ${ }^{\circ}$ piecewise-1inear segmente defined by $\left(\tau_{u}, \gamma_{u}\right)=10 \mathrm{psi}$, $0 \operatorname{in} / \operatorname{in}):(80,950 \mathrm{pei}, 0.00279)$; (105,300 psi, 0.0225) i and (121,000 psi, 0.2000) for use in the mechanical mublayer material modal. The material

[^51]La ansumed to bo atrain rato nonsitivo with $d=40,4 \operatorname{soc}^{-1}$ and $p=5$ which in roported to bo applicabla [201] to mild atool, Also, atradindiaplacom mont rolation Typo B and tho cIVMmJEI $A B$ computor program [27] which employs the timowise central-difforonce oporator was unod for tho gmadi.. atrain analysis.

For the Findtometrain analysis $^{+}$tho basic finite elomont mothod and impact-intoraction conditions were the ame as before. Howover, straindisplacomont ralation Type was used. Also, the National Forgo billet uniaxial static tensilc stross-strain data wore rocast into $\tau_{u}=\sigma_{\mathrm{E}}(1+$ $\left.E_{u}\right)$ vs $\varepsilon_{u}^{*} \equiv \ln \left(1+E_{u}\right)$, and Eitted by piecewise-linear segments with the following $\left(\tau_{u}, \varepsilon_{u}^{*}\right)$ pairs: $\left(\tau_{u}, E_{u}^{*}\right)=(0,0),(84.240 \mathrm{psi}, 0.002890)$, ($107,500 \mathrm{psi},{ }^{0} 0.0225$) , (118,008 psi, 0.0600$)$, and (172,700 psi, 0.557).

This FE-modeled ring consists of 196 unknown DOF. Taking the mass per unit initial volume ρ_{0} as $0.000733\left(1 b-\sec ^{2}\right) /$ in 4 for the 4130 cast steel ring, it was found that the highest natural frequency of this mathematical ring model for small-displacenent linear-elastic behavior was $\omega_{\max }=$ $0.4121789 \times 10^{6} \mathrm{rad} / \mathrm{sec}$. To avoid calculation instability, one must select $\Delta t<0.8\left(2 / \omega_{\max }\right)=3.88 \mu \mathrm{sec}$; for convenience a Δt of $2.50 \mu \mathrm{sec}$ was used. The central-difference operator is used to solve the vector (unconventional) form of the equations of motion. Finite element properties are evaluated numerically with three spanwise and four depthwise Gaussian stations.

It was found that the deformed ring configuration and fragment locations in this two-dimensional impact-xesponse problem are very nearly the same at a given time after initial impact for (a) the small-strain prediction and (b) the Einite-strain prediction. Hence, such comparisons are omitted here. However, of much greater interest and importance are the circumferential inner-surface and outer-surface strains γ_{2}^{2} Smallstrain [30], vs Einite-strain predictions ${ }^{++}$of the inner-surface and the outer-surface γ_{2}^{2} strains at the midspan stations of elements $1,4,6,9$, 11, and 47 are shown, respectively, in Figs. $34 \mathrm{a}, 34 \mathrm{~b}, 34 \mathrm{c}, 34 \mathrm{~d}, 34 \mathrm{e}$, and

[^52]34f. Shown in biy. 35 for a timo after initial impact of $1180 \mu \mathrm{AOO}{ }^{+}$are tho nmall-atrain and tho finitomatrain prodiletiona of tho eircumforontial aistribution of outoxmarface ntraine γ_{2}^{2}

Hore it in noon that thoro aro diatinct difforoncon betwoon tho findtomstradn prodictionn and the amadi-ntradn prodictionn at nomo locations and voiy littio difforonco in othorn. Gonorally, however, largor atrains are prodictod by the consistont and valid finito-strain formulation-andBolution procoduro comparod with the formor small-strain procodure, which is consistent with tho fact that for tensile strains the finite-strain . procedure should predict larger strains than tho small-strain procedure if the samo stress-strain data ij used as input for both procedures.

7.6 Steel-Sphere-Impacted Narrow Plate
 7.6.1 Problem Definition

As reported in Ref. 1, initially-flat narrow 6061-T651 aluminum plates with both ends ideally clamped have been subjected each to perpendicular impact at its midwidth-midspan location by a l-inch diameter steel sphere at various velocities, ranging from 1893 to $3075 \mathrm{in} / \mathrm{sec}$. These narrow plates were of nominal 0.1-in thickness, $1.5-1 n$ wiath, and 8.0-in span. Sphere premimpact velocities in the range $2485 \mathrm{in} / \mathrm{sec}$ to about $2800 \mathrm{in} / \mathrm{sec}$ were found to produce moderate to large permanent deformations in the plates; rupture of the plate was observed for steel sphere velocities above about $2870 \mathrm{in} / \mathrm{sec}$.

It was noted that except in the near vicinity of the location of initial impact, the narrow-plate specimens exhibited essentially 2-D deflections; for those regions, the $2-D$ impact-response codes GIVM-JET $4 B$ $[27]$ ant/or CIVM-JET 5B [29] would appear to provide useful approximate predictions. However, signlficant 3-D deformations are present near the "impact location": hence, modeling of the behavior of the structure by plate rather than beam finite elements would appear to permit one to make moro realistic prodictions of the actual structural response both near and far from the initial-impact location. Accordingly, small-strain and finito-strain calculations were carried out for both (1) 2-D boam modeling and (2) 3-D plate modeling of the structure.

[^53]To illuatrato thano prodictionn and thoir comparinon with oxporimont, narrow-plato mpocimen CB-18 of Rof. 1 will bo analyzod. This plato wan of 0.097-in thicknona, 1.498-in widath, and 8.002-in apan. A l-in diamotor atool nphoso woighing GG. 810 gramn with a prowimpaot volocity of $2794 \mathrm{in} /$ aoc impactod apooimon cB-1日 approximately 0.06 in from the plato-contor location. Λ schomatic of tho modol ahowing ghohal coordinato dircotiong is givon in Fig. 36 . In this tost transiont rolativo olongation data wore moagurod succussfully with strain gayon along tho y-axis (midwidth location) at $y \pm \pm 0.6-1 n$ (upper, surfaco), $y=1.2-1 n$ (upper surface), $y=-1.5-i n$ (uppor surface), and $y=1.5-1 n$ (upper and lower surfaces).

For both the small-strain and the finite-strain calculations, the uniaxial static stress-strain data for this matorial were taken to be the same as described in Ref. 30 and in Subsection 7.2 .3 .2 ; namely, $\left(\tau_{u}, \varepsilon_{u}^{*}\right)=$ $(0,0),(44,200 \mathrm{psi}, 0.00442 \mathrm{in} / \mathrm{in}),(49,200 \mathrm{psi}, 0.075 \mathrm{in} / \mathrm{in})$, and (76,400 psi, $0.615 \mathrm{in} / \mathrm{in}$) for use in the mechanical sublayer material model. For this 6061-T651 material, the rupture level of Green strain γ_{u} for uniaxial static test specimens was found $[2]$ to be about 105 percent.

Finally, since both small-strain and finite-strain predictions ware reported in Ref. 30 for the impact-induced transient response of specimen CB-18-- and those calculations were made for 2-D beam element modeling and for EL-SH behavior only -- the predictions to be presented in this report will include mainly EI-SH behavior for the material of narrow-plate specimon $\mathrm{CB}-18$.

First, in Subsection 7.6.2. 2-D beamelemont and idealized 2-D impactinteraction modeling and response will be discussed. Next in Subsection 7.6.3, the naxrow-plate spec men ($\mathrm{CB}-18$) will be modeled with plate elements to accommodate $3-D$ structural response; also, the attacking solidsphere fragment will be modeled faithfully as a spherical fragmont (rather than as an "equivalent cylindrical fragment as in tho $2-\mathrm{p}$ modeling case).
7.6.2 Modeling by Boam Finito Elements

In moduling the CB-18 narrow plate by beam olements, the structural response is heing approximated as leing strietly two-dimonsional ($2-5$). Honce, consistent with this, the attacking fragmont is diso iowalized as a a-D frayment: that is, the fragment rather than boing a l-inch diameter
mohoro in doalizod and vimualizod comooptually af a nolid non-doformable cylindrical fragmont of 1-1nch diametor and oxtonding ac ons tho ontire width of tho narrow plate apocimon. Thin idoalized fragmont in dofinod to have the mame total mase as tho actual fraymont.

Tho ontiro span of narrow-plato spocimon $C B-18$ han boon modolod by 43
 4(X)F/nodo --based upon oxtonsivo studios roportod in Rof. 30. Tho mass por unit initial volume ρ_{0} of tho CB-18 matorial is assumed to be 0.25384×10^{-3} (1b-sec $\left.{ }^{2}\right) / 1 n^{4}$. As a result, the finitomolement model consists of 157 unknown DOF and its maximum linear-systom frequency is $\omega_{\max }=0.2326 \times 10^{7}$ rad/sec. Accordingly, since the CIVM-JET 4B computer program (and modified versions thereof) utilize the timewise central-difference operator, one must choose a time increment size Δt of about $0.8\left(2 / \omega_{\text {max }}\right)^{\prime}=0.688 \mu \mathrm{sec}$ or less to avoid calculation instability; for convenience a Δt of 0.50 $\mu \mathrm{sec}$ was omployed and provided converged results. Finally, at each impact between the fragment and the structure, the structure is assumed to receive an impact-imparted momentum increment (see Ref. 27) on a spanwise length of $\Delta t\left(E / \rho_{0}\right)^{1 / 2}=0.0993-i n$ on either side of the station of impact: since initial perpendicular impact occurred at the midspan station of the center element, this criterion resulted (with the resident computer program logic) in the imparting of velocity increments to the two end nodes of that element. Each of these assembled-structure nodes "account for mass" from half of the center element and half of the next element; hence, the effective region of impact influence is one full element length or 0.186-in on each side of the station of impact. This effective region is consistent with that estimated in Ref. 30 on stress-wave propagation arguments as approximately $2 \mathrm{~h}=2(0.097)=0.194$ inch .

For the small-strain and the finite-strain calculation, straindisplacement relation Type B (Eq. 4.90) and Type F (Eq. 4.146), rospectivoly, was cmployod. In both cases, three spanwise and four depthwise Gaussian stations wore used for the volume numerical integration for the finiteelement property matrices. Also, a diagonalized (lumped) mass matrix for cach element was used.

Thoso oalculations and modoling apply to both the amall-atrain and the finitematrain prodictiona. Accordingly, thoso 2 mprodictions can not. matoh tho oxporimontal rosulta noar tho impact atation whoro distinct 3-D structural rogponso ocourrod. Howovor, olnowhoro (oxcopt ponadbly noar tho clampod onde), one can expoct to find raasonable agroomont botwoon thono prodictions and experimont.

7.6.3 Modeling by Plate Finito Dlemonts

To simulato the actual physical situation of the $C B-18$ steel-sphereimpacted narrow plato moro faithfully -- to accommodate the 3-D type of structural or plate deformations which are dominant-m specimen CB-18 was modeled with plate finite elements of the LLC type with 6DOF/node. For computational thrift and oconomy, only one quarter of specimen $C B-18$ was modeled by flat-plate elements; symmetry conditions were imposed along both the midspan and the midwidth station: $(x, y)=(0,0)$, and ideally clamped conditions were imposed at the clamped end. Initial perpendicular impact of a l-inch diameter non-deformable spherical fragment was assumed to occur at $(x, y)=(0,0)$-- rather than about 0.06 -in from this point as seen in the $C B-18$ experiment. The element mesh of flat-plate elements employed was the same as reported earlier [210] for the small-strain calculation; namely, the quarter plate was represented by two rows of 11 spanwise flat plate elements each of 0.375 -in width and each with spanwise lengths as depicted in Fig. 37a; later calculations used the "refined" finite element mesh shown in Fig. 37b. The flat plate elements used were the same LLC elements as described in Subsection 7.2.3.1.

For the $F E$ plate modeling of specimen $\mathrm{CB}-18$, the small-strain calculations employed the von Karman strain-displacement relations (Eqs. 5.118 . 5.123 and the attendant following paragraph) while the finite-strain calculation utilizod the more comprehensive strain-displacement relations given in Eqs. 5.118-5.123 (without the terms involving the second order derivatives of the in-plane displacements u and v, since the assumed. displacement fiold for the LLC finite-element is bilinear in u and v). In both cases, threo Gaussian stations in each spanwise direction and four
depthwise Gaunitan etations woro unod in each flat-plato oloment to evaluato, by volume numerical integration, tho proportion of ach elemont. Also, a diagonalized (lunped) mans matrix was unod for cach oloment.

Tho maximum linoar-gystem froquency $\omega_{\max }$ of tho Fig. 37a finftom Olomont model was found to be $0.2372 \times 10^{7} \mathrm{rad} / \mathrm{sec}$. Thus, if one wore to computo the impact-inducod transient response by using the timowiso contraldifference operator, a Δt of about $0.8\left(2 / \omega_{\text {max }}\right)=0.67 \mu \mathrm{sec}$ would be required to avoid calculation instability. However, these predictions were carried out by using the CIVM-PLATE program in which the Houbolt operator is employed. Accordingly, a convenient Δt of $1.0 \mu \mathrm{sec}$ was employed which earlier experience and discussion indicated would provide "reliable converged predictions".

At each impact between the fragment and the plate, it is assumed that momentum is transferred by a perfectly-elastic collision to a plate region (from the fragment) defined by a circle of radius $L_{\text {eff }}=\Delta t\left[\frac{E}{\rho_{0}}\right]^{1 / 2}=$ $0.1985-$ in centered at the impact location; other more rational selections for $L_{\text {eff }}$ could be employed, but this one is used for present illustrative purposes. ${ }^{\circ}$

7.6.4 Comparison of Beam-Model vs. Plate-Model Predictions

First, it is useful to compare small-strain vs. finite-strain predictions for the 2-D idealization (with beam finite elements) of the $C B-18$ impacted narrow plate. Next, similar comparisons will be made for the case in which the proper $3-D$ structural response is accommodated by plate-type fiaite elenents and a spherical impacting fragment of the proper size and shape. Finally, it is illuminating to compare 2-D vs. 3-D predictions only for the consistently formulated and implemented finito-strain inalysis.

7.6.4.1 Strain Comparisons

Sinco primary interost contora on the predicted and moasured atraing, comparisons of longituainal Groon strain γ_{2}^{2} are made in tho following indicated figures at the spocimen midwidth location at various spanwise locations on the uppor (non-impacted) or lower (impacted) surface:

Figure	FE Model		$\begin{gathered} \text { Analysis } \\ \text { Strain } \end{gathered}$		Location of γ_{2}^{2} Strain Data				
	Beam.	Plate	Smalı	Finite	Station	Pred	ction	Expe	ment
		Δt			(In)	Upper	Lower	Upper	Lower
	$\begin{aligned} & 0.5 \\ & \mu \mathrm{sec} \end{aligned}$	$\begin{aligned} & 1.0 \\ & \mu \mathrm{sec} \end{aligned}$							
38a	x	-	x	x	0	x	-	-	-
38 b	x	-	x	x	0	-	X	-	-
38 c	x	-	X	X	0.3	X	-	-	-
38d	x	-	x	x	0.3	-	X	-	-
38 e	x	-	X	x	0.6	X	-	x	-
38f	x	-	x	x	1.20	X	-	x	-
389	x	-	X	X	1.50	x	-	x	-
38h	x	-	x	X	1.50	-	X	-	x
$38 i$	x	-	X	X	3.00	x	-	P	-
38j	x	-	X	X	3.00	-	X	-	P
38k	x	-	X	x	3.70	x	-	p	-
38\%	x	-	x	X	3.70	-	x	-	p
38 m	x	-	X	X	4.00	X	-	-	-
38n	x	-	x	X	4.00	-	X	-	-
p denotes that only			rmanen	strain	format	was	taine		

Location $y=0$ in (at the midnpan of tho boam) colnoldon with tho midnpan Gaunsian intogration atation of a finito olomont. Looation $y= \pm 2.0$ in If at the clamped and of tho boam and coinciden with a finito olomont node at which olampodmond conditionn havo boon impoaod (namoly that tho displacom monts v and w and tho latoral-displacomont gradiont ψ aro zoro), All othor stations occur at locations intormodiato botwoon tho end and tho midapan of a finito olomont, and do not coincide with gpanwise Gaussian intogram tion points. Also, moanured permanont strains are indicated on those figures where available.

These figures show that the strains γ_{2}^{2} predicted (a) by the current "finite-strain procedure" and (b) by the former "small-strain procedure" agree reasonably well with each other and/or with experiment at all of these stations except $y=0,3.7$, and 4.0 in . Large strains do occur at both $y=0$ and $y=4.0$ in; also, the occurrence of large strains at $y=4.0-1 n$ exerts a distinct and pronounced effect at "nearby station" $y=3.7$ in (located in the element adjacent to the finite element at which the clamped end condition has been imposed). Although the calculations have been carried out for only 900 microseconds, it appears that the current "finite strain procedure" would provide better permanent strain comparisons with measurements at all spanwise stations (if carried out long enough in time) than by the former "small-strain procedure".

Figure 39 shows that the time histories of the midspan lateral deflection w from these two predictions for beam CB-18 are very close to each other. Finally, the time histories of the support reactions $M_{X^{\prime}}, S_{z}$, and F_{y} at station $x=4.0$ in are shown in Figs. 40a, 40b, and 400, respectively, for these two predictions. The agreement between these two predictions is very good for the longitudinal support reaction force F_{y} (associated with the membrane strains), but one observes some differences in the transverse support reaction (shear) force S_{z} and large differences for the support reaction bending moment M_{X}. These differences are caused by the fact that the expressions of CIVM-JFT $4 B$ for the bending part of the strain are valid only for small rotations and small strains, while the finite strain version of the program does not have this
rostrictiton, of courso, tha aupport raaction bonding momont. M_{x} is most influencod by the bending part of the gtrain-dieplacement rolatione.

The computing time requirad to analyzo atocl-aphoro-impactod beam CB-1. 1 by tho two procoduren, undor otharwibo-idontical conditions, is conveniontiy displayod in tho following tabulation (for a time stop of 0.50 microsocond, all runs woro conducted on an IBM 370/168 computor):

Formulation	No. of Beam FE	No. of Gaussian Sta. per Elam. Spanwise	Total No, of Unknown
Small Strain	43	3	4

Formulation	Strain-Displ. Relation Type	Mass Matrix	Nc. of Cycles	CPU Time (min)	$\frac{\text { CPU(min) }}{(D O F)(C y C l e s)}$
Small Strain	B	DM	2250	5.11	13.4×10^{-6}
Finite Strain	F	DM	1850	6.81	21.7×10^{-6}

Here again, the finite-strain-formulation calculations require more CPU time per (DOF) (cycle) than the small-strain formulation. The smaller CPU time per (DOF) (cycle) noted here for steel-sphere-impacted narrow plate specimen CB-18 compared with explosively-impulsed narrow plate specimen CB-4 arises from the use in the latter of the more-heavily populated consistent mass matrices vs. diagonalized mass matrices for the $\mathrm{CB}-18$ calculations, and the use of 3 rather than 4 spanwise Gaussian stations for the CB-18 calculations.

It appears that (a) the use of the proper (second Piola-Kirchhoff) stress tensor in the constitutive equations by making proper transformations of certain stress and strain measures, (b) the use of $\tau_{u} v s, E_{u}^{*}$ for representing the monotonic strain-hardening antisymmetric (in tension and compression) mechanical behavior of the material by the mechanical sublayer model, and (c) the use of a finitemstrain strain-displacoment
oquation, and (d) the inolugion of thickness ohangon provido significantiy improvod prodiotions of tranadent atratns (the most important and senadicive quantiticas).

Noxt, considor tho platomodol prodictionef soo Fig. 4l:

Figuro	F'E Modol		Analyais St:inin Typo		Location of γ_{2}^{2} strain Datio Along the Elate Midwidth station			
	Boam	Plate	Small	Finite	Station	Prodiction	Exper	ment
	$\begin{aligned} & 0.25 \\ & \text { usec } \end{aligned}$	1.0 usec			y (1n)	Upper Lowor	Upper	Lowar
41a	-	X	X	x	0	X -	-	-
41 b	-	X	X	X	0	X	-	-
410	-	X	X	X	3.40	X	-	-
41d	-	X	X	X	3.70	X	p*	-
41 e	-	X	X	X	3.70	X	-	P*
41 f	-	X	X	X	4.00	X	-	-
419	-	X	X	X	4.00	X	-	-

At the plate-center location $(x, y)=(0,0)$ where initial impact occurs, it is seen that the transient strain provided by the consistent finitestrain prediction is substantially larger. than that given by the (now unreliable) small-strain calculation ${ }^{+}$. A similar result is observed at station $(x, y)=(0,3.70 \mathrm{in})$ and $(0,4.00 \mathrm{in})$ which are, respectively, near and at the clamped end. However, at station $(x, y)=(0,3.40 \mathrm{in})$ which is more "remote" from the clamped end, one observes a much smaller level of impact-induced structural-response strain; a lesser but still significant difference exists between the strains predicted by these two schemes.

7.6.4.2 Deflection Comparisons

Since only permanent deflection data (no transient deflections) were measured in the CB-18 experiment, only permanent deflections can be used

[^54]to comparo prodictions with experimont. Howover, it in inatructivo alko to comparo varioun tranniont difplacomont prodictione with nach othor. Accordingly, fuch dofloction comparinonn aro fhown on figurof indicatod in the following tabulationt

Plyure	Fe Modul		Analyoir Gixain Typn		Strone gtrain Approx.	```Prodicted w-Diapl. Location (x,y)```	Expt, Porm.Dinpl.Location(x, y), in
	Boam	Plato	Smaj1	Findto			
42 a	X	-	X	-	$\begin{gathered} \mathrm{EL}-\mathrm{SH} \\ \text { and } \\ \mathrm{EL}-\mathrm{SH}-\mathrm{SR} \end{gathered}$	$y=1.00$	$\begin{cases}\text { Avg. } & \text { at } \\ y= & 1.00\end{cases}$
42b	X	-	x	x	EL-SH	$x=0$	-
42 c	-	X	X	X	EL-SH	$(0,0)$	$(0,0)$
42 d	-	X	X	-	EL-SH	At $810 \mu \mathrm{sec}$ vs. y Along $\left\{\begin{array}{l}x=0 \\ x=0.375 \\ x=0.75\end{array}\right.$ (Estimated Permanent)	Along $x=0$
42 e	-	X	-	X	EL-SH	 (Estimated Permanent)	Along $x=0$
42f	-	X	X	X	EL-SH	Along $x=0$ at $t=840 \mu \mathrm{sec}$	Along $x=0$

In Fig. 42a it is scen that tho FE beam model small-strain prediction for the transiunt w-displacoment at " $2-D$ location $Y=1.00$ in" exhibits a larger poak for the EL-SH than for the EL-SH-SR representation of the material bchavior: it is seen also that the EL-SH-SR prediction for the
pormanent dimplacomont at this atation in in tho betior agroement with the axporimentally-obnerved reault.

Finitomatrain prodictiona vornua amalimatrain prodictionn for tho transiont $2-D$ woddaplacomont for the boam-ndomont modolod fotructure aro comparad at tho midepan "Impnot ntation" in Fig. 42b. Thoon two midapnn prodietionn comparo woll wh th aach other in ovorald tranalont ramponno, in prak romponso, and in tho pormanonemdeformation ostimato. Howovar, as noted oarlifor, tho prodictod transiont straine are gignificantly different for tho small-otrain va. tho finite-straln calculation at. the important regions which aro near miaspan and noar the clamped end.

For the more-realistic flat plate finite-element modeling of the CB-18 structiare, the transiont 3-D Houbolt-MULE w-aisplacement predictions at the plate-center location $(x, y)=(0,0)$ for the small-strain vs the finite strain calculation are shown in Fig. 42c for EL-SH material behavior. Again these predictions compare wall with each other but a larger peak and permanent deflection is predicted by the finite-strain calculation.

The 3-D character of the predicted w-displacenent for the small-strain plate-element model calculation is shown in Fig. 42d. Here at $t=840$ $\mu s e c$, the w-displacement is shown as a function of spanwise distance from midspan to the clamped end along the node lines at the plate midwid:h (centerline) station, half-way to the free edge, and along the free edge. Beyond about station $y=1.50 \mathrm{in}$, the w-displacement is seen to be nearly identical along these three widthwise stations, and thus indicates essentially 2-D displacement behavior in this region of the structure. Closer to the plate-center impact location, however, the 3-D character of the w-displacement is clearly evident.

A similar "displacement profile" plot is shown in Fig. 42e for the finite-strain plate-element-model calculation at $t=840 \mu s e c$. Both qualitatively and quantitatively these profiles are similar to those shown in Fig. 42d. Finally, the FE plate model small-strain vis. the finitestrain prediction for w is compared only along the midwidth location in Fig. 42f. The more realistic finite strain prediction is geen to exhibit a slightly more "bulgy" profile than the small-strain prediction. As
notad earlfar, howovor, tho atrain prediotiona are nignifigantily difforont batwoon the fint to-atrain and the amallontrain caloulation, whth tho formor boing in muoh Lotcox agrocmont with axporimontal moanufamonto.
7.G. 5 Findtogtrain Prodiationn For a Bofinad fiomontrMonh Modod

Sinco tho fint to olomont madoling ahowh in Fige, 37 and 37 b for ono quartor o. narrow-plato npocimon $\mathrm{CB}=1, \mathrm{~A}$ wan whthor coarno and thoroby 1dmitod tho rouponso dotadi which could bo aocomnodatrod, it. wan doeddod to omploy a "roflnod FE mobh" of LLC plate olomonto to roprogent tho quartor paato as dopicted in Figs. 370 and $37 d$. in thio rofinod-mosh modol, elements of $0.1-1 n$ by $0.1-1 n$ aro usod near tho "initial impact station" $(x, y)=(0,0)$; also noar the rhumed and $(y=4.00 \mathrm{dn})$, wo rows of $0.1-1 n$ spanwise length LLC elements are employed. Theev two regions are those in which pronounced $3 \cdot D$ response effocts and pronouncod atrain gradiente are to be expected.

The refined-mesh model shown in Fig. 37 C consists of 75 LLC yuadri. lateral plate elenents. The assembled structure has 96 nodes with $6 \mathrm{DOF} / \mathrm{Node}$, 'giving a total of 576 DOF. Symmetry conditions are invoked along the two sides at $x=0$ and $y=0$, while clamping is imposed along $y=4.00 \mathrm{in}$; accordingly, the restrained DoF are: 5 from double symmetry at node 1,3 each at 19 single-symmetry nodes, and 6 at 6 clamped-end nodes. Hence, the unknown DOF $=576-5-(3)(19)-6(6)=478$. For these calculations a diagonalized (lumped) mass model was used. Thus, the maximum linear-system frequency of the Fig. 37 C finite-olement modol was found to be $13.19775 \times 10^{6} \mathrm{rad} / \mathrm{sec}$. If one were to compute the impactinduced transient response by using the timewise central-difference operator, a Δt of about $0.8\left(2 /(1)_{\max }\right)=0.12 \mu \mathrm{sec}$ would be required to avoid calculation instability. However, the present predictions were carried out by using the CIVM-PLATE program in which the Houbolt opeiator is employed. Accordingly, a convenient Δt of $1.0 \mu \mathrm{sec}$ was employed, which earlier computational experience with Houbolt-Muse hed indioaten would provide "converged predictions".

At each impact between the fragment and the plite, it is assumed that
monontum in tranoforred by a porfootlymatatile colliation to a plato ragion (from tho fragmant) definod by a airale of radiun forf centorad at the. Impact location. from atrana-wavo propagation argumonta givon in Bubanc-

 andmealeutation procoduroo, btralfumaphacomont volationo, ard othor duta wore tho namo an for tho eoaroomubh Edndtu-olamont plate modol camputation.

Shown in Fig. 43 aro tho coaroemoch va. rofined-inem plato-olemont finita-ctrain EL-SH prodictions of the platementor, $(x, y)=(0,0)$, dtsplacenont w of atcol-ophore-1mpncted 6001-Th51 alwainum: narrow-plate specimen CB-18. As expected, the refined-mooh model exhibito a largur puak deflection latur in time compared with the coarse-meah model prodiction:

FE Plate Model	Peak $w(1 . \mathrm{n})$	Time at Peak ($\mu \mathrm{sec}$)
Coarse Mesh	0.970	690
Refined Mesh	0.987	750

However, as noted earlier, transient (or pertmanent) displacements are not a sensitive indicator of the accuracy and/or reliability of the prediction. Strains on the other hand are of primary interest and concern, and provide a much more sensitive and meaningful indication of prediction adequacy. Hence, strain predictions are examined next.

Compared in Figs. 44a through 440 are coarse-mesh vs, refined-mesh plate-element-model finite-strain predictions of transient longituainal Green (Jagrangian) strain γ_{2}^{2} on the surface at various spanwise stations of steel-sphere-impacted 6061-T651 aluminum narrow-plate specimen CB-18. Experimental transient and/ox permanent strains, as appropriate and aval1able, aro included $\bar{a} 1$ so. Summarizod in the following are the figure number and associated station/surface at which these γ_{2}^{2} strains are comparad:

Figuro	Plate EE Modol		Location of γ_{2}^{2} strain Data Along the Plato Midwidth (xF0) station				
	Coaran	Rofinnd	$\begin{aligned} & \text { station } \\ & y(\ln) \end{aligned}$	Prod Шрроя	ation Lowar	Expor Uppor	Imant Lowor
44a	x	x	0	X	m	\cdots	-
$44 b$	X	X	0	\cdots	X	-	-
440	X	x	0.30	X	-	-	-
44d	X	X	0.30	-	X	-	-
440	X	x	0.60	X	-	X	-
445	X	x	0.60	-	X	-	-
44 g	X	X	1.20	X	-	X	-
44h.	X	x	1.50	X	-	X	-
44i	X	X	1.50	-	X	-	X
44j	X	X	3.00	X	-	P*	-
44k	X	X	3.00	-	X	-	p*
441	X	X	3.70	X	-	P*	-
44 m	X	X	3.70	-	X	-	P*
44 n	X	X	4.00	X	\cdots	-	-
440	X	X	4.00	-	X	-	-

*Only permanent strain was recorded at this location.

Figure 44 shows that at the upper (non-impacted) surface at the initial-impact station $(x, y)=(0,0)$, the refined-mesh plate-element model predicts a peak γ_{2}^{2} strain of about 59.7 per cent at time after initial impact TAII $=750 \mu s e c$, while the corresponding coarse-mesh model predicts a peak γ_{2}^{2} strain of about 35.6 per cent at taII $=690 \mu \mathrm{sec}$. A similar disparity is seen (Fig. 44b) at the lower surface at station $(x, y)=(0,0)$, but the refined-mesh model predicts a compressive strain peak of much smaller macnitude than that from the coarse-mesh model. Hence, the refined-mesh model predicts larger membrane strains at $(x, y)=(0,0)$.

At station $(x, y)=(0,0.30 \mathrm{in})$, the more accurate refined-mesh model prediction of γ_{2}^{2} differs significantly from the coarse-mesh model
prodiction, an Figa, 44c and AAd ahow. Evidonce of "roverged curvature" if preanat on tho lowor aurfaco oxperlongen a dargor poak ferain than doon tho uppor aurface, and both aro tonsile.

At atation $(x, y)=(0,0, G 0 i n)$ which in morn romoto from tho i.utialoimpact ntation, tho prodictod poak γ_{2}^{2} (longitudimal) atraine aro of tonnd to charactor on both nurfacos (ano Fign. 440 and 44f), tho poak γ_{2}^{2} etrain for tho rofinod-mesh modol ve. the coarsomosh modnd is about. 9.0 and 17.5 por cont highor for, rogpoctively, the upper and the lower Burface, whoro tho refincd-mosh rosult is used as a reforonco. For the upper surface (Fic 44e), the experimental transient strain trace agrees reasonably well with both predictions until about 500 microseconds when the experimental strain trace was lost. On the upper surface, pemanent strain measurements of 2.24 and 2.36 per cent were obtained at respective stations $(0,+0.60 \mathrm{in})$ and $(0,-0.60 \mathrm{in})$; it is evident that the "refinedmesh prediction" of the permanent strain would be close to these values.

It should be noted, however, that for computational efficiency and economy reasons, only one quarter of narrow-plate specimen $C B-18$ was modeled by finite elements. Furthermore, it was assumed in these calculations that initial impact occurred at station $(x, y)=(0,0)$; in the actual experiment, however, initial impact occurred at about $(x, y)=(+.057,-.019$ in). Therefore, the locations of strain gages relative to the actual impact location are different from those with respect to the "assumed" initial-impact location $(x, y)=(0,0)$. Therefore, the computed and the measured strains compared here are actually at somewhat different distances from the initial impact point. Accordingly, this effect should be responsibie in part for the discrepancies between measured and predicted strains, especially at those stations near the initial impact location. At more distant stations, however, this factor assumes a lesser to negligible importance.

On the upper surface at station $(x, y)=(0,1.20 \mathrm{in}), \mathrm{Pig} .44 \mathrm{~g}$ shows that the peak γ_{2}^{2} strain from the coarse-mesh calculation is about 36 per cent smaller than that for the refined-mesh predietion (3.13 per cent). From 0 to $200 \mu s e c$, the measured strain trace agrees very well with both
proddotiona, from 300 to $475 \mu n o c$, dit agroon bottor with tho conran-monh ronult, and boyond about 475 Haso, tho monaurod tranniont atrain in in bottor agroomont with tho rofinod-mosh prodiction. Tho moanurnd pormanont atrain agrone reasonably wodl (and bost) with tho coarmomofh calculation. Although tho rofinodmosh prodiction was carriod out to only 800 Hnoc, it appoars that tho "indicatod" pormanont atrain would bo largor than moasured; this offoct is not inoxpoctod at this particular (less important) Location ginco a rathor largo (0.50-in long) finito elomont was usod and contains that $(x, y)=(0,1.20 \mathrm{in})$ station $-m$ the use of smaller elements to span this region would likely improve the prodiction in this region of relatively small strains.

More distant from the initial-impact location is station $(x, y)=(0,1.50 \mathrm{in})$ where γ_{2}^{2} predictions and measurements are shown in Figs. 44 h and 441 , respectively, for tne upper and the lower surface. At this location, the coarse-mesh calculation indicates larger peak γ_{2}^{2} strains on both surfaces than given by the refined-mesh prediction; in both cases the peak values are less than 2.5 per cent. The measured transient γ_{2}^{2} strain on the. upper surface is larger than either prediction, but at the lower surface the measured information is in reasonably good agreement with predictions. Finally, the measured permanent strain at (1) upper-surface stations $(x, y)=(0,1.50 \mathrm{in})$ and $(x, y)=(0,-1.50 \mathrm{in})$ was 1.48 and 1.13 per cenc, respectively and (2) the lower-surface stations $(x, y)=(0,1.50$ in $)$ and $(x, y)=(0,-1.50 \mathrm{in})$ was 1.31 and 1.27 per cent, respectively; the refined-mesh prediction is seen to be in good agreement with those measurements.

Coarse-mesh and refined-mesh predictions for the transient γ_{2}^{2} strain at station $(x, y)=(0,3.00 \mathrm{in})$ are shown in Figs. $44 j$ and 44 k , respectively, for the upper and the lower surface. Here the peak strains are small, and the coarse-mesh calculation predicts somewhat larger peak values than does the refined-mesh computation. on the upper surface the refined-mesh prediction indicates the closer agreement with the measured strain.

Of yreator importance and interest are the strains at stations close to the clamped end. Hore significant spatial strain gradients and strain
valuon themesivon must occur. Hence, stations $(x, y)=(0,3.70 \mathrm{in})$ and $(x, y)=(0,4.001 n)$ aro of particular, intereat. Coarsemenh and finnmosh transient γ_{2}^{2} atrain predictions are shown in Figa. 44l and AAm for station (x, y) \quad ($0,3.70 \mathrm{in}$) and in Figg. 44 n and 440 for atation $(x, y)=(0,4.00 \mathrm{ln})$ at, reapoctively, the appor and the lowor aurface for oach station. Since, a finer oloment mosh is used in this rogion for the refinod-mosh model compared with the coarso-meah model, the former is expected to provide substantialily more roliable predictions, especially at the clamped end $(x, y)=(0,4.00 \mathrm{in})$.

On both the upper and the lower surface at station $(x, y)=(0,3.70 \mathrm{in})$, the peak strains predicted by the refined-model calculation are much smaller than from the coarse-mesh prediction. The measured permanent strains on the (1) upper surface at $(x, y)=(0,3.70 \mathrm{in})$ and $(x, y)=(0,-3.70 \mathrm{in})$ were 0.56 and 0.68 per cent, respectively, and (2) lower surface at $(x, y)=(0,3.70 \mathrm{in})$ and $(x, y)=(0,-3.70 \mathrm{in})$ were 1.07 and 0.47 per cent, respectively. It is seen th. at the refined-mesh prediotions are in close agreement with these measured permanent strains.

At the clamped-end station $(x, y)=(0,4.00 \mathrm{in})$, very severe bending strains occur. As Fig. 44 n shows, the upper surface at this station experiences sequential transient compression, tension, compression, and finally tension as the membrane effect overwhelms the bending contribution -- according to the (more reliable) refined-mesh prediction. The coarsemesh prediction shows a similar sequence except that the final state is one of compression rather than the tension predicted by the refined-mesh calculation.

On the lower surface at $(x, y)=(0,4.00 \mathrm{in})$, very large tension strains γ_{2}^{2} are expected from the additive effect of membrane and severe bending; this is seen to be the case from the predictions shown in Fig. 440. Note that the coarse-mesh calculation predicts a peak tensile γ_{2}^{2} strain of 11.5 per cent at this location while the more reliable refined-mesh computation predicts a peak tensile γ_{2}^{2} strain of 22.6 per cent. Although no strain measurements were made at the lower surface at $(x, y)=(0,4.0 \mathrm{in})$, it is evident from visual inspection of the
apocimons that the pormanont atxaina thore. (at the clampod-ond lowor surfaca) aro large. Nonhomogoneous doformation ia presont with an orangepool kind of aurface; thif kind of aurface was noticed in static uniaxial tonsido tosta of tho samo batch of 6061-TG61 aluminum uned for tho CB-1, plato spocimon for tonsile strains of about 1.8 por cont or mora. Recall that the initial-impact station, the rofined-mesh caloulation prodicte a poak tonsilo γ_{2}^{2} strain of 59.7 per cent. Henco, it is apparont that the 3-D gtructural rosponse bohavior accomodatod by the plato-finiteelement model would result in prodicting incipient rupture of the present type of steel-sphere-impacted 6061-T651 aluminum narrow plate to occur at the midspan initial-impact station rather than at the clamped end as predicted by the $2-D$ model (compare Figs. 38 and $38 n$ at stations $Y=0$ and 4.00 in, respectively). The experimental specimen $\mathrm{CB}-16$ did break [1] near the point of impact rather than at the clamped end, when subjected to steel-sphere impact with a velocity slightly higher than than the $C B-18$ velocity.

One point that deserves further investigation is the "exact distribution" of strain in the impact region. While the computer predictions indicate that the maximum strain occurs at the initial-impact point (the midpoint of the plate), the actual experiments show that the maximum strain takes place at about 0.2 in from that location. One reason for this discrepancy might be the presence of transverse shear straine at that location (the computer predictions do not take this type of straining into account). Another reason may be that the local impact-interaction details between the steel sphere and the plate involve contact and stress wave propagation details that the present impact procedure does not take into account; instead a high simplified-interaction model is used -- as described, for example, in Refs. 23, 27, and 30.

The computing time required to carry out the finite-strain HouboltMULE predictions of the transient responses of steel-sphere-impacted. 6061-T651 aluminum narrow-plate specimen CB-18 on the IBM $370 / 168$ in double precision at MIT are summarized in the following for both the coarse-mesh and the refined-mesh finite element model; $\Delta t=1 \mu \sec$ was usad in both cases:

FE Modol	No. af Plata Fis	Total Unknown DOF	No. of Cyclen	$\begin{aligned} & \text { cpu } \\ & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	$\frac{C P U(\min)}{D O F}$
Coargo Mosh	22	157	900	65.4	462.8×10^{-6}
Rofined Mosh	75	478	800	202.6	529.8×10^{-6}

As pointod out in subsection 7.6.4.1, the computing time in terms of cpu time per (DOF) (cycle) for the finite-strain prediction of specimen $C B-18^{\prime} \Sigma$ response when modeled by (2-D) beam elements was 21.7×10^{-6}. Thus, it is seen that the plate-element finite-strain 3-D structural response is about 24 times "more expensive" than the simpler, less reliable $2-D$ model and calculation.

SECTION 8

SUMMARY AND CONCLUSTONS

8.1. Summary

The prosent atudy is devoted principalily to devoloping and validating a method of analyois for thin structuros (beams, rings, plates, and sholis) that incorporates finito-strain, olastic-plastic, strain-hardening, timedopendent material behavior implemented with respect to a fixed reference configuration (total Lagrangian formulation) and which is consistently valid for finite strains and finite rotations. As a result, accurate finite-element predictions of transient strains and large transient deformations of beams, rings, and plates subjected to known forcing functions have been demonstrated (see Section 7). A practical problem to which the present method of analysis has been applied is that of structural (containment) ring response to engine rotor-fragment impact.

The theory is formulated systematically in a body-fixed system of convected coordinates with materially-embedded vectors that deform in common with the continuum, and in the traditional space-fixed system of variable coordinates and constant vectors used by most books on continuum mechanics. rensors are considered as linear vector functions, and use is made of the dyadic representation (instead of simply considering tensors as a collection of components), because these concise tools are helpful to clarify the physical laws under which materials deform. The kinematics of a deformable continuum is treated in considerable detail, carefully defining precisely all quantities necessary for the analysis.

The finite-strain plasticity theory of Hill is extended to include very complex material behavior (like elastic-plastic unloading, the Bauschingnr effect, and hysteresis) by means of the "mechanical sublayer method" pioneered by Prandtl, Timoshenko, and Duwez. Strain-hardening and complex strain-rate dependence of the material are easily accomodated by this model. This. plasticity theory is referred to quantities associated with a fixed referenco configuration by means of proper transformations between the tensors associated with the present and with the reference configuration.

Strainmainplacomont equations which are valid for finite straine and rotations and whioh include thinning offocta are dorived for beame, rings, platen, and aholif.

Tho findto olemont concept is unod in conjunction with the Principio of Virtual Work and D'Nlomart's Principlo to obtain tho oquatione of motion of a gonoral bolid continuum which is pormittod to undorgo arbitrarily largo rotations and atrains. A now constant stiffnces formulation of the finito cloment oquations of motion is dovoloped. This now formulation if moro officiont computationally and botter conditioned numerically than the conventional pseudo-force formulation. Furthermore, this new formulation is valid for finite-strain behavior of any kind of material, while the conventional pseudo-force formulation is valid only for small-strain elasticplastic materials.

The resulting equations of motion consist of a finite-size system of second order ordinaxy (coupled) nonlinear differential equations with the unknowns to be determined being the values of the degrees of freedom (displacements and displacement gradients) at the nodes of the finite-element assemblage which represents the continuum. This set of equations is solved stepwise in time by using a numerical integration scheme with an appropriate finite-difference time operator.

An assessment of this method of analysis is made by means of a sequence of problems for beam, ring, and plate structures which are subjected to initial impulsive loading or to impact by rigid fragments. The present finite-strain predictions are compared with reliable experimental data and with small-straintheory predictions. The central-difference operator and the Houbolt finitedifference operator are used for the timewise calculations. Either linear extrapolation of the nonlinear internal forces or iteration of the nonlinear equations of motion is employed when the (implicit) Houbolt operator is used.

The predictions of the finite-element computer programs that incorporate the finite-strain elastic-plastic time-dependent theury developed are compared with experimental data. The missiles and targets introduced in these experiments (steel-sphere missile, c. aped-end thin beams, and thin square panels with all four eldes idaally clamped) pose well-defined configurations and
conditione for which transiont ntrain, permanent otrain, and pormanont. doflootion data of high quality have boon obtainod.

Thono tont conditionn havo inoluded 'mpulse loading or fragmont impact with volocition aufficiont to produco romponana of varioun anvarition up to and including throghold rupture conditional ofton finito atraima wodi boyond tho "amalil ntrain" rango woro obsorvod.

From thoas comparisons it appoara that tho ubo of tho prosont finitostrain elantio-plastic formulation can provido slonificantly improved prodictions of transiont straing (tho most important and sonsitive quantitios) in thin 2-D and 3-D structures which are aubjected to severe impulse or impact loads, compared with the previously-omployed small-strain procedure.

8. 2 Conclusions

On the basis of the present study, the following conclusions may be stated:
(1) For general application, finitemstrain theory rather than smallstrain theory should be used in nonlinear analysis of transient response by computer methods since the former is valid for all levels of strain whereas the latter is valid for only a poorlydefined small level of strain.
(2) Large differences between the finite-strain theory results and the small-strain theory results are found in the cases studied herein for (a) strains of the order of about. 5 per cent and larger and (b) at regions where significant strain gradients occur (where the peak strains are larger than about 10 per cent).
(3) The use of the present finite-strain formulation for thin structures (beams, rings, and plates) provides physically realistic and superior strain results compared with small-strain formulation predictions, as the present theoretical-oxperimental comparisons show.
(4) The use of the prosent finite-strain formulation involves practically no additional cost over the use of the small-strain formulation for the present types of nonlinear transient structural response problems.
(5) Finitomstrain elastiomplastio theory can be (and haf boen) implomonted eanily in a total Iagrangian roferenco framol thia appears not to havo boon domonntrated and implomented horotoforo.
(6) Whoroas the uнe of the propor-andmoonedatont finitomatraln analyndra and procodure appoarn to affoct tho prodictod tranodont dinplacomonta very littio comparod with mall-ptrain calculatione, the prodiotod strains (tho most important data) aro affoctod aignificantiy.
(7) The theorotical-oxperimontal comparisons for the finito-strain calculations show generally good agreement for thin structures subjected to explosive-impulse loadings or to impact by a rigia fragment.
(8) The Kirchhoff stress (not to be confused with the lst or the ind Piola-Kirchhoff stress) should be used in the formulation of finitestrain plascicity problems because of:
(a) theoretical considerations - based on the simplicity of the thermodynamic equations which employ the Kirchhoff stress, as well as the exiscence of a rate potential, and
(b) numerical considerations -- the existence of an incremental. variational principle and a symmetric tangent stiffness matrix.

Additional merits include:
(c) the Kirchhoff stress is easily measured in experiments such as. for example, the classical experiments of G.I. Taylor and A. Nadai, and
(d) the Kirchhoff stress represents the actual behavior of the material in simpler terms than by other stress measures.
(9) The mechanical sublayer model of plasticity $1 s$ superior theoretically to the popular isotropic and kinematic hardening rules of plasticity. The present strain-rate sensitive mechanical sublayer model of finite strain elasto-viscoplasticity provides a very powerful tool to describe the complex problems of impact and explosive loading of structures.
(10)
(1,1)
Tho ronulta (diaplacomonta and atrann) of tho analyadn (2-D and 3-D) of tho oxplosivolymimpulnod aluminum structuron woro muoh closor to tho oxporimental rosults whon the aluminum alloy was analyzed as buing strain-rato gensltive than as otrain-rato insoneitive. This is so, evon though there is considerabio uncertainty in the appropriateness of the strain-rate constants used in the analysis. As fiar as how reprosentative these values are of the actual matexial properties, and how appropriate it is to consider these strain-rate "constants" as being constant over widely different levels of strain-rate and strain encountered in the course of the transient response remain urcertain. Moreover, the strain-rate dependence vas considered to be isotrcpic, while in the actual material this strain rate dependence could be anisotropic.
(12) The $\underline{2-D}$ analysis of steel-sphere impacted narrow beams is quite satisfactory as far as the transient displacement response predictions are concerned. Howevsr, if detailed transient and permanent strain information is needed, and in particular if the occurrence of rupture is to be predicted adequately, a $3-D$ analysis is necessary. In effect, while the $2-D$ analysis (2-D structure and 2-D fragment) predicts that the highest strains (and hence rupture) of the narrow beams will occur at the clamped ends, the 3-D analysis predicts that the largest strains occur at the region of impact., which agrees with both experimental results and expectations.

B. 3 Buggentions for Futura Rosoaroh

It in advinabla to puraue the inaluaion of the following appeata in future analynifa dovalopmontf:

1. To atualy tho implifit Faxk oporator, that appoare to ponfonf boteor fahbondanping and froguonoy-dintorthon foaturon than thono of tho Houbolt oporator, but iten porfomanoa cogen have not boon complotidy agbobond for tho progent catogory of probloma.
2. To invootigato tho utilization of quadi-Nowton dtoxation mothode (diko Broydon's mothod or tho BFGS mothod) within anch timo stop as requited to achievo convargenco in accoxd with apecifiod exitoria of the nonlinear equations that have to bo solved with impliait operators like the Houbult or Park operatere.
3. The development and implementation of an afficient shell finitealoment analysis of finite-strain elastio-viscoplastic problems.
4. The inclusion of trangverse shear deformations.
5. The inclugion of andsotropic material effects.

ROPFRRNCAA

 and Premanont Daformation Studinn of Ftend.-Rplumen Imbaetod ar ImpulitivayロLandod Nluminum Bnamn with Clnmpad Bndn", MIT NiAR, TR 154-11, Octobar 1975. (Avadjabia an NAAN CR-1349ar.)
 muntal Iramotont auc Permanont Doformatton Ebudton of steolrefohoroe
 Mny 1977. (Avadidabio no NASA (R. di39315.)
3. longeopo, D.B. and Koy, 3.W., "On tho Voxditeation of Largo Dotiormaw tion Inclastia Bynamle Caleulations Through Exportmontal Comparisone and Analytie Solut Lone", Bandila Labosatardoo, Adbuquereqo. New Muxloo (Prodontod at tho Joint Enorcty Confurenco, Houston, Noxas, Sopt.1977).
4. Lathe, K.J., Ramm, E. and Whlson, R.L., "Findte miemont Formulatione for Large Dafoxmation Dynamie Analyuig", Inti. J. for Num. Methode in Eng., Vol. 9, 1975, pp. 353-386.
5. Nemat-Nasser, $s .$, "Continuum Bases for Consistent Numerical Formulaw tions of Finite Strains in Elastic and Inelastic Structures", AMD Vol. 14, New York, 1975, pp. 75-97.
6. Stricklin, J.A. and Haisler, W.E., "Formulations and Solution Procedures for Nonlinear Structural Analysis", Computer \& Structures, Vol. 7. Feb: 1977, pp. 125-136.
7. Truesdell, C. and Toupin, R., "The Classical Field Theories" in Vol. III/I of Encyclopedia of Physics (Handbuch der Physik), edited by S. Flugge, Springer-Verlag, Berlin, 1960.
8. Cauchy, A.I., "Recher hhes sur l'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques," Bull. Soc. Philomath., 1823, pp. 9-13, in Oeuvres, Ser. 2, Vol. 2, pp.300-304.
9. Cauchy. A.L., "Sur les équations qui expriment les conditions d'equilibre, ou les lois du mouvement intérieur d'un corps solide, élastique, ou non élastique", Ex. de Math., Vol. 3, 1828, pp. 160-187, in Oeuvres, Ser. 2, Vol. 8, pp. 195-226.
10. Cauchy, A.L., "Sur l'óquilibre et le mouvement intéricur das corps consideres comme des masses continues", Ex. de Math., Vol. 4. 1829, pp. 293-319, in Oeuvres, Ser. 2, vol. 9, pp, 243-369.
11. Caucliy, A.L. "Bur las divorana mbthoden A l'alat denquelles on pout 6tablis lon Gquationa qui mapramontant las lois d'équilijbra, au jo mouvemont: intfritaur dof corpa noliden ou fludana", null. not. math. soc, prop. conn., Vol. 13. 1830, pp. 1G9-176.
12. Trunndoll, $\mathrm{F} .$, "The Rational Moghanton of Ploxible ar Mlaftio Bodion,

13. Kaltof, W.T., "On tho Nondimat Phoory of Than mantia Ghedlal, Prom onodturg of tho Kontnkiykn Nodozlariano Akndumbo via wotonrohaymon, 11. 69, 10GG, 1P. IGSA,
 Plante Dynamendy-Inducod DoLormatong as Gonurul Thtn Shollu", $A \cdot F D L=T R=6 G=1 \%$, DOG. $196 C$.
15. Looch, J. W., Whtarar, R.A., and Pdan, T.H.H., "Numoxdeal Cadeulation Tuchnlquo for Laxgo Elasticaplastie trangiont Doformationc of thin Shollo", AtaA Journal, Vod. G, No. 12, Doc. 1968, [pp. 2352-2359.
16. Mordno, Lu, Leoch, J. W., and Wdemer, E.A., "pertos 2 , A Now FindteDifforence Method and Program for the Calculation of Largo Elastion paastic Dynamically-Induced Doformations of Gunewal Thin Shellu", BRL CR 12 (MLT-ASRL TR 152-1), December 1969 (In two parts: AD 708773 and AD 708774).
17. Morino, L., Leech, J.W., and Witmer, E.A., "An Improved Numerical Calculation technique for Large Elastic-Plastic Transient Deformations of Thín Shel1s", Journal of Applled Mechanics, June 1971, Parts 1 and 2, pp. 423-436.
18. Atluri, S., Witmer, E.A., Leech, J.W., and Morino, L., "pertros 3: Finite-Difference Method and Program for the Calculation of Large Elastic-Plastic Dynamically-Induced Deformations of Multilayer, Variable-Thickness Shel.1s', BRL CR 60 (MIT-ASNL TR 152-2), November 1971. AD \#890200L.
19. Pirotin, S.D., Berg, B.A. and Witmer, E.A., "pertros 3.5: "New Developments and Program Manual for the Fiditembifference Calculation of Large Elastio-Plastic Transient Deformations of Muitilayer Variable-Thiciness She11s", BRL CR 211 (MIT ASRL TR 152-4), Fobruary 3975.
20. Pirotin, S.D., Morino, L., Witmer, E.A., and Leech, J.W., "FiniteDifference Analysis for Predicting Large Elastic-plastic Iransient Deformations of Variable-Thiokness Kirchhoff; Soft-Bonded Thin and Transverse-Shear-Deformable Thicker Shells", BRI, CR 315 (MIT-ASRI TR 152-3), Septombsr 1976.
21. Pirotin, S.D. Borg, B.A., and Witmer, E.A., "PDRROS 4: New Dovelopm mohta and Progran Manual for tho Finitembifforence Caloulation of Large flastio-plastic, and/or Viscoolastic Transient Deformations of Multilayer Variablo-Thicknoss (1) Thin HardmBonded, (2) ModeratelyThick Hard-Bonded, or (3) Thin Soft-Bonded Shells", BRL CR 316 (MITASRL TR 152-6), September 1976.
22. Truosdel1, C.: "A First Courso in Rational Continuum Mechanics" Vol.1, General Concepts, Academic Press, New York 1977.
23. Wu, R.W.-H. and Witmer, E.A., "Finite-Elament Analysis of Large Transient Elasticmplastic Deformations of Simple Structures, with Application to the Engine Rotor Fragment Containment/Deflection Problem", ASRI TR 154-4, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of lechnology, Jan. 1972. (Available as NASA CR120886.)
24. Wu, R.W.-H. and Witmer, E.A., "Computer Program - JET 3-to Calculate the Large Elastic-Plastic Dynamically-Induced Deformations of Free and Restrained, Partial and/or Complete Structural Rings", ASRI TR 154-7. Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Aug. 1972. (Available as NASA CR-120993.)
25. Zirin, R.M. and Witmer, E.A., "Examination of the Collision Force Method for Analyzing the Responses of Simple Containment/Deflection Str ctures to Impact by One Engine Rotor Blade Fragment", ASRL TR 154-6, Aeroelastic and Structures Research Laboxatory, Massachusetts Institute of Technology, May 1972. (Available as NASA CR-120952.)
26. Wu, Richard W-H. and Witmer, E.A., "Finite Element Predictions of Transient Elastic-Plastic Large Deflections of Stiffened and/or Unstiffened Rings and Cylindrical Shells", AMMRC CTR 74-31 (MIT ASRL TR 171-4), April 1974.
27. Stagliano, T.P.., Spilker, R.L. and Witmer, E.A., "User's Guide to Computer Program CIVM-JET 4B to Calculate the Transient Structural Responses of Partial and/or Complete Structural Rings to Engine Rotor Fragment Impact", MIT ASRL TR 154-9, March 1976 (also available as NASA CR-134907).
28. Rodal, J.J.A. and Witmer, E.A., "Finite Element Nonlinear Transient Response Analysis of Simple 2-D Structures to Impulse or Impact Loads", MIT ASRL TR 182-1, June 1976.
29. Wu, R.W.-li., Stagliano, T.R., Witmer, E.A. and Spilker, R.J., "User's Guide co Computer Programs JET 5A and CIVM-JET 5B to Calculate the Laige Elastic-Plastic Dynamically-Induced Deformations of Multilayer T.artial and/or Complete Structural Rings", MIT ASRL TR 154-10, November 1978. (Available as NASA CR-159484).
30. Staqliano, T.R., Witmor, E.A. and Rodal, J.J.A., "Twomimensional Finitomelement Analyses of Simulated Rotor-Fragment Impacts Against Rings and Beams Comparod with Exparimonts", MIT ASRL TR 154-13, Decomber 1979. (Available as NASA CR-159645.)
31. Spilker, R.L., Witmer, E.A., French, S. and Rodal, J.J.A., "Finite Element Nonlinear Transiont Response Analysis of Panels Subjected to Impulse or Impact Loads", MIT ASRL TR 154-14 (in preparation).
32. Truesdeli, C., "Second Order Effects in the Mechanies of Materials", in Second Order Effects in Elasticity, Plasticity, and Fluid Dynamics, IUTAM Symposium, Haifa, Israel, April 1962. Edited by M. Reiner and D. Abir, MacMillan, New York, 1964.
33. Truesdell, C., "The Mechanical Foundations of Elasticity and Fluid Dynamics", Journal of Rational Mechanics and Analysis, Volume 1, 1952, pp. 125-300 (corrected reprint in The Mechanical Foundations of Elasticity and Fluid Dynamics. New York: Gordon \& Breach, 1966).
34. Truesdell, C. The Elements of Continuum Mechanics, Springer Verlag, New York, 1965.
35. Truesdell, C., Continuum Mechanics (reprints). Gordon \& Breach, New York, Vol. 1 1966; Vols. 2,3,4, 1965.
36. Truesdell, C., Six Lectures on Modern Natural Philosophy, Springer Verlag, New York, 1966.
37. Truesdell, C., "The Physical Components of Vectors and Tensors", ZAMM, Vol. 33, 1953, pp. 345-355.
38. Truesdell, C., Rational Thermodynamics, McGraw Hill, 1969.
39. Wang, C.C. and Truesdell, C., Introduction to Rational Elasticity, Noordhoff, Leyden, 1973.
40. Truesdell, C. and Noll, W., The Non-Linear Field Theories of Mechanics, in Encyulopedia of Physics (Handbuch der Physik), Volume III/3, edited by S. Flugge. Springer-verlag, Berlin, 1965.
41. Sedov, L. I., Foundations of the Non-Linear Mechanics of Continua, EngJ.ish translation edited by J.E. Adkins and A.J.M. Spencer, Pergamon press, Oxford, 1966.
42. Sedov, L. I., A Course in Continuum, Mechanics, Vol. I: Basie Equations and Analytical Techniques, Vol. II: Physical Foundations and Formulations of Problems, Vol. III: Fluids, Gases and the Generation of Thrust Vol. IV: Elastic and Plastic Solids and the Formation of Cracks. Translation from the Russian, Edited by Prof. J. Radok, WoltersNoordhoff Publishing, Groningen, The Netherlands, 1971.
43. Sedov, L.I., "Tho Concopta of Difforont Ratos of Chango of Tonsora" (Prik, Matom, 1 Mokh.) Appiled Matomatice and Mechanica, Vol. 24, No. 3, 1960.
44. Sodov, L I., "Some Problems of Designing New Models of Continuum Media", Proceedings of the 1lth International Congross of Tpplied Mechanics, Munich (Germany) 1964, Springer Vorlag 1966.
45. Lokhin, V. and Sedov, L.I., "Nonlinear Tensor Functions of Several Tensor Arguments", in (Prik. Matem. i Mekh.) Appilei Mathematics and Mechanics, Volume 27, Number 3, 1963.
46. Berdichevskii, V.L. and Sedov, L.I., "Dynamic Theory of Continuously Distributed Dislocations. Its Relation to Plasticity Theory", in (Prik. Matem. i Mekh.) Applied Mathematics and Mechanics, Volume 31, Number 6, 1967.
47. Sedov, L.I., "Yariational Methods of Constructing Models of Continuous Media" in Symposium on Irreversible Aspects ce Continuum Mechanics, Vienna, June 1966, Springer Verlag, 1968.
48. Sedov, L.I., "Models of Continuous Media with Internal Degrees of Freedom", in (Prik. Matem. i Mekh.) Applied Mathematics and Mechanics, Volume 32, Number 5, 1968.
49. Sedov, L.I., "On Prospective Trends and Problems in Mechanics of Continuous Media", in (Prik. Matem. i Mekh.) Applied Mathematics and Mechanics, Volume 40, Number 6, 1976.
50. Malvern, I.E., "Introduction to the Mechanics of a Continuous Medium", Prentice Hall, 1969.
51. Jaunzemis, W., Continuum Mechanics, MacMillan Co., New York, 1967.
52. Leigh, D.C., Nonlinear Continuum Mechanics, McGraw Hill, 1968.
53. Eringen, A.C., Nonlinear Theory of Continuous Media, McGraw Hill, New York, 1962.
54. Eringen, A.C., Mechanics of Continua, John Wiley \& Sons, Inc., New York, 1967.
55. Biot, M.A., Mechanics of Incremental Deformations, John Wiley \& Sons, Inc., New York, 1965.
56. Green, A.E., and Zerna, W., Theoretical Elasticity, 2nd Edition, Clarendon Press, Oxford, :.968:
57. Groon, N.E. and Adkins, J.E. Largo Eitastic poformations, 2nd Edition rovisod by A.E. Groon, Clarondon Prose, Oxford, 19%.
58. Green, A.E. and Adkins, J.E., Large Elagtic Deformations and Non-Lincar Continuum Mechanics, Clarondon Press, Oxford, 1960.
59. Prager, W., Introduction to Mechanics of Continua, Dover, Now York, 1973 (originally published by Ginn and Company In 1961).
60. Fung, Y.C., Foundations of Solids Mechanics, Prentice Hall, New Jersey, 1965.
61. Schouten, J.A., Tensor Analysis for Physicists, Clarendon Press, Oxford, 1951.
62. Einsenhart, L.P., Introduction to Differential Geometry, Princeton University Press, 1940.
63. MoConnell, A.J., Applications of the Absolute Differential Calculus, Blackie Company, 1931. (Republished as "Applications of Tensor Analysis" by Dover Publications, New York, 1957).
64. Synge, J.L. and Schild, A., Tensox Calculus, University of Toronto Press, Toronto, 1949.
65. Willmore, T.J., An Introduction to Differential Geometry, Clarendon Press, oxford, 1959.
66. Sokolnikoff, I.S., Tensor Analysis: Theory and Applications to Geometry and Mechanicg of Continua, John Wiley \& Sons, New York, 2nd Edition, 1964.
67. Ericksen, J.L., "Tensor Fields", Appendix to Ref. 7.
68. Bowen, R.M. and Wang, C.C., Introduction to Vectors and Tensors, 2 volumes, Plenum Press, New York, 1976.
69. Halmos, P.R., Finite Dimensional Vector Spaces, 2nd. Edition, Van Nostrand, 1958.
70. Weissenberg, K., Geometry of Rheological Phenomena (1946-1947), The Principles of Rheological Meas rement, London, pp. 36-65.
71. Biot, M.A., "Theory of Elasticity with Large Displacements and Rotations", Proć. 5th Int. Cong. Appl. Mech., New York, 1939.
72. Swainger, K., "Stress-Strain Compatibility in Greatiy Deformed Engineering Metals". Phil. Mag. Number 7, Vol. 38, 1947, pp. 422-439.
73. Honcky, H., "Ubor dio Form don Elantiadtätagesotzen boi daal Elantim chon Stoffon", Z. Tochn. Phyn., 9, 1928, pp. 214-223.
74. Spivack, M., Calculug on Manifoldg, Bonjamin, New York, 1965.
75. Rudin, W., Real and Complox Analysis, MoGraw-Hill, New York, 2nd Ed., 1974.
76. Zhong-heng, Guo, "Time Derivatives of Tensor Fields in Non-Linear Continuum Mechanics", Archiwum Mechaniki Stosowanel, (Archives de Mecanique Appliquee), volume 15, 1963, pp. 131-161.
77. Olaroyd, J.G., "On the Formulation of Rheological Equations of State", Proc. Roy. Soc., Ser. A, Vol. 200, 1950, pp. 523-541.
78. Cotter, B., and Riviin, R.S., "Tensors Associated with Time-Dependent Stress", Quart. Appl. Math., Vol. 13, 1955, pp. 177-182.
79. Masur, E.F., "On the Definition of Stress Rate", Quart. Appl. Math. Vol. 19, 1961, pp. 160-163.
80. Masur, E.F., "On Tensor Rates in Continuum Mechanics", ZAMP, Vol. 16, 1965, pp. 191-201.
81. Zaremba, S., "Sur une Forme Perfectionnée de la Theorie de la Relaxation", Bull. Int. Acad. Sci. Cracovie, Vol. 8, 1903, pp. 594-614.
82. Jaumann, G., Grundlagen der Bewegungslehre, Leipzig, 1905.
83. Noll, W., "On the Continuity of Solid and Fluid States", J. Ratl. Mech. Anal., Vol. 4, 1955, pp. 3-81.
84. Thomas, T.Y., "On the Structure of the Stress-Strain Relations", Proc. Nat. Acad. Sci., Vol. 41, 1955, pp. 716-720.
85. Thomas, T.Y., "Kinematically Preferred Coordinate Systems," Proc. Nat. Acad. Sci., Vol. 41, 1955, pp. 762-770.
86. Prager, W., "An Elementary Discussion of Definitions of Stress Rate", Quart. Appl. Math., Vol. 18, 1961, pp. 403-407.
87. Lehnarn, Th., "Formänderungen eines Klassischen Kontinuums in Vierdimensionaler Darstellung", in Proc. 11th Int. Cong. of Appl. Mech. Munich, 1964, pp. 376-382.
88. Thomas, T.Y., Plastic Flow and Fracture in Solids, Academic Press, New York, 1961.
89. Hill, R., The Mathematical Theory of Plasticity, Clarendon, oxford, 1950.
90. Drucker, D.C., "A More Fundamontal Approach to stressmstrain Relationa" Proc. First. U.s. National Congrese of Appiled Mochanics, Am. Soc. Mech. Engst., 1951, pp. 487-491.
91. Prager, W., "A Now Method of Analyzing Stress and strain in WorkHaxdening Solids", J. App. Mech., Vol. 23, 1956, pp. 493-496-Discussions by Budiansky and Hodgo, vol. 24, 1957, pp. 481-482, 482-484.
92. Ziegler, H., "A Modification of Prager's Hardening Rule", Quart. Appl. Math., Vol. 17, 1959, pp. 55-65.
93. Almroth, B.O., "Evaluation of Available Technology for Prediction of Plastic Strain", in "Constitutive Equations in Viscoplasticity", ASME, AMD Vol. 20, 1976, pp. 201-211.
94. Hunsaker, B. Jr., Vaughan, D.K., Stricklin, J.A. and Haisler, W.E., " A Comparison of Current Work-Hardening Models Used in the Analysis of Plastic Deformations", Texas A \& M University, Department of Aerospace Engineering, TEES-RPT-2926-73-3, Oct. 1973.
95. Iwan, W.D., "On a Class of Models for the Yielding Behavior of Continuous and Composite Systems", Journal of Applied Mechanics, Sept. 1967. pp. 612-716.
96. White, G.N. Jr.. "Application of the Theory of Perfectly Plastic Solids to Stress Analysis of Strain Hardening Solids," Brown University Tech. Rep. All/51, Aug. 1950.
97. Besseling, J.F., "A Theory of Plastic Flow for Anisotropic Hardening in Plastic Deformation of an Initially Isotropic Material," Rep.S410, National Aeronautical Research Institute, Amsterdam, 1953.
98. Mroz, A., "On the Description of Anisotropic Work-Hardening", Journal of the Mechanics and Physics of Solids, Vol. 15, 1967, pp. 163-175.
99. Masing, G., "Eigenspannungen und Verfestigung beim Messing", proceedings of the Second International Congress of Applied Mechanics, 1926, pp. 332-335.
100. Prandt1, L., "Ein Gedankemodelt zur kinetischen Theorie der festen Korper", Zeitschrift fur angewandte mathematik und meehanik, Voi. 8, No. 2 , Apr. 1928, pp. 85-106.
101. Timoshenko, S.P., Strength of Materials, Part 2, First Edition, j. . Van Nostrand Company, New York, N.X., 1930; pp. 679-680.
102. Duwez, P., "On the Plasticity of Crystals", Physical Review, Vol. 47, 1935; pp. 494-501.
103. Irlov, D.D., "The Theory of Complax Media", Soviet Phyaianmpoklady, Vol. 8, No. 1, July 1963, pp. 2日-30.
104. Pragex, W., "Modolo of Plastic Bohavior", Procoodinge of the Fifth U.S. National Congress of Applied Mechanica, ASME, 1966, pp. 447-448.
105. Balmer, H.A. and Witmer, E.A., "Theoretical-Exporimental Correlation of Large Dynamic and Permanent Deformations of Impuleively-Loaded Simple structurea", Air Force Flight Dynamics Laboratory, FDL-TDR-64-108. July 1964.
106. Balmex, H.A., "Improved Computer Programs -- DEPROSS 1, 2, and 3-to Calculate the Eynamic Elastic-Plastic Two-Dimensional Responses of Impulsively-Loaded Beams, Rings, Plates and Shells of Revolution". Massachusetts Institute of Technology, ASRL TR 128w3, August 1965.
107. Leech, J.W., Pian, T.H.H., Witmer, E.A. and Herrmann, W., "Dynamic Response of Shells to Externaily-Applied Dynamic Loads", Massachusetts Institute of Technology, ASD-TDR-62-610, 1962.
108. Drucker, D.C., "On the Continıum as an Assemblage of Homogeneous Elements or States", Proc. IUTAM Symposium on Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Springer Verlag, 1966.
109. Iwan, W.D., "A Distributed-Element Model for Hysteresis and its steady-State Dynamic Response", Journal of Applied Mechanics, Dec. 1966. pp. 893-900.
110. Zienkiewicz, O.C., Nayak, G.C., and Owen, K.R.J., "Composite and Overlay Models in Numerical Analysis of Elasto-Plastic Continua,' in Foundations of Plasticity, A. Sawczuk, ed., Noordhoff, Leyden, 1973
111. McKnight, R.L. and Sobel, L.H., "Finite Element Cyclic Thermoplasticity Anal 's Dy the method of Subvolumes", Computers and structures, Vol. 7, 197., pp. 189-196.
112. Hill, R., "A General Theory of Uniqueness and Stability in ElasticPlastic Solids", J. Mech. Phys. Solids, Vol. 6, 1958, pp. 236-249.
113. Hill, R., "Eigenmodal Deformations in Elastic/plastic Continua", J. Mech. Phys. Solids, Vol. 15, 1967, pp. 371-396.
114. Taylor, G.I. and Quinney, H., "The Latent Energy Remaining in a Metal after Cold Working", Proc. Roy. Soc. of London, England, Ser. A, Vol. 143, 1934, pp. 307-326.
115. Nadai, W., Theory of Flow and Fracture of Solids, McGraw-Hil1, 1950.
116. Thoman, T.Y., "On the structura of tho strobs-strain Rohationa", Proc. N.A.S., Vo1. 41, 1955, pp. 716-720.
117. Thomar, T.Y., "Combinad Elantic and Prandtl-Rousb Stronm-Straln Rolations", Proc. N.A.S., Vol. 41, 1955, pp. 120-726.
118. Thomas, T.Y., "Combined Elastic and Von Mises Strose-Strain Rolations" Proc. N.A.S., Vol. 41, 1955, pp. 908-910.
119. Greon, A.E., "Hypo-Elasticity and Plasticity", Proc. Roy. Soc. London, Scr A., Vol. 234, 1956, pp. 46-59.
120. Groen, A.E., "Hypo-Elasticity and Plastioity. II", J. Rat. Mech. Anal. Vol. 5, 1956, pp. 725-734.
121. Tokuoka, T., "A Theoretical Study of Fracture and Yield Conditions Derived from the Hypo-Elasticity", in Proc. Int. Conf. Mech. Beh. Mat., Kyoto, 1971, Soc. Mat. Sci. Japan, 1972.
122. Tokuoka, T., "Fundamental Relations of Plasticity Derived from HypoElasticity", in Foundations of Plasticity, edited by Sawczuk, Noordhoff, Leyden, 1972.
123. Lehmann, Th., "On Large Elastic-Plastic Deformations", in Foundations of Plasticity, edited by Sawczuk, Noordhoff, Leyden, 1972, pp. 571-585.
124. Lee, E.H., "Elastic-Plastic Deformation at Finite Strains", Journal of Applied Mechanics, March 1969, p. 106.
125. Hill, R., "Some Basic Principles in the Mechanics of Solids without a Natural Time", J. Mech. Phys. Solids, Vol. 7, 1959, pp. 209-225.
126. Hill, R., "The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals", J. Mech. Phys. Solids, Vol. 15, 1967. pp. 79-95.
127. Hill, R., "On the Classical Constitutive Relations for Elastic/ Plastic Solids", in Recent Progress in Applied Mechanics, the Folque Odqvist Volume, John Wiley, New York, 1967, pp. 241-249.
128. Hill, R., "On Constitutive Inequalities for simple Materials', J. Mech. Phys. Solids, Vol. 16, 1968, part I, pp. 229-242, part II, pp. 315-322.
129. Hill, R., "On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strains", Proc. R. Soc. Lond., Ser. A., Vol. 326, 1972, pp. 131-147.

1,30. H111, R. and Rico, J. P., "Conftitutiva Analynia of glantiamplaptic Cryftala at Arbitraxy Strain", a. Moch. Phyn. Boldan, Vol. 20, 1972, pp. 401-413.
131. HLIM, R. and Rico, J.R., "Elastile Potontiala and the Structuro of Inolaatic Conotitutivo Lawn", BIAM s. Appl. Math., Vol. 25, No. 3, Nov. 1973, pp. 448-461.
132. Lohmann, Th. , "Somo Thormodynamic Considorations at Phonomonological Thoory of Non-Isothermal Elastic-Plastic Daformationa", Archives of Mechanics, Vol. 24, 1972, pp. 975-989.
133. Lahmann, Th., "Einigo Eetrachtungen zur Thormodynamik grossor olastoplasticher Formänderungon", Acta Mechanica, Vol. 20, 1974, pp. 187-207.
134. Lehmann, Th. and Zander, G., "Non-Isothermic Large Elastic-Plastic Deformations", Archives of Mechanics, Vol. 27, 1975, pp. 759-772.
135. Lehmann, Th., "On the Theory of Large, Non-Isothermic, ElasticPlastic and Elastic-Visco-Plastic Deformations", Archives of Mechanics, Vol. 29, 1977, pp. 393-40s'.
136. Lehmann, Th., "Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für grosse elasto-plastiche Formänderungen", Ing. Arch., Vol. 41, 1972, pp. 297-310.
137. Lehmann, Th., "Anisotrope Plastiche Formänderungen", Rheologica Acta, Vol. 3, 1964, pp. 281-285.
138. Green, A.E. and Naghdi, P.M., "A General Theory of an Elastic-Plastic Continuum", Arch. Rat. Mech. Anal., Vol. 18, 1965, pp. 251-281.
139. Cowper, G.R. and Symonds, P.S., "Strain Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Bearn", Tech. Report No. 28, ONR Contr it Nr 562 (10), NR-062-406, Dıv. of Appl. Math., Brown University, Sept. 1957.
140. Fowler, J.N., "Elastic-Plastic Diserete-Element Analysia of Axi-synoretrically-Loaded Shells of Revolution", MIT ASRL TR-146-3, BSD-TR-67-193, July 1967.
141. Pian, T.H.H., "Advanced Topics in Structural Me nics", class notes For course 16.25, Dept. of Neronautics and Astronautics, Massachusetts Instituto of Technology, 1966.
142. Stalk, G., "Determination of Mechanical Sublayer Model Welghting Coefficients Considering Triaxial Effects", class project for course 16.28, Prof. T.H.H. Pian, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, May 1974.
143. Huneakor, B. Jr., Hadalor, W.E., and seriokitn, J. A., "On the Uno of Two Mardoning Rulog of Plantidadty in Incromontal and Rsoudo Foran Analyaig", AMD Vol. 20, AgME, 1976, pp. 139-140.
144. Hunkakor, B. Jx., "Tho Application of Combinod Kinomatieminotropio Hardoning and tho Mochanical Sublayor Motinl to Small Strain Inolaotic Structural Analygio by the Finito Elemont Mothod", Ph.D. Digoortation, Toxar A \& M Univoroity, Aug. 1976.
145. Porzyna, P., "Tho Constitutivo Equations for Rato Sensitivo Plastic Matorials", Quart. App1. Math., Vol. 20, No. 4, 1963, pp. 321-332.
146. Perzyna, P., "The Study of the Dynamic Behavior of Rate Sonsitive Plastic Materials", Archiwum Mechaniki Stosowanej, 1963, pp. 113-129.
147. Perzyna, P., "Fundamental Problems in Viscoplasticity", in Advances in Applied Mechanice, Vol. 9, 1966, pp. 243-377.
148. Perzyna, P., "Internal Variable Description of Plasticity", in Problems of Plasticity, Noordhoff, Leyden, 1972, pp. 145-176.
149. Perzyna, F., "The Constitutive Equations Describing Thermomechanical Behaviour of Materials at High Rates of Strain", in Mechanical Properties at High Rates of Strain, Proc. Cont. Mech. Prop. Mat. High Rates of Strain, Oxford, April 1974, pp. 138-153.
150. Perzyna, P., "On Material Isomorphism in Description of Dynamic Plasticity", Arch. of Mechanics, (Archiwum Mechaniki Stosowanej) Vol. 27, No. 3, 1975, pp. 473-484.
151. Perzyna, P., "Thermodynamics of a Unique Material Structure" Archives of Mechanics (Archiwum Mechaniki Stosowanej), Vol. 27, No. 5-6, 1975, pp. 791-806.
152. Perzyna, P., "Coupling of Dissipative Mechanisms of Viscoplastic Flow", Archives of Mechanics, (Archiwum Mechaniki Stosowanej), Vol. 29, No.4, 1977, pp. 607-624.
153. Campbell, J.D., Dynamic Plasticity of, Metals, International Centre for Mechanical Sciences, Courses and Lectures No. 46, Springer-Verlag, 1970.
154. MacGregor, C.W. and Fisher, J.C., "Tension Tests at Constant True Strain Rates", Journal of Applied Mechanics, Vol. 12, No, 4, Dec. 1945, pp. A-217-A-227.
155. Wulf, G.L., "Dymamic Stress-Strain Measurements at Large Strains", in Mechanical propertios at High Rates of Strain, Proc. Conf. Mech. Prop. Mat. High Rates of Strain, Oxford, April 1974, pp. 48-52, 83.
156. Novozhilav, V.V. Foundationa of the Nondingar Thoory of Elantigity, (tranalatod from tho 1947 Rumalan edition) Rochontor, N.Y., Graylook Tranar, 1953.

15\%. Timonhonka, s. Г. and Wotnowaky-Kriognx, S. Thoary of Phatopa and Shalin, MoGraw H11., 2nd Fd. . 1959.
 Math. 21, 1.963, 11) 21.-36.
159. Mar, J.W., "Shod strueturon", ciang noton for Courgon 16.22 and 16.23, Dopt, of Aeronautiag and Aotronautioa, Mapgachusette Inotituto of Rochnoloay, 1973.
160. Dugundyi, J., "Sholl Structurog", clage notas for courges ice Dopt. of Aeremautios and Astronautice, Magoser Technology, 1973.
161. Koitor, W.T., "On the Nonlineax Theory of Thin Elastic Shella", Prom ceadings of the Koninklyke Nederlandse Akademic van Wotensehizpen,
162. Biricikoglu, V. and Kalnins, A., "Largo Elaatic Deformations of Shells with the Inclusion of Transverse Normal strain", Int. J. Solids structures, Vol. 7, 1971, pp. 431-444.
163. MoMeeking, R.M. and Rice, J.R., "Finite Element Formulations for Problems of Laxge Elastic-plastic Deformation", Int. J. Solids Structures, Vol. 11, 1975, pp. 601-616.
164. John, F., "Estimates for the Derivatives of the Stresses in a Thin Shell and Interior Shell Equations", Comm. Pure and App1. Math., Vol. 18, 1965, pp. 235-267.

I65. Huffington, N.J. Jr., "Numerical Analysis of Elastoplastic Stress" U.s. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Memorandum Report No. 2006, Sept. 1969.
166. Pian, T.H.H. and Tong, P.; "Basis of Finite Element Methods for Solid Continual, Int. J. Num. Methods Enc. Vol. 1, 1.963, pp. 3-28.
167. Washizu. K., Variational Methods in Elasticity and plasticity, 2nd Edition, Pergamon Press, 1974.
168. Lanczos, C. The Variational Principles of Mochanics, 4th Edition, Univ. of Toronto Press, 19.74.
169. Piola, G. "Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono, considerati sccondo la naturalo loro forma constituzione", Mem. Mat. Fis. Soc. Ital. Modona, Vol. 24. 1848,
pp. 186.
170. Argyrini, t.s., Vap, L. R., and Willam, K.t., "Improvod golution Mothorla for Inolantio Rato Prabilama", Computor Mathada in Appliad Mochanden and Englnonring, Vol. 16, 1978, pp. 231-277.
171. Argyrin, J.II., Dunno, P.G. and Angolapoulon, T., "Nonlinoar ámatitam thonn Ufing tho Findto Ehomont Tochniqua", J. Comp. Motho. Appl. Mnch. Eng., 2, 1973, PP. 203-250.
172. Koy, B.W., "A Findto Elomont Procoduro for tho Largo Doformation Dynamic Roupongo of Axdoymmotric soldia", s. Comp. Motho. Appl. Moch. Eng., 4, 1974, Ep. 195-218.
173. Stricklin, J.A., Martinez, J.D., 'ililargon, J.R., llong, J.H., and Haislor, W.E., "Nonlinear Dynamic Analysis of Sholle of Revolution by Matrix Displacemont Method", NASA CR 1.10406. National. Aoronautiog and Space Admiristration, Washington, D.C., 1971.
174. Stricklin, J.A., Halsler, W.E., and Riesomann, W.A., "Evaluation of Solution Procedures for Material and/or Geometrically Nonl.Ineax structural Analysis by the Direct Stiffness Method". AIAA/ASME/SAE Structures, Structural Dynamice and Materials, 13th Conference, San Antonio, Texas, April 1972.
175. McNamara, J.F. and Marcal, P.V., "Incremental stiffness Method for Finite Element Analysis of Nonlinear Dynamic Problems", in Numerical and Computer Methods in Structural Mechanics (Edited by: S.J. Fenves), Academic Press, New York, 1973, pp. 353-376.
176. Leech, J.W., "Some Experiments with the Wave Equation", Massachusetts Institute of Technology, May 1964.
177. Wu, R. and Witmer, E.A., "Stability of the De Vogelaere Method for Timewise Numerical Integration", AIAA Journal, Vol. 11, No. 10, Oct. 1973, pp. 1432-1436.
178. Lax, P.D. and Richtmyex, R.D., "Survey of the Stability of Linear Finite Difference Equations", Comunications on Pure and Applied Mathematics, Vol. 9, 1956, pp. 267-293.
179. O' Brien, G.G., Hyman, M.A. and Kaplan, S., "A Study of the Numerical Solution of Partial Differential Equations," J. Mathematics and Physica, Vol. 29, 1950, pp. 223-251.
180. Eddy, E.P., "Stability in the Numberical Solution of Initial Valuo problems in Partial Differential Equations," NOLM 10232, Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, 1949.
181. Roache, P.J., "Computational Fluid Mechanics", Hermosa Publishers, Albuquerque, N.M., 1976.
182. Riohtmyor, R.D., "A gurvoy of Didforonon Mnthodn for Nonntoady Fluta Dynamiar", NCAR Tochnifal, Nato G3-2, Bouldor, Colorado, 1963.

1月3. Kriog, R.D., "Uuconditional stabjlitey in Numorical FJmo Intogration Methodn", ग. Appl. Mneh., Juno 1973, Ep. 417-421.
184. Mortno, L., Looeh, J.W. and Wikmor, E.A., "Optimal ProdideorCorroctor Mothod for syotomg of Socond-Ordoz Difforontia" Equationd", AIAA Journai, Vol. 12, No. 10, Oct. 1974, Ep. 1343-1347.
185. Hicks, D.L., "Ono-Dimonaional Lagrangion Hydrociynamies and the rDLH Hydrocode", SC-RR-60-728, Sandia Laboratorios, Albuquerqua, New Maxico, 1969.
186. Phililpe, N.A., "An Example of Non-Linear Computational Instability", Atmospharo and Sea in Motion, Rossby Memorial Volume, (B.Bolin Ed.), Rockefoller Institute Press, Now York, 1959.
187. Hirt, C.W., "Heuristic Stability Theory for Finite Difference Equations", Journal of Computational Physics, Vol. 2, 19f8, pp33!...
188. Gourlay, A. R. and Morris, J.L., "Finitemifferente \because... Is for Non-
 No. 101, 1968, pp. 28-39.
189. Lilly, D.K., "On the Computational stability of Numerical Solutions of T'Ime-Dependent Ton-Linear Geophysical Fluid Dynamios Problems", u.s. Weather Bureau Monthly Weather Review, Vol. 93, No.1, 1965, pp.11-26.
190. Stricklin, J.A., Martinez, J.E., Tillerson, J.R., Hong, J.H. and Haisler, W.E., "Nonlinear Dynamic Analysis of Shells of Revolution by Matrix Displacement Method," AIAA Journal, Vol. 9, No. 4, April 1971
pp. 629-636.
191. Stricklin, J.A. et al., "Large Deflection Elastic-plastic Dynamic Response of Stiffened Shells of Revolution", Department of Aerospace Engineering, Texas A \& M University, Report 72-25, Dec. 1972.
192. Weeks, G., "Temporal operators for Nonlinear Structural Dynamics Problems", Journal of the Engineering Mechanics Division, Proc. Amer. Soc. Civil Eng., October, 1972, pp. 1087-1104.
193. MCNamara, J.F., "Solution Schemes for Problems of Nonlinear Structural Dymamics", Journal of Pressure Vessel Technology, May 1974, pp.96-102.
194. Park, K.C., "Evaluating Time Integration Methuds for Nonlinear Dynamic Analysis", in Finite Eloment Analysis of Translent Nonlinear Structural Behavior, (Edited by T. Belytschko ot al) ASME Applied Mechanics Symposia Series, AMD-14, 1975; pp.35-58.
195. Bolytachko, T. and Gehooberlo, D.F., "On the Unoonditional stability of an Implieit Algorithm for Nonlinoar structural. Dynamice", Journal of Appliod Mochanice, Dec. 1975, pp. 865m.69.

19G. Dahlgulat, G. and Ejorak, A., Numorical Mcthode, translated by Nod Andorson, Frentico-Hall, New Jersey, 1975.
197. Depai, C.S. and Abol, J., Introduction to the Finito Elemont Method, Von Nostrand Reinhold Company, 1972.
198. Stricklin, J.A. and Haislex, W.E., "Formulations and Solution Procedures for Noniinear Structural Analysis", Computers \& Structures, Vo1. 7, Re. 125-136; Fab. 1977.
199. Bushnell, D., "A Subincremental Strategy for olving roblems \mathfrak{n} volving Large Deflections, Plasticity and Creep", in "Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects", AMD Vol. 20, 1976, pp. 171-199.
200. Bathe, K.J., "Static and Dynamic Geometric and Material Nonlinear Analysis Using ADINA", Report 82448-2, Acoustics and Vibrations Laboratory, Department of Mechanical Engineering, MIT, May 1977.
201. Ting, T.C.T., "The Plastic Deformation of a Cantilever Beam with Strain Rate Sensitivity under Impulsive Loading", Brown University TR 70, Contract Monr-562 (10), July 1961.
202. Bodnar, S.R. and Symonds, P.S., "Experimental and Theoretical Investigation of the Plastic Deformation of Cantilever Beams Subfected to Impulsive Loading", Journal of Applied Mechanics, December, 1962, pp. 719-728.
203. Bathe, K.J. and Cimento, A.P., "Some Practical Procedures for the Solution of Nonlinear Finite Element Equations", J. Computer Meth. in Appl. Mech. and Eng., in press.
204. Matthies, H. and Strang, G., "The Solution of Nonlinear Finite Element Equations", Int. J. Num. Meth. in Eng., Vol. 14, 1979, pp. 1613-1626.
205. Newmark, N.M., "A Method of Computation for Structural Dynamics", Journal of the Eng. Mech. Div., Proc. Am. Soc. Civ. Eng., Vol. 85, July 1959, pp. 67-94.
206. Houbolt, J.C., "A Recurrence Matrix Solu.ion for the Dynamic Response of Elastic Aircraft", Journal of the Aero. Sciences, Vol. 17, 1950, pp. 540-550.
207. Clark, E.N., Bchmitt, F.H. and NLoolaidon, a., "Plantic Doformation of struoturna, TT. Plantic Doformation of Ringn", FDL-TDRR G4-GA Vol. TI, Enq. Sol. Jab., Pleatinny Arnonal, Dovor, Now Jornoy, March 1968.
208. Anon., "Rotor Burat Protection Progran". (Study for NASA Lawis Rosoarch Contor on NASA DPR-105 and NASA Interagoncy Agrooment (-41581-B), U.S. Naval Air Propulsion Test Centor, Noronautical Engine Dept. Progrese Roports Sept. 1969-Jan. 1977.
209. Private communications from G.J. Mangano, R. DeLucia and J. Salvino, U.S. Naval Air Fropulsion Test Center, Philadelphia, Pennsylvania, 1975-76.
210. Mangano, G.J., Salvino, J.T. and DcLucia, R.A., "Rotor Burat Protection Program -- Experimentation to Provide Guidelines for the Design of Turbine Rotor Burst Fragment Containment Rings", Prom coedings of the Work:shop on An Assessment of Technology for Turbojet Engine Rotor Failures, NASA CP-2017, 1977, pp. 107-149.
211. Spilker, R.L. and Witmer, E.A., "Theoretical and Experimental Studies of the Nonlinear Transient Responses of Plates Subjected to Fragment Impact", Paper presented at the Fourth International Conference on Structural Mechanics in Reactor Technology, San Francisco, Calif., 15-19, August 1977.
212. Epstein, M. and Murray, D.W., "Large Deformation In-plane Analysis of Elastic Beams", Computers and Structures, Vol. 6, 1976, pp. 1-9.
213. Strang, G. and Fix, G., An Analysis of the Finite Element Method, Prentice-Hall, New Jersey, 1973.
214. Rodal, J.J.A., French, S.E., Witmer, E.A. and stagliano, T.R., "Instructions for the Use of the CIVM-JET 4C Finite-Strain Computer Code to Calculate the Transient Responses of Partial and/or Complete Arbitrarily-Curved Rings subjected to Fragment Impact", MIX ASRI MR 154-1. December 1979. (Available as NASA CR-159873.)
215. Dennis, J.E. and Moré, J., "Quasi-Newton Methods: Motivation and Theory", SIAM Rev. 19, 1977, pp. 46-89.
216. Bell, J.F., The Experimental Foundations of Solid Mechanies, Handbuch der Physik, Volume VI 2/1, Springer Vorlag, Berlin, 1973.
217. Bridgman, P.W., "The Stress Distribution at the Nuck of a Teinsion Specimen", Trans. ASM, Vol. 32, 1944, p. 553.
218. Lubalin, J.D. and Felgax, R.P., Plasticity and Crecp of Motals; John Wiley, 1961, pp. 114-127:
219. Norria, 'D., Moran, B., Scudder, J. and Ouiñones, D., " n Computer Simulation of the Tonsion Test", Journal of tho Mochanice and Physics of Solids, Vol. 26, 1978, pp. 1-19.
220. Saje, M., "Necking of a Cylindrical Bar in Tonsion", Int. Journal of Solids and Structures, Vol. 15, 1979, pp. 731-742.
221. Hutchinson, J.W., "Survey of Some Recent Work on the Mechanics of Necking", Proceedings of the Eight U.S. National Congress of Applied Mechanics, Los Angeles, June 26-30, 1978, Editor: R.E. Kelly, Western Periodicals Co., North Hollywood, 1979.
TABLE 1

${ }_{\text {mum }}$		(smor			ef. 56					
$\overline{\bar{D}}$	d 3×8	D (54)	$\mathrm{D}^{(n)}$	D(se)	-	(E)	-			ϵ
JJ	$\mathrm{dj}^{j}\left({ }^{(3) 8}\right)$	$\mathrm{D}_{\mathrm{j}}^{\mathrm{j}} \mathrm{D}^{(50)}$	-	-		$e_{j}^{j}(9)$	$\mathrm{d}^{\mathrm{j}}(0)$	-		ϵ_{j}^{i}
$\hat{\mathrm{T}}_{\text {z }}$	$\mathrm{d}_{\mathrm{j}}(300$	$D_{i j}(5)$	$\mathrm{D}_{\mathrm{ij}}{ }^{(m)}$	$D_{i j}^{(8)}$	$\mathrm{dij}^{(5)}$		$\mathrm{dj}_{\mathrm{j}}(7)$	$V_{\text {j }}\left(m_{2}\right.$	$V_{j j}{ }^{(0)}$	$\epsilon_{\text {ij }}$
$\overline{\bar{\gamma}}$	E ${ }_{(66)}$	$E^{(22)}$	E(s)	-		$\dot{\varepsilon}^{(8)}$			-	E
γ_{j}	$E_{5}^{\text {F }}$ (ma)	E	-	-	$\gamma_{j}^{j}(5)$	$\varepsilon_{j}^{j(6)}$	$\mathrm{E}_{\mathrm{J}}^{\mathrm{E}}$ (t)	$\mathrm{E}_{\mathrm{j}}^{\mathrm{i}}$ (22)	-	e_{j}^{i}
$\hat{\gamma}_{i j}$	$E_{\text {sf }}^{(0)}$	$E_{\text {x }}$	$E^{(80)}$	-	$e_{y}($ (f)	-	$\mathrm{E}_{58}{ }^{(8)}$	$E_{i j}(3)$	$\bar{u}_{i}($ piv $)$	$e_{i j}$
$\overline{\text { e }}$	$\boldsymbol{e}^{(x 4)}$	-	$E_{(s)}^{*}$	-	-	$\hat{\boldsymbol{E}}^{(5)}$		-		F
ef	$\left.e_{j}^{j}(20)\right]$		-	-	-	$\varepsilon_{j}^{j(8)}$	$e_{j}^{j(s)}$	$e_{j}^{e(2)}$		e_{j}
$\hat{e}_{\text {ex }}$	$e_{\text {ej }}(2 t a)$	-	$E_{y}^{*}{ }^{*}(\underline{m}$			-	$e_{i j}($ (e)	$\mathrm{eij}^{(3)}$	$U_{i j}(80)$	
T	$t_{(0)}^{(3)}$	$\mathrm{t}_{(010}^{(010)}$	$\mathrm{t}^{\text {(6) }}$	$t_{(0)}^{\text {(20) }}$	$t^{(s)}$	$\mathrm{Pm}_{(12)}^{(2)}$	$\mathrm{t}_{(0)}{ }^{(97)}$	T(5)	$\mathrm{T}^{()_{\text {cko }}(10)}$	t
$\overline{\bar{\sigma}}$	$t^{(122)}$	T(0)	T(7)	T(2)		P	-			

TABLE 1－－CONCLUDED

YS	$(00 z)^{?_{?}}$	$(88 h)^{\Gamma}+1$	（601）	T	\longrightarrow	$(0 \times c) \frac{1}{1}$	$\left\lvert\, \begin{array}{r} \Gamma x \\ (z z z) \cdot 1 \end{array}\right.$	（ HzL ）	（Es）$\sqrt{1}_{1}$	$s^{2} \cdot \frac{1}{v}$
	－	－	（601）${ }^{\frac{\Gamma}{1}}$	－	（99）${ }_{5}^{1} \cdot 7$	－	－	${ }_{(x a)}^{r_{\cdot} x_{1}}$	（ess）${ }_{\text {c }}$	P－1．1
s	－	L－	——	－	－	$(O B E)$	（zaz）	$(1-2)_{1}^{41}$	－	1
	${ }_{(0 x)^{-2}}{ }^{-2}$	$(\mathrm{mb})^{\frac{1}{2}} \mathrm{~S}$	$(601)^{\text {EI }} 1$		－		$(E z z)^{E I} \frac{1}{n}$	$(121)^{N I}$	$(1585)^{2 x} 1$	18
		－	$(601) \frac{1}{1}$	$(5 x)^{!} \cdot \frac{d}{0} \frac{d}{0}$	－	－	——	$(h z)^{\frac{2}{x} 1}$	$(1555)_{I}^{I} 1$	${ }_{15}$
Con		－				\longrightarrow	$(z z z)$		－	5
			\longrightarrow	－－	\longrightarrow	\square	－	\square	－	上12
$!2$		\longrightarrow	－	（62z） 908	（59）${ }_{\text {i }}$ ？	\square		\longrightarrow	－	± 2
2		－	－	（ozz） 80	－	\square	－	－	\square	2
$!0$	$(002)^{51} 1$	（85）${ }^{5} 30$	$(66)^{17} 7$	——	$(89)^{[?} 0$	$(\pm 0 \tau){ }^{1} 1$	$\left.(2 t)^{\text {I }}\right]$	（0h）$\left.{ }^{[2}\right]$	$(24.5)^{[7} 7$	$\stackrel{N T}{V}$
$!0$	－	$(28): 2$	（66）$!7$	（56）${ }_{\text {i }}^{1} \mathrm{I}$	（09）$!_{!}^{1} 2$	－	－	（0h）${ }_{0}^{1}$	$(7+5)^{!} ?$	${ }_{2}^{2} \mathrm{O}$
$\begin{array}{\|c\|} \hline \text { (LET-GZL } \\ \text { EIT-てIT } \\ \text { 于əg) TIIH } \\ \hline \end{array}$	$\begin{aligned} & \left(65^{\circ} \mathrm{Fzd}\right) \\ & \text { y.xgyza } \end{aligned}$	$\begin{gathered} \hline\left(09^{*} \mp \ni y\right) \\ \text { 9NกI } \\ \hline \end{gathered}$	$\begin{gathered} \text { (Es・モəy) } \\ \text { NGONIGY } \\ \hline \end{gathered}$	$\text { (I\#* } \mp \partial y)$ nogas		(TG* ₹ə SIWEZNOY	(0s-jey) NはGATEリ！			$\begin{aligned} & \text { YHOM } \\ & \text { SIHI } \end{aligned}$
		SHGdYa	INY SMOOG	JNGMGAJIT	I NI daxo	TdWE SNOIJ	WYLON 40	NOSIEY dWO		

TABLE 2

DATA CHARACTERIZING NAPTC TEST 201 FOR TS8 TURBINE ROTOR TRI-HUB BURST AGAINST A STEEL CONTAINMENT RING

Containment Ring Data

```
Inside Diameter (in) 15.00
Radial Thickness (in) 0.625
Axial Length (in) 1.50
Material
4130 cast steel
Elastic Modulus (psi) 29 x 106
4 1 3 0 \text { Cast steel}
```

Fragment Data*
Type T58 Tri-Hub Bladed Disk FragmentsMaterial Disk: A-286 Blades: SEL-15
Outer Radius (in) 7.00
Fragment Centroid fiom Rotor Axis (in) 2.797
Fragr snt Pre-Test Tip Clearance from Ring (in) 0.50
Fragment CG to Blade Tip Distance (in) 4.203
Fragment Weight Each (1bs) 3.627
Fragment Mass Moment of Inertia about its CG (in Ib sec) 666×10^{-4}
Rotor Burst Speed (rpm) 19,859
Fragment Tip Velocity (ips) 14,557.2
Fragment CG Velocity (ips) 5816.7
Fragment Initial Anguiar Vel Fragment Initial Angular Velocity (rad/sec) 2079.6
Fragment Translational KE (in-lb)Each Fragment158,922
Total for Three Fragments 476,766
Fragment Rotational KE (in 1b)
Each Fragment 144,018
Total for Three Fragments 432,054
Applies to each fragment unless specified otherwise.
TABLE 3
EL-SH PREDICTED UPPER-SURFACE γ_{1}^{1} STRAINS AT NODAL STATIONS ALONG Y=0
and princtral strains at selected element-center locations of panel cp-2

TABLE $3-$ CONCLUDED (EL-SH)

	UPPER-SURFACE PRINCIPAL GREEN GTRAIN (PER CENT)					
Elomant	1	2	3	4	5	6
$\begin{aligned} & \text { Center } \\ & \text { Loc., } x(1 n) \end{aligned}$. 1111	. 333	. 555	. 777	. 999	1.298
$\begin{aligned} & \text { Time } \\ & (\mu \mathrm{sec}) \end{aligned}$						
20	. 35	1.01	5.15	10.29	34.50	. 12
40	3.92	7.93	12.10	21.16	35.54	10.06
60	16.73	20.94	24.61	23.24	37.02	10.81
80	21.06	26.21	23.57	22.16	37.17	11.02
100	21.13	26.12	23.17	21.40	36.99	11.44
120	21.11	26.05	23.24	21.28	36.12	10.93
140	21.08	26.11	23.35	21.43	35.18	10.94
160	21.07	26.15	23.38	21.56	34.96	10.60
180	21.06	26.20	23.42	21.52	34.58	10.27
200	21.06	26.20	23.37	21.48	34.63	10.04
220	21.06	26.22	23.42	21.57	34.69	10.17
240	21.05	26.18	23.36	21.52	34.72	10.25
260	21.05	26.18	23.37	21.50	34.66	10.22
280	21.05	26.18	23.38	21.49	34.64	10.18
300	21.06	26.20	23.37	21.46	34.63	10.20
350	21.07	26.20	23.37	21.47	34.68	10.27
400	21.08	26.20	23.38	21.44	34.65	10.29
450	21.08	26.21	23.38	21.43	34.68	10.34
500	21.09	26.23	23.41	21.47	34.74	10.42
550	21.09	26.26	23.43	21.56	34.79	10.61
600	21.10	26.26	23.42	21.57	34.82	10.71

table 4
EL-SH-SR PREDICTED UPPER-SURFACE γ_{1}^{1} STRATNS AT NODAE STATIONS ALONG Y=0
AND PRINCIPAL STRAINS AT SELECIED EIEMENT-CENTER LOCATIONS OF PANEL CP-2

TABLE 4 - - CONCLUDAD (EL-BH-SR)

Elemont	UPPER-SURPACE PRJNCIEAL GREEN STRAIN (DER CENT)					
	1	2	3	4	5	6
Conter Loc., $x(i n)$. 111	. 333	. 555	. 777	. 999	1.298
Time (Hsec)						
20	. 89	3.00	6.12	6.88	4.90	1.39
40	10.28	10.93	10.5:	8.98	6.30	4.69
60	13.87	12.73	10.03	7.65	8.44	5.99
80	14.27	12.90	9.44	7.27	8.60	6.25
100	14.07	12.86	9.77	7.37	7.41	6.78
120	14.01	12.91	9.92	7.50	7.04	7.25
140	14.13	12.87	9.59	7.30	7.39	7.22
160	14.08	12.90	9.77	7.50	7.28	7.36
180	14.14	13.00	9.88	7.45	7.23	7.56
200	14.05	12.82	9.63	7.44	7.49	7.61
220	14.15	12.97	9.76	7.42	7.55	7.94
240	14.05	12.87	9.74	7.51	7.49	8.24
260	14.09	12.84	9.59	7.35	7.66	8.38
280	14.11	12.88	9.63	7.34	7.59	8.66
300	14.11	12.87	1.65	7.39	7.59	8.81

TABLG
FINTTG-GTRATN PREDTCTION OF PHE MAXIMUM PRINCTEAL BTRAINS AND ASSOCTATED DIRECTIONS ON THE UPPER SURFACP NT THE CENTLER OF CERTAIN ELEMENRG OF EXPLOBIVELY2MPULSED G0G1mTG51. THIN NLUMINUM PANEL CP-2

No.		$\begin{aligned} & \text { Jocation } \\ & y(1 n) \end{aligned}$	$0(\operatorname{dog})$	prinotpal Groon Stradn			
				EL-EH		EL-SH-SR	
				Valuo $(1 n / 1 n)$	oxiont. 0 (dog)	$(\operatorname{Ln} / \ln)$	Oxiont. $\theta_{n}(\operatorname{dog})$
				2113	P45.0	. 1427	45.00
1	. 111	. 1111	45.00	2113	13.86	. 1300	9.91
2	. 333	1	18.43	2461	4.59	. 1055	3.59
3	. 555	"	11.31	2324	1.28	. 0898	2.14
4	. 777	"	8.13	3717	1.87	. 0860	16.40
5	. 999	"	6.34	1144	1.70	. 0881	37.51
\%	1.298	/	4.89			1301	80.09
12	. 111	. 333	71.57	. 2719	76.78	. .0911	45.00
13	. 333	"	45.00	. 1910	45.00	. 08.59	2.87
14	. 555	1	30.96	- 1611	11.06	. 0850	2.54
15	. 777	"	23.20	3997	5.72	. 0880	28.00
16	. 999	"	18.43	1234	26.74	. 0803	-32.78
17	1.298	11	14.40			. 1055	86.42
23	. 111	. 555	78.69	. 2466	85.	. 0899	87.13
24	. 333	"	59.04	. 1611	45.00	. 0688	45.00
25	. 555	1	45.00	. 17476	8.72	. 0828	-6.62
26	. 777	\ldots	35.54	. 3798	8.09	. 0864	16.95
27	. 999	"	29.05	. 0722	-41.32	. 0712	31.15
28	1.298	1	23.			. 0898	87.86
34	. 111	. 777	81.87	. 2324	88	. 0850	87.46
35	. 333	"	66.80	. 21	81.28	. 0828	-83.38
36	. 555	"	54.46	. 177	45.03	. 0700	-45.00
37	. 777	*	45.00	. 110	14.23	. 0946	26.92
38	. 999	"	37.87	. 0995	20.93	. 0661	9.39
39	1.298	"	30.93	. 099			73.60
	. 111	. 999	83.66	. 3733	88.15	. 0868	62.00
45 46	. .311	'11	71.57	. 3997	84.28	. 0880	
46 47	.333 .555	"	60.95	. 3798	81.91	. 0864	73.05
48	. 777	*	45.00	. 2155	44.79	. 0738	45.04
49	. 999	"	37.61	.1053	$\therefore 2.61$. 0809	31.79
50	1. 298	"			£18. 31	. 0882	52.53
56	. 111	1.298	85.11	-114:?	18.31 63.19	. 0806	-57.24
57	. 333	"	75.60	. 1231	63.19 -43.97	. 0668	72.03
58	. 555	-	66.83	. 0715	-4.43	. 0661	80.52
59	. 777	7	59.07	. 1005	52.48	. 0806	58.09
60	. 999	9	52.39	. 1059	46.6]	. 0482	-44.88
61	1.298	8	45.00	. 0710			

EIG. 1 NOMENCLATURE FOR SRACE COORDINATES AND DEFORMATION

(b) Properties of the Elastic, perfectly-plastic Sublayers

FIG. 2 APPROXIMATION OF A UNIAXIAL STRESS-STRAIN CURVE BY THE MECHANICAL-SUBLAYER MODEL

EIG. 2 CONCLUDED

(a) Elastic, Perfectly-Plastic Material.

(b) Special Strain Hardeninq Material

FIG. 3 SCHEMATIC OF STRAIN-RATE DEPENDENT UNIAXIAL STRESS-STRAIN CURVES

EIG. 3 CONCLUDED

FIG. 4 illustration of position, displacement, and base vectors for the reference and the present configuration

FIG. 4 CONCLUDED

FIG. 5 bernoulli-euler displacement field and polar decompoSITION OF THE DISPLACEMENT GRADIENTS X AND ψ

FIG. 6 ILLUSTRATION OF TRANSVERSE SHEAR STRAIN CAUSED BY TRANSVERSE NORMAL STRAIN GRADIENTS

[^55]
(a) Transient Strain at station $Y=0$

FIG. 9 MEASUREMENTS AND/OR PREDICTIONS OF TRANSIENT LONGITUDINAL GREEN (LAGRANGTAN) STRAIN ON THE SURFACE FOR VARIOUS SPANWISE STATIONS OF EXPLOSIVELY-IMPULSED 6061-T651 ALUMINUM NARROW PLATte (BEAM) CB-4 MODELED by beam elements

(b) Transient Strain at Station $Y=1.40$ in

FIG. 9 CONTINUED (CB-4)

(c) Upper-Surface Transient Strain at $y=2.20$ in

FIG. 9 CONTINUED (CB-4)

FIG. 9 CONTINUED (CB-4)
 (e) Spanwise Distribution of Upper-Surface Strain at $t=300 \mu \mathrm{sec}$
FIG. 9 CONCLUDED (CB-4)

FIG. 16 FINTTE-STRAIN PLATE-ELIEMENT MODEL PREDICTIONS FUR THE PLATE-CENTER DISPLACEMENT W OF IMPULSIVELY-LOADED NARROWPLATE SPECIMEN CB-4 BY USING "EQUILIBRIUM ITERATION" WITH THE HOUBOLT OPERATOR OR BY USING THE HOUBOLT-MULE PROCEDURE; WITH $\Delta t=0.5$ MICROSECOND

FIG. 17 COMPARISON OF BEAM-ELEMENT MODEL GENTRAL-DIFFERENCE PREDICTIONS VS. PLATE-ELEMENT MODEL PREDIĆTIONS BY HOUBOLT-MULE AND BY "EOULLIBRIUM ITYERATION" WITH THE HOUBOLT OPERATOR FOR THE FINITE-STRAIN TRANSIENT PLATE-CENTER DISPLACEMENT w OF EXPLOSIVEIMPULSED NARROW-PIATE SPECIMEN CB-4

(a) Response for $t<300 \mu$ sec

FIG. 18 FINITE-STRAIN PLATE-ELEMENT MODEL PREDICTIONS FOR THE TRANSIENT PLATE-CENTER DISPLACEMENT W OF EXPLOSIVELY-IMPULSED NARROW-PLATE SPECIMEN CB-4 BY USING "EQUILIBRIUM ITERATION" WITH THE HOUBOLT OPERATOR OR BY USING THE HOUBOLT-MULE PROCEDURE; WITH $\Delta t=2.0$ MITCROSECONDS

(a) Upper-Surface strain γ_{2}^{2} at Station $(x, y)=(0,4.00 i n)$

FFL. 22 COMPARISON OF FINITE-STRAIN PREDICTIONS, SMALL-STRAIN PREDICTIONS, AND MEASUREMENTS OF THE TRANSIENT LONGITUDINAL STRAIN ÁT VARIOUS SPANWISE STATIONS ON THE UPPER-AND/OR THE LOWER-SURFACE OF EXPLOSIVELY-IMPULSED : IARROW-PLATE SPECTMEN CB-4

FIG. 22 CONTINUED (FINITE STRAIN, SMALL STRAIN, EXPT., CB-4)

FIG. 22 CONTINUED (FINITE STRAIN, SMALL STRAIN, EXPT., CB-4)

FIG. 22 CONTINUED (FINITE STRAIN, SMALL STRAIN, EXPT., CB-4)

(f) Upper Surface Strain γ_{2}^{2} at Station $(x, y)=(0,2.20 i n)$

FIG. 22 CONTINUED (FINITE STRAIN, SMALL STRAIN, EXPT., CB-4)

FIG. 22 CONTINUED (FINITE STRAIN, SMALL STRAIN, EXPT., CB-4)

(i) Lower-Surface strain γ_{2}^{2} at Station $(x, y)=(0,0)$

FIG. 22 CONCLIUDED (FINITE STRAIN, SMALL STRAIN; EXPT., CB-4)

LOADED FREE CTRCULAR 6061-T6 ALUMINUM RING F-15

Fig. 25 FReDICTED CIRCUMFERENTIAL DISTRIBUTION OF INNER-SURFACE AND OUTER-SURFACE STRAIN AT 1500 MICROSECONDS FOR IMPULSIVELY-LOADED FREE CIRCULAR G061-T6 ALUMINUM RING F-1'.

FIG. 26 GEOMETRY AND NOMINAL DIMENSIONS OF UNIFORM-THICKENSS 6061-T651 aluminum panel model cp-2

FIG. 27 SCHEMATIC OF TMPULSIVE-LOADING TESTS ON 6061-T651 ALCMMINUM PANEIS WITH CLAMPED SIDES
FIG. 27

FIG. 28 CONCLUDED (CP-2)

（むNまD とGd）NOLIVONOTA GAINVTMA

$\simeq \quad 48$ RTNG EIEMENTS

[^56]

(a) Deformed Configuration at TAII $=1180 \mu \mathrm{sec}$

FIG. 35 COMPARISON OF FINITE-STRAIN VS. SMALL-STRAIN PREDICTIONS FOR THE DEFORMED CONFIGURATION AND FOR THE INNER-SURFACE AND OUTER-SURFACE CIRCUMFERENTIAL DISTRIBUTIONS OF CIRCUMFERENTIAL STRAIN AT TAII $=1180 \mu$ SEC FOR THE NAPTC TEST 201 STEEL CONTAINMENT RING

FIG. 35 CONCLUDED (NAPTC TEST 201 RING, FINITE STRAIN VS. SMALL STRAIN AT TAII $=11.80$ (1SEC)

FIG. 36 SCHEMATIC OF A 6061-T65I ALOMINUM NARROW PLATE MODEL SUBJECTED TO MIDSPAN PERFENDICULAR IMPACT BY AN ONE-INCH-DIAMETER SOLID STEEL SPHERE

FIG. 38 CONTINUED (CB-18)

FIG. 38 CONTINUED (CE-18)

fig. 38 CONTINUED (CB-18)

FIG. 38 CONTINUED (CB-18)

FIG. 38 CONTINUED (CB-18)

FIG. 38 CONTINUED (CB-1. $)$

fig. 38 continued (cb-18)

FIG. 38 CONTINUED (CB-18)

FIG. 39 PREDICTED TRANSIENT DEFLECTION AT THE MTDSPAN STATION ($y=0$) of STEEL-SPHERE-TMPACTED FIG. 39 6061-T651 ALUMINUM NARROW-PIATE SPECIMEN CB-18

FIG. 40 CONTINUED (CB-18)

[^57]

TIME (μ SEC)
(d) Station $(x, y)=(0,3.7 \mathrm{in})$, Upper (Non-Impacted) Surface

(f) Clamped End Station $(x, y)=(0,4.00 \mathrm{in})$, upper (Non-Impacted) Surface
FIG. 41 CONTINUED (FINITE STRAIN, SMALL STRAIN, CB-18)

(NI) M idnawaotidsid

FIG. 42 CONTINUED (CB-18, w-DISPLACEMENT, FINITE-STRAIN PREDICTION, EXPT.)

A. 1 Vardableothdeknong Arbitrarily-Curvod Roam Find to Edmonton

Connidor an indtialiymundoformod, arbdtrarilymourvod, variablamthicknonn, oinglo-layor beam or ring nubjogtod to proourdbod tramadont axtormallymapplitod burfaco lond n and to only D'Mombort body forces (inertia loads). Lot it bu assumed that tho wing conoloto of ductile motel and that a laygo-dofloetion, olagtic-plastic trangiont rosponso will bo producod. For analysis tho structure will bo represented by a compatibly-joined assemblage of N find te elements, ono of which $1 . s$ depicted in Fig. A. 1 where its geometry and nomenclature are shown and where tho deformation plane is η, \sum_{2}°, the coordinate η along and ζ_{0}° normal to the controidal reference axis of the beam are employed as the reference coordinates for this curved beam element.

It is useful and convenient to use the following geometry to describe this typical curved beam element and to approximate the actual given complete beam or ring by a finite number of these "typical elements". Note first that a global Y, Z Cartesian reference axis system as well as a local yo Cartesian reference axis system are defined; for the latter, the $+y$ axis passes through the ends (that is, nodes i and $i+l$) of the element and makes an angle + (f (for this fth element) with the $+\Sigma$ axis. The slope, ϕ, of the reference circumferential axis η, which is the angle between the tangent vector \bar{a} to η and the y-axis of the local-reference Cartesian frame may be approximated by a second degree polynomial in η, as follows [17]:

$$
\begin{equation*}
\phi(r)=b_{0}+b_{1} \gamma+b_{2} r^{2} \tag{A.1}
\end{equation*}
$$

where the constants b_{0}, b_{1}, and b_{2} can be determined from the geometry of the curved beam element as described next. Assume that the change in element slope ϕ between nodes i and $i+1$ is small such that

$$
\begin{equation*}
\cos \left(\phi_{l+1} \cdots \phi_{l}\right)=1 \tag{A.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(\phi_{i+1}-\phi_{i}\right) \doteq \phi_{i+1}-\phi_{i} \tag{A.2b}
\end{equation*}
$$

Thin rastriata the elope change within an element to <15 dagraan. Then arc length, η_{1}, of alnmont 1 is approximated to bo tho fame an tho length af a circular arg panning through the nodal points at the nlopen ϕ_{1} and $\phi_{1+1}{ }^{\prime}$ honan, η_{d} de given by

$$
\begin{equation*}
\eta_{l}=\frac{L_{i}\left(\phi_{i+1}-\phi_{i}\right)}{2 \sin \left(\frac{\phi_{i+1}-\phi_{i}}{2}\right)} \tag{A,3a}
\end{equation*}
$$

whore L_{i} is tho length of the chord joining nodes 1 and $1+1$, and $1 s$ given by

$$
\begin{equation*}
L=\left[\left(2_{i+1}^{2}-7_{i}^{2}\right)^{2}+\left(Y_{i+1}\right)_{i}^{2}\right]^{\frac{1}{2}} \tag{A,3b}
\end{equation*}
$$

The three constants in Eq. A. 1 are then determined from the relations

$$
\begin{align*}
& \phi(0)=\phi_{i} \\
& \phi\left(y_{i}\right)=\phi_{i+1} \tag{A.4}\\
& \int_{0}^{\eta_{i}} \sin \phi(\gamma) d \eta=\int_{0}^{\eta_{i}} \phi(\eta) d \eta=0
\end{align*}
$$

From Eq. A.4, the constants in Eq. A. 1 are found to be

$$
\begin{align*}
& b_{0}=\phi_{i} \\
& b_{1}=-2\left(\phi_{i+1}-\phi_{i}\right) / \eta_{i} \tag{A.5}\\
& b_{2}=3\left(\phi_{i+1}+\phi_{i}\right) /\left(\eta_{i}\right)^{2}
\end{align*}
$$

Accordingly, the radius of curvature, R, of the centroidal axis may be expressed as $R=-(\partial \phi / \partial \eta)^{-1}=-\left(b_{1}+2 b_{2} \eta\right)^{-1}$, and the coordinates $Y(\eta)$ and $z(\eta)$ of the centroidal axis are given by

$$
\begin{equation*}
Y(\eta)=Y_{i}+\int_{0}^{x} \cos [\phi(\eta)+\alpha] d \eta \tag{A.6a}
\end{equation*}
$$

and

$$
\begin{equation*}
Z(\eta)=Z_{1}+\int_{0}^{\eta} \sin [\phi(\eta)+\alpha] d \eta \tag{A.6b}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(\frac{Z_{i+1}-Z_{i}}{Y_{i+1}-Y_{i}}\right) \tag{A.sC}
\end{equation*}
$$

The thickness variation $h(\eta)$ along the element is approximated as being linear in η between nodes i and $i+1$ listed, respectively, at $\eta=0$ and $\eta=\eta_{i}$:

$$
\begin{equation*}
h(\eta)=h_{i}\left(1-\frac{\eta^{2}}{\eta_{i}}\right)+h_{i+1} \frac{\eta_{1}}{\eta_{i}} \tag{A.7}
\end{equation*}
$$

This completes the needed description of the geometry of the curved beam element.

The displacement field \tilde{v}, \tilde{w} of the beam, was derived in Subsection 4.2, and was shown to be valid for arbitrarily large strains and rotations. The displacements \tilde{v} and \tilde{w} anywhere in the beam are specified by the displacements $v(\eta)$ and $w(\eta)$ at the centroidal axis $\left(5^{\circ}=0\right)$ of the beam, and the associated displacement gradients X and ψ, respectively, as: ${ }^{+}$
where

$$
\begin{align*}
& \tilde{v}(\eta, \eta)=v(\eta)-\frac{\xi^{0}}{\left[1+2 \dot{\gamma}_{2}^{0}(\eta)\right]} \psi(\eta) \tag{ABB}\\
& \tilde{w}(\eta, \eta)=w(\eta)+\xi^{0} \frac{[1+\chi(\eta)]}{\left[1+2 \dot{\gamma}_{2}^{2}(\eta)\right]}-\xi^{0}
\end{align*}
$$

$$
\begin{align*}
& \psi(\eta)=\frac{\partial w}{\partial \eta}(\eta)-\frac{v}{R}(\eta) \\
& \chi(\eta)=\frac{\partial v}{\partial \eta}(\eta)+\frac{w}{R}(\eta) \tag{A.8a}
\end{align*}
$$

[^58]A cubicmoubic polynomial interpolation function with the inclusion of rigidbody modes represented explicitly in terms of tho angle ϕ, is chosen for the assumed displacement field v, w as follows:

$$
\left\{\begin{array}{l}
v \\
w
\end{array}\right\}=\left[\begin{array}{ccccccc}
\cos \phi & \sin \phi & -\left(Z-Z_{i}\right) \cos (\phi+\alpha)+\left(Y-Y_{1}\right) \sin (\phi+\alpha) & \eta & 0 & 0 & \eta^{2} \\
\eta^{3} \\
-\sin \phi & \cos \phi & \left(Z-Z_{i}\right) \sin (\phi+\alpha)+\left(Y-Y_{i}\right) \cos (\phi+\alpha) & 0 & \gamma^{2} & \eta^{3} & 0
\end{array}\right]\left\{\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{8}
\end{array}\right\}
$$

or in more compact matrix form, Eq. A. 9 becomes

$$
\{\underset{\sim}{u}\} \equiv\left\{\begin{array}{l}
v \tag{A.9b}\\
w
\end{array}\right\}=\left[\begin{array}{l}
G_{v}(x) \\
-G_{w}(x)
\end{array}\right]\{\beta\} \equiv[U(x)]\{\beta\}
$$

The generalized displacements $\{q\}$ are selected so that there are four degrees of freedom v, w, ψ, X at each node of the element:

$$
\begin{equation*}
\{q\}=\left\{\left.v_{i} w_{i} \cdot \psi_{i} \chi_{i} v_{i+1} w_{i+1} \psi_{i+1} \chi_{i+1}\right|^{T}=[A]\{\beta\}\right. \tag{A.10}
\end{equation*}
$$

and

$$
\begin{align*}
& A_{63}=\left(Y_{i+1}-Y_{i}\right) \sin \left(\phi_{i+1}+\alpha\right)-\left(Z_{i+1}-Z_{i}\right) \cos \left(\phi_{i+1}+\alpha\right) \tag{A.10b}\\
& A_{63}=\left(Y_{i+1}-Y_{i}\right) \cos \left(\phi_{i+1}+\alpha\right)+\left(Z_{i+1}-Z_{i}\right) \sin \left(\phi_{i+1}+\alpha\right)
\end{align*}
$$

Corresponding to the assumed displacement field Eq. A. 9 (and recalling that $\frac{1}{R}=-\frac{\partial \phi}{\partial \eta}$), one finds the following expressions for the displacement gradients X and $\psi:$

$$
\begin{align*}
& x:=\left\{G_{x}\right\rfloor\{\beta\} \tag{A.11a}\\
& \psi=\left\{G_{\psi}\right\rfloor\{\beta\}
\end{align*}
$$

where

$$
\left.\left[\begin{array}{llll}
{\left[G_{x}\right.}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{lll}
\left.2 x^{2} \frac{\partial \phi}{\partial x}\right) & \left(-\eta^{3} \frac{\partial \phi}{\partial x}\right) & 2 \eta \tag{A.IIb}
\end{array}\right]
$$

The following strain-displacement relations (type F) were derived in Subsection 4.2, and are valid for arbitrarily large strains and rotations:

$$
\begin{align*}
& \gamma_{2}^{2}=\dot{\gamma}_{2}^{2}+\frac{3^{0}}{\left(1+2 \dot{\gamma}_{2}^{2}\right)} \nless \tag{A.12}\\
& \gamma_{3}^{3}=\frac{1}{2}\left[\frac{1}{\left(1+2 \dot{\gamma}_{2}^{2}\right)}-1\right] \tag{A.13}\\
& \gamma_{1}^{1}=\gamma_{2}^{1}=\gamma_{1}^{2}=\gamma_{3}^{1}=\gamma_{1}^{3}=\gamma_{3}^{2}=\gamma_{2}^{3}=0 \tag{A.14}
\end{align*}
$$

where superscript " O " refers to quantities evaluated at $\zeta^{\circ}=0$. The membrane strain $\stackrel{\circ}{\gamma}_{2}^{2}$ is defined in terms of the displacement gradients X and ψ as follows:

$$
\begin{equation*}
\stackrel{O}{\gamma}_{2}^{2}=x+\frac{1}{2} x^{2}+\frac{1}{2} \psi^{2} \tag{A.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \psi=\left\{G_{\psi}\right]\{\beta\}=\left[G_{\psi}\right][A]\{q\}=\left[D_{2}\right]\{q\} \tag{A.16}
\end{align*}
$$

Employing Eggs. A. 11 and A. iO, the membrane strain $\hat{\gamma}_{2}^{2}$ becomes:

$$
\begin{gather*}
\gamma_{2}^{\circ}=\left\lfloor D_{1}\right\rfloor\{q\}+\frac{1}{2}\lfloor q\rfloor\left\{D_{2}\right\}\left\lfloor D_{2}\right\rfloor\{q\} \tag{A.17}\\
+\frac{1}{2}\lfloor q\rfloor\left\{D_{1}\right\}\left\lfloor D_{1}\right\rfloor\{q\}
\end{gather*}
$$

The "curvature" K appearing in Eq. A.12, is defined in terms of the displacement gradients X and ψ as:

$$
\begin{equation*}
K=\left(-\frac{\partial \psi}{\partial x}\right)(1+x)+\psi \frac{\partial x}{\partial x} \tag{A.18}
\end{equation*}
$$

The derivatives $\frac{\partial \psi}{\partial \eta}$ and $\frac{\partial X}{\partial \eta}$ of the displacement gradients X and ψ can be expressed as:

$$
\begin{equation*}
-\frac{\partial \psi}{\partial \eta}=-\frac{\partial^{2} w}{\partial \eta^{2}}+\frac{1}{R} \frac{\partial v}{\partial r}+v \frac{\partial}{\partial \eta}\left(\frac{1}{R}\right)=-\frac{\partial^{2} w}{\partial r^{2}}-\frac{\partial v}{\partial r} \frac{\partial \phi}{\partial \eta}-v \frac{\partial^{2} \phi}{\partial \eta^{2}} \tag{A.19}
\end{equation*}
$$

br

$$
\begin{equation*}
-\frac{\partial \psi}{\partial x} \equiv\left\lfloor G_{\psi, x}\right\rfloor\{\beta\}=\left\lfloor G_{4, x}\right\rfloor[A]^{-1}\{q\}=\left\lfloor D_{3}\right\rfloor\{q\} \tag{A,20}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
{\left[G_{-}\right. \text {where }}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0\left(-\frac{\partial \phi}{\partial x}-\eta \frac{\partial^{2} \phi}{\partial r^{2}}\right) \\
& -2 \quad-6 \eta \\
& \left(-2 \frac{\partial \phi}{\partial x}-7 \frac{\partial^{2} \phi}{\partial x^{2}}\right) \geqslant & \left(-3 \frac{\partial \phi}{\partial x}-x \frac{\partial^{2} \phi}{\partial x^{2}}\right) x^{2} \tag{A.21}
\end{array}\right]
$$

$$
\begin{equation*}
\frac{\partial \chi}{\partial \eta}=\frac{\partial^{2} v}{\partial \eta^{2}}+\frac{1}{R} \frac{\partial w}{\partial \eta}+w \frac{\partial}{\partial \eta}\left(\frac{1}{R}\right)=\frac{\partial^{2} v}{\partial \eta^{2}}-\frac{\partial w}{\partial \eta} \frac{\partial \phi}{\partial \eta}-w \frac{\partial^{2} \phi}{\partial \eta^{2}} \tag{A.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial x}{\partial r} \equiv\left\lfloor G_{x, \eta}\right\rfloor\{p\}=\left\lfloor G_{x, r}\right\rfloor[A]^{-1}\{q\}=\left\lfloor D_{4}\right\rfloor\{q\} \tag{A.23}
\end{equation*}
$$

where

$$
\begin{array}{r}
\left\lfloor G_{x, \eta}\right\rfloor=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & \left(-2 \frac{\partial \phi}{\partial \eta}-\eta \frac{\partial^{2} \phi}{\partial \eta^{2}}\right) \eta \\
& \left(-3 \frac{\partial \phi}{\partial \eta}-\eta \frac{\partial^{2} \phi}{\partial \eta^{2}}\right) \eta^{2} & 2 & 6 \eta
\end{array}\right]
\end{array}
$$

Therefore, the "curvature" k can be expressed as

$$
\begin{equation*}
K=\left(1+\lfloor q\rfloor\left\{D_{1}\right\}\right)\left\lfloor D_{3}\right\rfloor\{q\}+\lfloor q\rfloor\left\{D_{2}\right\}\left\lfloor D_{4}\right\rfloor\{q\} \tag{A.25}
\end{equation*}
$$

A. 2 Plate Finite Elements

The geometry and nomenclature of a typical rectangular plate element are shown in Fig. A2. The element has constant thickness, h, and spanwise dimensions a and b in the x and y directions, respectively, with the origin of the element xyz coordinate system located at element node number 1 . The midsurface displacements u, v, and w are approximated within each element by assuming a bilinear interpolation for the inplane displacements u and v, and a bicubic Hermetian interpolation for the transverse displacement, w. The interpolations written in terms of element x, y, z coordinates are

$$
\begin{align*}
u(x, y) & =\beta_{1}+x \beta_{2}+y \beta_{1}+x y \beta_{4} \equiv\left\lfloor G_{u}\right\rfloor\{\beta\} \tag{A.26}\\
v(x, y) & =\beta_{5}+x \beta_{6}+y \beta_{7}+x y \beta_{8} \equiv\left\lfloor G_{v}\right\rfloor\{\beta\} \\
w(x, y) & =\beta_{9}+x \beta_{10}+y \beta_{11}+x y \beta_{12}+x^{2} \beta_{13}+y^{2} \beta_{14} \tag{A.27}\\
& +x^{2} y \beta_{15}+x y^{2} \beta_{16}+x^{2} y^{2} \beta_{17}+x^{3} \beta_{18}+y^{3} \beta_{19} \\
& +x^{3} y \beta_{20}+x y^{3} \beta_{21}+x^{3} y^{2} \beta_{22}+x^{2} y^{3} \beta_{23}+x^{3} y^{3} \beta_{24} \\
& \equiv\left\lfloor G_{w}\right\rfloor\{\beta\} \tag{A.28}
\end{align*}
$$

where $\beta_{1}, \beta_{2} \ldots \beta_{24}$ are unknown parameters which will be related to the generalized nodal displacements $q_{1}, q_{2}, \ldots q_{24}$.

In order to obtain a set of generalized nodal displacements \{q\} ~ w h i c h ~ can be related to the $24 \beta_{i}$'s, the generalized nodal displacements chosen are the parameters $u, v, w, w, x \equiv \frac{\partial w}{\partial x}, w, y \equiv \frac{\partial w}{\partial y}$, and $w, x y \equiv \frac{\partial^{2} w}{\partial x \partial y}$ at each of the four corner nodes of the element. The nodal displacement vector, $\{q\}$, for the element is thus

$$
\left.\begin{array}{rl}
\{q\}^{T} & =\{q\rfloor=\left[\begin{array}{lll}
u_{1} & v_{1} & w_{1}
\end{array}\left(\frac{\partial w}{\partial x}\right)_{1}\left(\frac{\partial w}{\partial y}\right)_{1}\left(\frac{\partial^{2} w}{\partial x \partial y}\right)_{1}\right. \\
u_{2} & v_{2} w_{2}\left(\frac{\partial w}{\partial x}\right)_{2}\left(\frac{\partial w}{\partial y}\right)_{2}\left(\frac{\partial^{2} w}{\partial x^{\partial y}}\right)_{2} u_{3} v_{3} w_{3}\left(\frac{\partial w}{\partial x}\right)_{3}\left(\frac{\partial w}{\partial y}\right)_{3}\left(\frac{\partial^{2} w}{\partial x \partial y}\right)_{3} \\
u_{4} & v_{4} \tag{A.29}\\
w_{4}\left(\frac{\partial w}{\partial x}\right)_{4}\left(\frac{\partial w}{\partial y}\right)_{4}\left(\frac{\partial^{2} w}{\partial x^{\partial} y}\right)_{4}
\end{array}\right]
$$

By evaluating Eqs. A. 26, A.27, and A. 28, and

$$
\begin{align*}
& \frac{\partial w}{\partial x}=\left\lfloor G_{w, x}\right\rfloor\{\beta\} \tag{A.30}\\
& \frac{\partial w}{\partial y}=\left\lfloor G_{w, y}\right\rfloor\{\beta\} \tag{A.31}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial x \partial y}=\left\lfloor G_{w, x y}\right\rfloor\{\beta\} \tag{A.32}
\end{equation*}
$$

(obtained by differentiating Eqs. A. 28) at the nodes, a unique (invertible) relation between $\{q\}$ and $\{\beta\}$ is obtained:

$$
\begin{equation*}
\{\theta\}=[B]\{\beta\} \tag{A.33}
\end{equation*}
$$

The $24 \beta_{i}$'s can be related to the 2، q_{i} ' B by inversion of Eq. A. 33 so that

$$
\begin{equation*}
\{\beta\}=[B]^{-1}\{\theta\} \tag{A.34}
\end{equation*}
$$

and the displacement interpolation (Eq. A. 28) can be written in terms of nodal generalized displacements, \{q\}.

Therefore, one can write: .

$$
\begin{gather*}
u=\left\lfloor G_{u}\right\rfloor\{\beta\}=\left\lfloor G_{u}\right\rfloor[B]^{-1}\{q\} \tag{A.35}\\
v=\left\lfloor G_{v}\right\rfloor\{\beta\}=\left\lfloor G_{v}\right\rfloor[B]^{-1}\{q\} \tag{A.36}\\
w=\left\lfloor G_{w}\right\rfloor\{\beta\}=\left\lfloor G_{w}\right\rfloor[B]^{-1}\{q\} \tag{A,37}\\
\frac{" \partial w}{\partial x}=\left\lfloor G_{w, x}\right\rfloor\{\beta\}=\left\lfloor G_{w, x}\right\rfloor[B]^{-1}\{q\} \tag{A.SB}\\
\frac{\partial w}{\partial y}=\left\lfloor G_{w, y}\right\rfloor\{\beta\}=\left\lfloor G_{w, y}\right\rfloor[B]^{-1}\{q\} \tag{A,39}\\
\frac{\partial^{2} w}{\partial x \partial y}=\left\lfloor G_{w, x y}\right\rfloor\{\beta\}=\left\lfloor G_{w, x y}\right\rfloor[B]^{-1}\{q\} \tag{A.40}
\end{gather*}
$$

The following straln-displacemont relations which are valid for arbitrarily large displacements and strains wert derived in action 5 (Egg. 5.115-5.126) ${ }^{+}$:

$$
\begin{align*}
& \gamma_{\alpha \beta}=\stackrel{\dot{\gamma}}{\alpha \beta}+\frac{\overline{3}^{0}}{A} K_{\alpha \beta} \equiv \dot{\gamma}_{\alpha \beta}^{0}+\frac{z}{A} K_{\alpha \beta} \tag{A,41}\\
& \gamma_{33}=\frac{1}{2}\left(\frac{1}{A}-1\right) \tag{A.42}\\
& A=\left(1+2 \dot{\gamma}_{11}\right)\left(1+2 \stackrel{\circ}{\gamma}_{22}^{0}\right)-\left(2 \dot{\gamma}_{12}^{0}\right)^{2} \tag{A.43}
\end{align*}
$$

Here, the $\gamma_{\alpha \beta}$ are the (membrane) strains at the middle surface. They are defined as follows in terms of the displacement gradients:

$$
\begin{align*}
& \dot{\gamma}_{11}=\frac{\partial u}{\partial x}+\frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial v}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \tag{A.44}\\
& \dot{\gamma}_{22}=\frac{\partial v}{\partial y}+\frac{1}{2}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2} \tag{A.45}\\
& 2 \dot{\gamma}_{12}=2 \dot{\gamma}_{21}=\frac{\partial u}{\partial y}\left(1+\frac{\partial u}{\partial x}\right)+\frac{\partial v}{\partial x}\left(1+\frac{\partial v}{\partial y}\right)+\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \tag{A.46}
\end{align*}
$$

Also, in Eq. A. 41 the changes of curvature K_{11} and K_{22} in the x and y directions, and the "torsion" K_{12} are expressed as follows in terms of the displacement gradients:

$$
\begin{align*}
& \mathcal{K}_{11}=\alpha\left(-\frac{\partial^{2} w}{\partial x^{2}}\right)+\beta\left(-\frac{\partial^{2} u}{\partial x^{2}}\right)+\eta\left(-\frac{\partial^{2} v}{\partial x^{2}}\right) \tag{A.47}\\
& \mathcal{K}_{22}=\alpha\left(-\frac{\partial^{2} w}{\partial y^{2}}\right)+\beta\left(-\frac{\partial^{2} u}{\partial y^{2}}\right)+\eta\left(-\frac{\partial^{2} v}{\partial y^{2}}\right) \tag{A.48}\\
& K_{12}=\alpha\left(-\frac{\partial^{2} w}{\partial x \partial y}\right)+\beta\left(-\frac{\partial^{2} u}{\partial x \partial y}\right)+\eta\left(-\frac{\partial^{2} v}{\partial x \partial y}\right) \tag{A.49}
\end{align*}
$$

+ Note that $z \equiv \zeta^{\circ}=$ initial undeformed z-direction location of a particle.
where

$$
\begin{align*}
& 0+\frac{24}{2 x}+\frac{2 y}{2 y} \tag{A.50}\\
& \left.\beta=\frac{2 w}{\partial x}+\frac{2}{2}+\frac{2 y}{2 y}\right)+\frac{2 w}{2 y} \tag{A,51}\\
& \left.\eta=-\frac{2 w}{2 y}\left(1+\frac{2 u}{2}\right)+\frac{2 u}{2}\right)+\frac{2 u}{2 y} \tag{A.52}
\end{align*}
$$

Since the strains are defined in terms of the displacement gradients, the following derivatives are derived by differentiation of the displacement. expressions A. 26-A. 28 in order to compute $\gamma_{\alpha \beta}$:

$$
\begin{align*}
& \left.\frac{\partial u}{\partial x}=\beta_{2}+y \beta_{4} \equiv L G_{u, x}\right\rfloor\{\beta\}=\left[G_{u, x}\right][B]^{-1}\{q\} \tag{A.53}\\
& \frac{\partial u}{\partial y}=\left[G_{u, y} \int\{\beta\}=\left[G_{u, y} \int[B]^{-1}\{q\}\right.\right. \tag{A.54}\\
& \frac{\partial v}{\partial x}=\left[G_{v, x} \int\{\beta\}=\left[G_{v, x} \int[B]^{-1}\{q\}\right.\right. \tag{A.55}\\
& \frac{\partial v}{\partial y}=\left[G_{v, y}\right]\{\beta\}=\left[G_{v, y}\right][B]^{-1}\{q\} \tag{A.56}\\
& \frac{\partial^{2} w}{\partial x^{2}}=\left\{G_{w, x x} \int\{\beta\}=\left\lfloor G_{w, x x}\right\rfloor[B]^{-1}\{q\}\right. \tag{A.57}\\
& \frac{\partial^{2} w}{\partial y^{2}}=\left\lfloor G_{w, y y}\right\rfloor\{\beta\}=\left\lfloor\dot{G}_{w, y y}\right\rfloor[B]^{-1}\{q\} \tag{A.58}\\
& \frac{\partial^{2} u}{\partial x \partial y}=\left[G_{u, x y}\right]\{\beta\}=\left[G_{u, x y}\right][B]^{-1}\{q\} \tag{A.59}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial^{2} v}{\partial x \partial y}=\left\{G_{v, x y} \mid\{\beta\}=\left\{G_{v, x y}\right][B]^{-1}\{q\}\right. \tag{A.60}\\
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial^{2} v}{\partial y^{2}}=0 \tag{A.61}
\end{align*}
$$

Since a bilinear polynomial assumption is used for the in-plane lateral displacements u and v, the second derivatives $\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}, \frac{\partial^{2} v}{\partial x^{2}}$, and $\frac{\partial^{2} v}{\partial y^{2}}$ are necessarily equal to zero. Therefore, the bending expressions K_{11} and
$K_{22^{\prime}}$ become

$$
\begin{align*}
& \mathbb{K}_{11}=\alpha\left(-\frac{\partial^{2} w}{\partial x^{2}}\right) \tag{A.62}\\
& Z_{22}=\alpha\left(-\frac{\partial^{2} w}{\partial y^{2}}\right) \tag{A.63}
\end{align*}
$$

The mixed derivatives $\frac{\partial^{2} u}{\partial x \partial y}$ and $\frac{\partial^{2} v}{\partial x \partial y}$ of the in-plane lateral displacements, are equal to constants for this assumed-bilinear-displacement rectangular finite element. However, they are neglected as well for the computation of the "torsion" κ_{12}. The strain-displacement relations become

$$
\begin{align*}
& \gamma_{11}=\dot{\gamma}_{11}+\frac{z}{A} \alpha\left(-\frac{\partial^{2} w}{\partial x^{2}}\right) \tag{A.64}\\
& \gamma_{22}=\dot{\gamma}_{22}+\frac{z}{A} \alpha\left(-\frac{\partial^{2} w}{\partial y^{2}}\right) \tag{A.65}\\
& \gamma_{12}=\dot{\gamma}_{12}+\frac{z}{A} \alpha\left(-\frac{\partial^{2} w}{\partial x \partial y}\right) \tag{A.66}
\end{align*}
$$

The membrano atraina $\mathcal{Y}_{21}, \mathcal{Y}_{22}$, and γ_{12} are defined an in Eqf. A. A4-A. 46 and are valid for arbitrarily large ftraing and rotations. The axproselone A and α aro dofinod by EqB. A. 43 and A. 50, rospoctivody. Binnoo tho nocond dorivativon of u and v aro neglectod in those strain-alaplacomont rolations, tho bonding expreselons k_{11}, K_{22}, and k_{12} aro not valid for arbjetrarily largo rotations. Howover, thoso atrain-aisplacomont ralationn A. 64-A. 66 aro useful for aituations whore findto mombrane strains may occur, and whero large rotations are associated with small curvaturos. The error associated with this approximation in the analysis of large deformation of beams, has been investigated in References 28 and 212. In effect, studies conducted in Ref. 28 revealed that the second derivatives of the in-plane displacements t and v have a comparatively small influence in the predicted strains for severely loaded* aluminum alloy beams clamped at both ends. Also, observe that the factor A in Eqs. A.64-A. 66 includes the effects of finite membrane strains in the reference surface as well as change-ofthickness effects due to finite membrane strains.

[^59]REFERENCE CONFIGURATION
(TNITTAL OR UNDEFORMED)

LOCAL SYSTEM

ξ, η, ζ - COORDINATES
v, w, ψ, χ - DISPLLACEMENTS
$q_{1}, q_{2} \cdots q_{8}-\quad \begin{aligned} & \text { ELEMENT GENERALIZEL } \\ & \text { DISPLACEMENTS }\end{aligned}$
$q_{1} q_{2} q_{3} q_{4}=v_{i} w_{i} \psi_{i} x_{i}$
$\psi=\frac{\partial w}{\partial \eta}-\frac{v}{R} \quad x=\frac{\partial v}{\partial \eta}+\frac{w}{R}$

FIG. A. 1 NOMENCLATURE FOR GEOMETRY, COORDINATES, AND DISPLACEMENTS OF A CURVED-BEAM FINITE ELEMENT

$$
\begin{aligned}
x_{1}, x_{2}, x_{3}= & \text { Global Rectangular Cartesian } \\
& \text { Coordinato System } \\
x, y, z= & \text { Local (olement) Coordinate } \\
& \text { system }
\end{aligned}
$$

h - Total Element Thickness
a, b - Element Spanwise Dimension in the x and y pirections

$$
\begin{aligned}
u_{,} v, w & \\
w_{, x} & =\frac{\partial w}{\partial x}
\end{aligned} \quad \begin{array}{ll}
w_{, y}=\frac{\partial w}{\partial y} & \text { Generalized Nodal } \\
w_{, x y} & =\frac{\partial^{2} w}{\partial x \partial y}
\end{array}
$$

FIG. A. 2 GEOMETRY AND NOMENCLATURE FOR A UNIFORM-THICKNESS RECTANGULAR PLATE ELEMENT

FINITP GLEMENT FORMULATION AND IMPLEMENTATION FOR A UIGHER ORDER PTATE FTATME GLEMENT (AB DKip)

日. 1 Felootion af tho Abumed Dighaoment Find

Tho Btraln-diaplacement rolationo for large ntratno and rotations of platos involvo socond ordar dorivatives of all threo difplacomont compononta (vertical diplacomont W and \ln-pland dibplaconontus and v). This implios that, in order to ortatn a finite valuo for the btrain onergy from the strain energy exprossion, at least the first order derivativos of the displacomonts u, v, and w should be continuous everywhero (e.g. across finite element boundaries). Otherwise, the olements would be incompatible.

The requirement that the slope of the three displacement components to be continuous across the element boundaries (continuity inside the finite elements is ensured by selection of continuous polynomials as interpolation functions), plus the requirements of including constant strain and rigid boay modes lead to bicubic (in x and y) polynomial dispiacement interpolation field for each of u, v, and w. This finite element with a bicubic in u, v, and w is a rectangular element consisting of 4 nodes, with 12 degrees of freedom (DOF) per node and hence a total of 48 DOF for the element.

The degrees of freedom at the nodes are $u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial x \partial y}, v, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y^{\prime}}$ $\frac{\partial^{2} v}{\partial x \partial y}$ and $w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial^{2} w}{\partial x \partial y}$. It is easily shown that the derivatives of the displacements with respect to x and y are continuous across the element boundaries. Furthermore, even the cross dexivatives $\frac{\partial^{2} u}{\partial x \partial y}, \frac{\partial^{2} v}{\partial x \partial y}$, and $\frac{\partial^{2} w}{\partial x \partial y}$ are all continuous. The remarkable thing is that this extra degree of continuity (not required in the variational principle to obtain a finite energy) does not seem to follow from the usual arguments. (The functions $\frac{\partial^{2} u}{\partial x \partial y}, \frac{\partial^{2} v}{\partial x \partial y}$ and $\frac{\partial^{2} w}{\partial x \partial y}$ are quadratic along each edgo, and only the values of $\frac{\partial^{2} u}{\partial x^{\partial} y}, \frac{\partial^{2} v}{\partial x \partial y}$, and $\frac{\partial^{2} w}{\partial x \partial y}$ at the two endpoints are automatically held in common).

Tho 48 DOF Hermita blaubic, bicubia, bloublic, olomant is formulatod as a roctangla, but by nupparamotrita tranaformation [Rof. 213, pago 89] can be traneformod into a genoral quadrilatoral with atraight aidos but arbitrary anglon.

Tho PLATE and CTVM-PLATE programs [31] uso rootangular finito elements with a total of 24 DOF, the asounod-diaplacomont interpolation fiold is bloubic in w and bilinear in u and v. This lower ordor element presents slope continuity ($\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$ and $\frac{\partial^{2} w}{\partial x \partial y}$)aoross the element boundaries only for the vertical displacement w, but not for the in-plane displacements u and v. Also, since the assumed-displacement interpolation field is only bilinear for the in-plane displacements u and v, the terms that involve the second derivativas of these displacements (present in the large strain and rotation strain-displacement equations), cannot be computed in an analysis that would make use of this finite element. It is clear that this 24 DOF element is accurate only for problems where the vertical displacement w is much more important than the in-plane displacements u and v.

It is also clear that in a general large strain and rotation program, the three displacement components deserve to share equal importance in the assuned-displacement field. Also, [Ref. 213, page 215] the condition number* for cubics is only slightly worse than for linear elements, so that the roundoff errors for a given element size (h) are comparable. The discretization error, however, is an order of magnitude smaller for cubics. Therefore, at the cross over point where roundoff prohibits any further improvement coming from a decrease in h. the cubic element is much more accurate. This applies especially to the computation of strains, where differentiation (or differencing) of displacements introduces an extra factor $h^{-1}\left(h^{-2}\right.$ for bending) into the numerical error.

One can express the displacement field u, v, w inside an element by Hermitian polynomials ($\$$) that interpolate in terms of the generalized displacement degrees of freedom at the nodes (q ' s). Hence, one may write

[^60]Similarly, the derivatives may bo writton ag

$$
\frac{\partial u}{\partial x}=\underset{\mid \times 16{ }_{16 \times 1}}{\left\lfloor\frac{\partial \Phi}{\partial x}\right\rfloor\left\{q_{u}\right\}}, \frac{\partial^{2} u}{\partial x^{2}}=\left\{\frac{\partial^{2} \Phi}{\partial x^{2}}\right\rfloor\left\{q_{1 \times 16}\right\}, \text { etc. }
$$

Therefore, one has to store matrices ($\lfloor\Phi\rfloor,\left\lfloor\frac{\partial \phi}{\partial x}\right\rfloor$, etc.) that involve only 16 terms per olement instead of 48 because exactly the same interpolation polynomials are needed for each of the three displacement components u, v, and w. This is a very attractive feature of the large strain formulation when a bicubic displacement field is used for all three displacement components.

B. 2 Finite Element Formulation and Solution Procedure

As noted in Section 6 , the finite element formulation and solution procedure used herein is based upon the Principle of Vixtual Work including D'Alembert inertia forces; further the undonventional form of the equations of motion (see Eqs. 6.55 and 6.69) are utilized rather than the conventional form (Eq. 6.68) given in Subsection 6.2.3.

In the process of a finite element dynamic solution, the mass matrix is needed. Mass matrices may be formed in various ways: (a) "consistent" or non-diagonal and (b) "lumped" or diagonal. Diagonal mass matrices can be formed using an intuitivo physical approach (e.g. by "placing masses" at the displacoment DOF) or by using a scheme to diagonalizo the consistent mass matrix according to solected rules. The consistent mass matrix is obtained from the e:rression for the kinetic energy through volume integration of the interpolation functions.

Both the mass and stiffnoss do not change during the transient solution and are not a function of the strain or stress at a given tine or location.

Those matrices have dimensions of 48×48 (2304 entries) for tho 48 DOR finite olomont to bo unod in the numerical analysis. Taking into account. symmetry about the diagonal, there in a total of possibly [(48 $\times 48-48) /$ $2+(48)]$ m 1176 differont ontrios for coach of these matrices.

Because of tho throw fold symmetry in the interpolation polynomials botwoen tho displacement components u, v, and w (the same Hermitian interpolation polynomials are required for each displacement component), the number of different entries is reduced dramatically. The exact integraLion of the element consistent mass matrix [m] (Eq. 6.38) has revealed only 33 different entries (out of a possible 1176). The exact integration of the element linear stiffness matrix [k] (Eq. 6.63) has revealed only 123 different entries (out of a possible 1176).

Next, note that the consistent externally-applied prescribed loads vector $\{f\}$ for each element arises from (a) the non-inertial body forces f^{i} and involves an integration over the reference volume $V_{o_{n}}$ of the element and (b) the applied surface traction $\underset{\sim}{T}{ }^{i}$ involving an integral over the reference surface area ${ }^{A} O_{n}$, as indicated by Eq. 6.41.

The remaining terms in Eq. 6.37 for the unconventional formulation pertain to $\delta \mathrm{U}$.(Eq. 6.18-6.19) the variation of the work of the internal stresses $\mathrm{s}^{\text {if. From Eq. } 6.37 \text { it is seen that the element-level contributions }}$ from δU to the equations of motion consist of $\{p\}$ and $[h]\{q\}$. Also note that the evaluation of $\{p\}$ and of $[\mathrm{h}]$ involves an integration of the stresses $s^{i j}$ and strain-variation quantities over the reference volume of the element $\mathrm{V}_{\mathrm{O}_{\mathrm{n}}}$. When applied to plate or shell analysis, these integraltions are performed conveniently in erms of stress resultants:

$$
\begin{align*}
& L^{\alpha \beta}\left(\xi^{1}, \xi^{2}, t\right)=\int S^{\alpha \beta}\left(\xi^{1}, \xi^{2}, \xi^{0}, t\right) d \xi^{0} \tag{B.Ba}\\
& \left.M^{\alpha \beta}\left(\xi^{1}, \xi^{2}, t\right)=\int S^{\alpha \beta}\left(\xi^{1}, \xi^{2}, \xi^{0}, t\right)\right\}^{0} d \xi^{0} \tag{B.Bb}
\end{align*}
$$

where ζ^{0} is the Lagrangian or material thicknoss ccordinata. since $s^{\alpha \beta}$ changes with time, numerical integration through tho thickness is used to evaluate $L^{\alpha \beta}, M^{\alpha \beta}$; also to complete the volume integration, pumerical integration is performed over the x, y or the ξ^{1}, ξ^{2} region of the clement. It is worth pointing out at this stage, that another attractive feature of the 48 DOF element is that it requires the same number of integration points ${ }^{+}$as the lower order (and hence lower accuracy) element which has 24 DOF. The reason for this is that the highest order polynomial in the 24 DOF element (namely the complete bicubic in w) has exactiy the same order as the polynomials in the 48 DOF element (complete bicubics in u, v and w)

Instead of proceeding in a routine fashion, taking the variation and computing, the resultant terms in a straightforward way, the terms are grouped together so as to minimize the number of operations and storage in the computation of the work of the internal forces. Also, the use of Hermitian interpolation polynomials and the threefold symmetry of the 48 DOF element also helps to reduce significantly the amount of storage and computation.

In this vector formulation, one can express the internal force arising from the linear stiffness and the geometric and material nonlinearities simply as a column vector $\{I(t)\}$ defined by

48×1

$$
\{I(t)\}=\underset{48 \times 1}{\left.\left.\{p(t)\}^{\{ }\right\}_{48}^{[p}+h(t)\right]} \underset{48 \times 48}{\{q(t)\}}
$$

Note that $\underset{48 \times 1}{\{I(t)\}}$ consists of 3 column vectors $\left\{I_{u}(t)\right\},\left\{I_{v}(t)\right\}$, and $\left\{I_{w}(t)\right\}$
16×1 16x1 16×1
that correspond to the displacement components u, v, and w, respectively. Further the same 16×1 interpolation matrix is used for each of the submatrices $\left\{I_{u}\right\},\left\{I_{v}\right\}$, and $\left\{I_{w}\right\}$. Applying Eqs. 5.115-5.126 and B. 1 to Eq. 6.19, one obtains:

$$
\begin{align*}
& \left\{I_{u}(t)\right\}=\iint\left(\left\{\frac{\partial \Phi}{\partial x}(x, y)\right\} H_{u}(x, y, t)+\left\{\frac{\partial \Phi}{\partial y}(x, y)\right\} H_{u_{y}}(x, y, t)+\{F(x, y, t)\} \beta(x, y, t)\right) d x d y \\
& 16 \times 1 \quad 16 \times 1 \quad 16 \times 1 \quad 16 \times 1 \tag{B.5a}
\end{align*}
$$

[^61]\[

$$
\begin{align*}
& 16 \times 1 \\
& 16 \times 1 \tag{B.5c}
\end{align*}
$$
\]

where

$$
\{F(x, y, t)\}=\frac{1}{A(x, y, t)}\left(\left\{-\frac{\partial^{2} \Phi}{\partial x^{2}}\right\} M^{\prime \prime}(x, y, t)+\left\{-\frac{\partial^{2} \Phi}{\partial y^{2}}\right\} M^{22}(x, y, t)+\left\{-2 \frac{\partial^{2} \Phi}{\partial x \partial y}\right\} M_{(x, y, t)}^{12}\right.
$$

$$
\begin{equation*}
H_{u_{x}}(x, y, t)=H_{11}(x, y, t)\left(1+\frac{\partial u}{\partial x}(x, y, t)\right)+H_{12}(x, y, t) \frac{\partial u}{\partial y}+J_{w}(x, y, t)-J_{v}(x, y, t) \frac{\partial w}{\partial y}(x, y, t) \tag{B.5e}
\end{equation*}
$$

$$
\begin{align*}
& H_{u y}(x, y, t)=H_{12}\left(1+\frac{\partial u}{\partial x}\right)+H_{22} \frac{\partial u}{\partial y}+U_{v} \frac{\partial w}{\partial x} \\
& H_{v_{x}}(x, y, t)=H_{12}\left(1+\frac{\partial v}{\partial y}\right)+H_{11} \frac{\partial v}{\partial x}+J_{u} \frac{\partial w}{\partial y} \tag{B,5f}
\end{align*}
$$

(B.5g)

$$
\begin{align*}
& H_{v y}(x, y, t)=H_{z 2}\left(1+\frac{\partial v}{\partial y}\right)+H_{12} \frac{\partial v}{\partial x}+J_{w}-J_{u} \frac{\partial w}{\partial x} \\
& H_{w}(x, y, t)=H_{11} \frac{\partial w}{\partial x}+H_{12} \frac{\partial w}{\partial y}-J_{u}\left(1+\frac{\partial v}{\partial y}\right)+J_{v} \frac{\partial u}{\partial y} \tag{B.5h}\\
& H_{w}(x, y, t)=H_{22} \frac{\partial w}{\partial y}+H_{12} \frac{\partial w}{\partial x}-J_{v}\left(1+\frac{\partial u}{\partial x}\right)+J_{u} \frac{\partial v}{\partial x} \tag{B.5i}
\end{align*}
$$

$$
\begin{align*}
& U_{u}(x, y, t)=\frac{1}{A(x, y, t)}\left[\left(-\frac{\partial^{2} u}{\partial x^{2}}\right) M^{\prime \prime}+\left(-\frac{\partial^{2} u}{\partial y^{2}}\right) M^{22}+\left(-2 \frac{\partial^{2} u}{\partial x \partial y}\right) M^{12}\right] \tag{B.5K}\\
& U_{v}(x, y, t)=\frac{1}{A}\left[\left(-\frac{\partial^{2} v}{\partial x^{2}}\right) M^{\prime \prime}+\left(-\frac{\partial^{2} v}{\partial y^{2}}\right) M^{22}+\left(-2 \frac{\partial^{2} v}{\partial x \partial y}\right) M^{12}\right] \\
& \int_{w}(x, y, t)=\frac{1}{A}\left[\left(-\frac{\partial^{2} w}{\partial x^{2}}\right) M^{\prime \prime}+\left(-\frac{\partial^{2} w}{\partial y^{2}}\right) M^{22}+\left(-2 \frac{\partial^{2} w}{\partial x \partial y}\right) M^{12}\right] \tag{B.Dm}\\
& H_{\alpha \beta}=L^{\alpha \beta}-\mathscr{A}\left(\delta_{\alpha \beta}+2 \gamma_{\alpha \beta}^{0}\right) \tag{B.5n}\\
& \mathscr{H}=\frac{2}{(A)^{2}}\left[M^{\prime \prime} K_{11}+M^{27} K_{22}+M^{12}\left(2 K_{12}\right)\right] \tag{B.50}\\
& L^{\alpha \beta}=\int s^{\alpha \beta} d 5^{\circ} ; M^{\alpha \beta}=\int s^{\alpha \beta} s^{\alpha} d \xi^{p} ; I^{\alpha \beta}=\int S^{\alpha \beta}\left(5^{2}\right)^{\alpha} d \sigma^{0} \tag{B.Sp}
\end{align*}
$$

and $\alpha, \beta, \eta, \kappa_{\alpha \beta}$, and $\gamma_{\alpha \beta}^{0}$ have been defined in the strain-displacement relations: Eqs. 5.115.j.126.

For the transient response solution, it is recommended that one employ the vector form of the equations of motion as described by Eqs. 6.89, 6.90, and 6.91. These equations may be solved by using an appropriate timewise finite-difference (or finite-element) operator such as the Houbolt; the park, etc. -- in conjunction with (a) extrapolation of the nonlinear inturnal-loads toms without iteration or (b) by iterating to convergence (if possible) within a given time step Δt by, for example, the BFGS method [?04] or a duasi-Nowton method [215].

ASSESSMENT OF STRESS-STRAIN PROPERTIES FROM UNIAKIAL-MEST MEASUREMENTS OF INITIALLY-ISOTROPIC MATERIAL

As indicated in Subsection 2.8 , the axial relative elongation E_{u} of a uniaxial test specimen is defined as (Eq. 2.401):

$$
\begin{equation*}
E_{u} \equiv \frac{\text { change in gage length }}{\text { original gage length }}=\frac{\ell-\ell_{0}}{l_{0}} \tag{C.1}
\end{equation*}
$$

E_{u} is also called the engineering or nominal strain, and it is a quantity or measurement which extensometers or strain gage can provide. One can compute the logarithmic strain ε_{u}^{*} of a uniaxial test specimen in terms of E_{u} as (Eqs. 2.407 and 2.410) :

$$
\begin{equation*}
E_{u}^{*} \equiv \ln \left(1+E_{u}\right) \equiv \ln \left(\frac{l}{l_{0}}\right) \tag{C.2}
\end{equation*}
$$

The engineering stress σ_{E} of a uniaxial test specimen jus defined as (Eq. 2.443):

$$
\begin{equation*}
\sigma_{E}=\frac{P}{A_{0}} \tag{C.3}
\end{equation*}
$$

where P is the force transmitted across the cross-sectional area of the uniaxial specimen (the applied load) and A_{0} is the original cross-sectional area of the specimen. The engineering stress σ_{E} is also called the nominal or list Piola-Kirchhoff stress.

One can compute the Kirchhoff stress τ_{u} of a uniaxial test specimen in terms of σ_{E} and E_{u} as (Eq. 2.432):

$$
\begin{equation*}
\tau_{u}=\sigma_{E}\left(1+E_{u}\right)=\frac{P}{A_{0}}\left(1+E_{u}\right) \tag{c.4}
\end{equation*}
$$

Observe that the Kirchhoff stress τ_{u} can be very easily obtained from experimental measurements of: the original cross-sectional area A_{0}, the applied load p, and the axial relative elongation E_{u} (obtained from strain gates or extensometers). These quantities (P, λ_{0}, and E_{u}) are the quantities
that have beon and are most often moasured in exporiments. Many authors have roferred to tho Kirchhoff strose τ_{u} as tho "trug" stross, gince tho Kirchloff stresa τ_{u} is dofined as (Eqs. 2.425, 2.427, and 2.432)

$$
\begin{equation*}
\tau_{u}=\frac{P}{A_{0}}\left(1+E_{u}\right)=\frac{\rho_{0} P}{\rho} \frac{P}{A} \equiv \frac{\rho_{0}}{\rho} O \tag{c.5}
\end{equation*}
$$

whare $\sigma_{T} \equiv \frac{P}{A}$ is the "true" or Cauchy stress. (Eq. 2.427), $\rho_{0}(\rho)$ is the original (present) mass density, and mass conservation givon by $\rho_{0} A_{0} l_{0}=\rho A l$ has been used. Hence, if there were no change in the mass density (that is, $\rho=\rho_{0}$), the Cauchy stress would be equal to the Kirchhoff stress. It is important to note that what many authors plot as an approximate "true" stress (under the assumption $\rho \approx \rho_{0}$) is really the exact measurement of the Kirchhoff stress.

For example, in Eq. 8.3 of Nadai's "Theory of Flow and Fracture of Solids" [115], the stress measure used is the Kirchhoff stress (although not so stated) and, therefore, the stress measure labeled as "true stress" in the graphs pertaining to experiments in Nadai's book is really the Kirchhoff stress.

Similarly, G.I. Taylor used the Kirchhoff stress. For example, in Ref. 114 , it is not clearly stated what stress measure is used. However, one can deduce what is the stress measure used by G.I. Taylor from the following paragraph (page 308, Ref. 114):
"The condition for fracture by instability owing to the formation of a local "neck" is

$$
\begin{equation*}
\frac{l}{T} \frac{d T}{d l}<1 \text { or } \frac{d(\ln T)}{d\left(\ln \frac{l}{l}\right)}<1 \tag{c.6}
\end{equation*}
$$

where T is the stress, ℓ_{0} is the original length of the specimen, and ℓ is the present length of the specimen. The condition for "neeking" is:

$$
\frac{d \sigma_{E}}{d E_{a}}<0 \quad \text { or } \quad \frac{d \sigma_{E}}{d l}<0
$$

Since the onginooring stress G_{G} ia related to tho Kirchhoff stream T_{u} by

$$
\begin{equation*}
\sigma_{E}=\frac{\tau_{u}}{\left(1+E_{u}\right)}=\tau_{u} \frac{\ell_{0}}{\ell} \tag{C,8}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{d \sigma_{E}}{d l}<0 \tag{C.9}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\frac{\left.d \tau_{u} \frac{\ell}{Z}\right)}{d \ell}<0 \tag{c.10}
\end{equation*}
$$

or

$$
\begin{align*}
& \frac{l_{0}}{l} \frac{d \tau_{u}}{d l}+\tau_{u} l_{0} \frac{d\left(\frac{1}{l}\right)}{d l}<0 \tag{C.11}\\
& \frac{1}{l} \frac{d \tau_{u}}{d l}-\frac{\tau_{u}}{l^{2}}<0 \tag{C.12}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{d \tau_{u}}{d l}<\frac{\tau_{u}}{l} \tag{C.13}
\end{equation*}
$$

Therefore, one obtains the following inequalities in terms of the Kirchhoff stress:

$$
\begin{equation*}
\frac{l}{\tau_{u}} \frac{d \tau_{u}}{d l}<1 \quad \text { or } \frac{d\left(\ln \tau_{u}\right)}{d\left(\ln \frac{l}{l_{0}}\right)}<1 \tag{C.14}
\end{equation*}
$$

These inequalities are exactly the same as Taylor's inequalities if one sets

$$
\begin{equation*}
T=\tau_{u} \tag{C.15}
\end{equation*}
$$

The stress measure T used by G.I. Taylor is the Kirchhoff stress. Obviously, the stress measure T cannot be the true stress σ_{T} because

$$
\begin{equation*}
\frac{d \sigma_{E}}{d l}=\frac{d\left(\sigma_{\mathrm{T}} \frac{l_{o}}{l} \frac{\rho_{0}}{\rho}\right.}{d \ell}<0 \tag{c.16}
\end{equation*}
$$

and only if tho donnity in constant,

$$
\begin{equation*}
\frac{d(1 / \rho)}{d l}=0 \tag{c.17}
\end{equation*}
$$

will tho true across σ_{T} bo equal to T :

$$
\begin{equation*}
\rho=\rho_{0}=T=0=T_{u} \tag{c.18}
\end{equation*}
$$

Also observe that J.F. Bel. (page 543, Chapter IV of Raf. 216) is incorrect when he states that "Taylor found that results from simple tension and compression tests on polycrystalline copper coincided when nominal or Piola-Kirchhoff stress T (referred to original area) was plotted against logarithmic or "natural" strain (true strain)". Because, as just shown, T is the Kirchhoff stress τ_{u} (and to a good approximation is the true stress σ_{T}); T is not the nominal stress σ_{E} in Taylor's classic work (Ref. 114).

In preparing the uniaxial static tensile test data in Kirchhoff stress $\tau_{u}{ }_{0}^{+}$versus logarithmic strain (ϵ_{u}^{*}) form, the data in the strain region where necking occurs (that is, beyond the peak in engineering stress $\sigma_{E}=P / A_{0}$) should be modified appropriately to "correct for necking", because after necking occurs a multiaxial state of stress is developed. Various schemes for making such corrections have been developed. See, for example, the procedure and correction factor proposed by Bridgman [217] based upon extensive experimental work. For more information on necking, see the book by Lubahn and Felgar [218]. Recent work on computer simulations of tension tests of ductile metals is reported by Norris et al. [219] and by Saje [220]. An excellent recent survey article on this subject was prepared by Hutchinson [221].

[^62]Ono approach to approximate the uniaxial behavior beyond the incipiont nocking condition (peak in σ_{E}) is to assume a ntraight-ling fit botwoon that point and thai rupture condition. Astor nocking occurs, it in hopolong to try to measure the rotative olongation E_{u} with oxtonnomotors or strain agon, Bingo tho precise location of tho nocking nation Le not known beforehand for uniform spocimons, and because of the nonuniform state of strain in the nock region. Howover, the crome-sectional area A_{f} of the spocimon at: tho rupture station can bo moasurod after rupture. Hence, one can estimate tho true stress ($\left.\sigma_{T}\right)_{f}$ at rupture (ignoring any elastic recovery, assuming a uniform stress through the cross-sectional area A_{f}, and ignoring the multiaxial stress conditions) from the knowledge of the load p_{f} at rupture and the cross-sectional area $A_{f}:\left(\sigma_{T}\right)_{F}=P_{f} / A_{f}$. In order to compute the logarithmic strain after necking occurs, from a knowledge of the cross sectional area, it is necessary to assume incompressibility, since,

$$
\begin{equation*}
E_{u}^{*} \equiv \ln \left(1+E_{u}\right)=\ln \left(\frac{\rho_{0}}{\rho} \frac{A_{0}}{A}\right) \tag{C.19}
\end{equation*}
$$

and for Incompressibility $\left(\rho_{0} \approx \rho\right)$:

$$
\begin{equation*}
E_{u}^{*}=\ln \frac{A_{0}}{A} \tag{c.20}
\end{equation*}
$$

Hence, one can estimate the logarithmic $\operatorname{strain}\left(\varepsilon_{u}^{*}\right) f$ at rupture (since at the associated large plastic strains, the ductile material may be regarded as behaving in an incompressible fashion) by

$$
\begin{equation*}
\left(E_{u}^{*}\right)_{f} \dot{ } \quad \ln \frac{A_{0}}{A_{f}} \tag{c.21}
\end{equation*}
$$

Similarly, one can estimate the Kirchhoff stress ($\tau_{u_{0}^{\prime}}^{\prime} f$ at rupture, assuming incompressibility by

$$
\begin{align*}
& \tau_{u_{0}}=\frac{\rho_{o}}{\rho} \sigma_{T} ;\left(\tau_{u_{0}}\right)_{f} \tag{C.22}\\
&=\left(\sigma_{T}\right)_{f} \text { for } \rho_{0} \doteq \rho \\
& \therefore\left(\tau_{u_{0}}\right)_{f} \doteq \frac{P_{f}}{A_{f}}
\end{align*}
$$

 and may bo computed, for oxampln, by using gridgman'a [217] oorrnction factor by (non Eq. 5.8 of [21, 日]):

$$
\begin{equation*}
\left(\tau_{u_{0}}\right)_{f c}=\frac{P_{f} / A_{f}}{\left(1+2 \frac{R}{a}\right) \ln \left(1+\frac{1}{2} \frac{a}{R}\right)} \tag{c.23}
\end{equation*}
$$

where
$a=$ radius of the (assumed to be circular) rupture cross section
R = lateral final radius of curvature of the tensdio test specimen' at the rupture station.

Bridgman [217] presents data plots (from extensive experiments) from which one can determine the ratio a / R from a knowledge of A_{0} / A_{f}. other correction alternatives may be found in Refs. 218-221.

As noted in Subsection 3.3.4, the static uniaxial stress-strain data expressed in $\tau_{u_{0}}$ versus ε_{u}^{*} form (including the data points at incipient necking and at the rupture condition as just described) can be fitted in a piecewise-linear fashion for use in the mechanical-sublayer material model. Further, data from uniaxial stress-strain tests at various strain-rate levels may be obtained and analyzed to deduce the approximate rate constants d and p (or ${ }^{8} \mathrm{a}$ and g_{p}) indicated in Eq. 3.64 (or Eq. 3.43).

[^0]: pigurn

[^1]: Numbers in brackets [] denote references given in the reference list.

[^2]: *These components aro the so-called covariant components.

[^3]: *They are called the metric tensors, because all essential metric properties of space are completely determined by these tensors, and their derivatives.

[^4]: *Wen the indices of a kerncl letter do not all belong to the same space, the quantity is called a connecting quantity [61].

[^5]: *This derivative with respect to time is symbolized in this work by a dot on top of the quantity being differentiated. The symbol $\frac{D}{D t}$ is also often used in hydrodynamics texts for the material time derivative.

[^6]: *See, for oxamplo, Section
 J.L. Ericksen (Ref. G7)..

[^7]: *According to Truesdell (Ref. 15, page 266), this strain measure was introduced by Green in 1841, and by St. Venant in 1844; since its components are usually referred to a fixed reference configuration, it goes by the name of "Lagrangian strain" in the older engineering literatare.

[^8]: *According to Truesdell (Ref. 15, page 266), this strain measure was introduced by Almansi in 1911 and Hame in 1912; since its components are usually referred to the present configuration, it goes by the name "Eulerian strain" in the older engineering literature.

[^9]: *As a matter of fact, it is possible to deseribe strain correctily by measures which are not tensors; Truesdell points out (Ref. 15, page 269): "but there can hardly be any advantage, and attempts of this kind have usually led to confusion if not disastor".

[^10]: *Henceforth, Grad shall denote the gradient operator with respect to the spatial coordinates X_{1}, while grad shall denote the gradient operator with respect to the referential (material) coordinates x_{i}.

[^11]: ${ }^{*}$ It is not a law of mechanics that the Cauchy stress tensor is symmetric. Truesdell (32, page 1.4) points out that it has been known for a century that the presence of couples, acting whether from within the material like body forces or upon contiguous portions of material like stresses, is sufficient to render the stresi tensor unsymmetric. These couple stresses may arise from inhomogeneity of strain. Some presentations of the continuum theory of dislocations in finite strain make use of couple stresses (polar medium). Howover, for the present purposes, the couple strosses are ignored and attention is restricted to the nonpolar case.

[^12]: *For example, Theorems 3-13 and 3-14 of [74] and Theorem 8.26 of [75].

[^13]: The components $\hat{\sigma}_{11}=\sigma_{1}^{1}=\frac{p}{A}$ are called "true stress" by the engineering
 literature.

[^14]: See the footnote on the previous page.

[^15]: With no strain-rate sensitivity.

[^16]: ${ }^{+}$The work done by a sot of external forces acting on a body must be positive during the application and positive or zero over a complete cycle of application and removal. For perfect plasticity, this is modified to require that the plastic work of the external agency is zero instead of positive.

[^17]: 'Also known as the "Jaumann stress rate".

[^18]: *For metals with a cubic structure, since slip is their primary deformation mechanism, and it can operate equally well forward or backward.

[^19]: *These similarities are only formal in the case of time-independent plasticity, since therc is really no rate-dependence or viscosity implied by the plasticity equations. However, in the present treatment, strain-rate dependence of the constitutive equations was taken into account.

[^20]: +It can be integrated, under some assumptions, in the cases of uniaxial stress-strain, and pure volumetric deformation.
 ${ }^{++}$In the sense of Green, an castie material is onc for which a strainonergy function exists.

[^21]: * Impact analysis of 6061-T651 aluminum alloy structures.

[^22]: ${ }^{+}$Ass previously mentioned this assumption is not necessary; by employing different elastic modulii ${ }^{s}{ }_{E}$, more complicated material behavior can be
 represented.

[^23]: ${ }^{+}$As previously mentioned the material strain-rate constants d and p, can be assumed to no difforent for each sublayer 5 , theroby reprosenting vory complicated strain-rate material behavior.

[^24]: ${ }^{+}$The elastic ν is to be used in Eqs. 3.66a and 3.66b. Note that these equations hold for $s>1$; for $s=1$, only the first term of Eq. 3.66a and only the first two terms of Eq. 3.66b apply.
 ${ }^{++}$Both for plastic and elastic strains, since the elastic strains are assumed to be small.

[^25]: ${ }^{+}$Since superscript "p" is used here to denote plastic components, the istrain-rate constint s_{p} for sublayer " $s_{s}^{\prime \prime}$ (see Eq. 3.49) is replaced only in subsection 3.3 .5 by the symbol a to avoid confusion.

[^26]: ${ }^{+}$From geometrical considerations; in particular, it can be obtained from a specialization of Eq. 5.84 of Section 5 .

[^27]: "Here, the precise meaning of "small" rotations and "small" strains is made clear in this context.

[^28]: Here s is the "deformed" arc length (the are length in the present configuration).

[^29]: This observation has already been made in [28].

[^30]: *Here, as in previous subsections, prosoript "s" refors to a quantity pertaining to the sth sublayer of the mochanical-sublayer model.

[^31]: *Gausian integration is utilized in the analysis.

[^32]:

[^33]: *These displacement gradients are the covariant derivatives in threedimensional Euclidean space of the three-dimensional Euclidean vector \bar{u}_{0}.

[^34]: *The underlined $\sim \sim$ terms will be discussed presently.

[^35]: *As defined by 'ríuesdel1 [37].

[^36]: * Seemingly first formulated for a continuum by viola in 1448 [169].

[^37]: As pieviously indicatod, one must always bear in mind that the choice of the re:erence configuration is arbitrary [22, page 79], that the refercnce configuration is meroly some shape that the body has occupied or might occupy. If the last configuration that the body has occupied is omployed as tho reforonce configuration, the corresponding description is sometimes called "updated Lagrangian"; while if a fixed reforence configuration is employed, tho description is sometimes called "total Lagrangian". In the present treatment, a fixed reforence configuration is going to be used for the description of the motion.

[^38]: *here the three-dimensional continuum equations are utilized for clarity, instead of the more complicated strain-displacement equations for shells.

[^39]: ${ }^{\dagger}$ Numerical experience, however, shows that when the Δt is chosen small cnough to insure gtability, convergence is also achieved.

[^40]: ${ }^{+}$Since experiments on polycrystals with a cubic crystal structure confirm that the constant elastic modulus relates the Kirchhoff stress and the logarithmic strain, and not the end piola-Kirchhoff stress and the Green (Lagrangian) strain when finite strains are present (see Lis. 4.167 and
 $5.297-5.299$).

[^41]: *An exception, however, has been noted in Ref. 176 whercin the 3 -point central-difference formula was used to solvo the one dimensional wave equation. When Δt was chosen such that $(\Delta t) /(\Delta x)=1$, a solution which was exact in both amplitude and phase was obtained. Sccond, the Gurtin averaging operator with $c=0$ exhibits no phase shift orror but only with one (much too large) valuc of Δt; false damping also is present.

[^42]: ${ }^{+}$Since the plasticity itself becomes path dependent in stress space for non-proportional loading in multidimensional states of stress.

[^43]: +of course, one can also operators, like the tangent stiffness form of the equations of motion.

[^44]: * Eeam specimen $C B-4$ was originally straight; hence, $1 / R=0$ and, therefore, $\gamma^{22}=\gamma_{2}^{2}=\gamma_{22}$.

[^45]: *The DOF are $u, v, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$, and $\frac{\partial^{2} w}{\partial x \partial y}$.

[^46]: $+$
 However, a subincrementation procedure (see Subsection 5.3.2.5) as used in this study partly relieves this problem.

[^47]: ${ }^{\text {Also }}$ referred to herein as the modified unconventional form.

[^48]: *Also sce Eq. 6.121.

[^49]: *at $\theta: 60^{\circ}$.

[^50]: From Aclpco tillet No. 2.

[^51]: "Material rupture occurred at $\gamma_{u}=52.3$ per cenc.

[^52]: ${ }^{+}$A finite-strain-modified version of CIVM-JET 4B was employed; this version is called CIVM-JEn 4C 1. A1].
 $+{ }^{++}$For the present finite strain calculation, $L_{e f f}=0.497$ in was chosen since this value was used for the small strain calcufations of Ref. 30. otherwise, the "more plausible" value $L_{e f f}=2 h=1.25$ in would have been preferred.

[^53]: This is essentially the time of occurrence of peak straining.

[^54]: *only permanent strain was recorded at this location.
 ${ }^{+}$Note that the static-test uniaxial rupture level for γ_{u} for this material [2] is about 1.05 or 105 per cent.

[^55]: FIG. 8 SCHEMATIC OF IMPULSIVELY-LOADED 6061-T651 ALUMINUM NARRDW-PLATE SPECIYEN CB-4

[^56]: FIG. 34 COMPARISON OF FINITE-STRAIN VS. SMALI-STRAIN PREDICTIONS FOR THE TNIER-SURFACE ZNDD OUTFRSURFACE CIRCUMFERENTIAL STRAINS OF THE NAPTC TEST 201 STEEL CORTATRMENT RTNG

[^57]: (a) Plate-Center Station $(x, y)=(0,0)$, Upper (Non-Impacted) Surface FIG. 41 MEASUREMENTS AND/OR PREDICTIONS OF TRANSIENT LONGITUDINAL GREEN (LIGGRANGIAN) STRAIN ON THE SPECTMEN CB-18

[^58]: ${ }^{+}$Recall that $\zeta^{\dot{0}}$ denotes the ζ-direction location of a particle in the initial undeformed state.

[^59]: Both by explosive loading and rigid-fragment impact.

[^60]: This is the ratio of the raximum eigervalue to the minimum eigenvalue of the mathematical model of the linear structural system.

[^61]: ${ }^{+}$That is, at least 3 by 3 or $9 x, y$ Gaussian stations, and 4 depthwise Gaussian stations at each of these 9 Gaussian stations; hence, there would be a total of 36 stations per element.

[^62]: "Subscript "o" refers to static conditions.

