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A_ Same as "above but oontravariant components 176

c[_variant base vectors of the referencb surface

in the present configuration 176

A_ Samu as above but con£ravariant 176
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S__I pofinition PaZLqg_

b Determinant of the _oaond fundamnntal t_nnor

of th_ roforencq surface an tht_ roll,fence

conf_guratlon 178

b_ Covariant compon,._nts of the sncond fundt_nentnl

tensor of the ref_renco surface in the ruforonc_

conf :Lguratlon 178

@

b8 Same as above but mimed &_mpone.,,ts 178

B Dotez_inant of the second fundamental tensor of

the reference surface in the present configuration 178

Be8 Covariant components of the second fundamental

tensor of the reference surface in the present

configuration 178

B8 Same as above but mixed components 178

u , ,. 184

C 183

Cauchy-Green Deformation Tensor 36

Ci_ Covatiant components of the Cauchy-Green Deforma-

tlon Tensor in convected coordinates in the

reference configuration 38,198

i

Cj Same as above but mixed _Qmponen_s 38

02

C2 Mixed component of the 2auchy-Green Deformation

Tensor at the r_.ferenc _ axis in the reference

configuration 140

o

Ci_ Covariant components of the Cauchy-Green Deforma-

tion Tensor at the reference surface in the

reference configuration 204

{_-l)ij Contravariant components of the inverse of the

CaUchy-Green Deformation Tensor in convicted

coordinates in the reference configuration 199

xwiii
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Definition

, (c ) Contravariant components of the Inverse of the

cauchy-Green Deformation Tensor at the rnforenee

surface in the reference configuration 204

d Material straln-rate constant (viscosity coeffi-

cient) 122

Sd Material strain-rate constant (viscosity coeffi-

cient) of sublayer s in the mechanlcal-sublayer

model of viscoplasticity 119

Rate of Deformation Tensor (a_so called stretching) 44

I Mixed components of the Rate of Deformation TensorDj

in convected coordinates in the present configura-

tion 45

s_p Plastic part of the Rate of Deformation Tensor,

pertaining to sublayer s of the mechanical-sublayer

model of plasticity 118

s_e "Elastic" part of the Rate of Deformation Tensor,

pertaining to sublayer s of the mechanical-sublayer

model of plasticity 117

_D Deviatoric part of the Rate of Deformation Tensor i19

D Uniaxial component of the Rate of Deformationu

Tensor 89,125

Almansi Strain Tensor, also called Eulerian Strain

Tensor 40

E Young's (elastic) modulus 124

Eu Axial relative elongation, also called engineering

or nominal strain 87

ET Tangent modulus associated with st_blayor s of thes

mechanical-sublayer model of piecewise-linear

plasticity 124
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Symbol D_finition Pa__

E Fourth-order "Elastic" (Stiffness) Tensor 122

s_ Fourth-order "Elastic" (Stiffness) T_]n[1orpurta_ning

to nublayer n of the meehanleal-sublay_r model o_

piecowlso-linear plasticity 11,7

Ehid Mixed components of the fourth-order "Elastle"KL

(Stiffness) Tensor in convected _oordinates in the

p rosslnl configuration 206

{f} Individual finite element generalized load vector

expressed in local coordinates accounting for

externally-applled distributed or concentrated

loads and body forces 243

{f*} Same as above but expressed in terms of global

reference coordinates 244

{F} Same as above but pertaining to the complete

(global), finite element structure_ the sum of

the individual finite element contributions 246

[FNL} Global pseudo-load vector arising from the
q

nonlinear terms in the strain-displacement

relations in the conventional formulation of

the equations of motion 247

{F_} 'Global pseudo-load vector due to plastic strains,

and associated with the linear terms of the strain-

displacement relations in the conventional formula-

tion of the equations of motion 247

{FNL} Same as above, but assoeiated with the nonlinear
P

terms of th_ strain-displacement relations 247

{FNL} Global pseudo-load vector representiig internal

forces arising from (small and finite) elastic-

xx
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DQf!nltlon

pla_ti_ _trains as wall as all (lin_a_ and non-

linear) terms Qf the strain-dlspla_om_nt relations,

in the mQdlfled uncQnventional formulation of the

equations of ._tion 269

Deformation Gradient Tensor 30

g Deto;mlnant o£ the fundamental metric tensor in

the reference configuration 27,]79

gij Covariant components of the £undamental metric

tensor in the reference configuration 27

gij Same as above but contravariant components 27

gi Covariant base vectors of the body-fixed (convected)

coordinate system in the reference configuration 26

-i
g Same as above but contravariant 26

G Determinant of the fundamental metric tensor in

the present configuration 27

GIj Covariant components of the fundamental metric

tensor in the present configuration 27

GIJ Same as above but contravariant components 27

_I Covariant base vectors of the body-fixed (convected)

coordinate system in the present configuration 27

_I Same as. aboVe but contravariant 27

h Mean curvature of the reference surface in the

reference configuration 178

[h] Individual finite element pseudo-stiffness matrix

expressed in local coordinates arising from elastic-

plastic strains as well as the nonlinear terms of

the strain-displacement relations, in the unconven-

tional form of the equations of motion 243

xxl
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Symbol Definition Pa__q9-

[h ] Hamo an above but _xpromsod in forms of global

r_fnrnn_ coordinates 244

H Logarlth_ic st_aln tonsor, alno associated with

tho n_o of Hon_ky 42

I MiXod comp_nonts o_ tho logarithmic strain tonsorHj

_, in tho body-£ixod convQctod coordlnato systom

_n tho prosont configuration 4,4

S(H_)e Same as above but pertalnlng to the ola_tic

component of the strain of the s s_blayer in the

mechanlcal-sublayer model of plasticity 167

s(H_)P Same as above but pertaining to the plastic

component of the strain of the s sublayer in the

mechanical-s_olayer model of plasticity 167

{i} Individual finite element pseudo-load vector

expressed in local coordinates, representing all

of the internal forces arising from elastic as

well as plastic strains and the linear as well

as the nonlinear terms of the strain-displacement

relations in the unconventional form of the

equations of motion 244

{i*} 3ame as above but expressed in terms of global

reference coordinates 244

{I} Same as above but pertaining to the complete

(global) finite-element structure: the sum of

_he individual finite element contributions 245

D Second invariant of the deviatorlc rate-of-
12

deformation tensor 128

sI_ Ss_ond invariant of the plastic part of the rate-

of-deformation tensor of sublayer s of the

mechanleal-sublayer model of viscoplas£1city 128

xxii
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Symbol DofiDitio.

JR Second invariant of the deviatorlo stress tensor 104

"J2 Second invarlant of the doviatorle Kirchhoff

stronn tensor o_ s'',layor s Of th_ mochanlcol-

oBblayor mo_ol of vlscoplnntlc!ty I_8

k Gauonlan curvature of the reference surface in

the ro£eronco con_iquratlon 178

[k] _ndividual finite ,.Aomont constant stlffncso

matrix expressed in local coordinates arising

from linear elastic effects in the conventional

form of the equations of motion 247

[k ] Same as above but expressed in terms of 91obal

reference coordinates 247

[K] Same as above but pertaining to the complete

(global) finite-element structure: the sum of

the individual flnite-element contributions 247

[kT] Individual finite element tangent (variable) stiff-

ness matrix arisin8 from elastic as well as plastic

strains and the linear as well as the nonlinear

terms of the strain-dlsplaqement relations in the

tansent stiffness for,, _f the equations of motJ.on 251

[KT] Same as above but pertaining to the complete

(global) finite-element structure= the sum of

the individual finite-element contributions 250

K Gaussian curvature of the reference surface in

the present configuration 178

Sk Yield stress in pure shear, under static conditionso

of sublayer s in the mechanical-sublayer model of

plasticity 128

i xxiii
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S__mbol D_finitlon

£ A_lal length in the present oonfiguration 81

[ Mat_rlal rain of £ 81

I £o Axial Inn_th in the r_rescn (orlg_nal or

i undo_ormod) con_Ig_atlon 81m Mass 53

[m] Xndlv_dual _inito-olemont mass matrix oxprosnod

in local ¢oo_dlnatos, ar_,01ng from Inottlal

effects in the oquatlons of motion 242

[m ] Same as above but expressed in terms of global

r_ference coordlnatos 244

[M] Same as above but pertaining to the complete

(global) flnite-eloment structure_ the sum o£

the indlvidual finite-element contributions 245

Unit normal base vector to the reference axis

in the reference configuration 137

Unit normal base vector to the reference surface

in the reference configuration 174

Unit normal base vector to the reference axi.._s

in the present configuration 137

Unit normal base vector to the reference surface

An the present configuration 175

Nij A_sumed interpolation v_tor function for assumed

displacement ui 236

p Material constant In _rain-rate power law 122

s
p Same as above but pertaining to sublayer s of

the mechanical-sublayer model of vlscoplasticlty 119
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S_bol Dgfinitlon

PQsi£iQn vnctor frQm the Qriqin Qf the fix_d-in-
o

SpaCN (innrtial) flystem to the curved bN_

r_fnr_ncn aXJ,Se J.n thn prf_s_nt _onfigurati_n 137

Ro Por_tJ_n vootor from £|I_ sriqin uf th_ fixod-_.n-

,pa_ (_,n_rt_al) syst_m _o tho shnll rnferonco

surfaco, it, tho pr_oont _onf_qurat_on 175

dtl D_f_O_Oltt_al lino elomont in tho r{_foz_nco

configuration 37

d_ Di££orontial 1ino olomont in tho prosont

conflg1_raLion 37

s DQ£ormod are longth 146,149

S Second Piola-Kirchhoff stress 54

&
S Matorial rate of tho Second Piola-Kirchhoff stress i17

Slj Contr_variant components o£ the Second Piola-

Kirchhoff stress, in the body-fixed (convected)

coordinate System in the reference configuration 54

_iJ Material rate of Sij 75

t Time 24

t Reference or initial time 24
o

u Displacement component of the displacement vector

of the reference surface of the plate or shell,

in one of the body-fixed convected coordinates

that defines the reference surface 189

Displacement vector 28

UO Displacement Vector of the referenc_ axis of th_
curved beam 139

Displacement vector of the reference surface of
o

plate or shell 175
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Si/mbo_ Definition

_, U _[ght Stretch T_nso_ ]6

02

i. U2 Mixed component of the rl@ht stretch tnnsor at

1 the r_f_r_nc_ _i_ 140

O _ntorn_l _n_zg¥ 7G,_31

_U V_tual wo_R o_ tlm Int_nnl stresses _I

#

: 8_p Plastic power per tmlt ma,s o_ oublayo= s in the{.

mo_huni_al-sub_ayo_ mo_o_ o_ viocoplastlolt¥ I_0

Velocity rooter of matorlal points of a movln_

oontlnut_ (material tlmo dorivatlvo o£ the

di_placemont vector) 29

v Displacement component of the displacement vQctor

I of the rofQrenco axis, £n the body-fixed convectod

coordinate that defines the reference axis o£ the

",_ CUrvQd beam 139
i

v Displacement component of the displacement vector

I of the reference surface of the plate or shell, in,} .

one of the body-fixed convected coordinates that

,I deEines th8 reference surface 189
' il

Left stretch tensor 36

I V Volume in t,,e present configuration 53

V Volume in the reference (initial or undeformed)

"__ o u_nfiguration 53

w Displacement component of the displacement vector

! of the r_ference axis, in the body-fixed eonveoted

coordinate pe£pendlculaz to the reference axis of

I the cttrved beam 139

w Displacement component of the dlsplacement vector

i of th_ re£erencc surface of the plate or shell, in

_' _xvil

!
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S__o_l DQflnition p_

the body-fixed convoot_d coordinate perpendicular

to the reference surface 1R5

6W V_rtual work done by the external forces (body

forco_ and aurface tractions) 231

x Material (Lagrangian) rectangular Cartoslan ¢oordi-

nato defining the reference surface of the plato 189

Xi Material (Lagrangian) coordinates belonging to the

fixed-An-space (inertia1) rectangular Cartesian

coordinate system defining the position of the

points of the continuum in the reference configura-

tion 25

XI Spatial (Eulerian) coordinates belonging" to the

fixed-in-space (inertial) rectangular cartesian

coordinate system defining the present position

of the points of the continuum 25

y Material (Lagrangian) rectangular Cartesian cOordi-

nate defining the reference surface of the plate 189

Parameter in the strain-displacement relations for

curved beams related to changes in the thickness

or in the lateral dimensions due to finite membrane

strains 165

E_ress_on appearing in the bending strain part of

the strain-displacement relations for plates 193

Parameter in the strain-displacement relations for

curved beams related to changes in the thickness

or in the lateral dimensions due to finite membrane

strains 165

Expression appearing in the bending strain part of

the strain-displacement relations for plates 193

_o(viii
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S_l_ol Dnfinition

Groon (Lagrangian) strain t_nnor 38

y Matorlal rate of the _reen (Lagrangian) ntraln

tonflor 46

Yij Covariant components of the Gr_len (Lagrangian)

strain tensor in the body-flxed uonvoctod coordinatc

system in the reference configuration 39

Yij Material rate of 46

e2

72 Mixed component of the Graven (Lagrangian) strain

tensor at the body-fixed reference axis of the

curved beam in the reference configuration 140

o

70_ Covariant components uf the Green (Lagrangian)

strain tensor at the body-flxed reference surface

of the plate or shell, in the reference configura-

tion 188

s_e "Elastic" part of the material rate of the Green

(Lagrangian) strain of sublayer s of the mechanical-

sublayer model of viscoplasticlty 208

s_ Plastic part of the material rate of the Green

(Lagrangian) strain of sublayer s of the mechanical-

sublayer model o£ viscoplasticity 208

,

eu Uniaxial logarithmic (natural, true, or Hencky)

strain 88

C Material rate of E 89
u u

s*
£ Coordinate "s" of _e uniaxial logarithmic s%rain
u ,

cu in _e piecewisu-linear approximation of the

static stress-strain curve for the muchanical-

sub]ayer model of plasticity 123

xxix
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_l_bal D_finitt, on

Eo Lagranqinn, matarial, or embnddad _ordinato that

moaauraa tho dintanco along an outwardly-diroetad

normal to tho roforenoo axia of tha curvedboom,

in the reference configuration of the body-fixed

systom 136

_o Lagrangtan, matorial, or embedded coordinate that

measures the distance along an outwardly-directed

normal to the reference surface of the plate or

shell, in the reference configuration of the body-

fixed system 154

n Lagrangian, material, or embedded coordinate that

defines the (curvilinear) reference axis of the

curved beam, in the reference configuration of the

body-fixed system 136

n Expression appearing in the bending part of the

strain-displacement relations for plates 193

8 Rotation angle of a material point at the reference

axis of the curved beam 145

k Parameter associated with the thickness change of

the curved beam because of finite strains 137

Q

A Parameter associated with the thickness change of

the curved beam because of finite strains. 137

A Parameter associated with the thickness change of the
O

curved beam because of finite membrane strains 158

Parameter associated with the thickness change of

the plate or shell because of finite strains 17S

_0 Parameter associated with the thickness change of

the plate or shell because of finite membrane

strains 184

XXX
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_b0! D_,fini tion p_

Scalar [a_tor of proportional.it? (not a matorla]

conl-ltant) in pla_t.i_.i.ty ].05

)_i Su_llar facto3: of proportionality (not a mat,_rlal

_on)Itant) corrt._spondlng to st_layer s in the

mechanieal-st_lay_._r model of vl_looplasti_,ity I18,121

s_* 216

%1 Parameter in the straln-displacement relations for

curved beams associated with changes in the thick-

ness or lateral dimensions because of finite

membrane strains 165

Expression appearing in the bending part of the

strain-displacement relations fcr plates 193

9 (Elastic) Poisson*s ratio 127,206

_i Lagrangian, material, or embedded curvilinear

coordinates whidl identify the material points of

the medium, in the body-fixed system 25

_ Lagrangian, material Ior embedded curvillnear

coordinates which define the reference surface of

the plate or sl%ell in the body-fixed syst,Lm_ 174

P Mass density of the material in the present

coz,figurat ion 53

Po Mass density of the material in the reference

(initial or mldeformed) configuration 53

Cauchy stress tensor, also called Eulerian stress

tellsor 52

oE Uniaxlal engineering sttoss, also called nominal

or ist Piola_Kirch|k_ff stress _.)5

0T Unlaxial "true" stress, also called Cauchy stress 91

xxxi

t

iii | i i i I Ii I II I I I

00000001-TSC04



Definition

Kirchhof£ str_ tonmor 52

s_ S_me an abovo, but portalnin_ to _ublayor s o£ tho

mach.nlca1-.ublayor modal of viscoplnntlcity 117

%
T Co-rotational (ZarQmba-Jaumann) rata oE the

Kirohhoff stross 74

o

sT Same as above, but pertaining to sublayer s of tho

mochaniual-sublayQr model of visuoplastlolty 117

s_D Deviatoric part of s_ 118

sTjI Mixed components of s_ in the present configuration

of the body-fixed convected coordinate system 201

sgI Mixed components of s_Tj T in the present configuration

of the body-fixed converted coordinate system 205

T Uniaxial Kirchhoff stress 92
u

sTY Rate-dependent uniaxial yield stress of sublayer su

in the mechanical-sublayer model of viscoplasticity 119,125

sTY Static (rate-independent) unlaxial yield stress of
uo

sublayer s in the mechanical-sublayer model of

plastlclty 119,124,127

sT Coordinate "s" in the piecewise-llnear approxima-u

o tion of the static stress-straln curve for the

mechanlcal-sublayer model of plasticity 123

Yield surface (boundary in stress space which

defines the elastic domain in the theory of

plasticity) 103
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D_finitlon

s$ Yield surface in Kirchhoff stress space of the s

sublayer in the mnuhanical sublayor model of

:' viscoplastloity i18i

X Displacement gradient for curved beams 140

Displaccmont gra_Iont for curved beams 140

L

The tozminology "mechanical-sublayer model of plasticity" and "mechanical-

sublayer model of viscoplasticity" has been used intercha_gingly according to

whether the quantity in question was considered as rate independent or rate

dependent, respectively.

Definition of the Table i Symbols Used in This Report

Rate-of-Deformatlon tensor, also called stretching 44

I Mixed components of _ in the body-fixed convectedDj

coordinate system in the present configuration 45

DIj Rectangular Cartesian components of _ in the fixed-

in-space (inertial) coordinate system in the present

configuration 45

7 Green strain tensor, also called Lagrangian strain

tensor 38

i

_j Mixed components of _ in the body-fixed convected
coordinate system in the reference configuration 39

_ij Rectangular Cartesian components of _ in the fixed-

in-space (inertial) coordinate system in the

reference configuration 39

e Almansi strain tensor, also called Eulerian strain

tensor 40

xxxiii
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E

Dofinitlon

ej Mi_d _ompon_nts of _ in the body-fixed converted

coordinat_ system in the present configuration 41

eij R_ctangular cartesian components of _ in th_ fixed-

in-spn_ (Inortlal) ooordinato system in th_ present

oonfiguratlon 40

Traction vector 51

Cauchy stress tQn_or_ _iso called EuloEian strosu

tensor 52

I Mixed components of _ in the body-fixed convectedOj

coordinate system in the present configuration 52

_ZJ Rectangular Cartesian components of _ in the fixed-

in-space (inertial) coordinate system in the present

configuration 52

Kirchhoff stress tensor 53

I Mixed components of _ in _he body-fixed aonvectedTj

coordinate system in the present configuration 54

A

Z_j Rectangular Cartesian components of T in the fixed-

in space (inertial) coordinate system in the present

configuration 54

Second Piola-Kirchhoff stress tensor 54

i

Sj Mixed components of _ in the body-fixed oonvected

coordinate system in the reference configuration 56

Sij Rectangular Cartesian components of _ in the fixed-

in-space (inertial) coordinate system in the

reference configuration 56

First Piola-Kirchhoff stress tensor, also called

nominal stress 57

xxxiv



S_. be i De finition

Ti_ Mixed components of th_ double tensor _ i_ the

) body-fixed oonvocted coordinate flystom in the

rof.oronco and present con£1.qurations 57

Tij Rectangular Cartoslan components of the double

tensor _ in the £1xod-ln-spaco (inertial)

coordlnato system in the ro£oronco and presont

oonfiguratlons 57
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SUMMARY

Tho obJoct of tho inve_tigation repo_ted horQin was to develop _ method

of analysis for thin structures (boams, _ings, plaice, and sholls) that

Incnrporatcs finite strain, clastlc-plastic, strain-hardening, t_ae-depond_nt

material behavior implem_ntod wi_l r_spe_t to a fixed ro£orencc configuration
(to_al Lagranglan formulation) and is consistontly valid for £inito strains

and flnito rotations.

Tho th0ory is formulatud systematically in a body-flxcd system of

convouted coordinates with materially-cmbodded vectors that deform in common

with the contlnuu_n. Tensors are considared as linear vector functinns, and

use is made of the dyadic representation (instead of simply considering tensors
as a collection of compononts) because these concise tools are helpful to

clarify the physical laws under which materials deform. The kinematics of a

deformable continuum is treated in detail, carefully defining precisely all

quantities necessary for the analysis.

The finit_._.__eetrai__..__nnplasticitytheory of Hill is extended to include very
complex material behavior (llke the Bauschinger effect and strain rate

dependence) by means of the "mechanical sublayer method". This plasticity

theory is referred to quantities associated with a fixed reference configura-
tion by means of proper transformations.

Strain-displacement equations for beams, rings, plates, and shells,

valid for finite strains and rotations and including thinning effects are
derived.

A new constant stiffness formulation of the finite element equations of

motion is developed. This new formulation is more efficient computationally

and better conditioned numerically than the conventional pseudo-force formula-

tion. Furthermore, this new formulation is valid for finite strain behavior

of any kind of material, while the conventional pseudo-force formulation is

valid only for small-strain elastic-plastic materials.

The predictions of the finite element computer programs that incorporate

the finite-strain elastic-plastic time dependent theory developed are compared

with experimental data conducted at the MIT-ASRL and the Picatinny Arsenal.

These include impulsive loading of beams, rings, and plates, and impact tests

of steel spheres against alumlnumbeams and plates.

The results from the flnite-strain analysis are compared with the

results from the small-strain theory of plasticity to ascertain the range of

v'_idity of small-straintheo_7 for the present kind o£ problems.

It is shown that, for the problems investigated, the finite-strain

theory developed in this report gives much better predictions and agreement

with experiment than does the traditional small-strain theory, and at practi-

cally no additional cost. This represents a very significant advance in the

capability for the reliable prediction of nonlinear transient structural

responses, including the reliable prediction of strains largo enough to

produce ductile-metal rupture.

Xxxvi
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SECTION 1

INTRODUC!'ION

1.1 Baok_9_d.

Concorn for the _billty of atructuro_ to withstand oxtromn

loadlngs a_soclated with a_id_nt aondltlons is rocoivlng incroannd

attention _rom englno_rs. To doto_aino tho degroo of safoty associated

with th_ ability of their dosigns to sustain damago and absorb _n,_rgy,

ongineors must now study the dynamic largo-de£1ectlon elastic-plastic

responses of structurus subjected to those impact and transient loads

which may occur in an accident. For instance, aircraft and aircraft

engine designers are now studying the responses of turbojet engine contain-

ment structures which may be subjected to impact by engine rotor fragments

following the potential failure of high-energy rotating engine parts

(caused by the ingestion of birds or ether foreign objects, low cycle and

high cycle fatigue, etc.).

The power industry is concerned with components and equipment of

conventional and nuclear powerplants which may be subjected to impact from

a wide variety of "internally generated" missiles such as rotor blades,

rotor disk segments, pipe or valve segments, etc. or to "externally-

generated" missiles such as tornado-propelled pipes, rods, planks, utility

poles, and automobiles, or to impact by aircraft or other such vehicles.

Naval vehicles, such as submarines, must be designed to undergo signifi-

cant transient undersea environmental loadlngs. Nonlinear transient

response analysis is also employed in studies of offshore drilling plat-

forms, response of buildings to seismic loadings, energy-absorbing capacity

of automobiles, aircraft crashworthlness design and assessment, etc.

The loadings and/or fragment sizes, masses, geometries, and especially

the attendant impact velocities for these "threats" are in an analysis

domain quite different from those of "military missiles or loadings".

Therefore, the extensive impact, penetration, perforation, and response

data which have been collected for the military in experiments on various

1
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mt}tallio, reinforced concrete, c_r other targ_}t mat_ri.nls0 cannot sf._rvens

a basis for _Itruetural d_sign against the cited civilian threats.

AIt/louqh many structures may be do_iqnod to withstand flovoro loads

by increasing tholr bulk, the addition of nXcossiva woicyht may introduce

severn r_conomlc pnnaltit_n or doqradat.ion in performance for. many app].ioa_

tlonfl, b'or offi_nnt minimum wnigh% (Ion_gn, it in then nocnsnary to tnkn

bettor advantaqn of the ono_gy-abllorb._ng uapaoltlns of matnria].ll by

pormltting them to undnrgo large plast£o _d',,,.'alnr-_ and doformationn. _ho

complex and nonllnoar character of ouch nt;uctural problemtJ, however,

makes it impesslblo to develop a cla[isical analytical solution, and

attention has been directed at approximate methods. The computer has

provided a practical means 09 obtaining maaningful predictions for these

typos of complex problems, and corresponding numerical analysis procedures

have been developed and expanded.

In order to provide detailed transient response data of the high resolu-

tion and accuracy required for a doflnitivQ assessment of the various

predictive methods, a variety of impulsive loading and impact experiments

has been Conducted at the MIT-ASRL, including impact tests of steel

spheres against or impulse loading of aluminum beams [1] * and aluminum

panels [2]. The missiles and targets introduced in these experiments

pose well-defined impact configurations and conditions for which transient

strain, permanent strain, and permanent deflection data of high quality

have been obtained. These test conditions have included impulse loading

or impact velocities sufficient to produce responses of various severities

up to and including threshold rupture conditions; often finite strains

well beyond the "small strain range" were observed.

To date, an accurate and rational accotmting of theoretical transient

s_ructural response prediction methods capable of incorporating the effects

of large strains and deformations in metallic structures subjected to

impact or impulse loading has not been demonstrated. No comparisons

between small strain theory predictions and finite strain theory results

Numbers in brackets [ ] denote references given in the reference list.
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have been found in the literature to ascertain the range of validity of

small strain theory.

The comparisons of predictions vB. experiments in the _ite_ature

usually involve only displacemnnts. With one exception [3], no eomparison_,

have b_)n found which show _tro_n rf_ults vs. r_xpr_rlmnnta] mnasurc_m_ntf_

f_r llt_ains that n_e outside the "_all strain" r_aIlge. It _.n to b_ noted

that d_l?].a_om_nt };'onul£.qare a much poorF)r bAs_s of _mtabllnhlng the

v(t_idlty of, o fleets clement fo_ulatlon than the ufl(_o_ d_roat strain

eomparlnons. _3t_'aintl involve dorlvat_(_s of dlnp]ac_montt) and, hence, ar(_

a much £iner mensur() of accuracy of numerical methods, l.'urthormoro, th,_

strains themselvol] az°o usually of primary int(_ront and [_igni£1cance.

Since the) stress-strain curves £or many structural materials are

usually very flat in the plastic range, a small error in the strain will

produce a smaller errer in the stresst whereas, a small error in the stress

will produce a much larger error in the strain. For this reason, strain-

bas__edcriteria for necking and fracture are more "sensitive" and more

reli_ble than are stress-based corresponding criteria.

It is evident that finite strains are present in impulsively-loaded or

impacted ductile metal structures deformed to th_ threshold of rupture.

For example, the steel-sphere /mpact_d and explosively-16aded beams and

panels reported in Refs. 1 and 2 suffered large strains. Some of them

slightly exceeded the ruptttre t/_reshold, while other specimens experienced

large strains but did not rupture. In addition, static uniaxial tensile,

compressive, and cyclic loading tests have been conducted at the MIT-ASRL

on the sa_e alt_int_ material employed in the beam, plate, and shell large

strain elastic-plastic transient response experiments. These tests

revealed that the 6061-T651 al_minum material used for the impulsively-

loaded and steel-sphere impacted beam and plate specimens fractures at

strains that cannot be considered "small". The 6061-T651 alt_ninum test

coupons that were machined parallel to the plate-stock roll direction

(or lengitudinai_ "L", specimens) fractured in static unlaxial tests at

£f
relative elongations Eu _ 0.8, where Eu = _ - l, _f(£o ) b_i_g the final

o
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(initial) gags length. Large perr._anent strains (recorded using

mechanic_lly lightly--scribed marks) in the impulsiv_ly_iQadnd and sto_]

sher_ impacted plates reached E _ O. 3 fQr the specimens that were atu

the rupture threshold,

nnc_gniz.lng that f_,Ite t]train ¢_ffect_ _re pr_flnnt in thoNe problems,

roli,_bln prodietlons di,,_qd that such i_ffl]cts be inolud_id rationa]].y and

propoxl_ in the nn_%lysi.q.

Various fOm,lU!atlons hays be(in employ_d to t;(_at nonl_noar ntat$_

all,d/or _iyllamJcproblems involv_itg lar_,_ rotat_onn, largo ntrainn, and

l_ath-lndup_ind_nt or path-_up_]lldunt innt(]rlal rlonllnoaritios; use for

_,M_nple, _ho articles o£ Baths st al. [4], Nomat-Nasuur [5], an4 Str/cklin

and llalsler [6]. All o_ thr_se £o_mulations use olthur three-dimensional

continumn equations (most of them restricted to plans strain, plane stress,

or axisymmetric sol_.ds) or the membrane theory of plates and shells

(restricted _o w_ry thin shells). Furthermore, only isotroplc and/or

kinematic hardening rules arc present in these flnite-strain elastic-

plastic £ormulations, and it s_ems that none of the computer implementa-

tions of tllese formulations employ a (total Lagrangian) fixed reference

configuration for the analysis of finite-strain plasticity.

Of course, the strain-displacement equations which are valid for
a

finite strains and large displacements of a three-di_enslonal continuum

have been known fo_ more than a century [7, page 270] being due to. Cauehy

[8,9,10 and ll, for example] who fully _laborated the theory of small

strain, obtaining it by specialization from his general theory of finite

strain. The history of the membrane theory of plates and shells goes

back to the eighteenth century [12]. However, the equations for large

strains st thin bodies involving both membrane and bending effects are

more diffiuult to derive and are not found in explicit form at least in

the readily accessible engineering literature. Koiter [13, page 2]

a: And, =onsequently, the even simpler strain-displacement equations of

a th_ee-dimensional continuum under the simplifying ass_nptions o_

plane strain, plane stress, or axlsymmetry are also well known.
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a
rncagnizes that the straln-dispiac£ment relations for large deflections

_f shells are "_Ktr_ly _omplleatnd". It is the presence of second

d_rivatlvnl_ and th_ larger nu_hnr of tc,rms in curvnd bn_m_n, platnn, and

sh_ll_ that restricts tile _Mtnnflive lltnratt_rn in finite strain ana]ysls

to t|V' nqu_tlor_s of thrnn_d._i,nnt_IOl%_ a_ntin_a nnd th,_ir simpllfind

versions, or to m(J_brann theory. _'hn only method _£ _n_lytlin of trans,i,,nt,

].a_'_.t,_-dn_,'lnf_ttnll*, _In_to-ntraln, elnntl(_-plantle, rnsponn_ _,_ ntru_t:urnn

Ut[l_l,g sh,,l],theory (_nolu(].|.ngboth m¢_,lbrann _gJ)_]_(]_}]_p_, nf|_o_tfl) s_ol,s

to be th0 PI,ITRo8 [14=21] flora.us o_ codes dov,_]opud Ill th0 p(_'_od 1960_1975.

']'ht_roacn runny £undnment_,l dlfl_er_n,c¢_i_botwt_un th¢_ _ormulatlons used

in the prurient study and tl%at o_ the uaz'lier work of PETIIOS. Thu prtu_ent

uquations are solved by tho spatial finito=alumul_t method while PI,:'I'ROSis

a spatial £|nit_-d_fferon_o _:omputo_ cuode. Also, all o_ the equations in

the prusunt analysis _re east in th_ referential description b of motion

taking a .fixed (Independent of time) placement c as ,:_er_nce, while PETROS

usus essentially the p_esent d pla_emunt as the reference. Also, these two

analyses differ in the type and implementation of finite strain plasticity

theory used.

a: Koiter .defines "lar_e deflections" as being characterized by the absenc_

of restrictions as to the magnitude of the displacements, which is

different from the engineering definition of "large deflections" --

usually understood as deflections larger than the thickness of the

thin body but smaller than its spanwise dimensions.

b" Still called the Lagrangian desc.ription of motion, especially by

hydrodynamiclsts, although it was first introduced by Eul_r.

: c" The Choice of "this referenee plaoement is arbitrary, it can be any

configuration that the body has or might occupy, but usually one

chooses the original, undeformed configuration. Truesdell [22, page 79]

writes about the referential description: "Some form of it is always

used in classical elasticity theory, and the best studies of the

foundations of classical hydrodynamics from Euler's day to the present

have employed it almost without fail".

d= Truesdell calls it the "relative" desuription [22, page 89] and it

: should not be _onfu_,ed with the spatial description o_ motion, known

as "Eulerian" by hyd£odynamlcists.

00000001-TSC14



Bnttor ehoi_s of strogs and strQss rate arn made in th_ pr_sont analysis.

In tho p_st two d_a_des thn numbnr of publlc_tlons concnrned with finit_

st_in pl_sti_Ity h_fl grown tremendously and significant advanoe_ havn

boon m_d_ in the field of constltutlvo equatlon_. The present study

provldo_ a moro _y_t_mat_c and con_intont pr_ontat]_n, formulation, and

implomont_tlon of the concepts involved _h_n h_s bQ_ found in the

tQchnIual llte_ttt_o. On tho other hand, tho _ollowlng usoful £Qatur_8

of PETROSz (i} tho strain-rato dopendont mcohanlcal-sublayor-mod_l for

time-dependent plastiolty (the presont analysis, however, doos not includo

relaxation _ffects and is restricted to isotherm_l conditions) and (2) a

body-fixed system of convected (intrinsic) coordinates, are employed in

the present analysls.

1.2 Purpose of the Present Stud_

The present work extends to the realm of finite strain the work done

by the MIT-ASRL on developing finite difference methods [14-21] and

finlte-element methods [23-31] of structural analysis to predict large-

displacement, elastic-plastic transient response. The object is to

develop a finite element analysis for thi__nstructures (beams, rings,

plates_ and shells) that incorporates finlte-straln, elastic-plastic,

time-dependent material behavior implemented with respect to a fixed

reference configuration, and is valid fo_ finite strains and rotations.

The results obtained from this analysis are compared with experimental

dat_ as well as with results obtained from "small strain" large-

displacement analysis in order to ascertain the range of validity of the

"small strain" approximation.

1.3 Synopsis of the Present Study .

Section 2 contains the concepts that are necessary for the develop-

ment of a general finite strain theory for thin bodies with path-dependent

and time-d_pendent material nonlinearities. The theory is systematically

formulated in a body-fixed system of conveoted coordinates with

materlally-embedded vectors that d_fonn in common With the continuua.

A parallel development is _resente_ in the traditional fixod-in-space

6
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sy_itt_mof corn]rant vnutors _mplayed in the larg(_ majority of books in

cont_nutml m_ehani_;s. Aft_r a w_ry bri,_f rufrash(_r of t_nsor analytlill, tlm

Kin(_matia_ _.*f a defc_rmabl_, UtllltillUtllRI are tr_iltt:_,d in l-i¢llllt_detail, dt,flnint t

d,_fol.1_atlonand /itrain tt_nsc_r{+lillldtholr r&t+_ll,all w{_l],all ,trnf_llton,qorll

alld the diff_rollt ntrt_nt,ratt_tlthat ar_ obtained according to dlffer_nt

obll_ rye rfI.

Many pltfallt_ in the ana1.ylm_l 0£ variou_ Inv,_stigations ar,_

indicatt_d. A w_rg important point that has b:]en consistently negleott_d

IW many analysts and computer programs As to indieat(_ proelsoly illwhat

form the conf;titutive properties have to be hlput. Most investigators

after an elaborate treatment of a general theory ill tensor notatioal,

leave undefined the constitutive equations to be measured in the

laboratory. In Subsection 2.5 tile homogeneous uniaxial irrOtational

deformation of a oontinuum is treated, with at least two purposes in

mind: (1) to give a clear physical understanding of tile quantities

involved in the analysis (which is not possible to obtain through the

tensor index notation) and (2) since the most common material test is

the uniaxial test, to identify precisely what are the quantities that

one should measure in the laboratory (as well as how to express these

data to confo_%m With the constitutive equations used in the theoretical

material model).

_he general fozlltof the constitutive equations employed in tile

analysis is presented in Section 3.

In Sections 4 and 5, t/1e previous developments of Sections 2 and 3

are utilized to derive consistent strain-displacement equations and

constitutive equations which are valid for finite strains and rotations

of thin bodies. Some of these equations seem to be original (have not

been found in the literature by tile authors).

Discussed in proper perspective in Section 6 are the different fo_ms

of analysis _urrently utilized to analyze transient response p_obl_ms

with material and geometric nonlinearities, as well as several different

timewise finite difference operators used to integrate tile transient

respons_ equations. Also, the fo_ of analysis utilized in the computez'

pro_jram and the solution of the tloverning equations _re discussed.

7
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In Section ? tho predlction_ of the finite element csmputer programs

_lat inc_rporate the flnito-ntrain elastic-plastic timo-dopondoot theory

developed in the previous sections are compared with nxperlmental data

for _ases of impulsive loading as well as impact loading that produced

. transient nonllnoar structural responses. It is shown that for the

problems Investigated, the flnlto strain theory developed in this report

gives much better prodlctlons than the traditional small strain theory

-- and at no additional cost. These problems contain the nonllnoar

path-dependent and time-dependent response characteristics typically

experienced b9 ductile metal structures when full advantage is taken of

their energy absorbing capacities.

The entire study is summarized and @ertinent conclusions are drawn

in Section 8.

Finally, those'readers who are interesied in the principal results

obtained and a discussion of those results (without the developmental

details) need read only Sections 7 and 8.
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SECTION 2

GENERAL FORMULATION

2. I Introduction

In this s_etion _Jlo concepts, equations, and rolatlonshlpn neuossary

for t/_o numerical analysis of the translc_nt structural r¢_sponses of _in

bodies with nonlinear time-dependent and path-dependent material behavior

as well an with finite strains and rotations, are proi_entod systematically

and consistently. Use ks made of the _enoral approach to continuum

m_chanics #/let has been r0sponsible for the significant advances in

continuum mechanics in the last three d_ _des. References t/]at have

influenced this write-up are: Truesdell et al. [7,22,32-40], S_dov et el.

[41-49] , Malvern [50], Jaunzemis [51], Leigh [52], Eringen [53-54], Blot

[55], Green et al. [56-58], Prager [59] , and Fung [60] .

Tensors are considered as linear vector functions, and use is made of

the d_adic representation (instead of simply considering tensors as a

collection of components) because these concise tools are helpful to

¢l._rify the physical laws under which materials defo_.

The b=ief refresher on tensor calculus, Subsection 2.3, follows

Malvern [50]. Other more extensive references on this subject are the

classic works of Schouten [61], Eisenhart [62], McConnell [63], and Synge

and Schild [64], as well as the books of Sokolnikoff [65] and Willmore

[66]. Designed especially for students of continuum mechanics are the

monograph of Ericksen [67], the modern treatment of tensor analysis by

Bowen and Wang [68], and the clear and lucid presentation by Sedov [41,42

and 45].

When considering finite deformations, it is essential to distinguish

between a present configuration and a reference configuration which for

many purposes one identifies as the original configuration. The concept

of finit_ strain admits infinitely many definitions, but only a handful

of these are useful for the solution of general problems. In the formula-

tied of rate-type constitutive equations, the concepts of stress, stress

rate, and strain rate, "._hidladmit infinltely many defintions as well,

9
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haw_ to b_ dt]Cint_d prnp_rly. It. t_rns out that tht_ strain, str,_ss, l]train

r_%t,_,and _itrt_fl_1rat_ measures whioh a phyl_ieally-val_d th¢_ory of finite

d_formatioll oI_ an nlastic-pla_tiu contlnu_ us+is are not (unfortunat_l¥)

the _U.o m_asur_l whleh ar_ conw_i_nt for tll_ n_[,erical computatlun el!

th_ problem, and that but|, of tl%_s_ meaI_uros (the m_a:lur1_s that the

physlcally-valld th_ory and the n_mo,'ical _]olutlon uses) are nut th_ _am_

a0 th_ quantities that one usually moasuro_ in a ]nborat,_y. lloneu, it

is of great importance to define all uf these quantities in a eon,lstont

and rational way, and to define th_ relatlonshlp_ that trans£orm one sot

of quantities into another. _f this ia not dune properly and _)nsistently

in _ area of analysis (the physical fo,mulation, the numerical analysis

of the problem, and the experimental measurements of the quantitlos that

are necessary for the solution of the problem), then the results are not

going to be fruitful.

Since the theory and analysis used in the present work is of oonslder-

able generality, a great many definitions are necessary. The work of

laying down the foundations of this analysis has been exhaustive and time

cons_m_ing. Unfortunately, many of the results present in Section 2 are

scattered in a number of references, some of them of difficult access, and

other results are Just not present in any work.

2.2 Notation

Scalars (zero order tensors) are identified clmply by letters; for

eKample, the volume V, the mass density p, and the mass m.

Vectors (first order tensors) are identified by letters with an over-

bar: the displacement veotor u, the% velocity vector v, and the position

vector R.

Second order tensors are idsntlfied by letters with do_ble overbars;

for example, the Cauchy stress tensor _, the Green (Lagrangian) strain

t_nsor _, and the spin tensor _.

The scalar components of tensors are denoted by attaching indices to

a kernel iottur wit/lout ovorbars. _'his kernel l_tter is the same l_tter

used to denote the tensor quau_tity. These indices are lower ease letters

10
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when the tL_nsor is expross_d in terms of the base w ctors of th_J _urvl-

lim_ar coor_._inato system of the .refgron_o (undeformod or initial)

configuration. They are capital lett_rs when t_lo ton_3or Ir.1oxprons_d in

torm_ of the base w_0torn of the curvillnoar coordlnato symptom of tht_

_resent (deformed or _urront) configuration. Since the base vectors of

a rectangular Cartoslan system are constants (wlth respect to space and

tlmo), the base vectors of the Cartesian systems _ the reference and

present configuration are t/io same. llence, it is an arbitrary choice to

assign eit_her lower case or capital letters to tlle indices of a tensor

component in a Cartesian system. Usually t/%is choice is done according

to the most frequently used curvilinear representation of the tensor.

When the components of teasers are referred to a rectangular

Cartesian coordinate system, they are identified by a circumflex sign

"^" (a "hat") on top of the kernel letter. Components of tensors

referred to a eurvilinear coordinate system do not have the circumflex

sign (they do not wear hats).

For example A is a second order tensor; Aij are its components* in

a curvilinear coordinate system related to hhe reference configuration,

AIj are its components* in a cttrvilinear coordinate system related to

the p_esent configuration; and Aij are its components in a rectangular

Cartesian coordinate system,

In order to help the reader, Table 1 relates the notation u_ilized

in this review with the notation utilized in some treatises of Continuum

Mechanics. The number in parenthesis indicates the page in which t/]e

quantity is defined or first appears.

2.3 Review of Tensor Analysis

2.3.1 Vectors

In an n-dimenslonal vector space any set of n linearly independent

9ectors bl' b2' "'" bn is called a basis. Any _ in the space _an be

expressed as a unique linear combination of the n base vectors of the

basis ..

,
These componunts are the so-called covariant components.
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_'= K K I _ "'"

The coefficients vk are called the contravariant components £.e.,

with superscript k of the vector v with respect to th_ basis bk" Note

that the base vectors bk need not be unit vectors, and thoy n_od not be

or thogonal.

If the Euclidean vector space is referred to a basis, then

and then

where _._ is the dot or scalar product of the vectors u and v.

Let

then it follows from Eq. 2.3 that

(2.5)
Note that grs is symmetric; that is,

_S _Y (2.6)

since the dot product of two vectors is commutative:

_1,.. _)_ =_._ (2.7)

Dual (or reciprocal) base vectors bq (q = 1,2, ... n) are defined for each

given set bp (p = 1,2, ... n) of base vectors in Euclidean vector Space

as the set of vectors satisfying

12
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tho Krono_ker delta _r is dofined by _r = _I if r=swhere

s s LO if rMs

For _1o important case of ordinary vccters with n = 3 one can express

th_ dual base vL_ctors _k Jn torms of the original basis bk by using the

cross product (u x _) as follows,

If the given basis is orthonormal (composed of mutually orthogon_l unit

vectors), then bl: (b2 x b3) = 1 (for a right-handed system) and the dual

basis is identical to the given basis. When the base vectors of the given

basis are mutually oi_ hogonal but not orthonormal, then t/_e magnitude of each

of the dual base vectors is then the reciprocal of the corresponding base

vector in the given basis:

Covariant components vk (i.e. subscript k) of the vector _ with respect

to the basis _k are defined as

= VK : V (2.1l)

Note that (2.19)

vp: .T p

V_= _- 5 $ (_.13)

i. iThe fundamental-tensor components gij' gij, g'J' g are defined as

foflows:

&. t
13
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Observe that the following relations are satisflnd,

_j=_ __ _.j__._ . _._,
i

Therefore, ant_ can express tho eontravariant _ompon(_t_1 v and the

covariant e.omponnntn vi of a vector _ IT_ terms of t.h_ roclproeal componontfl

and the. £undam_ontal-tensor components, _|s £ollow_1

V_ _ VJ • J_=V '

- F_g v.cg.,vL=7.5'= v_ J" _-
•L j _,f (2.z6)v_-7.g_=vJ_a'g_-v__j.-v

i

v_=v.g,-vjF:,_.g_=vj.@__=vjaC

_vidont,.ythevarioussetso(q,_nti,:ies%, g_J,g |g_.have_o
property that when they are used as the eoefflcients of a linear transfor-

mation operating on the covariant or contravariant components of a

vector, they yield as a result of the operation _,e components of the same

vector (oovariant or contravariant components, depending on which set is

used). These quantities are therefore components of the unit: (second-

order) tensor _ such that

-- _ _ --V = V.3. = .V (_.17)

==

The unit tenso_ I is also called the fundamental tensor or the metric

tensor* of the space. The gi_ are its covariant components, gij its
.... •' i. = .i =-i ..

contr&var_ant components, an_ g.j gj. 6i _s mixed components. The

process of raising or lowering indices can also be performed on the base

vectors themselves =

They are _alled the metric tensors, because all essential metriu proper-

ti_s of space are completely determined by th_se teasers, and their
derivatives.

14
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The matricns [giJ] and [gij] are inver_e to each othnr,

By definition, t/le dotorr,inants of th¢_ne matrlcms are

2.S.2 Tam_ors

2.S.2. i Linoaz VectoC Functions

A second order t0nsor T ks a linuar vector function associating with

each argument vector another vector, e.g.,

-- _- --= " V (2.20)

For any given basis bl' b2' "'' bn either of the two vectors may be 4

represented by either covariant or contravariant components v< or vJ and

i 2 J

Ui or u . There are, thus, four possible sots of n coefficients for the

four different linear transfoz_ations

involving, respectively, the

covariant components Tij

contravariant components Tij

er mixed components T_; or Ti_

_inc_in general_ \�4�T_is neoessarytoobservecarefullyt_
order of the indices.

One can also express these tensor components as the dot products of

the base vectors and the second order tensor, using Eqs. 2.12 and 2.13,

as follows. Observe that since ui = bi._ and vj = bj._, then

15
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A ,_ymmotrlc ten.s0r T iS do£1nod as ono that is opor_tlonolly $dont$ool to

It_ transpose _T, _o that i_ _ i. symmotri_s

T.T"
(2.231.-..

-T• " V " _or any vQato_

Also, its components obey,

m

It is convenient to write the mixed components of a symmetric tensor T ass

Tj ;E • ,m . (2.25)

But note, that, in general (even for symmetric and antisys_etric tensors)

T]'
For a symmetric tensor, the matrix of covariant or contravariant components

is symmetric while the mixed _omponent matrices areno t in general

sym_etrlc, because the third equation relates elements of the two

different matrices of mixed components instead of symmetriually placed

elements of the same matrix. To make this point clear, and for convenient

reference, these matrices* are, for n = 3z

L ,

_hes_o_ II 11 is standard netation for matri_es in beeks on reviser
analysis (for example, see Refs. 7,22,40,41,42, and 61).
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T_J- T" T" T" - T" T"T" _"__f

T" T" T" %_,T" T"T"

T:; T_; Tt;

T_'-'.i- r,:' T:', -,T:' c,.,,i
T:' T:' T:'

J e

T,I T,: T;:
T'_.j T".. T,:' T;: c2.3o_

• !
T,. T;: T;'.

' ' " T;' T;'.TI, T'; T:, T,

Tt', T:', T:', = T",. T',.' T;'.
' ' ' ': 'IT .3, T_., T'. _ T:: T, T, c2.31_
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or

liT .J'll.IIT'!II IIIIIIT '"II
In offoot, £ndopondnntl¥ of £tn ponLtion, wh_th_r up or down, thn first

indr_x'ofan olomnnt,of tho matrix dnnotnn tho humor, of tho _'_, and tlm

_ocond tho numbnr of tho _ol_n _orronpond£ng to that ,_iomnn_,

As Sodov po!ntn out (41], thu opornt£onn of add£t£on, o_ mu].tiplio_

tlon by a nm_oz', and of no,flatmult_pl£oatJ.on of tonoo_n of tho oocond

rank oor_ospond _o analogous opo_at£onn on ma_rloonj honoo, _ho uno o_

mothodo _nd ro_._ultsof matrlx calouluo .fac$11tatoo the devolopmont o_

tho thoory of tonuor £unationo.

Tho 0_orational product (_._ or _) o£ two ooconclordoz tonooro

(T and _) pro0uces a second ordor tonsor (_) such that

AlSO w

Two scalar products (i.e., _,_ and _''_) of two second order tensors c_

be defined. The scala__._rproduct T_8 is produced by a double contraction

of the outer product as £ollows_

18
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Note that th_ twQ first suffixes ara th_ s_e, whil_ th_ two _cQnd

indicas ar_ th_ sama,

The scalar prQduet T,._ is defined as fsllQwsl

Not_ that thn tw_ Inqi_ li-_dloo__r_ _qual and th_ tw_ oBtF_Id_ Indlcnn

_I,'u oqual. _n _,]ol]Or_J,TI[_ _ T' "S, but if _ith_r Qn_ 9Qf" th_ twQ t_nsors

?,.__3.2.2D_io!_ntatlon of a Tc_nnor

_'he opon produot oz _onsor produot _1_of two vectors _ and _ _,s eallod

a dyad, A linear combination of ouoh dyads is called a _. Highor-

ordor spun _roducts arc callod polyads and llnoar combinations of polyads

are calloa polyadlcs (all polyads in a polyadio must bo o_ t/_o same order).

All usual multlpllcativu rules of ulemontary algebra hold for polyads,

oxc_pt that op_n multiplication is not commutative, that is, in general

Also, the single dot product off two dyads is not co_ut_tiv_

The scalar _ro_uet (or double dot product) of two dyads denoted by

ab. _d is defln_d as the scalar obtained by multiplying together the two

scalar products a._ and b.d. Note that the first vector of the first

dyad multiplies tha first vector of the second dyad, and the second

vmctor of the first dyad multiplies the second vector of the second dyad.

The scalar product i_ commutative:

19
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Tho doubl_ dot notation wit/_ the _ao dots on tho nam_ l_vol donotos

tho product obtalnod by multiplying tho two o_t_Ido vectors togothor and

t/]o two insido vectors togot/_orl

_;yo_y _£o.ond _oFdo_r tonic[ _an b£zoproo_nt2 _ as a ayadi_, a llnoar

combination o_ tho n2 dyads _ormod _rom n llnoarly inSopondont baoo

voctors o_ tho n-dlmonslonal voctor spaoo on which t_o .tonsor is dofinod.

For examplo, in throe dlmenslons (n = 3, n 2 - 9) with baso voctors bl' b2'

b3' ono may wrlte any second order tensor T as z

-- T" g,g, , T'"I;,B,. �T"g,_,,,.',',,
+T" g.g,,T%. g,+T"g.g.
+T" g,,g, ",-T" B,,g:,+T '__',6_

or

where the Trs are the contravariant components of the tensor with respect

to the basis brb s. In Euclidean vector space, by introducing t/%e dual

basis _k, one obtains additional representations for _z

T,, "1""&._,-T,.,_"_'-.T.";g,.g',,T_.tg"g,, ,_.,o,
The convention of upper and lower indices does not guarantee a unique

tensor for a given set of components, since, for example, in general

For definitiveness, the convention that the first index on the tensor

component goes with the first vector Of the dyad is adopted as, for

examp le z

20
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l:h_, th_c_r_, of opt._rat:ionl_ on t.lm_r_, particularly in th,-_ tlmt_ry of

diffe, ren(.iatton o,f tons_r,_ with re, npoct to coordJ.hatol_ or _c, alar para-

mot.,r,4 wh_n th_ _. w_ctorl_ of tJu, biltl(_ll are v,ll'iilble, and o_p_,cl.ally whtm

a _:t[.vt41 t{)lulor h(ll] to b__ uoll_J.d_rt_d _Jmu].tanpou.qly Jn (]'[ffL}r¢*llt b;tIlOtl

mov:tml wtth rt_p(:ct to onq anotlmr.

2.3.2.3 Covartant Dtfforenti, ati, on of a °P_umor

Th_ .4_t of l,artla_ d(:rlvativc.s (with re,poet to the: coordinates) of

a covariant vector_ in g_neral, is not a tensor.

The covariant derivatives of a tensor component are defined in such

a way that t/icy are tellsor components which reduce to tke usual partial

derivatiw_'s ill rectangular Cartesian coordinates. The covariant deriva-

tive appears naturally when t/%e partial derivative of a vector is taken,

and in the process c¢:rtain non-tensor, three-index quantities, called

Christoffel Symbols arise naturally when partial derivatives of the base

vectors are taken; since the base veer.ors arc functions of position, they

cannot be treated as 4onstants in differentiation. The derivative of the

Covarlant and contravariant base ca** be shown to be:

where _ho (nontensor) _ree ±ndex quantities called Christoffel s_bols

of the second kind are

/
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If the coordinate $yatam is Cartesian, i.Q. tha base vectors are

con6Lants, then th_ ChrlatofEel syi_ols of the second kind are identically

zero:

{"}j = 0 eor a Cartaslan coordinate system.

Therefore, the covariant derivative (denoted by ai, j) of a cov_riant

vQctor component ai is z

_. = _ _, _' (2.52)

'
/ ba_ k, __

Iii ,

Similarly, the covariant derivative (denoted by ai,j) of a ¢ontravariant
vector component a i is:

_ _,_ _k __,___i, . (2.54)

o

a,,a- _ �{k_} (2.55)
Furthermore,

22
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and

nlnc_

Covarlant derivatives of higher ordor tonnor components appoar quite

naturally whon the partial derivative of the polyadlc is taken. For

example, if

then

(2.59)

T.,r._,._,-(_-I'".Tk'{k" .,.-T"l'{k
hence,

ul

(2.60)

- k r " f'
Similarly,

• i I

i i

T:",T_a' +r::{_r ,_o._,
23
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wht_r_,

Motion is always determined with respect to soma reference coordinate

system. A correspondence between numbers and spatial points is estab-

lished with the aid of a coordlnato system. A continuous medium represents

a continuous accumulation of material points. By definition, knowledge of

the motion of a continuous medium implies knowledge of the motion of all

material points. For this purpose, one must treat individually distinct

material points.

In kinematics, a continuous medium may be conceived of as an abstract

@eometrical object, and not merely a material body. For instance, it may

sometimes be agreed to represent by points in a plane the prices of some

products and to s_udy the motion of prices in economics by the methods

of tAe kinematics of continuous media.

Besides the concept of laws of motion and coordinate systems, one

must still introduce for the description of the motion of continuous media

certain other concepts, in particular, that of velocities of particles of

a continuum medium. Strain tensors are fundamental characteristics which

arise in the deformation of bodies, and they enter into the basic equations

which describe the motion of continua, strain tensors compare two states

of a medium, while the rate-of-deformation tensor ks a characteristic of

the medium at a given instant of Lime.

2.4.1 General DescrIptA_n

Lower case letters are used for quantities that identify the points

of the medium at some reference instant of time t . Capital letters areo

used for quantities that correspond to the points of the medium at the

current time t.

24
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Consider arbitrary dlsplacem,_nts of a continuum. Lot th_ position

of thtl points of the continuum b_ defined ill n rectangular Car tosla,______/l_

of spatial (F,111orlan) coordinates XI _ Xl, X2, X3 and the rt]ft,_,|ict_

position of the points of the _ontlnuum by the refort_ntial (also ca]l_d

Laqranqian or material) coordinates Mi _ Xi _ Xl, x2, x3 (hero, for

example, it is conv_nit_nt to adopt M i E X_ so as to diffor_ntlato between

x I and E 1). This system of Carte.Jan coordinatus is fixed-in-s a_, or

inertial, and it has orf/%onormal base vectors. _I = [I = [i = [i.

Also, it will be convenient to use the convected body-fixed (also

called intrinsic) system of (Lagrangian, material or embedded) curvilinear

coordlnates /i which moves with the points of the medi_,, has base vectors

gi in the reference configuration and base vectors GI --_I _n the deformed

configuration. These two systems can be displayed conveniently as follows;

for a three-dimensional Euclidean space:

Rectangular Reference [ x1

Fixe_in-Space Cartesian Configuration _ x2(Inertial) Coordinates (t = to) x3

Present I X1

Configuration X 2

(t = t) X 3

I-Base iI

Vectors _2

i3

B°d_'Fixed curvilinear { !12
(Convected, Coordinates 3

Intrinsic,

f-or Reference gl

Embedded) Base Configuration g2

System Vectors (t = tO) g3

I-Present G l

Configuration G 2

(t-- t) _'3

25
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_,- G=(,4,) x,.X=(t.t.)
The base vectors of the undeformed and deformed configuration, in

the convected system can be expressed as:

_,__ _ __x_._

26
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The metric tensor components in the undeformed and the deformed coh-

fIguratlan are

- - G_. G fi
The detormlnant_ of those matr£ces are defined as

The roclprocal base vectors are

___ _ ': _, *'_, (2.70)

The contravariant components of the metric tensor are-

_,J=_,_J G-_._-.__ ,_,_,
Also, the following relationships are satisfied.

,. -I _._ _ -I

[_l'J]. [_,j] [_ ]. [G.°] ,_.,_,

27
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2.4.1.i Double Tensors

Lot M be a material point idnntifiod by _.= xii i in its original

and R = Xl[ i in its final position in Euclidean space. Theposition

quantitius Tk'''m K...M constitute a do_blo tnnnor* if they obey the tranf_-
p...q _...Q

£ormatlon law for a tensor o_ tyuo TK'''M when the X I coordlnatos ar(_- p...Q

transformed, and for a rennet Tk'''m when the xi ooordlnaton are trans-p...q

formed. As a special case, it follows that the components of a double

tensor of £he type TK'''M
p...Q transform as scalar_ under xi transformations.

In other words, ordinary tunsor fields are included as a special kind of

dot%ble fields.

2.4.1.2 The Unit (Metric) Tensor

The unit second order (metric) tensor _ can be expressed as:

= : : G,G:g,G 6.....,_ ... - G G:,G,,
Observe that the mixed components are the same in any coordinate system.

2.4. i.3 The Dis_olacement Vector

A displacement vector _ can be defined as the vector difference

• be%ween the position vector R defining the present location of a material

point and the position vector _ defining the reference (undeformed)

location of that same material pointz

- _ -t_ : - %- (2.76)

with components

- __, .- TT __z TT_'_. ^ ,-
= _ = _, - Z X = _L_ L_ (2.771

Observe that

^ X (2.78)_: " X_

When the indices of a k_rnel letter do not all belong to the same space,

'the quantity is called a connecting quantity [6]].

28
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2.4.1.4 The Vo!oclty V_ctor

Th_ v_l_aity veator v of mat_rlal .points of a moving" continuum is

defined by the material time dorlvative* (tlmo dL_rivatlve holding tile

m,terlal e_ordinatet] con_tnnt) of th_ displaenmnnt vector u_

(2.79)
A

o 1
Not;L_o that

This velocity vector _ has components:

-"V _ z (2.81)

gXv.- _-- _ v_-&_ v_-_
(2.82)

By differentiating with respect to time t keeping _i _ constant, one

obtains the time dezlvative of the defo_ed base vectors from Eqs. 2.64,

2. and 2.53-2.55_ ' ,66t 2.79t .

From differentiation of the scalar product _Z . _j _ _,
_he derivatives

of th_ eontravarlant base vectors are found to be.:

This derivative with respect to tlme is symbolized Sn this work by a dot
D

on top of the quantity being differentiated. The symbol _ is also often

used in hydrodynamics texts for the material time d_rlvative.
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2.4,2 Do1_ormatlon hnd Strain Ten,or8

2:_.2.1 The Deformation Gradient Tensor

Thu defot_,ation gradient tunsor _ is the simplest to define in terms

of the deformation equations and it includes mor_ information &bout the

motion than do the strain tensors.

The deformation gradient tensor is denotsd by F, and its transpose
=T =

by F . The deformation-gra4hlent F is defined as the tensor w_seI

rectangular Cartesian components are the partial derivatives _ and whi0h

operates on an arbitrary infinitesimal material reefer d_ at _ j to

associate with it a veotor dR at R as follows-

= • = ,._. 12.os)

Also,

12.861

Evidently _ measures rotation as well as deformation since a vector gi

deforms and rotates to become GI. Because the deformation gradle:,t F

includes the rotation as well as the deformation, constitutive equations

employing it will have to be constructed so that they will not predict

a stress arising from pure rigid body rotation.
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Thn dofarmation qradlent _ensar _ aperates an the v_etars dE and qi'

ass_alat_d with the referents confi_ati___QB_ , to produce the vsators dR

and GI' reapaotlvnly, whiah are assoalatsd with the _rnsent aQnfi@uration.

Ther_for_, _ is a double tensor (previously defined in Subseatlon 2.4).

cump_nnnts of th_.s dauhls ten, at _r_1

___ /%

r 5a r J (2.87)

. a _ao . F.j ,_}. cla'
Prom l_cI_. 2.85, 2.64, and _..87, ono can obtain oxp_'ossionD £or 1_hc

compononts o£ _', as £ollows s

He_Oe e ........ ' I i

ii ii

I=

Prom Rq. 2.78, one can express the components of P in a rectangular

Cartesian fixed-An-space frame in ter_is o_ the displaaement vector.

._ - ,,= - X _.+ LL;_ (2.o91

Henoe
, I

• ii I

One can also express _ in terms of components in the convected system, by

employing Eq. 2.86 as follows_

31
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= (.. )

r. = _,

Tho r_1 for,(_

F=J= <,,1_j ('"')

ir;!....-ai ....

Also, F van b_ oxpressed in terms o£ components o£ the dlsplacemvnt

vector in a vonvected system, as follows:

= = ._,_ ._j= F.j _
From Eqs. 2.76, 2.77, 2.69, 2.52, 2.53, 2.54, and 2.55, one obtains:

Then

i.

Then

+ _._ _ _ , _ (2.99)
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Thn refQre

llnllCn,

= _ + = (_,.$02,)

F_.- ;Q u.l,_.-,

2.4.2._ The _i D(__ormatloz! Gradi(mt TolksgA

The upstiai deformation gradient tensor _-i is the inverse of the

deformation gradient tansoc _'. It operates on t/%u quantities associated

with the _rusent eonfiguration (dR and GI) to produce the quantities

associated with the reference configuration (d_ and _i), as £ollowsz

:}_ g,- g:_(P")"• ' (_.i05)

Components off the spatial deformation gradient tensor _-i are_

A

_" (F")_r_rj(e")_ -_- .. _G_-(F-')_._ _7
(2.106)

=(r-'),_G'rZ--,.rr-,_-.,.__,G:'--(:r");_._'g_,
33
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Utilizing Egs. 2.104, 2.105, 2.64, and 2.106, ono can obtain oxpronslont_

flitth,m_ eompol_t_nts,as follownz

th_nc_,

Also, from Bq. 2.78,-

X b =Xx - £ _ (2.108)

Hence,

.. _ (2.1091

_. - 6U

_rom Eqs. 2.105 and 2.106:

_j-r-' _o-[(F">"_ ] ( -'_'_- . - ._ ,_ .g_-- F )._ _
Hence

-I L
• _i (2.1101

I i

ThQreforee

CF)" G"_= (2.111)
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AtlaJ.nt fr¢_lll Eqtl. 2.105 alitl 2,.1.06:

F G "' ' " "_ "| "_ = , - IZ'''! (2.114)

- ' _ :K z 4" kt 2,_'

Vt:om Eqs. 2.7t.),2.77, 2.66 alld 2.52-2.55, ono ubta:i|Lq=

Then

Then

(sS-ST.,_)G,::(F"):.i G, ,,..,_,,
If'herefore

liF>:-'• u- I= -- (2.118)

Hence,

(F"),,. =G:,_(6} - EI_,_,)-G=,,- U,,,, ,_.,,,,

(r-')'"=G'"(st-TJ:':.)-G`°-u:',° ,_.,_o,
G,,G(6,U,,,):S_:-U:,,_.,,.,,(r");:- _'' _'
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It can be shown that the following relations are valid:

5 t. --F-F ? VTFF"U ' _ " = • (2.123)
=_

Cauch[-Green Deform at_Ion Tensor s

The square of the right stretch tensor

= T 12.1241

is called the right Cauchy-Groon deformation tensor. The square of the

left stretch tensor

See, for example, SeetioD 83 of P.R. Halmos (kef. 69) and S_ction 4_ of
J.L. Eriek_en (Ref. 67)..
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, .t._ called thu left_ tonsar of dofarmation. .T,t can be ,)anily.

'' _hown that

I The riqht Cauchy-Grecn defozT,ation tensor C is associated with %/_o

reference configuration, and it gives the new squared length (d8)2 of the

differential line element dR into which the given differential element d_

is deformed"

The inverse of the left Cauchy-Green deformation tensor _, denoted
=-i 2

by B gives the initial squared lengtJ_ (ds) of a deformed differential

i line element dR

(:,_4'°J_.a_-(a_.(_-'T).(_-'._).-,;t.(_'.Ft'._.
(2.128)

-j_.g"-a_
The right Caachy-Green deformation tensor has components

i and from Eqs. 2.124, 2.88, 2.90-2.95 and 2.100-2.103, one can express

in terms of t/_e displacement vector components, as follows:

_X__
i ?_._j--(_,4__,,_- t,,,r_-_ _ ,_.,_o,

_\I__ ^ ^ ^_ _ _._ _&
i

I
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: _},j. ug + tLj,_+ u.t,_

C'J_-(F!LyF J_F/,;.FLJ,a'_tG_ (2.13a)

• i.,/ _tj _..... U_
M

Notice, that although C _ F, from Eqs. 2.95, 2.132, 2.94, and 2.131, the

following components are equal.

The Green Strain Tensor

The Green* strain tensor _ is defined as follows-

"accordi'gg to +ruesdell (Ref. 15, page 266), this strain measure was

la_troduced by Green in 1841, and by St. Venant in 1844; since its

components are usually referred to a fiwea reference configuration, it

goes by the name of "Lagrangian strain" in the older engineerlng lltera-
ture.
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From Eq. 2. 124, it is easily shown that equivalent expressions arel

This strain measure gives the _ in tile .B_qU_.r_od 10n@th of the material

vector d_ as follows from Eqs. 2.127 and 2.1281

(as)_-(_4_- a_,._ - _._ ,_.,-,
Expressing this in terms o£ the material vector d_, one obtains from

Eq. 2.127:

1

Defining _ - _ (_-_), one obtains

(JS)_- (d =d_.)f. g_ c,._o_
Z

Components of the Green strain tensor _ are:

__----̂

These components can be expressed in terms of the displacement vector

components, from Eqs. 2.136 and 2.130-2.133, obtaining.

(2. 142a)

¢1_ (2,142a)

& ) ' ' )b)/_'" U _J _' U._,j U.&

(_..142d)
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The Almansi Strain TenBor

Th_ AlmanBi* strain t_nsor a iB d_fin_d as followBs

(2.143)

Equivalent oxpr_sion_ _or the Almansi strain o are obtained from tho
r_

de£initlon of the loft Cauchy-Groon deformation tensor B, Eq. 2.125s

The Almansi strain also gives the _ in the squared length of the

material vector d_ as follows, from Eqs. 2.138, and 2.128:

i (_._-1)oneobtains=
Defining _ i _., , , , ,

J 'l(ds)'-_d,= ._. (_.,,o,Z , , ,,,

m

Components of the Almansi (Eulerian) strain tensor e are:

.e..^ _,_.e_,g'_.e"g._,-e,g,g""""_"
where

^ _x_ '_X

, r

According to Truesdell (Ref. 15, page 266), this strain measure was

introduced by Alma_si in 1911 and Ha_el An 1912; since its components

are usually referred to the present configuration, it goes by the name
"Eulerian strain" in the older engineering lite_atuEe.
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" ±( ;-G'"

e"='(G'"
rr4 r_

observe, that the ¢ova_imlt compon_)nts of the Green y and Almanfd e ntrain
-i

ZOllSOrS with respect to thai reference ba_o voctorl_ g and to tile pres,)nt

bas_: vectors _I, rospootlvoly, are tlm smno_

ThereZorot from Eqs. 2.140, 2.64, and 2.141:

(ds)'-(d_)' --
?.. ' -_. _. • j

or

r i ii

Also, from. EqS. 2.145, 2.64, and 2.146;

Z

i i , |

I. p_ = e_:4r
of, course, although Tij = eij, these are different tensors, and this

equality does not hold in the absolute tensor notation.

41
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other Strain Mnasures

Since in _uclidean space distances are measured by a quadratic form,

the Cauchy_Gr_en deformation tensors, and the Green and Almansl strain

tnnsQrs ar_ by far the most popular strain _,oasurns. However, as

Weiss_nherg [70_ has ob_]_rv_d, _* moasur_ su_ficlent to detnrmino the

directions of the prlncil?a] nxon of, strain and the magnltud_s of the

principal elongations may be employcld and in fully g_noral.

other _-_t_ainmeasures of interest In the present ana].ysil_ are the

olongatlon tensors _ (associated with the name of Blot [71, page 118]) and

E (associated with th_ name of swalngor [72]) as well as the logarithmic

strain tonsors _ and _ (associated with the name of lloncky [73]). These

strain tonsors are defined as follows:

with components

_

*
As a matter of f_ct, it is possible to describe strain _orr_etly by

measures which are not tensors; Truesdell points out (Ref. 15, page 269):

"but there can har41y _e any advantage, and attempts of this kind have

usually led to _onfusion if not disaster".
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H o i  a.i Hj

= - -
RI_]-_t&[Qnl-I blt t:Wl:ll_n B_:;IE_I1 Tt_nl.ll-i_l-t

n _ _ and [1 all haw _ tile ncu_l_prJncil_n], allnn ofTh(_l tonflo_rn U e C t i l_w

tll-rilill ;-it rp ill £h{i ,r_if, orl111g_1 nhapo at t _ t o. Tim tl_nllorl] VI _w Os |']

al_d _ all h:ivo the. nrm_o, pr,lnelpal axo,_l of ntraln at RI in tile prollont

z_hap_ at t _ t, '['lle rotat£on rennet I_ carries p,rJn_ipa] axe_] of strain

at _: into Principal axes of strain at _.

Thu ten,_ors U and V llavo tl_e u_mlo princit_al values. ?he_e principal

valuers, called tile principal str_tchoo la' are th_ ratios of tl_o defor_ed

line elements dS in the prineil_al directions b to the undeformed line

_ _ dS(_

elements dst_ in the same principal directions, la = d-s--"

The t_nsors _ and B have the same principal values (I(_)5 and those

principal values are equal to the squares of the principal stretches l

Tile principal values y@ of the strain tensor _ are related to the
1 2

principal stretches by: Y_ = _ ((la) - I) , while the principal values

e of the strain tensor e are e = _2 (i - (le)'2) . The principal values==

E of the elongation tensor _ are related to the prinCipal stretches by

_e = _e - i, while the priheipal Values E of the elongation tensor _ arec_ =

E = 1 - (l)'l. The prinoipal values _ and He of the tensors _ and

are equal; that is, _ = He, and are related to the principal s_retches

by _ = H = £n I . The mixed components of the tensor _ and the tensor

in t/le reference base and t/le present base respectively, are equal:

H; H= 4_ (2.162)

If the axes of defor_%ation are fixed and several deformations are

earried cub successively, each principal component of the tensors _ and

in the resultant deformation is equal to the sum of the corresponding

principal e.omponents for the several successive deformations. For tile

43

O0000001-TSFIO



E, and _, _t 5, _ this property does not exist. The

_ _ are complJ.catsd irrational orcomponents of the tossers _,.V, _, _, H,

transcendental functions of the componei%ts of _, and hence in the solution

of problems it i_ usually b_tt_r to use components of y, _ and o,

and H as moasurnf_ of strain.

2.4.3 D_£armat&an Rate ,I'onf-_o_.'n

2.4.3.1 'I.'ho Rato_of-bofo_matlon '_'nn_9___r

The rato-of=doformatioB tnnnar D (also _a_..l,¢_dntrotohlng) in thn _nto

o£ ehangu of the nt_'ol;ch _ or _ at R J.l%th,._uhak_o at time t + c with

rospoot to that at t.imo t, in the limit as t;_ 0 [_.2]z

where, in t/_is notation the subscript t denotes that the present (time t)

configuration has been c_hosen as thc_ ref_renc:e configuration. Also, in

this notation [22] :

" Ci I
If a fixed reference configuration is used, then

l i ii

Also, it can be shown that

Components of _ are:
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Since _t in] symm_trlc, so is _, bluing its dnrlvativn with rnsp_.ict to a

parm_t_r I

" _ o..anbo oxpr_D,nd nn_o_,].llnq that th(_ vol(_llt7 v_ctnr _ _ u _

Th0n

A ^

i) -- 4"_- a'_a'_,:_,_.,VT),_..,,

" _-"" . (v +v. ")-z(a G ± =D _. K_ K ,_ , I2.1val

2.4.3.2 Relatxons betw99.n Strain Rate Tensors

Observe that the covariant components DIj of the rate-of-deformation

tensor _ in conveoted coordinates are equal to the mat_rlal _ate of thu

covaria_t components Yij of the Green (Lagrangian) strain tensor _ an_
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also arn nqual to tho mater.lal rate Qf the covariant cQmponnnts _'!J nf the

Almansi (Euh_rian) strain t_nsQr _I

[Jut, thin donn llot at all imp)_y that tlm ratn-of-(_eforIBat.lon tl_lIFIQriFl

n¢lqal to th, m(itrlrial rat(_s of t]l_ Grnnn and Alm_lnSi Mifflin tunnc_rn. In

fa(_t, thr) rnp.tmlq_]ar Oartl]fll,qno¢)B1ponnntfla_'o (]Ifforolltl

e 0

/% _ A (2. 176)

and tho colivoc%od mlxud o_mI_QllUllt{]aro (-|l£_o_ollts

"%j _" ' c_ (s_ _)D_

Then,

Also_

The material rate of the Green strain tensor dan be expressed as

or = " = I.,L'J1. ' ' "
i i" l • i i i ii "1
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with components

A

Tho rolation bntiln_n th¢_ l_Ix_d compori¢_nt_ of the de,formation rata in th¢_

I an__]tll_ rat¢_ of tho Gr¢_on ntraln t_,nsor (eltho.rpresent _onfi.quratiol] Dj

_ft t pr ) wall. |.1¢_of impartane_ in tgo formulation nf thn oonatitutiva

i_qu,%t|_-Ji,11for buo fiMod rsf_ron_t_ oollfi.qi_ratioll. _hifl rolation _,nn bo

c,btitlnr_d atJ follows rlin_o, from Eq, 2,1.751

_cj'" _' <:1"G_::I:>,,=c'<z>=o(_+z<)%.<,._o,

The rate of the Almansi (Eulerian) strain tensor admits many interpre-

tations, Since t/_.isstrain tensor is referred to the turrent (deformed)

configuration. For exaraple,_ the rate observed by an observer that remains

fixed-in-space, danoted by e, constitutes a tensor with components

2_TLg _j (2.189)

d
Since _ ([i) '=O, %t follows that

47

O0000001-TSF14



A A (2,190)

[° _........_v" 'v: it , u

' ' ! (2.192)

Another rate is the change observed by an observer that rotates and

deforms with the medium, the "convected rate". However, 4ifferent

tensors are obtained from convected differentiation of different represen-

tations (cot:travariant, covariant, and mixed) of the same tensor. For

example, the components obtained by differentiation of the covariant

(convected) components eij:

4_
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,|lldth_ CL_t11pk_Ib_ntflobt_ilIDd by dl ffor_ntinth]n of t_1_ lilix_d (_InvoL_Lt_d)
I,

2.4.3.3___::I}in Tclnsor

'l'h__;1,i.1_tensor, W {al_d _.allod v(_rticlty time)r) 1.u the ultim_,te

_'ate of cha|,gt,uf the rotation _ at R lh:om the_ present shape to one the

body had just before or will have just afterward:

Motions in whicIl W = _* are called irL'otational. 'Phoy form tJ'._main

subject of study in classical hydrodynamics.

If a fixed reference configuration is used, more complicated formulae

ensue:

2- "
Components of W are :

= _X_ _ = vv --.:_,.-_"

W:_-r'(vb-V,,_) V;:--'(V,/-V;_)-_
(2.i99)

_--. __{vt_-vt _)
*Whul'u _') i'.] .,cfi.l_od a._; the t.elu_:r which obt'y',_A'[) = D for any tullsoP A.
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_ _ IF

Difft_r_nlti,ttln_!thL_ r,_lation l{t([).Rk([) _ i with r_ip_ct to T, _zld
;-n

I_._t-ttllq [ _` t, cm,._ fll_d_]that W is _k_wz

,'h4_ _p_t:lai w_]oeLtl gradi(_nt t,_mlor _ Ln the u ltJmat_ rate of chan_l_

of the d_fol_,atit_n grr_d,l_nt to, nl_or I,q l,t, R from the, pro_nt llhal?_ .to. om_

tit,. body h,,d Ju:_t b_._fore, o,: w£11 haw_ jut_t aftorward_

For a fixed ref_z'ence configuration.

Also, *

which justifies tile name spatial velocity g_'adient.

Also, differentiating the polar decomposition

with respect to T, and then setting T = t, one finds that

---- _" %_4 (2.2051

This result shows that _ and W are the symmetri_ and skew parts of t/le

velocity gradient:

Henceforth, Grad shall denote t/_e gradient operator wit/, respect to tile

spatial coordinates X_, whale grad shall denote the qradient operator

with respect to t/,e referentlal _materlal) coo_'dxnates xi.

5O
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I
I _ , t,

h h

It also _xpraanon tho fund0_Aont_l gulnr-eauehy-Stoken decompoait+ion of thn

I instantannoua motion at R and t iota tho Bum of a purn fltrotchinq (D)
I
j

along the mutually orthocjonal axes and a rigid spin (W) of thoso aXos.
r_

I Componnnts of L are z

^ i :,:,,.T__ = ="L+,,. -L,,,.G:_+.--,_+_+.L.+_,_+ <+.+o,,+ +. ++rj-

-_%., V+,_:+.v"+ "It L:,.- _:': L:,:+.: .,. ,_ -, L..,.+-V,+.<:+.:+o+,
II

+L
" 2.5 Stress Tensors

At a typical material point M, consider a differential element of

,+, area dA in the present configuration, and a differential element of area

dA in the reference configxtration. The orientations of these differentialo

i elements of area are defined by their unit normal vectors N (for dA) and

(fordAo).
The force transmitted across the differential element of area dA

at the material point M is dP, and the corresponding traction vector is

= d_
_. Also, it is convenient to define a fictitious force _ = (_)-l.dp,

Or _'_I = dP'gi' a traction vector measured with respect to the undeformed

area _ = dP and a fictitious traction vector d% = _
--dA ' _0" These vectorso

have components:

=- _=n; L;mPt _ L=N; = "

+ j_._%- &+= _ .,+.dE_++.d'P'_,+-+p__ _IP.+?J+-+P+++ o_ (+.+o+)

, dA.- +
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2.5.1 'l_ho Cauchy St_e_,_ TQn_or

The Cauchy stress tt_nsor, _ (sometimes called Eularia_% stress in

the Llnglnuclring literature0 is defined as

• (2.210)

components of this sym_etrlc t_nsor* are

The first subscript on a _omponent of 0 Identifies the plane on which it

acts, while the second subsorlpt identifies the direction of that

component. The definition can be expressed, in component form as.

TZ ---_'Z, N, (2.212)

-[-. - = (2.214)
or

0-z_ (2.215)

2.5.2 The Kirchhoff Btress Tensor

The Kirchhoff stress tensor _, can be defined conveniently in terms

of the Cauchy stress tensor as:

. . ,. ,. ,

Ib is not a law of mechanics that the Cauehy stress tensor is symmetric.

Truesdell (32, page 14) points out that it has been known for a century

that the presence of couples, acting whether frDm within the material

like body forces or upon contiguous portions of material like stresses,

is sufficient to render the str4su tensor unsymmetric. These co_ple

stresses may arise from inhomogenelty of strain. Some presentations of _e

continuum theory of disloca_i6ns in finite strain make use of couple

stresses (pola.: medium). However, for the present purposes, the couple

stresses are ignored and attention is restricted to the nonpolar case.
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=_. (2._16)
9

or, equivalently"

I ......I...... _o (2,. 217)

whore Oo is _J_o mass donsity of thQ matorial in _ho rofor_nco conf_gura-

tlon at t _ to , defined by_

_ J_

whore m is tlm mass and V the volume in the reference configuration.o

The mass density p of the material in the present configuration at

t = t is defined by:

J _ (2. 219)

Y=ig-
Here, again, m is the mass, and V the volume in the present configuration.

Observe that once a fixed reference configuration is chosen, 0° is a

constant for a material point, while p is a f_tInction of time. The

equation (2.219) for the mass-density expresses a relation between

the body and such shapes as it may assume. To each shape of the body

one may apply Eqs. 2.218 and 2.219 to obtain the same mass for the same

part of the body:

=.jp.
If one writes J for the absolute value of the Jacobian deter_dnant, then

a theorem of integral calculus* shows that

]j>.aVo.5o0a_v. ,_.-,,
For example, Theorems 3-13 a_d 3-14 of [74] and Theorem 8.26 of [75].

53

i
• ° ,' °

00000001-TSG06



or

Thoroforo, ono can aln_ oxprc_n th_ Kirchhoff _tr_nm Tans

Since the Cauchy stress tensor o is symmetric, the glrchhoff. _troaa t_nsor

is also symmetrlc. Components of this tensor aruz

/% __

The Kirchhoff stress tensor can be defined also from=

(2.2_s)
since from Nansen's relation (page 169 of [50])

2.5.3 The Second Piola-Kirehhoff Stress Tensor

The Second Piola-Kirchhoff stress tensor S is defined as:
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whore _. is a pseudo-traction vector re.latiEg a fictitious differential
" z dE

force d_ to the original area dAO AS t = _----. Thin pseudo-traction

vector is dt_fin_d by the s_e relation that°relates the differentia], of

tile position v_etor to the defo_,nd eanflguration dR to th_ dlffer_ntial

of tile position w_tor to the und_for_od _onflguration dr, Prom Eqs. 2.85

_ind 2.86s

g P, (2,.2301
as - • and _ 5

observe that these relations imply

Writing these expressions in component form:

_ .. (2.234)

Hence

But
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'_h_ s_cond Plola-Kirchhoff stress is a symmntrio t_nr_or if the Cauchy

stress tonso_ ifl _yn_otrle.
F_

Expressing the S.n_o_d Piola_Kirohho_£ stress tc_nsor S in component

form:

= ^ _j , _= j (2,239)
'5 = = ,_ = S,:j _,
Its definition (Eq. 2.229) oan also be oxpr_msod in component form a_

' .' _ A

s sj= In;. = 1'1_ = 1'I;,

Obslrve, from _.qs. 2.236, 2.241, and 2.228 that

_.i__.£.,T (_._,,_)
Then,

_. S5 = I,',_.2:::=_ _.244)

Hence,

(2.245)

The contravariant comloonents Slj (with respect to the reference basis gl)

of the Second Piola-Kirohhoff stress tensor S and the eontraVarlant

oo_ponents T TG (with respect to the present basis GI) of the Kire/lhoff
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stress tensor _ are eqL_al, llowever, this does not at all imply that the

Kirehhoff stress and the Second Piola-Kirchhoff stress ar_ equal.

2.5.4 '9h_ Firl_t Piola-Kirchh_ff Strauss Tenflor

The First Plola-Klrchhoff #_tross tensor T (alHQ called nominal stro_s)

is a double t,]nflor*deflnod ar.i

observe that tllu double tensor T operates on the unil: vf_tor _, aflnociatoa

with the reft]renco configuration, to produce the traction vector

associated with the _ configuration. The Fizst Piola-Kirchhoff

stress tenso_ is, in general, an unsymmetrio tensor. Components of this

stress tensor arel

(2. 247)

]" < ,i '__ • _,i
Truesdell and Nell [40] define the First Piola-Kirchhoff stress as the

transpose of this definition (Eq. 2.246) and denote it with the symbol

_R' employing the following components.

in their analysis.

The definition of the First Piola-Kirchhoff stress tensor _, is, in

component form

- ",,T= _ '4T = n_ _[

or

,=rP=T'_(',,,_dA,,)G_.-T.,_(r,_dAo)S.T_.,dA ,_.,_o,
See Subsection 2.4 for a definition of a double tensor.
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The relation between the mixed components of d,e Kirchhoff stress in the
I

p_esent configuration, in the body-fixed convected coordinate system, Tk,

(siJ
4

and the components of the Second Piola-Kirchhoff stress or S_)
will

be of importance in the formulation of the constitutive relations in the

fixed reference configuration used in this work. This relationship will

be needed in later parts of the analysis.

Since the contravariant components of the Kirchhoff stress tensor

component in the present configuration and the Second Piola-Kirchhoff

stress tensor component in the reference configuration are equal:

,.r=.'-__S_ (=._)

it follows that

_j (2.267)
6
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H_nce, the l,ig_d campon_nt_ a_ rolatnd by;

Qr

2.6 Stress }_at_s and Rates of Seoond O;dor Tunnp.sor_in G_neral.

The tlmo dorlvatlve o£ tensor fields, such as stress, that are

; associated wlth the _ configuration, admits infinitely many

definitions, depending upon the observer used to compute suoh time

derivatives. For use in constitutive equations, it is convenient that the

following conditions [?@j should be satisfied=

i. The Leibni= rule of differentiation of a product.

2. The time derivative should be a tensor quantity of the

same type as the original tensor; in particular, if the

original tensor is symmetric, its time derivative should
also be symmetric.

3. The derivative should be defined uniquely; i.e., starting

from one definition, the same tensor should be obtained

by differentiation of various representations of the
same original tensor.

4. Vanishing of the time derivative of a tensor should

induce vanishing of the time derivative of its arbitrary
invariant.

5_ The time derivative of the t_nsor should vanish when the

material point of a continuum with its environment perfo.-Tns

60
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a rigid bc,d_,motion and the tensor does not vary in time

intrilisically with r_speet to the material point,

Sinca tJl_ fln:st time derivatiw_ of a tenser (d_flned in this fashi.Qn)

con_itlt_itm_ a nnw t_Imor finldf sncond and hi[{hnr time r_nrivativos ,an

br_ dtlflllc,dby collsldo_i.nq this fiol_, it, thnr,_forn, l_uffien_ to allalyzn

In data;L] tlln da_inition of the first time, dr,riwativn,

•hlroo dlfl[nroht t?},,_llof obll,lrvnrllwill br_ r-,onfl;Jd_rod|(I) all

obfi,:rvcl'that lltoV:1fi_od in an Innrtln] [l;,]mn, (?.) al| r_l]sorvor thnt

rotot,,ll ,%nd mortal with tlv'lbody, .incl(3) obli(_rv(,rr,tliat _,ov(,pr::_tat(,e

and _/q!_%_., (in dl, f.fnrolit falfillOlm) wl,_l, tho bndy,

'Phi't,lm(_dt_l.'l.vo.'l_lw._,doCtl),Id frc_iiI_hu v'IclWl._O:l_IL_oJ_ an o})_(._rvor

y'OlllalllJ, l+l(t dt l/tiLlt itt IliiQCO W'[_,1, bcl C.ill].r:'d 'tile "£i_)d-obtloi-:vor _'ato". 'l')it_

tlmu derivative, dol:'Inud frol, the vit!wl)oii.ntof an obkli_rvt!l_that movt_ with

tll¢:paatlclu, partl.cipatlntI ill ira rotational motloll, will bu callu.1 It,.

"oo-rotatioual rate".

The tlmu derivative, defined from th_ viewpoint of an observer that

moves with the particle, participating :In its rotatory It.orion, and

dofoz_ing in co,talonwith the continuum, will bu called ¢.l,e"convect_d

rate" (there e_ists more than one type of this derivative, according to

what one defines as "deforming in corml0n" with the continuttm).

2.6.1 Rates of the Unit Tensor

Zt is intuitive that a good definition of the time rate of a tensor

would make the rate o_ the _nit tensor _ va'nlsh. It seems approplkate,

therefore, to investigate what time rates satisfy this condition.

(a) _iMed-0bserver Rake

It will be shown that the fixed-observer rate, denoted by (_), of

the unit (metr[c) tensor vanishes:

In the fixed-in-spaoe CartelS.an represefitation:
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I

sincQ

II_ .tho convoctod systom, with tho refierQnoQ configuration metric g£4z

and similarly for

In the _onvected system, with the present configuration metric GIj, this

result is not trlvial, since:

Employing Eq. 2.84. one flnd_

dt

,,,_- ._._-v,,_/_ .G.,_ (-V,,__)
(2,276)

=(& - j, _V_ GiN-g-=g _-_-
_ _ -- K (2.277)

BUt, fron_ Eq. 2.172
e
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6 o _ = (2.27_))

A,h_o, for the m.t,x_d componunt_

}_ ; - . a

=_":(v__)_ _._=(-w:_)
=s_V=,_6.6_- _'v" _._°

c: _ (2.280)

For the contravariant components:

K '_ W;K _'

(_'_ ""V_ : 6"):_ a..::• _K X

g..g.ov._v_.+ . ,'-":,
But, from Eq. 2.173

- *V .9 ,,..._,,
He11co I

do _5= -/" = (2.283)
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(b) convocted Rat_s

The conveeted rat_ is tho timL_ dclrlvfltlve of thL_ conv_]eted eomponentf]

of t|l_ LLu1_or. For e_ple, _or the unit tellsor|

llelleo,om_loy_nq gq. 2,172=

I* IZ -
Another convected rate, denoted by (_ i, can be obtained from the material

rate of the eontravariant components, as follows:

From Eq. 2.173"

&_4T i ¢___ __ (2.288)

Therefore,

Two other eonvected rates, denoted by (4) and 1_ ) can be obtained from

the material rate of the mixed components,
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"o]-w ( :_.,2qOa)

= ._. , :_ ,T (2.29 la)

[lt_nco

4

G .=:_" • _ gm:_. = 0 ,2.291b,

Therefore

4

which shows that oflly the "mixed" convected rates ( ) and ) of the
V

w%it (metric) tensor do vanish; while the contravariant ( ) and cOvariant

eonvected ( ) rates of t_le unit (metric) tensor do no__tVanish.

(c) Co-Rotational. Rate

The co-rotational rate can be obtained from the additive decomposi-

tion of the velocity gradients, Eq. 2.205-

L. V • W._@ ,J g"

The expression for the fixed-observer rate (Eq. 2. 277) in connected

coordinates can be expressed as.

, ,i,, _ _ _v " _ _--v --_
Fixed Convucted Defoznmation Spin De formatioli Spill (2.293)
Observer Rate Rate Rate

Rate

TherefDre, the co-rotational rate (the rate observed by an observer that

rotates but does not deform with the body) should be
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O

= -- (_zK " K_ (2,294a)

,Co-RQtational convooted [_formation D_fQm_It:l.on

0

Hence, f_om Eq. 2,].72t

SImifarlyz

: + D_ +::b,,.G
(2.295a)

., + + - ,. "-'+..
Hence, from Eq. 2.173:

_:K4T 0 (2.295b)

Therefore,

_ (2.295C)

The _o-rotational rate of the unit (metric) tensor does Vanish.

2.6,2 Rates of the Cauch_ Stress Tenser

2.6.2.1 Fixed-Observer Rate

The fixed-obserVer rate of the Cauchy stress tensor in Cartesian

coordinates is simply:

.= = _2_4T (2.296)
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Tho _Ixod-ob_1orw_r rclto of tht_ cauchy stross tensor in col]vocted curvi-

linoar coqrdinat,._n, in obtainod by tnkinq Into aocount the timo rato of

the base vc,etoL's,

Col%travarinllt Co_on_lltt_ :

dt z ¢_' _ 12._.q7)

--(_'o.v;._*-+v" ")_ °-- (2.298)

Miged Components :

= = G_G +OLr

-.--- -(v,_:)_" • (-v_,_9_o-:,_--dr.._G_G +0"_ ,. _, ,,

--6"_._Y_,%o,,.V,,_,- o_V"

(2. 299)

i°*- v- , • I(:Y_ (Y,%+ ,_0"_-O'_,'V'"
Covariant Components :

d_" •
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• (2. too)

i ii , ii .

2.6.2.2 Conveoted Rates

The time derivative of the ¢ontravariant components of the Cauch¥

stress tensor in conveated coordinates, was named the "eonvected rate" by

Oldroyd [77]. This is one of four different tensors that can be obtained

by time differentiation of the four components (covariant, contravariant,

and the two mixed components) of the Cauchy stress in convected coordi-

nates.

This "Oldroyd" rate will be identified here as (V). Therefore, in

convected coordinates;

Oldroyd [77] shows, . ,t in Cartesian coordinates:

v
-- A

O"--Cr,_-_'rj

I "............. IA J% 4 A (2.3021

_nother aonvected rate can be obtained from time di_ferentlation of the

_ovariant components of the Cauchy stress in convected coordinates. This

stress rate, identified by ( ) was analyzed by Cotter and Rivlin [78].

In convected coordinates:
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A

"3
Cotter and Ri,vlln [78] _flloWthat Ill carto;_lan coordlnat_;s_

(2.a04)

' _ ,_ .... A A _ A

other eonvected rates can be defined by time differentiation of the mlxod

components of the Cauchy stress in eonveeted coordinates, as shown by

Masur [79 and 80] :

_; J (2.305)0-=.;- (T=.

O-= 0-=_rL_j
i i i

,i

(2. 306)
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== /k

2.6.2.3 co-Rotationnl lint,

(°'J'he co-ro_ationa] ntros_ _ate here donot_d by ), Ir_ the oonvootod

ccff_rdinate system can be obtaln(_d from the fixed-observer rate in

e.onvoctud coordinates by replacing the voloclty gradients VI, _ = DI,+ W.X_

by D_ (thurob', eliminating the subtbaction of the spin tensor"WZ.j _rom the

convectod rate). Hencm, in convected coordinates.

, Z I( K

0

_ ^ ^C[=_ -_ ^= C_ -'_7_ 0̂"_.K (2._13)

The co-rotational stress rate in Cartesian coordinates was first

introduced by Zaremba [81], and later on by Jaumann [82]. Nell [83] and

Thomas [84] rediscovered this result. The co-rotational frame is referred

tO as "kinematically pr_ferrud Co-ordinate system" by Thomas [85] and the

co-rotational stress rate is denoted as the "Ja_mann stress rate" by

Prager [86].
70

_, _ . _. ._........................ . ... ........................ ,, ,. I

00000002-TSA10



An ;altt_rnativn way to obtain the co-rotational rat_ is from the

avurage of tho converted ratos of th£_ mi_d compunt_nts_ as shown by

Masur [79,80] ;

o _ 4 .

2.6.3 Rates of. a Socond O_-dc_rTensor

N_oapitulating, a _ucond orde_: ton[lot _ having componont_J:

/%

has the following rates.

__ =j_._+V_ , _ (2. 320)

2.6.3.2 tO-ROTATIONAL RATE

a¢ -A ^ A ^%
.[ 71
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V o

A=C' _. A: c °, _ . _ (2.331)

A A

A; A;=_ (2.333)

= + V _"L,,<_-- Va.,_._L,=. (2._34_
72
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I
2.6.3.4 Rnla£1ons betw¢_en Ratps of Second Order Tensors

I Th_ followillg _lations b_two_n tho various ratoq of a _ecc)nd ordc_r}

tPl%s_r _ can b(_ shown to hold|

A

/'Z "-& - L-' ,.9.,- &'_ <_'_"_

"- - ' + d_" L (2,_3_i

- • - ' (2. 339)

V o

.n-- ,n= gn, - n,g
= - • ..,-J"L'."D (_._,_)

_ °

•- (2.344)

Note: (i) The _ixed-ln-spaee observer rate, denoted by ( ), does not

satisfy condition 5. For example, the fixed observer rate

of the Caueh_ stress tensor does not vanish when the body

performs a rigid body motion and the body remains unstressed.

(2) The eonveetud rates identified by (V) and (A) do not satisfy

conditions 1 and 4.
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(3) The c,_nv¢_ct_ad ratr_s identific_d by ( ) and (I;_) l_;lduce

11|]_3gmmt'_t[ic [;i.l[ll-lc, l?,q [?VC, l] WhO, ll thl? t_._rlno]: bc_Jng _liff_._r_ll|:iilt,.,d

Wan on: J q lli,/ I .|V tlylnmo.trJ c.

(4) 'l'h_, c,_-r'_t,'tt.talial (Zar_rahil--,li.iUlllnnii) r,-it.c, i],%kblfi,,l_ ,,/21 []v_,

i.._nMLi_.ttm_l;?rl,_iM_ill ,aiM i.lJ(.iLlialllII_;, I-'.;!d?.l,I'i:_i,I,.iI_i_,i,

,lUM _Itli._ I;hau_t-'hc, hq I'J(-'] o._;|,riirml,d i.Hiili]l.,illl L|I 'l,_tl filvlil

lll_lllllilllli I1.t']] llit?l_,rl.Jl:,ll,l,,I t:ll,_ o,i,-rcPL,-iLt,_ii,l,1 I','ltl, 7111 t.'l'Vill'i,lill.

,1t fl]l-i;Fl_lltl.lll;lflll WI Lh l'lilll,l,l.'(, l-f) l;.Jlllit I b7 ] lit.l:cidllcl ii(l L'.tlII,' d:_

l:ht' £'lllll.'t'h f2(-"iOl'f.l._lhi[-lt .t.11_II'1 il}llUtllU..i,'ltli llliillll_t, It,,.tT_llO

.l,_,lilll_liili_ ThOIIliil'i l 1tl-4, t', lt3] lilid illro_ldy J.iitl't:::ha't>d tht., llt;illli_

,c0y.a_,la#!}. tl=l}Cl._._J}:_!]i:vut_v_2 • for thu vo-l°,.,tath-,nal i:al'l_,,

2.6,4 Co-ltotattonal Rl/t(., olk" £ht! lirchhof£ Sti'esa n?cqlt:lor
_F

%'11ouo-rotational, ratu x" o£ the Ktrchhoff stl-us<_ _ w'l.th coml)on(Jntu

,_ld ill thu presunt vuctor bases, Is

Cartesian Components i

0 " ,_i /%

#% #% _%7"_ #% ,_ "_ (2.346)

Contravariant Component s .'

MiXed CompOnents:

CO Var iant. ComPonents i
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Contravariant Components:

"_- _ + G""D,.,.z:"_ -,..z::'' D,,,.G""

i '5........,:,i ), )_:=_= _ + S_ SiCc" J+ (c"_ ,_._o,
i ii Ill Ill i,I I I I ill i

Mixed Components t

One can obtain these components from any of the following relations:

"" ° _h
(2.3S:)

0 z :ZK, *L.

Employing the first of these _elations, one obtains.
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2.? Enerc::_ Equation

The internal energy integral U over the present volume V can be

expressed as a function of the Cauchy stress _ and the rate-of-deformation

tensor _..

t2 = d, 23Jt _V (_._,_,

One may write U in terms of the following components in the Cartesian

and in the convected coordinate system.

u.J.J<̂ ,o
df__-o_'"aeav--J,f,_ 33:atav "."_'
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I

I in tho rofor_nco ¢onfiquration
'l'ho_nerqy integral U ow_r the w_lumo V°

at t - to , can b¢_ easily obtained from Eqs. 2.223 and 2.355 af]:

L[ - . _V_tit = ,D '"':'_"'
where, as in Eq_. 2.218 and 2.219.

dm J_

}{once, the energy per unit mass U is.

[L_____u_j__u_ = • Ju

d_ JV J_ fC_,_) aV
(2.358)

m

._2'

_. $ -2 C_.,e)u. ,,._oo,
i,

These equations express the important fact (for constitutive equations

based on thermodynamics principles) that the scalar product _._ is simply

reiatud by a constant (po) to %he power per unit mass U, while the scalar

product _'D is related by a variable (p, which depends on the deforr_ationI
history) to the power pe_ unit mass U.

It can be shown that equivalent expressions for the internal _nergy

I U are :
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_erefore, _ and D are conjugate vari_les for the Internal strain power

per unit present volume Vl _ and y, _ and _, _ and P, and _ and _ are.

conjugate variables for the Internal strain power per unit reference

volume V .
0

For the conjugate variables _ and _, the energy expression in terms

of the components in the Cartesian and in the convected coordinate system

in the present configuration read:

(2. 362)

m -" -"
For the conjugate variables S and T = 1/2 C, the energy expression

in terms of the components in the Cartesian and An the convected coordinate

system in the reference configuration read.

LT.- g_V,j J_ Jt - 5_i,:lX,,iJr,,

" Lf,JL (2,363)
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a-_ :-I

I"¢H" l.l. a 12011.1tlqilh- _ V,.|l.'J._q['_].l_lt 'I' /llld Ii' l:h( _ _II_AY_Iy o_.l)rt';l,_L[_'_li in (.:q.'rlllf;

_JJ_ [ h_" t_-CJlllJWIll_llt-,q ill _.ht'_ C1'1,1t_'.¢_|3,| i111 illl_l I.I1 L]IO Lllh_lt'|_Orllll.?(l ¢CllIVt't2|._'_] <'t_*cLr_| i -

lliitC' l.ty_t_c_ln I'Cviid| m

-- F-"agat-- . aP' av0
(2.364)

_-/_£-r_jfi!_Jv.a=/_;,,T:!f; i__,_t
_ •

Observe t/_at since DIj = ij = aid' equivalent expressions are.

.' g

However, note that _ and y, and _ and e are not conjugate variables, since,

for example:

This seemingly simple distinction llas beet% the cause of confusion by many

authors.

Observe, that since

q:::="_S `'i--T; _

79

I I I I I I I I I I I I III I i

O0000002-TSB05



and

• fiI3, = "i( j -
than, oqulvalant oxpre_a[onn ara

However, here again, _ and 7, _ and e, _ and B, _ and ], _ and e, _ and e

and _ and y are no____tconjugate variables.

2.8 S_ecialization" Homogeneous Uniaxial Irrotational Deformation

The uniaxial tensile test is a common and simple way to characterize

the stress-strain relation for a given material. Since the tensor

components used in the constitutive relation will have to be related to

this uniaxial test, and also to gai_ a physical understanding of the

quantities involved in the analysis_ it is both useful and instructive

to express the tensor quantities previously discussed in terms of the

uniaxial tension test variables. A homogeneous, uniaxial, irrotational

deformation will be considered. Then, it is evident that the curvilinoar

convected coordinate _I is equal to the Lagrangian Cartesian coordinate

xI for a bar with no initial curvature:

8O
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i

(.)bsorv_ that E,1 and xI aro not functioi_l of timc_ (they romain tho _amo. fnr

a given mat_rlal paJ:tiol_).

If the original length of the bnr is £ , and its present lenqth is £,

then the Eulurlan Cartesian coordinate X 1 is

x( t>---i X_, -

If the unit vector directed along the axis of deformation is [l' then

___i_L-- -- (2.370)

and

_L --_ '&= L (2.371)

The deformed base vectors are:

1
= ; T_. (2.372)

and "the metric of the deformed configuration:

G - -- G_ °,,- --y
so that the unit.second order tensor is:

The position vectors are:

_ _ _ = r_ - _ %=_ :ri= x i
r :q L_= xIg_ _ q _i , L
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^ ]_--
t2.375)

ThQ diaplacem_nt voator i_,

_'._,a,- . (t._),,.,.
(2,,376)

Ig _- _.- x, T_- t- x,
The velocity vector is:

_t IE_.x,=©,,,_T.

Xt= ¢o_sT, to

V i ^ i X,
- V_." V_ " _D.

_.i_c,.v' _,-v, _'-V' ! r,-V,{r_l, L
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'l'hott, m_ rates of thL_ d_forme.d bane voctorn ares

dt "ax_

_ __ __ _ -- = -- _I 12+._79)

2.8.1 Doformatlon and Strain TonsorH
L_

The components of the defo_ation gradient tensor I,'are:

Cartesian Com_:

_X._ _ (2. 380)

" _ _ _" --_"0II _ X_ ,

Double Tensor Components:

' si F'*i+i
F'='i" F+j"=l
F'J=F.=&_lj'j £
% +F_jG,,+.
r,+:F-:++,,p F; + '++"+"

components in the Convected coordinate System in the Reference

configuration are :

F._=S_+u_,_.

F+.+.- j+ .:L+- ,)x_

F._;:F"F,_:F;+.-- -_
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Th_ eomponQnts Qf th_-_spatial deformatiQn gradient tens_r _" ar_s

cartesian C_mponc_nt,

L
" !

Doubla Tensor Componentnl

(F")_.: - 6k (F")ti --

') (r) ( )'r(F ,L -, r" " --. . :;G,_ L

(r"); t=(F')_"_,_ (F");t. _J.tF
(2. 384)

(F")_.--(F")!; #'a (F"),, - Z
Com_x_nents in the Convected Coordinate System in the Present

Configuration

-(r-'):;G - _.

(r")_, --(F"):' G (F' £_

(r-');t- (F-'),_a'_ (F");:- __-_ '_"_'
Since an irrotational deformation is being considered, then the

orthogonal rotation tensor is the unit tensorz

%" :L (_.3._)
And for this special case, the right and left stretch tensors U and V

li . •

become bot/1 equal to the deformation gradient tensor F:
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Compollnntf_ of th_ right stretch tensor in thn cartnslan system and

in tho rofnronen _onfi_juration of the eonvnetod coordinate nyntnm aro l

^ I/'_°LL' I/= = = -" (2.3a8)

Com,pononta of thn loft strotoh tonner In the Cnrtcmlan _yntc_m and in the

present configuration of the convected c_rdlnato system arol

A _0 (_.3891v,, Vl- v'_ _° _'= - -T V,_-
Observe that the value of the stretch tensors is equal to un£ty for no

deformation, and the possible range is

A

o< LL,,.Ut- V,,-V:<,_ '"_*'
_he right Cauchy-Green deformation tensor _ _ _2 has the following

components in the Cartesian system and in the convected coordinate system

in the reference configuration.

c -c'-c"-c-- °G --}_ ,_.,*,_,_L :1, .L:L. J'£ o

The left Cauchy-Green deformation tensor _ = _2 has the following

components in the Cartesian system and in the convected coordinate system

in the present configuration.

1'
-- 7 -i_ i o o

Observe that the value of the deformation tensors is equal to unity for

no deformation a_d that the possible range of values is:

A

d. t.< "_" C_ (2.393)
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Th_ Green (Lagrangian) s%rain tensor _ is defined as

= =)
Ttmroforo, :l.then the £ollowin,q oomponnntn in the Cartnni_n and l.nthe

eonvoot¢_d eenrdlnat_] system in the ro_ernncn confiq,,re,t_on;

=¥,
The value of thin strain tensor roduoos to zero for no deformation, and

the possible range is!

_ < + O0 ¢2.39G)

The A/mansi (Eulerian) strain tensor e as defined as

Therefore, it has th_ following components in the Cartesian and in the

convected coordinate system in the present conEiguration.

The value of this strain tensor also reduces to zero for no deformation,

and it has a possible ranger

Tileelongation strain tensor _ is defined as

E" _" i (2.400)
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Therc_fQrn, it has the following cQmpQnents in the Cartoslan and in the

convoctnd courdinate syfltem in thn r_feronce conflgurationl

^ _
E _ E _El" "- = - - i _._o.

I Obnorva t/lat tills uni_lal _amlgonnnt in nxaatt¥ equal to tha na_aalled

",mgi_oorln_ rltra_l%" by the onq_nnor._ng llt_rature that in measured in

un£axial ton[file tests. Thlo strain tonoor also _odl._on to zero for no

dsfo_7,atlon and It has th_ following posslb1!._ range o£ Va1'loSz

-i< E_ { + 00 (2.402,

The elongation straih tensor E is ds_inod ass

Therefore, it has the following components in the C_rteslan and in the

eonvected coordinate system in the present configuration:

3. _o
E." E_" i -y

(2.404)

This strain tenso_ also reduces to zero for no deformation and it has

the following possible range of values:

-oo < E" E,< + (2.405)

The logarith_ic strain tensor _ is defined as l

Therefore, it has the following components in the Cartesian and in th_

convected coordlnat_ system in the roferenc_ configuration:
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H t"' H_' H--I _ N = (2,407)

Th_ logarith_io strain t_nnor.[_is d_fin_d af_

_hn_o_o_e,_,_ban _hefollowingeomponent_-_in _ioO_toni_aandin _ho

convo_Z_d _oordinato 1_ystem _.n%hQ p_-onont _on_i_urat_onl

1"

These strain t_nsors a_o reduce _ zero _or no do£ormatlon and they h_'_ve

the followlng posslblm range of valums_

(2.4_0)

-co<e_<._
ObserVe that this strain tensor, unlike the other strain tensors, has

a symmetric range in tension (E% > 0) and compression (Eu < O). Also,

this strain tensor is called the "natural strain" or "true strain" in

_niaxial tension tests by the engineering llterature.

2.8.2 Deformation Rate Tensors

The rate-of-deformation tensor._ has Cartesian components

(2.411)

and components in the eonvected c_ordinate system in the present cunfigura-

tton

88
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Observe that the material rate of the logarithmic strain component

E_ is equal to the mimed co_onQnts of the ratQ-of-deformation tensor

The material rate of the Green strain tensor has the following

components in the Cartesian and An the convected coordinate system in the

reference configuration.

The material rate of the A_si strain tensor components in

Cartesian and in the convected coordinate system in the present configura-

tion are :

_i£" --- I_ = i+_ ¢2.415)

Observe that these convected rates are not components of one and the

same tensor. However, the fixed-observer rate of the Almansi strain

tensor components are components of one and the same tensor. Per example,

the components of the fixed-observer rate of the Almansi strain tensor in

: the deformed coordinate system are.
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nolationships botwnen the componGnts of the rate-of-deformation

t_Insor and the material rate of the GroLln _train tensor can be easily

obtalnod for the uniaxiol case; for example,

I'
I 2--8.3 StroPs Tonsors

The unit normal vectors to the deformed and _ndeformed areas are

one and the same unit vector directed along the bar axis, since the

deformation is uniaxial and irrotational. Therefore,

The force transmitted across the cross-sectional area of the bar is dP

a_.Jp,r,=_p'_, - jp, g"
A

ap,:ap
(2.419)

The fictitious force _ = (_)-I • _ has ccmponents,

Also, the corresponding traction vector cc_,ponents are:

T.'P T,_P T,.__.2.A. .A. .A.
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The Cauchy stress tensor _ is defined as.

Therefore, its Cartesian components are:

_D (2.423)

which can also be expressed in terms of" the reference area by the law of

mass conservation.

Hence, *

The components of the Cauchy stress tensor in the convected coordinate

system in the present configuration are obtained as:

^ 1 P

The components Oli = a I = _ are called "trUe stress" by the engineering
literature.
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There forQ, *

i

The Kirchhoff stress tensor is defined as

Therefore, it has the following components in the Cartesian and in the

convected coordinate system in the present configuration:

, l T

_ o (2.430)

Observe that the uniaxial component

"_ _' "_• - Z'lt- (,.4_)
*

See the footnote on the previous page.
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is tho s_ress actually comyuted in most uniaxial tension tests and is

also inaocurately labeled as "true stress", sine_ it is u_lually assumed

to be equal to the "true stress" because p _ Po is satlsfiod almost

ldentically for most metals in the plastic region.

The sooond Piola-Kirchhoff stress tensor is defined as

Therefore, its Cartesian components are"

-- l
The components in the convected coordinate system in the reference config-

uration are

Observe that the relation TII = S11 between the ¢ontravariant com-

ponents of the Rirchhoff and the Second-Piola _rchhoff stress tensors

is satisfied.

The first Piola-Kirehhoff stress _ensor _ is defined as:

Therefore, its Cartesian components are:

_--_ -- (2.437)
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The components of the double tensor T referred to the convected

coordinate system in the reference __andpresent configuration a/Q TiJ, Tij,i. T

and T_u. a_d ar_ Qbtained asT.j

i i ii i -_

!"_ ,_._,ga_'/ '_""'

T.,.i.. Z £_
Ao _o- (2.4_9)

.Ao._

I

1 t. and Tll T II between the
Observe that the relations TI = T._ =

components of the Kirchhoff and the first Piola-Kizchhoff stress tensor

are satisfied.

The components of the first Piola-Kirchhoff stress tensor referred to

the reference configuration of the convected coordinate system are_

• "_ -_

^._ _, ( , _,)
....... p, (2.442)
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Do£inin8

^ °

cr__T. _T_.,- X ,_.,,_,0

This is the so-called "engineering stress" in the engineering literature

and it is the easiest one to compute in uniaxlal tests since it is Just

the load applied to the specimen divided by the original cross-sectional

area A of the specimen.
o

The relationship between the components of the Kirehhoff and the

second Piola-Kirchhoff stress tensors can be simply obtained:

a
2.8.4 Stress Rates

Since an irrotational uniaxial deformation is considered,

Hence, from Eq. 2.335

_ ,_ (2.446)

For this particular kind of deformation, the fixed-observer rate and the

co-rotational rates of a second order tensor _ are equal.

The co-rotational rate of the components of the Cauchy stress tensor

in Cartesian coordinates is."

1 "
The co-rotational rate of the components of the Cauchy stress tensor in

convected coordinates is.
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° _o-_-a-._}_=_. _o-,__,- 6-,- ' ..

i ---- (2.449)

The convected rates of the components o$ the Cauchy stress tensor in

the convected coordinate system in the present configuration ares

.'_. o-_*.= _.*_=_. = ._
Evidently these are not components of one and the same tensor. The co-

rotational and convected rates of the Kirchhoff stress components

referred to the uonvectcd coordinate system in the present configuration

can be similarly obtained-
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The relationship between the co-rotational rate of the Kirchhof_

stress tensor mixed components in the convected coordinate system in the

present configuration and the Second Piola-Kirchhoff stress tensor mixed

components material rate can be easily obtained from Eq. 2.269:

t , r

, l m l

Or, for this uniaxial, ir_otational motion condition:

Hence e
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Th_rofor_,

2.8.5 EnorHy Equation

As previously noted in Subsection 2.7, the energy integral over the
ra

present volume V can be expresscd as a function of the Cauchy stress

and the rate-of-deformation tensor D a8 in Eqs. 2.354 and 2.355. In this

uniaxial case, one obtains •

(2.46z)

Notice that, from Bqs. 2.411, 2.412 and 2.413-

= &_ ¢2.462)

Also, from _qs. 2.425 and 2.427=

Therefore, _q. 2.461 becomes=

(2.464)

, I:/ti'< lo
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I

I which shQws that the area under¢ the "true stress" (_T _ el = A) 'and thep
logaritl_Qiu strain (E = _n (_)) in the energy per unit present volumeu

of the mercurial, o

i As pointed out in Suhr_n_tibn 2.7, the energy p_r unit refnrnnce

I volume of the material, can bn easily 6btalnnd from the Jaeobian determi-

nant of the deformation, from Eq. 2.356|

For the unlaxial oase:

(2.466)

1 P £

which shows that the area,under the Kirchhoff stress (_ = TI = _-_-)

and logarithmic strain (Eu = Zn (Z__) . o o) is the energy per unit reference

volume of the material, o

The area under the Kirchhoff stress and the logarithmic strain is

simply proportional to the energy per unit mass of t.he.material, the

proportionality factor being the mass density Pc per unit reference

volume VO, which does not depend on the deformation history.

The energy per unit reference volume of the material can also be

expressed as a function of the second Piola-Kirchhoff stress tensor

a_d the Green strain tensor _ er _he right Cauchy-Green deformation

tensor C

For the uniaxial case_
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' . l'f, °?" y.

which shows that tho aro_ undor tho socond Piola-Kir_hhof£ _trooo

_2
^ .,1 P _o. ^ v 1 . ! (-__ . 1) 1 io oqual

(S11 " _i = _o £I and t/le Green strain (Yli -..1 2 _2

to the energy per unit reference volume of the materlal,°proportional to

the enorgy per unit mass o£ the material.

Another expression for the energy per trait r_£erence volum_ of the

material relates the conjugate variables= the first Piola-Kirchhoff

stress tensor T and the rate of the deformation gradient tensor F=

IZ- _..F ,_Vojt ,_.,_,
For the _niaxial case (convected coordinate components in the reference

configuration) =

^ i m-_t-w..'? ._.

^ f_ _; f-,,o_-,,_. •F,,= fi- _.: -- "-where

, VO (2.4701

_0o
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which shows that the ar{_aundor t_lefirst Pj-ola-Kirchhoff stress (or

P ._i £ -I)"_._n@Inenrinqstress" gE = A-) and the 'q_nqinonrinq strain" (Eu = E1 .---_-

in _qual to the _n¢,r.qyper _nit rofnronae volur,o of the mntnrlal, o

i01
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SECTIO_ 3

CONSTITUTIVR EQUATIONS

3,1 Introd._tian

In s_iction _,, th_ 4]quatian_ nrmnssary for thn precifln treatmnnt nf con-

.tlt_tlV_ _q_tlonn wo_o p_nnnn_. _n thn prnnnnt no_t_an, thn flnlto-

,train plaNt i_ity theory un_d ;In th_ p_nflont ana]yNifl it] oxnm_nnd nnd dis-

played tn the flpi_It of modern _ont_nuum mo_hani_N.

3.2..,! Rovipw o[, P!,inc£1Jal Concepts

There are two typos of plasticity thoorlos, termed "flow" and "def{_rma-

rich", The dofom_ation theory of plasticity assumes that, aa in elasticity,

there exists a one-to-one aorr_spondonce between stress and strain. Th_ _low

(also t_rmed "rats-type") theory of plasticity states that there is a func-

tional relation between th_ stress rats and the strain rats. Since those

thooEies are _onceiv_d for small-strain conditions, the stress, strain,

stress rate, and strain rate m_asuros are left undcfinad for any strains that

are not "small". Only fol proportional loading whs_ the stzoss zatlo re-

mains const_mt, and for a certain restricted range of load_ng paths other

than proportional loading (through the assumption of the possibility of a

singularit_ in the yield s_rfaoo) does the deformation theory agree with the

flow theory.

The behavior of an eiastlc-plastlc material can be characterized by tile

following two Ingredients. PiEst, one assumes th_ existence of a boundary

(yielding surface) in stress space which defines the elastic domain_ within

the boundary the continuum deforms _lastically. The onset of plastic flow

(irreversible d_formation in a thermodynamic sense) is posslbl_ only at the

bouhdary, and no meaning is associated with the region that is beyond the

boundary. Second, one employs a flow rule which d_scrlbes the behavior of

the material after yielding has started! this rule gives the; relation of

plastic flow (strain rate) to the 8tress and the loading history.
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Anoth_r basle as_umption in the theory of an elastic_plasti= continuum

.IS the introduction of a plastic strain tensor. The plastic strain, Yi_' is

,xssumod to have the same invari0/qee properties as doors the strain ter,sor,
o

P is re,fated to 7i j by an elast_a strain tensor YiJ' inYiJ' The quantity 7ij
the form,

Q by the _1omponents
'the stress, 8lj, is related to the olastie_ strain Yk£

EiJk£of the fourth order olastlo modulus tensor:

Lj_,_ _ J_l_ _jZ --F -E --E
When the material is elastically isotropic, the Eijk£ can be expressed as:

where _, % are the Lamelconstants. ,

The yield surface, ¢, is assumed to be expressible in terms of certain

variables and may be expressed as:

for }_erfeet plasticity behavior, where k" is a constant. For strain.hardenlng• O

behavior:

0) __ (3.6)

where Sij is the stress tensor (alsoundefined for finite strains) and "k is

a ha;dening parameter which depends on the strain history.

Various yield criteria have been proposed fo_ the prediction of the on-

set of plastic flow. Among them is the Mises-Hencky yi_.id criterion [89]

which usually fits experimental observations bette_ than the Tresca criterion

[89], for instance, for poZycryst.alllne metals and yet is mathematically

simple. The Mises-Hencky rules will be discussed and adopted in the pr.esent
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al)aiylll_'_.The Mis¢)_i-lloncky y1t_Id crit[_rion may be interpreted as "yioldlng

bt_gln_ whehovur tho distortion on_)rgy per ulllt mass equals the distortion

,nl_u'g v per unit ma_.]sat yi_id in simple tension". Thus hydrostatic pressure,

for a** ola_.tically i_lotropie matcrlal in tL_nsiol, or compression does not

ai'f,_ct tll_lyleldlnq, pl_Tstlc flow, and zcsultant hardcnlng. Stated othor-

wble, ,TO plat]tic work i:_ don_) by tile hydro_itatlc component of the appliud

_+t|:,ms. 'rhln Impl_o+T that there is no plastic (or irreversible) _hange in

vo ll/mL,. 'Phtls,.

-0 "'"
For an hlitlally-isotropi¢ matorlal, the Mises-Hencky yield function

can be wxitton in the form.

where

is the yield stress in the _miaxial
stress-straln state

This represents a hypersurface in nine-dimensional stress space. Any point

on this surface represents a point at which yield can begin.

Considering the e iastic-perfectlz-plastic sol id+, if the conditions (a)

< 0 or (b) _ = 0 and _ < 0, are satisfied, the state change can only be

elastlc_ any plastic deformation (which may have been incurred earlier)

remains tlnchanged. Thus,

I
• (3.10)

It is postulated that the plastic strain rate _j is linearly related to the

+With 1io strain-_'ate sehsitJvlty.
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Gradient of $ in stress space, aS/as i-_, a_: follows:

This is a consoquonuc of Drucknr's [90] stability postulato+_ it implio_l

that the plastic straln-rato vector j ( j can bo nxprossod as a vector

ill a str,iIn-rato space with the _ strain-rats components .as axo___)is

normal to tilt loadinq surface $ (since ---Dr is t/:e normal to th_ Ioadin.q

surface $ in stre_s space with _ril_cil_._ stress components as axes, and the

principal axes of strain rate and stress are assumed to coincide). Here

is a scalar factor of proportionality; it is not a material constant, but

varies with the deformation. The relation for the plastic strain rate j

is independent of time as written, since it is dimensionally homogeneous in

time.

Considering the elastlc-plastlc (strain hardening) solid, the state

change is elastic if

< O (elastic deformation)

_i" 0 when m = 0 and _ -"0 (neutral loading)

(3.i_)

It is postulated that the plastic strain rate _lj is linearly related

to the gradient of $ in stress space, as follows.

where the factor of proportionality _ can be expressed as"

+The work done by a set of external forces acting on a body must be positive

during the app]iGation and positlve or zero over a complete cycle of ap-

plication and removal. For perfect plastleity, this is modified to requJ.re

that the plastic work of the external agency is zero instead of positive.
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The factor q (as well as $) can be any sealer function of stress, strain,

and strain history.

Notice that for $ _ 0 then _'J _ 0, whleh is consistent with the previ-

I for neutral loading.

our expression

The factor G is not supposed to be a function of the stress rate. This

assumption, suggested by .ill (page 34 of [89]), is based on the consldera-

tion that in a crystal grain, a plastic strain rate is produced by a combina-

tion of shears along certain sllp directions, depending on O_e orientation

of the grain and its external constraint. For the operation of such a

glide-system, a certain state of stress is neede, and hence, as a statls-

ticalaverage over all grains, a definite macroscopic stress exists. The

stress rate enters only in determining the magnitude of the strain rate.

For the material to exhibit straln-hardening behavior, it implies that

the yield surface will change in case of continued stralnlngbeyond the

Initial yield. The change of the yield surface (or loading surface) that

characterizes the strain hardening (or work hardening) behavior of the

material depends on the loading history.

There are several hardening rules available to describe the subsequent

loading function. Among them are "isotropic hardening" and "kinematic

hardening".

Isotropic hardening assumes that during subsequent yielding from a

plastic state, the yield surface will expand uniformly with respect to

the origin in stress space but wfll retain the same shape and orientation

as it had initially. It does not take into account the Bauschinger effect

[89]. Mathematically, the subsequent yield function for an isotropic

hardening material can be put in the form:

#
where Wp is the plastic work expended and the upper limit of the integral

refers to the plastic strain aK the current condition or time.

To account for the Bauschinger effect, Prager [91] introduced the

"kinematic hardening rule" which postulates that during subsequent plastic
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I
[
' flow, the yield surface translates (as a rigid body) in stress space and

:I that it will retain the same size, shape, and orientation that it had Initi*

ally. Mathematically, this can be expressed as

}

whore iJ = _lj(_j) representD the translation of th_ referenced origin in

;! stress space of the yield surface and depends on the degree of hardening.
L

Pragor proposed that the direction of translation be normal to the yield

.! surface:

where c is a constant.

Ziegler [92] modified Prager's rule by suggesting that

")/ (_.is)

where _ > O. Geometrically, this means that the direction of motion of the

center of the initial yield surface agrees with the radius vector that

joins the instantaneous center @lj with the stress point Sij.

These kinematic hardening rules considerably over-estimate the

Bauschinger effect, and therefore in general practice do not represent an

improvement over the isotropic hardening rule, as observed by Almroth [93]

and by Hunsaker et ai.[94]. One exception is the case when a bil_near

stress-straln curve provides a satisfactory approximation, as observed, for

example, by Almroth [93] and by Ivan [95]. However, few materials have a

hvsteresls loop that is truly bilinear.

A combination of kinematic and isotropic hardening, that translates

in accordance with Ziegler's rule, and whose hardening modulus and yield

surface size at any point in the deformation history a_e assumed to be

functions only of the plastic work has met with some success. It can be

expressed mathematically as:
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and transiates according to

/ (_.2o)
where p > O. This comblned Isotropic-klnematic hardening rlle is usually

used with a linQar straln-hardening assL_mption.

m%other hardening rule is the "_chanical sublayer model" of White [96]

i and BessellnK [97]. In this model, the material at any point is conceivedof as consisting of components, each component behaving as an elastic,

perfectly-plastlc medittm, having common strain, but appropriately different

I yield stresses. If the components have the same elastic _ _lus, the yield

stress of the composite will be the same as that of the weakest of its com-

ponents. However, since the other components can take additional load, the

composite will exhibit strain hardening with a piecewise linear stress-

strain curve. In contrastto kinemtic hardening, the mechanical sublayer

model gives a hardening modulus at the outset of reversed yield which equals

the hardening modulus at initial yield. This agrees well with experiments.

Plastic anisotropy develops automatically in the model during loading in

the plastic range. Use of only one sublayer results in the application of

ideal plasticity; that is, elastic perfeutly-plastic behavior. The use of

two sttblayers of which one has an infinite yield limit (in practice large

but finite), results in the application of kinematic hardening with a bi-

linear stress-strain curve.

Mroz [98] introduced the concept of a "field of work-hardsnlng mmduli".

A number of surfaces in stress space are introduced, and associated with

each surface is the value of the work hardening modulus of the corresponding

point in the uniaxial stress-strain curve of the material. On loading, all

of the surfaces are shifted in stress space according to the rules of klne-

marie hardening. The hardening modulus obtained from the Mroz model depends

on how many of the moduli are currently active. The results obtained by

the use of the Mroz model are almost identical to those obtained by the use

of the mechanical sublayer model [94]. While both models are practically

identical for proportional loading, for nonproportlonal loading they differ

in the following: under the Mroz [94] model the yield surfaces are not

allowed to intersect, while under the mechanical-sublayer model the surfaces

will intersect and corners will be created [97].
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I

3.2.2 q_e Mocha_ical-Sublayer Model
"0

Since the moehanical-sublayer model is used in the present analysis to

model the finite strain, strain-hardening, strain-rate dependent behavior

of metals, a brief review of the origins of the model wi_l be given in this

subseetion_

The mechanical sublayor model, has been also called the "composite

model", %ubelement model", "subvol_m_e model", "overlay model", and

"distributed element model", according to the way in which this model was

physically motivated, but most of the rnathematlcal formulations are slmila_

for small strain conditions. The general idea is that the strain-hardenlng

behavior (includin 9 the Bauschinger effect) of an elastic-plastic material

can be represented by a number of ideal elastic, perfectly-plastlc elements

having different yield limits but a common strain. As early as 1926,

Masing [99] used this model to make some general statements about the be-

havior of materials; Prandtl [i00] in 1928 used a mathematically equivalent

model (but with a different physical representation of the model) as a ve-

hicle for the application of kinetic theory to a rather wide range of prob-

lems associated with rate effects. The approach was suggested again in
#

1930 by Timeshenko [I01]; in 1935, DUwez [102] applied the model of elastic,

perfeetl?-plastlc elements in series to single crystals and showed that

the model could be made to give stress-strain curve and hysteretie energy

loss results which were in close agreement wihh experiments.

The model seems to have received little attention until the early 1950's

when White [96] in 1950 and Bessellng [97] _ 1953 used the model to repre-

sent elastic, perfectly-plastic behavior exhibiting the Bauschinger effect.

Ivlev [103] in 1963 discussed the model, incorporating viscosity effects,

and Prager [I04] in 1966 further extended Ivlev's work.

In numerical predictions of strain-rate eiastic_plastic transient

struotural response, the mechanical sublayer method was applied first at

MIT. This application was carried out by Leech, Balmer, and Witmer d_ring

1962-64 and is re_orted first in 1964 [105], with more details in 1965 [106]
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and 1966 [14]. In earlier MIT work r_ported in 1962 [107], a linear-

elastic, linear-strain-hardening approximation with similar rul_s for

loading, _loading, reVersed loading, and reloading was used to represent

material behavior; however, strictly speaking, this was not the mechanleal

sublayor model.

Drueker [108] has also discussed this model in 1966 and indicated some

of its advantages as well as its shortcomings. The model was again applied by

Iwan [109, 95] in 1966 to model the hysteretie behavior of materials and

structures. Zionklewicz [Ii0] considered the isoparametric finite-element

implementation of this model in 19720 Hunsaker et el. [94] in 1973 compared

the mechanical-s_blayer model wlth other strain-hardening plasticity rules:

isotroplc hardening, kinematic hardening, and the Mroz model. The mechanlcal-

sublayer model was again utilized in 1976 by McKnight and Sobel [iii] to

analyze the cyclic thermoplastlcity which occurs in areas of strain concen-

tration resulting from the combination of both mechanical and thermal stresses.

It is interesting tr_ note that in the mechanical-sublayer model, the

characteristics of the numerical method are used to bypass the necessity for

an expiicit constitutive relationship. As a matter of fact, by using only

elastic, perfectly-plastic sublayers, more satisfactory behavior patterns

are achieved than those corresponding to isotropic or kinematic hardening

rules; the Bauschlnger effect is approximated well by the model.

A "physical" justification for the mechanical-sttblayer model can be also

found by analogy with a "micro" mechanics approach. The stress-strain be-

havior in straln-hardening can be attributed to the yielding of individual

crystals, each of them experiencing elastic, perfectly-plastic behavior but

yielding, however, at different levels of stress.

3.3 PlastiqltyTheory. for Finite Strain9

3.3.1 Introduction

As previously noted, the quantities utilized in the small strain theory

of plasticity (stress, strain, stress rat%and strain rate) are defined only

within the assumption of "small strains". Yet the precise definition of what

constitutes "small strain" is always left unstated. Whether or not the

strains are "small" cannot be determined by "geometric considerations" a

priori; the strains result from loading, and (in general) one cannot know in

llD
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advance wheth_r f_r a qiven loadin_] of a mat,_rial tht_ "_mal] strain" assump-

tlc_n (alway;_ h_ft tuld_fln,_d) will h_Id _r |l_t. of course, aft_r tlle problem

is solved, thin _ml bt_ t_stabllshc_d, but if one has solved tht_ prob]_m it in

no lollger vo1"y im|_ortmlt w|lothL_r the strains are small {_r nc_t. The quostJc_ll

of whothL_r the small-straln appr_ximatlons are valid _n advan_o is always

_ivo.|ded .in t}lt]"small strain" litoratur,_. Purth,_rmor_, as R. ]Ill| [I]2]

points out, the roa].ly typical plastic probl_ms involve chnng_s il, qoc_m_try

that causer be dlsroqarded.

In the present subsection, thu quantities Involved il, t|IL:particular

finite-stra.ln-p.lastlcity theory chosen i?or the present _%alysls al:o dis-

cussed in detail; they we_'e defined precisely Ill fiectJon 2. Now, how6ver,

the reasons for this particular eholee of variables are stated in Subsection

3.3.2.

3.3.2 General Concepts

The constitutive law to be used in the present analysis can be expresDed

in functional form as=

Where the actual form of this function will be made e_lidit in the next

subsection (the purpose of the" present subsection is to show the reasons for

this particular choice of variables). The quantity _ is the Kirchhoff stress,

previously defined in Subsection 2.5.2 as"

where _ is the Cauchy ("true") stress tensor, and Q(po ) is the mass density

in the present (reference) col_Ciguration. Also, the circle over "_denotes the

co-rotational + stress rate defined in Subsection 2.6.4. The rate-of-defor-

mation tensor _ is defined in Subsection 2.4.2.1.

This constitutive law (Eq. 3.21) involves quantities associated with the

present configuration of the material, with the only exception being the mass

+Also known as the "Jaum_,n stress rate".
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density p° which is a constant for _ fixed reference configuration and, there-

fore, does not depend on the deformation history.

The Kirchhoff stress _ is used Instead of the Cauchy stress _, since it

is known to be more _ultable for defining the constitutive equatlon_, par _

tleul_rly when thermodynamlc principles are used to formulate a eonst_tutlve

relation. Some of the rQasons for the use of this 0tress measure arct

(a) The Kirahhoff stress is the stress (associated with the present

configuration of the material) that is related to a unit of

mas._s,instead of a unit of volu_, since as shown in Sub-

section 2.7, the powok per unit mass is expressed simply by

Power per Unit Mass = ....... (3.23)

• o

where Pc i_ a constant for the entire deformation process

for a fixed reference configuration, while the power per

unit mass expressed in terms of the Cauchy stress is ex-

pressed by,

cr:D
PoWerperUnitMass
where 0(R,t) is a variable in the deformation process.

(b) Per this reason, the thermodynamic expressions that the

constitutive relatlons must satisfy are simpler when ex-

pressed in terms of the Kirchhoff stress.

(c) The co-rotatlonal rate of the Kirchhoff stress has a rate

_while the co-rotatlonal rate of the Cauchy stress

has not. As shown by Hill [113]

Rate Potential =

(d) The existence of a rate potential is Of importance in an

incremental finite element analysis since it implies the

existence of an incremental variational principle and

symmetric tangent stiffness matrices.

i12
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(c) The Kirchhoff stress c_n be easily measured in experiments.

As shown in Subsoctlon 2.8.3, in _nlaxlal experiments it is

simply expressed as

where P is the load applied to the npoclm_n, A i_ the
e

original croz]s s_ictlunal ar_a and E Is the change inu
£-£

length divided by the original length, Eu _--_- , the
o

quantity that extensomotors and strain gages can provldo.

(f) The Kirchhoff stress is the quantity which was computed

from experimental data and used in the presentation of

results in many of the classic experiments in plasticity

of metals by G.I. Taylor [114] and also by A. Nadal

[115]. As a matter of fact, it is frequently con-

fused with the true stress in experiments for metals,

since for practical purposes one can assume incompres-

sibility (P = Po) for metals_ hence, the Cauchy ("true")

stress is approximately equal to the Kirchhoff stress.

(g) When used in conjunction with the logarithmic st_aln, it

produces an approximately symmetric stress-strain re-

sponse for the uniaxial loading of metals*, unlike other

stress measures, like the ist and 2nd Piola-Kirchhoff

stresses which produce significantly asymmetric stress-

strain responses for the uniaxial loading of metals.

S
The co-rotational rate (overseript "o")of the Kirchhoff stress (T)

is used instead of the fixed-in-space observer rate, convected rates, o_

other stress rates, sincez

(a) It satisfies the principle of material frame-indifference as

defined by Truesdell and Nell [40] when used in conjunction

wi_h the (frame-indifferent) rate-of-deformation tensor in

a constitutive law. One implication of this is that the

For metals with a cubic structure, since slip is their primary deformation

mechanism, and it can operate equally well forward or backward.
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constitutive law is invarlant under arbltrary rigid body

mQt_ s_ the _Q-rotatIQnal rate ef the Kirahhoff stress

T vanishes when a material pQint of the continuum with

its environment performs a rigld-body motion and the

KirehhQff stress tnnsor _ dons not vary in tlmn intrln-

si_ally with respect to the material point.

(b) The co-rotational rate of the stress tensor is a tensor

quantity o_ the nam_ type an the original ntr0sn rennet,

since the Kirchhoff stress tensor T is nymmot_i@, the co-
S

rotational rate '_ is also symmotrlc.

(o) Vanlsh_ng of the co-rotatlonal derlvat&ve of a ten,or in-

duces vanishing of the co-rotatlonal derlvatlvo of its

arbitrary invarlant.

(d) In a unlaxia_, irrotatlonal deformation, it reduces to

the material rate of the tensor.

The rate-of-deformation _ is used in the constitutive eMpr6sslons since

it is defined _ompletely and _%iquely by the _resent state of the material

and, unlike strain rates, its description does not involve any refeEence
,

state. Since plasticity has some similarities with a flow problem, and

the rate-of-deformation tensor D is the rate quantity used in hydrodynamics,

the appropriateness of a description of large strain plasticity in terms of

is seen at once.

In the case of a uniaxial, irrCtational, homogeneous deformation, the

rate-of-deformation tensor becomes the rate of the logarithmic strain tensor,

as shown in Subsection 2.8.2. The logarithmic strain ranges in value between

zero and infinity, both for tension and compression, as shewn in Subsection

2.8.2. This provides a measu=e of strain which has "symmetric" properties

for tension and compression. The relative elongation, the Green ("Lagrangian")

strain, and the Almansi ("Eulerian") strains do not enjoy this useful pEoperty.

*
These similarities are only formal in the case of time-independent plasticity,

since there is really no rate-dependence or viscosity implied by the plasticity

equations. H@wever, in the present treatment, strain-rate dependence of thu

constitutive equations was taken into account.
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Also note that t}le rate-of-d0formation tensor _ is "co__UHa_t_" to the

Kirchhoff st.r_s t.¢_nsor_ in the s_ns_ that their scalar product is propor-

tional to t.h_ rate of work per unit 1_ass, a_3 shown previously.

Th,_ oonsti_r_tiw_ law

) .

I13 ,%hypo,]lqltic: law (_'off,rnn_n i_I hypoolnMtieity are! paqo 733. of [15],

l'aq,_401 of [40], and [116-122]), In the f:_,ll_,rnlrnlllt'I.nx:lolE:llfln,_ |.nII

p;ich-dopondonl' mal:(_rlal law, n;l,ncn Lt: cannot be Int-'o_rntt_d + in l_ormn of nn

In:l.t:In]. _md n rl.n,%], ntal:el 'J-l: depolld(] on t;ho pal:h eonni_ctl.ng tl,,eno nl:n_e(1,

'.l?n en1_n'Ider fln'|,te-iZ.]njh_Le£t_Lrain renpnne.le, Jn odd'.l.tlml to f:l.nl.l:e-,l)Itlsl::Ic.-

strain ro, spori1.1o, It: 'I_] llOee.t-Ii4ar.,N tO 'Int:rnduee a fln:ICe-ntraln 11_(.,_mur(, :In t:11_3

const:l.tut_ve law (tlmt measures deformat-'lon by compar:tnl_; n refurence and t,

pres_,n_ configuratlon, Irrespeetlw.: of the patl_s connecting thu_e eo_flgurn-

tlons). It is uot difficult to include this fiztlte-_lastic-straln respouse
r2

in the const'Itut_ve law, for example, by inelud_np, the Al.mansl strain e:

" as done by Lehmann [123], who assumed a linear relationship between stress

and strain, with no experimental basis foz large-elastlc-stralns.

For metals, experiments have shown only small elastic strains, even for

cases of unloading from large plastic strains. No experimental data seems

to exist from which a flni%e-elastlc strain law for metals could be de-

duped. Moreover, whether elastic strains ++ do exist at all for metals is

still a matter of discussion. E. H. Lee [124] indicates that under large

straln-rate conditions, finite-elastic-strains can be expected in metals.

However, these strains could be vises-elastic and not purely elastic, by

the very nature of the strain-rate dependence. The experimental information

available is not precise enough to determine if these strains are vises-elastic

+It can be integrated, under some assumptions, in the cases of uniaxial

stress-straln, and pure volumetric deformation.

++In the sense of Green, an n_asti_ material is one for which a strain-

energy function exists.
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or vis_u-hyp_elastic. In view Qf the present state of e_perlmental _nforma-

tins, the hyp_l:,_ic law will be used in the analysis, since It is c6nveni-

_nt for the numerloai anal?sis of th_ elast|e_pla_tlc problemsl also, for

_mall elastic ,trains thnrn i_ pra_tlcallM no differ_nc,_ bat_.'_'enhyponlas-

tic and el_Nti_ Ipws, as sho_%, for _wampl., by Lohmann [12_].

3.3.3 A Pinltn-Straln R]aflt;L(_-Plantlo Strnln-B_tn-

99Pgn49_A_
This s%_noot_,on is con_ornoa with thn f_n_to-ntra_n n].ast_c-;..,l_t_.c

ot_aln-rato_dopondont thoory uti1_z(_l in thin ol.alynlrl. _ho const_.tutiw_

o_11a_ions o_ this thoo_y a_o dlocuosod in tho _plrlt of _xlorn continuum

muvnani_s. %t shoula be rom arkod that ovon w_.thln tho l_mltatlon of tho

inflnltosimal or tho "small" st=aln thoory of pla_tlclty, tho_o don8 not

appoar to bo complote agroomont among tho various schools o_ plasticity

in tho United Status, Groat Britain, and the Soviet Unlon_ thuro_ore, no

attempt at roviewlng tho litorature in flnito-st_ai_n plasticity will be

carried out_ since there is llttlo that has become widoly accopted, and

active theoretical r_,search on the subject is still taking place. Rathor,

the specific theory used in the numerical analysis of thu problems wlth

which this work deals will be examined in detail. _n the previous sub-

seutlon_ the reasons why the particular variables used in the constitutive

equations were chosen were explained. The previous rough description is

made precise in the present subsection.

The present description of the behavior of an elastic-plastic _ontinu-

um is based on the work of Hill [112-113, 125-131] and of Lehmann [87,

123, 132-137], a_d can be interpreted as a special case of the general

theory of an elasto-plastlc continuum by Green and Naghdi [138]. However,

straln-rate effects are included in the present analysis, and strain-

hardening bsha, ior is treated with a "mechanical sublayer " method properly

modified to take into account finite strains.

The present subsection shows the theory in terms of the "primary"

aS previously specified in Eq. 3.21. However, it should be ment_on_d tha_
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in the actual implementation of the theoryf this equation is transformed

to e •

according to the tnnsor trannformation rulnn of Soction 2, since the

analysin is implemented in th_ ref()rontial (l_qral]gian) description of

motion with n fIxr_ reference eonf'Igurat_on. In F_q. 3.29, _ is the

Second Piola Kirehhoff str(_ss tensor, S i8 its matorlal ratn, Y is the

I m"
Green (Lagranglan) st_:ain t0nsor, and 7 is its matorlal r_te.

[i Returning to Eq. 3.2.1, it is assumed that the Kirchhoff stress _ at

_ material point can be considered _s the sum of n components (s_;
b *

s = 1 to n) with weightlhg factors A :

= S (3.30a)
b

where prescript "s" refers to the sth sublayer.

Since the welghtingofaCtors A s are assumed to be independent of time, the
co-rotatlonal rate T (_f the Kirchhoff stress at a material point can also

f%

be considered as the sum of n components (s_, s = 1 ton) with the same

o

Each component s_ of the co-rotational rate of the F,irchhoff stress is

" assumed to be linearly related through a fourth order* "elasticity tensor"

s_ to a component s_e of an "elastic" rate of deformation tensor _e:

= • (3.31)

These weighting factors are discussed explicitly in Subsection 3.3.4.
**

This rebirth order "elasticity" tensor has the same s_metric properties
B

as does the usual elasticity tensor (since th_ T with the _e have a poten-

tial); this fourth order tensor ks a "tensor-tensor", a quantity which

plays the same _ole for tensors of second order as second-order tensors

do for vectors (p. 145 o_ Sehouten [61]).
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The rate-of-deformatian tensor D is assumed to be decomposed into an

"elastic part" sue and a plastic part sUP for each sublayer "s":

Observe that _ach sublayor "s" _xperienocs the same rats of deformation

_, but different amounts of "elastic" s_o and plastic sUP components. The

decomposition of the deformation rate aesumos different proportions in

each sublayer "s". From Eq. 3.32 one can express Eq. 3.31 as:

NeXt, the existence of a loading function s0 (yield surface in stress

space) is assumed to exist fo_ each sublayer "s", as a function of the

Kirehhoff stress component s_ of that sublayer, and the total rate of

deformation tensor D :

This loading function s_ will define the "elastic" s_e and plastic

s_p parts of the rate of deformation _ in each sublayer "s", according to

the following rule: f'S_. < 0

' s <0 (3.3s)

• when

which implies that the plastic part s_ df the rate-of-deformation tensor

_, for sublayer "s" is normal to the loading surface so of sublayer "s".

In the present wor)_, avon Mises loading function (yield surface in

stress space) is assumed to exist. This loading function is most readily

expressed in terms of the deviatorie stress s_D defined as

-- (3.37)

where s_sp is the spherical (superscript "sp"> stress, defined as

and (tr s_ ) stands for the trace operator"
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Hence, the deviatorle Kirchhoff stress of the sth sublayer isl

In terms ef tile davlatorlc strass, the yon gisas leading function can be

expressed as:

wh_re

is the deformation-rate-dependent yield stress of a specimen in uniaxial

tension. Denoting by ST _ the static (rate independent) yield stress ofu
o

a specimen in unlaxial tension, the rate-dependent yield stress sT_ isu

assumed to be related to the deviatoric rate-of-deformation tensor, _D by

_ _ _ _ [ _ ......

where %

and Sd and Sp are material "rate" constants. Therefore, the yon Mises

strain-rate dependent load_ng function becomes:
r , l

The gradient (_(s_))/(_(s_)) of the l_dlng function s_ of subiay_r

s, with respect to th_ Kirchheff stress s_ also at sublayer "s", will be

needed in the analysis. For the von Mises loadiDg function s_, one

obtains ..
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(3.46)

Also, from Eq. 3.36:

Observe that the parameter s_. can be expressed in terms of the plastic

power per unit mass _ of sublayer s, as.

•CL_--'C'_),{'__}-_.C'_:}:('A'_-).fo

Since "_ "0 _,

('_°)('_o)-_¢'_o_'(i.t'-";_')'_) ..,
for

Then, Eq. 3.48 becomes. J__')'}_i __ __>2,9o 3 'd _'_
He_ce_ one can express s_ ast
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I

i

.,;:/ /t-r_3:,_>.)'•
I 'A.=9o-_('_:,mti+t-' ,_

(3.s2)

Equation 3.52 impliesthat the scalar parameter s_ characterizes the

plastic dissipation s-_ of sublayer s, which in turn rQstricts s_ to be

positive semidefinite i

'l o .,.oo
Finally, to summarize, one can express these finite strain, "elastic"-

plastic, strain-hardening, strain-rate-dependent constitutive equations

as: ,, ..........i_.,,-',,,:'.._, " ,

£:i.A.,'_
'G,'>-"_-½m-£)/. _'>._l- _(+,-_)i

"B : _. ".5"+'5"

,_,:'_':5 if {"_o 0_I ,.I "i <0

!
121 (3.54)
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wheroz s_| is the fourth order "elasticity" tensor of

S.ublayer s

A s i_ the wuighting factor of _ublayer s

Sd and sp are material strain-rate aonstants of

I sublayer s

sTY is the Kirchhoff stress at yield in
u

o uniaxial loading, in static conditions,

of sublayer s

s% scalar factor that characterizes the

dissipation of sublayer s.
m

It is evident that by considering different values of the material

constants Sd and Sp, and of the "elasticity" tensor _E for each sublayer

s, a very complex material behavior could be represented. However, in

the present numerical calculations these parameters have been considered

to be the same for each sublayer s/; that is_

d _ 'd - _a - "d - 3d ,".... ="_d ¢3._s_

for the present analysis.

In addition, for a few numerical calculations the material has been

considered to be strain-rate independent, in which case:

It should also be mentioned that the loading conditions of Eq. 3.35,

3.36, and 3.54 are not the actual loading conditions used in the numerl-

ca1 model, and for these, the reader should turn to Sections 4 and 5.

Impact analysis of 6061-T651 aluminum alloy structures.
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3.33.4_utation of Me_hanicpi-Sublay_erTM0dul Weighting. Faators

! 3.3.4.1!_ A__lioation to Uniaxial Str6ss-Strain Conditions

The determination of the mo_hanioal-sublayer-model Weighting fa_tor

A will be eonsldered in the following. As indleated in Eq. 3.29, it is
s

assumed that the Kirohhoff stress Y at a material point can _a considered

as the sum of , components (s_, s _ l, ..., n) with weighting factors

A :
s

The weighting factors A may be selected for either ons-dimenslonal, two-s

dimensional, or three-dimensional stress conditions. Considering one-

dimensional stress conditions, the unlaxlal (denoted by subscript u)

static stress-straln curve of the material is assumed to be perfectly

antisymmetrlc in Kirchhoff stress (Tu ) versus logarithmic strain (e u)
o

space, as shown approximately by the classic experiments of G.I. Taylor

[I14], among others. From Eq. 2.402, the logarithmic strain is

(3.58)

where £(£ ) is the final (original) gage length and

o 1-I0E-
_ (3.591o

is the relative elongation, or "engineering strain" that strain gages or

extensometers can provide.

From Eq. 2.424, the uniaxial Kirchhoff stress is:

This static stress-strain curve is first approximated by n+l piecewise-
s *

linear segments which are defined at coordinates [s(Tuo ) , (Eu) , s =
i, 2,

..., hi; see Fig. 2a. Next, the material is envisioned as consisting, at

any point in the material, of n egually-strained sublayers of elastic,
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_erfeotly[plastie matgrial, with eaQh sublayer having the same elastic

modulus E as the idealized material, but an appropriately different

yield stress (denoted hy superscript y). Fez example, the static (sub-

script o in T ) yield stresu (superscript y) of thQ s sublayer is givenu
o

By (see Nig. _b)"

I ,.o,,
s

Then, the Kirchhoff stress value under static conditions, (Tu ),
o

associated with the sth sublayor can be defined uniquely by the strain

history and the value of the strain _ at that material point. Takenu

collectively with an appropriate weighting factor A for each sublayer,s

the stress (T ) at the material point corresponding to logarithmic strain
u
o

(_) may he expressed as,

where the uniaxial weighting factor AS for the sth sublayer may readily
be confirmed to be:

E2 "
S

E (3.63)

where

E:" E (Young's modulus of the material)

S-l_# Is : 2, 3, ..., n)

EI,-o
The elastic perfectly-plastic and the elastic linear strain-hardenlng

constitutive relations may be treated as special cases. In the case of

+_s previously mentioned this assumption is not necessaryl by employing

different elastic modulilSE, more complicated material behavior can be

represented.
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elastic perfectly-plastic behavior, there is only one sublayer; in the

case of lineal strain-hardening material there are two sublayern and the

limit of the second sublayer is taken sufficiently high so that the do-

formation in that sublayer remains elastic. However, the main advantage

of the mechanical-sublayer method is realized if throe or more sublayers

are utilized, since with proper adjustment of the yield stresses

s )Y of the sublayers, complet_ material behavior can be represented,
(Tu

o

including elastlc-plastic unloading, the Bauschinger effect, and hystere-

sisl see Fig. 2c.

For a strain-rate dependent, elastic strain-hardening material, the
+

rate dependence is described by s

+I ) -
where D is the uniaxial component of the rate-of-deformation tensor_

U -- _ e

i+E (3.65)
W

that is equal to the material rate of the logarithmic strain E , asu

in Eq. 2.405, and S(ru)Y is the strain-rate dependentpreviously shoWn

yield stress of sublayer s.

Equation 3.65 is the Cowper-Symonds strain-rate equation developed

in 1957 [139] at Brown university to represent the strain-rate effect on

the uniaxial stress-strain response of metals. The material straln-rate

constants d and p are obtained from experiments. When the material

strain-rate _onstants d and p are chosen to be equal for each sublayer,
0W

the stress-strain curve a_ a given deformation rate e is simply a oon-u

stant magnification of the static stress-strain curve along rays emanating

from the Kirchhoff stress versus logarithmic strain origin (see Fig. 3).

3.3.4.2 A_lication to Multia_ial Stress-Strain Conditions

Generally, a somewhat different description for the mechanical-

sublayer model is needed when multiaxial stress-straln conditions

occur. Fowler [140] has derived the weighting coefficients based on a

biaxial stress state using expressions given by Plan [141] in 1966. In

+As p:eviously mentioned the material straln-rate constants d and p, can

be assumed to ue different for each sublayer s, thereby representing very

complicated strain-rate material behavior.
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1974 Stalk [142] derived the weighting coefficients based on a triaxial

stress state.

Both Fowler and Stalk concluded that the differences between the

stress-strain dlaqrams obtained from the w_ightlng coefficients based

on a unlaxlal state of stress-strain and the diagrams obtained from the

coefflc_onts based on a multlaxlal state wore very small. Fowler []40]

concluded "th(_ error resulting from this difference, aertalnly, should

be smal%er than that resulting from the use of a stralght-lino-scgmont

approximation of the stress-strain curve, ... it is concluded that the

use of _e unlaxial model weights in a blaxlal model does not lead to

any significant errors". Stalk |141] concluded that the errors intro-

duced by using the one-dimensional weights for three-dimensional stress

states is of the order of 1 to 4 per cent in the sublayer weights.

More recently, Hunsaker et al. [143] disuussed the calculation of

the sublayer weights when multiaxial states of stress are present. No

comparisons of stress-strain curves produced from weighting coefficients

based on unlaxlal and multiaxlal states are shown, or even discussed.

However, Hunsaker [144] obtained a closed-form solution for the case of

a two sublayer (linear strain hardening) model. The example shown 5Y

Hunsaker [143]shows differences between the tmiaxial and multiaxlal pro-

cedures which are of the order of the typical experimental errors in the

determination of the materlal properties.

Besseling [97] in 1953 had already obtained a closed form solution

of the sublayer properties (for an_number of sublayers) for a general

state of stress-strain. It is easy to show that (when only two sublayers

are present), Hunsaker's closed-form solutlon coincides with Bessellng's

formula.

One can readily show, that upon replacing the deviatoric strains

and stresses by the total strains and stresses, Besseling's formulae

become:
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I ....

Z

-- -- ,/_ (3. _6b)

£r$ �It iS easily soon from those equations, that for U _ 1/2 (i.o.,

assuming elastic incompressibility), the sublayer properties becomo

identical with those derived from unlaxial stress-strain conditions

(Eqs. 3.61 and 3.63). Also, it is interesting to pote that the difference

between the s_blayer properties derived from uniaxlal (Eqs. 3.61 and 3.63)

and multiaxial (Eqs. 3.66a and 3.66b) conditions is directly related to
l

the factor (_- 9), which expresses the difference between the elastic +

(V) and plastic (assumed to be equal to 1/2 in the analysis) Poisson's

ratios. Moreover, in the present analysis for beams, plates, and shells,

incompressibility ++ is assumed in calculating the changes in thickness;

hence, the calculation of sublayer properties from the uniaxial procedure

(Eqs. 3.61 and 3.63) is consistent (under the incompressibility assump-

tion) for the plate (and beam) FE calculations of this report.

3.3.5 Comments on Strain-Rate Behavior Modeling

Because of physical as well as theoretical reasons (as indicated,

for example, by Perzyna [145-152] ), the plastic strain rate rather than

the total strain rate should govern the dynamic (non-stationary) yield

condition (Eq. 3.45) if the initial yield condition is to remain the

+The elastic 9 is to be used in Eqs. 3.66a and 3.66b. Note that these

equations hold for s > 11 for s = i, only the first term of Eq. 3.65a
and only the first two terms of Eq. 3.66b apply.

++Both for plastic and elastic strains, since the elastic strains are
assumed to be small.
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same as in plasticity theory. In order to relate th_ _quatlon for the

dynamical yield condition of this work with thn equations Qf perzyna

[147], it is conveninnt to express Eq. 3.49 in terms of the following

invariantsl

and the yield stress in shear, defined as:

J Y

,j_)z ( r,, (3.e9)
, _ °_ ( = 3 ....

Then, from Eq. 3.49 + i

' --D: Z '

s _f'Z.q'[I +'_ °:'?"=z :J.=_-,,., i ......."_ (_,o)
I

or

s _ (3.72)

which would be identical with Eq. 2.68 of Perzyna [147] if the second

invariant of the plastic strain rate

t -.B
+Since superscript "p" is used here to denote plastic components, the

strain*rate constant sp for sublayer "s" (see Eq. 3.49) is replaced

only in S_bsection 3.3.5 by tSe symbol s@ to avoid confusion.
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I

I
were used inst¢_ad af the second invariant of the dnviatoric strain rate

i ID. Also obsnrve, that the relntion between th_ viscosity coefficient

i _ in simple tension Sd and the viscosity coefficient in shear s7 is the

same aft th,_ relation between the yield strobe in tnnsion and It, shear

'1' (a_mpar,_ with Eq. 3.691 !

The equation [3,52] fnr the rl_ttla_ £aetor of propartianallty a]_ i:olating

tho plnstle strain rate to thai dov,_,atori¢__,t,ronnt

can also be related to the equations of P0rzyna [147], by expr_mslng

the dissipated (viscoplastic) work per. unit mass as..

fo -n

Then, using Eqs. 3.75, 3.72, 3.69p and 3.52, one obtains

376
or $ _,

, S_ (3.771

D is replaced bywhich is identical with Eq. 2.77 of Perzyna [147] if 12

slp.
I

The strain rate equation + -_

_, (3.78)

• _/ = Tlt > Ty+This equation applies only for (_)P # O; thenj Tu , U U "
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used in the present work can represent socondaEy creep, since for

cQn_t_I_t str_ss

(3.78)

Thus,Eg. 3.78tax,bu Qxpr_suodau

+

which iu the powur law (alsu known aL_ Norton's law) _f secondary creep.

However, th_ strain rate _quation usud in the present work cannot

ruprescnt relaxation e_fects. In effect, for relaxation, the total

strain rate is zero"

• m
E = 0 (3.83)

and Eq. 3.78 expresses the condition that the stress Tu relaxes

instantaneously tO the static yield stress Tyu
o

_ "_ -- O"[_ = f0_ e_ - (3.841

However, if the plastiC strain _ate (_u; rather than the total strain

rate E Were used in Eq. 3.78,
u

> Ty Also, d and
+However, secondary creep is present only for Tu _ •

ar_ temperature dependent, o
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Thon, for rf_laxations

ff_= O = E + d -----,._y- I 13.8_)

For example, this equation can be solvsd for @ = i, yislding an

I exponential relaxation:

= + Uo

where the relaxation constant R is

T, y
No

E (3.88)

If many sublayers are present rather than one, it can be shown

that creep r_covery, and primary as well as secondary creep, can be

represented by Eq. 3.85.

Only total strain rates (rather than plastic strain rates) are

usually measured in strain rate tests; therefore, it is necessary to

assume that the elastic strain rates are small in those experiments,

as indicated by Campbell (page 52 of [153]), for example, When the

material straln-rate constants d and p are chosen to be equal for

each sublayer, the present mechanical sublayer model produces as a

result stress-strain curves at a given strain rate that are simply a

constant magnification o_ the static (rate-independent) stress-strain

curve along rays emanating from the origin of the Kirchhoff stress vs.
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Iogarlthmle strain curv_. Thln is the b_havior that was observed by"

Hac_regor [154] and by Wulf [155] in n number of experlmsntn, among

others.

In any case, the difference between the total and the plastlc strain

rato_ can be d_ducod _om the following argument for a unlaxial tent:

£_.I-L
t--_ relative elongation

" _ (_+ _) total unJ axial logarithmic strain

I(')= _ material rate of E*u

_)" , _P elastic and plastic parts of £u' respectively

_ "_. C_ _ _) uniaxial Kirchhoff stress

E Young's (elastic) modulus

Decomposing the total strain rate gU into elastlc and plastic parts:

= F..,u,) 1a.89)

where since

±
"'"- E T_ (3.9o_

(6U)e is related to the stress ass
the elastic strain rate

£:
one obtains

Hence, one can express the plastic-strain rate (e:.)P as

<_,),.., E
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Doflninq the tanq_]nt modulus ET as

e

one obtalnt_ _ ,

i(+,> f).,P-" F.,..,. 1+.').'+I
. ii

tangent modulus ET = (dTu)/(de)u of the Kirchhoff stress T
Since the

, u
versus logarithmic strain £ curve is small for most metals, the

, u

ET/E = (dTu/d_u)]E is small compared with unity. For example,quantity

the ualculatisns in the present work have been carried out with the fol-

lowing materials •

For 6061-T651 aluminum:

: _.de++ ;o_ .00_<&1 < .076

6+.,++Y-o.s'_._,+_.."I,L.

+,,_,..oo?+I_--E._ .I:o,. .o++<_+'<.6,5
(g:'Y':o..q_s&:

Therefore, foe 6051-T651 aluminum, the relative difference .u )P
o,
E
U

between the total strain rate and the plastic strain rate is less than

0.7%.

For National For._e 4130 cast. steel-

I d":+ ]

_- _ _e++--0.0406s;o_ .00Zss<et< .0_a5
,.,.-,,,,(&"v'-.0.S59a[

E 1" i d'_. ].E- = F _ =0.0096£ ,(_'_P_0.990g+_ for .0zas_e++<,06
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llonce, for this National Forge 4130 cast steel, the relative difference

between the total and plastic strain rates is 4% for strains smaller than

2%, and the difference is less than 1% for strains larger than 2%. The

experimental error in the calculation of total strain rates in strain-

rate experiments is of the same or larger order than the difference be-

tween the plastic and total strain rates.
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SECTION 4

CURVED BEAMS AND RINGS

4.1 Introductlon

Section 4 deals with the strain-displacement equations and the con-

stitutive equations used for the numerical analysis of curved beams and

rings.

These strain-displacement relations for finite strains and rota-

tions also take into account thickness change and seem to be "new"

(not found in the literature). The decomposition of the total strain

into a "membrane" and a "bending" part is discussed, and it is seen to

be dependent on the definition of the strain measure. Also, the de-

composition of the deformation gradient into a rotation and a pure

stretch is shown for illustrative purposes. Equivalent equations for

"small membrane strains" are displayed. Finally, the constitutive

_" equations for curved beams are shown together with the corresponding

incremental procedure which can be used in solving the equations of

motioh stepwise in qmall increments At in time.

4.2 Strain-Displacement Relations for Finite Strains

and Rotations

4.2.1 Strain-Displacement Relations for the Bernoulli-

Euler Displacement Field

4.2.1.1 Formulation

The previous general results of Subsection 2.4 for the kinematics

Of a deformable medium are specialized to the case of a curved beam, as

pictured in Figs. 4a and 4b, with the following definitions=

135

!
• :

O0000002-TSF05



Referenc_ Configuration -Xj"

(t= to)

Rectangular Cartesian _.&
Coordinates Present Configuration

Fixea-ln-spac__ . (t= t) I'Y "

(Inertial) .... X_
Base Vectors _ _

Curvilinear coordinatesI ,_/ ,_.

_dy-Fixed IJ[, ;.._

"Reference C°nfigurati°n l _. _

(Convected, (t = to)

Intrinsic or Base Vectors

Embedded) Present Configuration(t : t) L

The coordinate _ - _2 deLines the (curvilinear) reference axis of the

curved beam and _o _ _3 measures the distance along an outwardly-directed

normal to _. All deformations take place in the n, _o two-dlmenslonal plane.

For the body-fixed uonve_ted system, the base vedtors gi and GI are

f_nctions of the coordinates _ and _o, and the GI are also functions of
time t:
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The base vectors of the body-flxed cenveeted system at th_ reference eurvl-

].in_ar axis _ (that is, at <o _ 0) are given special nnmos_

/._,.,g,. '"'"
Tile base vectors associated with the coordinate (o _ _3 are z

Here, n is the unit normal vector to a2 in the reference configuration

and N is the unit normal vector to A2 in the present configuration. Since

they are unit vectors, they are only a function of the coordinate q:

The quantity _ is a parameter that is associated with the thickness

change of the curved beam, and hence is a function of _o as well as D:

Hence

Any point in the reference configuration of thc curved beam is located by

the position recto; r to the reference axis _ and the unit vector n normalo

to the reference axis q in the form_

m

Any 15oint in the present (deformed) confiOuration of the curved beam i8

located by the position vector R to the reference axis q and the vector
o

_3 = l*N normal to the reference axis Q in the form_
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The base vector a--2 at the reference axis q (at _o m O) in the reference con-

figuration is the unit vector tangent to the reference axis coordinate n:

The base vector A--2 at the reference axis _ (at _o _ O) in the present con-

figuration is:

(4.10)

and it is not (in general) a unit vector.

The covariant base vectors of the "curved beam space" in the reference

configuration are:

(4.11)

where R is the radius of curvature in the reference configuration, taken

here positive when the center of curvature lles in the negative direction

of n (which is opposite in sign to that given in some books on tensors).

Note that:

(4._2)

The (metric) tensor components of the unit" tensor _ in the convected co-

ordinate system are"

o
0 ±
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_f

0 ±
The displacement field at any point _2 = n, _3 = _jo tn a curved beam can be

expressed as follows (as depicted in Fig. 4b)I

(4,16)
&-_-_
o2 03

or defining v -=u and w - u , one may write

[Lo= V _z + W W (4.1"n

In the case of no extension of the normals (no thinning 9r thickening

of the beam):

Accordingly, one obtains a "Kirchhoff" or "Bernoulli-EUler" dlsplaeement

field (see Fig. 5),

It can be shown that+:

_,,_._ao-N +(-t')
4"
From geometrical considerations; in particnlar, it can be obtained from a

specialization of Eq. 5.84 of Section 5.
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wh_ro

o

U_ _ mixed component of the rlqht n_rotch rennet o4: thn _oforonco"

axl. n(_ O - 0)

02
C 2 _ mixed component o£ the-,Cauchy-Sroon tensor at the reference

axio n(_° - 0)
02
72 _ mixed component of the Green strain tensor at the ro£orcnco

axis n!_° _ 0)

Henoe t

Then, the deformation gradient tensor F has the following components with

respect to the base vectors of the reference configuration:

(i+X)(i+ ) -_

.j

: ;. F.";

m , _- (4.2S)

•_ F:;
where

i

--(- +,X) �'Ii
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_rnm Eq. 4.24 aridEq. 2.132, thn r_ght cauchy_Groon deformation
i

tnnsor compol],._ntscj ll]tho body fixed coordlnat_ syS£om ill thn rnf-

nrono_ _onfigurntlon _an bn obtalnod as follows:

cj-(.Jr -
(4.27)

whleh reduces to

ci--

(4._e)

Henoe, the right Cauohy-Green de_oz_'_ation tensor miXed eOmlOonents at the

reference axis _(at _o = O) are.

Also, note that
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o2 o1 2

or, using Eq. 4.21, namely y2 = _(C 2 - i), then
i i r ii i | _ j

+ '" , , :.',- + 0
(4._3)

0 0 'l
IkI II, t II I _I ...... |
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whnr_ thn [_rnen ntraln cQmponent at thn r_.f_renuo axis II((_°=0sup_rf_¢_'ript

"n"), or th,_ m_imbr,q_o strain e¢,mpon_nt is

4. _ I. 2 M(_IObr_Lrl(._ 1-'_Plld],rtq_61n(1 Po]._l? Dncl_m}_13fl:[t.]ollf]

N_ ,_,_m_m_l_i!.._man far _m tha _a_n.tt_:]p,_.o_ t_._ ,.,_._L,m _n. r-otc,t\!.9!,_.

havo b_.m ma&(_in [_q.4,33. Ono can ,1_)c:_mpnn_]i_q.4.33 _]dJtLv,_,l=Zan

£oI1ows=

i ii i i= | i| ._ i i i i

[ 1
L.,,-J _, r .... _ (4.3s1

MEI_E,RANE" _ :_ENDIN_"=_CHAN_E 0I: C_)R_/A'I'URE"

Otherwise, ons can apply a mu!til_licative decomposition of the deforma-

tion gradient tensor into a "membrane" part (defined at _o = 0 and de-

noted by the superscript "o") and a "bending" part (denoted by the over

script "_") •

;..

F-.j =F'_ F = (4.30)
0

"_ILME_RANE " ",KN_N_ i'

°i
Hence, the "membrane" right Cauchy-Green deformation tunsOr component Cj

is.
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Similarly, the "bending"right Cauchy-GreendQ£ormationtensor component

Ki

c l is, II

= (4.39)

or

Cj 0 ,.,o,
J

t --y
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Thun, in aceordanoo with Eq. 4,31

Cj- -C _ C a 14.41)
0 ± 0 i

y ......

"MEMI_RANE " " _,EN_)IN_"
r , J t llll i| L L ii i H .

From the polar decomposition of the deformation gradient tensor, one

can obtain expressions for the displacement gradients X and $ in terms

of (1) a rotation angle 8 from the reference configuration and _2) a

stretch, (see Eq. 2.122)

Ft].-K_,k11j <o.,_,
or, in matrix form, Eq. 4.42 becomes

H<:,+x.>_! oo,e -,,.eI1;. o
(4.43)

_E.F'C:_M/;TI ON _R,_El_r 'ROTATION St"RETCH

Which shows that:

i i , t ii t

(_+,_,-II__/,./ _ .__osO (4.44)

o

-- 2 r._W 0 (4.45)
. i i
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_ '_"r""_"_ '¸ •"'; ..... ?m'_.'.",-,smm.a,_-..............._,!_,r
1

'phosn rnlati_nnt.lart, vt_rv Impart,lnt in tll¢_ f.lnlttlnl(_m(_nt analyt1:ln

lsine¢l )_ ilnd 1[i ar¢_ l.ll_od! (].) an flall_) of tho dt_gr_on of frt)ed(_m of oath

finite olo_)nt and (2) In tlm ntraln_dlnplao,_mt_nt rolatlans. It i, lannn

frL_m l.hUl. ,|.4_ and 4.45 that both X and _Jare rolatt_d to th¢_ ,trtlteh

i_Id to tho rotation.

Obtl_rw), that for "n[m%ll rotations"I

s,.0 • 0
t

mad, for "small mombrano strains":i

,.<£
(4.47)

Hunce, one obtains

_. "relative elongation '°

(4.48)

'_ _ 0 "rotation"

This indicates that %.he displacement gradient X is approximately the

relative elongations and the displacement gradient _ is approximately

the rotation angle @ only for small stralns and small rotations. Observe_

however, that for finite rotations, botl___! X and _Iare related to the

strains and rotations. Also, note that one can obtain Eqs. 4.44 and

4.45 from geometrical arguments as indicated, for example, in Fig. 5

and the followh_g observations:

= i + _ "membrane" right stretch (4.49)

&

avg

llere, the precis_ meaning of "small" _otations and "small" strains is
made clear in this context.
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Thn Bornou],li-Eulnr-Kir_hhoff displacement field may bo o_p_'e_w,d a_:

V - V si_ E) _4.5J.)

W'- W - D ° i- co_ _4.s2)

Hence, defining

one obtains

o-o =_ (_-+l-) ,o._,,

U[
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Thus, the Bornoulli-Eulnr-Kirohhoff displacement fi_id bncomesv

;'. v_ r..,°____ . .00

_-w +_°(_*X)_ Z° ._,
l.Iz

which compares with Eq. 4.23.

At this point it 4s convenient to use Eqs. 4.44 and 4.45 to show that

the expressions for the right Cauchy-Green deformation tensor component
2

2 of Eq. 4.31 and the Green strain tensor component 72 of Eq. 4.35 are,C 2

indeed r invariant under arbitrarily large rotations.

For this, it suffices to show that the right Cauchy-Green deformation
02

tensor component C2 at the reference axis n(_ ° = 0), and the "curvature"

oa 2 _2K are invariants under rotation. From Eq. 4.29= C2 = (i + X) + •

Placing Eqs. 4.44 and 4.45 into this expression, one obtains=

oo,0)'+ ' wo)
=(g:}, ,.o=,

02
which is an identity, from ER. 4.21. Hence C2 is invariant under arbltrarily

large rotations. Next, from Eq. 4.26=

Placing Eqs. 4.44 and 4.45 into Eq. 4.63, one obtains=

=_,._o,_ +s,_o
/_ 14.64)

(4.65)
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_-C _ _ _)(_;_o,O>

o (4.66)

0 •

:- (_:')"_ (_.'o+_,.'o)-_(_:)_"
Equation 4.66 shows that the "curvature" expression < of Eq. 4.26 is invari-

ant under arbitrarily large ri@id-body motions.

It can also be shown that the expression

_/(fltl "_"
appearing in the expressions for the deformation gradient tensor components

of Eq. 4.24 and Eq. 4.36 and in the right Cauchy-Green deformation tensor,
,

Eq. 4.31 and Eq. 4.40, is the actual curvature 88/8s, as follows. Since

0 Z -- _5 (4.68)

and

-_ o ,
_5 (4.69)

Here s is the "deformed" arc length (the arc length _n the present
configuration)
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one finds from Eq. 4.66 _hat

m -- .-_ -- I _S (4.70)

ltono(_

Therefore, one can express Eq. 4.36 as:

[.j= .,_,•,1' (_ �˜i

I, Y I l, _rr , t

MEt48RAN E" uI_,ENDING"

Also, the expression for the right Cauchy-Green defo_,_tion tensor component

C_, Eq. 4.41, can be expressed as:

I[°llII*** Iell0 i 0 i ¢4.73)
' _ J* %, _,_=, ¢

2

Equivalently, one can express the Green strain tensor component _2' from

Eq. 4.35, asl

Or, defining a "curvature" measured per unit length of the reference con-

figuration, as in Eq. 4.69:
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a]_'-i-_ _0 (4.751
"04 = _s
m

(4.77)

° '

_lM&MBRAN£" " BENZINe "'

This equation holds for arbitrarily large rotations and strains.

4.2. i.3 S_ecialization to Small Membrane Strains

If, instead of the exact equations for arbitrarily large rotations and

_trains, one assumes "small membrane strains" a_ t_e outse_ (a common

assumption in the engineering literature ), the displacement field (Eq. 4.23)

becomes altered. For convenient reference, Eq. 4.23 follows as Eq. 4.78:

For "s_ll membrane strains", one has

0 I NO I

Hence, Eq. 4.78 becomes

In this (approximate) Bernoull_-Euler-Kirchhoff displacement field, the only

assumption made is that the membrane strains are small, but no assumption is

made regarding the magnitudes of the displacements.

*For example, as in Novozhil0v's book on the Nonlinear Theory of Elasticity

[156], or as in [28].
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(4.83)
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where_ all bnfQr_

Observe that the introduction of the "small membrane strains" assumption in

the Bernoulli-Euler-Kirchhoff displacement field is responsible for pro-
ducing spurious shear strains and normal strains . The spurious normal

iJ strain is Just as large as the membrane strain, although the shear and
normal strains had been assumed to be zero. Also, the introduction of the

"small membrane strains" assumptlen in the displacement field results in an
I

_ expression for the quadratic terms in _o that needs the extra assumption of

small membrane strain gradients ((8_ 2/8n) << (_8/8q)) to be correct.

From Eqs. 4.64 and 4.65, one finds that

k"a/_. IJ 14.

_"ne G_een strain tensor components can be obtained from this displacement

i" field ass

-
Hence t

(4,87)

I .
This observation has already been made in [28].
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where,, ._l b_for_

Several attbeets of the strain-displacement equation for the Green otrain

7_ were used and studied in Ref. 28.tensor component
&

For convenient rQferencc, these relations are shown vonclsQly in the

following •

' • 0 " i

t,. _YPE'B" " f [
TYPE._u ....... I

" TYPE"g" .....

_".... TYI'E_C" ....

(4.90)

Strain-displacement relation Type "A" is used in the JET 3 computer program

[24] . It is restricted by small strains an_dby small angles of rotation.

Straln-Displacement Relation Type "A" (JET 3)i

Placing Eqs. 4.44, 4.45, and 4.64 into Eq. 4.91, one obtainsl

4 ' )'1 - (_*_*: "
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......._rr_-- ,i ,_ ....... _ -_ 7Fw

So that only, for F_mall m_mbrano strains_

nmall nn@]_n of rotate.one

co S t

and small membrane strain _radlontsz

one obtains

Strain-displacement relation Type "B" is used in bhe CIVM-JET 4B eom-

purer program [27]. For strictly membrane deformations (no bending deforl_a-

lions at all), it is valid for large strains and rotations. Otherwise, it

is also restricted by small strains and small rotatio.ns , as follows..

Strain-Displacement Relation Type "B" (CIVM-JET 4B)

/
It was shown previously in Eq..62 that the membrane part
o o

(y = _(C 2 - i)) of this strain-dlsplacement equabion is valid for

large strains and large rotations. But the bending part is not.

From Eqs. 4.64 and 4.97, one finds that

L .... 0 I

It is obvious from this that, only for

(a) no rotations (and therefore no change of curvature)
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or

and

(o) omo11 anglpo of _ota_ion,1

cosO_i si.O_0 (4.1011
and

(d) _mall membrane strain grad_i.entel

one obtalnsz

Per example0 see Pig. 5t suppose that a clamped beam is bent at the

free end by the application of pure moment, to 900. In this case_

one would obtain from the application of strain-displacement rela-

tion type "B"t

then

which indicates that strain-displacement relation type "B" would pro-

duce zero bending strain no matter how large the curvature _8/Bq is.
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Clearly, this is a _pnrieus result pradu_ed by the us_ af tha c_quatian

beyond .its ran,:lnof val,_dlty,

It is _qidnDt f_'om Eqs, 4,86, 4,66, and 4.62 that the only subsets of

_._q,4.90 t11at _lro valid fQr arbitrarily larqn rotat_onn ar_ strain_isplacn -,

mor|t r_,latipns TVp_ "|;._"and "c"l nltho1_gh throne rel{itlunn appl V for a_.'hltrar_

lly l_trq(_membrane ntrai|_n, th_ as:_od dlr_,_a0omon_ f_(_.%dg_wf_n by I_I, 4.80

whet't1 in (_mployo_ to ¢_ml_%Ib-n the bnll_ng ntraln _mpl_-(._n n,lal], m,,mbrt_n{_ nLra'/rl.

t_i_ito Str_H,nn

AS proviou_ly mentioned, no atmum_ roqa_dln0 th_ ma_B,_tudo of

strains and/or r,otatlons arc present in I._qs.4.31 and 4.3B. However, thuuu

uquatlons arc subje_.t to the klncmatical _ostrictions _mposod by th_

assumod_dioplacomont fi_id of _q. 4._3 which does not allow any sheer do _,

formations or normal (to the reference axis II) strains, as is evldon_

from the st;a_n matrix displayed in Eq. 4.33, _or example.

A theory of thin bodies which is subjected to the kinemati_ oonstraint

that the thickness before and afte_ deformation remains the sam_, is net

realistic when finite strains are admitted in the 4eformatlon process. To

enforce such a constraint, the density of the material would have to change

in a special way during deformation. Since for most materials the ratio of

the d_formed to the undeformed mass density is very nearly equal to unity

even for large stralns_ such an unrealistic _enslty cha_qe (as enforced by

the constraint of constant thickness) cannot be admitted in the characheriza-

tion of the deformation pr,-3ess of an actual material at finite stzains.

The for_ulatlon to be presented here can be derived from the general

shell formulation of Section 5. Thickness changes will be introduue_ in

the fozmulation by means of. the assumption of no volume change.

The assumed-displacement field will contain only the zeroth order term

in a (thickness-coordlnate) asymptotic expansion of the factor A (_,_o)

appearing in Eq. 4.8. This zerOth orde_ term provides only a symmetric

thickness change (with respect to the reference axis D) and excludes anti-

symmetric thickness changes that can be provided by highe9 ordbr terms in

the as_anptotlc series expansion.
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It turns aUt that tha r_tnntion of Just thn _oro.h ordmr £_rm is nquiva-

h_nt tn _atisfylnq the Ineomprnssibiiity uundition in an exact fashion anly

at th¢_ r_ft_ronoe axis B (at _o . 0), l|igh_r ord_ir tnrmfl in the thieknnss

o,-,ordillat_l{rj°) arr_ n_,t incltldc_d at tlm prntmnt titan so as not to complicate

th,_ ,_a].y_;] _dt1!y. _hnf_ h_qh¢_r ordn_ t,_r,lsaffnet thn ax:Lal stra_I1-

d:Lrlp!(I_,n_,ont_q_atlon :Ln tormll of thu srdr_r uf tl]e squarf, of t11_ tlIJ_knr,uN

_oor,lJnat,_ and h,{ghor. For Huf_Innt_y "thln" bodif,s, thos_ tormtl Nl|ou]d

b,, li,_g]£_[,blo. A,_O, the pr_te,t,lcal u_,_fu]n_nr_ of includ,ll_g _u_h h:Iglm_:

,_r(lortnrm_ (that n_rvo to satisfy with inoroasln,! d(_gre_m o_ accuracy the

1.noomprosslbil.tty asoumptlon along the) thlcknoss of the thin body) is of,

questionable validity in a theory such as the present one that does not

include) any shear dofor_,atlonu and is rostrlotod to dofo_matlons in 2-D

space.

Let an asymptotic expansion for the factor A(_,_ °) of Eq. 4.8 bo

assumed in the form,

Keeping only the zeroth order t_rm,

_q. 4.8 becomes

Also, Eq. 4.6 becomes

ThUs, the displacement field, Eq. 4.15 becomes:

FrOm Eq. 4.108_ one can ohtain the deformation and strain teasers in '_he

thickness direction:
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I

-C o g +2"_ --G .a -_3_ _ _3 35 3 3 . (4,1101

Sinc_ tnrms of order _o and highsr wero nQgloctQd in tho oxpansion givon in

Eq. 4.105, thoy should also ba n_glectQd in Eq. 4.110 to bo ccnslstent_

hence,

" .L .r •- _"u3_ 33 ,./%.)
(4.111)

,,,,or° t_" cI _'.o)
_,,. c,, C_'-o)

The thickness deformation is measured by the parameter X , which is ao

function of the curvilinear axis coordinate n, and is not a function of the

thickness coordinate _o. The thickness deformation is assumed to be homo-

3 has
geneous through the thickness. The deformation tensor component C 3

the sa_w value anywhere in the thickness _o at a given location _. One can
3

3 in terms of the stretch tensor U 3 asexpress the deformation tensor C 3

Imposing no volume deformation at the reference axis N(_o = O) for this

thin body deforming in 2-D space is tantamount to writing

,i[,'l # _°.0 '_."'_
or

° Z ° 3

"[-_, '_ 3 = £ (4.114)

Employing Eq. 4.112, one obtains

• _. (4.115)

[I_%o=i
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Hel-lco,
L I

which e_resses the thickness change _ in terms of the membrane axial

strain y_. o

Placing this result into the displacement field equation (4.109), one

obtains

Hence, using Eqs. 4.19 and 4.20, gq. 4.117 becomes

) [ .]
,V.. rV-..

= V 0..2.-I- W _ ¢4.na)

Thus one obtains the following strain matrix (to the order of _°)z

Yj-
z (J.+z',tl)

(4.119)
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o
r%

whore y_ and _ ware doflned in Eqs. 4.26 and 4.34,

This expression shows that nonzero transverse shear strains are present

aw_ from thg_rof_rpnc0, _xis _(at _° @_0_). This transverse shear strain is

caused by the no_mal strain (t)hickness change) gradient in the_ direction

and disappears entirely when this gradient is zero (s,me Fig. 6 for this

effect). The expression for this transverse shear strain can be expressed

either in terms of the membrane strain gradient _y /en or in terms of the3

i normal strain gradient 873/_ as Eollows_

Since t.ransverse shear deformations were neglected to start with, it will be

assumed that the transverse shear strain producea by the normal strain

gradient in the axial direction is negligibles

This is equivalent to

0 (4.122)

which implies the assumption that the membrane strain @radient is small

enough.

Hence, the transverse shear strain created by the normal strain gradient in

the axial direction is neglected in the Principle of Virtual Work. Likewise,

although normal strains are considered in the analysis, the terms that

correspond to it in the Principle of Virtual Work are neglected under the

assumption of an approximate state of plane stress throughout the thin body.

Or, what is eq_ivale_nt, the normal (through-the-thickness direction) stresses

are considered to b_ negligible.

An evident shortcoming of the present analysis is its restriction to

two-dimensional space. In the physical world all phenomena take place in
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a throa-dlmonslonal space. Incompro_3nlbillty (or oqulvalontiy, no chanqo

in vol_mo) is a threo-dlmenslonal oonoopt.

In the present analysis, Ineomprossibillty was iml_.,]edin a two-

dimensional space; that is, not allowing any deformations in the direction

normal to this two-dlmonsional n,_.O surface. One can examine the conse-

quences of satlsf?Ing incompressibility in the throe-dimenslonal case,

in an approximate fabhlon, by replacing Eq. 4.114 by"

o

where the index "i" refers to the _i direction, normal to the _2 _ _ and

_3 _=_o directions. Therefore, from Eq. 4.112 and Eq. 4.124, one obtains:

_. _Lo = i (4.125)

o _ -- i . (4.126)A°-- - ',
._ o _.

Assuming that

_£-- Z

then

i _ ,i r

In the case of a Very narrow beam, with isotropic properties, and with a

width exactly equal to its thickness, it is natural to expect:

== 3 (4.129)

llence,

0

_i=_o (4.130,

Hence, from Eq. 4.125"
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_o= t .. t = £ c_._l

Placing X into Eq. 4.109 for the displacement field, one can obtain, aftero

some manipulations the following strain-displacement equations:

I ....... _

_,=y_= t .....i1|1 i

_0 (4.134)

_,- = +. _,_.)_,,,,_-_" , (i+ 2,. '
o 2

Here, _2 and K have the same definitions as in Eqs. 4.34 and 4.26, re-

spective ly.

In general, one would expect a behavior that is bounded be%ween

Eqs. 4.134 and 4.1191 that is, between the case in which (I) the strain in

the _i direction is equal to the strain in the _3 E _o direction and (2) £hat

in which the strain in the _l direction is equal to O.

4.2.3 Summary of Straln-Displacement Equations

For convenient reference, the strain-dlsplacement equations for thin

curved beams (i + (_°/R) _ I) will be reproduced in the following for cer-

tain specific situations.

4.2.3.1 Strain-Displacement Relations for Small Strains

From Eq. 4.80, the asstu,ed displacement field (implying small membrane
strain) is:

This field leads to the following straln-displacement equation (Eq. 4.90):

t
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and

i i

The displacement gradients are X and _, and e is the angle of rotation of

the reference axis _(at _o = 0).

Note from Eqs. 4.74 and 4.77 that the bending contribution to the
2 o2

Green strain Y2 involves also the membrane strain Y2" Hence, the bending

contribution can be approximated in various ways depending upon one's
02

assumption (in the bending part) concerning the size of Y2" For example,
02 ~

if one asstmles that 1 + 2 72 ~ 1 only in the bending part as in Eqs. 4.79

and 4.80, the resulting strain-displacement relations are restricted,

therefore, to small men%brahe strains insofar as the bending contribution

itself is concerned; this applies to strain-displacement relahions A, B, C,

D, and E. For the membrane part of _, arbitrarily large
membrane strains

and rotations are taken into accouht in Eq. 4.90 except for Type A. For

2 in Eq. 4 90, arbitrarily large rotations apply onlythe bending part of Y2

for Types C and E. Type A is the curved-beam equlvalent Of yon Kar_an's

nonlinear plate equations [157] and Sanders' nonlinear shell equations [158].

4.2.3.2 Strain-Displacement Relations for Finite Strains

and Finite Rotations
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AI_ bLq'or,_, h.:t the Gr_._,_II("LaqranqJ.an") m<,_lbz,l|l_-]_itraln be de_fJnt_d ,_i.:

(4.136)

_III[_t|lO ttC'tlrV,'ItUltO"iI_

Tho following displac.'.,,mentfleldz

l I
_°

produces the following strain-displacement equations (to the order of _o):

_ ,_°,,_

_l._rao._ ] ,.-_,
with

The following special cases can be identified:

) 3

(a) No changes in thickness or lateral dln_nsions (Y1 : _3 = 0)_ then,

then,

_-i A:i /_oO
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(o) Equnl strains in the thlc}:nCmn and thn int(_ral dlroot,lont

17 "_YI _ Ols then

The case in whieh _ = i, 8 _ i, _ _ 0 is called strain displacoment

relation Type F and is th0 one used in the analysis of beams and rings of

Soatlon 7t that is

1

" 0 (4.146)i

This equation is valid for arbitrarily large membrane strains, rotations,

and displacements for incompressible thickness-changing B-E 2-D structures'

with 71 = 0.

4.3 clnstltutlve Equations for Finite Strains and Rotations

4.3.1 Introduction

The general theory for finite-straln elastic-plastic strain-rate de-

pendent deformations of a solid presented in Section 3 will be specialized

to curved beams, for which only the axial (circumferential) component of

stress is considered to be important.

4.3.2 Constitutive Equations

In the particular case in consideration, the stress-straln relation is

one-dimensional (no shear strains are considered and normal through-the-

thickness stresses are disregarded, considering a state of plane stress).

Hence, the problem simplifies considerably. The co-rotational rate of the

mixed components of stress in convected coordinates becomes equal to the
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mat(_rial rate of tht_ mixcJd _-ompon_nts of ntrntln in convnctnd coQrdinatt:_n.
@

In c.c_nwleted _oQrdinat_st

Al_o, the mixed eompon_ntn o£ the rato-of-doformatlon tonflor ,in eonvoutod

coordlnatos become equal to the matorl.al z'ato of the mimed components of

logarithmic stra,in in convoct_d coordlnatest
e

---- (4.148)

Hence, Eq. 3.31 for the case of a one-dimensional stress-strain relation

in 6onvected coordinates becomes

Z E 14.149)

or, equivalently:

_ [-
whe re

_i-(_:?'*'(D:T-H:" •
_qua4:ion 4.150 can be integrated to obtain

•z'_(_1."E "g-I:)'(_)* 'z_(t.> ,,._,,
Therefore, in this specie" case of a one-dimensional stress-straln relation

expressed in the body-fixed convected coordinates, the constitutive law

(Eq. 3.27) does have an elastic potential:

Ej%a L

H_re, as in previous subsections, prescript "s" refers fie a quantity per-

taining to the sth sublayer of £he mechan[cal-sublayer model.
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_nd

whore %' in the tlolmholtz free Internal (_nnrgy }_r unit mnn_], under Inn=

thermal conditions, of nublayer.n. "

The governing oquatlons, expressed in the body-flxo4 ¢:onvo_tad ¢oord:[-

hate system, arc (compare with Eq. 3.54),

Z

r_ =ZA, z,
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Thcmn oquatlc.,ni_|inv(_to b_ trannformt_d to th(-_strnsn alldfltralnq_ant_t.los

, uflc_d]n th_ nHm_irJ.e.a],olla]-yfli11!for thoIlo,on_atlo(_I1the,['ollowinqpr_vioqs].y-

(h_rlvod ,_qIlatJc_llS (2.269,2.352, 011_12.1.88) tc_obtains

._'=2.

It will be sho%a_that slnce each sublayer experiences the same strain

as the actual material, the m_chanical sublayer model is easily repres_._ted
2

in terms of the Second Piola-Kirchheff stress component S21

S,,J.

,y,. •

"'C.-
(4.163)

Henoe #

S=&

% / S.'&
(4.164)

2

Therefore, also the Second Piola-Ki_chhoff stress S2 can be considered as
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_2
tho ,urn of n e_mponnntn ( £2' n _ 1, ,.., n) with the, ._.mn.gniqhttnq _at-ore

A at1 unofJ for talc KSrahhoffff _ltron_ T2t

Now, oxpronntnq P,q. 4.157 |,n tormn of thn 9o_ond P{ol,n_Kirollho£_ ntrtmn

eomponont S2 and the _,_;oon n_,rain component Y2' by uuo of t,',q_].4.1G0_4.16_
on_ obtainn t

_,

Ci+z,_)
or

f,) Ez-z(._+z_:5(,s:)].__(¥:) ,_0,,
d s.. (_+ zxl) _

Integrating this dlEferentlal expre_slon by the trapezoidal rule,

from the time instant t - At to the incrementally close time instant t,

and defining for the time beingt

' S - _S: ,,._0.1

one obtain8 t

_{E-_•s'"'[(-z_')-,_]}
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An illu_ltrRtl_llaf thr,m_thnd _f eomputSnq tlm axial ntror_(1at a

qlV, U_ thrkl-th_-thlek1_nnn int_q_at_on lHr.i_t_¢_n .Irl l]rr:nnntnd all folh_Wfl,

(_l,_ hncllnn bY knawill,' thn nul_l.n?o_ nt.rnFm nst"At: at t.t.m,, (e : At;) far Lho

nt:h lmblay,_v ot th,, lntoqrnttnn stall.on, and _h(_ rH:ra'J-n_nur.(_m_nt Ay at

fiR? r_amo |ntoqratl,on ntagton_ _horofore, elm [_train Tt at tlmo g at _hat

into_lrat:l.on _tat'_o_ i,i_ a.Iao known.

One takuu a trial value (_]ul,ozo@ript_'1of uSt (th_ strotn at aublayor

s at time t) which in compu£o¢1by assumlng an incro_,entally-olam_ic pathl

('s'y" .- °5"'"_

{E-a's"°'[a+_Y')-A_l}so'_ _ • ,,, ==,

[(_+z_')'-O,_2Y")aY._(_,,,r,,']
{4.173)

A check is then _ "£_rm_d to ses what the correct value of Sst must bel

then

Gaussian integration is utilized in the analysis.
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This procedure is.applied to all..sublayers at that numerical integra-

tion station, and at every integration station.
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: i_ o

SECTION 5

I_J_!ES AND SI[ELLS

5.1 £ntroduction

Straln-dlL_plau¢,mont rolation_ for general thin shells valid for

finite strains and rotations are derived hero. The main references that

have been consulted for this d_rivation are: Mar [159], Dugundji [160],

Koiter [161], and Biricikoglu and Kalnins [162].

The classical t/leery of shells is subjected to the kinematic con-

straint that the thickness of the shell before and after deformation

remains the same, but this is not realistic when large strains are present.

since most materials which are capable of undergoing large strains are

nearly incompressible, the constraint of incompressibility (no volume

@lange) seems to be a physically-plausible and mathematically-convenient

assumption; accordingly, this assumption is made in the present analysis.

The analysis of thickness change by this kinematical constraint saves

numerical computation and reduces the number of degrees of freedom

required to a/lalyze a given problem (in comparison with the existing

finlte-strain three-dlmensional finite element analyses). The assumption

of incompressible behavior of shells, as enforced in the present analysis,

will not result in the existing critical numerical problem [163]

associated with large severe thickness distortion associated with three-

dimensional incompressible behavior present in the assumed-displacement

finite-element analysis of large plastic strain three-dimensional, plane-

strain or axisymmetric problems. The assumption of incompressibility is

enforced in the analysis by means of an asymptotic series expansion in

powe;s of the no_-mal thickness coordinate. The corresponding finite-

strain, finite-rotation, straln-displacement relations ate believed to be

original. These equations are then spe_ialized to the case of an

initially-flat shell; that is, a "plate".

In Subsection 5.3, constitutive equations which are valid for (i)

finite strains and rotations, (2) elastic-plastic materials with strain-

hardening and strain-rate prop_q:ties -- are derived under the assumption
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of plallo _ltr_l condltionn £or ,q_nt_rml thln nhelln. '1'hi._t1_1oquatiom.1 are

wr.ltt_in in terms of th_ varlable.n ansociatod with the £,txs_dr_forenc_

co[ifiguratlon, _md the £inlt_ elem_l_t inc_'emental procuclur_, for the

t_valu_tion of the str_s_s is presented.

5.2 Strain-Olsplacomont Relations for Finite Strail_s and Rotations

5.2. l Foraulatiol ! for General Shells

Let the location of each material point of the continuum be defined

by the same two systems indicated in Subsection 2.41 namely, the space-

fixed and the body-flxed (embedded) coordinate systems. A surface in

three-dimensional Euclidean space is defined by the curvilinear coordinates

_i and _2 of the body-fixed coordinate system; this surface is called the

"reference surface"* of a "thin shell". The coordinate _3 .._o measures

the distance along an outwardly-directed normal to the reference surface

(_o = 0). The unit normal vector to the reference surface in the reference

configuration is denoted by n, while t/le unit normal vector to the

reference surface in the present configuration is denoted by N. Any

material point p in the reference configuration of t/,e shell is located

by the position vector _ to the reference surface (_o = o) and the unit
O

normal vector _ to the reference surface, in the form (Fig. 7)-

Observe that the position vector r (as well as ro) is not a function of

t_:

where t is some reference (fixed) time.o

The material point p in the reference configuration of the shell (at

time to) is identified by the letter P in the present configuration of the

shell (at time t). The material point P is located by the position vector

It turns out that the best location for this surface for the purposes of
this work is the middle surfa_ of t2_e shell.
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11

Of L,_ll{ll'lll ' I

l_qtiation 5.3 is tailt_llllount to tile asstiilll_tJoll that the rt, stllttng tit, for|lid-

lion is such t.ll,it the. lines ilOtllldl to) the l'efercllCO lulrf_lco .ill |'he,

l't_[Ol.'t, llt;o coll[LqLlrdtiOll i.'t_.llldill IIOlllld[ to the l_l't'St_llt l'tJ|7orOllCt' ._ttll't'dCt_._

but. the ,,lut't'aees originally pal'al]t,1 to the refo._-onct, _urface at time t
tl

llt,t, cl Ilot ['('111{1tll tslil:illlc;1 to t.hc, [n:t, sellt ro[orollee sut'l_dco lit time t.

lot'eovorl the distance of a llldtol'ial potlit to the l_ofort_llc, o stlrfdct, is

ptu-mitted to change with the dufoi_it.i6n of the shell.

q'he displacomei%t field at any point , _,_ t°, , ii1 a shell may be

written as Eollows:

la=ao+a°
'i'llO Covdridlit ba_lo vectors of the l't)[t)l,OllCO _itu_fLICt _ in tilt, I't, ft_l'tHlCt , Lint|

t_rest'lit cOnlTiqtirations art, i reut_,ctivc]7 i

,Itld t llt,y dye t_llltlt, llt to tll_' I'l'l'l',l't_llct • IUlI't_'_ICt',* Nell' tll_il, onl, t'_lll t_|q't,il;l

til't_t'_ Illitlil'_ICIlit'll tll IIi ... t,ikt' on V_l[_lt'll I dlld 2, t'Ol'l't'ili_olldilltl to the
i't'l'l'Yl'llct' i_tlI'I_LcI' t'o/)rdiil_llt,tl [,'| _llid _,"_ i't'iit_t'ctivt'ly.

17f_

O0000003-TSB04



thn bam:_ vector A to th_ r¢)I'or_)ne___ nurfaeo in the) prc_,_ont eonfi_juration

in t_umt_ of thc_ dlsph_comont vaator U :o

_'he reference surface m_trlo tenx_or components associated with thene

base vectors are:

Cb Ei _(_ ,.'-',( p (s.9)

One can introduce the contravariant base vectors _s, _ by the relations:

• -- = " 15•Ill

where

is the previously defined Kronecker delta. Therefore, one can write the

following tensor components:

The determinants of these metric tensors are:

{l = 0._, O._.Z = O'"O';'z" (CI"z) z

A. A|p.. (5.14)

A- o
.A.,,.
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'.Ph_contraw:n;l_nt bn_l_ vector_ a and ar_ r_lat_d to th_ c,ow*_rlant ba,*_,._

-- ._N_,--z 14 X 0..t. = , _.
='' _._ (5.16)

(% % (A,
It is also true that:

Hence, one can express Eqs. 5.15 and 5.16 as:

and

0.. = = (5.20)o- .A

oP= a,_. .A?-=__,'%.,
0- j_ (5.21)

0., = O. - ------ ,,__
CL .,_ (_.2_)

The "second fundamental tensur of the reference surface" is tho

t_nsor that expresses the curvature of tb _'efurenc_- surface; its

177
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_,ompon,_nt_; ar_) obtaim_d _ither by differentiation of. tlm (tangent) ban,)

vectorn of the surface, or by dlfforcntlation of the unit normal vectors

to the _]urfa_o.•

, Associated with this tensor are two important sets of invariants (k, h, b

and K, H, B):

j_ (5.27)

Here k and K are the "Gausslan curvatures" of the reference surface in

the _efercnce and present configurations, respectively, While h and H are

the "mean curvatures" of the reference surface in the reference and

present conflgu_dtiOns, respectively.
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to bc_•

in the reference and present configurations, respectively. Thus, the

ratio of the determinants of the metrio tensors of the reference and

present configurations is equal to the ratio of the differential elements

of area:

15.311

defines base vectors of the "shell space" g_, g3' thatLikewise, one

are tangent to surfaces at a distance _o from the reference surface in

the reference configuration:

and base vectors G , _3' that are tangent to surfaces at a distance _o

from the reference surface in the present configuration:

These base vectors have the following determinants:

9" 9- 9"
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G,, G,, 6,3
The base vectors gl' g2' _3 as well as 81, 82, 83 describe the metric

properties of three dimensional Euclidean space. The base vectors al' "_2

describe the metric properties of the reference surface embedded in the

three dimensional space.

It is interesting to observe that the unit (metric) tensor _ of the

three-dimensional Euclidean space can be expressed as..

+ • i •

. a,O_,"_f' + _ _--S e _.0,6.r' + _ g
And that:

The differential elements of volume are:

JVo- °

in the reference and present configurations, respectively.

Ohe can express 5he base vectors of the "shell space" in terms of

the _ase vectors of the re£erence surface as.

_ +Z_.,,'_,,+-_.,_+ _°
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i* I

Likewlso, these expressions can be written in terms of the curvature

tensors and the base vectors, by means of Eqs. 5.23 and 5.24, obtaining:

_--_ -_o__: ,_..,

= _o / ,. (5.47)
i

where

(5.49)

I Finally, with these equations, one can write the metric tensor

components, from which the Cauchy-Green deformation tensor, or the Green

strain tensor can b_ easily obtained as follows. Since

I
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G,, (_J'+z _'. _ + (_')"(':_x_,. ,,.,o,

The assumption of no change in volume can be expressed mathematically as.

This assumption will be utilized to e_presB the parameter _, in terms o_

the variables at the reference sorface. Prom Eqs. 5.51-5.53, one finds
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0
0 ±

Also, from Egs. 5.54-5.56, one finds that

= - _i5,°

(,_ + (x)'[g',IS,,A,,+:B;g,,..A,

- ucxt_.c_+o¢_'r
t

To solve _q. 5.57 in ter_g of _, the following asymptotic expansion is

assumed:

I _C_',_;-_=xom¢)-,." ' ...' .__,(+,_'}+(rt_,,¢+',+'i+,+.°+,
I
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This asy]nptotic _zpansion will turn out to be a TaylQr sarles e_pansion

in powers of <o around <o _ O:

x(_'>-xCa'-o>,a°[N.<_'-4,... '_."'
It in easy to ,how, using Bqn. _.57, 5.59, 5.61, and 5.64, by oxpannlon

matching, that:

whore

Hence, from Bq. 5.63,

x(_) a.c.,,
. -, i

is the asymptotic expansion for _ in integral powers of _o that satisfies

the condition of no change in volume.

Observe that substituting this expression for I into Eq. 5.6, one

obtains the following displacement field:

..... ......- _o + - -_ A,,. + cs.681

where _i is defined in Eq. 5.66. Also, substituting Eq. 5.68 into Eqs.

5.54-5.56, one obtains the metric tensor components of the present

configurations
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I

(5.69)*

(5.70)*

(5.71)*

The curvature tensor components B8 were defined in Eq. 5.24 in
terms of the reference surface base vectors and the normal to the

referenoe surface in the present configuration. Hence, all that remains

in order to write the metric tensor components of the present configura-

tion in terms of the reference surface displacements is to express the

normal N and vectors % as a function of those displacements. The

reference surface displacement field in terms Of its components u_ alon_
O

the coordinates _ and its component w along the normal to the reference

surface is_

Hence,

•A.- I * )
•These expressions are shown to illustrate the nature of the terms involved

when al_l terms to a given order of _o are retained, lloWever, these expres-

sions are not intended to form a consistent approximation to the strain

energy.
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&

whnre

---k s (5.76)

are the surface Christoffel symbols, Eq. 5.73 becomes

Thus, defining the displacement gradients: *

=-- LLo)o( - W _ (s.78}

one obtains:

The components of the deformation gradient tensor of the surface

These displacement gradients are the covarian_ derivatives in three-

dimensional Euclidean space of the three-dimensional Euclidean vector u •
0
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!

;lr,:_ al_lo _l_oftll.t and onnblo on_ to writol

7_ =1=; _ +0 g I.r,.a2)

Since

_ = &i ( 5 " 8 a )

substituting _q. 5.82 for _ into t/_is equation for N, one obtains:

+(o,_'" v) '•, - O_ .i a

+ ) ]
This is an exact expression for the normal to the reference surface in

the present config_tration and is completely independent of the assumed-

displaeement _ield.

From Eq. 5.82, one can obtain the expression for the metric tensor

of the referenOe surface with components A8 in the present configuration,

as a function of the displacements:

i i i m i

lience, one can define the eomponent_ of a Green strain tensor at the

refegence surface as:
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Also, the ratio of the determinants of the motrio tensor of the reforonue

surface in the present and reference configurations can b_ cxpressQd in

terms of the reference surface strain components as *

or
i i i . i i i i i

where 78 are the mixed components of the Green strain tensor l

Differentiating Eq. 5.82 covariantly with respect to _8, one obtainsl

From Eqs. _.96, 5.85, and 5.24, one can express the curvature tensor

components B_ in terms of the displacements asl

(el:; boD]
Where = I if [_ = i, _ = 2; = -I if _ = 2, _ = II and -- 0

if_=8.
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I

I
Thoroforue ollc ¢_Ii cTxpr(_1_ thn G_o(_n ntraln tone]or ¢omponontn Q,q_

.!

-_{ (G,,-z) (s, .1.oo)

Finally, using Eqs. 5.97, 5.93, 5.91, 5.90, 5.81, 5.79, 5.78, 5.71, 5.70,

5.69, 5.66, 5.62, and 5.14, one can relate these strain components to the

displacements for general thin shells.

5.2.2 Straln-D!splacement Relations for Plates

At this point, these equations are specialized for a shell with no

initial curvature; that is, a plate. The reference surface coordinates

61 and _2 and the normal coordinate _o are chosen so as to form a

rectangular Cartesian coordinate system (in the reference configuration),

where:

.b _' b_;_.O u_,u, u.°.v c_._o_

_.-o.=t c-h,-k-o
EXpression 5.68 for the parameter X that characterizes the thinning or

thickening of the plate becomes

'Paking tile middle surface as the reference surface of the plate, the

zeroth order term in _o characterizes the (symmetric) thinning due to

1 membrane strains} while t/%e first order term Ill <o characterizes the

I 189
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I
. I

(antlsymmotrlo) thinning produced by changes of curvature. Defining a

"curvature" K_8 as l

_ _ (5.I03)

":::. one _an obtain, after some manipulations, the following expressions for

the components of the Green strain tensor.

__i o',1 " z
No,o %:

:_ _ _-%-'_U+

) {
.,..' -z_,,z_,,}+oct':
:: Observe that the transverse shear strain 73_ is associated with the strain

i_ gradient with respect to the _u coordinates on the reference surface.

_' 0

and that it can also be expressed in terms of the gradient of the trans-

vers_ llormal strain Y33 _
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In the present analysis, the following simplifying assumptions are

made:

(a) The second order terms in the thickness coordinate _o in the

expression for 7_ arc negligible

_,/_, z az,,,,,j
and hence Eq. 5.104 reduces to.

(b) The "thinning" parameter A can be characterized by:

and hence gq. 5. 106 reduces to:

and (e) the transverse shear strains are small.
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l As_umptions (a) and (b) arq made sinc_ the pre_ant _o_mulntion ia intended
to apply to thin shells, and for problems in which the symmetric (with

respect to the middle surface) part of the transverse normal strain is

the dominant factor in the thickness change. Assumption (c) Is made since

otherwise (as shown in the next subsection) a general state of multlaxlal

2nd Piola-Kirchhoff stress would exist in the shell (eVen though a statu

of _Kirchhoff stress may exist simultaneously). Assumption (c)

precludes a detailed analysis of necking. The incorporation of thinning

effects under assumptions (a), (b), and (c) does not represent any extra

effort in the analysis. The only quantity that needs to be computed to

include thinning effects (AI/2)- would have to be computed anyway for

finite strains even if thinning effects were not included, as is

evident from Eq. 5.97.

Under these simplifying assumptions, the following plate equations,

for finite strains and rotations, and including approximate thinning

effects are expressed finally in terms of the reference surface displace-

ments (u, v) and the displacement component (w) along the unit normal to

the reference surface, along the Lagrangian (material) vectors al' a2 and

n, respectivelyz

- -t"_ _.0 lS.llS_

+> +i++,

,++.,, - <+i,,,_,+.._.t ,'%AJ
,0 0

Where Yll' 722' 712 are the "membrane" strains at the middle surft.ce.

These strains are given by: *

+ : +-++
,.L ,

The underlined fV%/% tems will be discussed presently.
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and the "bending" expresslons Kll, 1<22, and <12 are:

where W_JV%J'V%_

e<=-I + _ (s124)

_m-_--W-w (i+_-Y'v___y + _ _X_V (5.125)

Subscripts i, 2 and 3 stand for the Lagranglan (material) coordinates x,

y, and _o, respectively.

The terms underlined by A/k2 are terms no____tappearing in yon Karman's

equations [157] for "large displacements". The much-used yon Karman

no_llnear plate equations [157], and the popular Sanders shell equation

t: 193

I

00000003-TSC08



for "modnratoly small rotations" [158] a_ wall an Koltor'n nonlinear

shell equation for "_moll finite deflections" [161], despite its

succ_snos, hova tho_o inherent limitations. (a] small strain, (b)

moderately small rotations, and (c) no transvor_o normal strains. Those

oquationn are very important for analytical purposes, but for a general

I numerical analysis,, the more comprehensive expressions 5.115 through 5.12_should bo used, since _he Qxtra amount of numerical computation is

amply compensated for by the generality of arbitrarily large rotations

and finite strains that one accommodates by thQ use of these equations.

Observe that the following displacement field is associated with

expressions 5.115 through 5.126:

= W + - (5.130)

where

_X bX (5.131)
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5.3 C_nstitutivc) Equatlons fQr Finite Strains and Rotations

5.3.1 Introdt,ction

Constitutive oquatlons which a_o valid f_r finite strains and larqo

displaeealonts are derlv0d for general thin shells under the asf_umpt_on

of plane stress. This assumption is criti_ally examined In terms of th(?

"pseudo-stress" measure (the 2nd _iula-Kirchhoff stress) used in the

present analysis. The yon Mises strain-rate dependent loaaing function

introduced in Section 3 is derived in terms of the stress and strain

quantities associated with the reference configuration for the case of

plane stress. The "elastic" and plasti_ parts of the constitutive ;ola-

tlons for strain-hardenlng, straln-rate dependent materials are shown in

explicit form in terms of the stress and strain measures associated with

the referenoe configuration as well as the material constants (to be

measured experimentally). Finally, the incremental procedure for the

evaluation of the stresses in the finite element analysis is shown. Note

that, although the present work is concerned with the numerical analysis

of initially flat plates, the theory presented is valid for general thin

shells.

5.3.2 Constitutive Equations

5.3.2.1 Plane Stress Assumption for Thin Shells at Finite Strains

An approximate state of plane stress is assumed to exist in the shell.

F. John [164] has established that the state of stress in an elastic thin

shell, in the absence of surface loads, is indeed approximately plane, by

means of concrete estimates of the errors involved. Exploiting modern

developmen£s on the behavior of the solutions of elliptic systems of

partial differential equations, he published a rigorous proof that the

state of stress in the interior domain of an elastic shell (i.e., at a

sufficient distance from the edge of a shell) and in the absence of

surface loads is approximately plane with an approximately li,_ear distri-

bution through the thickness of the stress parallel to the middle surface.

The approximate equations of F. John hold for any magnitude of the

deflections, provided the strains remain small everywhere. Unfortunately,
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a _;_imilar proof fo_ larqn strains dQen not appear ta _xist. It so_ms

r_asonable that, i_ a state of piano stress should exist for a thin flhni]

for finitp str_In_, that state of plane stress should be ozpr_,nsod In

terms of th(_ Kirchhoff str_s_ _omponontns

with respoct to the ,rQscnt configuration; that is,

= _ _T :_ 15.135)

If this condition should be satlsfied at all times, the co-rotational

rate of the cut-of-plane Kirohhoff stre_s components should vanish.

_" = 0 (5.137)

Since the present analysis is formulated in terms of the reference

configuration, these plane-Kirchhoff-stress equations are expressed in

terms of the 2nd Piola-Kirchhoff stress components and the Green

(Lagra_%gian) strain, from Eq. 2.270 as.

X :' &l[ + 2."_'&lt (5.1,e)
3

(5. 140)
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It is clear that the condition of "plane 2nd Piola-Kirchhoff stress"

S _ S 2'_= _?'= 0 C5.144)

satisfies Eqs. 5.139, 5.140, and 5..I.42,but still Eqs. 5.141 and 5.143:

"t'"_- 0 = Z_,L_5" '- Z_,,,5_" c_.,.,,_)

'Z:_ 0 Z"a',,,,5'" + z'a',_,S"= a (5.146)

are not satisfied, in general, unless the transverse shear strains are

negligible •

From Eq. 5.109, this is equivalent to:

i 197

00000003-TSC12



are satisfied at all times, then the material rates of these quantities

also vanish; hence,

and_ therefoZe, the co-rotational rate of the out-of-plane Eir_hhoff

stresses vanishes :

w t_ (_.1531

as uan be shown from Eq. 2.3535

-1
In this expression, Cij and (cij) are defined as:
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whnrn

c,_oc,,. t,_.t,,° (c-')':(c")';o ,_.,o_,
with motriccu z

o c. o o 0 1

,(_-,}"(_-,>"o II _ ='" °
o o (c-'Y'll _ ._ o0 0 _--

C_3 (5.159)

ao+..c,,c,,- (c,,)'-(a"*z'_,,)(_],.+z_..)-l_,,)"
(5.160)

From Egs. 5.157 and 5.151, it follows that

_.,.,,=,,....,,,,j+ "-,.. d._E,s+(c-') ]
-0

+-',, .+""c,,,,,+,-,'-s'_"'e..,,+[,+_.d_+(c-?.q,,1
' =0
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i

arc sufflcient conditions for the existence of a state of plane stress

and are assumed in the present analysis to hold at all times.

5.3.2.2 yon Mises Strain-Rate-Dependent Loading Function for

Plane Stress and Finite Strains

In the flnlte-strain elastic-plastic straln-rate dependent theory

displayed in Subsection 3.3.3, a loading function 8@ (yield surface in

stress space) was assumed to exist for each sublayer s of the mechanical

sublayer model. This loading function s@ was assumed to be expressible
smD

in terms of the deviatoric Kirchhoff stress T of sublayer s and a

parameter sT whiuh depends on material properties of sublayer s and the
U

deviatoric rate of deformation tensor _D as expressed in Eq. 3.45 and

repeated here for c_nvenience:

This loading function s$ will be expressed in terms of the nonzero

components of stress sij and strain Cij under the plane 8tress condition

of Eq. 5.161. Equation 5.162 can be rewritten as:

The first term of this expression, namely (subscr:l.pt:"1")
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..............,,_,_zL_- _..... ....................... .. ,

t',lll l.li_ Wl'.| ', It'll ,I'I

3

by mt;_|lls o[ t|It_d_Einitlon of" s_D, l'kl.3.40, a**d maklnq use of thesu fact:;:

l.:quation 5.160 for b¢l, 0an bo writtutx :In tt,rmtt oI-"the components of s_

in the p,-esont ¢onfiquration of the body-fixed convocted coordiltatt_ system:

- ,T .7..

[lellU_ t

or

- =

Undt,]" I:_hlne stretU_

l,k1. b.171, bt't'omt','_

...... • i •

201

I

00000003-TSD02



Sh,ce, from I_q. 2.270_

and, from Eq:1. 5.161 and 5.165:

5" 5" S"_. _-- I O

C C -045 " Z3

then, Eq. 5.173 is equivalent to:
l

_ 1 " (C , ' S'' > l + I ( C , _ Sll) 1 [ [ (C ' "> _+ _ C'''C'l ] (S ' " ) _

C,,c,.3s"s
where the components ¢ij of the right Cauchy-Green defomnation tensor were

defi_led in Eq. 5.158 in terms of the components Yij of tale Green strain

tensor.

The second term in the loading function s# is (from Eq. 5.163):

where sT is the static (rate independent) Kirchhoff stress yield of a
uo

specimen in uniaxial tension, and Sd and Sp are material strain-rate

constants, as discussed in Subsection 3.3. Equation 5.176 can be rewritten

as :

where D is an "equivalent deformation rate" defined by,

Z

which, being the scalar product of two deviato_ic tensors, can be expressed

as I
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Z

iu'at a:_ tlu: _calar product of the dcviatorie Ktrchhoff _t.ro_-m tt, lmor_ wt:rL_

exprtms(,d in tim form of Eq. 5'.1V1. l.'_om l.'q. 2.188 one can expromJ thu

DI,of the rate-of-dofo111,atlen_ tensor in t.ez_s of the materialcom_ol%ol%£s
u

rate of the Green strain components Yij:

where the components (C"I) I_ were defined in ._. 5.159. Since

(c-,7
from Eq. 5.157, then:

and hence, Eq. 5.179 becomes:

w

Since t/%e present analysis is foz_ulated in terms of the strain components

Yij' Eq. 5.183 will be expressed in terms of those quantities. FrOm

EllS. 5.180 and 5.158.

_:_'_ "_'_' (5.1H4)

It can bt _ i;|IOWlI_ d[t_'l: ,¢I0111{" [,l'diOUS illg_,bra, that

20J
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1 i

•(t,)"(t')"o _,, -_,, o

C5.188)

o o(c"," o o (_T,_'

C,,: i+z¥_: _ : , z, .....
and
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b _ = C" " "..........i _ + Lkr'"._.),,2_.m_j_" 17.

+{[(_:')'I'+s(c-,)"(c-,)"](_,,)"
+,[ (c-,)"?,,.(c-')"_,,](c'y%,. ,,.,,,o
+{a[(c-')'I_-(c-T(c-,)-}%,%,
+:I):[_;-(c-')"%,--'""

whol'e tile components [C"I] ij are defined in E(1. 5 159 and D3 is defilled

by Eq. 5. 185. Therefore,

is defined in terms of sij
" ' _ij and _ij by. Eqs. 5.175, 5.158, 5.177, 5.185,

5.187, 5.188, 5.159, and 5.190.

5.3.2.3 "Elastic" Part of the Constitutive Relations for Plane

Stress and Finite Strains

Consider Eq. 3.31; namely,

(5,1911

o

where s_ is tile co-rotational rate of the Kirclfl%off stress s_ of sublayer

s, s_ is tJlb fourth order "elasticity tensor", considered here to be the

s_e for earl, sublayer s z

i
s (5.192)

•ind _u tilt, "elat:lie" t_art ' of the l:,lte-of-defol:lllatioll ti,nsolt. EXl*_'t,s,,;ion

5.1_12 will bt, Illadl, ext, l iuit in tt,l_lll;l O[ tim l.:Olllpollellt.}; ill tho |n'o,4ollt

con|'illtlld I t 011 o |" t ht, body- t't xed COllVt_cted cotu'd i Ihl t i' ,,.i£l.it,l,nl:
o

: _--,,_- 4 x (5.t9._)
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m E _ I.. .T. I( (5.194)

Hence, OP.o obtains

_,T : E... (s.1961

For plane-stress conditions of an isotropic material, the classical plane-

stress elasticity relations are generalized to finite strains and rotations

as follows :

s

,_, F-'"(':D')'. (5.199)

"¢' E" (':D')I= (5.2oo)

where the mixed components of the fourth order elasticity tensor E are:

i.'l 22.
E,J.t---- E : ' (5.201)"" (i- _")
E",, E",, _Eo El',= : O- P;)" _ (5.2o_)

E i_, - --_-ll(5.203)
'' " E _' -- Ill _ = E_ "E - B-o)L,,,L iz - i',"_- it 12"
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'l'h_ phyt_ical conlponuntt_* of a fourth ordor tonnc_r _ro#

V .... I E

|h'}lleO s

('t')'''°'_c - ......... E:"--E"

(5.210)

_z

As dufinud by Tt'uesdell [37].
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.IK in Eq_1. 5.197-5.200"a,:_I, inde,_d, physical componentf_Th_-_ eolBponents EjL

and, therefore, E and V are Young'_ modulus and pol_Ison'_ ratio, ro_I,_C-

tlvf_ly, as measured from (_xptlrlmentn.

D_xprossions 5.197-5._00 are written ,Illterms1 of th,_ co-rotatiol%_]l

Kirchhoff strc_ss rate and the rate-of-deformation tensor, both quantith_s

associated with the _resent configuration. Since the pro,sent finite

ol_ent analysis is formulated in terms of a reference configuration, one

has to express Eqs. 5.197-5.200 in terms of the 2nd Piola-Kirchhoff stress

and the Green strain.

Before doing this, an important point will be mentioned. In Section

3, Eq. 3.32, the following additive dec_nposition of the rate-of-defomation

tensor _ was assumed:

From Eq. 2.182, o=_. _ __.
(5.212)

Hence, one can express the add£tiv_ decomposition of the rate-of-deforma-

tion tensor _ in terms of the material zate of the Green strain tensor

y as follows:

'" . ] (5.2131

If one wishes, one may define the "elastic" Green strain rate as.

I _ _N T. _ . 15.214)H u n n _L

and hhe "plastic" Green strain rate as _.

$ _ m T. $ P. (5.215}
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Thort._foro, from Eq. 5.213t

the Green strain material rate y can be decomposed, as well as D, into

additive elastic and plastic parts.

Since this wau shown to be true in the absolute tensor notation, it

is true for any coordinate s_stem. In particular, for the body-fixed

convected coordinate system one obtains:

& X

(5.217)

= S _ S

From Eq. 2.175.

_/_j= _)=_T (s.22o)

Therefore,

% '( ,(_,j), <_._.,
or, from Eq. 2.188:

D,I-=(c-')__ ,_._.,
H_ncu,

$ Z $ :r P (5. 223)_._=_,):(_:,)-(c"__'(%j'I'_-(c-,/,(_,_'_'
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whc_

(c')'Q;; . (5.:_4)

m

Note, that the deformation gradient tensor F _ppearing in expresslon8

5.213, 5.214,and 5.215 is the total deformation gradient tensor that

measures the tota_..._ldeformation from the reference oonflguratlon to the

present oonflgur_tlon. Also, the Cauchy-Green deformation tensor

components (C'l)i& appearing in expressions 5.223, 5.224,and 5.225 are

the tota.___ldeformation tensor components. The decompositions

,_) '_ "_e"4" 6_p (5.226)

(5,227)

are exac__..__t.The first decomposition (Eq. 5.226} measures the "elastic"

and plastic deformation rates with respect to the differential length oE

the differential line element in the present configuration, while the

second measures it with respect to the referenue configuration differential

line element.

The basiu assumption is that the differential line element dS in

the present configuration can be decomposed into "elastic" and "plastic"

parts

Cas) • (5.228)

_S "--'(aS7 + 'L4'_:) _ (5.229,
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H(_ncn, the material rat_l of tho diffnri_ntlal line _lomont dS in thn

prescient e,_"_,iquration can also be d(_eomponod into nlastia and plN_filo

pilrtI_l

I)

g 85dt "

[

Div±ding this relation by the length of the differential llne element in

the _ configuration, one obtains the additive docomposit{on of the

rate-o_-deformation tensor (Eq. 5.226)_
Ul I

as' = aS aS _' (_..,-.)

Since the Green strain tensor compares lengths in the present'and

reference configurations

C =(aSS_ i +z'_ ° (u? (,.,-,(d,)" "
its materlal rate is_

\\ds / = cls ds ¢s.235)

Multiplying _q. 5.231 IF C i + 2T dS 2= = (-_) , one obtains:
dS-
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("de _cl_ ols _._ ds ds

r

_ whlah in _qglv_lont to:

= (; +
_" _1s ds _._1

Therefore, the additive decomposition of the rate-of-deformation tensor

into "elastic" and plastic partsS_ _ andS_p is equivalent to the additive

decomposition of the material rate (dS) of the differential line element

.p
dS in the present configuration into "elastic" _dSe) and plastic _dS )

parts, which are measured with respect to the total differential line

element dS in the present configuratio n. The additive decomposition of

•the material rate 7 of the Green strain tensor _ into "elas'hic ''_ e and
s'-

plastic _ parts is tanta,,ount to the additive decomposition of the

material rate (dS) of th_ differential line element (dS) in the present

configuration into "elastic" td_e) and plastic _dSp) parts, which are

measured with respect to differential line element ds in the reference

configuration.

Consider, for the moment, that the deformation in sublayer s is

totally elastic, then

= _ (s.240)
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t

_,_.._,,{E::(c-,)"(c'y-'s"(c-O"-'s"(c-')"}
.. +_O_,,){(a,,,ED[(c)1+E,,#-)0) zs_

"s"(c")"-'s"(c-,)"-'s" (c-'y]
%_{E/I(c")"(c")'_-'s''(c')''-"s"(c-')"]

(5.246)
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as defined in Eqs, 5.201-5.203, and the inverse of the right Cauchy-Green

deformation tensor [C'1)ij was defined in Eq. 5.159. Compare Eqs. 5.244-

5.246 with their "small strain" approximation:

= 9,i

to evaluate the errors incurred in such an approximation.

5.3.2.4 "Plastiu" Part of the Constlt_tive Relations for Plane

S_ress and Finita Strains

From Section 3, Eq. 3.33, the constitutive relations of the sth

sublayer is:

(5.253)

214

O0000003-TSE01



I

q'he first part of this relationship; namely,

o

_- _ L. K (S.25_)

was treated extensively in the previous subsection, and was expressed in

terms of the 2nd Piola-Kirchhoff stress components SsiJ and the material

rate of the Green strain tensor with components Yij in Eqs. 5.244-5.246.

In this subsection the second part of expression 5.254; namely, the term

will be studied.

From Eq. 3.47, the plastic rate-of-deformation tensor s_p of

sublayer s can be expressed as.

_T" = S£ ,S_:_ (5.258)

Hence, one can write Eq. 5.257 as

or, in the body-fixed convected coordinate system, in the present

configuration

For plane stress conditions, this equation becomes

6¢j ,.-'i E',t 't:_ _(_.__)s,_(t:_. ,_.,o,,
where_ as before,

iz E

i+ ") (s.2_2)
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oxprosslon 5.253 beaomess

i-0/

Using Eq. 2.270, and the conditions of plane-stress (Eq. 5.161)

_:_=Cj,_5l_ ,_._,_,

one obtains

S' - '-" - "S"
' _',=C,_'S_'-G,'S" +C,,'S'" ,'._',

'z, c,_'E'--c,,'S"+C,,'s" ".='"
216
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One call express Eqs. 5.283-5.286 in terms of the material rates of Sij

nnd 7i j by means of Eq. 2.188, which f_,_,these plane stress conditions

5_'=5_--5_--0 c__

(c-')".(c-')".c,,-c,,-o ,_._,,
becomes

and by mean_ of Eq. 2.353, which for the plane stress conditions (Eq. 5.287)

becomes:

,--- C,, . C,__
GSIz+*,,f'5",'s'(c")"c,, (c')"c.},_._,

•(__,4_'s"+"s"(c-')"c,,-'s"(c")"c,_}
+ ,'s"c,,)}
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(s.294)

+(:2_,_){'s".'s'_(c-')'_c,,-_5"(c")"c,,}
+_,,{(c-')'"('s"c..+'s"c,4}

'2'- 'g"c,,• ,g'"c:

+"_,,{(c-,)"("s"c,,,'s"c,,)}
+'- • 's" -')'" "s"¢"yc,,}"-"_'O_,_){'s" �¢c,,+
+_..{'s"+Co")'"(._"c,...s"c..)}

"_-'g=c,. +.g,.c,,

+%,{(c-,)'"(.s"c,.+.s"c,,)}
+_C_.,.){'s"+'s"¢-')"c,. (5.296)

+ 5"(:c")'_c,,}
. -_,,{'s"+(c-')'"('s"c,. c,,)}
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• . , _l _2_.
This results in a system of 4 coupled equations in 711 , 722, y1.2,

•e .Ii 22 and _12and _12. Solving for the 2nd Plola-Kirchof£ stress ra_ s S , S

in terms of the stressQs, strain rates, and strains, one finally obtains.
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wh_r_

E" E_ i1|1

, E II

" II

as previously defined in Eqs. 5.201-5.203. The right Cauchy-Green deforma-

tion tensor components Cij and their inverse (c-l) ij are defined by Eqs.
5.158 and 5.159.

5.3.2.5 Incremental Procedure for the Evaluation of Stresses

In the following, the procedure employed to determine the stress

components at any integration point in _e volume integrals necessary for

the finite element a_alysis, is described. In the previous subsection

this procedure was described for the case in which differehtial changes

in strains and stresses occur. In the present case, however, those rules

are applied directly for finite incremental rather than differential

changes. Hence, attention must be given to computational difficulties

which might, therefore, arise. This matter will be discussed further,

presently.

Let it be assumed that at time (t - At), all stresses, strains, and

displacements are known at all shell locations of interest. Further, let

it be assumed that the displacement increments dql and strain increments

ATi j from time (t - At) to time t have been calculated. In order to

integrate the differential expressions 5.297-5.299, a "mixed rectangle

rule" Which uses the Cauchy-Green deformation tensor components (c'l) ij

and Cij computed at time t, and the stress tensor components ssiJ computed

at time t - At is employed. The trapezoidal rule would be ideally suited

for this integration, since it entails a much lower truncation error than

the integration method used. However, as it is evident from Eqs. 5.297-5.299,
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that thm system to be integrated has many terms (many more than in the small

strain approximation of the constltutivo equations) and it is highly

_oupl(_d. In order to apply the trapezoidal rule (as previously done in

Sectlon 4 for the curved beam equation), this system of throe co_plod

equations would have to bQ solved in ter_s of the stress increments

i ASS II, AsS 22, and Ass 12, For the present analysis, these equations are

expressed in incremental form by replacing:

g 5 a's" " A's"I S u S _L= s_Iz -------(5.300)

in Eqs. 5. 297-5. 299.

It is convenient in the computational process for determining the

stress components (SsiJ)t at bime t to perform an initial examination

by forming a trial value of the stress (overscript T) by assuming that

the stress increment arises from wholly-"elastic" behavior:
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A"g'":A'_,,{:---'(,._9CC")_CC")t'-'_"--<-.<CC")_-""<"..,..(c")7}

-- gl(ll . it

(5.ao7)

+_._:.{H._(c-,):'(c-,)_-_" rc-,v.-.._,.(c-,_,,
It should be noted that the symmetry of these expressions is fully

exploited in the computer implementation of the analysis.

Next, a test is performed to determine whether or not the (s_iJ)

are _ithin the "elastic" region bo_%ded by the loading function (s)t

defined by Eqs. 5.175, 5.177, 5.185, and 5.190, Thus, one forms a trial

(T) value of the loading function (s_) t of the s_t/%sublayer at time t.

(4:_-('_D_-[C'_X-J_ <_._o_>
where
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T I �[(c,,)_('.{"),+(c,D,('_I"),]4(c,,5_(.s')_
+[3[(c,,)_l_-(c,.b,(c,,)_l('g"),('_")_ ,o._oo,

k d A.k.,
(S,3lO)

_)_- E(c");_¥,,]'+[(c-');"z_-_,,]=
+{[(c-');_]_+sCc-');(c-')'q__(aY,.5"

+z[(c-$;_,,+(c-,);"a_,,](c-,)_:-_Y,,. ,_._,

+{_[(c-,)_']:- (c-,)}(c-')_"}a-b,,_,.

+C_)P_[C_)_,*(c)__,,.Co"):=A'6:,(O);'Az_,.]
(5.312)

o..t It o o o.t I&{_)_),={c ), A_,,+(_"),?_,, * (c)_:AZ'_,.
In these expressions:

sT _ = static yield (KirchhoEf) stress of the sth sublayer
_t0 --

in an uniaxial test.

d,p = material strain rate _onstants

If (sl) t < O, the trial stress s_ate (sTiJ)t lies within the "elastic"

domain bounded by the loading £unctlon (yield surface in stress space)
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i_ .......... .._ _,,,_.,._,_

1
_r it lio_l nxactly on it, Thornfor_, fo_: this timo st_p At, thnro ha,q

boon no plafltlo flow nnd the actual str[,_, inoromont_ A(sS lj) did, in

fact, ar|.so from wholly-elastic bohavlor as inltlnlly al]sumod in th_

|lolw.n, the act_a.I strnnn (ns_J) t is c,qunl to
trt.al _)x_Nlnation. the

trial strollSl th_s,

I£, on the contrary, (s_) t > O, the trial streas state (s_lJ) t flea

outside of the loading function (i.e., in the forbidden region). Thurofore,

the trial assumption that the entire strain increment is an elastic strain

increment is not valid. Plastic flow has occurred within this time step

and the actual stress state (SsiJ)t must lie on the loading
function

(s_) t = O. Then the calculation proceeds as follows. As shown in

expressions 5.221 and 5.239, the total strain rate _k£ can be decomposed

exactly into elastic and plastic components for each sublayer s:

__ _ (5.314)

From expressions 5.297-299, one may see at once that the stress rate

s_i3" can be decomposed into two parts, c _e dependent on the tota_____lstrain

rates Yk% and another part dependent on the plastic strain rate s_%

which is:

S=,,r .._S¢,LC_ _

the stress (SsiJ)t_At at the previous time increment t -
Since At satisfied

the loading function condition

t Eq. 5.315 will be integrated during a finite time increment At by taking

the stresses SsiJ and strains (C-l) ij

i , Cij to be
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(c-'yJ.(c")_ '_'_'"
Cti : (C_j)t (°""'

Therefore, on_ obtainu the following eXp_Ol_aion £0= the aotual atro_o

incromont AlssiJ), SgtJ
m |. m , ,, . ii i i

(5.320)L

due _¢ due +o

A'Y_j A sy_
where

The actual stress at time t is

-_(,,_,_),-_(,_,)t3es'_),.,,-(c-.)_J's'}_"""'•,L '

The parameter A(B_ *) will be obtained from the solution Of a second

degree polynomial in _(sl*). This second degree polynomial is obtained

from th_ condition that the actual stresses (SsiJ) t at time t must

satisfy th_ loading function (s_) t = O. This condition _.nsures that the

stress (SsiJ) t at timu t is, indeed, located exactly on the yield surface.

Expressing this mathematically:
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�{[(c,,_j'+.._(c,,_,(_,,_!_[('s'0Z

+{3[(c,,_,l'-(c,,],(c,a,_(,s"),(,s'%
- [('zb,]"

where (STY) is obtainea _rom Bq. 5,310. Substituting Eq. 5.322 intout

Bq. 5.323 and solving fez A(B_ *) one obtains the physically valid value_

_5-_ G cs324,(,x,)- ...... , _.A. B*-_F'6'r:-A'_"
where z

* {_[(c,aZ-(c,,>_(c,,>,_('m")('_-)
--[(c,,>j(,_")_(,_"),-[(c.),]'(,_"),('_")
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T'

Tho coo£_Iclont C wa_ already di_playod An _q_. 5.308-5.312. Tho foll_wlng

p roqulromont8 must bo _ti_fiod8

During the operation of the solution process for intense loadlng

problems, instances of large strain increments may occur which lead to

an imaginary value of sA*. A subincremental procedure to circumvent

this difficulty as developed by Hufflngton [165] is employed. The basic

time increment At, is divided into a number, say L, of equal sublncrements;

the size of the subincrements is chosen to be sufficiently smal _ so that

a positive real value of _sA, for each subincrement can be derived

successively, as follows. The value of the strain increments _7i j during

the time interval At are also divided into L equal parts, _7ij/L. It is

assumed that during each subincrement of length dt/L this change in strain

is approximately correct. Then, by employing the previously mentioned

procedure, a valid value for _sA* along with stress increments d(Ss ij) are

calculated for each subinterval, and in the meanwhile, the stresses and

plastic strains are kept updated. The process is continued until either

(a) the information needed at time t is calculated or (b) a complex or

negative AsA * is encountered. In the latter case, the process is repeated

from time (t - At) using a larger value of L. If the stresses at time t

can be derived successfully, the solution procedure continues with L

henceforth set to unity _ntil an imaginary or negative AsA * is again

encountered.
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_I'_¢,",P]'ON G

llOVl,:lh%llNU I,:QIIATTONII AND H(H,IIq'TtIN PROt I,,DIII,II,,,,

_!__A...J:!F:r?dn-'!J:,!:P_I_
'Ill Hit n 'inv,_;t I.qat |(_lI, lit |:onl:iol) :|,n IN_t'd',,ct,t;t-od {:o Illlc_thodl'l for ,:lll,:i:lyI':lllq

¢l._ljl]ll!.}_ ',_tl:l)_!J.UJJ/i[:l. l"vnpt_rl;u,, with p'rino.'ipa] atl_,l_l"ion dew'_tod to t'h,, .t'ri]l_.,.!.10_;_

1"esl_onlleS o|: S[.I'UCtLII'o_I whl.¢:h arc, sub'joctod to trans._eut t,x't-_rnal ]oadz_ such

as t|loS_'arit_inq from gunts, blast, Impact, e.te. l.:xpllc.it]yexcluded from

consideration is the "short time" or "early time" ret_ponso which is often

called "material r'esponse", and which pertains to the nature, prepaqat.ion,

al_d effects of stress waves in tile material as a result of _evere impact or

impulsive loads app1_od to the structure; rouqhly t.he tlme span of interest

_or this type of respollSe is of tile order of from I to i00 microseconds.

Only the "late time" response which is usually termed "structural response"

(in contrast wihl_ '%natorial response") is discussed here; such responses

involw: times of interest (:xtendh_g from time z_ro to 1 millisecond or per-

haps to several hl_,dred milliseconds; this type of res_xgnse I_rtains to

the trallsient bending and/or st retqhing behavior of overall structures or

of structural comp01_ents such as beams, rings, plates, and shells.

Furthermore, principal int0rest ill this study centers u_x)n transient

structural responses involving finite strains including large rotations

and deflections, as well as path-deI_ndent and time-dependent elastic-

plastic material behavior. Sought is information oli both the _k transient

responses (deflections and strains, with primary interest ell stra.lns)

together with tile time of occurrence of that po.akkand tile permanent deforma-

tioll eol%dltion of the structure aft or subsidence of the externally-app].led

tral_sient loadil_q.

Ill thi_; s[,etiou, the flni.tu ulun_:nt equatlonl_ t_f 111oi:1o11are del'Ived

from a variat|ona] statement cenz;istilm of the PY1.nc_ph, of Vlrtual Wo;k

and D'A]t,II_Dt, Ft'r; Pr]nclph,. The remlltJn(] _,qtlationH can be ._,_lved in thrt,t_

wayt_: (a) the peru vectcn" form (characttur.tstlt; of exl,lictt t_olutton by

lUt'thodH l ] k,' tilt, Ct,lltral-d| florence opel'ator) , (b) tilt, I't_U,_It,lllt ;;t i fflle,q,H,
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and (_:) tha tanqent stiffness forml those lant two formn are often unod

with Impllelt operators which _xhlbit bettor stabillty prop_rtli_s thfln

do _Mpllcit o_]rators.

Per the transient, path-dependent, ti_,-do}_ndont problems of in-

terest in the present work, the first two forms are used, slnco they

are more offleiont computatlonally. For the "pure vector" form of the

equations of motion, the so-called "u_Iconvontloral" formulation is the best

to usol however, for th_ "_onstant stlffnes_" form of the equations of

motion, the resulting ec_latlons are developed in two formsz (a) the "conven-

tional" form and (b) the "modified unconventional" form. The new "modified

unconventional" formulation is shown to be applicable for _ kind of ma-

terial behavior, while the usua_ "aonventional" formulation is valid only

for small-strain, elastic-plastic materials. In addition, it is shown that

the "modified uncouventioml formulation" is more efficient and economical

(although St takes more computer storage) than is the conventional formu-

lation.

A brief review is made of different timewise flnite-difference opera-

tors suitable for the problem being investigated. Also, the solution of

the governing equations of motion is discussed.

6.2 Equations of MotioD

6.2.1 Variational Formulation

In %he present investigation, the assumed-dlsplacement version of the

finite element n_ethod was used. The finlte-element method can be developed

most systematically and conveniently ..thin the framework of variational

principles as shown, for example, by Plan and Tong [166]. Variational

principles, as expressions of physical laws, have the following advantagest

(a) they are statements about a system as a whole, rather than the parts

that it _omprises, (b) since they refer to the uxtremum of a scalar, they

are invarlant, and n_uy bc used to derive tllc si_uelal forms appropriate to

any particular description, (c) they imply bounda=¥ eondltions as well as

d[fferentlal equations, (d) they automatically Include thb effects of con-

straints, without requiring that the corresl_3ndlng reactions be known,
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I

I
(_,) t:h_,y haw, l_tun:'t,_ftc, vnlut, G_r _luqq,,_f:ln,l _l_norali_:atlon:_, (F) th_W nrt_

t i only.

I CoI_II'Ii|_,_r_Icod eitlllUlllit%O.qlI_]_br :InllllltldL_rthe a¢_.t_.on of bo,.lyfor_4,1l,
e.xtol'll_ll] y-app] 'h,d l_ur£a(_.t, t:_'at_i:Jnn_l,azl(lwl th arbitrary de format ion {_Iilr-

dlt].ons _c_n_lII1l'_Iltwi.th the, pr_:_:ribod (IOCIIIIO.tl?._C!bO_l_]aYy coIldltlonI-l, l_t

I t'hI.:__qul lJbr UIllllc.olli_|._Turat:[ollbe sub jettled to all a.i:bitrary _iIldJIldo|_ondoIlt

st,t of Infln.lt_slIllalv.li:tua) dlsl_]acom_nts _u" w_thout vio]atlncl the ueometric

I boundary conditions. The displaoen_nt variations _u are _al]od virtual be-

cause they need not be actual physical displacements u which would occur

under tile given loads, but merely hypothetloal, kinematioal]y possible

d_splacements. The Principle of Virtual Work (page 595 of [7], 237 of

[50], [167] and [168]) states that tlle virtual work, _SW, done by the external

forces (body forces and surface traotions), is equal to the virtual work,

<_U, of tile internal stresseS, i.e.,

with

Se.omi:_qly first formulated for a continaum by Plola in lS4_I [169].
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or

In this equation, S is the sacond Plola-Kirchhoff stress tensor, intro-

duced in Subscctlon 2.5.3, B is the body-force vector (inertia, gravlta-

tlonal, magnetic, etc.) per unit mass, t is the externally-applied surface

traction vector, introduced in Subsec=ion 2.5, Eq. 2,209, _ is the Green

(Lagrangian) strain tensor, introduced in Subsection 2.4.2.3, _ is the

displacement vector introduced in Subsection 2.4, Eq. 2.76, and 0° is the

mass density in the reference configuration, introduced in Subsection 2.5.2,

Eq. 2.218. In the Eqs. 6.1 - 6.6 only displacement vaziations _ are per-

mitted, and for that reason this principle also goes by the name "Principle

of Virtual Displacements". By dividing through by _t, one obtains an alterna-

tive statement of the Principle of Virtual Work called the "Principle of

Virtual Velocities", the only advantage of this formulation is that the

virtual velocities _u/_t can be considered as arbitrary finite quantities,

without invoking the imprecise notion of "infinitesimal" virtual displace-

ments.

In the present formulation, a11pertinent quantities used in the final

form of the analysis are described consistently with respect to the fixed

reference configuration. The integrations extend over the entire volume

V in the reference configuration of the continuum which is bounded by the
O

surface (area) A in the reference configuration. The boundary surface A
O O

may be divided into a prescribed surface-tractlon boundary Ave, and a pre-
scribed-displacement boundary A .

O--

, U

AS p_eviously indicated, one must always bear in mind that the choice of

the reference configuration is arbitr_ [22, page 79], that the reference

configuration is merely some shape that the body has occupied or might
occupy. If the last configuration tha% the body has occupied is employed

as the reference configuration, the correspohdlng description is sometimes

called "updated Lagranglan"; while if a fixed reference configuration is

employed, the description is sometimes called "total Lagrangian". Xn the

present treatment, a fi_xed reference configuration is going to be used for
the description of the motion.
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By omployln); the +'mWOl+t of 1_tAlomborl:'_ Prln_tplt,, thL_ bndy force

vector B tony be r_,gsn+d_d ns eon_l_t'hl); of D'A1rmfl_erl_lnt;rrln rot'co vect1_r
tL

(- u) and or'her body fore,m £(grav:ltntlonn], ma_otie, etc.). Thu_l, one

may write:

where v is the velocity vector, defined in Eq. 2.79, and (') denotes the

material rate. Observe that the u ap_x:aring in the acceleration u are no__t

subject to variation since this pertains to the existing forc_.__ee.

The Green (Lagrangian) strain tensor _ can be expressed as a function

of the deformation gradient tensor _, from Eq. 2.133, as

or, in the body-fixed convected coordinate system (F,q. 2.139) the tensor

components are

where ( ) denotes eovariant differentiation with respect to the con-

,i _i
veered coordinates using the metric tensor gi_ of the reference configu-

ration (Eqs. 2.53 and 2.55). Then, the variation in the strain tensor _ may

be expressed as

or

.k is the K_'onecker delta defined by Eq. 2.8.
where _i

This basic variational formulation, the PrinCilqe of Virtual Work,

holds Independently of the naterial consfitut_ve equations and the |_ossible

existence of potontJ;,l functions for the external [orc_,s. Also, it em-

bodies the equation of t?quilibl:ium of the continuum.
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whore "dlv" stnnds for the divergence operator with respect to the refer-

once configuration. This equation has the following components in the

body-fixed convectQd coordinate systeml

and the prescribed surface traction boundary condition on A (Eq. 2,229,
%

2.246, 2,262) are

 .FT:7 <,.,o>
n; Csi+, <°.,,>

where n is the unit outward normal vector to the botmdary surface in the

reference conflguratlon_ and t is the pseudo-tractlon vector both defined

in Eq. 2.209.

5.2.2 Finite Element Formulation for the Assumed

Displacement Model

In the finite-element-analysis method, the entire domain of the con-

tinuum is subdivided into a finite number of regions called "finite

elements" or "discrete elements", _ach having a finite number of "nodes" as

control points. The behavior of the actual continuum which has an infinite

number of degrees of freedom is thereby described approximately in terms

of a finite number of degrees of freedom (DOF) at each of the finite number

of nodes. The generalized displacements within each finite element are

_xpressed in terms of (a) s_ich variables called "generalized degrees of

freedom" q which are deflned at the node points in conjunction with (b)

suitably-selected interpolation functions to describe the distribution

of each quantity throughout the interior of each finite element. Applying
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thi._lapproach within tlm fram,_work of the Prlnoiplo of Virtual Work and

D'Alembort'n Principle results in a fJnito-slz_nd system of sncond-(_rde_'

ordinary dlff_renti_l equatJonfl. The ._knowns in the equations are t|m

qenc_ra.llzod doqroes of freedom at each node of the complete assembled

I discrotized structure. (or continuum).

In the assumed-displacement-type of finite-element analysis, one

selects appropriate interpolation functions "anchored to" control-polnt

values which are the nodal generalized displacements. Let _t be assumed

that the continuum (or structure) being analyzed has been subdivided con-

ceptually into n finite elements. Then, one may write Eq. 6.1 as the stem

of the contributions from each of the finite elements as follows:

a

x (au)o:x (su)o <o,,,
where for any element e:

(_u)= (6,1el
r

:7 %
(%%_ 16.19)

%_)::f £o(-a+_)._a aV. <o:o,

In these equations, (re)e is the volume in the fixed reference configuration
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I

of the eth discrete el_m_nt, and (Ao_) e is the portion of the surfae_

arQa (Ao)c in the flx_d roforcnao configuration of clement c, over which

the surfac_ traction _ is prescribed. The summation _ extends over thn n

elements o£ the continuum.

For each element o, lot an assumed dlsplacomont £1old ui of the follow-

ing form be selected:

N_ j) is an appropriately assumed interpolation function expressed
where

in terms of convected coordinates _J of a generic point within the element

(a row vector is identified here by the symbol L _ ). Also, {_(t)} repre-

sents a column vector (symbol { }) of independent parameters which are a

function of time t only. Hence, it follows that the vector of nodal

generalized displacements {q} is defined in terms of the local coordinate

system of each element and can be obtained by stlbstituting the coordinates

of the nodal points into Eq. 6.22. Accordingly, one may write:

If one takes the same number of displacement parameters _(t) as the nodal

generalized displacements q(t), the transformation matrix [G] is a square

matrix. By inverting Eq. 6.23 for {_(t)} and then substituting into Eq. 6.22,

one has

where

i (6.25)

*One should not confuse the interpolation function _i(_ I) with the earlier

symbol used to denote the loading function (yield surface).
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B_caun_ Ni and c,are a priori chosen functions sxprnnsod in the E,j co-

ordinates only, they are not subjooted to variatian; bench

Also, the tlmo dorlvatlvns of gq. 6.2.4 b_omos

By using Eqs. 6.9 and 6.24, one may obtain the corresponding strain YiJ

at any point in the element e as a function of position _k and the nodal

generalized displacements {q} as follows ;

It follows that

where Di4,_ D£i , and D 4_are the appropriate differential (gradient) opera-

uors which may be expressed symbolically in the form:

Here the three-dimensional continuum equations are utilized for clarity_

instead of the more complicated strain-dlsplacement equations for shells.

23"/

O0000003-TSFIO



Employing Eqs. 6.24 through 6.32, Eqs. 6.17, 6.19, and 6.21 bncom_I

0 (6.33)

where s_script "b" is u_ed to signify that the {¢i } are ewDmted along
the element bo_daries.

Equation 6.33 is a convenient finite-element form of the Principle

of Virtual Work and D'Alembert's Principle from which one can obtain the

"equations of motion".

6.2.3 Computation.t1 Strategies

One can divide the numerical schemes for the solution of initial

boundary-value problems into three categories which differ _rimarily in

the preconditioning of the numerical solution, as pointed out by Argyrls

[170]. According to this criterion, one distinguishes between:

(1) The pure vector• approach, describing the kinematic motion by

state vectors without resorting to gradient matrices. This

approach is characteristic of explicit forward strategies,

llke the central difference time operator.

(il) The constant stiffness approach describes the solution path

in ter_s of gradient matrices whluh remain constant. This

is characteristic of combined explicit-implicit solution

sOhemes, like the Houbolt implicit time operator with linear

extrapolation of the nonlinear terms due to plasticity or

geome try.

(ill) The variable stiffness app.'each (tangential stiffness method)
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I

do_icribos the solution path in torlntlof qrad.[nnt I,atri_ns which

arn u/_datod w:[th the t,volution of the _ulutlon, 'rhJ.flis char-

Netor_stip, of f.lly impllait ;ltratogion, like tho _F]o Of an im_

p]leit tJ_w1 el,or,trot w_th Nowton-Raphson Itorat:lon of thn non _

linoar.,terrace.

The _uro vo¢,tor _pproac|| ,_ trad[tion_$1y unod ,|,neonn(_ati_n w lth

f'Lnlt'.udlfforonoo oxpl_o._.t _tllodo [_L_, 17), 17_, for (+x(Imp]o], A

system ntlffnoss mntrlx ],n never e.onst_-uet0d, and the equations o£ motion

are o_i)_osLled simply in terms of vector: equat|ons which read,

--• ,o.:,,,
UNKNOWN _KNOWN "

whore [HI is tho global mass matrix, {F} represents th_ generalized nodal

load vector accounting for externally-applio_ distributed or concentrated

loads and body forces, and {I} Is a vector of internal forces (elastic

and p_astIc) and nonlinear geomet/ic effects. The pure vector approach

which results from the use of the explicit time-marching scheme has strict

stability limitations and very restrictive convergence behavior for the

iterative solution of nonlinear structural equilibrlum equations. There-

fore, the range of application is restricted to small increments of time.

It has the advantage that, for a given time step that provides stability

and convergence, it presents the smallest computational effort of all of

the computational techniques being reviewed. In some kinds of analyses

(notably in the analysis of short-term shocks and wave propagation

prgblems in which the higher frequencies play a significant role), it

is the most effective technique.

The constant stiffness approach was the natural computational procedure

tO use at the time that finite elements wo_e introduced into nonlinear

analysis [23 and 173, for example]. Just as in linear finite element

analysis, a system gradient matrix called the stiffness matrix [K] remains

constant (hence the name "constant stiffness") during the whole solution

procedure. The effects of nonllhearities are treated as _ forces_

therefore, this method is ales called the "pseudo force method". These
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pnoudn fatten nr_. funa_tnnn of tht_ dinplacnmen_n {q} and nra placnd an thv

rlght-hand aide (_h_ "known" aide) of thn oquatl.onn of oquil.lbrlum, Th_

ban_-o oqua_lon_ of oqutlibrlum, an obtalnod by thln toothed, may bo nm_

pt'onnodma_homa_leally an;

UhKINOWN _KNOWN ''_.............. ([_''_)

wlmr(,{FNL} I._a pneudo-forco veer.o:a_i01n_ _rom nonllnoar qoomotric _]f=
q

fcctu and {F } is a pseudo-force vector stemming _rom plastic o_£o¢;ts.
p

Since th0 pm,,udo-forceD arc not known in advance, onu reuorts to elth_)r

an extrapolation of the pseudo f:rues from previous increments (in an in-

cremental procedure), or to an Iterative corr¢_ctlonof this implicit pre-

diction. The constant stiffness method, thus leads to a combined implicit-

explicit formulation of the equations of motion. One iterative scheme

that keeps the gradient matrices (the matrices on the left-hand side of

the equation) constant is the tmathodof successive approximations. How-

ever, this iteration scheme imposes restrictions on the amount of non-

linearities that the scheme can handle (if the structure stiffness becomes

larger than the original stiffness, then the method will not converge).

Also, the convergence rate is very slow. Further, self-correcting pro-

cedures can be utilized, as shown by Stri_klin [174]. Of course, the

Newton-Raphson meth@d can be utilized, but this will involve refaotoring

of the left-hand side of the equation.

Finally, the tangent stiffness approach [74 and 175, for example]

follows the concept of tangential linearization of the solution path by

introducing time variable system properties. The form of the inoremental

equations is"

k -- _r (6.36)

UNKNOWN KNOWN

where {f } is an unbalance load added to the right-hand side to satisfy
u

equillbriu_. Here [KT] is a tangent stiffness matrix that includes
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nonlinear q_Qmetrlc effnat_1 as wt_ll an olastio-plastiu effects. This pro_

endure has ber_n Unnd, for nxnmpln, by McNnmara nnd Marcel [175] who

nhaw that ]nrqnr tl,_l Inaro,_nt. can bn uflod by this mothad than w_th the.

provt-cJllfl onnn. Of eourflo, a O.onfl_dnrob_t_ aBlnlmt of aomputor timo is in-

volvod l,n tho oval_ntl.on of [K_1 and t|l,_ 1;nfnctorin(t ot'. thn loft-hand n.l.dn

_,(.'_ho o_:mnt:ton. In oonn,.mtion with an _meondt_onall? t_tab].o t_lmn

opo_at.or _md the Nowton_Rnph_on itoratlon, th_o noh|tion mt,1:hod p_ovtdon

the moat rol._,ablo e.omputatl.onal tnchn_quo _oI° ]ont_]te_m ronI_n_(, anal ynm_

with largo nonl.lnoa_itlos. TIao Nowtun-Raphson tochnlq_l(_ in vo_y often

modified %n order to reduce the ¢:omputatlonal u£'fo_t whereby the syst(_m

gradlonts are apdated only occa,:.Ionally. In th:Ls cauo, nowow}r, tho con-

verqonc[_ properties deteriorate (in the limit, wl%on the _,4itlal stlf_'ness

matrix remains _naltered, the constant s_iffnoss method is recovered).

Finally, one can summarlze the three uCh_mus, as done by Argy_is [170]

by expressing th_ reliability of the thre_ methods in terms of stability

and convergence Eestrict]ons of the underlying nonlinear tlme-marching

scheme and wh_re the comp,ltatlonal effort accounts fo_ the programming

effort as well as the n_merical cost of the solution of typical reference

problems:

Computational Stability Convergence Computatlonal

Procedure ProPerties Behavior : Effort

Pure Veetor Very restric- Very restric- Small

(Explicit tire tire+
Operators)

Constant Stiff- Not restric- RestrietIve Medium

hess (Implicit- tlve

Explicit)

Tangent Stiff- Not restric- Not restrictive Larg_

heSS (Implicit) tire

One can observe that the constant stiffness procedur_ t-,averts nonlinear

de-iations from the linear prediction into equivalent pseudo-loa_

+Numerical experiL_nCe, however, shows that when the _t i.s chosen small

enough to insure stability, convergence is also achieved.
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voctorn (nanllnnar cnrrnction), thnrnby _ombining thn n_mplicity _f thn

v_ct_r formulation with th_ rnliabillty of thn gradient methods. _'or the

pu_ponnn o_ the prnsnnt study, thn pure w3ct_r approach with the central-

difference expliclt t_mo operator and the oonfltant stlffnnsn approach with

th_ implicit Iloubolt tim_ op_rat_r aru used. Thesc_ two approaches haw_

b_,on _hooon (i) because of their Inhorrant numorlcal advantage (the _tlff-

nes[_ matrix is never for_d or used _n the vector approach, and it is

termed and factored only once in the constant stiffness approach) and (2)

slnc,_ the present study is concerned with the strain predictions of time-

dependent plasticity.

Since the present class of nonlinear elastlc-plastic transient struc-

tures exhibits strictly path-dependent responses, it is impossible to

guarantee the return to the true solution path by residual correction at

the end o£ the time increment without integration of the prior history.

Hence, one has either to use small increments of time (as is necessary

with the pure-vsctor approach and constant stiffness method) or to inte-

grate the nonlinear history of deformation within each time increment,

which will always involve numerical truncation errors. Motet #or, since

higher frequencies are more important in the strain response than in the

displacement response of the structure, it may be possible to follow the

displacement response with fairly large increments, but to follow the

strain response, smaller time increments are necessary.

6.2.3.1 Pure Vector Form

Observe that Eq. 6.33 may be written more compactly as follows [23]

for the so-called "itnconventlonal" formulation..

where the following are evaluated for each finite element_
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I

')e (G.4o)

Note that {p} mld [h] involve stress information, and that they are time

dependent:

fP}-{pc_>} ,_.,_,
[hi - [ act)] ,,.,_,

Since the element nodal generalized displacements {q) for different

elements are not completely independent, a transformation is required to

relate the element nodal displacements {q} to independent global (o_

common) nodal generalized displacements {q*} for the discrete-element

assemblage by

fq}- JJf ';
The quantity [ J] includes the effect of transferring from local

coordinates from each individual element to global reference coordinates

for the system as a whole.

Applying Eq. 6.44 to Eqs. 6.38-6.41 to describe the system in terms

of the independent global generalized displacements {q*}, one obtains..

L_p(r_'JI_'I,I_'i+r_'jI¢I-[_'I);o
(6.45)
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wh_ro

[h']- [j]" [hJ[j] ,o.,_,

Since the square matrix [hi is not a constant, and since bot.__±h{p} and

[h] involve nonlinear geometric effects as well as plastic effects, there

is no practical reason to calculate the matrix [h] explicitly in the

analysis, and this is not done. It is more convenient to express

LD _ _jja{_1-L_'aJE_alf}:X ,o._o,
and hence

( o)e
Therefore, Eqs. 6.37 and 6.4_ 5ecome:
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Pt:rformLnB the t_ummatlon fn Eq0 L_,_3_ tnvoktn_; the ;_pproprblto o.]om_nt

funot I.o1_ gonoral.t zod dl_pJ aaomont eompat tht It I:I o_1, and l_ocaum, the {'&l_ }

tlrt_ :lndt,pondont and arbttrary, tim. fol.lowfng vectors" nquatlont_ of mt_tlon

nro ohtainod for the ec_mpleto a_mt, mbled d lnc'r_t:tzod ntructure:
i _ I •_ i

! - -{z?,,,,,,,,.iF}l,, ,o_,
where [_I]:istl_eglobal mass matrix, {I} Is a vector of internal foroes

assoe.iated with llnuar and nonlinear terms of the strain displacement

relations as well as elastic and plastic foroesl and {F} represents the

generalized load vector accounting for externally-applied distributed or

concentrated loads. Xn terms of element information, [M], {X] and {F}

may be expressed as.

OQOIb °

(6.56)

: (6.571
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6.2.3.2 Constant Stiffness Form

Two types of constant stiffness formulations will be presented.

The first type is the "conventional" pseudo force formulation, which may

be obtained by replacing the stress tensor Sij in Eq. 6.33 by the follow-

ing expression in terms of the strains 7k E

where Eijk_ consists of elastic constants and y_ represents the components

of the total plastic strain (or other given initial strains such as thermal

strain, etc.). Of course, it should be evident that this formulation is

valid only for infinitesimal strains, since for finite strains Ei3k£" cannot

be a constantl but it will depend on the total strain (both _he elastic

and plastic parts). For finite strains the decomposition of the total Green

strain int_ elastic and plastic parts is not a useful concept, since the Green

"elastic" strain will not have the usual meaning of elastic strains, but

will be a quantity affected by the total deformation°

By means of the strain-displacement equations (6.28)_ one can

express Eq. 6.59 as:

+Since experiments on polycrystals with a cubic c_ystal structure confirm
that the constant elastic modulus relates the Kirchhoff stress and the

logarithmic strain, and not the 2nd Piola-Kirchhoff stress and the Green

(Lagrangian) strain when finite strains are present (see Lqs. 4.167 and
5.297-5. 299.%.
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Performing the summation invoking interelcment generalized displacement

compatibility, and because the variation [_q*] ean be independent and

arbitrary, the £ollowin_j conventional equilibrium equation, which is valid

onlz, for small strains is obtained:

E_J{_,'J+_KJ{¢]-tr_+tq"_7_t*IF,} ,_._,
247

00000003-TSG06



whore [M] is th_ global mass matrl_, [K] is the u_ual small_stroln llnnar-

olastlc global (aonstant) ntlffnoss matrix, {F} is the g_nernli_d load

Vector ropres_ntlng externally applied dlstributod or concentrated lo_ds,

IFNL} represents a pseudo load vector arising from the nonllnear tennn in

vectors due'to plastic (small) straln_i and are aosoalato_, respectively,

with the _inonr and nonllnoar terms of the strain-displacement equations.

Not only does this formulation have the drawback that Is applicable

only to small strains, but if an adequate description oE the structural

behavior requires onQ to employ nonlinear strain-displacement relations

(specially for finite rotations of beams, plates, and shells), it is

evident that the "conventional formulation" involves much more o_mputational

work than the "modified unconventional" formulation to be presented next.

The "unconventional" formulation of Eq. 6.55 is valid for small and

finlt______eestrains,for anykind of materlal. The reason for this is _%at

the "unconventional" formulation is an exact expression of the Principle

of Virtual Work. No assumptions whatsoever have been made in the

"unconventional" formulation about the constitutive equations. On the

other hand, the "conventional" formulation is valid only for the special

kind of material that obeys the constitutive equation given as Eq. 6.59,

which is not valid for finite strains of elastic-plastic materials.

However, the "unconventional" fQrmulation, as expressed by Eq. 6.55, has

stability and convergence problems, since the only gradient matrix (the

matrix on the left hand side of the equation) is the mass matrix. There-

fore, to be able to have stability and convergence properties similar to

the constant stiffness method, while at the same time preserving the useful

properties of the "unconventional" formulation, the small-strain linear-

elastic, constant-stlffness matrix [K] is added tO both sides of the Eq.

6.55 to obtain the following modified unconventional form of the equations

of motion_
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I

Observe that this oqnatlon i_] valid for finit_l ntr¢_in_], and for any l_ind

j of material, slncL1 no _onntitutivo asflumpt_onn havrJ b_on made. Dnfining

wher¢_ {VN_'} is _ pi_uud_-furee _%r_sing i.Tromfinite ntr,%_l%_lal_tlc-plastlc

b_havior as well as all (lln_a_ and nonlinear) terms of the ntrain-

dlsplaeument equations, one _an express Eq. 6.69 as.

This expression is called the "modified unconventional" form of the

equations of motion.

In the next subsection, this "modified unconventional" formulation

is to be used with implicit time operators, while the "unconventional"

formulation of _q. 6.55 is to be used with explicit time operators.

6.2.3.3 Tangent Stiffness Form

The tangent stiffness form of the equations of motion will be derived

here from the Principle of Virtual Work for completeness purposes, but

the reader is re/ninded that the tangent stiffness formulation is not

utilized in the present report for any computations or predictions.

The vector form of the equations of motion (Eq. 6.55 derived from

the Principle of Virtual Work) at time instants t and t-At may be

written, respectively, aF

Subtracting Eq. 6.72b from Eo _.72a, one obtains the following incremental

form of the equations of motion.
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Next, th_ increment of the internal force vector {_I} is treated as a

differential:

[w1{A{],o.,,,
Hence, one obtains the following "tangent stiffness" form of the equations

of motion:
i I

where the "unbalanced force" {fu} is due to the error implicit in Eq. 6.73

and consists of writing the residual equation for Eq. 6.55:

This error term consists of evaluating the terms at the stat_ bQfore the

current increment (if no errors had been introduced by previous increments

the error would be equal to zero). By including this residual load

correction in the equations of motion, one may obtain convergent solutions
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U_]iI1qtim_l incromonts that _r_ r_l_tivel¥ Inrge in eompazJflon with th_

_]oluti_n_] obtain_d without tho _orr_letlon.

P_'om Eqf_. _,37, 6.39, 6.40, ._nd 6.51e ono obtaills

and, slnuo, from Eq. 6.73

EA.'3--_ _°.-,
it follows that

-(_'_.

By means of the strain-displa=ement equations, 6.28, one tan write.

_'_ - L:_._+_k_{_o_}_4_I_{_}_o_,o.,,,
Placing Nq. 6.79 into Eq. 6.78, one obtalna the following tangent stiffness

for finite element "e"..
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16.'/9)

I It should be 0mphasized that this tangont stiffness matrix depends

[k_]

upon the current state of displacement {q} and stress. Also, comparing

Eqs. 6.79, 6.63, 6.76, and 6.70, it is _vldent that more aal0ulatlons are

involvsd in the formulation of ths tangsnt stiffness matrix than in the

formation of the internal forces for the modified unconventional and/or

for the unconventional formulations.

6.3 Finite Difference Operators

6.3.1 Linear Dynamic Systems

For the timewise numerical solution of undamped linear dynamic

structural problems, many finite-dlfference operators have been explored

to assess their attributes and shortcomings. Some schemes are stable no

matter how large the time increment At is chosen to be -- and hence are

termed "unconditionally stable"l others are unstable for _t larger than

some critical value -- and thus are te._med "conditionally stable". Some

introduce (unintentionally) artificial or false damping whereas others

do not exhibit this undesirable feature. All Of these methods, however,

usually* produce a phase-shi_t error in the predicted response, depending

upon the size of the finite _t used -- some schemes exhibit more phase-

shift error than others for a given /'t. A concise tabulation [177] of

*An exception, however, has been noted in Ref. 176 wherein the 3-point
centra]-di=ferenee formula was used t.o solve the one dimensional wave

equation. When At was chosen such that (At)/(Ax) = i, a solution w_ieh

was exact in both a_plitdde and phase was obtained. Second, the Gurtin

averaging operator with c = 0 exhibits no phase shift error but only with

one (much too large) value of At; false damping also is Present.
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I
som_ of thn fuatures of the morn commonly-usQd "vari_tios of thin mothod

I aro qiv_:nbo]ow,

FOI_ IINDAMP_D L_NEAR DYNAMIC SYSTEMS (MATII,MODESt)

I
h11owablo At

_Or Condition- Phaso

I ally Stable Lh%oon4£t4,on- li'almo Shi_t
Motl_od Mothod @lly Stablo __ 9rro___.rr
II I I I i ii i i i im , ii,

I _XPLICITContral Diff. _t < _ No No Yo_
3 Pt. --(_max

3rd Order At _ _/_max No Yes Yos
Rungs Kutta

4U_ Order At ! 2/_/__ax'' No Yos Yes
Rungs Kutta

1 de Vog_laere (I) At < 2_/w No Yes Yes
i - --max

IMPLICIT

I Houbolt --- Yes "as Yes

+Newmark 8
"I

! ... Yes NO YeS
y=l_8= 4

1 0<8<I At < 2 2 No No Yes
Y " 2' -- [_max(1''48)l/ ]

I Gurtin Averaging --- Yes Yes Yes

Wilson Averaging --- Yes Y_s Yes

t doVogel ere(zz> <or t No No Yes

i _ore _max represents the largest natural f_equ_ncy of th_ math, model.+For 8 = O, this reduces to the explicit 3 pt. CD operator.
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The selection of a suitable time increment si_ At is

_|avern_d by (n) th_ stability criterion -_ the _ndltiQn under which th_

eKp_nnntial error qr_wth will b_ b_und_d alld (b) the conv_rqonen r_qu{re-

m_nt -_ the cl_n_nnstl Qf £h¢) t¢_mparaldlserntlZatlnn _!utlon to th_

_gaet: dlffernnt_al nquatlon t_ol%_tlon nn the tlmnwi_] dls_roti_.ati_i m_3T_h

d(_cr.0ai_en. Th_ m_,thomnt_0nl _o%_ndatlonn fen t11_ qu[_T_ttons of ¢_onvqrq[nc_

t/_ Solutions _Or _Inlto _t) is often nuglo_t,_d.

AS p_'_viou_ly defined, a £1aito-diffuronce schom_ is said to be

.conver_g_nt, i£ all values of the flnitu-dif£erence solution approach the

solution o_ the diE£erential equation o_ the continuum as the finitt_

difference mesh size approaches zuro, The _inite-dif£_runco soh0me is

said to be consistent if the finite-dlff0r_nce _ approaches the

differential _ as the mesh slz0 approaches zero. Although consis-

tency might seem to b_ automatic_lly satisfied by the Taylor series method

of developihg th_ £inite-dlffezencs seheme, in fact it is not. The

property of consistency is a subtle concept, since it is not concerned

with the limit behavior of the whole solution of the differential equation

but merely with the limit behavioE of the individual terms (differentials)

of the squat ion. For example, a flnite-difference simulation of a

differential equation may have consistent finite differences but not be

convergent.

Lax [178] has stated an ,_quivalence theorem that has fundamental

importance for linear systems of equations. This equivalence theorem,

states that, for a cons!st_nt finite-difference scheme, stability is a

necessary and sufficient condition for convergence.

Lax equivalence theorem _ consistency + stability = convergence

(for linear systems) J

Although early investigators like o'Brien, Hyman, and Kaplan I179] as well

as Eddy [180] have defined stability in terms of the growth or decay of

roundoff errors, it is now genarally a_cepted that the definition of Lax

and Richtmyer [178] is much to b_ preferred. This more general definition
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I
_f ntability r_q_liref_ a hsund,_d nxt_,nt I.o which !__ny_ml,(_r|¢_nt_f l--h_initiali

'_ darn _i_ll|*_ ;mll)].Ifb_dill t|Ig:_llU[_rif2_l],pro_ndur_ (by aD_v.killd of nrr_r,

J.I_h|_l_nC,l _r_llC.'iltiOlleT'r_i_hll wnll _%flclrnfIIlnrr_r[_).

In l_,_t d(_!Tl.nnd with unlw_rnn._ i_l-_p_l.:i,e,_b$1$ty, _hn F_tilbl].:l.ty o_:!,l'_rl-_n

,:_]_]oo,i.at, ud w,l,_h tho llam(_, of yon N_)l_nlanl| :bt_ tlla_ nt_d)i_].ity I_ to b(, d_tor _.

surJ,u[) (_xl-)anL_Iono£ tho uulution to a modol c,qu(]tion, I,ax and Ri(:htmyu_,'

[17B] h'avu d.omonst_ated that _hls is _:_u_£1clunt f_r stability £or a !_l,ea

system with constant cou£ficiunts, l_ichtmyo_ [18_] po_nt_, out that the

concept of sta_llty depends on the choice of the no_ used to messuro

stability, and that the us_ o_ [.'o_rlur analysis us in the yon Nut, ann

m_thod implies a root moan square noz_, which is somewhat arbitrary.

One can readll F construc_ m-point forward-dlfferonce, c_ntral-

dlffe_'sncs, or backward-difference operators by _aylor seri_s representa-

tion of the acceleration _ and/or v_locities 4 in terms of displacement

qm information at m instants in time; the truncation erro_ of each approxl-

mation thus selected may be identified, and depends upon the number (m,

such as 1,2,3,...etc.) of the time instants used. It can also be shown

that l (1) all forward-difference operators are unconditionally unstable,

(2) all central dlf_erence operators a;_ u_ndltlonally stable (a critical

_t exists beyond which erro _ blo:;up will cccur), an4 (3) all backward

difference operators are unc<u_itionally stc.ble. Krieg [183] h_s shown

that there can be no explicit second order _._ethodwhich is unconditionally

stable, and_ in addition, no explicit second orde_ i_ethOd can have a

critical time step larger % an that of the central difference time operator.

Merino etal. [18] have shown that the central difference method is the

optimal method within the class of explicit n-step predictor methods with

different n-step co,rectors, where n _, 3.

The Houbolt method is a fouz-point implicit backward-difference method

(that is, at time n, qn and qn are expressed in t_r_s of qn' qn-l' qn-2'

and qn.3 ); this method, accordxngly, is unconditionally stable. However,

it introduces false damping.
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While error instability is avold_d by all of the _ncondltlonally

stable methods (permitting one to us_ as large a At as ono wlshos), the

forcing _unction in a given problem may have severe variations such that

one must use a £airly small dt An order to follow and identify the severe

peaks, Qtc. in the response. Perhaps a At of some chosen fraution of the

period o_ the highest slgnificantly-excited mode should be used. However,

the problem is_ can one make a rational a priori estimate of this situa-

tion? In such cases the. feature of unuonditlonal stability may not be as

much of an advantage over a eonditiona1_y-stable method as one might think

at first sight. However., for "stiff" equations (a term used by numerical

analysts to refer to equations containing widely varying frequency

componentm) like structural dynamics equations, and in particular transient

loadings which excite only the lowest modes of the structure, the "larger

At" permitted by the unconditionally-stable methods compared with the

"small At" required by the conditionally-stable methods (like the 3 point

central-difference scheme) makes the unconditionally-stable methods

attractive.

Although one can construct flnite-difference operators of the

implicit or e_@l_ :it type having truncation errors as small as one wishes

by using infox_%_tion at time stations (t, t-At, t-2At, .... ), it is evident

that one pays a price in the necessity of storing this information in

order to marc/% the solution ahead in time. Further, the use of an explicit

operator circumvects the iterative (or extrapolation) type of calculation

required for the solution of the equations of motion when an implicit time

operator is used.

6.3.2 Nonlinear Dynamic Systems

The equivalence theorem of Lax is certainly important for linear

systems, but, as Roache [181,p. 50] points out, its significance tends

to be overemphasized. Some authors have based arguments for the eonvergence

of nonlinear finite-difference equations on the Lax equivalence theorem

for llnea__ systems, "apparently out of desperation". While it is useful

to s%udy llnear systems as guidelines to nonlinear systems, Lax_s equiva-

le:ice theorem is simply not applicable to nonlinear systems. As Roache
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[181, p. 50] point:; out, a precise stability criterion :{s not required
P

I mathematically. Hicks [185] suggests skipping over th_ problems of

stability cr_terla and going diro_ to the heart of the matter which is,

after all: convert. Fundamentally, one wants the finite-difference

solution to approach the differential equation solution, and stability

dcfinltions are of secondary nature.

None of the criteria or analyses of stability are really adequate

for practical computations of nonlinear problems. Usually the stability

conditions are applied _. The shortcomings of this approach should

be clear. Several authors [182,186,187, and 188] have reported instabili-

ties caused by nonlinearity, or at least because of variable coefficients.

Others [189] have reported the phenomena of time splitting of solutions

(Section III-A-6 of [181_) which, though not an instability in the sense

of producing unbounded solutions, is an instability in a practical sense

of preventing iterative convergence.

It is of fundamental importance to realize that it may be impossible

to distinguish between what one might call a "true" instability and _ust

a very poor rate of convergence. In fact, preoccupation with tidy defini-

tions of consistency, convergence, and stability as the mesh size goes to

zero (At + O) is sometimes rather futile, since computations ace not run

under these conditions. Various of the explicit methods have been applied

to nonlinear problems -- with the corresponding linear system At limit

being used as a guide for choosing an appropriate _t -- in typical practice

some fraction, usually 0.8 and 0.9, of the analytically-lndicated maximum

At for the linear system. In early time calculations, when transients are

large, smaller fractions may be needed.

All of the finite-difference operators which are unconditionally

stable for the linear system provide degraded (grossly inaccurate) solu-

tions for nonlinea_ problems if the time step is too larOe.

Since the_e is no reason to extrapolate to nonlinear problems the

classical methods used to describe stability limits and convergence for

simple linear systems, the complexity of the problem determines that the

best way to examine the various approaches at the present time is by

numerical means.
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6.3.2.1 Impliolt Methods without Itoration

Stri0klln ot al. [190] have compared th0 explicit fourth order Rungo-
l

Kutta method with tho implicit Houbolt and Newmark (8 _ _) methods. The

comparisons wore made on problems with nonlinear strain-dlsplacement

relations and linear elastic material behavior, solved by the finite

element method. The "conventional" form of the equations of motion was

used. Therefore, the equilibrium equations consisted o:! a constant stiff-

ness matrix on the left-hand (unknown) side of the equations, and the

nonlinear terms were expressed as pseudo-load vectors on the rlght-hand

("known") side of the equations. The nonlinear terms on the right-hand

side of the equation were extrapolated from the previous increments, thus

avoiding iteration. For the extrapolation of the pseudo-loads, both linear

and quadratic extrapolations were explored. The 'inear extrapolation was

felt to be more accurate since the quadratic extrapolation led to numerical

instabilities. The Houbolt and Newmark (8 = 4 ) implicit methods are

unconditionally stable for linear problems, while the fourth order R_hnge

i Kutta method is explicit and conditionally stable. For the nonlinear

response of an elastic shell of revolution subjected to a step pressure

loading, direct preference was established for the Houbolt operator since

it was stable and accurate for a larger time step At than that required

for stability with the Newmark (8 = 4 ) method. The time increment
At

demanded by the Runge-Kutta operator was extremely small in comparison

with the other two. Later on, Stricklln et al. [191] extended their

investigation to include elastlc-plastlc behavior.
1

WU and Witmer [23] also cempared the Houbolt and Newmark 8 =

methods. They demonstrated that the Houbolt method is more accurate for

a larger time increment At size than the Newmark method, for linear elastic

or elastic-plastic, geometrically nonlinear structural problems, and that

the 3 point central-dlfference method remains conditionally stable but

the stabilit_ criterion becomes more severe (a smaller At is required)

than for linear problems. The equations of motion were cast in both the

"unconventional" and the "conv_.itlonal" form for u_e with the (explicit)
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!
central d.lfforonL;o time opt-]rater; only * the "_onvontlonal" form of t]._

J equaLions of motion could be used wit]% the (implicit) lloubolt and Now_llark

tlmo operators, end the }u_eudo-loads were oxtrap_,lated linearly.

I

difference operators. Based on a one-deg,;o_-of-fruedom system, he showed

that the Houbolt method provides accurate solutions for a larger time stop

1

At. than the Newmark 8 = _ method when linear extrapolation of the. pseudo-

forces is used. For the linear elastic, geometrically nonlinear response

of a cantilevered rod, the results obtained indicated the same character-

isties as for t/%e one-degree-of-freedom system, and with large time

increments both the Houbolt and Newmark operators gave grossly inaccurate

answers.

McNamara [193] studied the central-difference, Newmark, Houbolt, and

Wilson time operators. Unlike the previously-mentioned authors, McNamara

used the tangent-stiffness formulation of the equations of motion, where

the stress-strain relations for nonlinear material behavior are suitably

linearized during an increment, and all nonlinearities are taken together

in one total stiffness matrix; this tangent stiffness matrix has to be

reassembled and refactorized frequently throughout the solution. McNamara

points out: "the computer time required can become substantial for large

problems, and much thought has been given to avoiding this drawback", lie

proposes the pseudo-load extrapolation method with constant stiffness

(the "conventional" formulation) as an alternative, bat does not use this

' method in the solutions presented. The tangent stiffness matrix was kept

constant throughout the increment. When no equilibrium iteration was used,

t/le Houbolt method again proved to be the method that gave accurate solu-

fleas for larger time steps of all the methods compared. The comparisons

included a linear elastic beam clamped at both ends with a point step-load

applied at the midspan of the beam. This problem is geometrically
1

nonlinear. Tile Newmark 8 = _ and Wilson 0 = 1.5 methods became u_,stable,

*
II _, nThe unconvunt.ional fo_m of the equations of motion cannot be used with

dn impl'icit operator, since the initial guess afforded by the "unconven-

tional" method is quite poor because the gradient matrix is just the mass
matrix.
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while the [[oubolt method wa_, t_toblo for all _hL_eked value_ (thoAe valuon

of At were m_ much an flvo tim_.i_larger th_n the values o_ At that produced

un_tabl_ bohavlor for the Nowmark operator, and thirty .time_:_larger t/_an

the values that produc_:d izmtobillty for the contral-dif£oreneo operator),

Another comparison was eatabllshod for an Impulsiw_ly-loaded beam clamped

I at both unds, with elastic-plastic material behavior, and deflectionsreaching a value of marc than four times the original thickness. For this
1

p_oblc_m the Newmak (8 = _) method proved to be the most "unstable" of the

i implicit operators examined, and again, the Houbolt operator was given an

edge over all of the other operators examined.

Recently, Park [194] has devised an attractive implicit method. Two

numerical examples are shown for the nonlinear dynamic response of struc-

tures. A shallow spherical cap with clamped edges under a step load at

the apex was solved by the Park and Houbolt opgrators. This problem has

geometrical nonlinearities but the material is considered to be linear.

Park concludes that his method provides a maximum "stable" step size of

0.5 _sec, while this value is 0.3 _sec for the Houbolt operator. Since

these are the only two _t values displayed, it is not clear what it is

considered to be stable or unstable behavior in this case. Also, a simply-

supported cylindrical shell under uniform external impulse, with nonlinear

material (elastic-plastic) behavior as wall as geometric nonlinearities

was solved by the Park and Houbolt methods by the DYNAPLAS code. The same

problem was solved by a different computer code, named SHORE, t/fat

utilizes the central-difference time operator. The solution of the SHORE

code was utilized by Park as the bench-mark solution. Park concluded that

the solution obtained with his method with At = 8 [I sec was more accurate

t/_an by th_ Houbolt method with At = 5 _sec. This conclusion is intriguing,

since different computer codes are utilized, and again, only the Houbolt

methDd solution for one At value is displayed. The equations of motion

for this comparison are cast in the "conventional" form, and the pseudo-

loads are extrapolated linearly. Finally, Park's operator is at least as

stable locally and has less false damping and frequency distortion that_

the l]oubolt operator; accordingly, its use for the present class of

honl_ne0r transient response problems deserves further investiation.
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I

6.3.2.2 I__mm_t M,_____dlod_1wlU_ Iteration

I[: ]s v,;ry important to dit_tlngu_sh b¢_tw(_(]IItwo tyl,c_flof qua_Is_t.ltEc

prublom_1 Aecordillq te t/lo path-doix_ndcH1co of t]l(_so]utioll. Atl })oint{id oil|-

by Arqyrb_ [170], path-ind_p_nd_nt probhm,_ r,_adiIy h,nd Lllomuolv_t_ to a

total t)quilibrium fol_ulation J.n which the incremental linoarizat'ion errors

arc under full cont,:ol via rusid%%al load iteration. In contrast, path-

dependent problems (for example, plastic _,roblems) make it i_)oo_ssibl,__.!_

to compute residual loads without integration of the prior history. While

pat/_-independent problems guarantee a return to the true 5olution pat}-,

within a given tolerance, path-dependent problems provide no possibility

of reducing the numerical integration errors without reanalyzing the

process with smaller increments. The numerical solution of the path-

dependent problems poses computational problems which are fundamentally

different from path-independent problems. The error control and t/ic

development of time step strategies which assure accuracy as well as

stability are far more complicated. It is a common mistake to believe

that residual correction at tb.e end of the increment will guarantee the

return to the true solution path. It is of fundamental importance that

the truncation error cannot be reduced by residual iteration for path-

dependent problems.

Path-Independent Nonlinear Problems

Weeks [192] observed that, for the nonlinear, path-independent

response of a one-degree-of-freedom system, the Houbolt operator provides

more accurate solutions when linear extrapolation of the pseudo-loads is

used than when (Newton-Raphson) iteration is used, for sufficiently large

time step sizes At. The numerical dampin_ of the Houbolt operator is

compensated by the weak instability produced by the linear extrapolation

of the pseudo-loads; thus, extrapolation provides more accugate solutlons

than iteration. When the Nu_wton-Raphson iteration met/led was used to

converge for a nonlinear solution at each time step, the Newmark and

I[oubolt operaSors were always stable, at least for the time step sizes

investigated (t{me steps that were small enough to trace the response

adequately). In contrast, tile Newlnark oi_crator became unstable when using
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load oxtrapolatlon and larger time atopn, whoroaa the Houbolt operator

was alwaya atablo with load extrapolation.

For the _la_tlc (path-lndopondont) nonllnoar rooponoe of a oantl-

levered boom, Weeks found that, the Moubolt operator is stabl_ (but

oxhlbita consldorablo damplnq) when Newton-Raphson Itoratlon la u_ed at

each time step, while the Nowmark method exhibits no artlficlal damping

but does exhibit a slight shift, and was stablQ for the tlmQ step sizes

investigatQd.

McNamara [193] studied the linear elastic (path-independent)

geometrically nonlinuar response of a beam clamped at both ends and

subjected to a point'step-load at midspan. He used the tangent stiffness

form of._le equations of motion. The iteration method he used is the

so-called modified Newten-Raphson iteration. This method is just the

well-known method of succesive approximations, applied at each time step.

The gradient matrix is the tangent stiffness matrix, which is kept constant

within the time step, and hence, is kept constant within the iteration

loop. He found the interesting results that (for large time steps At):

(a) the Houbolt operator provides better results when iteration is not

used and (b) the Newmark operator becomes stable for this nonlinear problem

when iteration is used, but the results are not as accurate as the results

obtained with the Ho_bolt operator.

L

Path-DependentProblems

For the path-dependent (elastic--plastic) and geometrically nonlinear

problem exam. _ (the impulsive loading of a beam clamped at both ends) by

McNamara [193], he could not achieve convergence for the iteration scheme

used (the modified N_wton-Raphson method).

However, Belytschko and Schoeberle [195] report to have obtained

"stable" results for the same problem. They also used the tangent stiffness

form of the equa%ions of motion, as well as th_ modified Newton-Raphson

iteration scheme (the tangent stiffness is kept constant within each

iteration loop, and recomputed at each time step). Belytschko and

Schoeberle used a di£ferent computational procedure which ensures that

the _ is conserved within a given "energy error criterion". The
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t

I
I

averag_ lum_b_]rof ItL_ratlo_IR }?or tlmn _t_p WaS not reported, but it it]

I r,:_portod that Wh(_li. larg_ time steps are urged, from 50 t_ 100 ]tt]rationrl
are r(_gulr,_d .Ln the first tlmo stop because th(_ ylold value is excood,_d

i qulto a bit within that tim(_ stop. 'l_hoNowmal_k 8 m(_,thodwall us_d, with1 3 I !
valu_m of (-_ _ _, _ and _. The N_wmark 8 _ 8 metlmd it_ un_;tablo, Just as

_or linear systems. Thcl results for 8 _ and 8 8-a_'o tltable but

deteriorate as thu time step sizu is increased, with the ampiitudu of

the response increasing as the time step is increased. The three problems

shown exhibit "stability" and "accuracy" C.or time steps much iarger (i0-

i000 times) than the stability limit of the central-difference time

l operator. However, in order to have comparable computing times as forX
tale central-difference time operator, time steps'more than _ times

the size of the allowable time step size for the certral-difference

operator were required for the implicit Scheme. Belytschko and Schoeberle

conclude that the path-dependence for the problems, investigated was

weak, and that in problems with two or three dimensional states of stress,

the accuracy will deteriorate more rapidly with increasing time step size. +

6.4 Solution of the Governin9 _.quations

In order to obtain the timewise solution of a set of equations of

I dynamic equilibrittm such as Eqs. 6.71, 6.68, or 6.55, one may resort to

analytical techniques or numerical techniques depending upon the mathemati-
l

cal (and/or physical) nature of the problem.

For small-deflection linear-elastic behavior, for example, one may

i recast these equations into normal mode form and solve the resulting

equations of motion analytically, mode by mode if the forcing functions

are modally uncoupled or are properly sequentially coupled. Superposition

i of the forced responde of each mode then provides the total response of the

system. Alternatively, if desired, one may solve these equations by using

a finite-difference numerical procedure whereby one obtains a recurrence

equation which provides a solution step-by-step in finite-time increments.

I If tlle stiffness matrix varies with time as in the present class of

nonlinear problems, the normal modes also vary in time; of course, one

I +Since the plasticity itself becomes path dependent in stress space for

non-proportional loading in multidimensional states of stress.
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could r_italn thn lln_1 _ part of thn Internal foro_ tnr_n _ th_iroby

Id_ntifying tlmf_Invarlnnt "normal. modon" and treat the r_ma_,ndor of the

lhtor_al fo_c_ to_t._ a_] plloudo-load_. However, the normol mode _p|?roach

may become imp_autlcal. Accordingly, the numorlcal flnlto-difforoneo

I,_thod ill emplo?od in the prosnnt study for tlolvlnc! oguationn of motion

llko Eqs. 6.71, 6.68, or 6.55.

In particular, the contral-dlfforonce finite-difference time opera£or

is employed for purposes o_ illustrating the solution process for the

"unconventional" formulation described in Subsection 6.4.1. Since the

central-difference time operator is an explicit scheme, the solution of

the equations of motion is best handled by the pure vector form described

in Subsection 5.2.3.1, which is denoted here as the "unconventional"

formulation; of course, other methods llke the constant stifEness method

("conventional" fomnulation) can be and were used in the paste but these

methods are not as efficient as the "unconventional" formulation.

In Subsection 6.4.2_ the Houbolt (finite-difference) time operator

is employed to describe the solution process for the "conventional" or

for the "modified unconventional" formulation.

6.4.1 Explicit Solution Process of the Equations of Motion

As indicated earlier, the equations of metier (Eq. 6.55) in the pure

vector form are"

! IH i

where [M] is the global mas.___ssmatrix, {I} is a vector of internal forces

associate4 with linear and nonlinear terms of the strain-displacement

relations as well as elastic and plastic forces, and {F} represents the

generalized load vector accounting for _xturnall_-app "d distributed

or concentrated loads. These equations are to be solved at a sequence of

instants in time _t apart y employing t/,e following central-dlfference

(explicit) (finite-difference) simulation for the acceleration qt at any
instant t.
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'* at time t byzAlllo, _n_ may approximato thu velocity qt

gl'e-- Z
NoW noto that at any tim_ instant t, Eq. 6.72 can be writtun exactly a_:

= (6.75)

In this equation, all quantities except [M} change, in general, with time.

If the solution has been obtained for earlier instants of time, one may

compute {q*}t from this equation (Eq. 6.75), and then use Eq. 6.73 to

obtain {q*}t+At as:

(6.76)

Assuming that at t --0, the structure is at a known condition such as

{_'IO-_I0 } _ I l_'I0= IAI _ {_t1"]0= {"_t t (6.77)

one can readily obtain {q*}dt from the following Taylor series expansion:

since {F} is prescribed and all other quantities are known.o

In the timmwise step-by-step solution _roeess involving geometric

(path-independent) nonlinearities as well as material (path-dependent)

mlastic-plastlc t_anslent responses, the vector of internal forces {I} t

changes with time and hence must be reevaluated, in general, at each

instant in time. This Vector, in turn, is composed by assembling th_

contributions (sec Eq. 6.51) :
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for uach flnltQ ul_munt "e", (s_o Eqs. 6.51, 6.50, 6.54, and 6.55}. It £s

se_l_ that th_so quantities Involv_ vat, me integrals of information involv-

ing tho stri_ss state S ij. In practicQ, these c_valuations are carried out

by appropralte numerical intmgration -- Gaussian quadrature. This requires

that the stresses Sij and displacement gradients LD: j (q} be evaluated at

a finite number of Gaussian integration points over the "spanwise" or

"armawise" and the "depthwise" region of each finite element.

At any instant of time t, one needs to solve Eq. 6.75 for {q}t' which

is of the form:

where

[M] is a known banded positive definite symmetric matrix

{x(t) }t is a vector of unknowns which must bm determined by

solving Eq. 6.81

[b(t)} t is a known vector (representing all terms except

[MI{q'}tin_._.G,Ts)

In order to solve Eq. 6.81, the Choleski method is used. Briefly,

the woll known Choleski method [196] involves factoring the matrix [M]

to form a lower triangular matrix and an upper triangular matrix, which

is thu transpose of the former. If a diagonal ("lumped") mass matrix is

used, then the solbtion of Eq. 6.81 is trivial, and hence extremely fast.
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j.... .....7"-

I

i
An alt_rnatt_ t_olution f_ohoma ifl thtl tripl_-fac, tori_atlon and

i rlo._._tJt_tl ln*_tht_d (rl_¢_ 162_]h7 of Ih_f, lg[t) arid ill mGrt_
Ilt_t-(i,|t_lltlitl pp.

l_ffiul.lUlt, dill| b_tt__r I](_ll(_.tiLll|_t(.] ll[llllltrJo-ilJl_, t|i111% _Ehn lltBndi_I7(]f_hl_].l,_l_'J

I BI"_IIc_r-|, 'l_)L_.l] I_Oth_d .Ill ,lllto c_lllt_d tho (hlt_flll_DQfJlittll _ docoml: IOrli|-',_-r_ll
with r_,_qunntial aolution (rm_t pp, 2].-_2 of ltof, 107) 0nd _onn:lntt_ of two

.II major Ilt(tl..m l
1, Thu global i_al)t3 Blatrix lJl f,aotoKad into a triph._ produ0t (tr.[p_rt

I factorizatlon or Gauss-Dool'itt.lo docompooitlon) .

2. Tho displaoomunts arq. solvod for soquontially, in throo 8ub-

st_ps •

The global mm_8 matrlx[M]is factored into tho form,

where[L]is a lower triangular matrix with zeros in its uppe_. _langular

portion and unity on the diagonal, and[D] is a pure diagonal matrix.. By

direct substitution and comparison, one can show readily that

e*t
and

llt.-I

t_. ± rv_. - Z L,rL._Dr_ ,_._,
Note that for m = 1, there are no summation terms. By the use of Eq.

6.82, Eq. 6.81 may be rewritten as

Next, let

EL] ,o..,I
where
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Solving ]_q, 6,84 for(R_ion_ obtalna by forward nolution

"" <o.oo'R,_= b_.. - ,_. L_ r r
,l, ITM

Noxg, rowri_e _q. 6.B4a at]

OD]{T}.{_75 <o.-,
who_'o

<,.,,,
Solving lq. 5.86, onQ finds

.J.
i

Finally, Eq. 6.86a is solved by backward substi-',:cionto obtalnl

Xm.= k_

Z _(_,.,-L..., x,) (_._,)il-I

X2 : Z-!--(7_- L_x_-L3, xs- ... -L,., x,,)

Sequentially, the "computing and storing" process involves (a) solving

Eq.6.84_o=_R}a,,d,:eplaoinglt>'tbyii_)(b)solving"<i.6.86_o=F}a,,d
ruplacing{R}bYtP }, and (c} solving Eq, 6.86a for {x}and r_placing_P}by {x}.
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I

6.4.2 Imylici_ SolUtlo_ Proonml of tho Equations of Motion

Tho oon_tant ntlffnonn _o_m o_ the oquatlons of motion is to bo usod

w_th implicit oporatorn.+ From _qf_.6.71 and 6.6H, thoso oquatlons of

motion a_'o.

- ,,,- i , i H i ii ii

whcro [M] is the global mas_.._smatrix, [K] is the usual small strain, linear-

elastic, global (constant) stiffness matrix, and {F} is the load vector

representing externally applied distributed or concentrated loads. The

vector {FNL} is, for the "conventional" formulation

L NL _L

}
a pseudo-load vector representing internal forces, which for sma]l s_ralns

can be decomposed into three vectors: {FNL} a vector arising from the

nonlinear terms in the strain-displacement_equations, and {F_}-and {FNL}"

pseudo-load vectors due to plastic (small) strains and associated respec-

tively, with the l_inearand nonlinear terms of the strain-displacement

relations.

For the "modified unconventional" formulation, the vector

) ,,.,,
is e pseudo-load vector representing internal forces arising from (small

and finite strain) elastic-plastic behavior as well as all (linear and

nonlinear) terms of the strain-dlsplacement relations. In Eq. 6.91, the

matrix [K] Is the sam._global (constan%) stiffness matrix appearing on

the left-hand side of Eq. 6.89, and {i} is the sam_____epseudo load vector

of internal forces used for th_ "unconventional" vector form of the

I equations of motion, Eq. 6.72. The "m6d_fied unconventional" form of the
equations of motion (Eq. 5.91) is mo_e efficient than the "conventional"

I form of the equations of motion, as well as being valid for finite strain

+Of course, one can also use a variable stiffness formulation with implicit

I operators, like the tangent stiffness form of the equations of motion.269
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material behavior of any kind, while the "_onvontlonal" form In valid only

f_I: _]mal1_straln elanti_-planti_ material beh_vlor.

Tile solution of the dynamle oquatlon.of motion (Eq. 6.89) _an be.

ae._omplishod by applying an implicit int_grntion s_hom_). In th_n scheme,

th_ time d_rivatlve_, of the nodal displacement voator [q*} (that is, {_*}

i and {41'}) are expressed at a discrete time instant in terms of the nodal

displacements at several nearby discrete time instants. When substituted

into t/%a gov_rnlng equation of motion, a rocurrQnco relation is obtained

from which displacements can be calculated at each discrete time instant.

The accelQration {q*}t+At at tlms t + _t is expressed by a 4-point

backward-difference formula in the Houbolt operator:

.._I _ -

+ •
[q*}t+At at time t + At can be expressed by the following

The velocity

3-point backward-difference formula having the same truncation error as

{q_}t+At:

For computational convenience, the terms in Eq. 6.92 can be regrouped

so that {q}t+At at time t + At can also be related to {q*}t at time t:
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I
l',qu,ltion t_.tEle,Ul I._t_ Writtxu| to _X_rot_ dyn_unie uquilibriunl _H'

l'hluat,l.on (_.()5 ,t:_ then _lubrlt,i.tuted into l,:q. 6.96 and the, torms re, g_:oup(,d

to qtvo
i J, | - - i - •

2=-_1',1 + +

The recurrence relatio,_ given by Eq. 6.97 can be solved at each _me

step for t/le unknown displacements {q*]t+_t at time t + At, based on the

knowledge of {P}t+_t' {FNL)t+At' {_}t' and (q*}t" Tile quantities {_'} ,t+_t

{_'_*}t'and [q*}t on the right-hand side of the equilibrium equation (Eq.

6.97) are known at time t + At, but tile vector of pseudo-forces [FNL]t+_t

is a function of [q*}t+At and, thus, is not known. COnsequently, either

some form o_ extrapolation or iteration is required to _alculato [FNL]t+At

as will be discussed in Subsection 6.4.2.1 and 6,4.2.2.

Once {q*)t+dt is determined, tile velocities, {q*}t+At can be obtained

from Eq. 6.93, and the solution advanced to tile neMt time instant. This

process is repcdted _til some speuified termination point is reached. The

, and (q*}o[_roeess is self-starting, since once the initial _onditions {q*]o

at time t = 0 are specified, the solution for {q*}At is obtained directly

from Eq. 6.97. However, in order to evaluate the velo0ity {q*}_t at time

t = At (needed to calculate {q*}t42At ) from E_. 6.93, {q*}-At is needed

bht is not known. Thus, some form of "starting sequence" is requlred. _n

the pre:un_t case, [q*}-At is calculated from a euntral-dif|:eronou expression

O
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which when solved for {q*}-At gives

and _ub_tltutlng this into gq, 6.93 (for t = O) glw_s the required

ex[_resslon for {q*}At:

Aftt_r t/"_efirst time step, the solution progresses using Eq. 6.97 for

{q*}t+At and Eq. 6.93 for {q*}t+At"

The matrices [M] and [K], and the time step size At, are held constant

throughout the timewiso solution. In order to solve Eq. 6.97 for {q*}t+dt'

the triple-factorlng form Of Gauss-Jordan elimination is used, as reviewed

in Subsection 6.4.1. The matrix stun _t_[M) + [K]) is thus formed and

factored only once, prior to the first time step. At each time step,

{q*}t+At is obtained by back-s_bstitution operations.

6.4.2. i Extra_olation

Using a first order Taylor's series expansion about time t, one

obtains :

t +
Approximating the partial derivative k {FNL}t by a first-order backwards

d_ fference expression glVes:

substituting this back into Eq. 6.101 produces the following "linear

extrapolation expression" :

Jt (6.lO3)
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noeom_nry, and only a vector ({FNL}t.At) l,oc_dsto bu stored,
ra_lor

than the complete Jac_blan matrix, as it would be necessary with the

Newton-Raphson method.

6.4.2.2 Itoratlon and Convergence

i The iteration method that is used in this work is the method of

succosslv_ substitutions, also known as the method of successive approxima-

[ tions. This iterative technique, one of the eesiest methods to apply, was

used since it does not involve t_e formation 'and refactorln_ of the

[ gradient matrix, which is consistent with the spirit of the constant ,

I stiffness form of the equations of motion. For the HoubDlt operator, the

equations of motion are (see Eq. 6.97):

In this recursive relation, n denotes the nth iteration and the variable

indicates the total number of iterative cycles required for "convergence"

during a given At time step. The procedure starts (superscript "o") with
.%

an initial estimate {F }t+At of t/re pseudo-load vector. It is natural to

use the extrapolated load from the previous two increments as the first

estimate; hence,

J_TA% (6.110)

Then a value of the displacement vector is obtained from Eq. 6.109

, = NL O (6. IIi)

where

"(at)'
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I

1 NL 1

I,'rom thi_ value {q*l}t+At, a new o_timat_._ {F }t+At of the pt;oudo-load

vector can be obtained, and then a new estimate {q*2}t `�|the solution
of

can also be obtained, and so on. This iterative process is contlnued

until either convergence of two successive displacememt vectors Is n_ted

or a specified number of iterations is reached. The method of successive

substitutions is severely limited by its inability to converge for problems

e_%ibitii_ a significant degree of nonlinearity.

For a one-degree-of-freedom system:

A I" + CI')
it is easy to show that if F(q*) possess a continuous derivative, it is

necessary for convergence of the method of successive substitutions, that

where _ is a root of Eq. 6.115. Moreover, since the gradient matrix [A]

stays constant during the iteration, this method has a very slow rate of

convergence when it does converge. Furthermore, when unloading of an

elastic-plastic solid occurs, even the Newton-Raphson method (which has

prow_n itself to be one of the best solution methods available for static,

i geometrically nonlinear analysis) fails to converge in many cases, aspointed out by Stricklin and Haisler [198], who anticipate that this

lack of convergence arises from the discontinuity produced by elastic

I unloading.
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A neared double, itoratlon proaeduro using an inner loop i_ewton-

Baphaon procedure ha_ be_n employed su_,_.c_sfully in materially nonllnoar

static analysis by Bushnell [199). The outer loop updates (for a given

value of the load) the material properties and strain components while

the inner one ensures equilibrium for that set of material properties.

The problems solved in Rcf. 199 did not involve cases of severe %u_loading

and were not dynamic. S_ricklin and Haisler [198] conclude "The research

&_nducted to date tends to indicate that additional refinements are

necessary before the direct application of the Newton-Raphson method can

be made for plasticity problems with complex loading and unloading

patterns".

For the present work, the following compromise procedure was devised.

Knowing in advance that the method of successive substitutions will fail

to converge for the complex geometrically an_ materially nonlinear dynamic

problem being analyzed (that involves complex loading and unloading

patterns), it is still hoped that the first few iterations will be

"asymptotically convergent" in the sense that the first few estimates of

the solution may be closer and closer to the solution u_til the method

__.iq_ to diverge. Monitoring the rate of convergence, the iteration

loop is stopped once divergence commences and the last "converged"

estimate of the solution is taken as the solution (in "equilibrium") for

that time step. In order to monitor the convergence, two criteria were

applied. The first criterion is

whre l l{q*n}t+ tllis the  .uclidoanno= thevector {q*n}t+At.
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.I
It is _asy to show th_qt tht_ eonverq_ncn _riturion Eq. 6.117 in mQro

I _tringont (by a factor of 2) thall the col]ver[]¢_llcocriterion obtnin[_d
from the difference of" the Eucli_]_nn horror;:

which, for small £ is approximatelys

II IIII[ '"NII
ii i

Hence, if convergence criterion Eq. 6.117 (used in the present work) is

satisfied to a given tolerance _, then convergence criterion Eq. 6.12_
1

(use_ for example, in Ref. 200) is satisfied to _ e. In the present work,

the convergence criterion was taken to be

The second convergence criterion examined An the present study was:

i ' i
I

_t is easy to show that this convergence criterion is more stringent than

the previous ones, sin_c, from the triangle inequality:
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ll_'L(_'°},,_II+ll_'"Lll_ll_'i_II
(6._4)

or

I ii !r I
Hence, if the Eq. 6.123 criterion is met wlthJ.n a given soleranoe 6, it

certainly meets criterion Eq. 6.121 to within a smaller or equal tolerance.

The convergence criterion Eq. 6.123 is to be preferred to Eq. 6.121

since, for any norm [[{qn+l} . {qn}l I is a measure of the deviation of

the approximation in vector space.

In the present work, the quantity _ was taken to be

6 =Ix$0"" (_.:_._)

If the iteration scheme were convergent, it would take a certain number

of iterations to meet a given criterion; however, since the present

iteration scneme will not always converge, the following test is made:

if the condition of Eq. 6.117 or Eq. 6.123 is not met, the iterative

p;ocess is continued if

_, .+1 'l . tbh z ,kn _"
IN 2..

(ll_._:,,,:ll)_.-(ll_,},,.,_ll_"qt'_},.,J)(11f.,_Lll!°
(ll[_}._,ll)_ (11LII> _"

for Eq. 6.117, or i_f

II_,("L,_,II Ilt_"-'t,,.,,ll (°"_'
for Eq. 6.123.
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I

,I
Oth_rwls_, if condltions gq, 6,127, fi.l_[t ar_ not satinfled, tile

Itora_ion procotlf_i_ stoppod, nnd

tho provious ostimato _lat satls£1od Eq. 5.127 or 6.128 lu t_kon as tlm

"equilibrium" solution £or that timo step.
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S_.C_ION 7

_VAI_UATION AND DIScusSION

7.1 _iltroduction

_n order to evaluate the p_nent finlt(_fltraln formulation and impln-

mentod computational procedure £or prodlct_._g trannient structural

responses produced by severe transient oMturnal loads or impact, several

well-defi,ed problems for which independent predictions and/or reliable

experimental data are available for comparison are investigated. This

I discussion is divided, for convenience and clarity, into two categoriesz

p (i) impulslvely-loaded structures and (2) fragment-impacted structures.

Further, under each of th_se categories, there are two types of structural

response and modeling, (a) two-dimensional (or planar) and (b) three-

dimensional (non-planar) structural deflections.

Impulslvely-loaded structures discussed in Subsections 7.2, 7.3, and

7.4, r_spectively, are a narrow plate (or beam), an initially circular ring,

and an initlally-flat square thin aluminum plate with all four sides

ideally-clamped. These first two structures exhibit essentially two-

dimensional deformation behavior, while the third one involves distinct

three-dimensional structural deflections as well as large levels of strain.

These examples are especially important since the conditions responsible

fer producin_ the large transient deflections are very clear and well

defined-- each represents a well-defined initlal-value problem.

Accordingly, these examples provide a clear and stringent t_st of the

accuracy and reliability of the present finite-strain formulation and

c6mputational procedure.

Discussed in Subsections 7.5 and 7.6 are structural respons£s

produced by fragment impact. A steel containment ring which was

subjected to simultaneous impact by 3 equal-size bladed-disk fragments

from a T58 aircraft engine turbine rotor is examined in Subsection 7.5,

and is found to exhibit essentially two-dimensional structural response.

Hence, this containment ring was represented for analysis by curved-rlng

finite elements which pertain strictly to two-dimensional response.
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Consldorod in Suhneetlon 7.6 in _ narrow ah.BInum platn having both

__ndllido_lly clolnpnd, both oldp_ frno, and _ubjoe_()d to porpondlcul_a_

impact at _tll mldwidthomJ,dnp_n _o_atlon by a sol_d nto(_l _iphorn of l-inch

dlamote_. Near the "Impact station" _m {_tructu_o (_xhlbltr_ s_vero th_o _

i dimensional utruet_,ca_, defo_0ationsl eSnowhere, oxoopt very nest theulam_ed ends, the sp0olmen 8isplays 0ssentlal two-dimenslonal de_lectlon

behavior. Accordingly, this narrow-plate specimen was analy_d _n two

dlffer_nt ways. First, the structure and the attacking fragment were
I

idealized as a strictly 2-D problem-- the structure Vas modeled with 2-D

I beam elements and the fragment was regarded as being a solid cylindrical

1
} fragment extending across the entire width of the beam. In the second

analysis, the structure was represented by flat-plate elements which can

accommodate thr_e-dlmenslonal structural deflection behavior, and the

fragment was represented as a non-defor_able sphere of l-lnch diameter.

Each of these cases is discussed in the following.

7.2 ....Impulsively-Loaded Narrow Plate

7.2ti ProblemDefinition

To provide a well-defined initial-value problem which would furnish

reliable experimental data on large-deflection elastic-plastic transient

structural responses involving significantly large peak and permanent

strains, narrow alumint_ plates with both ends ideally clamped and both

sides free were sttbJected to known impulse loading [i]; see Fig. 8. In

particular, a 6061-T551 alt_inumnarrow plate (or beam) specimen d_noted

as CB-4 with 8.005-in span, 1.497-in width, and O.102-1n thickness was

loaded uniformly impulsively over its entire width and a 1.80-1n spanwlse

region centered at midspan by the sheet explosive loading technique.

This resulted in essentially a uniform initial lateral velocity of

10,590 in/see of the loaded portion of the specimen; accordingly, the

initial kinetic _nergy was 3930 in-lb. Spanwise oriented strain gages

i were attached to the upper (non-loaded) surface at various distances
measured from the midspan location. These strains were displayed and

i recorded photographically from osci_loscopes. Post-test measurementsof the permanently-defoL_ed configuration were made. Large transient and
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porm_nont doflootionn w_r_ producnd. Thono data arn roport_d in Nor. l,

Uniax_l _tati_ ton_ilo t_t _pocimon_ whonn axnN wnrn pNral_l to

thn spanw_._n dlr_etlon of np_Imon OB_4 woro m_do from tho thi_k_p|ato

,took from which _p_imon CB_4 w_n pcop_rod. High_lonqati_n ,traln gages

woro usod to mua_ur_ tho rolativo _ongatlon _ o_ thon_ spoolmt)ns inu

otati_ tun011o tests as a function O_ th_ applied load P! th_ Initlal

crosu-uoctlonal area A° oE each s_ocimen was known. For use in the

"small strain" and in th_ "£initu strain" ualuulatlons, the uniaMial

static stress-strain information is approxlmatod as de_uribod in Subuoction

7.2.2 for beam-flnite-eloment modeling and in Subsection 7.2.3 _or plate-

finlte-el_ment modeling of the CB-4 narrow-plato spouimen.

Finite element analyses of specimen CB-4 have been carried out to

compare predictions based upon (a) the (previous) small-strain procedure

and (b) the present consistent finite-strain procedure versus the experi-

mental results. Further, for each case the specimen has been finite-

element modeled in two ways: (I) by assumed-displacement cubic-cubic (CC)

beam elements and (2) by assumed-displacement linear-lln_ar-cubic (LLC)

flat plate elements. These two types of finite element _o_ellngs of

narrow-plate specimen CB-4 and the resulting predictions are discussed in

Subsections 7.2.2 and 7.2.3, respectively.

7.2.2 comparison of Small-Strain v s Finite-Strain Predictions

for Structural Modelin_ b_ Beam Finite E1ement_

Since there is symmetry about the midspan location y = O, only the

half span of specimen CB-4 was modeled by 4 DOP/nod_ beam type finite

elements. The use of beam elements implies the assumption that r.he dis-

placement behavior is two-dimenslonal (or planar). Studies reported in

Rofs. 28 and 30 indicate that the use of 20 equal-length 4 DOF/node beam

elements provides a reasonable modeling - permitting one to obtain

essentially converged predictions for the displacements. The use of a

finer mesh in order to obtain converged strain predictions would have been

preferable, but the u_duly large computing time for a significantly finer

mesh was outside the range of what the present financial resources would

allow.
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For analysis the uniaxlal tonsils static stress-strain bohavlor of

thln lot of 6061-T651 al_minu_ (s_o Fig. 29a o_ Ref. 2 and Fig. 18 of

Rof. 30) wan modeled by plocewlso llnoar segments for use in the mochanlcal

sublayor model. This strain-hardening model, as implemented in the

umall-straln JBT3 computer program [24], =oqulros that the stross-_t_ ,in

_urve being modeled _ust be monotonically Increasing -- the stress assoc-

iated with the st_ess-s_rain curve must not decrease with increasing

strain -- and unloading must proceed elastically at the same slope or

modulus as the original elastic modulus, Since the uniaxial Kirchhoff

stress Tu versus uniaxial Lagrangian strain Yu exhibits _is type of mono-

tonic behavior whereas the 2rid Piola-Kirchhoff stress S does not, theu

uniaxlal tensile static stress-strain data from Fig. 29a of Ref. 2 was

cast into the form r E OE (1 + Eu) Vs Yu and fitted in a plecewise linear

fashio_ by the following s_ress-straln pairs (Tu , yu) = (0,0), (41,000 psi,

0.0041 in/in), (45,000 psi, 0.0120), and (53,000°psi, 0.i000)_ note that

°E E P/A ° is the uniaxlal engineering stress and Eu is the axial relative

elongation= Eu = [(l + 2Yu)i/2 - l] =(% -£o)/_ o. In the JET 3 computer

program [24] used for the analysis, the resulting stress T was used asu

playing the role of the proper second Piola-Kirohhoff stress Su (or _)

upon which the basic finite-element formulation was based. Since the

JET 3 computer code is valid only for small strains, this is consistent

because for small strains T _ S . In view of the above considerations as
u u

well as the data scatter in experimental uniaxial stress-strain measure-

ments, this adopted compromise prooed_e (not fully consistent) was

believed likely to p_ovide reasonable predictions of structural response

involving small strains, but was expected to be significantly in error at

large strain levels. At what strain levels these computer-implemented

approximations lead to unreliable predictions was (until now) very

uncertain. Accordingly, this cQmpromise _rocedur 9 has been _ermed the

"small-strain analysis" here and in Ref. 30. Also, it is assumed that

strain rate effects can be approximated satisfactorily by an expression of

the form
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where sT y and sTYu are, respectively, the st_tlc and the strain-rate-u

dependent°yield stress of the s_th elastic, perfectly-plastic mechanical
d

sublayer, and Su m d-_ 7U = material rate of the _uniaxial Green (Lagranglan)

strain 7u. The strain rate constants d and p for alumint_ as cited in
-i

Refs. 201 and 202 were used as_ d = 6500 sec and p m 4.

For a consistent finite strain representation and computer implementa-

tion of the correct stress-strain behavior, the uniaxial tensile stress-

strain data of Fig. 29a of Ref. 2 was zecast into versus E* =-En E
TU0 U _O =

logarithmic ("natural" or "true") strain : £n (i + Eu) . This curve

was then fitted in a piecewise-linear fashion by the following T , E* pairs

foruseinthemechanlcal-s_layermodel:(,u._u_=(000).I4_,2_0psi,•
0.00442 in/in), (49s200 psi, 0.076), and (76,400 psi, 0.615). It is

asst_ed that strain-rate effects can be approximated by:

"I)
where

s y = static (subscript "o") tmiaxial yield stress of
T
u
o the s_th elastic, perfectly-plastic mechanical

sublayer

sT y = s_rain-rate-dependent yield stress of the s_th

u mechanical sublayer

gu "= _dt = _ = longitudinal component of the rate of

deformation tensor

For illustrative purposes, the material strain rate constants d and p for
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+I 1
al.u.d;u_ clt_d in H_Es. 201 ¢md 202 are us_d; d ,_6500 +:iou +, and p = 4.

For analysis, thc._half span of .qpocim_n cB-4 W,JS mod_lod by using 20

¢_qual-]ength 4 DOF/uodt_ (cuble-cubi0) assumt_d-dlsplacement finite olom<n_t+l,

and symm_try condltlonl+ wur_ imposed at m]dspan. Four spanwJse and four

+, dopthWlsO Gaussian sta+tions wore used for the volume integration of the

finlte-element property equations. A consistent mass (CM) matrix was

employed for each element. A time increment size of 0.25 microseconds

(approximately uqual to 1.6/_ia x where _max is tJ%e maximum natural

frequen0y of the finite-elementmodel or the structure for purely linear

behavior) was used; the explicit central-difference timewise finite

difference operator was used to solve the unconventional form of the

equations of motion. The aluminum material was treated as behaving in an

elastic, strain hardening (EL-SH) rate-independent fashion or as EL-SH-SR

where SR denotes strain-rate sensitive behavior; the material rate constants

were assumed to be d = 6500 sec -1 and p = 4. The mass per unit volume Pc

was taken as 0.25384 x 10-3 (_b-sec2)/in 4.

_' Response predictions were carried out by the "small-strain procedure"
and by the "finite-strain p_ocedure" as follows.

Small-Strain Procedure

(a) The uniaxial static tensile stregs-strain data for 6061-

T651 al%/mint_m [2] were expressed as Tu£S Yu and fitted in
a pieeewise linear fashion as described earlier.

(b) Strain-displacement relation Type C in conjunction with an

assumed displacement field which is valid for small membrane

strains (see Eq. 490) was used. Hence, this equation is valid

for arbitrarily large rotations but only for "small strains".

Finlte-Strain Procedure

(a) The uniaxial static tensile stre:_s-st_ain data were
,

expressed as T vs E and fitted in a piecewlse-linear
u0 u

fashion as described earlier.

(b) Strain-displacement relation Type F given by Eq. 4.14b for

finite strains, arbitrarily large rokatlons, and incompres-

sible material behavior was used.

(c) The i_roper transformations of the stresses and strains
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to the farm_ demanded by the correct finite-element £armu-

l_tlon (Eqs. 4.173 - 4.176) were employed a_ described An

Subsoctlon 4.3.

Indlcated in the following tabul_tion are the comparisons of these two

predictions with each other (and/or versus expcriment_l d_t_) as shown in

the indicated figures for the time histories of the longitudinal Green
* 2

strain tensor component 72 on the upper (non-loaded) and/or the lower

(impulsively-loaded) surface at various spanwise stations of narrow-plate

(or beam) specimen CB-4:

.............

Time Histories of 72 on Surface:

Figure Station [Yl (in) UPPer (U) or Lower (L)

Predicted Measured

9a 0 (midspan) U and L -

9b 1.4 U and L U

9a 2.2 U U

9d 3.0 U U

At all stations except for the midspan, the plotted strain is the average

of the values given by the two elements at those nodal-Junction station

locations. At midspan, the predicted strain is the value at the element

node located there. Each of these stations is located at a nodal station

of the finite element model.

It is seen that, of the spanwise stations shown, the major differences

between the two procedures occur at the midspan station y = 0 in, where

the finite-strain formulation shows that between 150 _sec and 500 _sec the

lower (loaded) surface experiences larger strains than the upper surface

while the former "small-strain" formulation indicates the opposite behavior.

Also, at this midspan station, the strains predicted by the finite-strain

,

Beam specimen CB-4 was originally straight_ hence, 1/R = 0 and, there-

fore, 7 22 = _ = Y22"
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I

proct*duro ore eonstdornbly larqer than th,, strains prodiot_d by the, I-ullnll-

_t_'ain p_-o_,durt_. At tht_ other stationl_, wllerL_smaller i_traln_ o¢:cur, th_

¢llff¢:r_lluus botwtmn the two prudlution_ are corrosp(nidln_I].y smaller.

Shown in [,'Ig.9e I_ the spanwlse tltrailldistribution at t _ 300 li_mc

from y r.0 In (midspan) to y _ 4.00 in (elamp¢_d end) of tile upper (non-

loaded) surface. This time instant is taken as typical, since tile

strains have already achieved their peak and about 97% of tile initial

kinetic energy has been transformed int¢,)strain energy by that time. Tllu

strains predicted by the finite-strain formulation are larger than thoseI

predicted by t/le small-strain formulation with the exception pf a region at

the end of tile impulsively-loaded zone (y = 0.9 in) and a roqion at the

middle of the half-span (y = 2.0 in to y = 2.4 in). The nodal strain

discontinuities typical of the 4 DOF/node finite element (employed in the

JET 3 and CIVM-JET 4B programs) are evident from the graph. This

assumed-displacement flnite-element model involves cubic polynomials in

the assumed-displacement field for v (the axial displacement) and w (tile

lateral displacement). The degrees-of-freedom (DOF) involved at each end

of the finite-element are the displacements v and w and the displacement

_v w 8w v These degrees-of-freedom provide
gradients X = _ + _ and _ = 8q R"

c_ntinuity of displacement (v and w) and continuity of membrane strain

(Y2 = X + 1/2 X + 1/2 021 but the bending strain (_°K = [(- )(I+X)+ 1)

is not continuous at the nodes since _ and 8X are not degrees-of-freedom.aq _n
Hence, st.rain jumps appear at each finite-element node since inside each

element the displacement function is continuous to derivatives of all

orders but at the nodes only continuities of displacement and its first

derivative are preserved. The strain-displacement equations (Eqs. 4.146

w 8w V andand 4,90) involve the displacement gradients X = + _ and _ = _-_ -

their derlvativos _ and _X The degree of tile polynomial involved ill tile
_q"

dlsplaeemeut gradients X and _ is quadratic for an initially-straight beam.

The degree of tile _)olynomial involved in tile representation of tile first

See Ref. 28 for an evalua£ion of a fozmulation which in_ludes element _

junction continuity of be,lding strain.
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derlvatlv_s of th_ dbiplacomant qradi_nts _ _--_ _ (_) and

I _J_ , _ + _ (w) is of the first order or llnea_, for an inltlally-

_trai_t b_am (using the 4 DOF/nod_ cublc-cublc element). From Fig. 9o it

is observed that the degree of the polynomials involved in the sp_wlso

strain distribution is (mainly) _ither quadratic or linear.

It is also observed that the largest disc_ntlnuities occur at louations

where bonding strains are largest= at the end of the impulsively-loaded

zone (y = 0.9 in) and at the immediate zone adjacent to the clamped end

(y = 3.8 in to y = 4.0 in). At the clamped zone, a very large strain

discontinuity is evident. The reason for this is that this region

involves high levels of nonlinearity. The strain discontinuity at the

clamped zone is significantly larger with the finite-strain formulation,

which involves a more nonlinear representation of the behavior than the

"small-strain" formulation. It is evident that a finer mesh of finite

elements is needed in this clamped-zone region to represent accurately this

nonlinear behavior. However, time and fund restrictions have prevented a

more thorough study of this matter at this time.

The predicted transient midspan transverse displacement w for each of

these EL-SH-SR predictions is shown in Fig. lO. It is seen that the

finite-strain formulation and small-strain formulation predictions are in

fairly good agreement with each othe_'.

The computing time required for the two formulations for explosively-

impulsed beam CB-4 is displayed conveniently in the following tabulation

for 4000 time steps with a time step size of 0.25 microsecondsl all runs

were conducted on an IBM 370/168 computer with double precision arithmetic.

No. of Gaussian Total No.

Formulation No. of Sta. per Elem. of unknown

FE Spanwise Depth DOF

Small Strain 20 4 4 79

Finite Strain 20 4 4 79
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StraJ n-Dif:_pl. Mat11_ No. of cpt) CP[I (rain) .....l_ol:mu latit_n Relation Tlmo
Matrlg Cyel.et; (DOF) (t.ych.I,]

Small Strain C (Eq.4.90) CM 4(}[10 8.63 27.3 M 10-6

Vinlt_ Strain F (Eq.4.l,16) CM 40D0 ii.07 35.0 x 10-6

The effects on CPU time of the more lengthy expressions used and manipu-

lations required for the finite-strain calculations are evident from an

inspection of the last column. Note here that the efficient "unconven-

tional" fo_ulation of the equations of motion was used for both t/le

small- and finite-strain procedures.

Finally, compared in Fig. ii are finite-strain predictions for the

transient w-displacement at the midspan location of specimen CB-4 for the

same modeling as before but for the two cases in which the 6061-T651

aluminum material is assumed to behave as (a) EL-SH-SR or (b) _.L-SH, where

the latter case assumed no strain rate effect upon the mechanical behavior

of the material. It is seen that the predicted midspan deflection w is

much larger for the EL-SH than for the EL-SH-SR case even though the rate-

sensitivity used for the EL-SH-SR is rather "weak" since large strain-

rates are present. Note that the finlte-strain EL-SH-SR prediction

compares favorably with the observed experimental permanent deformation.

It is evident also that the strains predicted for the finite-strain EL-SH

are much larger than for the finite strain EL-SII-SR case. Accordingly,

the former are not shown since the latter have been displayed and demon-

strate the behavior adequately--and also have been shown to compare

favorably with experiment.

7.2.3 Modeling by Plate Finite Elements

7.2.3.1 Modeling Dgsc_iPtiOn and 0u_tline of Analysis

Impulsively-loaded narrow plate specimen CB-4 was also analyzed by

using a finite-element model consisting of initially-flat plate elements _f

the assumed displacement type [31]. These elements consisted of rectang-

ular flat plate elements with linear in-plane (u,v) and cubic out-of-plane

(w) displacements for tile assumed dlsplacument field; accordingly, each
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corner node has 6 degrees of freedom. To "minimize" tho computations,

only one quarter o_ specimen CB-4 was modolodz _7 unifon_-length elements

oovered the half span, with each clement extending from the midwldth to the

free edge of narrow-plato CB-4. This modeling provides a comparable

number of degrees o_ freedom in the v,w plane as used for the beam-

_lement modeling. For the 4 DOF/node beam element, with 20 elements in the

axial "y" direction, there are [4 x (20+I) - 5) m 79 unrestrained degrees

of freedom, while the llnear-llnear cubic _late element is "equivalent" to
_w _ w

a 3 DOF/node beam element when u = _ = _ = 0 having then [3 x (27+1)-5]

= 79 unrestrained degrees of freedom. Thus, the assembled "unrestrained"

finite element model consisted of 336 DOF, which reduced to 238 DOF by

imposing (i) symmetry conditions along x.= 0 and y = 0 and (2) the ideally-

clamped condition at the end. With this FE model, it turns out that the

maximum natural frequency of this mathematical model is _max = 0.739 x 107

tad/see. Thus, if one were to predict the transient response of this

finite element model by using the very convenient expliclt central-

difference timewise operator, the At required to avoid calculation

instability would be _t g 0.8 2-_-- _ 0.2 microseconds. Since one may
max

need to study the structural response for a time duration of up to perhaps

900 microseconds, one would need to carry out some 4500 solution time steps

on this 238 DOF nonlinear system; this may be viewed in some circles as a

rather substantial calculation.

On the other hand, one might be able to use some other finite-

difference operator which would permit the use of a substantially larger

time step At while still providing "proper _esults". For stiff systems

such as the present one involving large deflections and nonlinear material

behavior with many regions of loadlng_ unloading, reloading, etc., one has

available a number of_finite-difference operators which are

uncondltionally stable (At is not limited by calculation stability or blow

up) for linear sst_response analysis bu__twhich become ill-behaVed for

the present type of nonlinear system if At is "too large". Nevertheless,

* 8w 8w _2w
The DOP are u, v, w, _, _y, and _-_.

290

00000004-TSC08



'l

I

it turns out that some of these operators will p_rmlt on¢_ to use a much

largor At than noedod for the centr_l-differoncQ operator while still

providing transient rosponse prodictlons which comparo favorably with

(converged) eontral-differonce predictions. Bocause those operators are

of tho _m21iclt typo, the solution proeeduro at each time step must employ

eithor (a) itoration (hopefully to convergence) or (b) 0xtrapolation of

"intornal force" information. The latter, of course, represents an approxi-

mation to the correct internal force terms needed for the proper solution;

this approximation becomes worse as one attempts to use a larger and larger

At.

Many iteration methods are available for the solution of simultaneous

nonlinear equations. Unlike single degree-of-freedom nonlinear equations,

always-convergent methods are Just not available for solution of systems of

nonlinear equations. Convergence itself is such a serious problem for

systems of nonlinear equations that if the initial approximation is not

quite close to the solution, the method will not converge. One of the most

simple methods, the method of successive substitution (also called Piccard's
t

method) enjoys linear convergence (under some _onditions). Examples of

higher-order methods are the Newton method, that has quadratic convergence

and the secant or quasi-Newton methods (like the BFGS method [203,204]) that

possess superlinear convergence (which is faster than linear but slower than

quadratic convergence). The higher order methods (like the BFGS or the

Newton methods) use variable-gradient matrices that may become singular

(for example, in the course of unloading in elastic-plastic problems, these

gradients become discontinuous), and may impede convergence of the method.

The computational effort for iteration methods is large, as compared with

extrapolation of the nonlinear internal pseudo forces.

The point at which an iteration method would be competitive computa-

tlonally with the extrapolation method would be for large time step sizes;

however, under those condition, the path-dependency of elastic-plastic

strain-rate-dependent t_ansient response problems could be significantly

lost (because of integrafion error that iteration methods cannot reduce --

see Subsection 6.3.2.2) unless higher order integration rules (llke the
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fourth order Runqo-Kutta method) are u_llized to intoqrato the dlffer_n _
+

tlal equations Of plasticity. Moreover, the use Of a nultably laM

convergence crltorion can give one the illusion of having achlovod

convergence when this has not actually been aecompllshod.

Among the attractive implicit methods are those of Newmark [205],

Houbolt [206], Park [194], and oth_rs. Since studies reported in Rofs. 23,

174, and 194 indicate that the Houbolt method for problems of the present

type provides "well-behaved predictions" for (a) At sizes larger than
1

needed for comparable pezEormance by Newmark 8 m _operator or (b)

comparable to those needed for Park's operator -- and also since the

authors have appropriate computer programs [24,31] available using the

Houbolt operator, it was decided to employ this timewise solution operator

for the CB-4 narrow-plate transient response predictions reported in the

following. Similar studies involving the use of the very attractive

Park operator [194] would be useful, but time and effort constraints have

not permitted this in the present investigation.

In this study, calculations have been carried out to demonstrate the

necessity for using double-precision calculations with the present

solution method when one uses a digital computer with the significant-

figure retention capability of the IBM 370/168 at MIT, which was used for

these calculations. FQr this demonstration, the Houbolt operator with

dt = 1 _seo and linear extrapolation (not iteration) for the "internal

loads" were utilized. Calculations were carried out for both the small-

strain procedure and the finite-strain procedure, and are discussed in

SubsectiOn 7.2.3.2.

Next, a study was made to investigate the use oft

(a) the linear-extrapolation procedure for At Values

ranging from 0.5 to 20 _sec_ and

+However, a subincrementation procedure (see Subsection 5.3.2.5) as used

in this study partly relieves this problem.
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(b) the: urge of it_ratian durinq a glv_n At time f_top--

again for _t values ranqi|tq from fl.5 to 2flB_oo.

BecaUse 6f the use of vary diffc,_nt At value,s, thc_ straln_rate JnfrJ_],a_

tio,l avail_lbla In these variour_ _aleu].at_ons will not be of comparable

accuracy and moan1,_g. Accordingly, for tho_o comparisons, the CB-4

narrow plato material was asnumed to be EL=SH; that is, independent of

strain rata. Only in this way can one make a valid comparison among the

predictions when one uses various fixed time-step sizes At. Thsse

studi_s are discussed in Subsection 7.2.3.3.

Finally, having selected double-precision calculations, an appropri-

ate solution procedure, and an appropriate At, predictions were carried

out to compare small-strain formulation predictions versus flnlte-strain

formulation predictions, and are discussed in Subsection 7.2.3.4.

7.2.3.2 Single-Precision vs Double-Precision Predictions

Stated concisely in the following are the modeling and solu-

tion features employed in these calculations:

Finite Element Model: Quarter plate modeled by 27 flat-plate LLC

elements with 6 DOF/node; consistent mass

matrix.

Material Behavior _ EL-SH-SR with the mechanical sublayer stress-
!

for both Small- _ strain fit given byL
I (44,200 psi, 0.00442)

strain and Finite-

| (s_ , eu) = (49,200psl,o.o75oo)
Strain Calculations) Uo (76,400 psi, O.61500)

-i
Strain rate constants: d = 6500 se_ and

p = 4 for all mechanical sublayers are used

fo_ illustrative purposes.

Timewise Finite _ Houbolt with At = 1.0 microsecond and linear

Difference Opbratorl extrapolation of pseudo-loads.

and SolUtion

Procedure
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_ho constant gtiffnos_ form % o_ th_ _quntlon_ of motion was usod with

tho Houbolt oporator. From _q. 6.90, this o_pron_ion at timo t+_t i_

+ '&t
(7._)

where [M] is the global (constant) mas._._smatrix, [K] .is the usual small

strain, linear-elastic, global (constant) stiffness matrix,{F}t+_t is the

load vector representing prescribed externally-applied distributed or con-

centrated loads, evaluated at time _ = t+Atl and {FNL}t+At is a pseudo-

load vector representing internal forces.

Pot the small-strain _omputational procedure, the "conventional"

form of the equations of motion (Eq. 6.68) was utilised. The vector

{FNL% for the "conventional" formulation is
_-;._t

L.," L,,,,
whe{e {F NLl

q "t+At is a vector arising from 'lt_e_ nonlinear terms in the strain-

equations, and {FL}t+ and {F;L}t+At are pseudo_load vectorsdisplacement
p &t

arising from plastic (small) strains and associated, respectively, with the

linear and n_onlinear terms of the strain-displacement relations. The

reader is reminded that Eq. 7.4 is valid only for small strains.

%Also referred to herein as the modified unconventional form.
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Far ttl_l fJll_.t,_ _itr_.llnaomputntinnal pzDaadurn_ tho "modlfit]d

1 '!uncoI_V,:)l_tic_ fo_n of tho nquntlon_ of _ott.on w_f_ nmplovod. Tlm voctor

{vNL]t+At £_r tlm "modlflod _maonvontl.c,nal" formu].ntlon ir_

wh_o [K] is '['hosa_lj__qlobal (constant) st_i,£[nos_ matrix apl:,oarlng on the

h_£t-hand side 0£ Eq. 7.3, and {l}t+At is the samu pseudo-load vector of

inturnal forces used for the "unconventional" vuctor form o£ the equations

of motion, Eq. 6.72. It turns out that the "modified unconventional"

form o_ t/to oquatlons o£ motion can bo used fez both small and finite

strains, requires less _omputatlon, and is also better conditioned n_or-

ica lly than the "conventional" form (_.q. 7.4, which cannot be used for

finite strains).

Note that the pseudo-load vector {FNL}t+At appearing in Eq.
7.3

depends upon the displacements {q )t+At at timu instant t = t+At, but these

remain to be determined; thus these "forces" are approximated by linearly

extrapolating the known pseudo-forces at two previous time instants t = t,

and t = tlAt (as explained in Subsection 6.4.2.1) as:

This expression has the same inherent order of error as in the

Houbolt operator approximations for both the acceleration (Eq. 5.92) and

the Ve]oclty (Eq. 6.93); hence, it is a consistent approximation of the

pseudo-_oad vector {FNL}£+At.

Note that the pseudo-Eorce extrapolation for the modified _conven-

tional linear e_xtrapolation procedure (MULE) is directly anulo_o_s to that

used for solving _he conventional form of the equations of motion for

small-strain problems-- only the pseudo-force vector {FNL) is extrapolated,



F ......:__-,_._. n_ _ _ _ _ .,_.--_-_.--
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Pinally, eomp,lr,_d in Fig. 14 are the !hli_l_F/_f,_clsion'prodlmtions for

w at (_IY) ;'_((],0) for (I) the rlmal1_straln procedure versus (2) th_

finlt(;_-_]tralnproo(_dur_]. IIero it is apparent th,_t the latter prediction

is much b_tter bt_haved than the former (slneo many fewer oomputatlonn arc

roqui_od for the} "modiflod unconventional" formulation than for the

"conventional" formulation of the equations of motion), but both prodlc-

tions ar_ in serious disa@reemont with experiment. Acoor41ngly, all other

calculations in this work have h%_en performed with do_ble-preeision arith-

metic on the XBM 370/168.

7.2.3.3 Time Increment Size Effects

In using an implicit timewise finlte-difference operator (the

Hot%bolt operator) to solve the modified unconventional equations of motion

for finite strain, one can (1) employ the convenient (linear) "explicit"

extrapolation procedure for the pseUdo-loads or (2) resort to "iteration to

convergence" within each t_une step At before proceeding for the next time

step in the timewise solution process.

LINEAR EXTRAPOLATION

For the m_c_ified unconventional l_inear e_xtrapolation procedure (MULE),

it is evident that this approximation for the pseudo-force vector {FNL}

will become poorer and poorer as At increases. On the other hand, the use

of the largest At which will provide "accurate" transient response

predictions will be highly desirable in order tQ minimize the computing

time and expense for a given time duration in which the transient response

must be predicted so as te provide, for example, the peak transient

strains. To study this "_t effects question", only EL-SH material

behavior is taken ihto account-- since for time-depundent EL-SH-SR

material behavior it is obvious that the time increment size _t will have

a definite effect on the solution behavior. Further, all modeling and

computing features used now are the same as summarized in Subsection

7.2.3.2 except that At values of 0.5, 2, i0_ and 20 _sec are used for the

! finite-strain MULE pZocedure.
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c_m|part_d in Fig. 15 are finitt_-t_train MUI_ predictions of the

trant_l,_nt w di_iplac0m_nt at th¢l plate-c¢_nt(ir location (x,y) _ (0,0) for

At values of 0.5, 2, ltl, and 20 mlcrot_ucondn. Fur At _ 0.5 and 2 mi(,re-

•'_uondL_, the predtct(_d transient displacement appears to be relatively

w_ll behaved for the first 300 |Isec. floweret, for At = i0 and 20 micro-

s(_conds, the pseudo-forces have been badly overestimated and the transient

response is seen to deviate substantially from the "proper" behavior.

For At = i(% _Isec this predicted _ranslent w displacement became "very

smooth" and peaked at a value of about 2.01 in at about 740 llsec; for At =

20 _Isec this predicted transient response was similar but a peak value of

1.82 in was reached at t --"700 _ISeC.

Observe from Fig. 15 t/_at after 300 _Isec there are significant differ-

ences between the At = 0.5 and 2 microseconds predictions. Also, observe

that the transient w displacement ab the plate center location does not

grow monotonically with increasing time increment Size _t. In fact, the

peak transient displacement prediction is smaller for At = 2 _ISeC than for

At = 0.5 |Isec; it is larger for At = I0 _sec than for _t = 2 _Lsec and

_t = O.5 )Isec; and it is smaller for _t = 20 _Isec than for _t = i0 _sec.

Therefore, no monotonic exponential instability is observed, but ra_her the

predictions become less and less accurate as _t increases--in an

oscillator_ form. This agrees with the results obtained by McNamara [165]

for the Houbolt operator, but with a different formulation of the equations

of motion and for a p_oblem with geometrical nonlinearities mld with linear

material behavior.

These calculations confirm the expectation that largo At values will

lead to poor estimates of the proper pseudo-forces when the linear extrapo-

lation estimate is used. Stticklin et al. [162] observed that quadratic-

extrapolatioI_ predictions lead _o less well-behaved results than do linear-

extt_apolation prediet[ons_ for a given "not-too-small" time step size _t,

for nonlinear dynamic problem,s. Of cbursu, one could employ higher order

extrapolation estimates for the pseud_)-forces at the cost of additional

storage and computing; however, £he btnlefits of such procod_ireu are

unc¢_rtain and may well be problem-dependent.
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Hence, in view of the MULE predictions shown (i) here for EL-SH

behavior with At values of 0.5 and 2 _sec and (2) in Subsection 7.2.3..2 for

EL-SH-SR predictions with a At value of I _sec, it appears that plausible

well-behaved transient responses are provided by the flnite-straln Houbolt-

i MULE procedur_ for At Values of at least up to about 1 _ssc. However,"
there is no proof that one has obtained essentially a "converged" predic-

tion; conversely, it is certain that such has not been achieved, but the

predicted response might very well be close enough to convergence for all

practical engineering purposes. That assessment could be made, if

required, by using the central-difference timewise solution operator

together with a suitably small At to solve the unconventional form of the

equations of motion; for this case, a At of about 0.2 microseconds would

be required. Whereas with MULE and the Houbolt operator, an "adequate"

pre4iction apparently is achieved by using a 5 times larger Att namely,

At _" 1 _sec--but the computational saving is not as large as this factor

because of the greater required storage and computation needed for :Io!_bolt-

[_ MULE vs the central-difference scheme described.

Finally, the merit of Houbolt-MULE becomes evident when one considers

transient response problems of the present type but with a finite element

model involving perhaps i0 times as many DeF. For such a case the

required At for a central-difference solution _ight well be 10-3 _sec

whereas a satisfactory Houbolt-MULE solution might need a At of only about

1 ]_sec.

ITERATION SOLUTION

Compared here are predicted transient displacements of _mpulsively-

loaded narrow-plate CB-4 specimen obtained by (i) iteratioa as required

during each _t time interval during Houbolt operator solution of the

modified unconventional equations of motion for finite strain (as
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explained in S_section 6.4.2.2) and (2) the Houbolt-MULE (non-iterativ_

linear extrapolation) procodure.

Shown on Fig. 16 are Houbolt oquilibrium-lt_ratlon and Houbolt-MULE

transient w-displacument solutions at (x,y) = (0,0) for the 27-element

plate modol of specimen CB-4, both with At = 0.5 _Lseu. Tho iteration

convergence criterion used in this case was (see Eq. 6.117),

_(ll[ II) II?<

'Jl{q*n }}t+_t l] is the Euclidean L2) norm of the vector

{q* n}t+At. Superscripts n and n+l denote iterations n and n+l during a

given time step interval _t.

During a response time of 294.5 _seo (589 At cycles), 41 iteration

loops (or 7% of the total number of iteration loops) did converge to a

mean ratio of _ = 4.7 x 10-5 (with a standard deviation of 2.7 x 10"5).

There were 3.4 equilibrium iterations in the mean (with a standard

deviation of 1.2) during these 41 iteration loops that satisfied criterion

Eq. 7.']. However, as was expected, most iteration loops (548 iteration

loops or 93% of the total number of iteration loops) could not satisfy the

convergence criterion Eq. 7.7. In these cases the procedure outlined in

Eqs. 6.120 - 6.122 was employed. As soon as divergence of the iteration

procedure was 4etected, the iteration loops were stopped (after a mean

ntm%ber of 4.0 iterations with a'standard deviation of 1.4), and the

previous "convergent" estimate was taken to be the "equilibrium" solution

for that time step. This previous "converged" estimate satisfied a mean

convergence ratio of @ = 2.7 x 10-3 (with a standard deviation of 9.3 x

10-3). From this figure, the iteration solution is seen to differ some-

what from the Houboit-MULE linear extrapolation prediction.

Also see Eq. 6.121.
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A further comparison of these predictions is given in Fig. 17 where

included also are aentral-dlfference predictions with At _ 0.25 psee for

i the half spa, of spoclmen CB-4 modeled by 20 4 DOF/node beam elements.

Although the finite element models used are dlfferQnt, it is interesting

to note that the explicit contral-dlfferenee beam prediction compares very

well with the Houbolt-MULE linear extrapolation prediction, and the

modified successive substitution iteration method seems not to have

"converged" to the correct solution.

Similar plate finite-element flnite-straln equilibrium iteration vs

Houbolt-MULE linear-extrapolation predictions are shown on Fig. 18a for

At = 2 _sec. These two predictions are very close to each other for the

300 microsecond time span shown. Later on in time, however, as Fig. 18b

shows, these two predictions exhibit pronottnced differences.

Finally, for a _t of 20 _sec, Houbolt-MULE linear-extrapolatlon

predictions as well as equilibrium iteration solutions obtained by using

two different iteration convergence criteria are shown in Fig. 19_ Also

shown in Fig. 19 is the Houbolt-MULE linear-extrapolation pred/ction for

the transient w at (x,y) = (0,0) using a _t of 0.5 _sec; this prediction

should be "accurate" and serves as a yardstick against which to _easure the

"worth" of the other predictions shown. Of the two At = 20 psec predic-

tions, only the equilibrium iteration scheme in which

is used for "iteration convergence" appears to be plausible over the entire

time span shown. Even this prediction exhibits an "excessively smooth"

transient response profile, and also seriously overpredicts the permanent

deflection. Clearly At = 20 psec is much too large to provide an accept-

able transient response prediction for this structural response pkoblem.

The present (modified successive substitution) iteration procedur_
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doo_ no tprovidc _ccur_tc results. Further, the _ttendant computational

expense for the itorntion scheme i_ much l_rg_r f_ _ !'glven prediction

_ccur_cy" than thQ Houbolt-MULE llnear_oxtrapolatic,_ procedure. It would

bQ useful to investigate the efficiency and practi Jallty of employlng the

SPGS iteratlon method cited in Subsection 7.2.3.1.

7.2.3.4 Small-Strain, vs Pinite-StralnPredictigns

Having determined the necessity o£ using double-precision arith-

metic for the present calculatlons on the IBM 370 and the superior

accuracy�efficiency of using the Houbolt operate _ ",ith llnear extrapolation

(compared with the iteration schemes studied), ca_/lations for narrow-

plate specimen CB-4 were then carried out using the Houbolt operator and

llnear extrapolation with a conservative dt of i _se¢. Stated concisely,

used were_

Houbolt Operator with Linear extrapolation

Double Precision IBM 370/168

27 LLC Elements for the Quarter Plate

Consistent Mass Matrix

EL-SH-SR wlth d _ 6500 sec "I, p _ 4 and the
s

E* Piecewise-Linear Fit

TUO e U

• given in subsection ?.2.3.2

At = 1 microsecond

SMALL STRAIN _ yon K_rm_n' s Straln-Displacement Equations

for Plates (see Eqs. 5.118 - 5.123)

Small-Strain Plasticity Theory

"Comventional" Formulation

FINITE STRAIN: Finite-Strain Strain-Displacement Equations

(see Eqs. 5.118 - 5.123)

Finite-Straln Plastlcity Theory

"Modified Unconventlonal" Formulation

For the finite-strain predictions, the terms containing the second-order

derivatives of u and v in the strain-displacement equations. Eqs. 5.118 -

5.123, are obviously equal to zero for the assumed dlsplacement element
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whleh has linear (u) - linear (v) - cuble (w). Although for general

purposes a hlgh_r order (ct_bie-cubio-c_ble) plate el_ment should be used to

treat arbitrarily-largt_ rotation problems, studies conduet_d in Ruf. 28

reveal that the second-order derlvat_ves of the in-plane displacements u and

and v hay0 a very small influence in the predicted strains for the present

kind of problems (Impulsively-loaded narrow-plate CB-4 being discussed now

and fragment-impacted narrow-plat _.CB-18 to be discussed later).

Predictions for both the small-strain procedure and the finite-strain

procedure were made, and are compared here with each other and/or with

experimentally-measured data for the permanent deflection and for transient

strains at various midwidth spanwise stations on the uppeW (non-loaded)

and/or on the lower (loaded) surface of explosively-impulsed narrow-plate

CB-4.

The computing time on the IBM 370/168 for 900 _sec with the same

At = I _sec and the Houbolt operator was"

FINITE STRAIN ("MODIFIED UNCONVENTIONAL"

FORMULATION) _ 71 rain

SMALL STRAIN ("CONVENTIONAL"

FORMULATION) _ 70 min

Shown in Fig. 20 are the small-straln and the flnite-strain predic-

tions of the w displacement at the plate-center location (x,y) = (0,0);

shown also is the observed permanent deflection at t/lis location. It is

seen that these two predictions compare very well with each other, and

apparently also fairly well with the experimental permanent deflection.

This displacement vs time comparison is shown he_e since this type of

comparison is an almost-standard one found in the open technical literature;

howew_r, it is a notoriously insensitive measure of the prediction accuracy

of _ me_hod for the present type of geometrically and materially non-

linear elastic-plastic transient response problem.

A much more meaningful and sensitive compari.,_on involves predicted vs

measured strains since for ductile materials the strains are a much better

/ indicator of impending rupture than are displacements. Accordingly,
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shown in the following figures are the small-strain and finite-strain
* 2

predictions of the spanwise-direction Green strain Y2 on the upper and/or

the lower surface of specimen CB-4 (see Fig. 8) at the indicated stations

vs the measured strains

2

Time Histories of 72 on Surface
Figure Station IYl, (in)

Upper (U) or Lower (L)

Predicted M_asu=ea

22a,22b 4.00 U,L --

22c 3.80 L L

22d 3.80 U U

22e 3.00 U U

22f 2.20 U U

22g 1.40 U U

22h,22i 0.0 U,L --

At _he clamped end station (Ixl, IYl) = (0,4.00 in), at the lower

strain 7_ = +0.18 is predicted by the small-(loaded) surface, a maximum

strain procedure; see Figs. 22a and 22b.

stationlyL 3.8inisneartheclampedend(lYl= 4.00in);hence,
2

the strain 72 on each surface (see Figs. 22c and 22d) consists of a sig-

nificant "bending contribution" in addition to the "membrane part" of the

strain. Thus, as expected, this strain exhibits a larger tensile

transient peak value at the lower (1_aded) surface than on the upper (non-

loaded) surface. Further, On this lower surface where larger strains

occur, it is seen that the consistent finite-strain prediction differs

significantly from the small-stxain prediction, and the finite-strain

prediction agrees much be_ter with experiment than does the latter. On

the upper surface at IYl = 3.80 in where smaller levels of strain occur,

*Or 722 , since beam CB-4 is initially flat, 722 2= 7 2 = 722.

**
To assist in interpreting these results, Fig. 21 shows a schematic of the

finite element model and element numbering.
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tlloJ_OtWO predictions are much ulo_r to each _thor (s_ Fig. 22d1. _hb

larq_ strains that _)_cur at th_ lower (ioadc_d) surface, at the elnm|xu] _nd

lyl= 4.00,Ixl 000  ery i,lf ,, n oo.th,boh vlorof
the strains at 0.2 in from the clamped end, the finite strains results

being much closer to the experimental values.

On the upper surface at station y = 3.00 in, those two predictions

compare well with each oth0r in an overall sense as _eon from Fig. 22e,

but the peak strain predicted by the "proper" finite-straln prediction

procedure is about 20 per cent larger than the small-straln calculation

result. The experimental value, however, appears to be even larger up to

the instant at which the strain trace was lost--probably because of broken

lead wires. Note that the finite strain results are closer to the

predicted strains of the beam finite elements (Fig..9d).

At station [Y[ = 2.20 in, the strains consist mainly of membrane

behavior with a small bending contribution. Figure 22f shows that tile

finlte-strain and the. small-strain predictions for the upper-surface

strain are close to each other. However, the finite-strain prediction is

again closer to the overall behavior predicted by the beam finite element

modeling (Fig. 9c) since it does not exhibit the strange behavior at

t = 300 _tsec that the small-strain results display.

Station [y[ = 1.40 in is nearer than any of the others to the end

(}y] = 0.90 in) of the spanwise region to which uniform lateral impulse

loading was applied. Hence, one expects to see an important bending

contribution here in addition to the _omlnant membrane behavior; accord-

ingly, somewhat greater differences are seen and are expected here between

finite-strain and small-stt'ain prt_dictions than at ['_I = 2.20 in--which is

more remote from station Ix[ = 0.90 in. Larger strains are predicted by

the flnitu-straln than by the small-strain procedure at Ix[ = 1.40 in as

seen from Fig.._2g.. llowever, it appears that tile p£_ak experimental

strain is even la_'ger--possibly by some 30 pe_" cent than the (butter)

flnite-strain procedure, predlcts.

Finally, at the plate-center (m_dspan) station (x,y) _ (0,0), one

observes from Figs. 22h and 22i for the upper surface and the lower surface,,

3O5
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resp_ctlvcly, that there is carly-tlm_ agreement between the finito-straln

and the small-strain predictions. Beyond abol,t 200 microseconds, however,

there are some distinct diffo=ences in the character of those predictions.

Observe that both the small-straln and the finite-strain predictions at thei

I plate center using plate finite-element modeling agree with the finite-
strain predictions at the same location when using beam finite-element

modeling (Fig. 9a), in that they predict a reverse bending that occurs

between I00 _sec and 400 _sec.

Additionally, let it be noted that although many of the traces of the

experimentally-measured strains on specimen CB-4 were terminated before the

peak values were reached, it appears that the experimental peaks would have

been somewhat larger in nearly every case than predicted by the plate

finite elements. The cubic-cubic beam finite elements show better strain

results. Improved predictions could be achieved by using a greater num-

ber of the present (too stiff) linear-linear-cubic (LLC) assttmed-displace-

ment elements or by using the fundamentally-better but more costly cubic-

cubic-cubic (CCC) assumed-displacement clement for the u, v, w displace-

ment fieids. As shown in Refs. 23 and 28 and numerous other references,

the use of balanced-polynomial assumed-displacement elements leads to

predictions of superior accuracy for the present kind of problems dompared

with unbalanced-polynomial elements. An extension of the present investi-

gation, therefore, is recommended to utilize and assess the benefits to be

achieved by the use of CCC elements for finite-strain predictions in the

present type of nonlinear transient response problem.

7.3 Impulsively-Loade d Free Circular Ring

Sought is a more stringent test and evaluation of the present finite-

strain p_edictions vs small-strain predictions vs experiment. This is

afforded by the experimental data from Ref. 207 for an impulsiVely-loaded

free initially-circular alumlnum ring since

(1) larger _strains are present (and over a larger

circumferential region) l

{2) much larger rutations are present_ and

(3) bending rathe_ than stretching dominates the response of

the structure.
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7,3.1 ProbLem Definition

An reported in Rof. 207 a frQo init_ally-cir0ular 6061-T6 alu_inu,l

ring (called FlS) of _.937_in mlds_rface radius, O.l_4-1n thickness, and

a 1.195=in width was loaded impulsively uniformly over a 120-degree

sector (centered at 0 _ 0°) of its oxtorlor, resulting in an inward initial

velocity of 6853 In�sou for that loaded region. High speed photographlc

measurements were made of thQ deforming ring. Also, transient strains

were measured at various circumferential stations on the inner surface and/

or the out_r surfac_ of the ring. Static uniaxlal stress-strain tests

were conducted on coupons of the 6061-T6 aluminum from which the ring was

made. The mass per unit volume of this material is assumed to be

Pc = 0.0002526 (ib-sec2)/in 4.

For the small-strain analysis, strain-displacement relation Type C

which is valid for arbitrarily large rotations but only small strains was

employed and the following [23,28] stress-strain pairs (Tu[_u) were used
O

for mechanical sublayer fitting cf the static stress-strain data_ (Tu,Yu) =

(42,000 psi, 0.00476 in/in) and (58,219 psi, 0.2000 in/in). The mat_rlal

was assumed to be strain rate sensitive; strain rate constant values
-I

d = 6500 sec and p = 4 were assumed for illustrative purposes.

For the finite-strain analysis, strain-displacement relation Type F

which is valid for finite strains and finite £otations was used and the

static uniaxial stress-strain data were recast into T Vs _ where
, u u

Tu = OE (1 + Eu) and eu = £n(l + Eu). A piecewise linear fit of this

T °vs 5* data of Eel. 207 was made as follows for use in the mechanical-
uo u

sublayer material model_ (Tu , e_) = (42,974 psi, 0.0040679), (52,150 psi,

0.07000), and (107,383 psi, _.615). For this calculation also, it was

assumed f_r illustrative purposes that the material strain rate constants

were d = 6500 sec - and p = 4.

7.3.2 compariso_ of Small-Straln vs Finite-Strain Predictions

For economy and convenience reasons in both calculatlons_ advantage

was taken of symmetry by modeling the half ring with 18 uniform-length

CC 4DOF/node curved-ring elements, thereby resulting in 72 unknown DeF.

The finlt(_ element properties were evaluated numerically by Gaussian
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quadrature with 4 spanwiso and 4 dopthwis_ Gaunsian ntations in naeh

,,]omont. A consifltont roans matrix WaS used, Both calculations employnd

thn co,._ral-diff(_ronuo tim_wiflo operator with At = 0.6 mlcros_cond_ fQr

thtr-_ model _max _' 2.573(I X 106 rad/_nc, fie 0.8 (2/mmax) _ 0.62 _flo_ I:nfl n_t

bo,_n o)tcondr_d by tht_ so loctud At.

comparJson_1 of. prod,!,ct¢,d clzuumf_rontial C,roon ntra_n y2 for both the2

[Jmall-straln and the £1nito-straln procedure are shown VUrnufl oath oth_ir

and/or uxporimont in the £ollowJ,ng indicated figures at various clrcum-

ferontial locations 0 on th(_ inner (non-loaded) sue'face or on the outer

(loaded) surface.

Surface

Figure 0-Location (deg, min) Inner Outer

23a 92° 30' X

23b 92° 30' X

23C 87° 20' X

23d 86° I0' X

23e 176 ° X

23f 16°

23g 16° X

At all of these locations except for 0 = 16O, the predicted and measured

strains indicate the presence of a very significant bending cont_ribution--

the inner-surface and the outer-surface strains are of significant magni-

tude and of opposite sign. It zs seen that finite-strain predictions in

nearly all cases differ consi3erably f_om the small-strain predictions, and

also are in b_tter agreement with experiment than are the latte_ predictions.

At @ = 16°, note that membrane compression behavior is domln_nt--at
2 2

both surfaces the predicted y2 is compression and the values of T2 on the

inner surface differ little from those on the outer surface. At these

@ = 16° inner-surface and outer-surface locations, it is seen that the

finite-strain and the small-strain predictions are in better agzeement with

each other than at the other locations - where bending behavior is very

prominent.
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Shown in Fig. 24 is a eor_pnrison of mnanurnmontn vn predictions of

tlmo |lifltoryof the rlng'H midplan_ ef_ntnrllno soparatinn diotancn. _oth

pr_ictions are in fairly good agrn_mon_ with muanur_d values. The finltn-

strain prodlet_an nhQwn a f_mall_r _M£r_me s_paratlun d_r_tan_, than thn

nmall-ntraln prudlut_on and nc:eur_ at abnut 1250 m ioronnc_nd_l whi],n th_It

for the nmall-_]tra;ln @_1_ou_ation cow,urn at about 1400 _Isoc.

Note that near 1500 _{;o, th{; ring in in a severely do_orm_d utat_,.

At this coIld_,tion, it iS o_ some i|,turost to oxa_nine tho ci_.ct_|feruntla]
2

distribution of the circumferential strain Y2 along both the out_r sur_at,_e

and the inner _urface. Finite-strain predictions for this information a:_

well as measured values are shown in Fig. 25. It is seen that in the

r_gion 3 o _ @ _ 1050 there are vary sov_ro spatial gradients in the strain

along each surface. Regions of (a) mainly membrane, (b) mainly bending,

au_d (c) combined behavior are evident. Despite the severe spatial

gradients in t_e stcain, it is seen that the finite-strain predictions ar_

in reasonably good a_reem_nt with measurements at this time instant.

7.3.3 Comments

This impulsively-loaded free initially-circular ring is of special

interest in the present finiLc-strain study since not only are strains of

significant magnitude produced but also cez tain regions of the ring under-

go very large rotations--conditions which a_e accommodated properly in

the present theory a_d analysis. NOW one finds significantly improved

qualitative and quantitative agreement between measurements and finite-

strain predictions compared with the former small-strain predictions.

The large differences between the small-strain and the f.4nite-strain

predictions at @ = 92° 30', @ = 87° 20', and @ = 86° I0' take place
,

because these locations are close to a region whare compressive strains

of more than 14% are present, and hence these locations are also affected

appreciabi y.

Finally, note that in both cases the vector (unconventional) form of

the equations of motion was Used and solved with the timewise central-

difference operator.

,
At @ "_60 °.
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7,4 Impulnlw_ly_LoadodS_Uar_ Thin _lat Plato

7,4,1 Problom Doflnition

Ao _oportod in Rof, _. _quarn thin 6061_T651 _lu_In_ f].atpano]._

(nomln_lly 0,060 by 8,00 by 8,00 in -- _oo Fig, _6) with o11 four nldoo

ic)oally olompod wo_o ouhjoe_od to Impu_t_lw_ 1o_dlnq on tho 1owor nurfacn

ow_c a 2-in by R-In ¢oglon contortedat tho ponol_contor location

(x,y) _ (0,0). A B_tmmatl_ o_ t TM_._oxt_orlmont _o given An _'Ig, 27

Selected for oxaminatlon hero is clamped panel opoclmon CP-2! its

dimensions are 0.06_3 in by 8.00 in by 8.00 in. The explosively-imparted

Impulse rosultQd in an "Initlal velocity" o_ 16,325 _n/soc for the R-in

by 2-in HE-loaded region [2]. This condition produced a very large

permanent do£1ection of the panel, measurements _or which are reported

in Rsf. 2. In addition, a portion of the upper surface of specimen CP-2

had on it a mechanically lightly-scribed _losely-spaced grid whose pre-

test a_d post-test spacings were measured, thereby providing permanent

relative elongation data. Also, at various (x,y) locations on the upper

surface .at indicated orientations 0 (see Fig. 26), high-elongation strain

gages were attached and used to measure transient relative elongations_

these tra_slent strains were displayed and recorded photographically from

oscilloscopes. Finally, permanent relative elongations were measured

from all surviving strain qagss.

This problem provides a well-d_fined inihial-value problem for a 3-D

structural response situation wherein measurements have been made success-

fully of transient strains as well as large permanent deflections and

strains. Moreover, the maximum permanent strains produced are very close

to the rupture threshold_ in fact near (x,y) = (-.0.65%n, -0.7 to +0.7 in)

incipient cracking occurred. At a corresponding location (i.e. x = +0.65

in and -0.7 < y < +0.7 in) very severe straining but no evidence of

cracking was observed. Accordingly, specimen CP-2 serves as a stringent

test of the acuuracy and reliability of the present finite-straln formula-

tion and calculation procedure.
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7.___.2Comparison _f Finito_Straln Predictions vs. Experiment

For computational economy and offlclen_y, advantage was txlkon of

double symmetry for this CP-2 plato problem! hence, only one quarter of

the plato was modeled by finito elements. The resulting ii by ii mesh

o£ 121 quadrilateral flat-plate LLC uloments Is shown in'Fig. 28, includ-

ing element dlmonslons, node numbering, and element numbering. Note that

the impulsively-loaded 1-in by 1-in quartar-plate region centered at

(x,y) = (0,0) has been modeled by 4.5 elements in each direction. Thus,

the assen%bled-struoture nodes lying inside this dotted region account

for the plate mass to which was imparted a uniform w-direction velocity

& = 16,325 in/see; accordingly, e0ch of the cited nodes was given thiso

%, thereby defining an initial kinetic energy (KE) O for both the actual

plate and the finite-element model of the plat e to be 8,402 in-lb, where

the 6061-T651 aluminum materlal is assumed to have a mass per unit initial

volume Pc of 0.000253828 (ib-sec2)/in 4.

With the available funds and computing system, this ii by ii mesh

of finite elements is about the largest feasible size. The .222-in by

.222-in element size selected for the impulsively-loaded region where

severe straining occurs was expected to be nearly adequate, although

ccc elements rather than the present LLC elements Would provide a much

better rupresentation of the behavior. Also, a continuation of this

element size to (x,y) = (2,2) would have permitted a better modeling of

the expected strain behavior in this region, however, the resulting total

number of degrees of freedom and computer storage would have exceeded

that currently "allowable" at the computer facility used. Thus, a

_oarser mesh was used beyond (x,y) = (i. iii, i.iii), as indicated in

Fig. 28. Hence, the selected finite-element mesh resulted in a total

o£ 144 nodes at 6 DOP/Node or 864 DeF. Since 23 nodes at 6 DOF/Node

are ideally-clamped (along x = 4, y = 4), a total of 20 nodes involve

symmetry at 3 [mF/Node, and the center node at (x,y) = (0,0) has double

symmetry imposed at 5 DOF/Node, a total of 203 restrained DOF are

involved. Henc_ the total ntumber of unknown DOF = 864-203 = 661 DeF.
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As re_orted in Rof. 2, static unlaxial stress-straln measurements

were conducted on coupons of matorlal whoso axes were (l) parallel

(longitudinal, L) with or (2) porpondloular (transverse, T) to the plate-

roll direction o_ thL_ thick-plate stock of 6061-T651 alt_ainummaterial

from which specimen cP-2 was prepared! the x and the y dircctlon of

spoclmen _)-2 corresponds, respectively, to the T and the L direction.

These static stress-strain tests revealed that this 6061-T651 plato-stock

material is not exactly isotroplc, as Figs. 29a and 29b of Ref.2 show for

the L- and the T-direction, respectively. However, since the analysis

and the computer program employed assume that initially the material is

_u=!_ (l+s u)vs.isotropic, the cited Ref. 2 data were recast into -- Ao

Z*u = Zn (i + Eu) and the average data were fitted in a piecewise-linear

fashion by the following (Tu ,_) pairs for use in the mechanlcal-sublayer

model: (Tu_ _) - (0,0), (4_,000 psi, .0045), (52,400 psi, .0960), and

(72,000 psi, .585).

Note should be taken of additional informat[on pertaining to the

"non-isotropic" character of this 6061-T651 aluminum plate material.

First, static tensile tests of coupons revealed that the static relative

elongations at fracture were about .75 and .40 for the L and T specimens,

respectively; hence, the T-direction exhibits rupture at a substantially

smaller level of strain than does the L-direction. Accordingly, incipient

rupturing of "T-direction fibers" in a plate specimen such as CP-2 would

be expected first before rupturing of "L-direction" fibers; this indeed

was the case for specimen CP-2 which exhibited threshold rupturing of

T-directlon material at x _ -0.65 in along y = -.70 to m y = +.70 in.

Because of the very severe impulsive loading to which specimen CP-2

was subjected, certain regions of this specimen will experience very high

strain rates at least at early times. Thus, even though the 6061-T651

aluminum might not be particularly straln-rate sensitive, one expects

nevertheless a significant effect of the strain rate on the transient

structural response. Accordingly, two calculations were carried out

(a) one for zero strain-rate sensitivity: _ t p = 0 or EL-SH and (b)
-i

EL-SH-SR where the strain rate parameter values assumed were d = 6500 sec
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I
and p = 4. For case (a) calculations for 600 microseaonds of structural

respons9 were carried out, but only 300 _sec for case (b) because of the

computational expon_e involved. For this FE model, it was found that

_ax _ "354328x1°7 red/see; hence, 0.8 (2/_ma x) _ 0.452 _soc.

Finally, it should be noted _at the present LLC assumed displacement

element is too stiff and displays only a state of constant displacement

gradients+; a higher order element such as a CCC would be better from the

viewpoint of accuracy as well as reducing roundoff error but time has not

permitted including that type of better element in the present study.

7.4.2.2 Transient Strain Comparisons and Transient Displacements

In the following listed figures, measured transient relative elonga-

tions at the indicated (x,y) locations and accompanying 8-orientations

on the upper (non-loaded) surface of flat-panel specimen CP-2 are con_ared

with finite-strain predictions obtained from a timewise solution of the

modified u_nconventional equations of motion together with l_inear e_xtrapola-

tion of the pseudo loads (MULE) and the use of the Houbolt operator with

At = 1.0 _sec:

U_per-Surface Locatio_ Distance from Strain Gage Data [2] .....
Plate Center Peak

Figure x(in) y(in) @(deg) (in) Gage No. Transient

Rel. Elong.

(per cent)

29a 0 1.50 90 1.50 3, 18, 5.3, 6.7

29b 0 2.00 90 R.O0 4 2.7

29c 1.061 1.061 45 1.50 6 6.1

29d 1.414 1.414 45 2.00 - -

29e 1.50 1.50 45 2.121 7 2.2

29f 2.00 2.00 45 2.828 8 1.03

*Gage 18 was located at (x,y,@) = (0, -1.50 in, 270 d_g.)

Figures 29a and 29b show predicted (EL-SH and EL-SH-SR) and measured

transient relative elongations on the upper surface of specimen CP-2 along

the @ = 90-dog. direction at (x,y) = (0, 1.50) and (0_ 2.00 in), respec-
e

tively. Since the Fig. 29b location is at a greater distance from the

+The LLC assumed-displacement element used provides displacement gradients

u and v which are constant in the x direction, and displacement

i. g_adientsX ,XU,y and V,y whiuh are constant in the y direction.
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plate _entor than the Fig. 29a io_atlon, one oxpe_t_ for thi_1 problem

that the p_ak transient strain at the Fig. 29b location will be signifi-

cantly smaller than that _or the Fig. 29a location. Both measurements

and predictions confirm this oxpectatlon. For the (x,y) _ (0, 1.50)

location for the Fig. 29a display, one sees that the peak predicted

relative elongation for the EL-SH calculation is about 15 per cent and

occurs at about 100 |Isec, whereas the peak measured values are about 5.2

and 6.2 for gages 3 and 18, respectively, and occurred at about 85 _Isec.

However, the EL-SH-SR early peak predicted is about 6.9 per cent and

occurs at about 60 Usec. Hence, the EL-SH prediction appears to over-

estimate the magnitude of this early peak very substantially, whereas

the EL-SH-SR prediction is in reasonably good agreement with the measured

early _ak. Note that although the measured relative elongation traces

were obtained successfully only to about 150 _sec, the EL-SH-SR predicted

transient response appears to be in good agreement both qualitatively and

quantitatively with the measured responses.

At the more distant location (x,y,e) = (0, 2.00 in, 90 deg.), the

EL-SH and the EL-SH-SR prediction give time histories in good qualitative

and quantitative agreement with each other. Further, these two finite-

strain predictions are in fairly good agrement with the measured transient

response data (see Fig. 29b). Also, the longer duration EL-SH prediction

indicates that a predicted permanent relative elongation here would be

about 2.5 per cent; the measured [2] permanent relative elongation at

that location was i.8 per cent.

Figures 29c, 29d, 29e, and 29f pertain to measured and predicted

upper-surface transient relative elongations along a ray at 8 = 45 deg

from the plate center at distances, respectively, of 1.50, 2.00, 2.121,

and 2.828 inches. At these locations the peak and permanent relative

elongations are expected to decrease at these 4 "successively moMe distant

locations"; the measured data show this to be the case_ as the above-

tabulated measured peaks show.

Note that the measured peak relative elo_Igation at 1.50 in f_om the

plate center along 8 = 90 deg and 0 = 45 deg _see Fig. 29c) are in close
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aqr_oment! gag_ 3 and 18 at O = go deg indluato, rospoetiv_ly, 5.3 and

6.7 per cent while gage_ 6 at 0 _ 45 deg indicates a peak of about 6.1 per

cont. Figure 29e also shows that the EL-S,-SR transi_nt response prodle-

tlon i_l in muel] bett_r agreement wi th the measured response than is the

ES-SH prediction.

Observe from Figs. 29a a,d 29a, whore both locations are 1.50 in

f_om the plato oonter but the former is oriented at 8 = 90 dog while the

latter is oriented at 8 = 45 deg, that the general magnitude ef the

measured relative elongation time histories is "idle same" but the early

portion of the time history at these two "equivalent locations" is

distinctly different. Note that the BL-SH-SR prediction also exhibits

this qualitatively different early-tlme respense -- in agreement with

measurements. From Fig. 29c where a "measured strain trace" was obtained

from 0 to about 340 _sec, one sees that t/%e peak (6.1 per cent) was

reached before 150 _sec and the strain level changed very little there-

after. It is expected that had this trace been obtained for a much

longer duration, very little change in this "sabsequent" strain level

would have been seen; this is consistent with the fact that t/lis strain

gage showed a permanent relative elongation of 5.4 per cent at this

locatlon.

At a 2-1n distance from the plate center, Fig 291) shows measured and

predicted transient relative elongations at (x,y,8) = (0, 2.00 in, 90 deg)

while Fig. 29d shows only predictions at (x,y,8) = (1.414, 1.414 in,

45 deg). For the former, generally good theoretical-experimental agree-

ment is observed; note also that the measured peak (a.7 per cent) is

reached before 170 _sec and the subsequent strain level does not change

very much, but the predictions would indicate a somewhat larger value.

At the Fig. 29d 2-in location (along 8 = 45 deg) no transient response

measurement was obtained (only a permanent relative elongation of 2.5 per

cent was measured), but the EL-SH and EL-SH-SR predictions appear to be

plausible qualitatively compared with the Fig. 29e predictions at the

1.50 in distance along 8 = 45 deg. However, the "predicted peiJmanent

strain levels" are much higher th_ one expects (and measure_) at t/lis

2.00-in leeation.
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Fiquro 29e shows measurements and prndictions at a somewhat qreater

distance (2.12 in) from t/lo plate oQntor along 0 _ 45 dng. Here the

mt_asured strain trace rt_aoh_s a peak (z 2.2 per cent) before about 170

_soc and changers its l_vol very little thoreafter_ this gage gavc_ a

i permanent relative t]longatlon of I. 7 per cent. The EL-SH-SR prediction

I to be plausible for .the first 200 of the 300 duration
appears perhaps _soc

shown; but the "steady level" achieved before 200 _tBac is at about 4 per

cent strain level (vs. about 2 per cent experimentally). On the other

hand, the RL-SH prediction shows a peak strain level (at about 300 _sec)

which is significantly larger than that of this same EL-SH prediction at

the closer-in 2.00-in location shown in Pig. 29d. Hence, it is apparent

that at these "more distant locations", the EL-SH calculation is exhibit-

ing a numerical deterioration.

Pronounced evidence of this "late time" numerical deterioration is

exhibited in Fig. 29f where the measured transient relative elongation

at the 2.828-in distance_ (x,y,0) = (2.00, 2.00 in, 45 dog) is shown

and compared with EL-SH and EL-SH-SR predictions at this location.

Experimentally, a peak strain of about 1.03 per cent was reached at about

220 _sec, and the strain level changed very little thereafter. On the

other hand, at this location the relative elongation predicted by the

EL-SH calculations behaves plausibly and exhibits a reasonable level of

strain for about the first 200 _,ec, but then exhibits an almost-

Qxponential growth with time -- reaching 20 per cent at about 500 _sec.

The EL-SH-SR calculation, on the other hand, does not exhibit this type

of clea_._./_rdeterioration during its 300 _see duration, but it indicates

a "permanent strain level" of about 3 per cent which is much larger than

measured at this location. Based upon the Fig. 29e results (and those of

Fig. 29f), the EL-SH and the EL-SH-SR predictions must be regarded with

suspicion in the "outer zone" spanned by the finite element region

"enclosed" by _lements 8 through i0 and 78 through Ill at times beyond

about 200 tlsec.

Information supplementing thes_ indications of n_merical deteriora-

tion (despite the use of double precision on the IBM 370/168) is given
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An '_nbl,_1 3 and 4 for the EL-SH and the EL-SH-SR calculation, r_spoctively.

Shown in thane tables are the tfme hlstorio_l of tht_ uppar-r_urfaee YI

_;r_on strain at each nodal station along Y _ 0. Also shown are the; upper-

surface principal Green strains at the centers of element 1 through 6.

These tabulations show that plausibl_ tlmo histories of strain are

predicted at all times for (a) the "close-in nodal stations" (that is,

x < 1.00 in) and (b) the centers o_ elements 1 through 6 for both the

EL-SH and the EL-SII-SR calculation, although t/_o values predloted by

tJ_e latter are much more reasonable. _._ nodal locations beyond about

x = 1.00 in (except at node 12 (x = 4.00 in)), one observes a progressive

deterioration in that tJ%e predicted strains continue to grow implausibly

to unrealistically large levels.

Shown in Figs. 30a, 30b, and 30c are the EL_SH and EL-SH-SR predicted

time histories of the principal strain at the center, respectively, of

elements l, 3, and 6; these elements (see Fig. 28b) lie adjacent to the

y = 0 symmetry line and their centers are located at the following respec-

tive locations (x,y) = (.Ill, .Ill in), (.333, .ill), and (1.298, .iii).

At tile first' two locations, these principal strains increase quickly and

reach a "plateau" by about 80 Dsec, and change very little thereafter;

further, in both cases, the "plateau principal strain" levels are substan-

tially smaller for the EL-SH-SR than for the EL-SH calculation, as

expected. At the center of element 6, the principal strain time history

for the EL-SH calculation is similar to those for.elements 1 and 3_

however, the EL-SH-SR predicted principal strain first rises rapidly and

t/ion increases slowly for the remainder of the 300 _sec time history

rather than reaching a plateau. To supplement this information, the

principal strain at the cente; of elements 1 through 6 is given at various

time inetants in Tables 3 and 4 for, respectively, the EL-SH and the

EL-SH-SR calculation.

It is instructive also to examine the spatial distribution of the

predicted strain in the panel at various fixed instants In time. Accord-

ingly, shown in Figs. 30d and 30e, respectively, are EL-SH and EL-SH-SR
1

predictions of t/le x-direction upper-surface Green strain Yl at nodes 1
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through 12 (see Fig. 28a) along the y _ 0 nymmetry llne from the p_nel

center (x,¥) - {O,O) to th_ clampna _dg_ (x,y) _ (4.00, O); this _nf¢,rma_

tion is also glvon in Tables i and 4, respoctlvoly.
I

For the EL-SH calculation, Fig. 30d shows tha_ _i vs. x at 60 _soc

is of the expected form for this physical situation -- dinplaylng Bmoothly

varying largo values within and just beyond the 1.00-in edge of the

impulsivo-loadlng zone, and then decreasing rapidly to small values for

x > 1.50 in. At i00 _sec, the strain has increased signi£icantly at

station x = 1.111 and 1.486 in but remains close to the 60 _sec values
1

at the other locations. At 200 _sec, the 71 strain distribution remains
1

similar to that at 100 _sec except that a substantial increase in the 71
strain occurs at stations x = 1.861 and 2.486 in where the values are,

respectively, 13.21 and 5.17 per cent. At location x = 1.861 in (which

is remote from the impulsive-loading zone), this strain value should be

very similar to (or perhaps between) those exhibited in Figs. 29a (at

x,y = 0, 1.50 in) and 29b (at x,y = 0, 2.00 in) sin_e these locations

"span" the station in question, where the respective EL-SH predicted

values are 5.7 and 3.7 per cent and the measured values are z 4.0 and 2.0

per cent, whereas a value of 13.2 per cent is EL-SH _redicted at station

x = 1.861 in. For this x = 1.861-in station, an examination of Table 3

indicates that a numerical deterioration of the calculation is occurring

here beyond about 120 _sec since as time progresses the EL-SH predicted

strain continues to grow "unrealistically" and reaches a value of 31.2

per cent at 600 _sec, whereas the measured peak [2] at the "spanning

stations" did not exceed about 6 and 2.5 per cent, respectively. Further

evidence of this calculation deterioration in the mesh region spanned by

nodes 8 through ii and 85 through 121 oan be seen by examining (a) the

plotted predicted strain profiles at t = 300 _Isec and 600 _sec in Fig. 30d

and (b) the time histories of the predictmd strains at these nodal

stations as given in Table 3. Further, the measured permanent strains

at x > 1.4 in were smaller by at least a factor of 4 than the predicted

values listed in Table 3 at t = 600 _sec. Alse, observe that the

predicted strains in the region 0 < x < l.ll in quickly reached fairly
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largo values and essentially "retainnd" th_sn values throughout th_ 600

_Isoc tlm_ periodl straln_ in this region, thoreforo, arm boli_ved to be

valid and not aff¢_cted by the _Ited tlmewlso progressive n_lori_al

_|et_rioration of the calculation in the _ndleated mesh portion of this

larg_-DOF problem.

Figure] 300 shows a similar sequence of predicted strain profiles for

the EL-S|I-SR calculation. Al_-hough the magnitudes of t/%o predicted

strains are considerably smaller than for the corresponding locations

and times in the EL-SH calculation, the timewlse trends are similar to

those of Fig. 30d. For the EL-SH-SR calculation also, there is evidence

from Fig. 30e and Table 4 of a progressive deterioration of the numerical

predictions in the region spanned by nodes 8 through Ii and 85 t|zrough 121.

Given in Tables 3 and 4 for the EL-SH and the EL-SH-SR calculation,
1

respectively, are the values of Green strain Yl at the nodal stations

along y = 0 (nodes 1 through 12) at "about 20-_sec intervals. Note that

the peak and the permanent strains from nodes I through 7 are reached

within about 140 _see. For stations 8, 9, i0, and ii one observes a

"deterioration" in the strain behavior beyond about 120, 240, 350, and

450 _/sec for the EL-SH calculation, and beyond about 100 and 260 _/see

for stations 8 and 9 for the EL-SH-SR calculation which was carried out

for only 300 Bsec. Thus, in the region beyond x -- 1.86 in (or in the

mesh zone bounded by nodes 8 through ll and 85 through 121) the strains

become unrealistically huge. As a result, the gross w displacement time

history at "all nodal stations" also degenerates in the sens_ that these

displadements continue to grow in the r_gion 0 < x < 2.5 in in a vigorous

manner even though nearly all of t/_e initial kinetic energy has been

absorbed al;eady by plasti¢ work! the time history of the quarter-plate

kinetic energy is shown in Fig. 31. This "degenerate" w-displacement

time history is shown in Fi@. 31 at (X,y) _ (0,0) for the EL-SH and the

EL-SH-SR calculations; both calculations indicate w displacement values

which are much larger than observed experimentally. The excessively

large strains predicted in the mesh region spanned by nodes 8 through ii

,!

and 85 through 121 because of "numerical deterioration cause the
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w_displacoment in the .region 0 _ x < 3.0 in to become unronlistloally

largo al_o. cloarly thi_ is a numorlcal-dogonoration problom in_urrod

dosplto tho usa of doublc-proc_sion arithmoti_ on tho IBM 370/168 at MIT.

Furthor study is hooded to rosolvo this d_fflculty.

7.4.2.3 Pormanont Deflections and Strains

Bocauso of the alroady-cltod progressive timewiso nt_,orical

deterioration of the calculation, the presont calculations do not provide

valid estimates of the permanent deflectlon of the CP-2 impulsively-loaded

thin aluminum panel. However, it may be of interest to compare EL-SH vs.

EL-SH-SR p_edicted w-displacement profiles vs. x along the fixed-y

locations y = O, 1.111, and 2.486 in at a fixed instant in time. Such

comparisons are shown foz illustration in Fig. 32a at t = 300 _sec.

Because of "strain-rate stiffening", one observes that the EL-SH deflec-

tions tend to be much larger than those for the EL-SH-SR calculation

along y = 0 and y = i.Iii in. However, along y = 2.486 in, the reverse

is true because the "stiffer EL-SH-SR structure" has responded more

rapidly (peaks sooner) than has the "EL-SH structure" at this y = 2.486 in

station.

That these predicted w-displacement profiles at various fixed-y

locations are of generally plausible character (although of invalid

too-large magnitude) can be seen _y examining the experimentally-measured

permanent w-deflection profiles plotted vs. x in Fig. 32b for various

fixed-y stations. Note that a permanent plate-center deflection of about

1.1 in occurred on this 0.0623 by 4 by 4-in square clamped-sided panel.

It is evident from these permanent-deflection profiles that very large

strains must be present over about a central 1.5 by 1.5-in region.

Shown in Fig. 32c are the measured permanent relative elongations

on the upper surface of panel specimen CP-2 as a function of pretest

distance x from the plate center along y = 0 from m_chanically-scrlbed

upper-sUrface grid measurements. Also included are permanent-elongation

data from strain gage measurements [2]. Permanent relative elongation

estimates from each of the two present calculations are shown also On

Fig. 32c.
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A _tudy of thQ trana£nnt ntrain prodi_tion_ for thn EL-SH ease

indicated that the nhrain at th_ onn_o¢ of thn _mall olomnntn in thn row

adjacent to y _ 0 h_d on_ntially re_ohod f_n final _tate by about 300

_n_o_ £n fast a_ T_o 3 nhow_, the at_aina at nodal atat_on_ _or

0 _ x _ _.00 in _omain almost unchanged to the 600 _Inoc end o_ the _L-SH

calculation. Thus, the relative elongations at nodon l through 5 _t

600 _soc wero chosen _or the permanent strain estimate. For stations

with x > 1.00 in, At is bslievod that th_ asoociatod rolatlvuly coarse

finite _loment mesh makes the predictod strains unreliabls! accordingly,

no permanentstr_In estimates from nodal 8trains are mad_ in this r_gion.

However, at the _oeation of upper-surface strain gage 3_ (x,y,8)

(0, 1.50 in_ 90 deg), the EL-SH predicted transient relative elongation

as shown in Fig_ 29a was used to estimate a p_rmanent y-dlrection relative

elongation there of 6.5 per cent. Strains in the region of evident

numerical deterioration are unreliable and, hence, are not employed in

making tb_se pez_manent-strain estimates. It As seen that these predicted

EL-S____.HHpermanentrelative elongations tend to be larger than the measured

values.

For the EL-SH-SR calculation which was carried out to only 300 _suc,

the permanent relative elongatlon at this time was used as the "pezmanent-

strain estimate" for nodal and element center stations at 0 < x < 1.00 in.

Included also was th_ permanent relative elongation (at 300 _sec) at the

outer-surface center of element 6. _t is seen that these predicted

EL-SH-SR permanent relative elongations are (1) considerably smaller

than from the EL-SH prediction and (2) in reasonably good agreement with

measured values with a tendency of being in the mean, perhaps, somewhat

smaller.

It should b_ noted that the LLC assumed-dlsplacement elements used

provide displacemenh gradient_ u,x, V x which are constant in the x

4ircction, and displacement gradients u,y, v,y which arc constant in th_

y direction. This element i_ much too stiff! however, the use of a much

finer mesh of the LLC elements could improve the prediction, but at the

cost of greater storage and computing expense.
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An ovaluation was mad_ of thQ principal strains and associated

dlrsctions (Sp) on th_ upps): surfa_.s at the Qontor o_ thQ "qmall" _olnments
(_¢_0 Fig. 28h) for both the ?L-filla/_d th_ _5_8|i-SR calculation. ,_,

illustr_tlon o_ _OS_ £iDito-straln_pred_utod maxlm_m prln_Ipal strain

r_s1_Its are gIvon in Tsb%o 5. An Inspo_tlon o£ thosc_ v_luos indlc_ltot_

that th. moat oxtromo values occur at tho _ontor oZ tho _ollowlng olomonts
in aach row_

EL-SH EL-SH-SR

Row Element Value Element Value

(Per Cent) (Per Cent)

1 5 " 37.2 1 14.3

2 16 40.0 12 13 •0

3 27 38.0 23 i0.6

4 38 30.4 38 9.5

5 57 12.3 56 8.8

Finally, it is of interest to note that the pre-test and post-test

measurements of the spacing of the mechanically lightly-scribed grids

ca the upper surface o_ specimen CP-2 permitted determining that the

permanent relative el_ngation close to 'but not exactly at) the location

of incipient rupture (x -"0.65 in and -0.7 < y < 0.7) was about 26.4

per cent for this hi- or tri-axial strain state whereas in the "u/%iaxial

coupon static tests", the rupture value of the relative elongation in

the coz'respondinu direction (the transverse, T, directiun) averaged about

40 per cent. It would be aseful to assess the experimental CP-2

incipient rupture conditions with r_pect to an independent strain based

incipient rupture criterion for this type of aluminum allo). 6061-T651

and its attendant mill preparation. This matter is left for future

study.

The computing times required to carry out the .finite-strai__._________n

Houbolt-MULE predictions of the transient responses of exploslvely-

impulsed 6061-T651 aluminum thin panel specimen CP-2 are summarized in

the following for the EL-SH and the EL-SH-SR calculatlons. These
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_mI,_,,tatlon_ w_r,_ _nrf_rmnd in dQ.bla prea_ion on tha IBM 370/169 at

_atl. _o. of Total No. _£ CPU CPU (m_nJ.,_.,
." _ohav_o_ Plat_ _ Unknown Cych_ T_m_ ...............

_OF (mln) DOF Cy_1o0

EL_SH 121 661 600 200.49 _5G.8 _ lO "6

BL-_H-SR 121 661 3_0 131.88 665._ X l0 "6

Simila_ oomparisons for othor examp_os in _u pre_en_ _tudF are given in

Subsectlons 7.6._.I and 7.5.6.

7.5 Contalnmont-Rinq Response of TS.STuzbino Rotor Tri-Hub Burst A_tack

7,5_i Problem Definition

At the Naval Air Propulsion Center, various aircraft engine rotors

have beuh _mployed in spin chamber tests in which the rotor has been

ca_ed to fail in various ways while rotating at high rp_ [208-210]. The

resulting rotor fragments have impacted containment rings of single-layer

or multi-layer multi-material construction. High speed photography has

been used to observe the ring-fragment impact and interaction from initlal

impact until quite late in the _esponse history. Transient strain and

permanent strain measurements at various locations have been made on some

of the rings. Also, the permanenbly deformed ring configurations have

bee_ measured,

Selected for analysis here is NAPTC Test 201 in which a 4130 spln-

cast steel containment ring of 0.625-in thickness, 1.50-in axial l_ngth,

and 15.00-1n inside diameter and weig?,ing 12.83 pounds rested horizontally

on smooth support wires and encircled a T58 turbine rotor whi_hwas caused

to fail in three equal 120-degree segments at about 19,859 rpm and to

impact against this containment ring. Given in Table 2 are the weight

and geometric data defining the containment ring_ the rotor burst _rag_ent

properties, and the test condition_ for NAPTC Test 201 [208,209].

i From ACIPCO billet No.2.
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_ach fraqmnnt consksted of a 120-dnHrnn soctQr of th_ rim wlth snvnn-

t_on attachod blndosl thn distal,so from tho axle of rotation o£ the) rotor

to tho cG of tho fragmont was 2.707 In. At tho rotor burst rpm of 19,850,

tho trannl_t_onal w_].oc_ty at tho CG of oauh freer)at waf] 14,S57.2 In/sac.

Tho ronultln(! total kln_tlo onorgy of tho throo ro_oaood £ragmontn was

_]08,8R0 In-lb, of whloh 476,766 In-lb was trannla_ion(_l and 43R,054 in_Ib

wail rotational, llanos, oath fraqmon_ had nominally 158,922 in-lb of

translatlonal an_ 144,018 In-lb o£ rotational :t4netlo ono_'gy.

The rouU]ts o_ an oxt{,nsivo analysis of thls t_;-t and of various

sma11-n_rai.n pTodictions Ear tho rosponse.b of the containmont ring and the

attacking fzagmonts are reporto_ in Ref. 30. _or pr{Js(mt puryos(_s,

however, only one of thc_ analysis mod(_is consldored in Re_. 30 will b_ used.

In particular, each £ragmenu is idoalized as con._istihg o£ a rigid

"cylindrical disk" of 2.555-in radius having a m_ss and a mass momont of

inortia matching the actual fragment at its instant of pre-impact reluase

from the rotor) also, the translation velocity at the CG of the idealized

fragment and its rotatLonal velocity match those of the actual fragment.

The entire ring was modeled (as depicted in Fig. 33) by 48 _qual-length

4SOY/node ring elements. Local _'ing-fragment impact was treated as being

p_rfectly elastic_ h_nce, a coeffielent of restitution _ = 1 was used.

Further, at is assumed for present purposes that the impact-interaction

between sash fragment and the zing is frictionless.

7.5.2 Comparison of Small-Strain vs _inite-Strain Pzedisticns

For the small-straln calculations reported in Ref. 30, National Fo;ge

billet static tensii_ stress-strain data supplied by the NAPTC [209] were

used to analyze the Test 201 ring since according to Ref. R09 the Test 201

ring material is almost identical to the National Forge billet. Accord-

ingly, those Tu vs Yu stati_ uniaxLa: tensile stress-strain data + were
o

approximated by piecewise-linuar segments defined by (Tu ,yu ) = (0 psi,

0 In/in)) (80,950 p_i, 0.00279); (105,300 psi, 0.o225)7 and (121,000 psi,

0. 2000) for use in the mechanical sublayer material model. The material

+Material rupture occurred at >u = 52.3 peE eena.

324

O0000004-TS E14



4

is asm_,ed to bn strain rats sQnsitlvo with d = 40.4 Scc "I and p _ 5 which

in r_pQrted to be applicabln [201] to mild steel. Also, strain-displace-

most relation Type B and t_o CIVM_JET 4B computer program [27] which

employs the tlmcwise central-difference operator was used for the small _

straia analysis.

For the' _inito-straln analysis + the basic finite element mQthod and

Impact-interaction conditions were the same as before. However, strain-

displacement relation Type F was used. Also, the Natlonal Forgo billet

uniaxial static tensile stress-st;ain data were recast into Tu = _E (I +

Eu) vs 8*u HEn (l + E u) , and fitted by piecewise-linear segments with the

following (Tu ,e_) pairs, (Tu ,e_) = (0,0), (84 240 psi, 0.002890),

(107,500 psi,°0.0225), (118,008 psi, 0.0600), and (172,700 psi, 0.557).

This FE-modeled ring consists of 196 unknown DeF. Taking the mass

per unit initial volume Do as 0.000733 (ib-sec2)/in 4 for the 4130 cast steel

ring, it was found that the highest natural frequency of this mathematical

ring mod_l for small-displac_ent linear-elastlc behavior was _max =

0.4121789 x i06 tad/see. To avoid calcuiation instabillt_ one must select

_t ~< 0.8 (2/_max) = 3.88 _sec; for convenience a _t of 2.50 _sec was used.

The central-difference operator is used to solve the vector (unconventional)

form of the equations of motion. Finite element properties are evaluated

numerically with three spanwise and four depthwise Gaussian stations.

It was found that the deformed ring configuration and fragment

locations in this two-dimensional impact-response problem are very nearly

the same at a given time after initial impact for (a) the small-strain

prediction and (b) the finite-strain prediction. Hence, such comparisons

are omitted here. HoweVer, of much greater interest and importance are
2

the circumferential inner-surface and outer-surface strain___.__s72. Small-

strain [30], vs finite-straln predictions ++ of the inner-surface and the2

outer-surface 72 strains at the midspan stations of elements i, 4, 6, 9,

ii, and 47 are shown_ respectively, in Figs. 34a, 34b, 34c, 34d, 34e, and

A finlte-strain-modified version of CIVM-JET 4B was employed; this version

is called CIVM-JE_ 4C I L4].

I the present fiDite 8trai_ calculation, L .. = 0.497 in was chosen since
++For

this value was used for the small attain cal_ations of Ref. 30. otherwise,

the "_or_ plausible" value Lef f = 2h _ 1.25 in would have been preferred.
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34f. Shown Jn Fig. 36 for a time after initial impact of 1180 _soc + ar_]

the tlmall-strain and the finite-strain pr_d_otions of the circumferential
2

distribution of Deter-surface strains Y2'

lloro it is seen that _,or¢, are distinct differences between ths

finlt,_-straln prodlctions and the smnll-tltraln prodlctlonn at some locat_ons

and very llttlo dlf_oronce in others. Generally, however, larger strains

are predicted by the consistent and valid finito-straln fO_lnulation-and-

solution procedure compared with the former small-strain procedure, which

is consistent with _o fact that for tensile strains _ho f_nlte-straln

! procedure should predict larger strains than the small-strain procedure if

the same stress-strain data i_ used as input for both procedures.

7.6 Steel-Sphere-Impacted Narrow Plate

7.'%.i Problem Dofinitlon

As reported in Ref. i, initially-flat narrow 6061-T651 aluminum plates

with both ends ideally clamped have been subjected each to perpendicular

impact at its midwidth-midspan location by a l-inch diameter steel sphere

at various velocities, ranging from 1893 to 3075 in/see. These narrow

plates were of nominal 0.l-in thickness, 1.5-in width, and 8.0-in span.

Sphere pre-impact velocities in the range 2485 in/see to about 2800 in/see

were found to produce moderate to large permanent deformations in the

plates; rupture of the plate was observed for steel sphere velocities

above about 2870 in/sec.

It was noted _at except in the near vic;Inity of the location of

initial impact, the na=row-plat_ specimens exhibited essentially 2-D

deflections; for those regions, the 2-D impact-response codes CIVM-JET 4B

[27] and/or CIVM-JET 5B [29] would appear to provide useful approximate

predictions. HoWever, significant 3-D deformations are present near the

"impact location"; hence, modeling of the behavior of the structure by

plate rather than beam finite elements would appear to permit one to make

more realistic predictions of the actu_l structural response both near and

far from the inltia]-impach location. Accordingly, small-strain and

flnite-strain calculations were carried out for both (I) 2-D bca_modeling

and (2) 3-D plato mod_llng of the structure.

+This is essentially the time of occurrence of peak straining.
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To illu_trat_l tl%_So prodlctio_ts and tholr compari_1on with t_xporimont,

narrow-plat_ t_p_elmon CB-_8 of Rof. I will he analytical. This plato waI_

of O.097-1n thlckn_l_, 1.498-in wldtll, and 8.O02-in span. A l-ln dlam,_t_ir

steel sphere woighlng 66.810 qr_,s with a pro-.Impa(_t vo]ocltF of 2794 in/

sec impacted spoclmon CB-18 approximately 0.06-£n £rom the plato-center

location. A schematic of the model showing glgbal _oordinato diroctlons

is giw)n in Fig. J6. In t/lis test transient relative olongatlon data

were mea0urod successfully with strain gages along the y-axls (midwidth

location) at y _ + 0.6-in (upper surface), y = 1.2-1n (upper surface),

y = -1.5-in (upper surface), and y = 1.5-in (upper and lower surfaces).

For both the small-strain and the finlte-strain calculations, the

uniaxial static stress-strain data for this material were taken to be the

same as described in R_f. 30 and in Subsechlon 7.2.3.2; namely, (Tu ,Eu) =
o

(0,0), (44,200 psi, 0.00442 in/in), (49,200 psi, 0.075 in/in), and

(76,400 psi, 0.615 in/in) for use in the mechanical sublayer material

model. For this 6061-T651 material, the rupture level of Green strain >u

for unlaxial static test specimens was found [2] to be about 105 percent.

Finally', since both small-straln and finite-straln predictions were

reported in Ref. 30 for the impact-lnduced transient response of specimen

CB-18--and those calculations were made for 2-D beam element modeling and

for EL-SH behavior, only--the prediotions to b'e presented in this report

will includ_ mainly EL-SH behavior for the material of narrow-plate

specimen CB-18.

First, in Subsection 7.6.2, 2-D beam. element and idealized 2-D impact-

interaction modeling and rus_,onse will be discussed. Next in Subsection

7.6.3, the narrow-plate speu .den (CB-18) will be modeled with plate

el_m_nts to accommodate 3-D structural response; also, t/lu attacking solid-

sphere fragment will be modeled faithfully as a spherlcal fragment (rather

than as an "equivalent cylindrical fragment as in the 2-D modeling case).

7.6.2 Mod_e!_iDgby Beam Finite Elements

In modullng the CB-18 narrow plate by bcmu elements, the structural

response is being approximated as _olnq strict_ two-dlmunslonal (2-D).

Hence, consistent with this, the attacking fragment is dlso idealized as a

2-D fragment; that is, the fragment rather than belnq a 1-inch diameter
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_Iphere in Jdeallzed nnd vinuallzc_d conceptually a_ a nolxd non-dofo_able

eylindrlanl fragment of l-lneh diameter and ext_nding na oss the entire

width of the narrow-plate _ipnelmen. Thin Idealized fragraent .In deflnnd to

Imve the Nam_ total mass ns the actual fragment.

The entire span of narrow-plate specimen CB-I8 hen boon modeled by 43

equal-length (0.186-in) cubic-cubic assumed-dinplacoment beam el_ments with

41X_F/node -- based upon oxt_nsive studies reported in Ref. 30. The ma_s per

unit initial volume Po of the CB-18 material is assumed to be 0.25384 M 10-3

(ib-sec2)/in 4. As a result, the finite-element model consists of 157

unknown DOF and its maximum linear-system frequency is _ = O. 2326 x 107max

rad/sec. Accordingly, since the CIVM-JET 4B computer program (and

modified versions tdlereof) utilize the timewise central-difference operator,

one must choose a time increment size At of about 0.8 (2/_max) = 0.688 _Isec

or less to avoid calculation instabilityl for convenience a At of 0.50

_sec was employed and provided converged results. Finally, at each impact

b_tween the fragment and the structure, the structure is assumed to receive

an impact-imparted momentum increment (see Ref. 27) on a spanwise length of

At(E/Po )I/2 = 0.0993-in on either side of the station of impactl since

initial perpendicular impact occurred at the mldspan station of the center

element, this criterion resulted (with the resident computer program logic)

in the impa_ting of velocity increments to the two end nodes of that

element. Each of these assembled-structure nodes "account for mass" frOm

half of the _enter element and half of the next elementl hence., the

effectiv e re_ion of impac.t influence is one full element length or 0.186-in

on each side of the station of impact. This effective region is consistent

with that estimated in Ref. 30 on stress-wave propagation arguments as

approximately 2h = 2 (_.097) = 0.194 inch.

For'the small-straln and the finite-strain calculation, strain-

displacement relation Type B (Eq. 4.90) and Type F (Eq. 4.146), respectively,

was employed. In both cases, three spanwise and four depthwise Gausslan

stations were used for the volume nu_erlcal integration for the finite-

element property matrices. Also, a diagonalized (lumped) mass matrix for

each element was used.
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Thuao calculations and modeling apply to both the small-strain and

the flnit_-strain prndictions. Accordingly, t]]_se 2-D predictions can not

match t/lo oxperlmontal results near the impact station where distinct 3-D

structural response occurred. However, oltlowhero (except possibly near

tlle 01craped ends), one can expect to find reasonable agreom[_nt between

these predictions and experiment.

7.6.3 ModQling by Plate Finite Rlements

To simulate the actual physical situation of the CB-18 steel-sphere-

impacted narrow plate more faithfully--to accommodate the 3-D type of

structural o_ plate deformations which arc dominant--specimen CB-18 was

modeled with plate finite elements of t_e LLG type with 6DOF/node. For

computational thrift and economy, only one quarter of specimen CB-18 was

modeled by flat-plate ele/nents; symmetry conditions were imposed along

both the midspan _nd the midwidth station: (x,y) = (0,0), and ideally-

clamped conditions were imposed at the clamped end. Initial perpendicular

impact of a 1-inch diameter non-deformable spherical fragment was assumed

tc occur at (x,y) = (0,0)--rather than about 0.06-in from this point as

seen in the CB-18 experiment. The element mesh of flat-plate elements

employed was the same as reported earlier [210] for the small-st_ain calcu-

lation; namely, the quarter plate was represented by two rows of iI span-

wise flat plate elements each of 0.375-]n widtl_ and each with spanwise

lengths as depicted in Fig. 37a; later calculations used the "refined"

finite element mesh shown in Fig. 37b. The flat plate elements used were

the same LLC elements as described in Subsection 7.2.3.1.

For the FE plate modeling of specimen CB-18, the small-strain calcu-

lations employed the van Karma,] strain-displacement relations (Eqs. 5.118 -

5.123 and the attendant following paragraph) while the finlte-strain

calculation utilized the more comprehensive strain-displacement relations

given in Eqs. 5.118 - 5.123 (without the terms involving the second order

derivatives of the in-plane displacements U and v, since the asstLmed "

displacemezlt field for the LLC finite-element is bilinear Jn u and v). In

both cases, three Gaussian stations in each spanwise direction and four
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f
d_p_,wiso Gausslan stations worm uncd in each flat-plate element to

evaluate, by volume numerical integration, t_o proportion of oath element.

Also, a diagonalized (It_ped) mass matrix was used for each element.

The maximum linear-system fruqucncy _max of the Fig. 37a fin_te-

element model was found to be 0.2372 x 107 rad/sec. Thus, if one were to

0omputo the impact-induced transient response by using the tlmowiso central-

difference operator, a At of about 0.8 (2/_ma x) = 0.67 _sec would be

required to avoid calculation instability. However, these predictions

were carried out by usin$ the CIVM-PLATE program in which the Houbolt

operator is employed. Accordingly, a convenient _t of 1.0 _sec was

employed which earlier experience and discussion indicated would provide

"reliable converged predictions".

At each impact between the fragment and the plate, it is assumed that

momentum is transferred by a perfectly-elastic collision to a plate region

(from the fragment) defined by a circle of radius Lef f = At[E- ]1/2

M

o
0.1985-In centered at the impact location; other more rational selections

for Lef f could be employed, but this one is used for present illustrative

purposes .'

7.6.4 Comparison of Beam-Model vs. Plate-Model Predictions

First, it is useful to compare small-strain Vs. finite-strain predic-

tions for the 2-D idealization (with beam finite el_ments) of the CB-18

impacted narrow plate. Next, similar comparisons will be made for the

case in which the proper 3-D structural response is accommodated by

plate-type finite elements and a spherical impacting fragment of the

proper size and Jhape. Finally, it is illuminating to compare 2-D vs.

3-D predictions only for the consistently formulated and implemented

flnlte-straln lnalysis.
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I
7.G.4.1 Strain com pari_on_

} SincQ primary Interost contor_ on tho predictod and moasured strains,
2

comparisons of longit,dinal Groon strain y2 ar_ mado in tho following

indicated figures at the spocimen midwidth location at various spanwlsQ

1ocatlons on the uppor (non-impacted) or lower (impacted) surface.

, i iii i iii ii ii |m i _

2

FE Model Analysis Location of 72 strain Data
Strain Type

.,,, ....... .,.. , , , , _., •

I Pigure Beam Plate Small Finite Station Prediction Experiment
At At ......... I_'-- Upper Lower Upper Lower

I 0.5 1.0

_sec _sec

38a X - X X 0 X - - -

38b X - X X 0 - X - -

38c X - X X 0.3 X - - -

38d X - X X 0.3 - X - -

38e X - X X 0.6 X - X -

38f X - X X ,I 1.20 X - X -

38g X - X X i.50 X - X -

38h X - X X 1.50 - X - X

38i X - X X 3.00 X - P -

38j X - X X 3.O0 - X - P

38k X - X X 3.70 X - P -

38£ X - X X 3.70 - X - P

38m X - X X 4.00 X - - -

38n X - X X 4.00 - X - "
, ii I I I i

P denotes that only permanent strain information was obtained.
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Location y _ 0 in (at the midnpan of the beam) _oincidos with the midnpan

Gauusian tnteqration station of a finite element. I_cation y _ + 4,0 in

in at the _lamped end of thc_ beam and coincides with a finite element node

at which _lamp_d-ond conditions have boon imposed (n_tmoiy that the displa_o-

monte v and w and the lateral-dlsplacomont gradlont _ are _oro). All other

stations ocour at locations intormedlato between the end and the midspan

of a finite element, and do not ¢o_nc_de with spanwisc Gausslan i_togra-

tlon points. Also, measured permanent strains are indicated on thesu

figures where available.
2

These figures show that the strains Y2 predicted (a) by the current

"finite-strain procedure" and (b) by the forme; "small-straln proced_tre"

agree reasonably well with each other and/or with experiment at all of

these stations except y _ 0, 3.7, m%d 4.0 in. Large strains do occur at

both y = 0 and y = 4.0 in; also, the occurrence of large strains at

y = 4.0-in exerts a distinct and pronounced effect at "nearby station"

y = 3.7 in (located in the element adjacent to the finite element at which

the clamped end condition has been imposed). Although the calculations

have bee& _arried out for o,ly 900 microseconds, it appears that the

current "finite strain procedure" would provide better permanent strain

comparisons wlthmeasurements at all spanwise stations (if carried o_t

long enough in time) than by the former "small-straln proced_e".

Figure 39 shows that the time histories of the midspan lateral

deflection w from these two predlct%ons for beam CB-18 are very close to

each other. Finally, the time histories of the support reactions Mx, Sz,

and F at statlon x = 4.0 in are shown in Figs. 40a, 40b, and 40c,
Y

respectively, for these two predictions. The agreement between these

two predictions is very good for the longitudinal support reaction force

Fy (associated with the membrane strains), but one observes some differ-

ences in the transverse support reaction (shear) force Sz and large

differences for the support reaction bending moment M . These differencesM

are caused by the fact that the expressions of CIVM-JET 4B for the bending

part of the strain are valid only for small rotations and small strains,

whil_ the finite strain version of the program does not have this

332

'" O0000004-TSFOE



I

!
rostrlction, of course, tho support r_action bending moment M is most

| "inglu_nced by the bending part of the atrain_di_plaoemant rolatlonn.

The computing time required to analy_o stool-sphere-impacted beam

CB-18 by the two procedures, under oth_rwise-idontical conditions, is

conveniently displayed in th0 following t_ulatlon (for a tlmo step of

I 0.50 mlcrosccondl all runs wore conducted on an IBM 370/168 computor) z

No. of No. of Gausslan Total No.
• Formulation Beam FE Sta. per Elcm. of Unknown

spanwise Depth DOF

I Small Strain 43 3 4 170

Finite Strain 43 3 4 170

I
Strain-Displ. Mass No. of CPU cPu(min)

Formulation Relation Matrix Cycles Time (DOF)(Cycles)

Type (mln)

Small Strain B DM 2250 5.11 13.4 x 10-6

Finite Strain F DM 1850 6.81 21.7 x 10-6

Here again, the finite-strain-formulation calculations require more CPU

time per (DOF)(cycle) than the small-strain formulation. The smaller CPU

time per (DOF)(cycle) noted here for steel-sphere-impacted narrow plate

specimen CB-18 compared with explosively-impulsed narrow plate specimen

CB-4 arises from the use in the latter of the more-heavily populated

consistent mass matrices vs. diagonalized mass matrices for the CB-18

calculations, and the use of 3 rather _an 4 spanwise Gaussian stations

for the CB-18 calculations.

I It appears that (a) the use of the prope.r (second Piola-Kirehheff)
stress tensor in the constitutive equations by making proper transforma-

I vs. e* for
tions of certain stress and strain measures, (b) the use of Tu u

• representing the monotonic strain-hardening antis_nmetric (in tension and

compression) mechanical behavior of the material by the mechanicalI
sublayer model, and (c) the use of a finite-strain strain-displacement
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equation, and (d) ths inclusion of thickness changes provids significantly

improved predietlons of trannlent strains (the most important and s_nsi£ive

quantitiQs).

Next, consldor the plato-model predictions# s_e Fig. 411

l |

FE Model Analysis Location of y_ Strain Data Along

St_'aln TwDp. the Plato Midwi,dth Station

Fiquro B£am Piate Small Finite Station Prediction Experime{_t
0.25 1.0 y (in) Upper iower! Upper Lower
_/soc Usec

41a - X X X 0 X - - -

41b - X X X 0 - X - -

41o - X X X 3.40 X - - -

41d - X X X 3.70 X - P* -

41e - X X X 3.70 - X - P*

41f - X X X 4. O0 X - - -

41g - X X X 4.O0 - X - -
i m.

At the plate-center location (xty) = (0,0) where initial impact occurs,

it is seen that the transient strain provided by the consistent finite-

strain prediction is substantially larger than that given by the (now

unreliable) small-strain calculation +. A similar result is observed at

station (x,y) = (0, 3.70 in) and (0, 4.00 in) which are, respectively,

near and at the clamped end. However, at station (x,y) = (0,3.40 in)

which is more "remote" from the clamped end, one observes a much smaller

level of impact-lnduced structural-response strain! a lesser but still

significant difference exists between the strains predicted by these two

schemes.

7.6.4.2 Deflection Comparisons

Since only permanent deflection data (no transient deflections) were

measured in the CB-18 experiment, only permanent deflections can be used

Only permanent strain was recorded at this location.

+Note that the static-test uniaxial rupture level for Yu for this matezial
[2] is about 1.05 or 105 per cent.
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to cQmparo predictions with nxper_mont. Hownv_r, it in instructive alsc_

to comparo varloun trannient dlspl_cn,lent prodictlons with each other.

Accordingly, such deflection comparisons are shown on figures indleatnd

in thcl following ti_lbulations

.... r_pt.'_-.
Analysis Stress Predicted Displ.

FE Model ,, _%rsln Type Strain w-Displ. Looatlon
Figure Beam Plato Small Finite Approx. Location (x,y) (x,y), in

, r i i

42a X - X - EL-SIi y m 1.00 AVg. at

and y _ 1.00

EL-SH- SR

42b X - X X EL-SH X _ 0

42c - × x x EL-S_ (0,0) (0,0)

42d - X X - EL-SH At Ix=0 Along X -- 0
I

840 _see

x=0. 375
vs. y

Along x=0.75

(Estimated

Permanent)

42e - X - X EL-SH At _ x=0 Along x = 0

840 _sec
_=0. 375

VS. y

Along x=0.75

(Estimated

Pennanent)

42f - X X X EL-SH Along x = 0 Along x = 0

at t = 840 _sec

' iI u r

In Fig. 42a it is seen that the FE beam model small-strain prediction

for the translunt w-displacement at "2-D location y = 1.00 In" exhibits a

larger peak for the EL-SH than for the EL-SH-SR _epresentation of the
i

i material behavior; it is seen also that the EL-S}b,gR prediction for the
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permanent di_plac_Qnt at t_i_ ntati_n in in the better agreement with the

oxporlmcntally-ob_ervod result.

Finite-strain predi_tioDo versus small-straln p_di_tlonn for the

transient _-D w.-dlsplsoomont for th_ beam-l_iomont modeled NtructUrS arc

compared at the mldspan "_mpa@t station" in Fig. 42h, Those two mid[Ipnn

prodlotlons compare well with each oth@r in overall transient response,,

in peak r_sponso, and in the pormanont-doformatlon ostlmato. Howev,_r,

as noted _arlior, the p_odlcted transient strains arc signi_icsntly

different for the small-utraln vs. the flnlte-straln calculation at the

important regions which are near midspan and near the clamped end.

For the more-rualistic flat plate finite-element modeling of the

CB-18 s_zucture, the transient 3-D Houbolt-MULE w-displacement predictions

at the plate-center location (x,y) = (0,0) for the small-strain vs. the

finite strain calculation are shown in Fig. 42c for EL-SH material behavior.

Again these predictions compare w_il with each other but a larger peak and

permanent deflection is predicted by the finite-strain calculation.

The 3-D character of the predicted w-displacement for the small-strain
i

plate-element model calculation is shown in Fig. 42d. Here at t = 840

_sec, the w-displacement is shown as a function of spanwlse distance from

midspan to the clamped end along the node lines at the plate midwidth

(centerline) station, half-way to the free edge, and along the free edge.

Beyond about station y = 1.50 in, the w-displaoemunt is seen to be nearly

identical along these tkree widthwise stations, and thus indicates

essentially 2-D displacement behavior in this region of the structure.

Closer to the plate-center impact location, however, the 3-D character

of the w-displacement is clearly evident.

A similar "displacement profile" plot is shown in Fig. 42e for the

finite-strain plate-element-model calculation at t = 840 _sec. Both

qualitatively and quantitatlvely these profiles are similar to those shown

in Fig. 42d. Finally_ the FE plate modQl small-strain Vs. the finite-

strain prediction for w is compared only along th_ midwidth location in

Pig. 42f. The more realistic finite strain prediction _s seen to exhibit

a slightly more "bulgy" profile than the small-strain pEediction. As
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noted earl_ir, haw_v_r, the ntraln predictions arn qignifi_anLly dlffnrent

b_tw(l_n th_ fi_Lit_-strain and th_ ,mall-straln eal_ulat_nn, with the

fo_r bolng in much he,tier aq_o_,mon_ wltb axp_rimontal me_nuremo_tn,

I S_nc_ thn finite o_omoni_ modol±ng _lhoWh _n P£gfl, 37a and 37b for one
quarte_ 09 narraW_pla_o npocinmn CB-18 was r_thur _oars0 and thereby

llmi_ad the response detail which could be a_commodat_3d, it wan doc_dod

to omplo_ a "refined P_ mesh" of LLC [_lato ol_mu_.s to represent the

quarter plate as depicted in [.'igs.37c and 37d. _n this re£1ned-me_h

model, elements of 0.1-in by 0.l-in are used near the "initia_ impact

station" (x,y) _ (0,0); also near the cl,%mped end (y = 4.00 in), ewe rows

o£ 0.1-1n spanwise length LLC _lements ar_ employed. These two reg_o_s

are those in which pronounced 3..D respons,_ effects and pronounced strain

gradients are to be expected.

The refined-mesh model shown in Fig. 37c consists of 75 LLC 4uadrl-

lateral plate elements. The assembled structure has 96 nodes with

6 DOF/Node, 'giving a total of 576 DeF. Symmetry conditions are invoked

along the two sides at x = 0 and y = O, while clamping is imposed along

y = 4.00 in; accordingly, the restrained DOF are: 5 _rom double symmetry

at node I, 3 each at 19 single=symmetry nodes, and 6 at 6 clamped-end

nodes. Hence, the t%nknown DOF -- 576-5-(3)(19)-6(6) = 478. For these

calculations a diagonalized (lumped) mass model was used. Thus, the

maximum linear-system frequency of the Fig. 37c fi,_ite-element model was

found to be 13_19775 x lO6 tad/see. Xf one were to _ompute the impact-

induced transient response by using the timewise centra)-dlfference

operator, a At of about 0.8 (2/U_max! e 0.12 _se_ would be _equired to

avoid calculation instability. However, the present Dredictions were

carried out by using the CIVM-PLATE program in which the Houbolt operator

is employed, hceOrdingly, a convenient At of 1.0 _@ec wa_ employed, which

earlier computational experience with Hot,bolt-MULE h_d indicag_a wou!d

provlde "converged predictions",

At each impact between the fragment add the pl._te, it is asstt_ed that
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_%olnentum is trannf_rr_,d by a pnrfeotly_lantlo collision to a plat_ raglon

(from _,n _ra_Tm_,nt) d_finnd by a _irol_ of rfldl,s L¢_ff e_ntorod _t the.

imp_c_ location. From str,ss-wav_ p_opflgntiQn _rq_onts glvnn in Subsoe--

t$on 2._ of. Bof. 30, L_f h_s be_n chss¢_n to be twice th,_ thieknnns h of,

Fo_ thSa manned-mash P_ l,odol, all ot.h_" f_nlto strain fo_ulatlon-

and..c_alc_uJ,at.._orlprocedures, utrain-dislplaoomont relations, at,el othor data

were tl_u [t_mo a_| for th,_ coarse-mush £_nltu-ol(_mont plata model compute-

tlon.

Shown in Fig. 43 are the coarse-.mooh vs. ro£1r_d, mo_h plato-ulomont

flnite-straln EL-SH prodietions o_ the plota,-c_ntor, (x,y) m (0,0),

displacement w of stuol-sphor_-Im_ao_ed 6061-T651 ah,.I_inua;narrow-plate

speulmen CB-18. As expected, the reEined-mcsh model _xhlbits a larg'uz

peak d_-_lection latur in tlm_ compared with the coarse-mesh model pr_dlc-

tion:

_E Plate Model Peak w(in) Time at Peak (_sec)

6oarse Mash O. 970 690

Refined Mesh 0°987 750

However, as noted earlier, transient (o_ pemmanent) displacements are not

a sensitive indicator o_ the accuracy and/or reliability of the predic-

tion. Strains on the other hand are of primary inte_'est and cOncern, end

provide a much more sensitive and a_eaningful indication of prediction

adequacy. _en_o, strain predictions are examined next.

Compared in Figs. 44a through 440 are coarse-mesh vs. zofined-mmsh

plate-elemmnt-model finitm-strain predictions of transient longitudinal
2

Grmen (Lagrangian) strain "(2 on the surface at various spanwise stations

of steel-sphere-impacted 6051-T651 aluminum narrow-p]at_ specimen CB-18.

Experimental transient and/or permanent strains, as appropriat_ and avail-

_ble, am_ included also. S_m_arIzud in the following are _/Im _igure

2 strains are
number and associated station/s_rface at which these 72

compared; i
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_,.,_,,,,,_........... ..........._ .......__V,;_ _z._ _ ....

I

I
Locatlon of y2_ Strain Data Alonq the

Plate

Pigur_ VE Mod_l Plato Midwidth (x_0) Station

coarse Rofinnd Station PrQdiction Rxp_riment

y (in) Upper Lower Upper Lower

44a X X 0 X - - -

44b X X 0 - X - -

440 X X O.30 X - - -

44d X X 0.30 - X - -

440 X X 0.60 X - X -

44f X X 0.60 - X - -

44g X X i.20 X - X -

44h X X i.50 X - X -

44i X X i.50 - X - X

44j X X 3.00 X - P* -

44k X X 3.O0 - X - P*

44_ X X 3.70 X - P* -

44m X X 3.70 - X - P*

44n X X 4. O0 X - - -

44o X X 4.00 - X - -

*Only permanent strain was recorded at this location.

Figure 44 shows that at the upper (non-impacted) su=face at the

initial-impact station (x,y) = (0,0), the refined-mesh plate-element

predicts a peak _2 strain of about 59.7 per cent at time after
model

initial impact TAII= 750 _seu, While the corresponding coarse-mesh model

predicts
a peak y2 strain of about 35.6 per cent at TAIl = 690 _sec. A

sinlilar disparity is seen (Fig. 44b) at the lower surface at station

(x,y) = (0,0), but the reflned-mesh model predicts a compressive strain

peak of much smaller maqnitude than that from the coarse-mesh model.

Hence, the reflned-mesh model predicts larger membrane strains at

(x,y) = (o,o).

At station (x,y) = (0, 0.3D in), the more accurate refined-mesh model

prediction of Y2 differs significantly from the coarse-mesh model
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pr_dlctlon, as Pigs. 44c and 44d sh_w. _videnco of "reversed curvature"

is presser _ the low_r surface _xperi_nc_s a larger pulik strai_ than

does th_ upper surface, and both are tonsilo.

At ntatJ.on (x,y) _ (0, 0.60 in) which is more r_mote from the

2 (longitudinal) strains are
i._[tlal-impact station, the predicted peak 72

of tensile character on both sur£acos (see Pigs. 440 and 44f)! the poak
2

72 strain for thu reflned-mesh model vs. t/%e coarse-mesh model is about

9.0 and 17.5 per cent hlghor for, respectively, the upper and t/%e lower

surface, whore the refined-mesh result is used as a reference. Per the

upper suzface (Fic 44e), the experimental transient strain trace agrees

reasonably well with both predictions until about 500 microseconds when

the experimental strain trace was lost. On the upper surface, pe_manent

strain measurements of 2.24 and 2.36 per cent were obtained at respective

stations (0, +0.60 in) and (0, -0.60 in); it is evident that the "refined-

mesh prediction" of the permanent strain would be close to these values.

It should be noted, however, that for computational efficiency and

economy reasons, only one quarter of narrow-plate specimen CB-18 was

modeled 'by finite elements. Furthermore, it was assumed An these calcula-

t.lons that initial impact occurred at station (x,y) = (0,0); in the actual

experiment, however, initial impact occurred at about (x,y) = (+.057, -.019

in). Therefore, the locations of strain gages relative to the actual

impact location are different from those wi_h respect to the "asstu_ed"

initial-impact location (x,y) = (0,0). Therefore, the computed and the

measured strains compared here are actually at somewhat different distances

from the initial impact point. Accordingly, this effect should be respons-

ible in part for the discrepancies between measured and predicted strains,

especially at those stations near the initial impact location. At more

distant stations, however, this factor assumes a lesser to negligible

importance.

On the upper surface at station (x,y) = (0, 1.20 in), Pig. _4g shows
2

that the peak 72 strain from the coarse-mesh calculation is about 36 p_r

cent smaller than that for the refined-mesh prediction (3.13 per cent).

From 0 to 209 _sec, the measured strain trace agr.ees very well with both
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prodletionfl; from 300 to 475 Dsec, it agrees better with th_ coarse-mesh}

,.I rc_sult; and beyond abQut 475 Dflee, thn mnasurnd trnnsiont strain is in

bettor aqr_oment with the rnfinod-mosh pr_diction. The measured porh]an_nt

strain aqre_s reasonably well (and btJst) with the coarse-mesh calculation.

Although the refined-mesh prediction was carrlod out to only 800 psoc, it

I appears that the "indicated" permanent strain would be larger than

m_asurod; this effect is not unexpected at this particular (less important)

location since a rather large (0.50-1n long) finite clement was used and

.. contains t/_at (x,y) = (0_ 1.20 in) station-- the use of smaller elements

to span this region would likely improve the prediction in this region of

,: relatively small strains.

More distant from the initial-impact location is station
2

i (x,y) = (0, 1.50 in) where 72 predictions and measurements are shown in

Figs. 44h and 44i, respectively, for the upper and the lower surface. At
2

this location, the coarse-mesh calcslation indicates larger peak 72

strains on both s_Irfaces than given by the refined-mesh prediction; in

both cases the peak values are less than 2.5 per cent. The measured

,. transient _2 strain on the. upper surface is larger than either prediction,

but at the lower surface the measured information is in reasonably good

agreement with predictions. Finally, the measured permanent strain at

(I) upper-surface stations (x,y) = (0, 1.50 in) and (x,y) = (0, -1.50 in)

was 1.48 and 1.13 per coaL, respectively and (2) the lower-surface

stations (x,y) = (0, 1.50 in) and (x,y) = (0, -1.50 in) was 1.31 and 1.27

per cent, respectively; the refined-mesh prediction is seen to be in good

agreement with those measurements.
2

Coarse-mesh and refined-mesh predictions for the transient Y2 strain

at station (x,y) = (0, 3.00 in) are shown in Figs. 44j and 44k, respec-

tively, for the upper and the lower surface. Here the peak strains are

small, and the coarse-mesh calculation predicts somewhat larger peak

values _laan does the refined-mesh computation. On the upper surface, the

refined-mesh prediction indicates th_ closer agreement with the measured

strain.

Of greater importance and interest are the strains at stations close

to the clamped end. Here significant spatial strain gEadients and strain
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values themselves must occur. Hence, stations (x,y) _ (0, 3.70 in) and

(_,y) = (0, 4.00 in) are of particular interest, coarso-mcnh and fine-

mush transient Y2 strain predictions are shown in F_gs. 44£ and 44m for

station (x,y) _ (0, 3.70 in) and in Figs. 44n and 44o for station

(x,y) _ (0, 4.00 in) at, respectively, the upper and the lower surface

for each station. S_nae, a finer element mesh is used in this region

£or the refined-mesh model compared with the coarse-mesh model, the

former ks expected to provide substantially more reliable predictions,

especially at the clamped end (x,y) _ (0, 4.00 in).

On both the upper and the lower surface at station

(x,y) - (0, 3.70 in), the peak strains predicted by the refined-model

calculation are much smaller than from the coarse-mesh prediction. The

measured permanent strains on the (i) upper surface at (x,y) = (0, 3.70 in)

and (x,y) = (0, -3.70 in) ware 0.56 and 0.68 per cent, respectively, and

(2) lower surface at (x,y) _ (0, 3.70 in) and (x,y) = (0, -3.70 in) were

1.07 and 0.47 per cent, respectively. It is seen _%t the refined-mesh

predictions are in close agreement with these measured permanent strains.

At'the clamped-end station (x,y) = (0, 4.00 in), very severe bending

strains occur. As Pig. 44n shows, the upper surface at this station

experiences sequential transient uompression, tension, compression_ and

finally tension as the membrane effect overwhelms the be_ding contribution

-- according to the (more reliable) refined-mesh prediction. The coarse-

mesh prediction shows a similar sequence except that the final state is

one of compression rather than the tension predicted by the refined-mesh

calculation.

On the lower surface at (x,y) = (0, 4.00 in), very large tension
2

strains 72 are expected from the additive effect of membrane and severe

bending_ this is seen to be the case from the predictions shown in

Fig. 440. Note that the coarse-mesh calculation predicts a peak tensile

2 strain of 11.5 per cent at _/_is locatlon while the more reliable
72

refined-mesh computation predicts a peak tensile _2 strain of 22.6 per

cent. Although no strain measurements were made at the lower surface at

(x,y) = (0, 4.0 in), it is evident from visual inspection of the
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specimens that the pert_nent strains thorn .(at the clamped-end lower

surface) are largn. Nonhomogenoous doformatlon is present with an orang_ _

i

pool kind of nurface; this k_nd of surface was noticed in static uniaxial

tensile tests Qf the same batch of 6061-T651 aluminum u_d for tho CS-18

plate specimen for tensile strains o_ about 18 per oont or more. Recall

that the inltial-impact station, the ro_ined-mesh calculation predi£ts
2

a peak tensile 72 strain of 59.7 per cent. Hence, it is apparent that

the 3-D structural response behavior accommodated by the plat0-finlte-

element model would result in predicting incipient rupture of the present

type of steel-sphere-impacted 6061-T651 al%m_inu_ narrow plate to occur

at the midspan Initial-impact station rather than at the clamped end as

predicted by the 2-D model (compare Figs. 38a and 38n at stations y = 0

and 4.00 in, respectively). The experimental specimen CB-16 did break [i]

near the point of impact rather than at the clamped end, when subjected

to steel-sphere impact with a velocity slightly higher than than the CB-18

velocity.

One point that deserves further investigation is the "exact distribu-

t.lon" of strain in the impact region. While the computer predictions

indicate that the maximum strain occurs at the initial-impact point (the

midpoint of the plate), the actual experiments show that the maXimum

strain takes place at about 0.2 in from that location, one reason for

this discrepancy might be the presence of transverse shear strains at

that location (the computer predictions do not take this type of straining

into account). Another reason may be that the local impact-interactlon

details between the steel sphere and the plate involve contact and stress

Wave propagation details that the present impac% procedure does not take

into account; instead a high simplified-interaction model is used -- as

described, for example, in Refs. 23, 27, and 30.

The computing time required to carry out the finite-straln Houbolt-

MULE predictlons of t}e transient responses of steel-sphere-impacted.

6061-T651 alt_ninum narrow-plate specimen GB-18 on the IBM 370/168 in

double precision at MIT are summarized in the following for both the

coarse-mesh and the refined-mesh finite elem_Rt model; At = 1 _sec was

used in both cases:

I 343

!
. . .

' 00000004-TSG05



FE Model No, of Total No. of CPU cPU(mln__
Plato FE Unknown Cycl_ Tim_ DOF Cycl_s

DOP (mln)

Coarse
Mash 22 157 900 65.4 462.8 x 10"6

Roflned i0.6

Mesh 75 478 800 202.6 529.8 x

As pointed out in S_bsectlon 7.6.4.1, the computing time in terms of CPU

time per (DOF) (cycle) for the finite-strain prediction of specimen

CB-18's response when modeled by (2-D) beam elements was 21.7 x 10"6.

Thus, it is seen that the plate-element finite-strain 3-D structural

response is about 24 times "more expensive" than the simpler, less

reliable 2-D model and calculation.

344

00000004-TSG06



,

I
SECTION 8

SUMMARY AND CONCLUSIONS

8. I _arZ

The present study is devoted principally t_ developing and validating

a method of analysis for thin structures (beams, rings, pl_tes, m%d shells)

that incorporates flnite-s_rain, elastic-plastlc, strain-hardening, time-

dependent material behavior implemented with respect to a flxe_____dreference

configuration (total Lagrangian formulation) and which is consistently valid

for finite strains and finite rotations. As a result, accurate finlte-element

predictions of transient strains and large transient deformations of beams,

rings, and plates subjected to known forcing functions have been demonstrated

(see Section 7). A practical problem to which the present method of analysis

has been applied is that of structural (containment) ring response to engine

rotor-fragment impact.

The theory is formulated systematically in a body-fixed system of

convected coordinates with materially-embedded vectors that deform in common

with the continuum, and in the traditional space-fixed system of variable

coordinates and constant vectors used by most books on Continuum mechanics.

Tensors are considered as linear vector functions, and use is made of the

d_____representation (instead of simply considering tensors as a collection

of components), because these concise tools are helpful to clarify the

physical laws under which materials deform. The kinematics of a deformable

continuum is tzeated in considerable detail, carefully defining precisely

all quantities necessary for the analysis.

The flnlte-straln plasticity theory of Hill is extended to include very

complex material behavior (llke elastic-plastic unloading, the Bauschi_g,_r

i effect, and hysteresis) by means of the "mechanical sublayer method" pioneered• by Prandtl, Timoshenko, and Dtlwez. Strain-hardening and complex straln-rate

dependence of _/_e material are easily accommodated by this model. This"

i plasticity theory is referred to quantities associated with a fixed reference

configuration by means of proper transformations between the tensors associated

I with the present and with the reference configuration.
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Straln-dlsplaeomont _quations which are valid for finltn strains and

rotations and which include thinning effects are derived for bo_Imn, ring_,

platost and _holls.

Thn flnito clement concept is used in conjunction with the Prinelplo

of Virtual Work and D'Alombort's Prlnciplo to obtain the equations of motion

i of a general solid continuum which is permitted to undergo arbitrarily largorotations and strains A now constant stiffness formulation of the finite

element equations of motion is developed. This now formulation is more

efficient eomputationally and better conditioned numerically than the

conventional pseudo-force formulation. Furthermore, this new formulation

is valid for flnite-straln behavior of any kind of material, while the

conventional pseudo-force formulation is valid only for small-strain elastic-

plastic materials.

The resulting equations of motion consist of a finite-size system of

second order ordinary (coupled) nonlinear differential equations with the

unknowns to be determined being the values of the degrees of freedom

(displacements and displacement gradients) at the nodes of the flnlte-element

assemblage which represents the continuum. This set of equations is solved

stepwise in time by using a numerical integration scheme with an appropriate

finite-dlfference time operator.

An assessment of this method of analysis is made by means of a sequence

9f problems for beam, ring, and plate structures which are subjected to initial

impulsive loading or to impact by rigid fragments. The present finite-strain

predictions are compared with reliable experimental data and with small-strain-

_eory predictions. The central-differenQe operator and the Houbolt finite-

difference operator are used for the timewise ealculatlons. Either linear

extrapolation of the nonlinear internal forces or iteration of the nonlinear

equations of motion is employed when the (implicit) Houbolt operator is used.

The predictions of the finite-element computer pKograms that incorporate

the fin_te-qrtrain elastic-plastic tlme-dep_ndent theory developed are compared

with experimental data. The missiles and targets introduced in these experi-

ments (steel-sphere missile, c._,iped-end thin beams, and thin square panels

with all four sides ideally clamped) pose well-defined configurations and
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conditions for which transient strain, permanent strain, and permanent

dafloeti_n data of hi_jh quality have bonn obtained.

The_1_ test c_nd_tions have included Lmpulse _oadinq oY. fraq_ent impact

wit/1 velocities suf.fici_nt to produce re;]pannes of various severitlus up to

and Incl_dlng threshold ruptur(_ conditions; oft_n finite strains well beyond

th{_ "small i]traln" range ware observed.

From these comparisons it appoa_n that the use of the present finite-

strain elastlc-plastic formulation ca** provide significantly improved predic-

tions of transient strains (the most important and sensitive quantities) in

thin 2-D and 3-D structures which are subjected to severe impulse or impact

loads, compared with the prevlously-employed small-strain procedure.

8.2 Conclusions

on the basis of the presQnt study, the following conclusions may

be stated:

(i) For general application, finlte-strain theory rather than small-

strain theory should be used in nonlinear analysis of transient

response by computer methods since the former is valid for all

levels of strain whereas the latter is valid for only a poorly-

defined small level of strain.

_2} Large differences between the finite-strain theory results and

the small-strain theory results are found in the csses studied

herein for (a) strains of the order of about 5 per cent and

larger and (b) at regions where significant strain gradients

occur (where the peak strains are larger than about i0 per cent).

(3) The use of the present finite-strain formulation for thin

structures (beams, rings, and plates) provides physically

realistic and superior strain results compared with small-strain

fo_mulation predictions, as the present theoretical-experimental

comparisons show.

(4) The use of the present flnlte-strain formulation involves practically

no additional cost ove_ the use of the small-strain formulation for

the present types af nonlinear transient structural response problems.
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(5) Finito_strain ola_tlc_pla_tic th_orF _ be (and han b_on)

impl_mentod _asily in a tot_l Lagranglnn rofnrnncn ,frame! thin

appears not to have be_n domonntrated and implemented heretofore,

(6) Whereas the use of the proper-and-oonslstent finlts-strain analysis

and procedur_ appears to affect the predicted translont 41spla_omonts

vQry little compared wi_h small-straln calculations, the predicted

strains (_le most important data) are affected slgni_icantly.

(7) The theorotieal-experim0ntal comparisons for the finite-strain

calculations show gonerally good agreement for thin structures

subjected to explosive-impulse loadlngs or to impact by a rigid

fragment.

(8) The Kirchhoff stress (not to be confused with the ist or the 2nd

Piola-Kirohhoff stress) should be used in the formulation of finite-

strain plasticity problems because of:

(a) theoretical considerations -- based on the simplicity of the

thermodynamic equations which employ the Kirchhoff stress,

as well as the exlsuence of a rate potential, and

(b) numerical considerations -- the existence of an incremental

variational principle and a symmetric tangent stiffness

matrix.

Additional merits include:

(o) the Kirchhoff stress is easily measured in experiments such

as, for e_ample_ the classical experiments of G.I. Taylor

and A. Nadai, and

(d) the Kirchhoff stress represents the actual behavior of the

material in simpler terms than by other stress measures.

(9) The mechanical sublayer model of plasticity is superior theoretically

to the popular isotropic and kinematic hardening rules of 'plasticity.

The present strain-rate sensitive mechanical sublayer model of finite

strain elasto-viscoplastlcity provides a very powerful tool to

describe the complex problems of impact and expl6sive loading of

structures.
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(I0) Th_ now (finlt_ strain_ conntant Htlffnosfl formulation of tho

finite _lomont _quationn wan shown to he _oro offlciont cumputa_

tlonally and bottnr conditionnd numorleally than thn oonvn[it_on_i

(nmall-_traln) pn_udo_foruo constant ntlffnoss formulation f_r th_

problems tested in this work.

(Ii) Tho r_nultn (dlsplacomonts and str_nn) of tho analysi_ (2-D and

3-D) of _ho explo_ively-lmpuln_d aluminum _tructuroa were much

closer to the exporlmental results when the aluminum alloy wau

analyzed as being strain-rate sensitive than as strain-rate

insensitive. This is so, _vQn though there is considerable

uncertainty in %he apprgprlateness of the strain-rate constants

used in the analysis. As far as how representative these values

are of the actual material properties, and how appropriate it is

to consider these strain-rate "constants" as being constant over

widely different levels of strain-rate and strain encountered in

the course of the transient response remain uncertain. Moreover,

the _train-rate dependence was considered to be isotrcpic, while

in the actual material this strain rate dependence could be

anisotropic.

(12) The 2-D analysis of steel-sphere impacted narrow b_ams is quite

satisfactory as far as the transient displacement response predic-

tions are concerned. Howe%er, if detailed transient and permanent

strain information is needed, and in particular if the occurrence

of ruptttre is to be predicted ade_,ately, a 3-D analysis is

necessary. In effect, while the 2-D analysis (2-D structure and

2-D frag_ient) predicts that the highes_ strains (and hence rupture)

of the narrc_ beams will occur at the clamped ends, the 3-D

analysis predicts that the largest strains occur at the region of

impact, which agrees With both experimental results and expecta-

tions.
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8.3 Su99_ntion_ for Put_e Roee_rch

It le advln_btn _o purnun the inclu_len e£ the fcllewing a_po_t_ i_

_ut_rn _n_ly_i_ _ove_opmnnt_.

i. To study th_ Impl$_It Dark op_rato_, that appnarM to pof_sosflb_tter

_nl_o-d_b%plng nnd _r_quonoy-d_stor_on _._ro8 thnn thos_ _f the

Moubolt ope_ato_, but its performance co_t, hav_ n_t boon eomp_e£oIy

assessed fo_ the present _ato_o_y _ _oblemD.

2, To invost_g_to tho utilization of qua_i-Nuwton itoratlon mo_hods

(liko Broyd_n's mothod o_ the BPGS mothod) within each t_mo stop

as required to achlevo convorgencc in accord with speciEi_d critoria

o£ the nonlinear equations that have _o be solved with impl_cit

operators llke the Houbolt or Park operators.

3. The development and impl_msntatlon of an uf£iulent shell £inite-

element analysis of finite-strain elastlc-visooplastic problems.

4. The inolusion of transverse shear deformations,

5, The inoluslon of anisotroplc material e£gects.
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I

I TABLE 2

DATA CHARACTERIZING NAPTC TEST 201 FOR T58 TURBINE ROTOR

TRI-HUB BURST AGAINST A STEEL CONTAINMENT RING

Containment Rin_ Data

Inside Diameter (in) 15.00

Radial Thickness (in) 0.625

Axial Length (in) 1.50
Material 4130 cast steel

Elastlc Modulus (psi) 29 x 106
4130 Cast Steel

Fragment Data*

Type T58 Tri-Hub Bladed Disk Fragments
Material Disk: A-286 Blades: SEL-15

Outer Radius (in) 7.00

Fragment Centroid fzom Rotor Axis (in) 2.797

Frag_nt Pre-Test Tip Clearance from Ring (in} 0.50
Fragment CG to Blade Tip Distance (in) 4.203
Fragment Weight Each (Ibs) 3.627

i Fragment Mass Moment of Inertia about its

CG (in Ib sec2) 666XI0"4

Rotor Burst Speed (rpm) 19,859

Fragment Tip Velocity (ips) 14,557.2
Fragment CG Velocity (ips) 5816.7
Fragment Initial Angular Velocity (rad/sec) 2079.6
Fragment Translational KE (in-lb)

Each Fragment 158,922
Total for Thzee Fragments 476,766

Fragment Rotational KE (in ib)

Each Fragment 144,018

Total for Three Fragments 432,054

Applies to each fragment unless specified otherwise.

!
JT1

I

O0000005-TSB06



)

372

O0000005-TSB07



TABLE 3 -- CONCLUDED (_L-SH)
i iml. _ -

UPPER-SHIt_CE PRINCIPAL GP_EN STRAIN (PER C_NT)
, iii i ii i iii i i

lemont 1 2 3 4 5 6

Canter

LOU., x(in) .111 .333 .555 .7_7 .999 i._98
, i

Tiros

(psec)
20 .35 1.01 5.15 10.29 34.50 .12

40 3.92 7.93 12.10 21.16 35.54 10.06

60 16.73 20.94 24.61 23.24 37.02 10.81

80 21.06 26.21 23.57 22.16 37.17 11.02

100 21.13 26.12 23.17 21.40 36.99 11.44

120 21.11 26.05 23.24 21.28 36.12 10.93

140 21.08 26.11 23.35 21.43 35.18 10.94

160 21.07 26.15 23.38 21.56 34.96 10.60

180 21.06 26.20 23.42 21.52 34.58 10._7

200 21.06 26.20 • 23.37 21.48 34.63 10.04

220 21.06 26.22 23.42 21.57 34.69 10.17

240 21.05 26.18 23.36 21.52 34.72 10.25

260 21.05 26.18 23.37 21.50 34.66 10.22

280 21.05 26.18 23.38 21.49 34.64 10.18

300 21.06 26.20 23.37 21.46 34.63 10.20

350 21.07 26.20 23.37 21.47 34.68 10.27

400 21.08 26.20 23.38 21.44 34.65 10.29

450 21.08 26.21 23.38 21.43 34.68 10.34

500 21.09 26.23 23.41 21.47 34.74 10.42

550 21.09 26.26 23.43 21.56 34.79 10.61

600 21.10 26.26 23.42 21.57 34.82 10.71
......
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I

I _ASl'_ 4 -- CONCLUDED (R_-SH-SR)

UPPER-SURFAC_ PRINCXPAL GR_N 8TiffIN (P_R CENt)

il im i i i i I i ii i pl

_,lomont 1 2 3 4 5 6

Conte_

Lo=,, x(In) .111 .333 ,555 .777 .999 1.298

'Time ....................

{_sec)

20 .89 3.O0 6,12 6 .88 4.90 i.39

40 10.28 10.93 i0.5t_ 8.98 6.30 4.69

60 13.87 12.73 10.03 7..65 8.44 5.99

80 14.27 12.90 9,44 7.27 8.60 6.25

i00 14.07 12.86 9._7 7.3? 7.41 6.78

120 14.01 12.91 9.92 7.50 7.04 7.25

140 14.13 12.87 9.59 7.30 7.39 7.22

160 14.08 12.90 9.77 7.50 7.28 7.36

180 14.14 13. O0 9 •88 7.45 7.23 7.56

200 14.05 12.82 9.63 7.44 7.49 7.61

220 14.15 12.97 9 76 7.42 7.55 7.94

240 14.05 12 .87 9 .74 7 •51 7.49 8.24

260 14.09 12.84 9.59 7.35 7.56 8.38

280 14.11 12.88 9,63 7.34 7.59 8.66

300 14.11 12.87 , 65 7.39 7.59 8.81

I

I

I
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TABLE 5

FINITE_STKASN PIIED_C_ON OF THE MAXIMUM PRINCIPAL STRAINS

AND A_SOCIAT_D D_R_CT_ONS ON Tl_ [_P_R SURFACE AT

Tl_ CEN_R OF CBRTA_N _I.4_MBNTB OF _XPZ,OSIV_5¥_

£MPULS_D 6061-T651 THIN ALURIN(JM PANB,L CP-2

Pri.nolpol Greon Strain ...

No. Contor Location VaZuo O_£ont. Vaiuo 0rlont.

x(in) y(in) O(aog) (in/in) Op(dog) (In/in) Op(dog)
1 .iii .Iii 45.00 .2113 45.08 .1427 45.00

2 .333 " 18.43 .2626 13.86 .1300 9.91

3 .555 " 11.31 .2461 4.59 .1055 3.59

4 .777 " 8,13 .2324 1,28 .0898 2.14

5 .999 " 6.34 .3717 1.87 .0860 16.40

6 1.298 " 4.89 .1144 1.70 .0881 37.51

12 .111 .333 71.57 .2719 76.78 ,1301 80.09

13 .333 " 45.00 .1910 45.00 .09tl 45.00

14 ,555 " 30.96 .1611 11.06 .08_9 2.87

15 .777 " 23.20 .2179 3.44 .0850 2.54

16 .999 " 18_43 .3997 5.72 .0880 28.00

17 1.298 " 14.40 ,1234 26.74 ,0803 -32.78

23 .Iii .555 78.69 .2466 85.15 .i055 86.42

24 .333 " 59.04 .1611 78.94 .0899 87.13

25 .555 " 45.00 .1345 45.00 .0688 45.00

26 .777 " 35.54 .1776 8.72 .0828 -6.62

27 .999 " 29.05 .3798 8.09 .0864 16.95

28 1.298 " 23.17 .0722 -41.32 .O712 31.15

34 .111 .777 81.87 .2324 88.72 .0898 87.86

35 .333 " 66.80 .2179 86.56 .0850 87.46

36 .555 " 54.46 .1776 81.28 ,0828 -83.38

37 .777 " 45.00 .1103 45.03 .0700 -45.00

38 .999 " 37.87 .3036 14.23 .0946 26.92

39 1.298 " 30.93 .0995 20.93 .0661 9.39

45 .111 .999 83.66 .3733 88.15 .0860 73.60

46 .333 " 71.57 .3997 84.28 .0880 62.00

47 .555 " 60.95 .3798 81.91 .0864 73.05

48 .777 " 52,13 .3035 75.77 .0946 63.11

49 .999 " 45.00 .2155 44.79 .0738 45,04

50 1.298 " 37.61 .1053 ;_.61 .0809 31.79

56 .iii 1.298 85.11 .1142 F8.31 .0882 52.53

57 .333 " 75.60 .i_31 63.19 .0806 -57.24

58 .555 " 66.83 .0715 -43.97 .0668 72.83

59 .777 " 59.07 .1002 68.43 .0651 80.52

_0 .999 " 52.39 .I059 52.48 .0806 58.09

61 1.298 " 45.00 .0710 46.6] .0482 -44.88
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FIG. 5 BERNOULLI-EULER DISPLACEMENT FIELD AND POLAR DECOMPO-

SITION OF THE DISPLACEMENT GRADIENTS X _/_D
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GREEN (LAGRA_3L_) STRAIN ON THE SURFACE FOR VARIOUS SPANWISE

STATIONS OF EXPLOSIVELY-IMPULSED 6061-T65_ ALUMINUM NARROW-
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(a) Upper-Surface Strain 72 at Station (x,y) = (0,4.00in)

?IG. 22 COMPARISON OF FINITE-STRAIN PREDICTIONS, SMALL-STRAIN PREDICTIONS,
_ND MEASUREMENTS OF THE TRANSIENT LONGITUDINAL STRAIN AT V_R_OUS
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b._ Var_ab19o_h_ckn_arbltra_i_-Curw_B_amFiniteEl_mon%_

Oonflldor an inltia]ly-undo£ormnd, arbltrarily-_urvod, varlablo_thieknnfln,

n_ng_,l-layor beam or r_ng _]t_Joote4 to prescribed tranfl_nt _xtornal_y-_pp]_ed

surface loads and to only D'Alo_ert body foraos (inertia loads). L(]t £t bu

assumed that the ring _onslsts of ductile metal and that a largo-do£1oot_on,

elastic-plastic transient response will be produced. For analysis the

structure will be represented by a compatibly-jolned assemblage of N finite

elements, ,)no of which is depicted in Fig. A.I where its geometry and

nomenclature are shown and where thu deformation plane is _, _o the coordi-

nate _ along and _o normal to the centroidal reference axis of the beam ar_

employed as the reference coordinates for this curved beam element.

It is useful and convenient to use the following geometry to describe

this typical curved beam element and to approximate the actual given complete

beam or ring by a finite nu_er of these "typical elements". Note first

that a global Y,Z Cartesian reference axis system as well as a local y,z

Cartesian reference axis system are defined; for the latter, the +y axis

passes through the ends (that is, nodes i and i+l) of the element and makes

an angle +{¢ (for this ith element) with the +Y axis. The slope, _, of the

reference ¢:irctunferential axis _, which is the eagle between the tangent

vector a to _ and the y-axis of the local-reference Cartesian frame may be

approximated by a second degree polynomial in _, as follows [17]:

z

where the constants bo, bI, and b 2 can be determined from the geometry of

the curved be_ element as described next. Assttme that the _ in

element slope _ between nodes i and i+l is small such that

i= t" and

| 5oa
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Thin ror_trictn the _iope change __ithi___n_n olemnnt to _15 dnqrnnn. _'hnarc

l_ngth, ni_ of _inmnnt i As approxJ_atod to be th_ name an the l_IngthQf a

circular _r_ passing through the nodal points at thn nlopf_s#i and _i+l !

h_Ince, [1£ _s qlv_n by

L, (¢,+,- 
Ü�----- ..... (A.3a)

, (,,.Z, Sl'_ ,, ,I ,,

where LI is the length o£ the chord Joining nodes i and i+l, and is given by
!

L,-[(z,.:z,)'.(y,.,.y,)"]"
The three constants in _.q.A.1 are then determined from the relations

Or,,) = <P_

o

Prom Eq. A.4, the constants in Eq. A.l are found to be

_,: - 2(,, €�\�_,)/,z,_,.,,

_.: s( ,,.. �,,)/(_,1"
Accordingly, the radius of curvature, R, of the centro£dal axis may be

expressed as R = -(_$/Bn) -I - -(bl+262_) "I, and the coordinates Y(_) and

Z(_) of the centroidal axis are given by

& o
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and

D

whoro

i Y,,,,Y, '"'°°'
The thickness variation h(_) along the element is approximated as being

linear in'n between nodes i and i+l listed, respectively, at n=0 and _niz

+ ±
-_ This completes the needed description of the geometry of the curved beam

elQment.

The displacement fleld v, W of the beam, was derived in Subsection 4.2,

and was shown to be valid for arbitrarily large strains and rotations. The

displaue_ments v and w anywhere in the beam are specified by the displacements

v(_) and w(_) at the centroidal axis (_°_0) of the beam, and the associated

displacement gradients X and 4, respectively, as: +

._ [I+z ¥,(_)
I (A.s)

2r_W-, _iv(_I
(A.ea)

+Recall that _0 denotes the _-direction location of a particle in the|
I initial undeformed state.
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A eubio-oubic polynomial interpolation function with the inclusion of rigid-

body modes represented explicitly in t0rms o_ the angle #, is chosen for

the assumed displacement field v, w as followsz

q J,_

L-""*"°'* o ,'o o
or in more compact matrix form, Eq. A.9 becomes (A.ga)

_G_v(_)

The generalized displacements {q} are selected so that there are four

degrees of freedom v, w, _, X at each node of the element:

where

co,_ si._ 0 0 0 0 o o

,i._ c_,_ o o o o o o

0 0 I 0 0 0 0 o

[_]= 0 0 0 , 0 o o o
_J

-,;. _,, ,o. g., &, o _ _,' o o

(A. lOa)
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I

i an4 A,,-(Y,-Y,),,.(_,,_,}-(z...;z,)_o,c_,.,.,)
(A. 10h)

A,,_(_..Y,)..,(,,., �À�.(z,;_,).,.(,,., �_)
Corresponding to the assumed displacement field Eq. A.9 (and recalling that

_ - ), one finds the following expressions for the displacement gradients

X and _..

% - [IGz J{e}
where

The following strain-displacement relations (type F) were derived in

Subsection 4.2, and are valid for arbitrarily large strains and rotations:

_:=Y.. (_+ ) /{ ,_.,,

s 1 ..., I, I ) (A.I_I

Y 0 (A.14)_ = -_ = _ = --
! Z I 2

where superscript "o" refers to quantities evaluated at _°=0. The memb£ane

02 is defined in terms of the displaeemen£ gradients X and _ asstrain Y2

i followss
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2 2 (A.15)

where

(A.16)

z=Lo_Jfg-[_J [A]"[_}--LD,](_}
2

Eqs.A.ll and A.i0, the membrane strain _2 becomes.Employing

91 = Lp,J{_},it _J{D,}[D,J(_} ,.._,,
+ �L_ J/D,}LD,jf_}

The "curvature" K appearing in Eq. A.12, is defined in terms of the

displacement gradients X and _ as..

The derivatives _ and _ of the displacement gradients X and _ can be

expressed as :

Or

__ [6_jf_}-[%j[a]"._- ,,_ - {_}rID,Jr,} ,...o,

[S._,, = o o o g-_i') -2 -_

i (A.2_)

i ,0, I

O0000006-TSE04



where

<,,j
Therefore, the "curvature" K can be expressed as

/'Z':(,+I.,J{D,i)[D,J{_.}+[,J{_}[_J{_-} <"._>

A.2 Plate Finite Elements

The geometry and nomenclature of a typical rectangular plate element

are shown in Fig. A2. The element has constant thickness, h, and spanwise

dimensions a and b in the x and y directions, respectively, with the origin

of the element xyz coordinate system located at element node number i.

The midsurface dlsplacements u, v, and w are approximated within each

element by assuming a bilinear interpolation for the inplane displacements

"i

u and v, and a bicubic Hermetlan interpolation for the transverse displace-

P

ment, w. The interpolations written in terms of element x,y,z coordinates

B I are

I 5O9

I
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(A,2'7)

+,__,,',,y'P,,+_'7P,.,+_',_,,-..y'P,,,

where _l' _2 """ _24 are unknowr parameters which will be related to the

generalized nodal displacements ql' q2' "'" q24"

In order to obtain a set of generalized nodal displacements {q} which

i can be related to the 24 _i's, the generalized nodal displacements chosen

_w _w B2w
are the parameters u, v, w, W,x E _x' W y m _, and W,xy m_-_ at each of

t/_e four corner nodes of the element. The nodal displacement vector, {q},

for the element is thus

_4v4._,__e_A. tey/,, (_-_)4J _-_)

By evaluating Eqs. A.26, A.27, and A.28, and

-" : Z
_x ..

'--_-_: L_-,yJip} ,,,.,,,
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•_- ...........................................:....._....--_,-._._'--" _ ..... ! 7

I

!

t
i

(obtained by dlfferantiating Eqs. A.281 at the nodes, a unlque (invertible)

relation between {q} and {8} is obtained:

The 24 _i's can be related to the 2_ qi's by inversion of Eq. A.33 so that

and the displacement interpolation (Eq. A.28) can be written in terms of

nodal generalized displacements, {q}.

Thereforer one can write:

.: l_.J{0}:t G_J_B]"{,} ,_..,

V =: v ]-I

: LG_..,l{p}-IG_..,JIB_'{_I ,_.oo,,_x)y

i
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Th_ following strain-dlsplacem_nt relations which are valid for

arbitrarily large displacements and strains were derived in Section 5

(Eqs. 5.115-5.126) _o o

Here, the _c_ are the (membrane) strains at the middle surface. They are

defined as follows in terms of the dlsplacement gradients."

@

z _ay) z _a;,) z _,_// (A.4s)

Also, in Eq. A.41 the changes of cUrVature Kll and K22 in the x and y

directions, and the "torsion" KI2 are expressed as follows in terms of the

displacement gradients :

" i
" 4-

Note that z -- _o = initial undeformed z-direct, ion location of a particle,
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I

I
whoro

_= I+7/ �0_, C_.so)

Since the strains are defined in terms of the displacement gradients, the

following derivatives are derived by differentiation of the displacement

e_pressions A.26-A.28 in order to compute 7_8:

_ =f,..y_._..£_.,.J{_}-L6.,.J[B]"{_} ,_.-,,_x

_y

Sx

_= LG,,,yJf_}--[o,,,,J[B]"f q.} '_'_'ay

:.. ,, ,_ Xz

_y_-

- ................... -"_::..................... O0000006-TSEO9



Since a billnear polynomial assumption is used for the in-plane lateral

_2u _2u _2v _2v

displacements . and V_ the second derivatives 8--_'_# _-_' and

are necessarily equal to zero. Therefore, the bending expressions KII an_

K22 , become

i_ll --__ OI, _'_ )I_'1) x I (A.62)

_z ,w,,) (A.63)/7"/,z= _' _- ,yZ

_2U _ of the in-plane lateral displacements,
The mixed derivatives _ and _xSy

a_e equal to constants for this assumed-bilinear-displacement rectangular

finite element. HOwever. they are neglected as well for the computation of

the "torsion" KI2. The strain-displacement relations become

= A ;Y=/

- _',z ° _ ('- 'vz_' )
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The membrane ntralnn _ii' _22' and _12 are deflnnd as in Eqn. A.44_A.46 and

a_o va1_d £or arbitrarily larg_ _traln_ and rotatlons. Th_ oxpro_nion_ A

and _ are do£fnod by Eqs. A.43 and A.50, ro_pootlvoly. Since the second

dorlvativos o£ u and v arc neglected in those ntraln-dlsplaoomont

rolatlons, the bonding oxpresslons <ii, K22, and KI2 are not valid for

arbitrarily largo rotations. However, those strain-displacement rolationn

A.64-A.66 are useful for situations whore finitu membrane strains may occur,

and whore large rotations are associated with small curvatures. The error

associated with this approximation in the analysis of large deformation of

beams, has been investigated in References 28 and 212. In effect, studies

conducted in Ref. 28 revealed that the second derivatives of the

in-plane displacements u and v have a comparatively small influence in the

predicted strains for severely loaded* al_EAinum alloy beams clamped at both

ends. Also, observe that the factor A in Eqs. A.64-A.66 includes the effects

of finite membrane strains in the reference surface as well as change-of-

thickness effects due to finite membrane strains.

*Both by explosive loading and rigid-fragment impact.

, 515

.I
D

O0000006-TS E11



REFERENCE CONF IGUNAglON
o

(INITIAL OR UNDEFOBMED)

_z " ' J-o
4

|/,,[i] _ E==N_NODE
,'l"+e\ L_J NV._BE_

.,.,_1.... . . .
vy E X 2

-15o _<_i+1 - _i-< o

"18°°< _i <-180°
2

= + bI _ + b2(n) bo

R(_) = -(_/_n)"1 NODE i" n = 0

• h(D) = hi (I - _)ql + hi+l _i;3 NODE i+l: n = ni

LOC_L _ SYSTEM CARTESIAN REFERENCE

_, _, _ - COORDINATES _,Z .-GLOBAL
COORDINATES

V,W, l_,X - DISPLACEMENTS
y, Z - LOCAL

COORDINATES

ql' q2' """q8 - E_._/MENT GENERALIZEE
DISPLACEMENTS

ql q2 q3 q4 = Vi Wi _£ Xi

= _ww.X _v w

FIG. A.I NOMENCLATURE FOR UEOMETRY_ COORDINATES , AND DISPLACEMENTS OF
A CURVED-BEAM FINITE ELEMENT
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I

I

• /YlV
. .t .... ...., .... ,.,...... NODE 3

I / //-
• _// ,/'I ,,,===,==.==

' i,I /// su_'Ac=t_ V.....o.D__:C-_, 4' /
I._ _w......... "_,,"'I" "','-''"_" • ,, - ., ,.

•"r" [,_................o. .!_=oo=,. - ^,-

,. _3 X 2 X],X2,X 3 - Global Rectangular Cartesian

Coordinate System
Xl X,y,z - Local (element) Coordinate

System

h - Total Element Thickness

a,b - Element Spanwise Dimension
in the x and y Directions

ur Vl W

8w
w,x 8X

_W Genoralized Nodal
= -_-- Displacementsw,y 8y

_2w

I
"I

FIG. A. 2 GEOMETRY AND NOMENCLATURE FOR A UNIFORM-THICKNESS RECTANGULAR
PLATE ELEMENT
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APPENDIX I_

PINITE ELP,MENT I,X]I_ULATIONAND IMPLEMENTATION FOR A IIIGFIER

ORDER PLAT_ FINITE _I._E',_Nr_(4B I_WO__)

13.1 Fh_ioot_on of tho Anaumod Di{_a_omont Finld

Th(_ntza.tn-di_;pla_omontrolatlons for iarge _traln_ and rotatlonf_ of

piato_ _nvolvo sooond order dorlvativos of.ai.=._ithroe dlsplaoomunt

components (vertical dlsplacemont w and In-plane dlsplacemontu u and v).

This implies that, in order to obtain a flnit(_value for thu strain unergy

from the strain energy exprosslon, at least the first order derivatives o_

the displacements u, v, and w should be continuous everywhere (e.g. across

finite elemen_ boundaries). Otherwise, the elements would be incompatible.

The requirement that the slope of t/lethree displacement components

to be continuous across the element boundaries (continuity inside the finite

elements is ensured by selection of continuous polynomials as interpolation

functions), plus the requirements of including constant strain and rigid

body modes lead to bicubic (in x and y) polynomial dispiacement interpola-

tion field for each of u, v, and w. This finite element with a bicubic in

u, v, and w is a rectangular element Oonsisting of 4 nodes, with 12 degrees

of freedom (DOF) per node and hence a total of 48 DOF for the element.

@u _u _2u Bv _v

The degrees of freedom at the nodes are u, "_x'_' _x--_;v, _, _,

_w @w _2wand w, _, _, _w_. Ib is easily shown that the derivatives of the

displacements with respect to x and y are continuous across the element

B2u _2v _2w

boundaries. Furthermore, even the cross derivatives _'_, BX-'_' and_-_

are all continuous. The remarkable thing is that this extra d_gree of

continuity (not required in the variational principle to obtain a finit.e

energy) does not seem to follow from th_ usual arguments. (The functions

82u B2v 82w

3xBy' BxBy and _ are quadratic along each edge_ and only the values of

82u 82v 82w

_, _, and _9 a£ the two endpolnts are automatically held in common).
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I

Th_ 48 DOF _rmltn bicublc, bic_ble, bicubie, olomant is formulated as a

I 'ro_t_ngla, but by nuDperama_r_ gran_ormatlon [Ro_. 213, pago 891 _an ba

transformed _nto a gonoral quadrilatoral with st_alght silos but arbitrary

I anqlos.
Tho PLATE and C_VM-PLAT_ programs [31] uso rectangular finite olomonts

with a total of 24 DO_! the assumod-displacement interpolation fiold is

bicublc in w and bilinoar in u and v. This lower order element presents

slope continuity (_, _w_and y)acr°ss the element boundaries only for the

vertical displacement w, but not for the in-plans displacements u and v.

Also, since the assumed-displacement interpolation field is only bilinear

for the in-plane displaoements u and v, the terms that involve the seuond

derivatives of these displacements (present An the large strain and

rotation strain-displacement equations), cannot be computed in an analysis

that would make use of this finite element. It is clear that this 24 DOF

element is accurate only for problems where the vertical displacement w is

much more important _han the in-plane displacements u and v.

It is also clear that in a general large strain and rotation program,

the three displacement components deserve to share equal importance in the

assm, ed-displacement field. Also, [Ref. 213, page 215] the condition

number* for cublcs is only slightly worse than for linear elements, so that

the roundoff errors for a given element size (h) are comparable. The

discretization error, however, is an order of magnitude smaller for cubics.

Therefore, at the cross over point where roundoff prohibits any further

improvement coming from a decrease in h, the c_bic element is much more

accurate. This applies especially to the computation of strains, where

differentiation (or differencing) of displacements introduces an extra

factor h"l (h"2 for bending) into the n_erical error.

One can express the displacement field u, V, w inside an element by

Hermitian polynomials (_) that interpolate in terms of the generalized

I displacement degrees of freedom at the nodes (q's). Hence, one may write

_ This is the ratio of the _aximum eigervalue to the minimum eigenvaiue of
B the mathematical model of the linear structural system.
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IXIG I&Xf I X /_ f:,Xl I Xl_ I&_l

Similarly, tho clerlvativos may be wrltton nS

(S.2)

IXI_ IIIXl IXl& I&Xl

Therefore, one has to store matrices ([_J, [ 8#
I
j , etc.) that involve on_!z

16 torms per element instead of 48 because exactly t_e same interpolation

polynomials are noeded for each of the three displacement components u, v,

and w. This is a very attractive feature of the large strain formulation

when a bicubic displacement field is used for all three displacement

components.

B.2 Finite Element Formulation and Solution Procedure

As noted in Section 6, the finite element formulation and solution

procedure used herein is based upon the Principle of Vi=tual Work including

D'Alembert inertia forces; further the undonventional form of the equations

of motion (see Eqs. 6.55 and 6.69) are utilized rather than the conventional

form (Eq. 6.68) given in Subsection 6.2.3.

In the process of a finite element dynamic solution, the mass matrix

is needed. Mass matrices may be formed in various ways: (a) "consistent"

or no1_-diagonal and (b) "lumped" or diagonal. Diagonal mass matrices can

be formed using an intuitive physical approach (e.g. by "placing masses" at

the displacement DOF) or by using a s_heme to diagonalizc the consistent

mass matrix according to selected rules. The consistent mass matrix is

obtained f_om tho expression fo_ the kinetic energy through vol_e integra-

tion of the interpolation rune%ions.

Both the mass and stiE.fness do not cha_go during the transient solution

and are not a function of _he strain or stress at a given time or location.
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I
Those matrices have dimensions of 48 x 48 (2304 ontrles) for the 48 DOP

I finlto element to be usc_d in the numerical analysis. Taking into necount

s_amnetry about th(_ diaqonal, there is a total of possibly [(48 x 48 - 48)/

2 + (48)] m 1176 different entries for each of these matrices.

Because of the throa £old symmetry in the interpolation polynomials

between the displacement components u, v, and w (the same Hormitlan

interpolation polynomials are required for each displacement component),

the number of different entries is reduced dramatically. The exact integra-

tion of the element consistent mass matrix Ira] (Eq. 6.38) has revealed only

33 different entries (out of a possible i176). The exact integration of

the element linear stiffness matrix [k] (Eq. 6.63) has revealed only 123

different entries (out of a possible 1176).

Next, note that the consistent externally-applied prescribed loads

vector {f} for each element arises from (a) the non-inertial body forces

fi and involvss an integration over the reference volume of the element
Vo n

and (b) the applied surface tractions Ti involving an integral over the

reference surface area A , as indicated by Eq. 6.41.
on

The remaining terms in Eq. 6.37 for the unconventional formulation

pertain to _U .(Eq. 6.18-6.19) the variation of t/le work of the internal

stresses Sij. From Eq. 6.37 it is seen that the element-level contributions

from _U to the equatlcns of motion consist of {p} and [hi {q). Also note

that the evaluation of {p) and of [h] involves an integration of the

stresses Sij and straln-variation quantlties over the reference volume of

the element VQn. When applied to pl_te or shell analysis, these integra-
tions are performed conveniently iD -ermS of stress resultants:

I

1
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where _o is the Lagranglan or .material thickness ccordlnatc, Since S_

changes with time, numezical integration through the thickness is used to

evaluate L_, Mc_; also to complete the volume integration, numerical

integration is performed over the x,y or the _I_2 region of the clement.

It is worth pointing out at this stage, that another attractive feature

of the 48 DOF element is that it requires the same number of integration

points + as the lower order (and hence lower accuracy) element which has 24

DOF. The reason for this is that the highest order polynomial in the 24

DOF element (namely the complete bicubic in w) has exactly the same order

as the polynomials in the 48 DOF element (complete bicubics in u, v and w)

Instead of proceeding in a routine fashion, taking the variation and

computing the resultant terms in a straightforward way, the terms are

grouped together so as to minimize the number of operations and storage

in the computation of the work _f the internal forces. Also, the use of

Hermitian interpolation polynomials and the threefold symmetry of the 48

DOF element al_o helps to reduce significantly the amount of storage and

computation.

In this vector formulation, one can express the internal force arising

from the linear stiffness and the geometric and material nonlinearities

simply as a column vector {I(t)} defined by
48xl

48 x I 48 X I 48_46 40_ I

Note that {I(t)} consists of 3 column vectors {lu(t)}, {Iv(t)}, and {Iw(t)}

48xi 16xl 16xl 16xl

that correspond to the displacement components u, v, and w, respectively.

Further the same 16xl interpolation matrix is used for each of the sub-

matrices {I }, [Iv}, and {Iw}. Applying Eqs. 5.115-5.126 and B.I to

Eq. 6.19, one obtains.

_I)&| l& X i |_ _t 16 X| (B.5a)

+That is, at least 3 by 3 or 9 x,y Gaussian stations, and 4 depthwise

Gaus_ian stations at each of these 9 Gaussian stations; hence, there

would be a total of 36 stations per element.
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I_X I Iii 1_1 II Xl IlXl (B.5o)

where

h_, ,, _I " - £t_.''
m.Sd)
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o

and e, 8, q, KSS, a#d Y_8 have been defined in the strain-displacement

relations: Eqs. 5.115 5.126.

F_r the transient response solution, it is recon_ended that one employ

the vector form of t_e equations of motion as described by Eqs. 6.89, 6.90,

and 6.91. These equatigns may be solved by using an appropriate timewise

finite-difference (or finite-element) operator such as the Houbolt, the

" Park, etc. -- in conjunction with (a) extrapolation of the nonlinear I

internal-loads terms without iteration or (b) by iterating to convergence J

(if possible) within a given time step At by, for example, the BFGS taethod
I

[_04] or a quasi-Newton method [215]. }
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APPENDIX C

I ASSESSMENT OF STRESS-STRAIN PROPERTIES FROM UNIAXIAL-TEST

MEASUREMENTS OF INITIALLY-ISOTROPIC MATERIAL

I
AS indicated in Subsection _.8, the axial relative elongation E of au

uniaxial test specimen is defined as (Eq. 2.401):

_-£
E _ uhanqe in gage length u _ (C.l)
u original gage length o

E is also called the engineering or nominal strain, and it ks a quantityu

or measurement which extensometers or strain gages can provide. One can

compute the logarithmic strain E of a unlaxial test specimen in terms ofu

E as (Eqs. 2.407 and 2.410).u

_. 1c.2)

The engineering stress OE of a uniaxial test specimen is defined as
(Eq. 2.443) ;

__L
O'E - /%0 (c.31

where P is the force transmitted across the cross-sectional area of the

uniaxial specimen (the applied load) and A is the original cross-sectionalo

area of the specimen. The engineering stress oE is also called the nominal

or ist Piola-Kirchhoff stress.

One can compute the Kirchhoff stress T of a uniaxial test specimen in
u

terms of o_. and Eu as (Eq. 2.432)

= A.
Observe that the Kirchhoff stress T can be very easily obtained from

i uexperimental measurements of- the 0ri_inal cross-sectional area A , theo

applied load P, and the axial relative elongation E (obtained from strainu

"_ _ gages or extensometers). These quantities (P, AO, and Eu) are the quantities
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that have been nnd ar_ most often m_asurad in experiments. Many authors

have referred to th_ Kirchhoff stress T as the "true" stress, since theu

Kirchhoff stress Tu is defined as (Eqs. 2.425, 2.427, and 2.432)

A f
P

where aT - _ is the "true" or Cauchy stress (Eq. 2.427), Po (p) is the

original (present) mass density, and mass conservatlon given by PoAo£o = QA£

has been used. Hence, i£ there were no change in the mass density (that is,

= po ), the Cauchy stress would be equal to the Kirchhoff stress. It is

important to note that what many authors plot as an approximate "true" stress

(under the assumption p _ po) is really the exac____tmeasurement of the Kirchhoff
stress.

For example, in Eq. 8.3 of Nadai's "Theory of Flow and Fracture of

Solids" [115],the stress measure used is the Kirchhoff stress (although not

so stated) and, therefore, the stress measure labeled as "true stress" in

the graphs pertaining to experiments in Nadai's book is really the Kirchhoff

stress.

Similarl_, G.I. Taylor used the Kirchhoff stress. For example, in

Ref. 114, it is not clearly stated what stress measure is used. However,

one can deduce what is the stress measure used by G.I. Taylor from the

following paragraph (page 308, Ref. 114)

"The condition for fracture by instability owing

to the formation of a local "neck" is

!.T_T< <1
(c6)

where T is the stress, £ is the original length of the specimen, and £ iso

the present length of the specimen. The condition for "necking" is:

< o

E
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I
Slhee ths engineering stress SE is related to the Kirehhoff _tress Tu by

Z_ 2 0 (C.B)

I = (t+E.._-%
then

..d_ < 0 (c.9,

is equivalent to

< O (c.101

or

2. ,_2 Z'
or

d% %
_.__.._.t.._._

Therefore, one obtains the following inequalities in terms of the Kirehhoff

stress:

Z___d% <I or < I (c.141

These inequalities are exactly the same as Taylor°s inequalities if one sets

i _ The stress measbre T used b_ G.I. Taylor is the Kirchhoff stress, obviouslyw

the stress measure T cannot be the true stress oT because

O0000006-TSF09



,ZA dA
and only if tho denslty in constant,

d.l -
will the true _tress _T b_ oqual to T :

Also observe that J,F, Bell (page 543, Chapter IV of Rsf, 216) is incorrect

when he states that "Taylor found_at results from simple tension and

compression tests on polycrystalline copper coincided when nominal or

Piola-KirchhOff stress T (referred to original area) was plotted against

logarithmic or "natural" strain (true strain)". Because, as Just shown, T

is the Kirchhoff stress T (and to a good approximation is the true stressu

OT); T is not the hominal stress OE An Taylor_s classic work (Ref. i14).

In preparing the unlaxial static tensile test data in Kirchhoff stress
+ *

Tu versus logarithmic strain (Eu) form, the data in the strain region
o

where necking occurs (that is, beyond the peak in engineering stress

O_ = P/A o) should be modified appropriately to "correct for necking",

because after necking occurs a multiaxial state of stress ks developed.

Various schemes for making such corrections have been developed. See, for

example, the procedure and correction factor proposed by Bridgman [217]

based upon extensive experimental work. For more information on necking,

see the book by Lubahnand Felgar [218]. Recent work on computer simulations

of tension tests of ductile metals is reported by Norris et el. [219] and

' by Saje [220]. An excellent recent survey article on this subject was

prepared by Hutchinson [221].

+Subscript "o" refers to static conditions.
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I
One approach to approximate the uniaxial b_havior boFond the incipient

I no_king oonditlon (p_ak in is to assume a stralqht_lln(_ fit between thatoE)

point and the rupture condition. After necking ooour_, it is hopolosl_ to

[ try tO m_asuro the _olatlvo elongation E with oxtonsomoters or strain gages,
I U

since the precise location of the nocklng station is not known bofo_:ehand

for uniform speclmons, and because of. the non-unlform state of strain in

the neck region. However, the cross-sectional area Af of the spoclmon at

the rupture statlol] can be measured after rupture. Hence, one can estimate

the truu strsss (o_)_ at rupture (ignoring any elastic recovery, ass,_ning

a .._niZormstress through the cross-sectional area Af, and ignoring the

multiaxial stress conditions) from the knowledge of the load Pf at rupture

and the cross-sectional area Af: (OT) F = Pf/Af. Xn order to compute the

logarithmic strain after necking occurs, from a knowledge of the cross

sectional area, it is necessary to assume incompressibility, since,

E2 7
and for incompressibility (Pc z p) :

Hence, one can estimate the logarithmic strain (eu) f at rupture (since at

the associated large plastic strains, the ductile material may be regarded

as behaving in an incompressible fashion) by

-'-A
..... ii I I

Similarly, one can estimate the Kirchhoff stress (_)f at rupture, assuming%
incompressibility by

i i

•
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Finally, th_ "corrncted" vnlun tabs used fs_ (T.)f in call_d (Tuo)fc%
and may be camput_d, for example, by using Bridgman's [217] _rrectiQn

factor by (s_n _q. 5.8 of [_lS])I

( i
_U¢ _ ' '" '

where

a a radius of the (assumed t_obe circular) rupture cross s_ution

R = lateral final radius of curvature of the tensilo tQst specimen'

at the rupture station.

Bridgman [217] presents data plots (from extensive exgerimonts) £rom which

one can determine the ratio a/R from a knowIQdge of Ao/A f. Other correction

alternatives may be found in Refs. 218-221.

As noted in Subsection 3.3.4, the static uniaxial stress-strain data

expressed in T versus E form (including the data points at incipientu u
o

necking and at the rupture condition as just described) can be fitted in a

piecewlse-linear fashion for use in the mechanlcal-sublayer material model.

Further, data from uniaxial stress-strain tests at various strain-rate

levels may be obtained and analyzed to deduce the approximate rate constants

d and p (or Sd and sp) indicated in Eq. 3.64 (or Eq. 3.43).
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