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PREFACE

The Seasat satellite was launched at 01:12:44 GMT on 27 June 1978 from the
Western Test Range at Vandenberg Air Force Basc, Lompoc, California. The space~
craft was injected into Earth orbit to demonstrate techniques for global monitor-
ing of the dynamics of the air-sea interface and to explore operational applica-
tions. To achieve these objectives, a payload of sensors emphasizing all-weather,
active and passive microwave capabilities was carried on the satellite. The
mission was premuturely terminated on 10 October 1978 after 106 days of operation

by a catastrophic failure in the satellite power subsystem.

Major mission accomplishments were:

(1) Demonsatration of the orbital techniques required to support the
mission and sensor operations.

(2) Demonstration of the simultaneous operation of all sensors for
periods of time significant to global monitoring.

(3) The collection of an impertant data set for sensor evaluation and
scientific use.

The early mission termination precluded:

(1) Demonstration of the planned operational features of the end-to-end
data system,

(2) Collection of a global data set to meet overall geodetic and
seasonal objectives and plans.

This report, in four volumes, includes results of the sensor evaluations
and some preliminary scientific results from the initial experiment team activi-
ties. Scientific and applications studies will continue through FY 80, and wiil

be included in the final version of this report.
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ABSTRACT

The Seasat Project was a feasibility demon=z=tration of the use of orbital
remote sensing for global ocean observation. The satellite was launched in June
of 1978 and was operated successfully until October 1978, At that time, a mas-

sive electrical failure occurred in the power system, terminating the mission
prematurely.

Volume III of the Final Report treats the Ground Systems used during the
mission life. Included are descriptions of the Operating Organization, the Sys~
tem Elements, and the testing program. Next, there is a discussion of the various
phases of the mission: Launch and Orbit Insertion, Cruise, and Calibration. A
special section is included on the Orbit Maneuver activities. Finally, operations
during the satellite failure are reviewed and summarized.
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SECTION I

INTRODUCTION

Information contained in this volume, compiled by the Seasat Mission
Control Team, is the final report for the Project Operations System. The mission
was planned in phases, which were first documented by the Mission Control Team
in the Space Flight Operations Plan.* Because of the spacecraft power failvre,
the mission was terminated while the satellite was still in the calibration
phase, just prior to the planned observational phase. The observational phase
was planned to start 115 days after launch, and would have continued through the
remainder of the scheduled l-year mission.

The following major topics are discussed in this volume:

(1) Pre-Launch Phase.

(2) Launch and Orbit Insertion Phase.

(3) Orbital Cruise Phase.

(4) Calibration Phase.

(5) Orbit Maneuvers.

6) Satellite Failure Report.

Not discussed here is the Seasat Data Utilization Project (SDUP). After
the satellite failure, this project was set up to complete the post-flight seasor
analysis and produce the final sensor and geophysical data records. The SDUP
activity is still in progress at this writing and will be reported separately

when complete.

Other activities of this project are documented in separate volumes of this
series:

Volume 1 Program Summary
Volume II Flight Systems
Volume 1IV Attitude Determination

Abbreviations and acronyms used in this volume are defined in the appendix.

*Seasat~A Space Tiight Operations Plan, JPL internal docuwent 622-42, 15 May 1978.
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SECTION 11

PRE-LAUNCH PHASE

A. GENERAL

This section describes the Project Operations System (POS) activities as
they pertain to the pre-launch phase. This section includes the description of
functional organizations and their requirements, the design of mission opera-
tions, the implementation of the Seasat ground data system, and the POS test and
training exercises conducted to support launch readiness.

The pre-launch phase includva vehicle erection, mating, and checkout p1 -
cedures at the Air Force Western Test Range (AFWTR) located at Vandenberg Air
Force Base, California. This phase was the final stage of pre-launch prepara-
tions for most POS elements. Individual subsystems of the POS had by that time
completed their scheduled implementation, and were prepared to execute the mis-
sion. The following paragraphs describe the POS organization, the Ground Data
System (GDS) implementation, and the POS test and training activities as they
pertained to requirements, schedules, and accomplishments.

B. PROJECT OPERATIONS SYSTEM ORGANIZATION

The POS organization was composed of five major systems (Figure 2-1), Air-
ected by a manager who was responsible to the project manager for the direct
of mission operations. The manager was responsible for the conduct of the mis-
sion, which included mission operations planning, development, preparation, and
execution. The specific POS responsibilities were:

(1) Establishment of the functional requirements for and the overall
functional design of the GDS required for the corduct of mission
operations.

(2) Placement of requirements on all supporting elements of the POS b
P y
preparation of the Support Instrumentation Requirements Document

(SIRD).

(3) Design, development, and test of mission-dependent computer programs
and special purpose hardware required for mission operations.

(4) Integration of the GDS elements.

(5) Preparation and execution of the project operations test and train-
ing plan.

(6) Establishment of the mission operations organization and interfaces
with other supporting organizations.

2-1

bakolont s G b 7 Rt o AT e e e i Bl S i e R g e e T IR e e T

T T ST

PO Y W




Rkt L S ol A b oAt had

uorijeziuediQ oaoejiajuj woisdg suotrjviadg 09foag -1-g 21ndryg

ONY NOISSIW

asN ‘QiIS ‘'YOW

30 WNANVIOWIW

SNOILVY4O
NaLS
TO¥INOD ANV SNISSIDOU ONISSIDOU SNOILVY3IO
ONINNVI
I SNOLLY3dO NOISSIW viva viva VSYN-NON
_ NOISSIW s 1D3r0¥d
_ Alndia
FOVYNVYW 4301440
_ SNOILV¥3dO e e — . ——— — e — e — —— ] SNOILYY¥3dO
¥3INID JOUINOD NONIVNIGIO0D SNOILV¥3dO NOILYNIQYOOD 1D3r0¥d
SNOILVY¥3dO NOISSIW SNOILVY3dO
_ 4O 331HD
FIOVNYW
13C NS
WO mw_and
IIOVNYW YIOVNYW
1304dNS P cr—  Gn— — — — - a— W3LSAS fe e r— — ——— — — 4301440
NOISSIW SINIWLIWWOD mzhw_w_.w_ﬂo SINIWLIWWOD 133r0¥d
/SINIWIHINOTY JSINIWRINO
1304ddNS SNOILV¥3dO
UVIOLOIA
¥IOMIIN
IIVIOL1D]a ; ADNIOV
FIOVNYW
SNOIVYIO VIVG b= —— — e e e — e — — =
123ro¥d (VOW) INIWITHOV VSVN-NON

2-2

R

ey

Ve




PRI S

(7) Conducting of the satellite and Mission Operations System (MOS)
compatibility test.

(8) Planning and direction of mission operations.

1. Chief of Mission Operations
The Chief of Mission Operations (7 vas responsible to the POS manager,
and had operational responsibilities for wi-.10n managemart and the conduct of

mission operations., CMO responsibilitie. .. re to:
(1) Direct the POS organization.

2) Conduct mission operations according to mission plans and any guide-
lines and constraints specified by the project manager.

(3) Coordinate and direct analysis and planning activities of the POS.

(4) Specify mission operations plans, policies, and instructions to the
Mission Control Team (MCT) for execution,

2. Mission Teams

a. Mission Operations Teams. The mission operations teams consisted of
11 elements representing the use of committed flight support resources as pro-
vided by the Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC),
Lockheed Missiles and Space Company (LMSC), and non-NASA agencies. Eacl of the
mission operations teams (Figure 2-2) performed both planning and operational
functions and interfaced with the MCT. The MCT, composed of the deputy CMO and
Assistant Chiefs of Mission Operations (ACMO), was delegated certain responsi-
bilities by the CMO.

Because of the locations of the various mission operations teams, the CMO
and deputy CMO rotated between JPL and GSFC to effect mission control and to
direct activities carried out by the mission operations teams.

b. Mission Control Team. The function of the MCT was to coordinate and
control the activities of the mission operations teams in their execution of
mission operations. During the primary mission, the MCT was staffed 24 h a day,
7 days a week by an ACMO. The on-duty ACMO was collocated with the Satellite
Performance and Analysis Team (SPAT) and the Project Operations Control Center
(POCC) Operations Support Team (POST) in the POCC. The essential activities
coordinated by the MCT were ground support scheduling, command management sup-
port, tape recorder management, maneuver operations management, clock control,
real-time pass activities, and discrepancy and status reporting.

c. Mission Planning Team. The basic function of the Mission Planning

Team (MPT) was to generate a Command Request Profile (CRP) that reflected the

§
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desires of the project and experimentors. The CRP was relayed to Seasat project
operations elements at GSFC, where it was developed into satellite command loads,

The MPT was located at JPL and used JPL computers. A CRP contained time-
ordered sequences of requested stored program commands and appropriate comments.
The comments consisted of orbit~related cvents, recommended real-time commands,
and other information useful for interpretation of the CRP,

The planning cycle to develop the CRP comprised a 4-week period, and inputs
were received from the experiment teams, SPAT, MCT, POCC, Spaceflight Tracking
and Data Network (STDN), and project management, The MPT performed CRP con-
straint checks to ensure that satellite subsystem constraints were not violated.,
The MPT was responsible for performing trend analysis and for monitoring the
satellite status with data obtained from JPL's Project Data Processing System
(PDPS). The MPT maintained up=to=-date orbit information, recommended mancuver
days, and specified the desired orbital elements. The MPT also designed sensor
sequences to accommodate targets of opportunity.

d. Satellite Performance Analysis Team. The SPAT consisted of a lead
monitor analyst and two satellite subsystem analysts. The basic functions of
the SPAT were to provide the technical coordination for operation of the satel-
lite system, monftor the performance of the system, and provide the data analy-
sis required to provide information relative to satellite system status and
performance. Specific responsibilities of the SPAT were to validate mission
profiles, command loads, and real-time commands prior to transmission to the
satellite or before input to the Command Management System (CMS). The SPAT was
responsible for the definition of all GSFC-generated command loads for maneuvers,
sensor targets of opportunity, and satellite configuration. 1In real time, the
SPAT evaluated satellite system performance and status. In addition to perfor-
mance monitoring, the SPAT provided data analysis of real-time data for trends
and anomalous behavior in the satellite system and sensors. The SPAT prepared
an inflight perfarmance estimate report conforming with these performance and
trend data.

€. Orbit Determination. The orbit determination support function for
Seasat was directed by the orbit computation engineer, and was grouped into the
followving categories:

(1) Launch and early orbit support.

(2) Operationai orbit support.

(3) Definitive orbit support.

(4) Observational tracking data support.

The launch and early orbit support function consisted of on-line computing
support during the launch trajectory phase and the early phase of the achieved

orbit. The time duration of the early orbit deterwmination phase was dependent
on station distribution and avajlability of ohbservational tracking data. The

2-5
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primary objective of the operational orbit support function was to furnish
predicted orbit-related information to designated participants throughout the
Seasat project. Some of the participants receiving the predicted orbit-related
information were the POCC, Attitude Determination System (ADS), Information
Processing Division (IPD), STDN, and JPL. The objective of the definitive orbi-
tal operations support function was to provide definitive orbital-related infor-
mation to other recipients. The objectives of the observational tracking data

support function were to:

) Receive, store, retrieve, and pre-process S-band and quick-look laser
data.

(2) Receive and pre-process the full-rate laser data and distribute it
to the National Space Science Data Center (NSSDC) and designated

recipients.

f. Flight Maneuver Operations Center Team. The basic functions of the
Flight Maneuver Operations Center (FMOC) team were to plan and evaluate orbit
maneuvers executed to meet mission and project requirements. The FMOC team was
located at GSFC, was headed by a GSFC flight mission analyst, arl used computers
located in the GSFC Mission Operations Computing Facility (MOCF).

g. Attitude Determination Team. The basic fuinctions of the Attitude
Determination (AD) team were real-time yaw attitude computation, quick-look
attitude determination using whole-orbit playback data, and definitive attitude
determination on all data r¢ cived from IPD with turnaround in time to meet the
total 6-day Project Data Package (PDP) commitment. The AD team leader was the

attitude computation engineer.

Quick-look and real-time data processing were performed as requested by
the project. A complete orbit set of attitude data results were written on disk
packs for access by the LMSC simulator software. These complete orbit data were
also used to compile disk files for the LMSC power profile software.

h. Information Processing Division. The basic function of the IPD was
to process satellite playback telemetry data and to prepare a PDP for use at
JPL. The IPD is located at GSFC, and the team leader was the data processing
engineer. The specific responsibilities of the IPD were to pre-process playback
telemetry data, maintain accountability, and provide quick-look data as requested
by the project. IPD assembled attitude, orbit, and command data for the PDP and

for GSFC user organizations.

i. Command Management Facility (CMF). The basic function of the CMF
was to accept (via the POCC) CRPs from the MPT located at JPL, and to generate
the resulting command memory loads with a corresponding English descriptive
memory load map and a Mission Sequence of Events (MSOE). The memory loads, map,
and MSOE were transmitted to the POCC. The CMF team leader was the command
management specialist. CMF provided the project an interface to edit all inputs
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of CRPs., With the inputs from the Seasat scheduler, CMF determined memory loads
in size, time span, remaining capacity of satellite memory, and capacity of the
station-to~uplink system.

j. POCC Operations Support Team. The POST was staffed by contractor
personnel and responded to technical direction and requirements provided by the
GSFC Seasat Control Center Operations Manager (CCOM). The team leader was the
data operations controller located in the POCC. The basic function of the POCC
was to serve as the facility in whk.ch project personnel monitored and controlled
the operations of the Seasat spacecraft. The POCC was staffed around the clock
by the GSFC POST, the JPL MCT, and the LMSC SPAT teams. The basi: function of
the POST was to provide the POCC operations support and equipment maintenance
required to enable the MCT and SPAT to monitnr and control the spacecraft.

The POCC scheduler generated the weekly STDN support request using project-
provided generic requirements and special activity support requirements. The
Seasat scheduler also scheduled non-NASA supporting stations, including the
Fleet Numerical Oceanographic Center (FNOC), as required by the project.

k. Network Operations. The basic function of the STDNs was to provide
station coverage from among the 12 comritted stations on each orbit during nor-
mal operations following launch. The network controller was the STDN team
leader. The stations were responsible for providing real-time telemetry and
command data interfaces via NASCOM to the POCC during each orbital pass, record-
ing playback data as scheduled, performing station delay measurements for satel-
lite time correlations, and taking ranging and tracking data as scheduled.

1, Experiment Data Processing. The experiment data processing required
to generate the Sensor Data Record (SDR) in the Mission Control and Computing
Center (MCCC) was the responsibility of the MCCC Data Managemenut Team (MDMT).
This team was led by the mission data managemeat supervisor. The MDMT was a
multi-mission records processing team jointly funded by the Voyager and Seasat
flight projects.

3. Non-NASA Agencies

a. Fleet Numerical Oceanographic Center. The United States Navy's FNOC
located at Monterey, California, is the primary Navy center for computer analy-
sis and prediction of both oceanographical and meteorological parameters. The
team leader was the FNOC staff duty officer. The FNOC participated in the Seasat
project as a result of a Memorandum of Agreement (MOA) between the Department of
Defense (DOD) and NASA. According to that MOA, FNOC provided a near-real-time
user data demonstration system. FNOC received data from the Fairbanks, Alaska
(ULA) STDN station within 6 hours from the time the data were recorded by the
spacecraft. FNOC processed these data and determined their engineering unit
vilues. Figure 2-3 shows the data flow path for the receipt of world-wide data.
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b. Shoe Cove Tracking Station (Canada). This station received both
low-rate telemetry and the Synthetic Aperture Radar (SAR) telemetry data 1liuks,
The facility was primarily interested in receiving SAR data; therefore, only
selected low-rate telemetry parameters were detected, synchronized, and proces-
sed. The SAR data were received and processed using the same type equipment
used by the STDN. . voice line was used for coordination between the POCC and
the station during real-time passes and reporting from the station,

Station control infoumation, such as pass schedules, orbital elements, and
SAR demodulation control statements, was provided via telex from GSFC to the
Canadian Center tor Remote Sensing (CCRS) at Ottawa and Prince Albert, where
station predictions were generated.

<o Qakhanger Truackipg Station (England). This statjon received both
low-rate telemetry and SAR telemetry data links. The station was receiving and
processing SAR data and 25~kb/s real-time data in cooperation with the European
Space Agency (ESA). A voice line was used for real-time pass coordination
between the POCC and the station. Selected telemetry parameters, which had been
detected, were also reported by voice.

Station control information, such as pass schedules, orbital elements,
and SAR demodulation control statements, was provided from GSFC to Oakhanger
via telex where station predictions werce generated.

d. Tromso Tracking Station (Norwaiv). Station support was scheduled to
start in mid-October 1978, Initially, the station would reccive low-rate (25
kb/s) data only. Interface with Scasat operaticns was to have been minimized
because of the passive receive-oniy telemetry mode of operation., Orbital ele-
ments for predict generation at the wtotion woere to be provided trom GSFC via
telex,  The station wis required to provide the (MO with biweekly status reports,
indicating actual Scasat tracking activicy,

C. GROUND DATA SYSTEM IMPLEMENTATION

Fhe Ground Data Svstew (GDS) clements implemented to support the Seasat
Mission Dara Svstem (MD5) are shoewn in Figure 2«4, For a more in-depth review
of cach ¢DS cloment and specitic {nterfaces, reter te the Space Flight Operations
Plan, *

All G5 elements nevessiry for supporting real-time wission cperations
were brougat to g sappert readivess condition prior to lawwh. The telemetry
housekeeping tape (quick=look) generation system reoadiness was late, so with
operat fvanal conf idence being tow, the AFWIR and NASA Kennedy Space Center (KST)/
Western Launch Opevations Ddvision (WLOD) facilities were rcquested to provide
ciariy orbital support. Difficulties iv the launch real-time satellite data 1ink

¥Seasat-A Space Flight Operations Plan, JPL internal document 622-42, 15 May 1978.
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from the Agena second-burn coverage prompted a late request to have the United
States Air Force (USAF) provide backup record-only launch support from the
Indian Ocean S-band station at Mahe,

Several GDS elements necegsary for non-real-time data support of the Seasat
mission were not ready for launch. These elements were:

(D
(2)

(3)
(4)
(5)
(6)

IPD.

NASA Ground Communications System (NASCOM) (224 kb/s STDN station
Merritt Island (MIL) to GSFC to FNOC).

FNoOC,
Laser deployments (MOBLAS 5-8).
STDN station Oakhanger, United Kingdom (UKO).

Shoe Cove/CCRS.

These inplementation problems are discussed in the following paragraphs,
along with GDS elements requirements, implementation schedules, and accomplish-
ments. A GDS lien list is provided at the end of this section.

1. Mission Planning Subsystem

The primary functions of the Seasat Mission Planning Subsystem (MPS) were

to:

(1)

(2)

(3)
(4)

Provide Command Request Profiles to the Mission Control Team at
GSFC.

Develop maneuver and orbit maintenance strategies and to specify

maneuver execution periods and desired results.

" vovide planning products to experiment and data processing groups.

Monitor long-term satellite performance to establish sensor operat-

ing constraints.

The first three functional capabilities were developed, tested, brought to
full operational status, and successfully used throughout the Seasat mission.
The fourth function, long-term performance monitoring, was never successfully
demonstrated, partly because of lengthy delays in the availability of processed
data and partly because of the lack of availability of a SPAT representative to

the MPS.

To the extent that this fourth function existed, it was performed

within the SPAT at GSFC.

a.

Sequencing. The sequencing elements of the MPS involved developing

and transmitting the CRP to GSFC, which included the use of several information
interfaces and two major software sets operating on the 1108 computer systems.
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The information interfaces were between the MPS and the SPAT sensor experiment
representatives, the sensor engineering assessment managers, and the orbit
determination group in Code 570 at GSFC. One of the software sets was the
operational version of the Satellite Mission Design Program (SAMDPO) developed
by the Mission Design Section at JPL from a predecessor program (SAMDP2.0) used
in the original Seasat mission design. The other software set was the mission
planning software set developed as a Seasat-peculiar item by Alta V);sta Techni-
cal Services under contract to the Mission Design Section at JPL. Functional
flow through the MPS (Figure 2-5) involved the collection of orbital elements
from GSFC Code 570 to drive SAMDPO, engineering constraints and requirements
from SPAT, and sensor sequencing requirements from both the experiment represen-
tatives and the sensor managers for engineering assessment. The SAMDPO output,
together with the other inputs, served as the input to the mission planning
software set which resolved orbital event-related times to GMT command times,
expanded macro requests (satellite group commands), resolved time conflicts
between commands, and flagged satellite command restraint violations, This was
an iterative process with two levels of project review prior to final output.
The first review was at the input level, where the project office reviewed the
sensor inputs and engineering constraints for completeness and appropriateness.
The second review was a detailed command review by the Seasat Project Office
and other interested personnel. The final output was a CRP nominally covering
a 7-day period written on an MCCC system 360-compatible tape for formatting and
transmission via high-speed data line to the POCC Sigma 5 computer system at
GSFC.

The pacing item in the sequencing development actlivity was the data inter-
face with CMS. Preliminary agreement was reached by October 1976 to the degrce
required to permit CMS design to begin. Several changes and remaining uncer-
tainties, notably the addition of the Global Positioning System (GPS), lack of
precise knowledge of the information available from Code 570, and uncertainties
in STDN statior scheduling, led to delays in the final specification of the
MPS/CMS interface. The GPS was subsequently removed from the satellite when it
was determined that the required orbital data could be generated with sufficient
accuracy in SAMDPO, and a division of responsibility between MPS and MCT was
developed for tape management, which circumvented the station scheduling prob-
lems, so that the requirements for MPS and CMS could be established with the
required firmness by June 1977. At this point coding of Mission Planning Soft-
ware System (MPSS) Version 0.1 could be completed. Three test tapes were deliv-
ered to CMS for testing, resulting in the identification of several changes
required on both sides of the interface. The MPS changes were accomplished in
the next two months. The high-speed data line capability, originally scheduled
for mid-November 1977, was delayed several months, so that data exchange between
MPS and CMS continued through tape deliveries. Mission Planning Software System
Version 0.2 was successfully acceptance-tested and placed under change control
on 31 January 1978. With the completion of sensor hardware delivery and instal-
lation at LMSC, the sensor representatives began developing more detailed plans
for the sensors, requiring additional modifications to the software, but in the
meantime software version 0.2 was delivered and installed as Mission Operations
Software System (MOSS) Version 1.0 on 16 May 1978. The launch version (MOSS 1.1)
was delivered and installed on 22 June 1978.

The SAMDPO software was developed as a separate program from its predeces-
sor beginning in spring 1977. The basic requircment for the program was to
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create a time-ordered set of orbit-related events for use as command triggers or
operational information by the planning software or operational personnel (lable
2-1).

A development version of the program was running by late summer 1977,
although some of the requested orbital events had not yet been implemented. The
development version output file was complete enough to permit end-to-end testing
of the MPS software from September to December 1977, SAMDPO was internally
tested and certified for use on 12 February 1978. Integrated testing with the
planning software, however, indicated that the certified version still did not
have the full operational capability required. Several of the orbital events
required were computationally incorrect, others were intermittent, and still
others had not yet been implemented. Refinement of the operations concept also
had yielded new requirements for SAMDPO outputs. Throughout the next 2 months,
emphasis was placed on improving the internal accuracy of SAMDPO and revising
its subroutines to reflect improvements already Incorporated in a companion ver-
sion of SAMDPO 3.0. Considerable effort was expended on increasing computational
efficiency, as SAMDPO had the longest running time of all of the MPS software.

By May 1978, there was conslderable concern that an operational version of
the program would not be available for launch. Accordingly, the list of require-
ments yet to be validated was examined and priorities assigned. All mandatory
ftems were incorporated first and installed in an operational missfon-built ver-
sion of the program on 25 May 1978. Work continued on the non-mandatory require-
ments. As each was brought on line in the development version, it was tested
against the mission-built version and validated by the planning software. MOSS
1.1, installed 22 June 1978, contained the updated version of SAMDPO. There
still remained some items to be implemented in SAMDPO at launch, and these items
were worked on throughout July and August 1978. During September 1978 work on
the new version of SAMDPO was temporarily halted because of resource limitations.
By the time of the satellite power subsystem failure on 10 October 1978, the new
version was complete and awaiting integrated testing and validation prior to
installation on the operational system in MOSS 1.3.

Three types of tests for various versions of SAMDPO were accomplished
throughout the program:

@D) Internal tests were conducted against previous versions of the pro-
gram or against standard test runs on related programs (SAMDP2.0 and

SAMDP3.0).

(2) External tests compared the output of SAMDPO for standard test runs
on the GSFC Code 570 software.

(3) Integrated tests were run using the SAMDPO output file as the driver
for the mission planning software.

Special input checking routines had been incorporated in the planning software
to identify missing or inconsistent entries in the SAMDPO output file, such as
event start without an associated event end, non-consecutive revolution numbers,
etc. Integrated testing was conducted on an as-developed basis rather than as-
delivered, so that not only the existing MOSS version of SAMDPC but also the
latest developmental version was always available for operatiovmal use. This
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incremental approach to testing permitted early use of each validated program
improvement, and also permitted considerable insight into the e¢ffect of individ-

ual changes on the balance of the program,

b. Orbit Maintenance. Pre-launch planning called for early adjustment
of the Seasat orbit so that a stable orbit optimized for sensor data acquisition
cou.d be achieved within 30 days of launch. The orbit selected was a 3-day
near-repeat orbit in which the ground trace laid down in 43 revolutions (revs)
would be displaced 18.5 km (10 nm) to the east during the next 43 revs. After
5 months of operation in this orbit, the complete equator would have been crossed
every 18.5 km, setting up a uniform sensor sampling grid. During tiis period,
maneuvers to maintain the 18.5-km spacing were to be performed as required. 1t
was also planned to interrupt the grid buildup when an exact overflight of the
Bermuda STDN station could be achieved to perform an exact 3 day repeat experi-
ment over Bermuda, then return to the 18.5~-km grid buildup. During the second
6 months of the mission, it was intended that a different grid buildup would be
used to provide a different global sampling characteristic.

The MPS responsibilities lay in the arcas of development of mancuver strat-
egy, the specification of post-maneuver orbital elements required, and the selec-
tion of maneuver days. The maneuver mode ing, thruster calibration, command
generation, and maneuver execution were all responsibilities of the Maneuver
Operations Planning Tcam (MOPT) at GSFC. MPS support in the pre-launch training
and operational readiness testing activities was given on an as-needed basis.

By launch, the complete maneuver area had achieved a high state of readiness.
Detailed orbit mancuver information is contained in Section VI,

C. Planning Products.  Several planning products and planning aids were
produced by the MPS during the pre-launch and flight activities. These aids
included orbit calculators, ascending node tables, computer plots, map overlays,
tabular listings of events of interest, computed products, and special analyses.
Planning product uscrs ranged from MCT to experiment team members to data users
outside of the project framework. The products could generally be classified as
operational aids, data acquisition aids, or informational aids. Their classifi-
cation generally denotes both their source within the MPS and also their ultimate

use,

The operational aids were generally produced by the Mission Planning Soft-
ware System as a by-product of the process of preparing the CRP. The principal
users were the members of the MCT at GSFC, the intent being to provide the MCT
with the information required to aid in STDN station scheduling and real-time
command generation. The two -outinely produced operational aids were a tape
recorder management aid (TRP LAN) and a SAR real-time command aid (SARPLN). The
TRPLAN listed all of the potential tape recorder playback sites for each tape
load and flagged the time available for playback. By using TRPLAN, the ACMOs
were able to select primary and secondary dump sites for the satellite tape
recorders. In this manner, tape recorder read-in management was decoupled from
the tape recorder read-out management, which was dependent on knowledge in
advance of station scheduling. Although decoupling did simplify the activity,
both in the MPS and MCT, it did depend on using a fixed-length read-in, which
rosulted in a loss of efficiency in the use of prime tape dump stations. This




N LT W e

e y—

loss serjously impacted the data recovery and assembly at GSFC. Investigations
into the possibility of changing the read-in algorithm to increase efficiency of
usage, specifically of the STDN station Fairbanks (ULA), indicated that no sim-
ple algorithm could be developed that did not depend on some knowledge of station
scheduling further in advance than the network schedulers normally worked. The
only alternative to this loss of efficiency would have been to place the respon-
sibility for both read-in and read-out tape management with the MCT at GSFC,

This was rejected as imposing too great an additional load on the MCT.

SARPLN was intended as an aid to the MCT if targets of opportunity were
identif ied and requested by the pro_ect without sufficient time to exercise the
MPS planning capability. SARPLN iden.ified the beginning and end of every pos-
sible SAR pass within a given time span, and also included such pertinent infor-
mation as satellite eclipse times and station elevations. This information,
together with the SAR group commanus residing in the CMS and the table of Sensi-
tivity Time Control (STC) and Pulse Repetition Frequency (PRF) commands as a
function of satellite altitude, provided the MCT with the capability to hand-
generate any requested SAR pass.

The data acquisition aids were those produced by the MPS generally using
the SAMDP3 program for use by the experiment teams to determine opportunities
for acquiring data at specific locations. Chief among these aids was the
SEATRAKTM satellite tracking calculator and its associated tables of predicted
ascending and descending node locations and times. The calculator is a set of
polar projection Earth maps with overlays which provide satellite and sensor
swath geometry and timing information. It is similar to the orbit calculators
often used by previous programs fo providing approximate information for Earth
orbiters, To use the calculator, it 1s necessary to have some known orbital
position and time. This was provided by compiling the set of node positions
and times with the calculators. These were updated each time the essential
characteristics of the expected orbit changed; that is, updates were issued
after the decision to delay orbit adjust and after the design of the actual orbic
adjust maneuvers was complete. An additional update was scheduled for distri-
bution on completion of the exact 3-day repeat experiment over Bermuda. The
calculators proved accurate enough that they were vsed by «xperiment teams,
notably the SAR and SASS teams, to produce comman. requests.

Specially produced computer plots and map overlays were also generated in
response to specific requests. These also were generated using the SAMDP3 pro-
gram. The primary users were those interested in special experiments such as the
Gulf of Alaska Seasat Experiment (GOASEX).

In ormation aids were provided from a number of MPS sources to a variety
of interested parties. A human-readable version of the CRP, desigated TYMLYN,
was produced cach week for the use of all parties who required detailed infor-
mation on planned science activities. A special SAR request listing was pre-
pared weekly to indicate the beginning and end of all requested SAR information.
Another SAR listing maintained a running accounting of cumulative on-times in
the previous 24-h period for the use of the SAR and satellite electrical power
personnel. Special analyses and information tabulations were provided in
response to speclal requests from those associated with the project.,
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In addition to the planning products, there were also user requests for
products that would aid in the processing of received satellite data. Special
SAMDP3 runs were made to provide satellite geometry data to the SAR data process-
ing group to use as inputs in the SAR processing.

2. POCC Implementation

a. Hardware and Software

Requirements  As described ir the SIRD, project-unique requirements
were to!

(1) Generate a Command Master Data File (CMDF) of all commands, including
time of occurrence, initiated from the control center,

(2) Monitor and correct the spacecraft on-board GMT clock.

(3) Compute and compare solar array tracking angle and yaw angle in real
time using satellite-predicted orbit, sun ephemeris, and telemetry
readouts.

(4) Format and transmit STC and PRF settings to the STDN SAR data
formatter control unit.

(5) Establish JPL/POCC hard-link for transmission of mission planning
command data.

Implementation of Requirements. All major requirements were resolved using
established documents such as the Support Instrumentation Requirements Document
(SIRD), NASA Support Plan (NSP), etc.. Details of requirements were resolved
by GSFC and JPL engineering persomnel. When requirements crossed GSFC organiza-
tional elements and interagency boundaries, Interface Control Documents (ICDs)
were estahblished with appropriate signatures. The POCC was directly responsible
for six of these documents; two were initiated from JPL as a joint effort. The
POCC also established a sensor processiug agreement, which determined and defined
all POCC quick-look requirements for monitoring the performance of the five
on-board sensors. This agreement was approved by the six agencies.

Concurrent with the Seasat software development, a new Mission Operations
Room (MOR), office facilities, and a three-computer switching system (for ade-
quate computer back-up support) were developed. Although this was not a direct
requirement for Seasat, the Multi-Satellite Operations Control Center (MSOCC) II
was established to provide a dedicated MOR for Seasat personnel and the scheduled
availability of three Sigma 5 computer systems for support.

Software and hardware designs were implemented on or ahead of schedule.
Firming of software requirements occurred in March 1977 at a Univac/GSFC/JPL
critical Software Design Review (SDR). The most difficult task, which remained
essentially on schedule, was the General Electric (GE) switching system hardware
integration, which occurred during on-going AE and 0SO spacecraft operations.
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This was accomplished with minimum impact to either on-site operations or Seasat
development. This effort also included the first use of 4800-bit NASCOM trans-
mission blocks, hardware block polynomial decoders, solid-state switching with
microprocessor control, color configuration cathode ray tube (CRT) display with
light-pen CRT switching, and color satellite system command display with light-
pen command execution. The two most difficult new (not generic) software tasks
were to design, integrate, test, and maintain schedules for the JPL interface for
command input and the universal time correction and correlation requirements.
Although the end-products were satisfactccy, these two elements consumed so wuch
time because they were new, that it was difficult to plan, test, and generate.
The block telemetry scanning radiometer (SR) format also created a new data base
and generated a software design philosphy which to some extent did impede
development, but proved to be a better way of processing data.

Testing. In addition to the contractor (Univac and GE) obligation of
module, system, and regression testing, a test team was formed., This team con=-
sisted of JPL, Univac, and GSFC operations and engineering personnel whose purpose
was to test all software deliveries before they were used in operations, The test
program objective was to generate and test a new scfiware delivery approximately
every 2 weeks. A new delivery would contain new requirements (which were mini-
mum), enhancements, discrepancy corrections, and additional scheduled capabili-
ties. This test effort began on Friday and progressed threough the weekend, and
the system was generally made available on Monday. The method «f jouint and
weekend testing proved to be successful, although exhansting to¢ all participants.

Another important testing event was the spacecraft/PUCC compatibility test.
A spacecraft test plan was co-authored by GSFC and JPL, written fotv both engineer-
ing and mission-oriented objectives, and approved as a iuint LMSC, GSFC, and JPL
effort. The test, which required approximately 18 h, was very successful, even
though the timelines and all operations objectives were not met.

Subsequent to spacecraft launch, other misaion cperation tests were per-
formed with engineering support. A software user guide was prepared and delivered
with the controlled software system tapes, according to GSFC document OCD-2X-038-1,
and a formal enhancement and discrepancy system was established from a G.'FC
Operating Control Directive (0CD). The software user guide was used as the princ-
ipal training aid along with 2 weeks of formal spacecraft operations and mainte-
nance and operations (M&0) training, on-the-job training (OJT), and one-on-one
tra‘ning. After launch, a 6-month, 3-man follow-on Univac support contract was
in e:fect to continue necessary maintenance of the Seasat software system.

Schedule. All items related to POCC development were milestoned and pre-
sented to various GSFC, NASA headquarters, and JPL elements. This material was
last presented at the Occ.ober 1977 review at JPL and the 30-day and 7-day pre-
launch reviews at GSFC. It also included such things as concerns, contingencies,
capabilities, and status summaries.

b. Operations and Maintenance Support

Requirements. POCC operations requirements are documented in the SIRD,
NSP, JPL Space Flight Operations Plan (SFOP), GSFC Mission Operations Plan (MOP),
GSFC Network Operations Support Plan (NOSP), etc.. Table 2-2 provides a summary
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Table 2-2.

Seasat POCC Operations Support Team Responsibilities
(0&M Contractor Support)

; Post personnel will:
: (1) Maintain the POCC equipment.
} (2) Operate the POCC computers.
(3) Coordinate, control, and monitor POCC equipment configurations

N

(8)

(9)

Py

(S

(10)

(11)

and data flow:

(a)  PocC _'n,H/cm)/s,\R_ STDN
(b, pocc-CRE/MSOE 1oy
(@) pocc <CRP/MSOE oo
(@)  pocC -2 - ADS

Coordinate scheduling of STDN support,

Schedule and coordinate transmission and retransmission of
playback.

Provide verbal briefings and direction to the STDN during
pre-pass, pass, and post-pass operations.

Transmit real-time commands and command memory loads to the
spacecraft under the direction of the project.

Generate and transmit SAR demodulation control data to ULA,
MIL, and GDS stations via data link, and to non-STDN stations
via telex.

Process microsecond time-tagged real-time telemetry data for
computation of spacecraft clock time offsets. Distribute time
offsets to the project MCT, IPD, CMF, ADS, FNOC, and others,
if required.

Participate in the pre-launch checkout of the POCC and its
external interfaces, including participation in training
exercises and simulations,

Maintain accountability for POCC/project operations support
information and data (e.g., support schedules, scheduling aids,
ephemeris tapes, predicted slant range tapes, memory load
tapes, etc.).

‘:Qkﬁw~W%
N RE R T e e,
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of the operations and mainterance (0&M) support provided by the POCC Operations
Support Team (POST), and Figure 2-6 shows the many POCC operational and data
interfaces required to support the Seasat mission.

Implementation to Meet Requirements. POCC O&M support was provided by
contractor personnel under the direction of the GSFC control center operations
manager. O&M personnel also assisted with hardware and software implementation
and engineering tests, under the direction of the GSFC control center operations
manager and systems manager.

POCC O&M implementation consisted of forming and training the POST to
support Seasat operations, and developing operational procedures. Staff buildup
began in September 1977, when an individual with 12 years of control center
operations experience was assigned as the Seasat operations coordinator. Other
positions were filled as the workload increased, with all key positions filled
by January 1978, To start out with experienced operations personnel, two data
operations controllers from the Orbiting Solar Observatory (0SO) POCC and two |
from the Atmosphere Explorer (AE) POCC were assigned to Seasat. Replacements
were assigned and trained for 0SO and AE before this action was te¢ ., Seasat
command operator positions were filled in a similar manner.

The Seasat operations coordinator worked with the POCC manager to develop
approximately 20 OCDs that specified the operational procedures to be used by the
POST for the Seasat mission. These directives covered the operational interfaces
with the many organizations shown in Figure 2-6 and with internal POCC operating
procedures. Development of these procedures was a time-consuming, but very
beneficial task.

Tables 2-3 and 2-4 summarize the formal (classroom) and informal training
received by the POST personnel. Training was provided by personnel from GSFC,
JPL, LdSC, Univac, GE, and RCA.

Testing. The POST participated in a great deal of testing, much of which
was also useful for training purposes. POST personnel assisted the control center
systems manager (CCSM) with engineering tests between the POCC and the organiza-
tions shown in Figure 2-6.

One major undertaking of the POST was the conduct of pre-launch POCC/STDN
data flow tests and the evaluation of the results of these tests. A detailed
test plan was prepared by the POST that outlined the tests to be performed, their
purposes, the forms to be used for recording test results, and also identified
the personnel responsible for supporting the tests. Eighty POCC/STDN data flow
tests of 60 to 90 min each were conducted between 28 March 1978 and the launch
date. Most of these tests were successfully completed with all stations by
early May. Tables 2-5 and 2-6 summarize the testing status as of 1l May. Early
data flow tests showed missing or incorrect time-tagging of the telemetry data
by the STDN because special equipment modifications to provide microsecond
resolution time-tagging for the Seasat mission had not yet been installed at the
stations,
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Table 2-3. Formal

Classroom Training

Formal Training Completed . . . . . + . . &

Spacucraft Training Completed .
Geueral overview presentation .

Detailed training classes . . .

Software Operations Classes Completed

CI‘.”.050000001000n:0.

Hardware Maintenance Training Completed

New Hardware

General Purpose Console (GPC) . .
GPC/GE electronic switcher system . .
Simulator/line test unit (PDP 11/34).

Exiltinsﬂlrdware........n..-.

Signa 5 systems overview
KYBD/CRTs

C e e et e e e e 317778
e e e e e .. 1719778
c e e e e e . 10/12/77 Q1 day)
. .. 1/10/78 to 1/19/78 (8 days)
e e e e e e e e e 12/22/77
.« 12/12/77 to 12/22/77 (9 days)
C e e e e e e 317778

e » o 11/28/77 to 12/2/77 (S5 days)
o o o 2/13/78 to 2/24/78 (10 days)
e 20 . 2/28/78 to 3/3/78 (7 days)

+ o+ 3/6/78 to 3/17/78 (10 days)

Conteoller multiplexers for driving KYBD/CRTs and GPCs

Stripchart recorders

Data products line printers

o T
m
2
3

]

L

Tab le 2-'4 .

Informal Training

Informal Training Completed . .« . . . « « + ¢« o« o o & «

(1)

(2)

Operations Training

6/22/78 (laat simulation with STDN)

POCC personn=l who attended formal software and spacecraft trvaining class

provide OJT to remaining POCC personnel.

POCC personnel regularly supported:

Engineering tests
Intra/inter-team tests '
Data flow tests
Simulations

Test and simulation support resulted in:

Primarily from January 1978 to launch

Ref inement of OPS procedures
Familiarization with the POCC system
Familiarization with external interfaces, including the STDN configuration

and project data formats

Hardware Training

Maintenance personnel assisted with hardware installation, checkout, and maintenance.
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Table 2-5, DDPS Phase I, Program 2, POCC/STDN Data Flow Test Summary
(Total of 55 Tests, Period 3/28/78 to 5/11/78)

s e e e e I ke 1 s ke A e e —————

Tent tunction thvoked

e e PO E e e e . - B

Pre/Post

No. boPs lime- Pans Time SAR

vf SCk SUE tormat - fag bguipeart Call- Demodulution
Sta Toewts A B ¢ b E 1 2 ting Avcuriacy Netays hrat{on 1/t
AcN 6 5 5 8 s 8 5 5 5 » s - N/A
AGO [} S 3 S S t S 3 s 5 8 - NTA
BDhA 0 No S6-kb/s link until Qctober 1978
ETC ! & S * " " 5 5 » 3 ) - N/A
GDS ] - H s AN H S 5 8 8 5 - LT
CuM ® S s 5 5 5 s 5 5 8 5 - N/A
HAW 5 5 8 S LI hik 3 5 3 8 5 - N, A
MAD [ 5 S s S s - 5 5 S S s N/A
MIL 9 H 5 5 U 5 8 5 5 s 5 5 s
ORR 5 H H S 5 N § S 5 8 " - N/A
Qul 0 No 36-kb/s tink
ULA 5 4

8 5 5 H] S ] ] S ) S 1)

Test Legend:

A - PRT (DDPS/SCE) with simulator data
8 - RT pass, simulator data, SCE 1, pre- and post-pass equipment delay measurcmenis of 00123 and 00456
C - RT pass, actual spacecraft data (from analog tape); SCE 2, make journai tape for test E, pre- and post-pass

S -

L]
(1]

equipment delays of 00100

« Post~pass playback of RT pass from analog tape using tape time track
=~ Poat-pasu playback of RT data from journal tape (from test € to wimulate POCC miwsing data from a time

correlation pass)

Succesaful

Tests C&D analog tape had many dropouts. No time to run E
Bad time tags

*&x Unguccessful in receiving good data for DsE
*haklegt May 22-26

Table 2~6. DDPS Phase I, Program 2, POCC/STDN Data Flow Test Summary
(Period 5/2/78 to 5/11/78)

Test Function Checked

Pre/Post
No. DDPS Time=- Pass SAR
of SCE SCE Format- Tag Equipmeny Demodulation
Sta Teuts Ul u2 u3 U4 us ué u7 1 ? ting Accuracy Delays 1/F
ULA 5 S S 5 L] s N/A " S S S S S S
Test Legand:
Ul - PRT (DDPS/SCE) with simulator
U2 - RT pass, simulator deta, SCE 1, pre- and post-pazs equipment delay measurements of 00123 and 00456
U3 ~ RT pass, actual swpacecraft data (from analog tape); SCE 2, pre- and post-pass equipment delays of 00!00
U4 - Post-paus playback of RT pass (25 kb/s) from analog tape using tape time
U5 - RT pass with 25-kb/s RT and 800-kb/s dump using actual spacecraft data from analog tape
U6 - 800-kb/s dump past pass playback from analog tape using tape time (TELOPS/FNOC only)
U? - RT (25-kb/s) data, via 56-kb/s link (simulates unavailability of 1,544-Mb/s 1ink)
S =~ Successful

* Bad time tags

*ANo

change to test
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The POST also participated in the POS test and training plan activities
described in Section II-D of this report. GSFC POCC Operational Readiness and
Performance Assurance (ORPA) meetings were held regularly from 26 January 1978
through the end of the mission. Representatives attended from all groups with
responsibilities in the POCC. The ORPA POCC deficiency and enhancement request
system was used to track software and hardware problems and enhancement requests.

Schedules. PCST support was provided on a schedule that was compatible
vith project requirements.

3. Command Management System

a. Requirements. The CMS at GSFC was responsible for the management of
memory commanding for the Seasat mission. The CMS received mission planning
information from JPL through the POCC, and translated it into memory loads that
were trausmitted to the POCC for subsequent loading on the Seasat onboard
memories.

Specifically, the requiremeats for the CMS were to:

(1) Provide an interface to accept and edit all inputs of stored
command requests.

(2) Merge all current, pending, and automatic command requests into a
single GMT-ordered list.

(3) Determine memory loads in size, time span, and loadability.

(4) Fabricate spacecraft commands from the command requests into
acceptable spacecraft memory load format for tramsmission to the
POCC.

(5) Check for constrai:c violations.

(6) Provide with each memory load an English command/orbital event

description in a GMI'-ordered list.

The CMS was developed for the IBM S$/360-65 computer at GSFC with an IBM S/360-95
as backup.

b. Implementation. The CMS software system was develope¢ by Computer
Sciences Corporation under the direction of GSFC Code 514. Figure 2-7 shows
the data ‘iterfaces and processing steps involved.

No significant problems were encountered in the development and implemen-
tation of the Seasat CMS. Processing specifications were provided in the
project's SIRD; data interfaces were defined in the ICDs, and operational con-
siderations were coordinated in planning meetings held both at JPL and GSFC.
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C. Testing. Seasat CMS proof tests were conducted at two levels:
software acceptance tests and system operational tests. Software acceptance
testing was conducted by the CMS operations contractors, Computer Sciences
Technicolor Associates (CSTA), and consisted of verifying and demonstrating the
basic CMS functions, i.e., project requirements. These tests were successfully
conducted between February and May 1978,

The CMS also supported a series of operational simulation tests conducted
by the JPL MCT. These tests, conducted between March and June 1978, exercised
CMS capabilities and interfaces using planned mission sequences and timelines.
All tests were successfully completed, and the CMS-generated products (loads,
maps, and MSOEs) were delivered according to test schedules.

Two minor problems were identified during system tests. These problems
were the occasional failures of the CMS/POCC computer-to-computer (electrical)
interface and extraneous print characters contained in the command load English
descriptor. The transmission problems were not resolved, but presented no
operational impact because of a backup tape interface capability. The extraneous
print problem was corrected after launch by a minor software patch.

d. Schedule. The Seasat CMS software was delivered in four phases
evolving from a skeleton system in April 1977 to a final (full capabilities)
system in March 1978, All deliveries were essentially on schedule, and the CMS
was considered ready for mission support by 28 March.

As previously stated, a software patch was delivered after launch
(August 1978); however, the problem was considered to have no impact on mission
operations, and the fix was delayed until after early mission activities.

4. Orbit Determination System

a. Requirements. The responsibilities of the orbital operations
personnel were to:

(1) Provide launch and early orbit determination.
(2) Provide operational orbit support.

(a) Provide predicted operational orbit computations with an
accuracy of 20 km (11 nm) to project-designated recipients
at the end of a l-week period.

(b) Provide orbital elements to FNOC, JPL, Smithsonian Astro-
physical Observatory (SAO), Oakhanger, Shoe Cove, and the
user community.

(3) Provide definitive orbit computations with an accuracy of 50 m

(164 ft) along-track, 30 m (98 ft) cross-track, and 30 m radial
to project~designated recipients.
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(4) Process, format, and distribute S~band and laser tracking data.

(5) Provide scheduling aids to project-designated recipients.

b. Implementation. In resolving the above requirements. SIRD and MOP
documents were used. ICDs were also established: (1) between Orbit Determina-
tions and the POCC, and (2) between Orbit determinations and the IPD and JPL.
In establishing these ICDs, a joint effort was made by the parties involved.

Orbital computations were performed on the IBM 360 computer complex using
the existing orbit determination system for other spacecraft. The programming
changes required in the system were for generation of range tape required by the
project to compute the clock offset.

To meet the r.eviously mentioned accuracies of 50 m, 30 m, and 30 m, the
support system used the appropriate force modeling, representation, station
geodetics, and physical and environmental parameters. A close working relation-
ship between the orbital operations support group and the networks was maintained
to secure the appropriate distribution and amount of observational tracking data.
The definitive orbital ephemerides were provided to IPD and Attitude Determination
in the form of magnetic tape and in the time frame to meet the 6-day project
package data delivery.

Strict procedures were established for quality control on computations of
this particular function. Processing of this definitive orbit determination data
required the use of the IBM 360 computer on a daily basis for approximately 1.5 h,
but, because of the fine individual efforts, this had little impact on other
projects.

C. Testing

(1) Observational tracking data from the existing spacecraft (Landsat~]
and GEOS-3) were processed to demonstrate that accuracies of 50 m,
30 m, and 30 m in orbit computation could be achieved. However, this
placed the following requirements on the project:
(a) Project to provide 14 passes a day (one each orbit and at

least one each station) of S-band Doppler data to orbit
operations.

(b) Project to provide seven passes a day, well geographically
distributed, of S-band range data to orbit operations.

(2) Predicted range tapes to be provided to the POCC to determine if the
tape was properly formatted,

(3) Predicted definitive orbit data to be provided to IPD and .JPL.
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(4)

d.

Telety,. orbital elements to be provided to JPL, FNOC, UKO, and SNF.
No testing was required to transmit the orbital elements to SAO and
Sunnyvale, as these interfaces were already in use for other
spacecraft.

Schedulea. All schedules were met on time.

5. Attitude Determination System (ADS)

a.

Requirements. The ADS support by GSFC consisted of determination of

three primary functions under the direction of the attitude computations analyst.
For this mission, there were three distinct attitude determination functions:
real time, quick~-look, and definitive. 1In satisfying all three requirements,
telemetry data from the two Ithaco infrared horizon sensors and the four Adcole
sun sensors were the primary method for determining attitude.

The specific requirements were:

(1)

(2)

(3)

(4)

b.

Real Time. For each station contact to compute yaw from the
satellite sun sensor data, to extract, calibrate, and display pitch
and roll, and to compute solar panel tracking error data.

Quick-Look Attitude Determination. To compute whole orbit yaw data
as accurately as possible and provide to the satellite analysis team:
(a) nine orbits (maximum 30 percent) during the first 2 weeks after
launch, and (b) two to four orbits for each orbit maneuver or adjust,
with a turnaround time requirement of '"near-real time."

Definitive Attitude Determination. To provide continuous pitch,
roll, and yaw attitude to 0.17 deg (3 sigma) for each axis, to be
generated daily and to span the same satellite data day as the con-
tents of the PMDF.

The Definitive Attitude File (DAF) contained time-tagged attitude
data points at a frequency high enough to cause less than 0.02-deg
linear interpolation error per axis, but within the period range of
5 to 60 s. The DAF was to be generated in time to meet the overall
6-day project data package.

A secondary ADS requirement was to support the LMSC attitude simulator
software programs. These requirements were to obtain the results of
whole orbit yaw attitude data in engineering units and run on a
general purpose IBM 360 computer.

Implementation. Reudl-time attitude determination was defined as the

on-line processing and displaying of attitude parameters as the real-time data
were being received from the tracking station. Attitude determination in real

time was performed only in the Seasat POCC on the Sigma 5 computer, upon option,

using all real-time data received throughout all phases of the mission. 1In
computing attitude, the POCC used only real-time data that had been transmitted
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from the tracking station using a high-speed data link through NASCOM

(Figure 2-8). The POCC stripped and calibrated real-time pitch and roll data
directly from the spacecraft, and optionally adjusted each observation by a
fixed bias, Following this judgment, the pitch and roll angles were displayed
on a CRT display. The yaw angle was computed only when sun sensor data were
available, as follows.

Solar ephemeris and predicted spacecraft ephemeris, from an orbit EPHEM
tape, was used weekly to generate and store the predicted sun unit vector in the
orbital coordinate system on the hour for | week. These stored data and the
telemetered sun sensor and scanner data were used to compute yaw in the Geocentric
Inertial Coordinate (GIC) system at selected intervals upon request. Because this
computation was performed asynchronously with the real-time processing, it was
done using available cycle time and, consequently, computed and displayed a yaw
attitude approximately every 30 s. Out-of-limit conditions for pitch, roll, and
yaw were also flagged and displayed on the CRT. The observed minus predicted
solar panel tracking angle error were ..lso computed and displayed in real time.

It - jed as input the same stored sun information in the orbit ccordinate system
as was used for yaw computations, in addition to the solar panel tracking angle
from telemetry. The computation of this value was also done in an asynchronous
mode using available cycle time. There was no accuracy requirement or commitment
for real-time processing of pitch, roll, yaw, and solar panel tracking angles.

Quick-look attitude determination was the processing of whole orbit
(playback tape recorder) telemetry data for attitude solutions on an as-soon-as-
possible basis (nominally 6 h after receipt at GSFC). Quick-look data were
processed using the definitive attitude determination system on one of the
IBM $/360-75 (Cl), -75 (C2), and -95 (backup) computers, configured as illustrated
in Figure 2-9., The processing was done during the first 2 to 4 weeks of the
mission to support tlie attitude control system and orbit adjustment, and sub-
sequently to support orbit trim maneuvers that were expected to occur once a
month throughout the mission. During this period, up to four playback passes
(100 win each) of selected data a day were sent directly from the station to the
IPD. The TPD reversed the telemetry bit stream to chronologically order the
data and send it to the POCC via a hand-carried magnetic tape (illustrated by the
dashed lines in Figure 2-8). The tape was played through the POCC software
between real-time contacts where the attitude-related information was stripped
and sent via a 9.6-kb/s analog data link (ADL) to the quick-look processing
area. There the data were stored on disks and accessed by the definitive atti-
tude determination software to compute pitch, roll, and yaw when valid sun
sensor data were available.

Hard copy plots of pitch, roll, and yaw were hand-carried to the POCC for
each playback pass processed, and an attitude results data set was generated on
a sharable disk for access by the LMSC parameter estimation program. These
programs were used to trim the spacecraft control parameters to maintain the
spacecraft attitude within its specified control limits. The attitude plots were
also used by the POCC to determine when the switch from gyro control to wheel
control could take place following the orbit adjustment and orbit trim maneuvers.
A detailed attitude data flow diagram is provided in Figure 2-10.
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Definitive attitude determination was defined as after-the-fact processing
of attitude telemetry data using a determined (definitive, as opposed to pre-
dicted) orbit ephemeris to produce a continuous time history of the spacecraft
atritude. For the Seasat mission, definitive attitude processing was accomplished
uging the IBM $/360-95 computer with the =75 Cl serving as a backup (Figures 2-9
and 2-10). The definiti{ve attitude determination activity was initiated immed-
iately following the spacecraft universal time corrected (UTC) correlation update
and was continued for the duration of the mission. All playback and real-time
data received at the tracking station were tranmsitted by hard line through
NASCOM to the IPD. The IPD then checked the data, created a time history of
the telemetry data, and packaged it in 24-h blocks. These data began at 0000 h
of spacecraft clock time, which was maintained to within 200 us of UTC, and
ended at 2400 h of spacecraft clock time.

These 24=h blocks minus and plus one orbit of data (100 min, for yaw inter-
polation only) was sent daily to the definitive attitude processing area. There
the data were validated and adjusted for timing, oblateness, and horizon radiance
errors. The data were then processed using the sun and definitive orbit ephemer-
ides to compute pitch and roll angles for all times that there were valid tele-
metry information and yaw angle when valid sun sensor data were available.

Yaw attitude results for all other times were provided by an attitude inter-
polation and extrapolation algorithm developed by JPL personnel, which was backed
up by an algorithm that filled in data with a constant value for yaw. JPL had
complete responsibility for providing the values of all parameters that character-
ized the yaw interpolatjon algorithm. Attitude data during small telemetry gaps
(whose length was dependent on spacecraft attitude rates) were filled in by
interpolation with the attitude data smoothing algorithms.

‘he raw telemetry data package received from the IPD covered 0000 to 2400 h
of sparecraft clock time, and the attitude results for the spacecraft were pack-
aged to cover the corresponding UTC. These results were included in the IPD
6-day project data package. A timeline for Seasat definitive attitude data
processing is presented in Figure 2-11. Telemetry data and definitive orbit data
were normally received in the attitude processing area 2 to 3 days after the data
vere recefve | at the ground station. Attitude results were usually returned to
1PD within 1 to 2 days after the receipt of both the orbit and telemetry data.

Any additional data received for a given collection day after the initial data
had heen processed were treated as a separate entity and were output as an entity.

The goal of the attitude determination processing was 0.17 deg (30) for
pitch, roll, and yaw. Definitive attitude results were not required during
spacecraft orbit adjust periods or when the satellite was being maneuvered to
non-nominal attitudes (pitch, roll, or yaw angles greater than 10 deg in
magnitude) .

Because the satellite hardware operated in a backup mode of attitude con-
trol and the configuration changed throughout most of the mission, an estimate
of the actual accuracy achieved is not possible.
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C.

Tests and Interface Checks. A complete end-to-end attitude test of

the ADS was not poesible without having actual satellite data available {n a
flight configuration. Therefore, simulated data streams were generated and their
output followed and verified "roughout the system. Table 2-7 contains a summary
of the tests conducted by the ADS to verify the system. When a problem was
encountered, a correction was made and a retest was performed. Additionally,
retesting was performed for each new delivery of software within the system.

Table 2-7. Tests and Interface Checks

Real-Time Attitude

Simulated telemetry tape to exercise and compare known results.

(1)
(2)
(3)
(4)

Pitch and roll stripping and conversion.
Sun angle stripping, conversion, and calculation,
Check yaw computation.

Check for solar panel tvacking angle,

Quick~Look Attitude

(1

(2)

(3)
(4)
(5)

Simulated and real telemetry tapes run through POCC software ro
strip out attitude-related data and send through ADL to MAPS,

Hand-compare dumps of data input and output from POCC and received
at ADS,

Compare attitude raw data and results between POCC and MAPS.
Exercise MAPS with attitude data simulator.

Check out backup attitude telemetry data tape.

Definitive Attitude

(1)

(2)

(3)

(4)

Check for proper data stripping from IPD for MAPS by hand-using
simulated and real telemetry tapes and dumps.

Use dummy attitude results tape for early check of MAPS/IPD/JPL
interface.

Exercise MAPS with attitude data simulator to exercise MAPS and
MAPS/IPD/JPL interface.

Check out backup attitude telemetry and results maanetic tape to
ensure that it is the same as that which comes acre s link.
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d. Schedyle. The schedule for the ADS is shown in Figure 2-12. The
schadule was implemented as planned or changed as indicated in the notes at the
bottom of the figure.

6. Flight Maneuver Operations Center

a. Requirements. The primary responsibility of the GSFC Flight Maneuver
Operations Center (FMOC) was to aid the JPL MCT in the prediction, planning, and
evaluation of Seasat orbit maneuvers. Specifically, the requirements were to:

(1) Evaluate the post-injection orbit and plan maneuvers to remove
injection errors.

(2) Perform the post-maneuver analysis required to calibrate the onboard
thruster system.

(3) Provide maneuver requirements predictions based ~n an analysis of the
ground trace history.

(4) Design maneuver events (thrust magnitude and times) to achieve the
desired target parameters.

b. Implementation. No major problems were encountered in FMOC imple-
mentation (Figure 2-13). Considerable pre-launch coordination was conducted in
planning meetings attended by mission personnel from JPL, GSFC, and LMSC. Maneu-
ver interfaces were defined, and a timeline was developed for maneuver planning,
execution, and evaluation. The FMOC software developed for Seasat comprised an
evolutionary maneuver model augmented with Seasat-peculiar physical and perform-
ance data. Vehicle information was provided by LMSC, and software development
was performed under ccntract to GSFC by Computer Sciences Corporation.

c. Testing. FMOC system acceptance tests (functional proof tests) were
successfully conducted between November 1977 and February 1978. The FMOC also
participated in four maneuver simulations between April and Jume 1978. Each of
these simulations assumed a set of current as opposed to desired orbit conditions.
The maneuvers were then designed, executed, and evaluated according to the mis-
sion procedures and timeline. The simulations proved to be beneficial, and
maneuver responsibilities and interfaces were well defined.

d. Schedule. System development, test, and integration progressed
according to schedule and the FMOC was ready for mission support by 1 May 1978.
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7. Telemetry On-Line Processing System/IPD

a.

Requirements. Specific requirements for the Telemetry On-Line

Processing System (TELOPS) and the IPD were to:

(1)
(2)
3
(4)
(5)
(6)

)

(8)

(9

(10)

(11)

(12)
(13)

Reverse the reversed playback telemetry data.
Remove overlap from the playback data.
Process data on a l-day (2/-h) basis.
Generate Project Master Data File (PMDF).
Generate Data Accountability Log (DAL).

Strip attitude parameters from the PMDF and transmit to the attitude
computation center.

Strip housekeeping data from PMDF for use by the POCC.

Receive attitude (ATT), orbit (ORB), and command (CMD) dara from the
respective organizations at the GSFC for inclusion in the Project
Data Package (PDP).

Concatenate ATT and ORB data on a single tape.

(a) Ensure that the attitude/orbit (A/0) tape contained an ATT
and ORB file.

(b) Tape check the A/O " .pe and generate a shipping letter.

Assemble and forward the PDP containing PMDF, ORB, ATT, and CMD data
to JPL.

Ensure that tapes shipped to oiher users were copies of tapes shipped
to JPL.

Archive only IPMDF (playback telemetry data).

Ensure quick turnaround of quick-look data (one to two revolutions
a day for the first 2 weeks after launch, then about once a month
during orbit trim maneuvers and during low power periods). IPD to
provide data to the POCC within 4 to 6 h of receipt at TELOPS.

There was no requirement to process real-time data.

b.

Implementation. The overall playback data flow tor Seasat is shown

in Figure 2-14. Data were nominally processed in the preduction mode and, during
launch and spacecraft critical periods, in the quick-look mode for the POCC. The
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quick-look mode was the rapid turnaround of data processed through the production
cycle and provided to the POCC on a magnetic tape.

Production data processing used Scasat telemetry data acquired at the STDNs.
IPD provided the project with the complete coverage telemetry after receiving and
processing the data from the STDNs,

An A/0 tape was also generated for each day of data processed. Attitude
data vere received from ADS through the data communications link between the
Univac 1108 and IBM 360 computers. Orbit data were received by IPD on digital
magnetic tape from the operational orbit support branch. Attitude data occupied
the first file of A/ tape, and the orbit data occupiled the second file. A
computer printout containing spacecraft command data was also provided to IPD by
the Seasat POCC. These three sets of data were prckaged and shipped to JPL for
additional processing by the Seasat Project.

The Input Processor (IP) in the TELOPS environment was the IBM 370 computer.
The IP received the telemetry data through NASCOM, appended transmission quality
flags to each pass message, reversed the playback data, and performed data quality
checks, These data were then stored in a mass storage system in the order the
data were recorded from the spacecraft.

The operations team in this area consisted of four people. They provided
24-h, 7-day-a-week coverage. Four 6250 b/in. capability tape drives were added
to the existing system, primarily due to the high rate Seasat telemetry, though
not exclusively for Seasat.

A spacecraft-unique software routine was developed for processing Seasat
data. The telemetry data were edited by the Telemetry Data Processing System
(TDPS), a program on the Univac 1108 computer. The TDPS edited the playback data
from the TELOPS mass storage system.

Prior to launch, two tape drives with 6250-b/in. capabilities were added to
the existing system. This. again was not exclusively for Seasat, but because of

the high-rate Seasat telemetry data. There were no special software developments
for the Seasat mission.

c. Testing. The major problem in testing the system was the lack of
actual spacecraft data. Various interfaces were tested using the only available
34-min data, which were recorded during the compatibility test. The following is
a list of the interfaces that were checked:

(1) IPD/Network

(a) 56 kb/s.
(b) 112 kb/s.
(c) 224 kb/s.

(d) 1.344 Mb/s.
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(2) 1PD/POCC.
(a) High-speed keying (HSK) tape to POCC.
(b) Command listing from POCC.
(¢) Time offsets from POCC.
(3) 1IPD/Attitude.
(a) Raw ATT to MSC&AD.
(b) Definitive ATT from MSC&AD.
(4) IPD/Orbit: 24-~h orbit tape from OSCD.
(5) IPD/JPL.
(a) PMDF.
(b) DAL.
(c) A/0 tape.
(d) Command listing.

d. Schedules. Although most of the schedules were slipped, every item
was completed by 26 May 1978 as mentioned in the launch review.
8. NASA Communications Network

The NASCOM provides all NASA mission control and network control centers
with real-time operational communications to launch sites and remote tracking,
data acquisition, and command stations. These communications are for pre-mission
spacecrait launch checkout, mission and network simulations, operational support
of launch, and Earth-orbital phases of missions.

The NASCOM is an operational global communications system of diversely
routed voice, low~speed data (teletype), and high-speed and wideband data commu-
nications channels, with switch and technical control facilities linking approxi-
mately 100 terminal stations. The NASCOM circuits are full-period channels,
leased from various domestic and foreign common carriers on a worldwide basis. A
variety of telegraph, voice, data (analog and digital, with a range of digital

data rates), and television (TV) services are provided. For mission-unique

requirements, temporary circuits are sometimes used to meet short-term
requirements,
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(1)
(2)
(3)
(4)
(5)

b.
follows:

(1

(2)

(3)

(4)

Requirements. The mission-unique requirements were to:

Upgrade the 56-kb/s data circuits to the stations.

Provide a 1.544-Mb/s data circuit between ULA, FNOC, and GSFC,
Supply multiple 56-kb/s data circuits between MAD-GSFC.

Supply a 224-kb/s data circuit between MIL-GSFC and GSFC~FNOC.
Supply a new 3760 computerized message switcher at GSFC, block error
decoders (BEDs) at JPL and FNOC, and new contractor Earth stations

at MIL and GSFC to support the 224-kb/s data circuits., These require~
ments are shown in Figure 2-15.

Implementation. The requirements were implemented on schedule, as

A simplex 1.544-Mb/s wideband data service was provided from ULA with
a simultaneous transmit capability to FNOC and to GSFC. This system
was used to transmit the 800-kb/s playback telemetry data to FNOC

and to GSFC IPD/TELOPS and the 25-kb/s real-time telemetry data to
the Seasat POCC at GSFC.

The Department of Defense (DoD) recuired the FNOC to receive space-
craft playback data that was downlinked at a station other than ULA.
This was accomplished, when scheduling permitted, by using a 224-kb/s
service between MIL and GSFC, and another 224-kb/s service between
GSFC and FNOC. This playback data transi,ission was speed-reduced to
fit the circuit, and the data blocks were message=-switched at GSFC

to FNOC. Two 56-kb/s wideband data circuits were linked together
from MAD to GSFC to provide a 112-kb/s capability. The playback data
transmission was also speed-reduced to fit the circuit, and the data
blocks were message-switched at GSFC and transmitted to FNOC over the
224-kb/s wideband data circuit.

An existing 7.2-kb/s circuit was used to transmit spacecraft command-
related data from the JPL Mission Support Area (MSA) to the Seasat
POCC at GSFC. These data were retransmitted to the GFSC CMS on a
local GSFC 9.6-kb/s circuit for the production of a Mission Sequence
of Events (MSOE). The MSOE was transmitted by a 9.6-kb/s circuit to
the Seasat POCC for subsequent retransmission to the JPL MSA via a
7.2-kb/s circuit.

The spacecraft checkout tests at LMSC were supported by a 56-kb/s
wideband circuit (full duplex) routed via JPL to GSFC. This circuit
was used to transmit commands from the Seasat POCC at GSFC to the
Seasat spacecraft, and to transmit spacecraft data to the POCC. A
voice circuit was also provided for coordination purposes. Plavback
data (800 kb/s) were transmitted at a reduced rate from LMSC to the
GSFC IPD/TELOPS.
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(5) A simplex 50~kb/s wideband circuit routed via JPL to GSFC was provided
to transmit spacecraft and Agena data from the Space and Missile Test
Center (SAMTEC) Western Test Range to the Seasat POCC at GSFC., Exist-
ing high-speed data, voice, and teletype circuits were used to provide
the necessary launch support.

(6) The wideband systems digital facllities were implemented in a variety
of ways, depending on locations, overseas considerations, and the
carriers concerned. Overseas channels were implemented via communi-
cation satellite systems that included Earth stations of the foreign
and domestic Intelsat. Foreign end-segments were implemented using
terrestrial and domestic satellite facilities of the Bell System and
other specialized communication carriers.

c. Tests. Three types of tests are usually performed on NASCOM equipment.
The supporting contractors from whom NASA leases the circuits are responsible for
conducting tests before NASA acceptance. These test data are then reverified to
the extent necessary by NASCOM engineers. Operational testing is then performed
in conjunction with the POCC and STDN testing program to ensure that configura-
tions and equipment performed with actual data as required.

d. Schedule. The schedule is shown in Figures 2-16 and 2-17.
9. Space Flight Tracking and Data Network

GSFC Networks Directorate support to the Seasat Program began in calendar
year (CY) 1973 during Phase A studies for a Seasat mission as part of NASA's
Earth and Ocean Applications Program. Support continued through an implementation ‘
period from approximately November 1975 to April 1978, and was concluded in the
fourth quarter of 1978. Support ended as a result of a spacecraft power system
failure approximately 3-1/2 months after launch. Included in the following para-
graphs are descriptions of STDN support throughout the three periods, emphasizing
new and applied capabilities developed for Seasat mission support.

a. Study Phase. The network input to this phase of the program consisted
of providing STDN cost estimates and expected capabilities, station locations,
antenna characteristics, comnunications performance data, etc., to the project
organization preparing trade-off studies, and ultimately the Mission Specifica-
tion document., Following contract award (fourth quarter of CY 75), fact-finding
activities were supported to ensure that the satellite systems would be compatible
with the STDN, for conventional tracking, telemetry, and command functions and
for design of the SAR telemetry and ground support systems (which required signi-
ficant development work).
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b. Implementation Phase. STDN support during the implementation phase
is described in the following paragraphs on a data and support system basis.

Command System. During the period fiom the fourth quarter of CY 75 to the
second quarter of CY 76, the project determined that the "standard" command
detector unit (l4-kHz subcarrier, PCM/FSK-AM/PM), also planned to be flown on
the SAGE and ISEE missions, was confirmed to be compatible by design, and was
selected by the project to be flown on the Seasat mission. Design link calcula-
tions were confirmed by the network to be compatible. The STDN implementation
for providing command system support and pre-launch test support periods are

shown in Figure 2-18.

The only command system implementation problem disclosed by pre-mission
testing systems review was a demonstrated inabilitv of station SAR telemetry
control equipment to account for the time-of-day crossover for pass loads con-
taining equipment settings for acquisition of signal (AOS) during 1 day of the
year and loss of signal (LOS) on a succeeding day of the year. A one-wire modi-
fication to the SAR station equipment (which, incidentally, removed time regres-
sion error compensation circuits in a pass load) corrected the problem.

The STDN command software was initially developed in August 1977 with
anticipated use during a planned October 1977 spacecraft/network radio frequency
(RF) compatibility test. The test slipped to November 1977 and had to be aborted
because of spacecraft system problems. Tables 2-8 and 2-9 are listings of soft-
ware support instructions (SSI) issued during the Seasat support period.

Table 2-8, STDN Software Support Instructions (SSI)
Issued During Seasat Support Period

TTY MSFTP 2 MSFTP-3 MSFTP-3 MSFTP-3 481DF (A) 481DF (A)
SST Date/Time Simulator Decomm
Month Year TESOC TESOC TESOC TESOC TESOC TESOC
557 8 590 MD 557 MD 557.1 MD 557 DG 2004.1 SC

Level Errata Level Errata Level Errata Level Errata Level Errata Level Errata

061 23/2320Z (B)
Aug 1978 Mil,
only

06. 10/1520Z
Sep 1978

063 08/1056Z
Sep 1978

064 24/00262
Oct 1978

065 28/0451Z (B) A) (B)
Oct 1978
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; Table 2-9. STDN Telemetry Processing Software Support Instructions (SSI)
, Issued During Seasat Support Period
¥
Digital Data Processing System
F
: Program 2 Program 3
, Y
' gs; Date/Time 642 642 (CP) PDP-11 PDP-11 PDP-11
} Month Year SIC 9999-(L) SIC 9999-(L)CP SIC 9999-(L)DP SIC 9999-(L)TP SIC 9999-(L)FP
(cCcEN) SCAN 6-700.1 SCAN 6-703 SCAN 11-703 SCAN 11-703 SCAN 11-703
Level Errata Level Errata Level Errata Level Errata Level Errata
! 050 10/23032 - - - - - - - - - -
i Jan 78
;; 051 20/18112 - - - - - - - - - -
Jan 78
;
5 052 08/1930Z - - - - - - - - - -
[ Feb 78
053 23/21552 ¢=-DD  $14-419 - - - - - - - -
| Feb 78 (Teating Only)
b 054 06/23132 $-DD 14-19, - - - - - - - -
: Apr 78 22, 23,
] 99
- (Testing Only)
055 07/19552 ¢-DD  14-19, - - - - - - - -
Apr 78 22, 23,
99
(Testing Only)
056 19/1520z $-DD  14-19, - - - - - - - -
, Apr 78 22, 23,
99
(Testing Only)
(HCCM Ops Spt)
$-DE -
(Seasat Test
Spt)
057 02/18412 ¢-DD 14-19, - - - - - - - -
May 78 22, 23,
' 99
| (HCCM Ops Spt)
e ¢-DE -
: (Seasat Test
i Spt)
058 11/15252 $-DD  14-19, - - - - - - - -
May 78 22, 23,
99
' (HCCM Ops Spt)
¢-DE 001
: (Centaur)
x (Seagat Test
Spt)
2-52
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Table 2-9. STDN Telemetry Processing Software Support Instructions (SSI)
Issued During Seasat Support Period (Continuation 1)
Digital Data Processing System
H Program 2 Program 3
' Y
‘ $s1 Date/Time 642 642 (CP) PDP-11 PDP-11 PDP~11
: Month Year SIC 9999-(L) SIC 9999-(L)CP SIC 9999-(L)DP SIC 9999-{L)TP SIC 9999-(L)FP
¢ (GCEN) SCAN 6-700.1 SCAN 6-703 SCAN 11-703 SCAN 11-703 SCAN 11-703
» Level Ercata Level Errata Level Errata Level Errata Level Errata
L 059 18/0626 DD 14-19,
% “ly 78 22. 230
i; 929
[ { (HCMM Ops Spt)
§
,g ¢=DE 001
4 (Seasat Test
; ; Spt)
1
4 060 26/11152 ¢-DD  14-19,
b M.y 78 22. 23.
& 99
L (HCMM Ops Spt) ¢ None $6 None
g
¥ ¢-DE 001 (Seasat ULA Test Spt)
h (Seasat Test
e Spt)
: 061 02/0117Z  ¢-DD  14-19,
May 78 22, 23
i 99
(HCMM Ops Spt) ¢ None $6 None
,; 4-DE 001 (Seasat ULA Test Spt)
: (Seasat Test
: Spt)
062 08/04072 ¢~DE 1-6 ¢ None $6 None
Jun 78 (Seasat Test
Spt) (Seasat ULA Test Spt)
063 12/01152 ¢-DE 1-7 ¢ None o6DP 04 06TP 13, 80, Oe6FP 00
Jul 78 MIL: 81
1-7,9
(Seasat Ops - Seasat Test Spt -
Spt)
064 25/22162 ¢~-DE 1-7 ¢ None 06DP 04 06TP 13, 80, O06rP 00
Jul 78 MIL: 81
1’719
(Seasat Ops - Seasat Test Spt - -
Spt)
2-53
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Table 2-9. STDN Telemetry Processing Software Support Instructions (SSI)
Issued During Seasat Support Period (Continuation 2)

Digital Data Processing System

Program 2 Program 3
TTY
ss1 Date/Time 642 642 (CP) PDP-11 PDP-11 PDP-11
Month Year SIC 9999-(L) SIC 9999-(L)CP sSIC 9999-(L)DP SIC $999-(L)TP SIC 9999-(L)FP
(GCEN) SCAN 6-700.1 SCAN 6-703 SCAN 11-703 SCAN 11-703 SCAN 11-703
Level Errata Level Errata Level Errata Level Errata Level Errata
65 12/0258Z ¢DE 1-7 ¢ None o6DP 04 06TP 13, 80, 06FP 00
Aug 78 MIL 81
ETC:
1-7,9
(Seasat Ops - Seasat Ops Spt - .
Spt) {
12/02582 * *
Aug 78 1-CP  None 07DP - 07bpP - o70P - i
-§——— Seasat Eng & Data Flow Test Spt - ]
066 24/00012 ¢DE 1-7 Manual % *
Aug 78 MIL 1cp Patch 070pP - 07pP - 07pp -
ETC: for
1-7,9 Nimbus
Errata * *
9 1is
for 224
KBS
COMM1 /F
067 24/14452 ¢-DE  1~7 1cp Manual  07DP - 07TP - 07FP -
Aug 78 MIL Patch
£TC: for ;
1-7,9 Nimbus i
Errata * * *
9 1is
for 224
KBS
COMML/F
068 n2/10432 ¢~DE 1-7,9 32-34 07DP - o7TP - 07FP -
Sep 78 1cp * * *

*Although identified as level 7 in SSI's 65-69, the program was actually a debugged and
relssued level €
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Table 2-9. STUN Telemetry Processing Software Support Instructions (SSI)
1ssued During Seasat Support Period (Continuation 3)

Digital Data Processing System

Program 2 Program 3
™Y
sS1 Dute/Time 642 642 (CP) PDP-11 POP=11 PDP~11
Month Year SIC 9999-(L) SIC 9999-(L)CP SIC 9999-(L)DP SIC 9999-(L)TP SIC 9999-(L)FP
‘GCEN) SCAN 6-700.1 SCAN 3-703 SCAN 11-703 SCAN 11-703 SCAN 11-703
Level Errata Level Errata Level Errata Level Errata Level Errata
069 05/17522 ¢=-Dt 1-7,9 1cp 32, 33, O7p - 077P - o7FP -
Sep 78 34
Manual * * *
Patch
for
Nimbus
070 08/00502 ¢-DE 1-7,9 icp 3z, 33, O06DP - 06TP  24-29 06FP -
Sep 78 34
Manual
Patch
for
Nimbus
071 29/00382 ¢-NE  1-7,9, 1cp 32-34 06DP - 06TP 24-29 06TP
Sep 78 11, 12,
i7, 18,
19, 21,
24
(-10
Head B
Test
Gos)
072 14/00132 é~DE 1-7, 9, icp 32-34 o61LP - 06TP  24-29 06FP -
Oct 78 11, 12,
17, 18,
19, 21,
3 24
3 (-10
Head B
Test
Gos)
*Although identified as level 7 in SSI's 65-69, the program was actually a debugged and
reissued level 6
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Table 2-9. STDN Telemetry Processing Software Support Instructions (SSI)
1ssued During Seasat Support Period (Continuation 4)

e e s b - ————

§S1

Digital Data Processing System

Program 2 Program 3

TTY 642 642 (CP) PDOP-11 PDP-11 PDP-11
Date/Time  SIC 9999-(L) JIC 9999-(L)CP SIC 9999-(L)DP SIC 9999-(L)TP SIC 9999-(L)FP
Month Year SCAN 6-700.1 SCAN 6-703 SCAN 11-703 SCAN 11-703 SCAN 11-703

(GCEN)
Level Errata Level Errata Level Errata Level Errata Level Errata

073

074

075

01/18562 ¢-DE 1-7, 1cp 32-34 06DdP - 06TP  24-29 06FP -
Nov 78 9-12,

17-19,

21, 24,

32 (35

still

tape

tost)

10/03552 $=-DE 1-7, 1cp 32-34 06DP - oeTP 24~29 06FB -
Nov 7& 9-12,

17-19,

21, 23,

24, 32,

35

Delta

Patch

07/1000Z ¢$-DE 1-7, 1cp 32-34 06DP - 06TP 24-29 06FP -

Dec 78 9-12,
17-19,
21, 23,
24, 32,
33, 35,
39
Delta
LV
Manual
Patch
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10. LMSC Programs Developed for Seasat

a. Power Program

Development. The power program for the Seasat mission was initially
developed during the proposal phase to be used as a design tool for determining
solar array panel requirements. Th2 program was modified after the Critical
Design Review (CDR) to more accurately calculate power availability based on
intra-revolution integration and K1/K2 status monitoring. Modifications continued
throughout Seasat's lifetime and beyond. The program was used extensively for
in-flight operations support.

Background, The in{tial version of the program used routines developed for
orbit average power, shadowing effects, beta angle calculations, and solar
ephemeris used on other programs. This version also included degradation effects
from Palo Alto Laboratories.

The orbit average power calculation was replaced by an integracion routine
(and improved battery modeling) based on work performed by the central power
group.

Checkout and Implementation. The power program was initially checked by
comparison with other analytical techniques. In-flight calibration was performed
and run on GSFC 360-75 computers for flight support.

Purpose. The purpose of the power program was to provide solar array
design analysis and to provide in-flight power system capability.

Results. Flight experience has shown that the program was accurate to
better than 51 percent (telemeiry data uncertainty).

b. Computer Programs for Attitude Control System Trim

Development. Thcse programs were developed before launch to be applied on
activation of the Orbital Attitude Control System (OACS), using full orbit data

from onboard recorders. Subsequent trim updates were scheduled once each month,
if necessary,

Background. The perturbation method for parameter estimation was used
successfully on these programs and adapted to the Seasat configuration and
requirements. Newly developed improvements were derived from recent works on
estimation applications.

2-57
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Implementation. The programs were implemented on GSFC computers and were

tested using simulated flight data.

Purpose.

These programs were required for trim adjustment of control system

parameters not accurately known before on-orbit observation, such as residual
magnetic momenta and electromagnetic torque compensation gains.

Results.

Flight results demonstrated the pointing accuracy improvement

from errors of about 6 deg before trim to about 1 deg after trim,

11, Air Force Western Test Range

The Seasat launch vehicle integration and launch support activities were
supported by the Space and Missiles System Organization (SAMSO) using the 6595th
Space Test Group (STG) and the Space and Missile Test Center (SAMTEC) at
Vandenberg Air Force Base (VAFB) and the Kennedy Space Center/Western Launch
Operations Division (KSC/WLOD). The project requirements at VAFB were directed
through the 6595th STG with Air Force Western Test Range (AFWTR) implementation
and operations responsibility conducted by the SAMTEC organization. The project
support facilities and the satellite command and telemetry data handling and
processing rescurces wetre provided through KSC/WLOD.

a. Ground Data System Requirements. The Ground Data System (GDS)

requirements for Seasat support at AFWTR were identified in the Program Require-
ments Document (PRD) and are listed below:

(1) Command. 2106.4 MHz PCM/PSK, AM/PM data 1link from the LMSC System
Teet Data System (STDS) Test Van 1 to the Agena vehicle at Space
Launch Complex (SLC-3W), pre-launch.

(2) Telemetry.

(a)
(b)

(d)

(e)

(f)

Link 43 at 2243.5 MHz with 19 subcarriers.

Link 87 at 2287.5 MHz, PCM/Bi-¢~L/:i oaX/PM with 25 KHz on a
1.6-MHz subcarrier.

Link 87 at 2287.5 MHz, PCM/Bi-¢-L/PM with 800 kHz on 1.6-MHz
subcarrier,

Real-time Link 87, frame-synchronized 25-kb/s formatted for
wideband transmission to POCC at GSFC.

Link 43 required for pre-launch through launch vehicle
separation.

L.ink 87 required for pre-launch through ascent phase, inc uding
Agena first and second burns.
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(3) Tracking.

(a)

(b)

Radar skin tracking with data processing to produce position
and velocity state vectors with transmission to GSFC,

Launch vehicle guidance computation with satellite position and
velocity guidance state vectors at separation provided to
LMSC trajectory at Sunnyvale, California.

(4) NASCOM Communications.

(a)

(b)

(c)

50 kb/s wideband data circuit for real-time telemetry from KSC/
WLOD to ™OCC at GSFC. (56 kb/s was required, but carrier could
not implement in time; therefore, 50 kb/s was accepted.)

2.4 kb/s high-speed data circuit for radar tracking data from
VAFB tracking data processor to Goddard Real-Time System (GRTS)
at GSFC.

One voice circuit for each of the following:

Radar tracking data coordination.

Range countdown.

Mission operation circuit, VAFB to POCC.

Missfon directors circuit, VAFB to POCC.

Telemetry coordination, KSC/WLOD to POCC.

SPAT analysis, KSC/WLOD to POCC.

Mission adviscrs, VAFB to JPL/GSFC/LMSC at Sunnyvale.

Satellite manager to satellite analyst.

ARIA data coordination at KSC/WLOD.

(5) Teletype.

(a) One standard GSFC to KSC/WLOD administrative.
(b) One state vector information VAFB to ETR via DoD circuit with
NASCOM extension hardwired at ETR/GSFC to GRTS room at GSFC.
b. Launch Test Working Group. The Launch Test Working Group (LTWG) was

convened in early 1977 to function as the forum for placing requirements, moni-
toring the status of implementation, and resolving problems. A subgroup of the
LTWG was the Range Requirements Working Group (RRWG), whose purpose was to

A s e

S T T T A I




interact on GDS requirements and agree on the needed range configuration to meet
stated requirements. The actual support configuration used for Seasat is shown
in Figure 2-19. The details of the GDS requirements stated above were defined in
the WTR Operations Requirement document generated by the 6595th STG. The actual
implementation was responded to in the WIR Operations Directive generated by
SAMTEC. The RRWG activities began in October 1977 (approximately 8 months before
launch) at the insistence of GDS engineering, as AFWTR normally would not begin
this type of activity until 6 weeks before launch.

c. Ground Data System Testing. By February 1978, an agreed-upon GDS
test plan had been published that established prerequisites that had to be com-
pleted before an end-to-end ground data system test could be conducted to demon-
strate GDS readiness to support both satellite system checkout activities and
POS tests and training activities. Because SAMTEC considered their capabilities
to be standard and multimission, the range did not include any operational test
and training in their activities. Agreement was reached so that appropriate
range resources would support satellite test and POS training activities.

The established milestone dates were: (1) GDS demonstration test date was
20 March 1978, and (2) combined POS test date was 5 April 1978. Both of these
dates were slipped approximately 2 weeks because of the failure of NASCOM to ;
implement the 50-kb/s wideband circuit by 1 March 1978, as required (actually i
available 31 March), nonavailability of the ARIA aircraft Marisat A satellite, 3
and the delayed shipment of the Seasat satellite to VAFB.

The GDS represented a very complex system with many organizational inter-
faces. This complexity was not fully understood by all participants and resulted
in not being able to achieve a successful demonstration of the two-satellite relay
of 25-kb/s telemetry data in the time allocated. After four attempted system
tests and several link tests, a decision was made to request the USAF Satellite
Test Center at Sunnyvale to bring up the Indian Ocean Air Force Station at Mahe
to record the telemetry downlink during the Agena second burn as a backup to the
ARTIA aircraft. This was done successfully.

The KSC/WLOD support was excellent at all levels of requested support.
Their flexibility and competence were key contributions to the successful support 1
of the Scasat mission.

12, Shoe Cove, Newfoundland Station Support

The Government of C nada has established an interdepartmental organization
for the study of remote ¢ iing systems. The program, designated Sursat for
Surveillance Satellite, . organized to examine a broad spectrum of remote-sensing
systems with the objective of selecting a system or group of systems that are
optimized to Canadian requirements, The Canadian involvement in the Seasat mis-
sion was directed at acquiring a working knowledge of a spaceborne SAR. The
following paragraphs outline the Canadian ground station implementation used for
Seasat data acquisition at the Shoe Cove Satellite Receiving Station (SCSRS)
located near St. John's, Newfoundland.
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a. Requirements. The primary requirements of the SCSRS were to acquire
and record SAR data for later processing by various experimentors. The specific
station requirements are outlined below.

S-Band and Dat~ Links

1) SAR Data Link. The Seasat wideband amalog data link was unique in
that it required specifically designed demodulators. Because the
link required a 400-MHz intermediate frequency (IF) input to a NASA
STDN Multifunction Receiver (MFR), the SC3RS was modified accordingly.
The Shoe Cove Landsat /NOAA acquisition system uses a 285- to 410-MHz
IF for S~band; thus the front end of the downlink was modified. To
do this, a separate S~band signal was split off the antenna monopulse
sum channel, immediately following the parametric amplifier (Fig-
ure 2-20) to permit the SAR data link to operate independently of the
tracking system. Because the existing Shoe Cove RF system is equipped
for unified S-band (USB) reception, and because the USB link ir used
for monopulse tracking, the tracking functions of an all-up MFR were
not required. Thereforn, a unique Seasat receiver was specified,
providing the wideband AM detection functions required by the SAR
coherent demodulator.

(2) Seasat Telemetry Data Link. The station was required to monitor
several SAR engineering parameters during active SAR periods. To
accomplish this, 1t was elected to monitor and record the complete
low-rate telemetry (LRT) data stream carried on a 1.6-MHz subcarrier
of the USB data link, so that a series of experiments using the low-
rate sensors could be initlated.

Digital Recording Subsystem. The station was required to record high-
density digital tapes of SAR data. Because it was necessary for the station to
be compatible with other stations, a SAR digitizer and high data rate recorder
(HDRR) were selected that were identical tc those used by the NASA STDN stations.
The equipment was designed by the Applied Physics Laboratory (APL) of Johns
Hopkins University.

A minor modification of the APL system was required to permit playback of
the HDRR tapes for the recording of anmalog signal film. This was a result of
last-minute detail changes required by system interface requirements for the
optical recorder system.

Analog Recording System. The SCSRS system was required to record SAR data
in analog form both photographically and magnetically. The photographic recorder
recorded raw signals on film for subsequent optical processing. The magnetic
recorder provided a reduced resolution image, which served as a backup for either
the optical or digital recorder systems or both. Magnetic analog recording was
originally intend:.! to provide a method to acquire SAR data early in the program.
This requirement d«creased in importance when the spacecraft launch was delayed
beyond May 1978.

PRECEDING PAGE BLANK NOY FIIGED
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The film recorder recorded full bandwidth SAR signals, representing a com-
plete radar swath of 100 km (54 nm). The signal film was shipped to Ottawva.
where it was developed and optically processed by a Defense Research Establishment,

Ottawa (DREO) laboratory.

The magnetic analog recorder recorded a 12-MHz wide portion of the radar
spectrum. The offset video signal was bandpass-filtered and frequency=-translated
to form two low-pass signals, each band-limited to 6 MHz. The two signals were
recorded on a two-channel video recorder. On playback, the two low-pass signals
were again frequency-translated, then combined to form a bandpass representation
of the original offset video.

h. Implementation

Antenna RF System. The existing SCSRS antenna system was used to provide
the front end for the Seasat system. The existing Landsat USB link was also
used for both LRT acquisition and the antenna tracking loop.

The antenna system comprised a 10-m prime focus parabolic reflector equipped
with a single-channel monopulse feed. The feed operated at both 2200 and 2300 MHz
and 1650 to 1750 MHz with optimization for the 2200~ to 2300-MHz band. Antenna
gain was 21 dB at 2250 MHz. The feed is shown schematically in Figure 2-20, The
monopulse system at 2250 MHz comprised a 30-dB parametric amplifier fed from the
sum channel antenna and a 30~-dB transistor amplifier fed from the difference
channel. The sum channel was then split by a power divider. One of the sum
channels and one of the difference channels were combined in a 13-dB coupler to
produce the amplitude modulation (AM) signal. This AM signal was then amplified
by a 15-dB transistor amplifier before being applied by cable to the Landsat

down-converter. The remaining sum channel was cabled to the Seasat down-converter.

The Landsat down-converter operated with a local oscillator frequency of
approximately 1918 MHz to produce a down-converted output at 285 to 385 MHz.
This signal was then cabled through a multiplier to a Microdyne Model 1100 LS
receiver. This receiver was tuned to 369 MHz to provide reception for the USB
data link, aund also provided an AM envelope detector for use with the antenna

tracking loop.

The Seasat down-converter operated with a local oscillator frequency of
1800 MHz to produce an IF frequency of 400 to 500 MHz suitable for use with the
Seasat receiver. J3ecause this data link was taken from the sum channel ahead of
the tracking loop coupler, tracking AM was not present to cause interference
with the operation of the MFR or Secasat receiver. The Seasat receiver output
several signals to the SAR coherent demodulator, which was designed and con-

structed by APL.

Digital Data Acquisition System. SAR data were demodulated by the SAR
coherent demodulator. This device output SAR data and control signals to the
digital data acquisition system. The digital system was identical to that of the
NASA STDN systems designed ond constructed by APL, except for one or two minor
differences caused by Shoe Cove unique interface requirements.
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Data were digitized vp to 5-bit samples at a peak sampling rate of 45 MHz.
These data were buffered and :tored on magnetic tape at an average rate of
117 Mb/s. The tape recorder used was ¢ Martin Marietta 42-track HDDR, identical
in design to that of the MASA STDN units. SCSS used the recorder in a 39-track
recording configuration, rezcorded with the vernier speed control set to
100 percent. Therefore, all tapes recorded at SMNF were fully compatible with

the WASA formats.

The APl, equipment was included at the SAR signal simulator for system test
purposes. The availability of this equipment permitted playback of the digital
tapes for use in making photographic film recordings of the SAR signal. The
simulator was equipped with a video rcgenerator designed to convert digitized
SAR data back to the previous analog form. The regenerator also provided for the
extraction and display of various data items, which were multiplexed in the
recorded digital data system. Also, the regenerator provided control signals to
the optical signal recorder for PRF rate and coherent trigger synchronization.

Optical Film Recorder. A twin-transport optical film recorder was pro-
vided as an intermediate step in the generation of optically processed SAR
images. The recorder was part of a system under development by DREO and the
Communications Research Center. The recorder development work was jointly under-

taken by these agencies as part of the Seasat program.

The recorder was manufactured by CIR, a Toronto company, and consisted of
two indeperdent film transport and CRT assemblies, witl. each transport capable of
recording one-half swath of the SAR radar echo in real time. Therefore, it was
possible to record the full 100-km (54 nm) radar swath in real time. The
recorder accepted the offset video, coherent trigger, and PRF rate signals,
together with the time code, from the SAR unique system. Tuese signals were
then used to control the recorder operation. The recorders operated to produce
two 25-cm (5 in.) wide signal films. Processing of the film latent image took
place in Ottawa. The film was then optically processed to generate the SAR

imagery.

Digital SAR Processing. Part of the Sursat program involved the develop-
ment of a digital image processor. This project, ccnducted by McDonald Dettwiler
& Associates in Vancouver, involved production of a software digital image proces-
sor capable of transforming a digitized signal record into an image.

To implement the ground station acquisition part of :.e system, the existing
Landsat computer system was modified to provide two 6250-b/in. computer compatible
tape (CCT) drives, each capable of operating at 125 in./s or 6.25 Mb/s. To pro-
duce a CCT of the digitized GAR data, the HDRR was operated at 1/32nd real time,
or 3.66 Mb/s. The serial data stream was format-synchronized, buffered in a
large (196-kbyte) buffered memory, then output from the memory to the CCT. Tapes
produced by this system were processed in Ottawa.
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Low-Rate Telemetry System (LRTS). The low dati rate data siream was
acquired by the USB receiver. The received baseband signal was passed to a
1.6~MHz subcarrier demodulator, where the original split-phase modulation was
reconstructed. This signal was then synchronizeu and interfaced to the Landsat
computer system for recording -nd processing. The bit/frame synchronizer and
the processor interface were .onstructed as a single unit for installation in the
computer mein frame, which proved to be a satisfactory arrangement. The computer
system implemented the moritoring of the required SAR engineering parameters.
Monitored parameters were displayed on an interactive CRT, and were hard-copy
logged to a line printer. The status of each monitored parameter was displayed
on a special-purpose indicator panel., All data received on the LRT data link
were recorded on a CCT. This enabled Canadian users to obtain real-time LRT
sensor data that will be used in future experiments.

Co. Test _Pian. The test plan outlines the tests used to verify the
performance of the various system components. The general test plan followed was
to use the pre-shipment factory acceptance tests as the basis for integration
testing. Following installation of an item, the acceptance test procedure was
repeated as necessary to ensure that integration itself had not caused a problem

HDRR Acceptance Tests. The HDRR was tested by Martin Marietta, according
to their cest plan, on 16 May 1978, These tests were not witnessed by a Canadian
government representative because of time constraints. However, the unit was
delivered to APL for integration with the SAR-unique formatter/simulator. Because
of the warranty conditions applicab’e to the ecqulpment, it was not necessary to
witness the acceptance tests.

System Integration of HDRR/SAR Unique Rack. The SAR unique rack, comprising
the SAR coherent demodulator, SAR data formatter, and SAR sipnal simulator, was
manufactured, assembled, and tested at APL. The APL engineering team wus con-
tracted to acvept responsibility for integration of a Tau Tron bit error rate
tester and a Hewlett--Packard oscilloscope. The latter units were supplied by
CCRS directly to APL.

I'he SAR coherent demodulator used for this phase of system integration was
a brassboard prototype. This unit was used vo provide SNF with the capability to
receive and process the SAR data ahead of scheduled delivery of a production unit.

Acceptance tests for the complete SAR-unique/HDRR subsystem were conducted
at the APL facilities during August 1978. The equipment was then shipped to SNF
where it wne listalled and again tested by an APL engineering team.

The subsystem was then integrated to the SCSRS antenna/RF system for final

checkout. On complecion of this work in early September 1978, SNF began record-
ing digitized SAR data on a regular basis.
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LRTS Integration. The LRTS was delivered in late July 1978. It was
installed and tested in the SCSRS system computer using recorded low rate telem-
etry data. Testing consisted of recording the CCT data from the. LRT data tape,

! followed by image dumping of statistically selected parts of the CCT. Tape
dumps were then examined for format validity and data content validity.

The system was tested for varying input signal-to-noise ratios to ensure
: that all performance specifications were met. As SCSRS was not equipped with
} any form of signal simulator for the LRT data link, testing was confined to the
use of actual satellite telemetry.

Analog Recorder. The analog recorder was delivered, installed, and tested
by a team of engineers from DREO. Testing consisted of demonstrating that the
recorc. r spectrum conditioning circuits were functioning properly. As it was not
possible to play back reccsded data at that time, no other testing could be
undertaken.

Optical Recorder. A brassboard prototype of an optical signal recorder was
constructed by DREO personnel and delivered and installed by their staff in late
July. Testing of this device relied on the availability of actual SAR data, as
there was no method to simulate or replay recorded data. Testing consisted of
recording a test film from the SAR data link, then shipping the film to Ottawa

for development and processing. This proved to be a cumbersome method of handling

x

]

C signal film, but was the only available procedure to resolve the problem because
the primary effort in recorder and processor development was centered in Ottawa.

c. Schedule. Although there was no specific commitment as to when the
Shoe Cove station would begin support of the Seasat mission, a geal was estab-
: lished to have the station fully implemented and tested by launrh time. Actual
tracking operations began approximately 45 days after launch.

13. Oakhanger, England (UKO) Ststion Support

a. Requirements. Requirements of the Oakhanger station were to:

(1) Track Seasat on all visible passes above 5 deg subsequent to launch
with minimum dnta loss.

(2) Collect and record all telemetry information on the 2287.5 MHz car-
rier and give real-time outputs of eight SAR-related telemetry units.

: (3) Receive SAR data on 2265.1 MHz when scheduled and record the digi-
tized data on magnetic tape.

4) Provide a real-~time feedback to GSFC on SAR telemetry units over a
voice link during supports.
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Implementation. The following items were implemented to meet Seasat

support equirements:

(1)

(2)

(3)

(4)

(5)

(6)
(7)
(8)

C.

The servo system was upgraded to give 10-deg/s maximum azimuth
velocity.

A program track was developed for element processing, tracking, and
acquisition.

Telemetry equipment was iustalled (EMR 728 PSK demodulator,

EMR 2721 signal converter, EMR 2731 frame synchronizer). A Prime
300 computer was installed for telemetry formatting and recording
with a real-time readout.

A telemetry program was developed for the Prime 300 computer to for-
mat and control th~ EMR units,

A down-converter was installed for SAR reception with a 465,1-MHz IF
output and 50-MHz bandwidth.

An MFR was installed.
A cleanroom was built to house the HDDR.

An analog recorder (Ampex FR1800) was installed for direct telemetry
recordings and to facilitate non-real-time CCT production.

Tests. The following tests were completed during preparation for

mission support:

(H)

(2)

(3)

(4)
(5)
(6)

d.

Azimuth and elevation servo tests were performed using Landsat after
initial performance checks proved successful.

Program track tests and element processing using Landsat signals
and data.

SAR system receive tests using .otal loop check capability of SAR
ground equipment.

Telemetry tests using simulated data from an EMR data simulator unit.
Telemetry program tests using simulated data.

Crew training using total system and Landsat.

Schedule. Although there was no specific commitment as to when UKO

would begin support of Seasat, a goal was established to have the station fully

implemented and tested by launch time. Actual tracking operations began approxi-
mately 30 days after launch.

N

WY e e R e B

2-70




T

14, Fleet Numerical Oceanographic Center

a. Background Information. Fleet Numerical Oceanographic Center (FNOC)
at Monterey, California, has been developing a satellite data processing capa-
bility to provide a remote sensing data base for use in the Navy's weather fore-
casting operation. In line with this interest, FNOC planned to use Seasat data
in the Satellite Data Pr-~essor. Concurrently, NASA planned to demonstrate the
near-real-time use of Seasat data by commercial as well as scientific users.

As a result of these two interests, an agreement was negotiated between
NASA and DoD, where FNOC agreed to conduct a real-time user data demonstration
in support of the Seasat Project. The demonstration was to show that Seasat data
and related FNOC products could be provided to DoD and industrial and scientific
users in a timely manner. In addition, FNOC was to be a source for "surface
truth" products for the verification of Seasat-generated data products.

The Memorandum of Agreement (MOA) for a real-time user demonstration for
the Seasat Project* contained a description of the responsibilities of the Seasat
Projz2ct and FNOC with respect to the planned demonstration. Included in the
described responsibilities was the requir ment for JPL to provide algorithms,
flow charts, software consulting services, and test data as required by FNOC to
permit their integration of the geophysical software with the real-time data

processing facility provided by FNOC.

This transfer of technological information and data between the Seasat
Project and FNOC evolved into four interfaces areas:

(L The real-time operational data interface.

(2) The Instrument Data Processing System (IDPS) interface.
(3) The geophysical algorithm development interface.

4) The Auxiliary Data Record (ADR) interface.

The real-time operational data interface was handled as part of the GDS
engineering functions under the cugnizance of the Seasat Operations Manager and
is not addressed here. The other three interfaces were handled as part of the
system engineering function under the cognizance of the Seasat Information
Processing Manager and are discussed in the following paragraphs.

b. Technical Approach. Although the transfer requirements, respon-
sibilities, and content varied for each of the interface areas, a common techni-
cal approach was used. The basic transfer unit for the transmission of informa-
tion and data between the Seasat Project and FNOC was defined as a "data package,"
which consisted of telemetered spacecraft data, written material, computer cards,
and any other matter tha. was passed between the two agencies. Each data package
was forwarded by the transmitting agency to the receiving agency through a letter

*Project Plan for Seasat-A 1978 Mission, JPL internal document 622-3, Appendix B,
May 1978
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of transmittal. To provide for an efficient mechanization of the process, single
technical points of contact were established within each agency. Each identical
point of contact was responsiblz for ensuring that the data packages were prepared
for transmittal and were transferred (or received).

c. IDPS Interface. The IDPS was a part of the Seasat Project Data
Processing System (PDPS) located at JPL. While FNOC had no direct interface with
the IDPS in its planned implementation for the Seasat mission, the information
and knowledge acquired by JPL personncl as a result of the development of the
IDPS was of interest. As such, the IDPS interface related to the transfer of
documents, computer program naterial, and ancillary information that was of bene-
fit to FNOC in the implementation of an IDPS-type capability for the Real-Time
User Data Demonstration System (RTUDDS) at FNOC.

Support for the RTUDDS in the IDPS interface area was of an indirect nature
only. As such, Seasat support was limited to the effort required to prepare data
packages for transmittal. No documentation or computer software was developed
in the IDPS interface area whose requirements were based on the needs of the
RTUDDS. As information of interest to FNOC became available as a result of normal
IDPS development activities, a data package was constructed for transmission to

FNOC.

Information transmitted for the IDPS interface consisted of the following
elements:

Data Elements Form Completeness
Related documentacion Documents, IOMs As available
Annotated program listings Assembly /Fortran As available
Test/verification .ata Magnetic tape hardcopy As available

"Completeness,' as used above, defines the extent to which a given element was
comprehensive. For example, related documentation might not be available for
each program element or routine. The precise format of the informaiion trans-
ferred as a data package was specified in the letter of transmittal. The primary
information transferred consisted of the IDPS location processor routines, per-
tinent data tapes (A/O0 and PMDF), and channel tabulation hardcopy.

d. Geophysical Algorithm Development Interface. JPL was assigned the
responsibility for coordinating the development of the algorithms and prog:ams
required for geophysical conversion. These e¢lgorithms and programs were primarily
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supplied by the sensor implementation managers and the experiment teams. The
algorithms and programs were developed on the Algorithm Development Facility

(ADF), an element of the PDPS at JPL.

As these 1lgorithms and programs were developed, various data elements were
transmitted to FNOC. These data elements contained information that ranged from
the specification sheets for each a’gorithm to the actual debugged and validated
software., Data elements were provic:d for each of the scientific instruments on
board the spacecraft with the except on of the SAR. FNOC used the algorithms
and programs for producing the geopiiyr.ical software before use in the RTUDDS.

Information transmitted for th: geophysical algorithm development interface

consisted of the following elements:

Data tlements Form Completeness

Documents, IOMs, diagrams, As available

Related documentation
specification sheets

As requested and

Annotated program listings,
available

Software products
magnetic tape cards

As requested and

Test reports, test decks
available

Test data

As planned by FNOC, the RTUDDS implementation would only process altimeter
data to the "sensor file" level and would not procecs visual and infrared
radiometer (VIRR) data. FNOC planmmed to process both Scanning Multichannel
Microwave Radiometer (SMMR) and Seasat Scatterometer System (SASS) data to the

"geophysical file" level.

e. Auxiliary Data Records Interface. As an operational weather center,
FNOC produced a number of standard data products that were a source for surface
truth data. This group of data products were designated as Auxiliary Data

Records (ADRs) by the Seasat Project.
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The interface functions consisted of making arrangements for having FNOC
make the data products available to the Seasat Project., The information trans-
mitted by FNOC for the ADRs interface consisted of the following elements:

Data Elements Form Completeness
FNOC field data Magnetic tape As requested
FNOC spot data Magnetic tape As requested
Operational plots Hardcopy As available
Spectral Ocean Wave Model (SOWM) products Hardcopy As requested

f. Future FNOC-Type Interfaces. It is appropriate to analyze the FNOC
interface as a historical learning process. Most of the problems encountered
were somewhat predictable and were more management-related than technically
related.

Although the Seasat Project and FNOC had a signed MOA with respect to the
RTUDNS, there was some confusion in the interpretation of the document. Not
surprisingly, each tended to interpret the MOA in the manner most favorable to
the particular point they were attempting to accomplish.

From the interface function perspective, the most significant problem was
a disparity between the Seasat Project and "NOC with respect to the schedule for
algorithm development. As viewed by the project, FNOC was processing satellit.
data in support of a project experiment. Therefore, the time frame for accom-
plishing the experiment was related to the project algorithm development plans.
However, FNOC had made non-Seasat Pro  v~relaied commitments to provide tne
satellite data to other DoD agencies. As viewed by FNOC, they had a requirement
to have available at launch a capability to support their other commitments. 1f
this difference in needs had been identified at the time the MOA was generated,
perhaps it could have been better resolved than after the fact. As it was,
concurrent geophysical algorithm implementation at JPL and at FNOC was attempted.

The second significant item was the projected requirement to verify FNOC's
software implementation. As viewed by the Seasat Project, when FNOC distributed
data to industrial users that was identified as Seasat data. then the project
wanted to verify the data prior to distribution. To accomplish this, it was felt
that it would be necessary to certify FNOC's implementation. It should be noted
that concurrent algorithm implementation tended to increase the difficulty of
resolving this item. As the satellite aborted the mission before the completion
of algorithm implementation, the item was resolved by default.
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From a technical viewpoint, the interface function seemed to work well. It
was aided by having a single point of contact, especially at JPL. Although a tech-
nological transfer of geophysical algorithms is possible, concurrent development
activities increases the difficulty. In general, the transfer of ADRs from FNOC
to JPL presented few problems except from a schedule coordination point of view,

15, Project Data Processing Subsystem (PDPS)

The PDPS comprised the IDPS, Master Sensor Data Record (MSDR), and the
ADF used by the experiment teams to develop algorithms for converting telemetry
data to geophysical units (e.g., wind fields, temperatures, altitudes, wave
heights, etc.). The PDPS was created primarily to receive the Project Data
Package (PRF) from GSFC on a daily basis after launch. It was also responsible
for vhe GSFC/JPL/NASCOM link used by the Mission Pianning Subsystem (MPS) to
transmit sequence profiles to GSFC and the resulting command lists back to JPL,
This function was independent of the 1DPS, but was implemented and operated by
essentially the same personnel.

a, Requirements

IDPS. Requirements of the IDPS were to receive the daily PDP from GSFC and
to perform a somewhat standardized set of data processing activities. The daily
PDP consisted of eight Project Master Data File (PMDF) magnetic tapes, each con-
taining a 3-h block of telemetry data and one attitude/orbit (A/0) magnetic tape
containing a 24-h orbit file. The primary output product was the MSDR, which was
a magnetic tape consisting of data records for each satellite sensor and for the
engineering data. The output record for any sensor consisted of telemetry data
that were decommutated, time-tagged, converted to engineering units, and Earth-
located. The Earth location processor used the A/O tape to calculate the latitude
and longitude of the boresight intercept of each sensor's antenna with the
Farth's surface at a set of times unique to each sensor,

Other magnetic tape data products included the Sensor Data Records (SDRs)
for individual sensors or for the engineering data. Paper products included
performance summaries, channel tabulations, and channel plots. These products
were intended for use early in the mission during the engineering assessment of
individual sensor and spacecraft bus performance. The functi.nal requirements ¢
for the IDPS are outlined in the IDPS Functicnal Specificatio., JPL internal
document 622-14,

MPS/NASCOM lLink. The requirements for the GSFC/JPL full-dupicx NASCOM link
used by the MPS were specified by the Seasat Ground Data System Engineer (GDSE).
Three types of records generated at JPL by the Mission Planning Team (MPT) were
transmitted to GSFC:

Q)] A command dictionary that defined the name and bit pattern of each
spacecraft command.

(2) Definitions ¢f groups of commands in a given sequence that could be ]
identified by a group name.




£

(3) Mission sequence, which used individual commands and group commands,
but which lacked the specific traunsmission or execution times
dependent on the STDN scheduling.

The record transmitted to JPL by GSFC was the resultant command list, which
included times dependent on the STDN scheduling.

b. Implementation

IDPS. The IDPS was implemented on the Mission Control and Computing Center
(MCCC) 1institutional Data Records System (DRS), which used two 1BM-360-75 com-
puters. The MCCC DRS provided the existing development and operations environ=-
ment used by the Seasat Project. All of the software developed was unique to,
and funded by, the Seasat Project. The MCCC DRS was operated by the Lata Manage-
ment Team (DMT), a multimission activity. The Seasat Project funded its part of
the DMT.

MPS/NASCOM Link. The MPS/NASCOM link was implemented on the MCCC real-time
system, which used a single IBM 360-75 computer (not one of the two DRS machines).
This link used an existing design currently supporting another project. Link
operations were provided by the MCCC institutional operations and scheduling
staff.

[ Testing

IDPS. Some data flow tests to provide a PDP for processing were the only
planned formal tests involving the IDPS. These tests were made, although several
individual PMDF and A/O tapes were received and used for format and structure
tests. The IDPS did use satellite data tapes recorded during pre-launch testing
at LMSC. The LMSC tapes and a JPL-developed simulation capability provided the
only testing of the IDPS before launch,

Because of this inadequate testing, it was anticipated that many problems
would be encountered in the IDPS software when actual data became available after
launch. This, in fact, was the case. At the time of the anomaly, the IDPS was
on its sixth software revision, and five more revisions were delivered to opera-
tions after that time. Most of these 11 revisions were only minor corrections;
at least two, however, were major revisions that included both significant addi-
tional capability as well as corrections.

MPS/NASCOM Link. The MPS/NASCOM link was tested extensively by the MCCC
institutional personnel in conjunction with GSFC personnel. The data transmitted
to GSFC were generated by the MPT at JPL using the same programs developed for
flight operatifons. The command list was generated at GSFC using flight operations
softw.re. This command list was then transmitted to JPL to test the other half
of the full-duplex 1link.
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d. Schedule.

IDPS. The scheduled date of 15 February 1978 for a GDS test of the PDP
interface between GSFC and the TDPS and the scheduled cate for launch readiness
were the only significant milestones. Both of these dates were met.

MPS/NASCOM Link. The scheduled date of 15 November 1977 for a GDS test of
the link and the scheduled date for launch readiness were the only two significant

milestones. The readiness date for the GDS was slipped by about 4 months. The
link was ready for support to the satellite launch activities.

e, Data Turnaround Time. The planned pre-launch time estimate of sensor
data record availability to the sensor evaluation task groups for geophysical
algorithm development and to the sensor managers for engineering performance
evaluation was 12 days after data acquisition by the STDN site. This 12 days

was allocated as follows:

1) STDN handling: 1 day.
(2) 1PD processing: 6 days.
(3) Shipment to JPL: 1 day.

(4) IDPS processing: 4 days.

The day for STDN handling was intended to permit all on-site data processing,
formatting, and transmission over NASCOM lines to GSFC. Also to be included in
this day was the time for retransmission to GSFC of data not considered acceptable
by the quality criteria, but recoverable at the receiving site from either the
analog magnecic tape prior to telemetry frame synchronization or from the digital
magnetic tape used to drive the NASCOM lines. Once received at GSFC by TELOPS, the
IPD data system used to terminate the NASCOM telemetry transmissions, the data
were organized into pre-edit files corresponding to the original satellite-to-

STDN site transmission. At this point the data, in the form of pre-edit files,
was made available to the Telemetry Processing System (TPS) in IPD for its

6 days of data handling.

The IPD/TPS processing task consisted of organizing the pre-adit files into
chronological order and extracting data on a 24-h GMT day basis. The engineering
data from the 24-h GMT day file was sent to the ADF, where the satellite attitude
error history was created and provided to IPD. Also provided to IPD were the
GMT daily orbit file from the Orbit Determination Facility and the actual satel-
lite UTC cleck offset from the POCC. When all of these data were available, the
24-h GMT daily telemetry file was written on magnetic tape as the PMDF. The
attitude uistory file, UTC clock offset, and the orbit file were written on the
A/0 magnetic tape. These tapes were individually checked and prepared for

shipment to JPIL.
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One day was allotted for shipment. The plan called for morning deliveries
of data to the Baltimore airport by the GSFC transportation department. The
information concerning flight number and waybill number were to be telephoned
to JPL for vendor pickup to be arranged. The data would then be delivered in
the evening of the day shipped. The data packages were received by the Mission
Control Center Operations (MCCO) data library expediting service.

The 4 days at JPL included 1 day for the MCCO library personnel to unpack
the data packages, inventory the contents, acknowledge receipt, enter the data
tapes in the MCCO library, and inform the DMT of the availability of the data.
The DMT used the remaining 3 days for processing, analysis, and record keeping
functions. The processing consisted of a two-step activity with an analysis
period after each step. The first step was a simple tape dump similar to the
GFSC/IPD tape check process. This dump program provided the initial quality
control screening for tapes with such commonly noted problems as read errors,
time-tag errors, and data gaps. The second step was the processing of the data
to the daily MSDR, which constituted the Seasat Project's archival data base for
additional geophysical processing and data evaluation. The DMT was responsible
for keeping records of all tapes processed.

This 12-day processing cycle to data availability in MSDR form was not met.
The 1 day for STDN handling to prepare a GMT day's data for IPD was typically
over a week and frequently several weeks. There were several problems, the pri-
mary one being the inability of the STDN and NASCOM lines to handle, on a con-
sistent basis, the large volume of data received from the satellite. The
unexpectedly large number of retransmissions of data from the STDN sites to> GSFC
competed with the primary transmissions and caused severe loading and scheduling
problems. One other, not so obvious, problem was caused by the requirement for
data transmission to IPD on a complete GMT day basis. The data were sent to
TELOPS on a satellite tape recorder dump basis of 3- to 4-h duration. To provide
a sufficient data time span to extract one complete GMT day, as many as 8 to 10
consecutive satellite tape recorder dumps had to be received successfully by
TELOPS.

In general, most of the data were received successfully within a day or so,
but could not be used because of one or more bad transmissions and the difficul-
ties of obtaining data. A number of workarounds and plans were implemented to
alleviate this situation. The inability to consistently and successfully obtain
data from the STDN sites to GSFC was one of the most severe data handling pro-
blems faced by the Seasat Project. The TELOPS processor was a new system brought
on-line by IPD shortly before the Seasat launch. The TPS was the existing IPD
processor containing the Seasat applications software. These two systems both
required considerable reprogramming effort as actual experience was gained in the
handling of flight data. The performance of these systems, while marginal to
poor initially, became satisfactory as problems were isolated and corrected.

The shipment of data generally required onlyiﬁ day. The only serious
problem was the inconsistency by the GSFC transportation department in notifying

the MCCO library expediting service or the JPL transportation department of a
shipment in progress. This usually caused a delay of at least 1 extra day to
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coordinate the pickup of the data for delivery to JPL. The longest delay was
2 weeks for a single tupe when JPL was not informed of the shipment by GSFC.

The processing to the MS5DR by the DMT at JPL using the IDPS was never held
to the 4~day schedule. The data deliveries to JPL in the early days of the
mission were very sporadic, non-chronological, and uncertain. The received data
were processed immediately by both the DMT and by the development programmers in
the IDPS. The data deliveries from GSFC were so slow overall that the IDPS
software problems were isolated and corrected without impacting data delivery
for additional geophysical processing. Some of the data received early in the
mission were reprocessed several times with continuously upgraded software. The
IDPS program basically reached their form about the time of the satellite foilure.
The complete history of the MSDR deliveries to IDPS during the -ission is plotted
on Figure 2-21,

Shortly after the failure, all of the PMDF tapes at JPL were returned to
GSFC for removal of a time regression introduced as an artifact by the IPD
processing. Also, a problem in the attitude history file generation was detected
that required the reprocessing of a number of A/O tapes.

A/O tapcs were corrected by March 1979. The set of PMDF and A/O tapes was
finally complete at JPL and processed to the MSDR level by the DMT by the end of
April 1979,

D. POS TEST AND TRAINING

The obiective of the POS test and training plan was to systematically
develop and demonstrate the readiness of the POS (hardware, software, personnel,
and procedures) to support Seasat launch and mission operations. To achieve
this objective, a phased program was used that included classroom training, simu-
lation exercises, satellite system test support, and operational demonstrations.
Each of these activities is discussed in the following paragraphs. A POS test
chronology is given in Table 2-10.

1. Classroom Training

Between October 1977 and May 1978, five lecture sessions were presented to
Seasat teams at GSFC. These sessions lasted from 1 to 10 days each and covered
detailed descriptic s of the mission profile, operations orgarization, ground
data system, satellite vehicle, and science payload. JPL Mission Planning and
Mission Control Teams, LMSC, Univac, and science sensor representatives presentud
180 h of instruction. Training manuals were assembled from classroom materials
and were retained for reference in the control center.

2. Simulation Exercises
Simulatiorr .ercises were conducted in three phases: (1) intra-team;
(2) inter-team; and (3) combined POS, Each phase was designed to accommodate

the development schedule for team procedures and GDS capabilities. A chronology
of team exercises and GDS readiness dates is given in the following paragraphs.
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Table 2-10. POS Test Chronology

Nate

Event

Y9/
12/15
1./16

1978

1/6
1/27
2/1
2/15
2/17
2/22-24
2/27
2/28

3/16

3/20

3/23
3/24
3/27

3/31

POCC Version 4 (test version), Operational

Intra-Team: Telemetry Command

Intra-Team: Tape Recorder Operation
Intra-Team: SAR Operation

Orbit Determination System, Operational
POCC Version 5, Operational

Intra-Team: Launch and Early Orbit
Intra-Team: Orbit Adjust (three parts)
POCC Version 6, Operational

Intra-Team: Sensor Activation
Inter~Team: Launch and Early Orbit
Attitude Determination System, Operational
Command Management System, Operational

Information Processing Division, Operational

POCC Version 7, Operational
Network (Program II), Operational

Inter-Team: Launch and Early Orbit (retest)
Inter-Team: Orbit Adjust
MCCC (JPL), Operational

Inter-Team: Sersor Activation

2-81

B, i Caiaail L L i




Table 2-10. PCS Test Chronology (Continuation 1)

, Date Event i
4/3 POCC Version 8, Operational
} 4/6 Inter-Team: Launch and Early Orbit (retest)
| 4/12 Combined POS: Launch and Early Orbit
F
; 4/15 Flight Maneuver Analysis, Operational
[ 4/20 Inter-Team: Attitude Trim (two parts) P
}
i 4724 POCC Version 9, Operational
i
’ 5/9 Combined POS: SAR Targets of Opportunity
:
L 5/15 POCC Version 10 (launch version), Operational
|
{ 5/16 Combined POS: Launch and Early Orbit
t 5/18 Combined POS: Orbit Adjust (four parts)
|
P
a. Intra-Team Exercises. These exercises emphasized real-time opera-
: ticns procedures and POCC capabilities. Between 16 December 1977 and 28 Feb-
ruary 1978, nine exercises totaling 28 h were supported by MCT, SPAT, and POST.

Of the eight test categories performed, only one was determined to be unsuccess-
ful by the test supervisor. The test failure was attributed to spacecraft
simulator problems. These problems were corrected, and a retest on 28 February
was successful,

Aol

b. Inter-Team Exercises. These exercises expanded simulation partici-
pation to include non-real-time planning and analysis functions. Although the
test categories and control center procedures used for intra-team testing
remained essentially unchanged, data and rvicedural interfaces were exercised
with the Mission Planning, Command Managem=nt, Orbit Determination, Attitude
Determination, and Maneuver Analysis Teams. Seven tests, totaling 32 h, were
conducted between 16 March and 27 April 1978. The launch and early orbit exer-
cise was conducted three times, primarily because of data flow problems with the
Simulation Operations Control Center (SOCC). The other three test categories
were considered functionally successful, although all test reports indicated
problems with the processing and distribution of satellite playback data.
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C. Combined POS Exercises. For these exercises, the operations teams
and end-to-end ground system were joined in a series of mission event simulations.
Network support was provided by the MAD, MIL. Greenbelt, and ULA tracking sta-
tions. Four exercises totaling 30 h of real-time operations were conducted,
including a launch and early orbit simulation supported by the Western Test
Range (WTR) launch operations complex. All tests were considered successful.

As in inter-team testing, however, satellite playback data processing was identi-
fied as a problem area.

3. Satellite System Test Supp-:rt

As part of the POS training program, the MCT and SPAT conducted satellite
system test activities. In February 1978, the LMSC Lead Monitor Analysts par-
ticipated in the baseline simulated flight test at LMSC. The POCC was also
configured for listen-only support of the thermal/vacuum and flight readiness
(countdown) tests during April and May. During these three tests, more than
50 h of spacecraft data were analyzed and stored on hictory tapes for subsequent
processing and display validation.

In March 1978, a satellite compatibility test was conducted using the STDN
Compatibility Test Van (CTV) located at the LMSC Seasat facility in Sunnyvale.
The test was conducted in two parts on 11 and 13 March. Part I consisted of a
satellite/POCC (end-to-end) test. The test successfully demonstrated the com-
patibility of tracking, telemetry, and command interfaces between the satellite
and the POS. Compatibility test results are documented in Part I1 of the Ground
Data System Test Report.

4, Operational Demonstrations

As previously stated, the primary objective of the test and training plan
was to demonstrate operational proficiency before the Seasat launch. Accordingly,
three operational demonstrations were performed in May and June 1978. A mission
planning and mission control exercise conducted during the week of 8 May demon-
strated the capability to transfer and validate command data consistent with the
mission profile. Reaction procedures for sutellite and GDS anomalies were dem-
onstrated in four exercises during the week of 15 May., The Mission Dress
Rchearsal /Operational Readiness Test (MDR/ORT), conducted during the last 7 days
before launch, was the final demonstration. The MDR/ORT was conducted in the
final mission configuration and verified the readiness of the POS to perform the
functional sequences that comprised the Seasat mission.

E. CONFIGURATION CONTROL

Beginning in February 1978, the hardware, software, and operational pro-
cedures comprising the ieasat POS were systematically placed under configuration
control. Changes to the requirements or design of interactive POS elements were
subject to approval by a Change Control Board consisting of the Project Opera-
tions Manager, JPL MCCC Manager, GSFC Mission Operations System Manager, and the

|
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Chief of Mission Operations.

The purpose of this board was to ensure that the

integrated POS was maintained at an operational level adequate to support per-
sonnel training, launch, and flight operations.

Three levels of control criteria were employed:

(1) Configuration control.

(2) Modified ccnfiguration control.

(3) Configuration freeze.

Criteria defiiitions and their applicability to Seasat POS development and
flight operations activities are shown in Tables 2-11 and 2-12.

Table 2~11.

Configuration Control Definitions

Control Level

Definition

Configuration control

Modified configuration
control

Configuration freeze

Changes limited to those that allowed
accomplishment of mission requirements,
as scheduled

Same as above, but required operations
concurrence and system demonstration
after modification

No system modifications; configuration
broken only to restore from system
failure. System demonstration required
after restoration
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Table 2-12. Configuration Control Schedule

System Configuration Modification Configuration
¥ Control Control Freeze
POCC Integration ___ g L - 30 days to g L - 5 hours to
NASCOM delivery to L - 5 hours L. + 3 revolutions
L - 30 days
L + 17 days to L + 3 revolutions
end of mission to L + 17 days =
STDN Integration L - 30 days to Pre-launch
delivery tg =8 pre-launch ———iinterface to
L - 30 days interface L + 3 revolutions
L + 17 days to L + 3 revolutions
end of mission to L + 17 days -
MPS Integration L - 30 days to
CMS delivery to L + 17 days
ADS L - 30 days
ons
FMOC L + 17 days to
IPD end of miss n .-
PDPS
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SECTION III

LAUNCH AND ORBIT INSERTION PHASES

A. INTRODUCTION

This section discusses the launch and orbit insertion phases of the Seasat
mission. The launch phase is defined as that time period from 1iftoff to Agena
second burn cutoff, and the orbit insertion phase as that from second burn cutoff
to momentum wheel attitude control capture (12 to 25 h),.

B. GROUND SYSTEM LAUNCH CONFIGURATION
1. Western Test Range

The WIR ground data system configuration is shown in Figure 2-19, All pre-
launch direct control of the Atlas launch booster, Agena, and Seasat satellite was
accomplished from the launch operations building (LOB) at Space Launch Complex~3
West (SLC-3W). During the initial boost phase after launch, both the WIR tele-
metry receiving station and NASA telemetry (TLM) antenna tracked the launch
vehicle until loss of signal occurred. Two Advanced Range Instrumentation Air-
craft (ARIA) were used to receilve and transmit telemetry data during the first
and second burns of the Agena propulsion system.

Radiometric data tracking of the launch vehicle was accomplished using the
WTR radar tracking network.

2. Spacecraft Tracking and Data Network

The detailed STDN configurations are defined in GSFC document STDN-601/
Seasat, Network Operations Support Plar. (NOSP).

Six stations (MAD, ULA, GDS, HAW, ORR, and ACN) were used for launch sup-
port. MAD, ULA, and HAW were under configuration freeze (configuration broken
only to correct failures; demonstration after restoration) and unavailability of
their support was declared as launch hold criteria. GDS, ORR, and ACN were under
configuration control (meet scheduled support).

The pre-pass checkout of these stations began four hours tiutore liftoff and
was completed in the order of ACN, ORR, HAW, GDS, ULA, aud MAD. 1lhere were no
launch vehicle requirements from the STDN stations; however, all stations pro-
vided normal spacecraft tracking support.

3. Project Operations Control Center
The POCC for Seasat was a part of the Multi-Satellite Control Center II

(MSOCC II) complex. MSOCC II supported two other satellites besides Seasat and
contained three identical Sigma 5 computers.
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From launch minus 4 h to launch plus 8 h. one of the other two Sigma
computers provided a hot backup to the Sigma 5 computer used for Seasat oper:-
tions. This backup computer was loaded with the Seasat operating system and data
base. In case of problems, the computer switching could have been made in approx-

imately 1 min.

The software required to support the Sigma 5 computer system consisted of
a Xerox real-time batch monitor (RBM) operating system and Seasat applications
programs designated SEAC. The SEAC software provided the control center personnel
the capabilities to monitor and command the activities of the spacecraft sub-
systems and sensors. The SEAC software was grouped into the following categories:

(1) Control Subsystem, which provided the functions required to service
other programs.

(2) Telemetry Subsystem, which provided the capability to receive two
inputs of data concurrently. One input could be recorded, processed,
and displayed; the other input could be recorded and processed later.

(3) Command Subsystem, which provided for command generation from key-
boards and a general-purpose console, transmission of commands to the
tracking station, verification of the results of the commands, and
the creation of the Command Master Data Record (CMDR).

(4) Display Subsystem, which provided capabilities for the display of
commands and telemetry on CRT displays, line printers, and strip
chart recorders.

Version 10.003 of the SEAC software was used to support the spacecraft
launch. This system tape was produced on 12 June 1978, and was under configura-
tion control. Liens against this software are summarized as follows:

Type Written Open
Discrepancy reports 107 15
Enhancement reports 31 11

The most significant discrepancy was the requirement for patches for Scan-
ning Multichannel Microwave Radiometer (SMMR) special processing (square root
routine for calculating standard deviation-produced negative numbers). This
problem was solved by creating another system tape with these patches. This tape
was used, as required, for SMMR special processing. This decision had no impact
on launch support. These patches were later incorporated in system tape 10.004,

created on 3 July 1978.
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4, Orbit Determination Operation;

The Orbit Computational Engineer from the Operations Support Computing
Division was responsible for pre-launch and post-launch orbital computations,
orbit determination, tracking data dissemination, and all other related support
activities.

During launch, high-speed data in the form of position and veloecity vectors
in an Earth-fixed coordinate frame were recelved at GSFC by the Goddard Real-Time
System (GRTS) from the launch support function at WITR. These high-speed data
were used to drive the displays in the operations control viewing area. These
data were available to GRTS at GSFC until the time of WTR loss of signal (LOS)
during the first burn of the Agena stage.

The GRTS was used to perform orbital computations based on S-band tracking
data from the STDN sites. The S-band tracking data were transmitted by teletype
data links from the participating STDN stations by the GSFC NASCOM message switch-
ing system and then directly to the IBM 360-75 computer complex in near-real time.
The orbital parameters and other pertinent data from these computations were made
available to designated recipients in the operations areas.

C. SEQUENCE OF EVENTS (PLANNED VERSUS ACTUAL)

The Seosat satellite was launched from AFWIR by an Atlas/Agena launch
vehicle at 01:12:44 GMT on 27 June 1978. The plotboards driven at GSFC indicated
near-nominal vehicle performance. The vehicle was tracked by the AFWIR tracking
network and by the ARIA 1 aircraft thrcugh the Agena first burn shutdown and by
the ARIA 2 aircraft during the Agena second burn. Tables 3-1 through 3-4 list the
planned versus actual events.

D. LAUNCH SITE ACTIVITIES

The AFWIR launch activities sequence in support of Seasat data requirements
are listed in Table 3-5 and shown in Figure 3-1. All elements of the launch
ground data system functioned properly except the ARIA Indian Ocean/Marisat/
AFETR/LES-9 real-time telemetry satellite data link. As had been experienced in
all GDS testing, excessive bit errors (>50 x 10~4) received at the WIR Telemetry
Receiving Station (TRS) through the link were responsible for only a limited
amount of data being received. Radio frequency interference (RFI) and modulation
products were the most likely candidates to explain the experienced problems.
However, the data link coordination control did not allow expedient fault isola-
tion of the problems. The Air Force Indian Ocean Station (AFIOS) did record the
Agena second burn events. With quick turnaround (launch plus 5 min), it success-
fully retransmitted the telemetry data to VAFB/TRS and to KSC/WLOD Telemetry
Processing Station (TPS), where the data were processed and analyzed by the LMSC
data van and JPL and LMSC analysts. All data received at the KSC/WLOD TPS were
also successfully transmitted to the POCC Sigma 5 computer at GSFL.
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Tahle 3-1 .

Launch Phase Programmed Events

Time Relative to Liftoff,s

No. Event Comments
Planned Actual
1  Booster engine cutoff 130 130 WTR coverage
2 Booster engine jettison 133 133 WTR coverage
3 Shroud jettison 208 208 WIR/ARIA 1 coverage
4  Sustainer engine cutoff 285 285 WTR/ARIA 1 coverage
5 Start CTU clocks 290 290 WTR/ARIA 1 coverage
6 VECO enable 300 300 WTR/ARIA 1 coverage
7  VECO 304 304 WTR/ARIA 1 coverage
8 Separation 309 309 WTR/ARIA 1 coverage
9 First burn start 386 386 WIR/ARIA 1 coverage
10 First burn shutdown 617 617 ARIA 1 coverage
11 Second burn start 3436 3442 ARIA 2 coverage
12 Second burn shutdown 3442 3442 ARIA 2 coverage.

ARIA 2 reported time
for this event was in
error. ARIA 2 data
as processed in POCC
were unusable

E. MISSION OPERATIONS ACTIVITIES

The POCC for the GSFC support of the Seasat mission was the Seasat Opera-
tions Control Center (Seasat OCC) located in building 14 at GSFC. The POCC was
the focal point of project-unique operations, planning, and monitoring.

During the launch, the mission control function was performed in the
Mission Control Room (MCR). The following personnel were present in the MCR:

(1) Project Operations Menager.

(2) Mission Support Manager.
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Table 3-2, Orbit Inserticn Phase Progr.mmed Events
Time Relative to Liftoff,s
No. Event Comments

Planned

Actual

1 Oxidizer dump start

2 Orbit antenna 1 deploy
3  Fuel dump start

4 Solar arrays deploy

5 Deploy SAR data link
antenna

6 Deploy SASS antennas 1,3
7 Deploy SASS antennas 2,4

8 SAR antenna 90 deg
pitchout

3445
4551
5107
5640
6199

6209
6234

6409

3445
4551
5107
5640
6199

6209
6234
6409

ARIA 2 coverage

MAD coverage

ULA/GDS coverage

HAW coverage

HAW coverage
HAW coverage

HAW coverage

e e s At s s e
4

(3) Ground Data Systems Engineer,

(4) Launch Coordinator,

The following personnel were not required to be present in the MCR, but
were in constant communications with the Mission Support Manager:

(1) Orbit Computations Engineer.

(2) Attitude Determination Engineer.

(3) Network Operations Director.

In the Seasat POCC, the following personnel were present:

(1) Chief of Mission Operatioms.

(2) Two Assistant Chiefs of Mission Operations.
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Table 3-3. Orbit Insertion Phase Non-rroirammed Events

-t

STDN and Rev Kumber
No. Event Comments
Planned Actual

1 Solar array rotation HAW 1 ACN 1 S/C receiver not
locked on HAW uplink
2 SAR antenna 90 deg rotate ORR 1 ULA 2 ORR. Negative
acquisition
3 SAR antenna extended MAD 2 HAW 2
4 SAR ~ntenna extend motor JLA 2 HAW 2
shutoff
5 CTU B off MAD 2 ULA 5
6 Tranet amplifiers on MAD 2 MIL 4
7 Converter 3 on, 1 off HAW 2 GWM 9 Sequence not correct
8 Clock preset A 3 AGO 5
9 Start PMW ULA 3 ULA 4
10 Start RRW GWM 4 GWM 4
11 Successful wheel capture MAD 16 ACN 16 Four attempts were
made earlier, but vwere
unsuccessful

(3) Two SPAT Teams.
(4)  SPAT Leader.
(5) SPAT Lcad Monitor Analyst.

Other LMSC experts were rnquired to be in the Launch Support Room, and were in
communications with the Lead Monitor Analyst.

3-6
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Table 3-4. Activities Planned But Not Carried Out

(4~ Systemsr, Performance)

No. Event Planned Time Comments

l Switch transmitters ULA |

2 Ranging MAD 1 5 min, 00 8, ranging
HAW 1 1 mien, 20 s, ranging
ACN 1 4 min, 00 s, ranging
MAD 2 I min, 00 s, ranging
ULA 2 ! mirn, 00 s, ranging
HAW 2 1 min, 00 s, ranging
ORR 2 4 min, 00 s, ranging
ACN 2 10 min, 00 s, ranging
GWM 4 5 min, 00 s, ranging

1. Telephone Communications

Telephone communications were established for the Seasat mission to provide
for effective control, liasion, coordination, and data collection. It was the
responsibility of the Assistant Chief of Mission Operations (ACMO) to be aware of
all activities and the status of the other teams. The ACMO received periodic

reports from:
(1) Mission Support Manager.
(2) Control Center Operations Manager.
(3) Network Operations Manager.

(4)  SPAT Lead Monitor Analyst.




Table 3-5. Launch Activities Supporting Seasat

Data Requirements

| No. Event/Item Time
| 1 High-speed simulated data flow and IRV validation L - 100 min
k 2 ARIA (10)/GSFC validation (BERTS and simulatjion tape) L - 90 mir,
3 Agena final readiness (Task 5) . = 65 min
; 4 T - 60 min jimsphere balloon release (6) (contingency) L - 60 min
i 5 ARIA (PAC)/TRS revalidation (BERTS) L = 40 min
E 6 LOX tanking (Task 6) L - 35 min
: 7 Satellite vehicle open loop radiation L - 30 min
[ 8 ARIA (PAC) configuration for mission support
; 9 Terminal count (Task 7), telemetry flight recorder on L - 13 min
F 10 Range green L -3 mirn
E 11 Lifroff L - 0 min
12 Transmit real-time high-speed data to GSFC
' 13 ARIA (PAC) Tacsat carrier on L+60s
14 ARIA (PAC) AOS L + 180 s
15 ARIA (PAC)/ROS report 3 mark events (GMT time with L +616.5s
event readouts)
16 ARIA (PAC)/ROS report 1 mark event L +636.5 s
17 ARIA (PAC) LOS L+ 720 s
18 Transmit IRV to LMSC and GSFC L + 800 s
19 ARIA (10)/TRS data flow (BERTS) L + 1200
20 ARIA (I0)/TRS data flow (BERTS) L + 2100 s
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2. Displays

Pre-launch and real-time launch data pertaining to the mission were displayed
on illuminated screens at the front of the Operations Control Area (QOPSCON). The
operations center branch was responsible for the implementation and operation of

these displays:
(1) Launch count.
(2) Launch events and orbital elements.
(3) Flight path angle versus velocity ratio.
(4) Subsatellite plot.
(5) Countdown clock.
(6) Tracking and telemetry schedule.

(7) Acquisition elevation angles and mark events.

(8) Picture screen.

F. SYSTEMS PERFORMANCE

At launch, the powered flight trajectory of Seasat produced an injection
orbit that was within specifications, although somewhat off the nominal values
(Table 3-6). Figure 3-2 shows LMSC Monte Carlo-modeled distributions for the
orbit parameters of interest. The AV required to correct the launch orbit was
6.3 m/s compared to a nominal value of 4.4 m/s and a 99 percent probability

level of 11 m/s.

G. GROUND SYSTEM PERFORMANCE

Information available at GSFC indicated that the WTR and the ARIA deployed
over the Pacific Ocean (overlapping with WTR) acquired Seasat launch telemetry
(25 kb/s) in accordance with the pre-flight planned timeline. The data were
transmitted in near-real time to the LMSC computer van at WTR and the POCC at GSFC.

The second ARIA supporting this phase of the mission, deployed over the
Indian Ocean, acquired the spacecraft telemetry downlink only intermittently,
providing no usable telemetry data to either WIR or the POCC. The Air Force
Satellite Control Facility (AFSCF) Indian Ocean Station, however, provided nearly

redundant coverage to the ARIA and did acquire the satellite telemetry data
through the second burn, recording these data on magnetic tape. The data were
played back to WIR after loss of signal (end of view period).

The STDN Madrid 26-m station performed successful initial acquisition and

provided real-time spacecraft 25-kb/s telemetry data to the GSFC POCC, but was
unable to successfully acquire the uplink. As a result of this, no ranging or

3-10




Table 3-6. Achieved Injection Conditions

Cumulative

Parameter Value Probability Pre-~Launch
lLevel, % Specification
Semi-major axis, km Mean 7170.271 50.45 7150-7186
Nominal 7168.7 30.93
Actual 7162.770 0.89
Eccentricity Mean 0.001560 54.84 0.0-0,0052
Nominal 0.0008 15.75
Actual 0.000667 9.99
Inclination, deg Mean 108.09 51.80 107.5-108.5
Nominal 108,00 20.10
Actual 108.0213 27.07
Arpument of perigec, Mean 7.7 61.82 0-360
deg Nominal 90.4% 87.68
Actual 254.0 99, 86

command ing could be pertformed. Madrid reported using a real-time interrange
vector (1RV) gencrated by GSFC and reported the following predict angle differ-
ences (relative to on-track angles) by voice report:

Initial acquisition: ' aeg X,¥Y angles
Loss of signal: 5 deg X angle, 2 dep Y angle

Alaska was the next station, tollowing the Madrid view period, which was
scheduled to track, acquire telemetry data, and transmit commands issued from
the POCC computer. A critical command in the scquence was the switeh from the
ascent onni antenna on the side of the Agena tank to the on-orbit antenna.
Alaska tailed to detect the Seasat downlink., A post-launch analysis of 9-m

antenna angle data showed that the station used the real-time acquisition message

(GSFC had requested the pre-tlight nominal be used) containing time and angle
ervors outside the capability of the 9-m antenna system to effect a main-beam
intercept. The following were found to be Alaska acquisition problems:

(N Real=time acquisition data were less accurate than pre-flight
nominals.

(2) . GSFC Network Support Team passed predict message day time group and

sequence number to station instead of predict type and epoch (needed

for computer designation).
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PROBABILITY DENSITY FUNCTION

MEAN

ACTUAL
0.89%
(73! 85'5';8.02) 7162.7 (3860.7) 7170.3 (3864 .8) 7182.0 (3871.1)

) SEMI-MAJOR AXIS, km (nm)
-
IACTUA

2
ho. g
0.0 .000667 .00156 .0052
ECCENTRICITY
_
ACTUAL

107.66 108.02 108.09 108.41

INCLINATION, deg

Figure 3-2. Monte Carlo Distribution of
Injection Conditions
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(3) Alaska inadvertently chose an intercept point too close to the
terrain,

(4) Alaska stayed in manual antenna mode instead of initiating program
track mode at predicted acquisition of signal (AOS) time plus 30 s
(standard procedure).

During the first five passes, all stations except Ascension Island (ACN)
had problems in acquiring the uplink to the spacecraft., The ACN personnel were
trained to initiate "secarch out" at the exciter control when uplink sweep
intercepted ground uplink channel frequency at a zero SPE. This may explain why
ACN was able to maintain uplink lock and uplink commands, while other stations
were apparently dropping spacecraft receiver lock on previous and subsequent
passes.

Gther stations showed improvements in their ability to acquire and maintain
lock in the spacecraft receiver by adopting the following changes:

(N Lowvering the mwod index from 0.98 to 0.85.

) Slowing the sweep rate.

&) Using medium loop bandwidth.

These procedures were implemented during rev 5.

The POCC computer system tunctioned well during the launch and early orbits,
There were only two occasions when the Sigma 5 was rebooted. Erroneous readings,

which indicated that the computer's real-time telemetry processor was in a failed
condition, required the reboocs.

L]
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SECTION 1V

ORBITAL CRUISE PHASE

A. INTRODUCTION

The Orbital Cruise Phase, defined as being between the Launch and Orbit
Insertion Phase and the Calibration Phase, had a designated time period of
2 weeks, starting with the first available STDN ground station contact. 1In fact,
there was some overlap between the Launch and Orbit Insertion Phase and the
Orbital Cruise Phase, where satellite subsystems and total system assessment and
analysis were scheduled to have been performed. The overlap period spanned
revs 001 through 005, when the satellite clock was first set and data taking
began. This followed the successful deployment of the data antennas, sensor
elements, and other satellite appendages.

Initially, primary assessment emphasis was given to the Power, Attitude,
and Data Systems, followed by the Thermal System and, finally, the Propulsion
System during orbit maneuvers. After sufficient analyses of orbital tracking
data had been completed, a precision orbit determination was made and the resul-
tant maneuver recommendations generated. However, because of Attitude Control
System (ACS) problems, the recommendation was not to perform a maneuver during
this time period. With the orbit being established, extensive Attitude Control
System analysis was performed along with the planned sensor engineering
assessment.

The sensor assessment was conducted, as planned, in three phases: (1) early
sensor turn-onj (2) sensor quiet period; and (3) all sensors on. At the end of
the Orbital Cruise Phase, all sensors were on and the transition to the Calibra-
tion Phase was effected. Figure 4-1 shows the ascent-to-orbit sequence.

B. SEQUENCE OF EVENTS

Two sequences are shown for the planned Orbital Cruise Phase in Figure 4-2
and Table 4-1., These are the Early Science Mission Sequence and the Planned
Mission Sequence, respectively. Table 4-2 lists the Actual Mission Sequence.

C. MISSION OPERATIONS SYSTEM ACTIVITIES

The MOS activities for this phase were conducted from a 'baseline'" sequence
of events (SOE) that was developed specifically for Pre-Launch, Launch, Orbit
Insertion, and Orbital Cruise Phases by the Mission Control Team (MCT). This
third sequence was developed from the information obtained from the two sequences
of events listed in the previous paragraph. The MCT 15-day sequence is a docu-
ment containing the detailed planned operations activities for the Orbital
Cruise Phase. As this detailed SOE is a complete pre-definition of the time
period, it is impossible because »f its size to include it in this report.
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Table 4-1.

Planned Mission Sequence

T T

Date Day Rev GMT Event
06/26/78 177 F-1 day preparations., Countdown start
06/27/78 178 01:05:00 Liftoff
0001 Deploy antennas and solar array
0No01 Deploy SAR antennas
to
0002
0003 Set clock and release. Power. 2Zero
SMMR. Power subsystem checkout, ACS
checkout and analysis. First Orbit
Determination (OD)
06/28/78 179 0016 Transfer from Reaction Control System
(RCS) to OACS
0021 Begin processing of full-rev data for
ACS
0023 Post-injection orbit solution
0025 Load attitude trim commands
18:00:00 Maneuver meeting (cal. burn No. 1)
22:00:00 Maneuver load to CMS
06/29/78 180 0029 All day: ACS evaluation
to
0042 14:00:00 Review maneuver load
17:00:00 Orbit solution
20:00:00 Orbit Adjust Maneuver Program
(0AMP) run
06/30/78 181 0043 00:00:00 Begin maneuver period. Execute cal.
burn No. 1
12:00:00 End maneuver period
14:00:00 Manuever meeting (Orbit Adjust

(0A) maneuver No. 1)
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Table 4-1. Planned Mission Sequence (Continuation 1)

g R s i o g T R . SR e S R et s + e

Date Day Rev GMT Event
06/30/78 181 0043 17:00:00 Orbit solution
20:00:00 OAMP run
22:00:00 Maneuver load to CMS
07/01/78 182 0057 15:00:00 Post-maneuver orbit solution
03?1 18:00:00 Final OAMP run
| 20:00:00 Review and adjust maneuver load
22:00:00 Adjusted maneuver to CMS
' 07/02/78 183 0078 09:00:00 Begin maneuver period., Execute OA
, maneuver No., 1
E 07/03/78 184 0092 12:00:00 End of maneuver period.
; 0094 Altimeter (ALT) early turn-on
; No. 1 (HAW)
0096 ALT early turn-on No. 2 (ORR)
F 0098 12:00:00 ALT early turn-on No, 3 (MIL)
| 0099 SAR early turn-on No. 1 (MIL)
07/04/78 185 0100 SAR turn-on No. 2 (GDS)
0102 SMRR turn-on No. 1 (MAD). ALT early
{ turn-on No. 4 (HAW)
E 0103 SAR turn-on No. 3 (ULA)
VIRR turn-on No. 1 (ORR)
0104 SMRR turn-on No. 2 (GWM)
; 0105 SAR turn-on No. 4 (MIL)
ﬁ 0106 SAR turn-on No. 5 (ULA)
0109 SMMR turn-on No. 3 (HAW)

. _m Yoy oy A SRR Fa R A
oo SR L .
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Table 4-1. Planned Mission Sequence (Continuation 2)

, Date Day Rev GMT Event
| 07/05/78 186 0115
} to
0128
; 07/06/78 187 0130 ALT on. Begin quiet time (ULA)
E 0133 VIRR on. Begin quiet time (AGO)
’ 0136 SMMR on. Begin quiet time (ULA)
| 0139 SASS on. Begin quiet time (MAD)
}
| 0141 SASS HVPS on, Mode 1 (MIL RTC)
[ 14:00:00 Select cal. burn No. 2 sequence
:
L 22:00 :00 Cal. burn No. 2 load to CMS
) 07/07/78 188 0143 00:00:00 SASS operating, Mode 1. ALT on,
? Track 1 (GDS)
!
0144 VIRR to operate (GDS)
, 0145 SMMR on (ULA)
0150 Begin normal SAR operation
16:00:00 Approve maneuver load
17:00:00 Orbit zolution
20:00:00 OAMP run ﬁ
07/08/78 189 0158 00:00:00 Begin maneuver period. Execute cal.
burn No., 2
to
0171 12:00:00 End of maneuver period. ALT on,

Track 1. SASS on, Mode 1. VIRR on.
SMMR on. SAR normal operations

14:00:00 Select OA maneuver No. 2 sequence ;
22:00:00 Maneuver load to CMS
4-6

- B d A . el . . TR et e . : e e S e e R
s v sl oW -t e e cmedrinhs L e s PRI T A . S TE SN - N NN




Table 4-1.

Planned Mission Sequence (Continuation 3)

]
{ 07/10/78 191
t
.‘

Date Day Rev GMT Event
07/09/78 190 0172 Sensors on. Satellite quiet day
0;:5 15:00:00 Post-maneuver soluticn
18:00:00 Final OAMP run
21:00:00 Predicted post-maneuver ephemeris
0186 09:00:00 Begin maneuver period
0199
67/11/78 192 0200 12:00:00 Execute OA maneuver No. 2. End of
to maneuver perjod. ALT on, Track 1.
0214 SASS on, Mode 1. VIRR on. SMMR on,

*SAR normal ops. Satellite quiet day.

-
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Table 4-2,

Actual Mission Sequence

Date Day Rev GMT Event
06/27/78 178 0009 17:26:30 Converter No, 1 off (GWM)
06/28/78 179 0016 03:31:00 Attempt wheel capture. Unsuccessful
(MAD)
0017 05:01:00 Attempt wheel capture. Unsuccessful
(ACN)
c019 09:52:30 Clock fine adjust (AGO)
0027 22:57:30 Adjust RRW bias MIL)
06/29/78 180 0030 93:00:00 Attempt wheel capture. Unsuccessful
(MAD)
03:26:00 Back to RCS (HAW)
0042 23:41:00 Stopped PMW. Reset RRW. Magnetic
desaturation off (MIL)
06/30/78 181 0044 02:30:00 Disable Right Scan Wheel Assembly
(RSWA) output
0051 15:50:00 High Mode Reaction Control Cluster
{(HMRCC) heater off (HAW)
0055 21:36:00 PMW to on (ULA)
21:48:00 Send first clock offset and first
clock adjust command (AGO)
0056  23:08:00 Clock adjust command. Normalized
clock to microseconds (MIL)
07/01/78 182 0060 03:41:00 Transfer to OACS (HAW)
05:08:N0 Back to RCS (ACN)
0061 05:37:19 Right signal processor to off (ULA)
06:43:30 PMW to off (ACN)
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Table 4=2. Actual Mission Sequence (Continuation 1)
Date Day Rev GMT " Event
0067 17:51:00 Control Logic Assembly (CLA) power
supply No. 1 to off (ACN)
007¢ 21:17:00 ALT heater bus rapid cycling noted
(.’130)
07/02/78 183 0072 00:17:00 PMW to¢ on (GDS)
00:17:01 CLA power to Magnetic Control Assembly
(MCA) off (GDS)
0074 03:09:00 Transfer to OACS (hyd, desaturation)
(MAD)
0075 05:23:00 Transfer back to RCS (HAW)

06:15:00 PMW stop (ACN)

07/04/78 185 0102 04:14:11 ALT fourth turn-on (HAW)
04:29:27 ALT turned off (HAW)
0103 05:27:00 Rerun of SMMR early turn-on No. 1
(MAD)
05:31:00 SMMR turned off (MAD)
05:43:13 SAR early turn-on No. 3 (ULA)
05:53:53 SAR turned off (ULA)
06:16:48 VIRR first turn-on (ORR)
06:22:26 VIRR electronics off (ORR)
0104 07:41:35 SMMR early turn-on No. 2 (GWM)
07:50:40 SMMR turned off (GWM)
0105 08:44:36 SAR early turn-on No. 4 (MIL)
08:53:30 SAR turned off (MIL)
4-9
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Table 4-2.

Actual Mission Sequence (Continuation 2)

Rev GMT Event

0107 12:05:29 SAR early turn-on No. 5 (GDS)
12:24:29 SAK turned off (ULA)

0108 15:22:40 SMMR ear.v turn-on No. 3 (HAW)
15:34:25 SMMR turned off (HAW)

0114 00:23:00 CLA power on (GDS)
00:23:01 Left signal processor off (GDS)
00:23:31 CLA power supply No., 2 off (GDS)
00:25:00 PMW started (GDS)

0116 04:45:00 Transfer to OACS; wheel capture (ACN)

0124 17:14:00 Magnetic desaturation (MAD)

0130 03:09:39 ALT fifth turn-on (GDS)

0133 08:21:17 ALT turned off (GWM)
09:09:09 VIRR second turn-on (AGO)

0136 12:57:02 VI 'R electronics off (ULA)

0136 12:59:02 SMMR turn-on No. 4 (ULA)

0139 18:17:03 SMMR turned off (MAD)
18:19:18 SASS enabled (MAD)

0141 21:43:59 SASS turn-on No. 1 (MIL)

0143 0':03:11 SMMR turn-on No. 5 (MIL)

0144 02:41:49 VIRR final turn-on (HAW)

0145 04:17:11 ALT final turn-on (ULA)

0153 18:02:00 Connect solar array panels 9 and 10

(ACN)

4~10
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Table 4-2. Actual Mission Sequence (Continuation 3)

Date Day Rev GMT Event

07/08/78 189 0159 03:24:00 CLA power on (MAD)
03:24:05 CLA power supply No. 2 off (MAD)

0160 05:09:00 Lefc Scan Wheel Assembly (LSWA)
processor off (MAD)

07/10/78 191 0199 23:01:00 Switched from orbit adjust to orbit
normal mode (MIL)

The MCT SOE was a major product generated solely by the MCT before launch,
and it served well as the baseline operations activities plan in most areas.
The MCT SOE started at launch minus 4.5 h and ran through launch plus 15 days.
It contained all of the pre-launch procedures to activate the WIR, STDN, and its
attendant NASCOM facilities, data flow tests, and operational status checks
throughout the GDS before launch and subsequent orbits.

The exceptions to this plan are discussed on a day-to-day basis in the
following paragraphs. The Attitude Control System was the major exception and
significantly impacted the SOE, resulting in a cancellation of all orbit adjust
and trim maneuvers until a later date. SOE integrity was maintained for sensor
activation and, generally, for tape recorder management. Tape recorder manage-
ment by the MCT in real time proved to be more complex than estimated. The
primary reason for this was caused by holding specific attitude data onboard the
satellite until the GDS could verify its capture had been accomplished. This
occurred twice. What had been anticipated as a hold of several hours resulted
in a tape recorder hold of days while the desired attitude data worked its way
through the GDS and was validated by analysis.

The MCT SOE was designed to merge into the first Mission Planning SOE
(MSOE) starting on day 191 (10 July 1978). This schedule demanded timely
execution of the science or sensor turn-on operation activities, as planned.
The sensor engineering assessment phases were as follows:

(1) Early turn-on, with each sensor being individually turned on,
assessed, and then turned off.

(2) Sensor quiet period, in which all sensors were activated indivi-
dually and remained on for mutual evaluation and for assessment
of RF interference.

(3) All sensors on for operational assessment.

4-11
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The SASS was an exception to this activation process, as the SASS sensor team
specified a single turn-on cycle, It was the last sensor to be activated, and
‘ it remained on until the mission terminated,

With the orbit maneuvers postponed, it would seem to have diminished the
‘ total number of activities to be performed. The additional requirement to
establish an operational 0ACS mode placed stringent demands on the time avafl-
able because of the cancellation of the planned orbit mancuvers. All major
} objectives, except the orbit maneuvers and the limited attitude control perfor-
mance, were successfully completed, and the phaseover to the MSOE at the coa-
clusion of the Orbital Cruise Phase was accomplished as planned.

n. MISSION PLANNING TEAM OPERATIONS
1. Mission Planning Software

Subsequent to launch, satellite problems and the modification of sensor
operations required some additional revisions to the mission planning software,
Key among these was the satellite thermostat malfunction, which required the
development of the SAR operatirg philosophy in response to both power shortages
and increased experimentor interest {n acquisition of SAR data for spot targets

|

|

! rather than limited continuous swaths. The latter increased the SAR planning :
L activity to the point where it was the dominant planning activity, requiring

- both iterative computer runs and considerable manual intervention. Program

> modifications to accommodate these changes were made in parallel with normal

flight planning and were incorporated into a third mission build version of

I the software (MOSS 1.2) on 1 October 1978, At the time of the Seasat power
fafilure, which terminated the mission on 10 October 1978, development was
underway on a machine-to-machine interface with the SAR target identification
and selection software.

Several problems occurred fn the use of the mission planning software set
during the mission, The problem mentioned above, where cither a change in
operating characteristics of the satellite or a change in operating philosophy
occurred, Is an obvious one in which the actual requirvements upon the operating
system were not adequately enveloped by the imposed requirements. It was, how-
ever, recognized prior to launch that such an occurrence was not only possible,
but quite likely, and the software was designed so that individual programs
could be changed or added without impacting the balance of the software through
the use of standardized input/output intermediate files. This was an anticipated
problem, and was one of implementation rather than winlesale modification.

A second, and more subtle, problem not fully antic.pated was the require-
ment for a high degree of manual interventi{on and human decision in the cperation
of the sottware. Before taunch, it was felt that once operational, the software
could be run in what would essentially be a batch mode with output review and
itoration. Therefore, the input and review functions could be separated to a
high degree from the running of the software. 1In actual practice, however, the
inherent flexibility of the software and the large number of decision points
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encountered in progressing through the routines (Figure 4-3) required that the
operator not only be fully acquainted with the inputs and the actual science
requirements on a day-to~day basis, but also that he perform a review function
on the intermediate files as the run progressed. This effectively precluded the
use of data assistants in the operation and required that sequencing engineers

run the programs.

A third problem encountered in operations involved a software error in the
MCCC IBM 360 computer software which reblocked the CRP for high-speed data line
(HSDL) transmission. Each command or comment in the CRP occupied a single card
image, with nine card images grouped into a data record for the 1108 to 360
interface. The 360 blocked the CRP into six~card records compatible with the
NASCOM lISDLs. A special X-card was included in the CRP to mark the transition
between days, each day starting with a special card bearing processing informa-
tion for the CMS designated as the stored program command (SPC) load card. When
the SPC load card appeared as the first card in a nine-card image record, the
360 software would initialize, This was normal for the first day in the CRP,
but if any SPC load card occurred in the first card image of subsequent records,
the initialization caused the preceding six cards to be discarded by the system.
After the initial discovery of this problem, an immediate workaround was
effected by retransmitting individual days of CRP to avoid recurrence. Once the
problem was understood, a special stand-alone program was written to determine
the location of all SPC load cards in the CRP so that dummy comments couldibe
inserted to ensure that the SPC load card did not occur as the first card in any
record. The problem was finally corrected in the 360 development software about
30 days after the discovery of the problem. No notification was received that
the change was effected in the operational system.

A fourth problem encountered resulted from the insertion of satellite
commands into the command loads without processing them through the CMS. When
relatively few of these commands were being inserted from the POCC, or when they
were processed through the CMS, they could be checked effectively for timing
violations, in the former case manually and in the latter automatically by the
CMS computer. With the addition of approximately 100 heater cycling commands
a week to the POCC-generated commands, manual checking was insufficient to
locate all time conflicts. As a result, several times command coincidences
occurred in the loads. The satellite was mechanized to execute the first command
recognized for any given second and to ignore any others carrying the same GMT
time. The command coincidences resulted in, among other things, failure to
execute a heater bus on command and a SAR no-transmit command, both potentially
dangerous to the satellite. For any similar mission in the future, the software
must exist to check for constraints downstream of the last point at which
unchecked commands are routinely inserted.

2. SAMDPO Software

Actual development and testing of SAMDPO continued throughout the lifetime
of the Seasat mission. All problems encountered in the operation were worked out
during the operation with the exception of an apparently intermittent problem in
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the long-term orbit predicter, which resulted in miscalculations of the position
of ascending nodes. The source of this problem was never located, but the problem
could be avoided by checking the SAMDPO output against the tables of predicted
ascending node positions generated by other software.

Flight experience showed that the orbital event predictions produced by

SAMDPO matched extremely well with events observed during the flight, Originally,
it was thought that the age of the ephemeris data used by SAMDPO might result in
errors along the track which would be reflected in significant timing errors
toward the end of the prediction span (roughly orbit epoch time plus 2 weeks).
To guard against these errors, a time correction capability had been incorpor-
ated into the CMS so that more recent Code 570 inputs might be used to produce
daily time corrections known as super time trims. Flight experience was such
that the use of the super time trim was never required.

The one drawback to using SAMDPO as an operational program was the excessive
running time required. Although converting the predecessor program used for
mission design to an operational program was attractive from a programming stand-
point, a totally new operational pro,vam designed specifically for the Seasat
mission planning might have been more ~fficient in the long term, The opera-
tions plan called for the running of 4 weeks of predicts once gach week. The
size of SAMDPO and the number of calculations required each run were both so
large that special operational procedures were required both to avoid excessive
costs and to ensure that the required runs could be completed each week., Input
decks were prepared and submitted each Friday afternoon with instructions to
delay running them until after the files were dumped on the 1108 computer system
each Friday night. Even so, with the program running on a near-dry system, run
times were never shorter than 3 h although using the full capability of the
1108 computer system. If the program had to be run on weekend days in competi-
tion with batch and demand jobs on the system with higher priorities, run times
of 15 h wvere not uncommon. For a program of this complexity and size, the total
cost trade-off between developmental costs and operational costs should be made.
This trade-off was nrot necessarily made in the case of SAMDPO.

The information interfaces generally worked well. Because of the relatively
fluid nature of flight operations planning, the detailed mechanization of the
information interfaces was left relatively unfrozen until just before launch,
and then permitted to evolve into a comfortable working relationship. The
primary early emphasis was on establishing a single point of contact for each
information interface and developing the best possible understanding of the
early orbit operations desired. As it turned out, the SMMR and VIRR low-rate
sensors had only recommended turn-on and turn-off sequences, several operational
constraints, and a limited set of assessment vequirements. TFor the remainder of
the mission, the goal of both sensors was to collect an uninterrupted set of all

possible data.

The other two low-rate sensors did have an active interface with the MPS.
The altimeter was represented for both science acquisition and engineering
assessment by the Altimeter Sensor Manager of Wallops Flight Center. Engineer-
ing assessment requirements were identified and reviewed in an expeditious
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manner and presented no problems, as was also the case with altimeter group
commands. A calibration algorithm was developed several months before launch
and was implemented in the mission planning software. Altimeter science acquisi-
tion requirements were modified during flight in response to suspected altimeter
problems and the thermal control thermostat failures. In each case, the nature

: of the sequencing changes had been anticipated before launch, and the appro-
priate command triggers and routines existed in the software, It remained only
to negotiate the details of the changes and to implement them. As only command

‘ algorithms were at issue, no extended interaction was required, and the inter-

} face was effected entirely through black phone with datafax backup.

The SASS presented more of a problem, as the science requirements included
E approximately 300 sensor mode changes each week to accommodate specific coverage
of selected targets. These changes were transmitted from the Langley Research
‘ Center to the MPS by datafax each week for the operational period several weeks
i ahead. The mode changes were then reviewed for consistency and manually
' inserted into a computer input file. Machine checking identified only syntax
errors, not input errors. As a result, during the mission several mode changes
| at erroneous times slipped into the CRP. This should have been a machine-to-
’ machine interface with manual review and override to eliminate errors,

}

| The SAR group was the only sensor group with full-time representation at

\ JPL. As a result, information flow betwcen the SAR and the MPS occurred daily

| on a face-to-face basis, which was fortunate because, ultimately, the SAR plan-

) ning became the largest single activity of the MPS. Before launch, each SAR

t member had identified SAR targets of interest and time periods for data acquisi-

‘ tion over each target based on the pre-launch nominal orbit. With the delay in

} orbit adjust maneuvers because of the attitude control anomalies subsequent to

' launch, the pre-flight SAR planning was invalid. During the early portion of
the flight mission, SAR experiment requests were hand-generated for a nominal
six 10-min SAR passes each day, but the planning guidelines called for issuing

J the SAR transmit command at 10-deg elevation or station AOS, whichever was pre-

dicted to occur later. This meant that the information required across the

interface between the SAR and the MPS was the revolution number and SAR ground

station requested plus any special instructions for engineering assessment

commands. As the minimum power period for the satellite approached, however,

the SAR operating time was curtailed to conserve power. By this time, the first

SAR processing of data had convinced the experiment team members that SAR passes

much less than 10 min in duration were of value if they included specific targets

of interest.

}

As a result, the normal mode of operation during the minimum power period
became the acquisition of from two to eight SAR passes varying in duration from
2 to 6 min each day. The information passing across the interface at this point
became the GMT time of turn-on and turn-off, the SAR ground station requested,
and any special assessment commands. While capability to accommodate this form
of input existed in the mission planning software, problems were encountered.
Many targets of interest were at relatively low elevation angles within the SAR
station passes. Errors in specifying the GMT times, which were due to differ-
ences in orbit solutions used in the target selection and CRP preparation
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processes resulted in requested SAR on and off times lying outside ground station
view. The impact to the MPS was that these occurrences had to be flagged as
planning violations, reviewed, manually adjusted, and rerun through the software.
This added an iterative loop both in the software operation and across the
information interface not envisioned before launch., The problem created became
increasingly severe after the end of the minimum power period when as many as

12 SAR passes each day over specific targets of intereet would be routinely
requested. At the time of mission termination, effort was in process within the
SAR experiment team to program the target selection algorithm in the 1108 com-
puter system in terms of delta time with respect to time of ascending node.

This program was intended to produce a computer file of SAR pass requests that
could be accessed by the planning software so that the GMT times could be
generated without ground station mask violations. There is every reason to
believe that, had development of this machine-to-machine interface been completed
and used, SAR planning would have been greatly simplified.

The information interface with SPAT never materialized as envisioned
before launch. Originally, it was intended that one SPAT member would be
located at JPL full-time to represent SPAT within the MPS. This representative
was to be in daily contact with the main body of SPAT at GSFC to serve as a
liason for passing planning information other than the MPS deliverables to GSFC
and near-real-time performance information to the MPS. As a result of, first,
the attitude control anomalies, then the heater thermostat failures, and
finally the low power problem, the SPAT representative was required to remain
at GSFC to assist in real-time data analysis and command through September 1978,
The representative had spent about 3 weeks in residence at JPL at the time of
the mission termination, most of which was devoted to the installation of the
LMSC power prediction program on the 1108 computer system. During his stay
at GSFC, MPS contact with SPAT was largely through black phone contacts with
the representative. While this was adequate as a temporary measure, informa-
tion flow between the MPS and GSFC would have been much improved if the SPAT
representative had been available for involvement in the planning process on a
daily basis. One of the most glaring Seasat deficiencies was the lack of any
mechanism other than the SPAT representative's residence at JPL for returning
performance and command information to JPL on a timely and rigorous basis. The
LMSC daily status bulletins, initiated considerably after launch, were of con=-
siderable help in providing this information, but were irregular in delivery
and were often incomplete.

E. SYSTEMS PERFORMANCE
1. Satellite Performance

This section provides a summary of spacecraft systems performance during
the orbital cruise phase of the mission. Plans to produce a monthly satellite

performance analysis report (described in JPL internal document 622-42, Seasat-A
Spaceflight Operations Plan, May 1978) did not materialize because of early

problems described here.
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Wheel captures were attempted on revs 16 (MAD) and 17 (ACN), but large
attitude errors forced a return to the Reaction Control System (RCS) in each

instance.

In an attempt to minimize the attitude errors, the Roll Reaction Wheel
(RRW) bias was changed on rev 27 (MIL), and wheel capture was again attempted on
rev 30 (MAD). On rev 30 (HAW), the attitude errors again became excessive, and
the satellite was returned to the RCS.

On rev 42 (MIL) the Pitch Momentum Wheel (PMW) and the RRW were stopped,
and magnetic desaturation was turned off. The Right Scan Wheel Assembly (RSWA)
output was inhibited on rev 45 (MAD). The High Mode Reaction Control Cluster
(HMRCC) heater was turned off on rev 51 (HAW) for power conservation, On rev 55
(MIL), the PMW was turned on.

Another attempt was made to transfer to the Orbital Attitude Control System
(OACS) on rev 60 (HAW), but again wheel capture was denied by excessive attitude
errors, and the satellite was returned to the RCS on rev 60 (ACN). The right
signal processor and the PMW were turned off on rev 61 (ULA/ACN), and Control
Logic Assembly (CLA) power supply 2 was turned off on rev 67 (ACN).

Rapid cycling of the altimeter heater bus was observed on rev 70 (AGO) and
again on rev 71 (MIL). The cyclic period was approximately 10 s. The appropriate
LMSC subsystem engineers were alerted to this condition.

In preparation for another attempt to transfer to the OACS, the PMW was
turned on, and CLA power to the Magnetic Control Assembly (MCA) was turned off
on rev 72 (GDS). Transfer to the OACS in the hydrazine desaturation mode occurred
on rev 74 (MAD). By rev 75 (HAW), the attitude errors had become excessive, and
the satellite was transferred back to the RCS. PMW stop was executed on rev 75
(ACN), and the magnetic desaturation mode was inhibited on rev 76 (ULA).

A test was conducted on rev 88 (MAD/ORR) to gather more data on the attitude
problem. The gyros were turned on during rev 86 (GDS) and permittad to stabilize
for two orbits. The forward gyro started, and the Scan Wheel Assembly (SWA)
pitch and roll was enabled. With the spacecraft on gyros, the left and right
SWAs were alternately enabled for one revolution each. At the conclusion of
this test, attitude subsystem efforts were suspended until rev 114 (GDS).

The sensor engineering assessment phase began on rev 94 (HAW), and @nded on
rev 145 (ULA). During this period, the sensors were individually cycled on and
off at the direction of the applicable sensor representatives.

The initial turn-on for the altimeter was aborted when the station was
unable to receive satellite data because of a ground equipment nroblem. Sub-
sequently, the altimeter was turned on and off a total of five times, with final
turn-on occurring on rev 145 (ULA).

The SAR was cycled on and off five times. During the first on period, the
pulse repetition frequency (PRF) switch was set to position 4 to enable the grouand
equipment to lock on the data.
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The first turn-on attempt for the SMMR occurred on rev 102 (MAD). The
instrument was not in the proper mode to accept the turn~on sequence au formu=-
lated, and pass time expired before a new command sequence could be initiated
to the spacecraft. The SMMR was ‘subsequently turned on and off, without inci-
dent, a total of three times and was ultimately turned on during rev 136 (ULA).

VIRR on and off sequences were routinely acccmplished twice during this
phase. The final turn-on occurred on rev 144 (HAW),

With no preliminaries, the SASS was enabled on rev 139 (MAD), and was
turned on during rev 141 (MIL). Figure 4-4 shows a timeline of the sensor
on/off sequences during the engineering assessment phase,

Following the engineering assessment phase, power considerations required
that solar array panels 9 and 10 be connected to the system, This was accom-
plished on rev 153 (ACN).

The sensor on/off sequence was interrupted by another attempt at wheel
capture. CLA power on, left signal processor off, CLA power supply 2 off, and
PMWA start were all accomplished on rev 114 (GDS). The spacecraft was trans-
ferred to the OACS on rev 116 (ACN), Magnetic desaturation was initiated on
rev 142 (MAD), With acceptable stability demonstrated, CLA power on and CLA
power supply 2 off were sent on rev 159 (MAD). LSWA processor off was sent on
rev 160 (MAD), and the vehicle was transferred from the orbit adjust to the
orbit normal mode on rev 199 (MIL).

2. Ground System Performance

Ground system operations for this time period began with rev 6 and extended
through rev 199 (days 178 to 192). This phase of the operations was the most
active of the mission. Normally, this phase was planned to begin after rev 3,
when the satellite clock was reset to current GMT. The clock was not set to
GMT until rev 5 (AGO), completing the configuration of the data subsystem, and
was the last planned step before the start of the Orbital Cruise Phase.

Scheduling for the Orbital Cruise Phase was performed and submitted
according to the plan outlined in the Space Flight Operations Plan (SFOP). A
total of 295 STDN passes were planned and scheduled. On an average, this was
slightly over 22.5 passes each day, with the peak day being launch day with a
total of 37 passes. By the time the Orbital Cruise Phase began with rev 6,

22 passes had been completed (refer to Section III). A total of 295 passes were
scheduled and 289 were conducted as scheduled. The reasons for the loss of the
six passes (approximately 2 percent) were as follows:

(1) Skylab. Two nasses lost to critical Skylab coverage.

2) Communications. Two passes lost because of a 3760 computer problem
and a wide band data line (WBDL) problem.
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(3) Spacecraft Command Encoder. One pass cancelled because of red
Spacecraft Command Encoder (SCE).

(4) Sigma 5 Computer. One pass cancelled to give time to implement
SEAC software Version 10,005,

The scheduling during this phase proceeded very well; however, this high
activity had an adverse effect on securing enough Sigma 5 time to perform play-
back of TELOPS tapes to the Attitude Determination System (ADS), post-real-time
analysis of TELOPS tapes, and other background processing required to support the
mission in real time.

TELOPS/IPD was also specifically scheduled to provide the Seasat/POCC with
quick-look playback tapes. These tapes and orbits were pre-defined to evaluate
the characteristics of the ACS when the satellite was under the contrel of the
OACS. Additionally, data were also to be processed, analyzed, and fitted to the
predicted power usage curve, which had been generated by the LMSC power program,

As the LMSC attitude programs could only be completely tested by using
actual satellite data, the early receipt of TELOPS tapes was vital to the veri-
fication of these programs, During these first days of the mission, documented
records of the delivery of tapes from TELOPS were not maintained., Late delivery,
coupled with the satellite ACS problems, had a severe impact on real-time failure
analysis and the planned systems analysis of the attitude control and power
systems.

The POCC Sigma 5 computer was responsible for the largest number of fail-
ures during this mission phase. During the 289 real-time passes performed, there
were 109 various discrete failures or real-time data losses. The Sigma 5 was
re-initialized during real-time passes 47 times. In addition to these single
"reboots,'" eight additional "double reboots'" were required. Flnally, two com-
plete system reloads were required during this phase,

Normally, the first action taken to correct a problem was to initiate a
Sigma 5 reboot. Therefore, some of these ve-initialization attempts to correct
a problem were misdirected at the Sigma 5. Double reboot was the term used when
the first re-initialization attempt did not clear the data processing problems
and a second Sigma 5 initialization was required immediately after the first
attempt.

At two different times, a complete system reload was performed. The charac-
teristics of the Sigma 5 and SEAC software were such that reboots or failures
occurred in groups over a period of time. Because of frequent reboots over a
short period of time, a system reload would be performed. A system reload
required about ! h, and had to be carefully planned to re-establish the unique
data processing subroutines (procedures) used by the MCT and SPAT to analyze the
satellite data in real time. It appeared that perhaps the Sigma 5 core was
becoming fragmented, impeding data processing. This problem was not specifically
identified on the next SEAC software (Version 10.005), which was implemented on
the last day of this phase (day 191).
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One documented interface problem that continued and often resulted in a
Sigma 5 reboot was the failure of CRT and keyboard devices. These interface
failures, which were hardware failures at the CRT/Sigma 5 interface, did not
normally affect the on-going data processing of the SEAC program, but were to
clear the device and return it to an operational status after a reboot wus
required. Another Sigma 5 interface that failed on some occasions was the
POCC Data Set Controllers (DSCs). There were two DSC failures in this phase.

A DSC failure was difficult to distinguish from NASCCM data line failures. There
were also five failures in the NASCOM segment of the ground system during this
phase.

The ADS/Sigma 5 interface also precipitated numerous Sigma 5 reboots,
although only one ADS failure was clearly recorded on a real-time pass log.
This failure typically manifested itself at the concluaion of a Sigma 5-to-ADS
transmission. During these transmissions, the Sigma 5 stripped out eight param-
eters from the TELOPS playback tapes, built data records, and transwitted these
records to ADS through an HSDL. The Sigma's telemetry data processing following
this task would not function properly (for real-time operations) unless it was
re-initialized after a non-real-time ADS transmission. This interface problem
was corrected by implementing ground system operating procedures in the Seasat
POCC.

A second HSDL/Sigma 5 interface was the CMS/Sigma 5 interface. While this
interface was not planned to be exercised extensively during this phase, the
HSDL/CMS interface frequently failed throughout the life of the mi{ssion. The
backup to the HSDL was hand delivery of the CMS tapes to the POCC. Because of
the close proximity of the POCC and CMS facilities, the HSDL failure was not
investigated in any depth.

The last category of direct Sigma 5 and POCC interfaces to be discussed is
the Orbit Determination System (ODS) interface. Two problem areas reported in
the ACMO's completed pass logs were range tapes and satellite tracking predicts
at the STDN stations. The ranging tape was generated by ODS to be used by the
Sigma 5 Timecal Program. The output of this program was used to determine the
sutellite clock offset from actual GMI'. One documented range tape failure
occurred in this phase. lowever, because of the turnaround time required to
obtain a new tape from the ODS, only one failure created a significant problem
in producing time offsets as planned every 24 h. A delay resulting from a range
tape problem had a rippling effect through subsequent data processing by TELOPS
and other users of this clock offset information.

There were two ODS (predict) problems in this phase: (1) the predicted
AOS/LOS times on the predict sets being used by the STDN stations were in error
by more than several seconds, and (2) the orbit rumbers on the predicts used by
the stations were offset by one orbit for several days. During the time when
the AOS times were incorrect (from several seconds to approximately 1 min), the
MCT was operating in a single tape recourder mode. Inaccurate predicts caused
delayed acquisitions and missed opportunitites to perform tape recorder dumps
over planned STDN stations. The orbit number errors required an excessive
amount of additional bookkeeping to correct orbit numbers when this very
valuable time was needed to perform real-time problem analysis in the POCC,
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The second most significant category of failures was those originating at
the STDN stations, A total of 42 discrete fallures resulting in data losses
occurred during this phase. The most common {ailure type was again software
related, as over 50 percent of the failures were efther SCE or Di{gital Data
Processing System (DDPS) failures. The SCE failures, of which there were 13,
generally occurred at random throughout the network. However, the DDPS failures,
of which there were nine, were primarily concentrated at ULA and were DDPS
program 3 failures,

Another category of failures was those where the station's receiver dropped
lock because of a mode change cn the satellite or because the initial receiver
configuration was not compatible with the satellite downlink. Following launch,
all STDN stations had difficulty in maintaining two-way lock and in commanding
Seasat. With the statfons' assistance, particularly MIL, an acquisition pro-
cedure was developed in real time that proved to be very successful., This new
STDN procedure changed the nominal sweep rates and uplink mod/index levels as
stated in the NOSP standard acquisition precedure. There were several data
losses related to changing RF modes on the satellite; these were the 800-kb/s
data playback mode and the ranging mode, Data losses because of switching to a
800-kb/s data playback mode diminished over a very short time period., This
problem appeared to have been procedural, and was corrected by the STDN station
operators. Five data losses occurred during this phase following ranging on/off
commands and data losses continued to occur at random throughout the mission, 1
This problem was not investigated in any depth by the Seasat Project to deter=- |
mine {f these data losses were satellite- or station-related problems, i

i

In summary, there was a discrete system failure for every 2,7 orbits. In
addition, there were interface problems that spanned part or all of the Orbital
Crulse Phase and were not relevant to an orbit-by-orbit accounting. No other
data are at hand to compare with these failure points, While the failure rate
seems to be much higher than in other mission perfods, the total mission activity
was also at its peak during this phase and more demands were placed on all
elements of the ground system. Problems were not an unexpected factor in any
case, and almost all were corrected quickly and expertly by the responsible
personnel in the ground system, as had been expected before launch. In the
areas where fmmediate solutions were available, procedural workarounds were
quickly implemented. All major planned events were executed except the orbit
waneuvers. The MCT was prepared to conduct these maneuvers, if required. The
transition to the Calibration Phase from the Orbital Cruise Phase was completed
as planned.
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SECTION V

CALIBRATION PHASE

A. INTRODUCTION

This section discusses the mission operations activities during the
Calibration Phase of the mitsion. The Calibration Phase is defined as the time
period in which the required calibrations for the spacecraft sensors were per-
formed. The primary purpose of this phase was to demonstrate the operational
capabilities of the spacecraft and covered the time period of 30 to 90 days
after initial checkout.

B. SEQUENCE OF EVENTS

The sequence of events for this phase of the mission was the standard
Mission Sequence of Events (MSOE). As described in Section I, the MSOE was the
final product of the Mission Planning Team (MPT). It was the responsibility of
the Mission Control Team (MCT) to review, update if required, and implement
the sequence as received from the MPT. Although the MCT maintained a very active
interface with the MPT, the MCT had very little visibility with the other MPT
interfaces. It was these interfaces that determined the science mission profile
during the Calibration Phase. In summary, the MCT focused on the conduct of the
mission while the MPT coordinated the calibration outputs.

C. SENSOR CALIBRATION

Five sensors were carried aboard the Seasat spacecraft. The Radar Altim-
eter, Scatterometer (SASS), and Synti.etic Aperture Radar (SAR) were active
radiators, and the Scanning Multichar el Microwave Radiometer (SMMR) and Visual
and Infrared Radiometer (VIRR) were passive receivers. Each sensor had differ-
ent coverage characteristics, depending on the pointing, field-of-view, and data
handling requirements and, for the SASS, the Doppler velocity between the space-
craft and the ground points. The sensors were secured to the spacecraft so that
changes in coverage occurred only as a result of changes in the spacecraft posi-
tion or altitude. The only exception to this was the altimer:r, which sensed
conditions at ihe subsatellite point normal to the surface and independent of

nominal spacecraft oscillations.

The swath for each sensor was defined by the ground cross-track area
produced by the sensor's receiving field-of-view. The ground pattern and swath
for each sensor is shown in Figure 5-1. The ground trace of each sensor swath
is shown for one orbit on a Mercator projection in Figures 5-2 through 5-5. The
calibration objectives for the sensors are described in the following paragraphs.
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Figure 5-1. Seasat Instrument Coverage
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1. Synthetic Aperture Radar Calibration

The objective of the SAR experiment was to demonstrate the capability of a
satellite-mounted SAR to obtain high resolution ocean surface imagery, monitor
coastal processes, chart ice fields, detect icebergs, and obtain land imagery.

The engineering assessment of the SAR was conducted to evaluate SAR
inflight performance and to ensure data quality. The SAR experiment team repre-
sentative provided the SAR pass selection inputs to the MPT. Operations during
the first weeks of the mission proceeded as planned, and included the following
accomplishments:

(n SAR operate/data link on without radar transmitter permitted
signature with radar noise at each SAR site.

(2) Data link coverage near station zenith permitted full cuts
through the spacecraft antenna.

(3) Passes over corner reflectors were recorded and analyzed.

The normal operation of SAR electronics and data link was confirmed. Areas
of evaluation were proper command responses, expected telemetry values, operating
temperatures, and transmitter power. The SAR performance evaluation effort
covered the following three areas:

(1) Functional operation of the system elements.

) Measurement of performance parameters and comparison of predicted
values.

(3) Assurance of imaging quality.

These activities took place at: (1) the POCC by the Satellite Performance
Analysis Team; (2) STDN SAR sites by SAR team personnel; (3) JPL by review of
telemetry data; and (4) JPL by processing and image analysis teams. Table 5-~1
summarizes the status of performance evaluation.

2. Radar Altimeter

The objective of the altimeter calibration was to evaluate three basic
altimeter geophysical parameters:

(1) Altitude of spacecraft above sea surface (h).

(2) Sea state as measured by the average height of the highest
one-third of the waves in the antenna swath (H1/3).

(3) Sea state backscatter coefficient (oo).
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Table 5-1. Seasat SAR Engineering Assessment Performance Evaluation

Performance Evaluation Activity Status
Functional Verification
Satellite elements SPAT participation at POCC Completed
Response to commands Verified
Telemetry at expected Verified

System elements
through demodulation

End=-to-end system
through SDPS

System Parameter Values

Satellite subsystem
amplitude stability

Satellite thermal
characteristics and
transmit power
stability

Data link pattern
and horizon mask
SAR antenna pattern
End-to-end SNR

Image spectra

Image performance

¥ parameters

values
GDS observer
MFR and demodulation lock
Offset video echo and STC
Simulator RG compression
Rechirp
Corner reflector echo

SDPS processing of point
target returns

Pre-launch analysis of test
data

Plots of sensor and data
link temperatures and
transmit power versus time
from telemetry

MFR AGC versus look angle at
GDS

L-band power (with AAFE
receivers) versus look angle

Offset video signal and
noise at GDS

Computer analysis of
digitized signal film

Esiimate values from images
with point targets and

compare with predicted values

and tolerances

3 sites visited
Verified
STC bias
Observed
Observed

Not seen

Complete

Complete

Incomplete

Complete
3 sites

Plans only

Plans only
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Table 5-1. Seasat SAR Engineering Assessment Performance Evaluation
(Continuation 1)

Performance Evaluation Activity Status
Image quality Establish and verify proce- Partially
asgsessment dures for HDRRs, tapes, and

film and assess parameter
values and general image
quality

To implement these altimeter evaluations, Seasat-derived altimeter param-
eter values were compared with independently observed values. Surface truth
data obtained from the North Atlantic calibration area, Gulf of Alaska, North
Sea, and Joint Air-Sea Interaction Experiment (JASIN) area were used along with
laser and S-band observations from Bermuda overflight passes as the primary data
set. By obraining independent measurements of the altimeter parameters, the

instrument bias and accuracy were determined. The calibration activity was
divided into three phases.

a. Phase I. This phase was based on the first available data processed
in the shakedown mode to accomplish early assessment of sensor performance,

b. Phase 1I. This phase encom '1ssed data collection activity performed
during the Bermuda overflight period in September 1978. The use of altimeter
data minimized the need for geoid and ocean topography models. The resulting
altimeter h-bias information was good to the submeter level.

c. Phase III. This phase covered a definitive evaluation period where
the ultimace accuracy and data processing algorithms were assessed. The time
frame for this phase extended until mission termination. The objective of this
analysis was: (1) to determine the bias in the altimeter measurements with an
accuracy of 10 to 20 cm, and (2) to demonstrate that Seasat altimeter H1/3
measurements and o° measurements met the design specifications.

There were three possible methods for determining the bias in the Seasat
altimeter measurements:

(1) Direct Overflight. This method required the satellite to pass
directly over the tracking laser.

(2) Short Arc Triangulation. This method required that the satellite
be tracked by three or more lasers during a single pass over the
calibration area with the altimeter operating.
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(3) Global Long Arc. This method evaluated the altimeter height bias
using orbits determined from the globally distributed Tranet Doppler

system,

Command sequences required to calibrate the altimeter were provided to the
MCT by experimentors through the MPT. Following orbit adjust maneuvers at
22:39:00 GMT on day 250, altimeter calibration data were gethered for 30 days
on Bermuda (BDA) overflight passes (every third day) and are listed below:

Rev No. Time Period
1117 256/0254~0309
1160 259/0306-0321
1203 262/0318-0333
1246 265/0330~-0345
1289 268/0345-0400
1332 271/0357-0412
1375 274/0409-0424
1418 277/0421-0436
1461 280/0433-0448

Seasat 283/0426

Failure

BDA was required to support these passes and gather as much Doppler data as
possible. As the real-time, 25-k/bs data were not available to the POCC from BDA
and MIL, trailing passes (overlap of approximately 3 min) were also scheduled.

So that BDA could gather maximum Doppler data, MIL was required not to bring up
their uplink carrier until BDA's loss of signal, which did not leave enough time
for a tape recorder dump (7 min, 12 s required). To achieve this, the tape
recording cycles were readjusted by the MPT.

3. SASS Calibration

This instrument provided closely spaced grid measurements of surface wind
speed and direction in the range of from 4 to 50 m/s. This could be inferred by
sensing the average radar cross section or scattering coefficient (a%) or the
rough ocean surface. Therefore, the satellite instrument had to be calibrated
in terms of o©,
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The measurements made by the satellite instruments were compared to the
valu2s of 00 obtained by a highl: accurate SASS installed on an underflying air-
craft. Therefore, the absolute calibration of the SASS was dependent on three
major elements:

(1) Calibration of the underflight instrument.
(2) Underflights themselves.
(3) Subsequent data comparison.

Metal spheres of different radii suspended from balloons and a helicopter
were used to calibrate the underflight instrument. The value of 0° for a sphere
is easily calrulated and varies with the radius squared. Range was accurately
determined using a Wallops Flight Center (WFC) tracking radar. Since path
losses were negligible, the ¢© could be readily computed. The underflight
instrument was calibrated to an accuracy of >0.5 dB.

The underflights were conducted between 23 August and 30 September 1978,
primarily in the North Atlantic and Gulf of Alaska, as part of the JASIN and
GOASEX programs, respectively. The underflight instrument was installed on the
NASA/JSC C-130, NASA-929 aircraft. Table 5-2 1lists the data set used for the
SASS calibration,

4, Scanning Multichannel Microwave Radiometer Calibration

The principal requirement for the SMMR was to provide all-weather global
measurements of sea surface temperature to a precision of 1 to 2 K for oceano-
graphic and climatological research. Another requirement was to use microwave
brightness measurements for high wind determination to complement and extend the
SASS measurements. The instrument was calibrated on the ground before launch at
JPL. No in-flight calibration activities were conducted.

5. Visual and Infrared Radiometer Calibration
The VIRR provided low resolution (9 by 9 km) feature recognition and cloud

position information, clear air sea surface temperature (*0.5 K), and cloud top

brightness temperatures in support of the microwave instruments. No inflight
calibration activities were conducted.

D. FLIGHT SYSTEMS PERFORMANCE

1. Spacecraft Performance

All sensors were operational at the beginning of day 188. The altimeter,
SMMR, SASS, and VIRR were operating at 100 percent duty cycle, while the SAR
was operating at 45 percent duty cycle. Table 5-3 summarizes the events,
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Table 5-2. SASS Calibration Data Set

Location Date Rev F°'";:g1ﬁ““ Af:::ﬁr Polarization Spez:?dn/o
JASIN 8/23 0823 1/5-7 2/7-12 Both 10
8/25 0848 4/1,2,4 3/1,2,4 Both >10
8/29 0905 4/4-8 3/3-7 Both 7
0906 1/2-10 2/3-12 Both 7
9/04 0991 4/3-11 3/2-9 Both 8
0992 1/1-10 2/2-11 Both 10-20
GOASEX 9/14 114¢ 4/1-6,13,15 3/1-5,13,15 Both 30-35
9/17 1183 4/1-6,13,15 3/1-5,13,15 Both 30
9/19 1112 1/1-9,13,15 2/1-9,13,15 Both 30
East Coast 9/28 1339 1/1-8.13,15 2/2-8,13,15 Both 8-14
U 9/30 1367 4/3-12 3/2-12 Both 15-30

The SASS baseplate temperatures were out of specification on the low side
up to 16°C an estimated 90 percent of the time as manual cycling of the heater

bus began on rev 416 (day 206). However, this condition had no effect on the
SASS operation.,

There were several planned occasions when some of the sensors were
restricted in their operations:

(1) During a spacecraft low power period (days 242 to 252), the VIRR
electronics were commanded off to conserve power. The SAR was oper-

ated only at 1 percent duty cycle rather than 7 percent as planned
for the same reason.

(2) The SASS and altimeter were placed in non-operational modes during
spacecraft maneuvers.

2. 0ACS Performance

Anomalous OACS behavior was first observed on rev 17 (ACN). Backup
attitude control modes were available to permit the on-schedule initial power-up

5-12
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Table 5-3. Summary of Events

Number Day Rev Comments

1 222 641 VIRR detector temperature exceeded limit of 35°C
(95°F). VIRR was commanded off.

2 229 681 VIRR detector tcmperature limit changed to 38°C
(100°F). VIRR was commanded on.

3 240 890 VIRR motor stalled. No data was output from the
sensor,

4 240 891 Spacecraft bus voltage fell below 22 Vdc. Internal
fault detector turn ALT off.

5 240 895 ALT was commanded off.

6 240 897 Several attempts for next 110 revolutions were
made to command VIRR motor on. No success.

7 244 953 ALT was commanded on for 60 percent of the time in
track mode ard 40 percent of the time in standby
mode until rev 1255 (day 265).

8 247 1000 SMMR cold horn temperature. 157°C (315°F) limit.
Defined new limit of 160°C (320°F).

9 253 1073 Modified and used the sequence to command VIRR
motor on. On 2 occasions, VIRR motor made one
revolution and stopped.

10 255 1105 Modified and used new sequence to command VIRR
motor turn-on. Motor started running.

11 256 1115 VIRR motor stopped again. Subsequent attempts to
start motor again failed. Engineering analysis
concluded that the motor stalling could be caused
by a particular inclusion in the gear drive, a
failure of the bearing supporting the shaft, or in
the motor itself.

12 265 1255 New operational mode for ALT; test mode over land

and track mode over water.
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and checkout of the sensors. The control system performance from rev 130
until final control system trim on rev 327 was adequate. Workaround operations
were developed to mitigate the effects of anomalous behavior on the OACS

performance.

Five orbit adjusts were performed to support development of a precise orbit
over Bermuda for altimeter calibration. The orbit adjusts required awitching
from the momentum attitude control system to the hydrazine attitude control sys-
tem, and then back to the momentum system. Control in each mode and switching
between modes was performed without operational problems. Orbit adjust maneuvers
were perfurmed during the following revolutions:

Maneuver Rev
1 ' 701-705
2 744~749
3 819-821
4 862-864
5 1072~-1073

After an initial workaround was developed, the OACS performed admirably
through all orbit adjust maneuvers until spacecraft terminal power failure over
the Orroral, Australia tracking station.

3. Power Performance

All electrical power systems performed properly and no hardware failures
occurred up to the final rev (1503), when the failure took place. Power con-
sumption in the spacecraft loads was greater because of OACS anomalies and ther-
mal control system thermostat failures; however, bus subsystem loads were in the
predicted ranges. Also, solar array output power was within the predicted
ranges. During out-of-specification conditions on rev 891, power system control
was maintained, including regulation, and no damage to the batteries was indi-
cated. No damage to any other hardware was evident as a result of the out-of-
specification voltage condition. No evidence was available to suggest power
subsystem design error or malfunction as the cause of the low voltage condition.
The out-of-specification low voltage condition was attributed to an LMSC Space~

craft Performance Analysis Te.- (SPAT) performance lapse. This performance lapse

was addressed by LMSC and resuiced in extensive operational changes and record
keeping and personnel revisions,

During the final revolution of the spacecraft, a massive short circuit
developed. The power system maintained normal sensor input for approximately
1 h after the onset of the short circuit, at which time sensor telemetry func-
tions and spacecraft S-~band telemetry downlink ceased.
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E. GROUND SYSTEM PERFORMANCE

1. POCC Computer System

a. Hardware. There were no significant hardware problems, primarily
becaute of the ample redundance Luilt into the system. Although some passes were
conducted using a backup Sigma 5 computer because of maintenance work being per-
formed on the prime system, it had no adverse impact on spacecraft operations.
The duration of this maintenance work was apnroximately 3 to 4 hours a week.

b. Software. Significant problem areas in the software were as follows:

(1) Timecal. This segment of the software was used to compute the
offset and drift of the spacecraft clock. Depending on the
type of data being processed, the program often produced
erroneous results. The impact of this problem was a backlog
accumulation of clock offset drift messages that could not be
computed on time.

(2) Limit Checking. The programs were used to indicate the measure-
ments that were not within the set of pre-specified limits.
The programs functioned properly, but the format of the message
transmitted to indicate a certain measurement was beyond normal
limits was inadequate.

(3) Data Transmission to ADS. When transmitting data to ADS, the
Sigma 5 computer failed occasionally and had to be
re-initialized. The reason for this could have been the
Sigma 5 programs, the transmission line, or the protocol
between the computers. Because of this, the data had to be
played back again.

(4) Max/Min. These programs were used to keep a running record of
the maximum and minimum values of pre-specified measurements.
When using these programs, the telemetry processor of the
Sigma 5 computer would fail, resulting in the degradation of
data.

(5) Convert Coefficients. The raw PCM counts were converted to
engineering values using coefficients stored in a table. On
several occasions, this table changed without any reason. To
correct this, the complete system had to be reloaded. This
presented a severe problem.

(6) Erroneous Data Values. On a few occasions, the telemetry
processor failed and produced erroneous data values. The sys-
tem had to be rebooted to correct this.

All of the above problems, except limit checking, were corrected by
Version 12 of the software, which was delivered by Univac on 12 September 1978.
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2. Mission Operations Room/Sigma 5 Interface

This interface functioned well. There were no significant hardware or
software problenms.

3. Attitude Determination System/Sigma 5 Interface

As mentioned earlier, a few problems were encountered. However, there
were no serious impacts on operations.

4, Orbit Determination System

a. Predicts. It was the responsibility of ODS personnel to provide
predicts for station view periods of the spacecraft to the MCT. On three
occasions, the predicts were late by more than 2 days. This presented somewhat
of a problem, especially immediately after orbit adjust maneuvers. On two
different occasions, the revolution numbers of the spacecraft were off by more
than one. To correct the latter problem, the predicts had to be regenerated.

b. Range Tape. This set of data provided by ODS personnel to the MCT
contained range information for the MIL, GWM, and MAD STDN sites. This data was
needed to compute the spacecraft clock offset and drift. There were various
problems encountered. On many occasions, the tape was defective and had to be
regenerated. This usually required about 2 days and further aggravated the
problem of computing clock offsets on frime.

5. Command Management System

The performance of the CMS supporting personnel for Seasat was outstanding.
The MSOE memory loads were produced well in advance. There were few occasions
when the transmission line between CMS and ' he POCC was not functional. The
MSOE was hand-carried to the POCC. This procedure had no adverse impact on the
operations.

6. Ground Stations

a. Tape Recorder Dumgs. On 8 August 1978, becausc of timing problems
in building up store and forward tapes, the MCT decided not to dump the tape
recorders over ACN, MAD, and QUI. However, on 8 September 1978, the previous
decision had been modified. The tape recorders could then be dumped over these
sites, and the analog tapes could be shipped to MIL for transmission to the IPD
at GSFC. From GDS, the shipping could be accomplished overnight, but times from
the other sites were more variable and longer. Consequently, it was less
desirable to dump tape recorders over the other sites. The priority established,
in decreasing precedence, was ULA, MIL, MAD, and GDS.
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b, STDN Scheduling. The STDN scheduling procedures established at GSFC
worked satisfactorily. During the early part of this phase, the unavailability
of STDN sites (GDS and MAD) presented a problem. These two STDN sites were used
extensively by Skylab. MAD was one of the sites where tape recorder dumps were
desirable, while GDS was one of two sites used for SAR data processing. As the
‘chedule was received by MCT at approximately 1930 GMT for the next day, and the
. ommand load tor the same day was already fabricated at that time, a few SAR
‘as8 commands in the load had ro be no-ops because of the inability to schedule
GDS. Similarly, if MAD was reynired for tape recorder dumps and was not avail-
able, the dumps were scheduled vver less desirable sites.

C. Spacecraft Command Encoder Problems. SCEs at the STDN sites were
used to uplink commands to the spacecraft., The command uplinking process
involved a series of communication messages between the POCC computer and the
SCEs. The characteristics ¢f these communication messages were different for
non-critical commands, critical commands, and memory loads. If this series of
communication messages was not completed in its entirety on time, commands
could not be uplinked to the spacecraft. The most frequent problem at the POCC
was the failure to receive messages from the SCEs. This was indicated by a
"SCE TIMED OUT'" printout, meaning that the expected communication message from
the SCE was not received by the POCC computer, The problem could be in ecither
the SCE itself or in the NASCOM line from the S8TDN to the POCC. In the former
case, the solution was to re-initialize the SCE, In the latter case, another
attempt to uplink the commands had to be made. If the attempt was unsuccessful,
a line check would be required. In any case, the uplinked commands would be
delayed frcm the intended uplink time. This was a problem for SAR turn-on
and starting the tape recorder readout. This problem was not investigated by
the Seasat Project.

7. TELOPS/1PD

TELOPS/IPD had six major interfaces in the Seasat configuration that were
used either as an input or output interface. 1In this paragraph, only POCC-
velated input and output interfaces will be discussed. There were one hard
interface (voice line) and three soft interfaces where some data products were
hand-delivered to either the POCC or TELOPS/IPD. The data delivered from
TELOPS to the POCC were Seasat quick-look whole-orbit telemetry tapes. The
POCC-supplied data products were daily copies of the Command Master Data File
and the satellite time offset messages.

The interface that worked best was that for the time offset messages,

This message was delayed a few times where its delay impeded TELOPS/IPD data
processing operations. The SFOP procedure stated that the SPAT would provide
the data so that the message could be transmitted by 1600 GMT on the following
day. During this phase only a limited number of time correlation passes were
scheduled at the STDN sites. If for some reason one or two of these passes were
lost or the data proved to be erroneous, it could delay that day's message until
more time correlation passes were made, the data plotted, and a fit established.
Also, for ease in data reduction, it proved better to have one person take all
of the time offset data for that time period and perform a batch process for

the day. It was this specialization in performing the task that also resulted
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in some delays in processing non-real-time data. A lower priority on the
processing of non-real-time data by real-time operations personnel caused a

delay at times. All of these delays were minor, and, as it turned out, the
facilities using this information to process Seasat data were also behind
schedule with their own processing functions and the delays had no impact on
their final output. As stated earlier, when this process was delayed because of
problems with the ODS range tape, the output of time offset messages would fall
behind by several days. When this occurred, there was an impact that caused some
processing delays by TELOPS/IPD.

The second interface was the voice interface between TELOPS and the POCC.
This voice line was normally used only when real-time operations were being con-
ducted with the STDN, This interface was activateu by the Communications Manager
when TELOPS/IPS was scheduled to receive playback from a tape recorder dump or
a playback of an STDN store and forward tape. No notable real-time problems
occurred with this voice line. The POCC personnel had expected to use this voice
interface for non-real~-time coordination of delivery of TELOPS quick-look tapes.
In this respect, the interface failed., A second attempt to coordinate quick-look
tapes was made using the standard telephones. This effort generally failed also
because no knowledgeable single-point contact within TELOPS could consistently
be established either by telephone or voice line. Ultimately, the Seasat Mission
Support Manager provided this non~real-time coordination function. It was
thought necessary to have a non-real-~time POCC to TELOPS/IPS coordination effort.
This interface requirement arose because of the Impact of the late delivery of
quick-look tapes from TELOPS to the POCC. This requirement diminished after
TELOPS/IPD had solved their initial start-up problems encountered on Seasat data
processing, and quick-look tapes were later provided within their specified
delivery time of 4 to 6 h after capture of the data.

The interface that resulted in the most problems was the quick-look tapes,
Basically, the POCC required quick-look tapes for three reasons: (1) playback to
the ADS; (2) playback to analyze the electrical power profile; and (3) playback
to analyze the performance of a discrete sensor. Initially, the prime interest
was in the areas of ADS and power evaluation. As these two subsystems and their
performances became better understood under flight conditions, the requirements
to analyze whole orbit data decreased. The evaluation of whole orbit data for
sensor performance was on an "as required" basis.

The MCT performed a total of 724 tape recorder dump cycles. Generally,
each tape recorder contained approximately 230 min of data. This was equal to
about two and one-third orbits of real-time data. Therefore, when a whole orbit
of data was requested from TELOPS by the nature of the recorder cycles and
TELOPS processing, over two orbits of playback data were received to be processed
through the POCC Sigma 5 computer. Of the 724 playback cycles, four cycles were
repeat playbacks from the satellite. These were normally the result of some
ground system problem that caused a certain or probable loss of playback data.

The total number of quick-look tapes requested, sometimes defined as whole
orbit data, was 32. This was equal to approximately 4.44 percent of the total
number of tape recorder cycles that were played back. It did not include the
pre-planned quick-look requests through launch and approximately the first
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30 orbits. Nine of these dump cycles occurred during the first 2 weeks, which
was the Orbital Cruise Phase. During this phase, as noted in Section IV, the
delay of the quick-look tapes severely handicapped the MCT and the SPAT, who
required this data in a timely manner to evaluate the satellite and the

attendant ADS and power system programs.

Following this phase, and up to the point of the low voltage problem on
orbit 891, 47 days and 10 quick-look requests elapsed, or an average of one
request every 4.7 days. A review of the Seasat tape recorder management log
illustrates that these requests were spaced relatively evenly throughout the
overall time period. Delivery throughout this time period continued to lag
1 or 2 days behind the request for quick-look data until the time of the under-
voltage problem cited. Over a 2-day period (47 h) 7 of 13 tape recorder dumps
were requested to be delivered to the POCC as quick-look tapes. On some of these
orbits, two tapes (duplicate copies) were requested for individual GSFC experi-
ment teams that had the capability to analyze the data on their own computer
systems. Because of the size of the request at this time of the mission, the
total process was somewhat slow. However, this event and the delivery of tapes
from TELOPS did prove that the TELOPS/IPD system could deliver data products
across the interface within the prescribed time of 4 to 6 h after capture.

Quick-look requests from the POCC from this time period to the time of
spaceccraft failure were again on a relatively evenly spaced basis. The TELOPS/
1Py concept of providing data for quick-look analysis was at the threshold of
being consistently reliable within the desired time at the termination of the
mission. 1In conclusion, the concept of individu~l POCC capture of data for real-
time operations analysis should be strongly recommended for future missions.

8. ULA Program 3 and 1.544-Mb/s Wideband Data Service

A simplex 1.544-Mb/s wideband data service was provided from ULA with a
simultaneous transmit capability to Fleet Numerical Oceanographic Center (FNOC)
and to GSFC. This system was used to transmit the 800-kb/s playback telemetry
data to FNOC and TELOPS/IPS at GSFC and the 25-kb/s real-time data to the
Seasat POCC.

ULA had two computer systems designated the 642B (Phase I) and the PDP-11
(Phase II). These computers required Digital Data Processing System (DDPS) pro-
gram 2 and DDPS program 3 software, respectively. To utilize 1.544-Mb/s data
circuit capabilities, the DDPS program 3 had to be used. DDPS program 2 was the
backup to DDPS program 3, and its use was intended in case of DDPS program 3
failure only for real-time support. The 800-kb/s playback telemetry data were
to be retained on station until the restoration of program 3 capabilities.

During this phase of the mission, it was discovered that the dump data
transmitted from ULA to TELOPS using DDPS program 3 contained timing problems.
An extensive series of data flow tests were conducted between ULA and TELOPS to
analyze this problem., The participation of the spacecraft operations team in
these tests was not required. The timing problem revealed by these data flow
tests were attributed primarily to the time code translator at ULA. Before the
installation of this unit, it was checked at GSFC. However, one of the output
cables was not terminated properly at the site. This cable was subsequently
replaced, resolving all problems by 1 October 1978.
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SECTTON VI

ORBIT MANEUVERS

A. INTRODUCTION

The Seasat spacecraft was launched at 01:12:44 GMT on 27 June 1978 from the
Western Test Range at Vandenberg Air Force Base, California. The launch and
orbit injection were near-nominal, but post-launch attitude control anomalies anc
the resultant hydrazine usage caused the pre-launch maneuver plans to be modifiec
Following the development of a workaround for the attitude anomalies, five maneu-
vers were executed. The following paragraphs summarize pre-launch mane:rer plans
launch results, post~launch plans, mission operations activities, and maneuver
evaluations,

B. PRE~-LAUNCH MANEUVER PLANS

The pre-launch maneuver strategy was to correct the achieved launch orbit
within 30 days after injection. These corrections had the following objectives:

(1) Achieve proper instrument operating altitudes.

(2) Synchronize ground traces to match the pre-launch-generated ascending
nodes (Earth-fixed) and dates.

(3) Minimize altitude variations in the Northern Hemisphere.

(4) Provide a 3-day, near-repeating ground trace for calibration
activities.

(5) Maintain the above properties against drag effects through periodic
maneuvers,

{6) Provide an exact 3-day repeat ground trace in early September for
Bermuda laser experiments.

Maneuvers were planned to correct semi-major axis (a), eccentricity (e),
and argument of perigee (w). Corrections to ascending node locations (Q) were
made by adjusting the semi-major axis, which affects the nodal precession rate
(2)., Therefore, node control was performed by in-plane maneuvers rather than by
expensive out~of-plane maneuvers.

Parameters of the nominal launch orbit are listed in Table 6-1. The selec-
tion of these values is discussed in detail in Reference 6~1. The values of
semi-major axis and inclination determine the orbit precession rate and, coupled
with the Earth spin rate, determine the Earth-fixed ground trace pattern. Fig-
ure 6-1 shows how the ground trace pattern builds up over a typical equator seg-
ment. The plot shows the Earth-fixed longitudes of ascending nodes plotted
against time. The solid lines connect node locations that differ in time by
3 days. The nominal orbit produces a 3-day near-repeating pattern that drifts
18.5 km (10 nm) east every 43 revolutions (3 days). After 5 months, the
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Table 6-1., Nominal Launch Orbit

Paraneters Values
Semi-major axis, km 7168.3 (3863.7 nm)
Eccentricity 0.0008
Inclination, deg 108.0
Argument of perigee, deg 90.0
Time of perigee, 00:46:00 GMT, 18 May

nominal launch date

Ascending node, deg 298

complete equator has been crossed every 18.5 km, setting up a uniform instrument
sampling grid.

The nominal values of € and w were chosen to minimize altitude variations
by providing a circular orbit and essentially no precession of periapsis. As
shown in Figure 6-~2, the motion of ¢ and w moves counterclockwise on the closed
contours at the apsidal period (about 120 days). It can be seen that if
€ 0,002 and w ~ 90 deg, perigee precession is restricted to a small range of
values. Near the "frozen" point, the motion will be essentially constant and,
therefore, maintain the spacecraft altitude constant over any given point on
Earth. This phenomenon is due to balancing the precession influence of the
second zonal harmonic with the odd zonals by achieving a very small eccentricity.
Details and equations to support these characteristics are given in References
6-2 through 6-4.

Nominal ground trace spacing is achieved once the nominal semi~-major axis
is achieved. However, launch date slips from 18 May, or an anominal launch
performance causes the post-launch Earth-fixed ascending nodes to differ from
the pre-launch nominal set (published in Reference 6-5), The nodal positions
and times in Reference 6-5 were distributed before the initial planned launch
date (18 May) to permit the instrument experiment teams to plan post-launch
surface truth activities and to coordinate with other oceanographic activities.
Therefore, it was planned to maneuver the spacecraft so that the actual nodes
would agree with the published values. In other words, the effects of launch
slips and launch trajectory errors on nodal positions would be compensated for
with maneuvers. The nodal crossings were to be synchronized with nominal values
by varying the semi-major axis so that the accumulated nodal errors would be
offset within 30 days after launch.

Reference 6-6 provides the maneuver strategy details and optimization

techniques for correcting launch errors in o, €, and w at the same time as node
synchronization. Once node synchronization and launch error corrections were
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completed, the Bermuda Island overflight would have occurred in early September,
A small maneuver (approximately 700 m (2296 ft) in semi-major axis) would then
be required to modify the orbit from the near 3-day repeat (nominal orbit) to an
exact 3-day repeat over Bermuda Island. The equations for computing the AV mag-
nitude and location as a function of required changes to orbit parameters Aa, Ac.
and Aw are derived in Reference 6-2 and listed in Table 6-2,

During this orbit sequence, maneuvers to compensate for drag were to be
performed as needed, Drag caused the orbit to decay and the ground trace pattern
to drift more easterly. Maneuvers were scheduled to return the semi-major axis,
and ¢ and w, if required, to their original values. As maneuver responsibilities
were shared between operations teams at JPL and GSFC, a planning cycle and formal
Maneuver Operations Planning Team (MOPT) were organized.

C. TAUNCH RESULTS

The powered flight trajectory produced an injection orbit that was within
specifications, although somewhat off the nominal values (Table 6-3). Some of
the nominal values in Table 6~3 differ slightly from those of Table 6-1,
apparently due to round-off and precision requirements in LMSC ascent simula~-
tions, Figure 3-2 shows Lockheed Monte Carlo-modeled distributions for the
orbit parameters of interest. The AV required to correct the launch orbit was
6.3 m/s compared to a nominal value of 4.4 m/s and a 99 percent probability
level of 11 m/s.

The coverage from the launch orbit is plotted in a dot diagram in Fig-
ure 6-3. The dots show the Earth-fixed longitudes of ascending nodes plotted
against time. The abscissa shows a typical equator segment, with the plotted
pattern being repeated around the equator. A long-term l7-day repeat pattern
with a :arger miss distance of 160 km (86 nm) is evident. The curvature in the
17-day near~-repeat pattern is due to drag effects on the semi-major axis that
changed the nodal precession rate, which in turn affected coverage. Note that
the 17-day pattern does not exactly repeat itself, but misses to the west for a
while and then misses to the east., Either an east or west stepping pattern
could be maintained with maneuvers,

The 17-day pattern was advantageous in that it provided an almost 18-km
(9.7 nm) spacing between adjacent ground traces. This corresponded to the
altimeter long-term mapping raquirement. A disadvantage of the launch orbit was
that the 3-day pattern had a miss distance about 50 percent larger than the SAR
swath width of 100 km (54 nm). Therefore, the SAR and instruments with smaller
coverage swaths did not have contiguous coverage for long periods of time. As
both the Baseline and Cambridge orbits (Table 6-4) were configured to provide
overlap coverage consistent with the instrument swaths, it was decided not to
stay in the launch orbit but to comply with the initial maneuver objectives.

D, MISSION OPERATIONS ACTIVITIES

Twenty-six hours after launch, vehicle attitude control was transferred
from the Reaction Control System (RCS), which used gyros and hydrazine gas, to
the Orbital Attitude Control System (OACS), which used horizon sensors and
momentum wheels. Subsequent to the transfer, large transients were observed
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Table 6-3. Achieved Injection Conditions

Cumulative

' Pre-Launch
b Parameter Value Probability
; Level, (%) Specification
F Semi-major axis, km Mean 7170.271 50,45 7150 to 7186
Nominal 7168.7 30.93
Actual 7162,770 0.89
Eccentricity Mean 0.001560 54.84 0.0 to 0.0052
g Nominal 0.0008 15.75
E Actual 0.000667 9,99
F Inclination, deg Mean 108.09 51.80 107.5 to 108.5
| Nominal 108,00 20,10
Actual 108.023 27.07
; Argument of perigee, Mean 71.7 61.82 0 to 360
k deg Nominal 90,4 87.68
, Actual  254.0 99,86

in both the roll and yaw attitudes. The spacecraft was returned to RCS control,
» and all pre-launch maneuver plans were cancelled pending resolution of the
‘ problem,

Data analysis showed that the attitude disturbances occurred at specific
r locations in each revolution, suggesting that the anomalies were attributable
| to sunlight entering the field-of-view of one or toth horizon sensors. By
late July, it was determined that orbit precession had sufficiently changed the
sun geometry, and the spacecraft was returned to OACS control using only the
right horizon sensor head. No additional disturbances were observed, and per-
mission was given to begin the maneuver series on 15 August.

Because of the delay caused by the attitude anomaly, the original maneuver
plan was revised. The Baseline orbit was established with the frozen orbit
condition by 26 August, Node control for the Bermuda orbit was to be such that

, a descending pass occurred directly over Bermuda Island on 8 September. The

f spacecraft was then to be maneuvered into an exact 3-day repeat orbit that

g passed over Bermuda every third day. This orbit was to be used for approxi-

E : mately 1 month, when a Cambridge orbit would be established to provide a gradu-
ally shifting coverage pattern. The orbit definitions are given in Table 6-4.

The revised schedule is presented in Table 6-5, Six maneuvers were
scheduled to meet experiment objectives, All pre-launch defined maneuver inter-
faces were exercised as planned. The MOPT was convened twice during each maneu-
ver cycle, and maneuver plans and results were widely distributed.
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Table 6-4. Orbit Definitions

Baseline orbit

Cambridge orbit

Exact 3-day repeat
orbit

Launch orbit

17-day near-repeat
orbit

Node control
condition

Frozen orbit
condition

A 3-day near-repeat orbit which moves 18.5 km (10 nm)
to the east every 3 days. Has advantages of multiple
coverage of fixed loczations and good orbit stability
with respect to drag.

A 25-day near-repeat orbit vhich moves 18.5 km to the
east every 25 days. Has ndvantage of fast global
coverage and optimum SAR swathing.

A 3-day exact-repeat orbit which provides near-zenith
descending node passes over BDA every 3 days. Has
advantages for ALT calibrationm.

The orbit actually achieved by the spacecraft on
June 27. This orbit has identifiable 3-day and
17-day cycle components (see Figure 6-3). The orbit
spacing changes with time due to drag (i.e., no
maintenance maneuvers).

17-day near-repeat orbit which is close to the launch
orbit. Moves 18.5 km to the west every 17 days (other
apacings are possible).

The condition which exists when the node control
maneuver synchronizes the ascending node longitudes
and times .o the pre-flight plan,

The condition which exists when the orbit adjust
maneuver achieves orbital elements which freeze peri-
gee at the maximum north latitude excursion, thereby
minimizing altitude and altitude rate variations in
nortliern hemisphere (desirable for the SAR).

15 August.

The first orbit adjust thruster (UAT) firing occurred at 07:41 UTC on

This maneuver was to calibrate the -AV thruster.

Subsequent maneu-

vers were then performed to change the nodal precession rate, calibrate the +AV
thruster, synchronize with nominal ascending node locations, and achieve the
3-day repeating orbit over Bermuda. Each maneuver after the first calibration
burn was modified slightly to adjust for errors in the previous burn and to
correct for drag prediction errors., The error from maneuver 4 caused the

Bermuda overflight to slip from 8 September to 10 September. This was acceptable
to the altimeter team, and the trim maneuver scheduled for | September was
cancelled.

6-9
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Table 6~5. Maneuver Timeline

Date Maneuver Description

T

15 August Calibration No. 1 Calibrate ~AV thruster
i 60-s burn.
! Aa = -1 km

18 August Orbit adjust No, 1 Orbit adjust No. ] changed nodal preces-
sion rate.
Post-maneuver orbit:

a 7160.1

0.00143
146.27

108.023
87.7

DM E 0 B
RwpR

23 August Calibration No. 2 Calibrate +AV thruster
60-s burn.
Aa = +1 km

26 August Orbit adjust No. 2 Orbit adjust No. 2 achieved the n~minal pre-
| flight nodes. The orbit was a baselire

; ground trace with about ll-km spacing (east)
' and a near-frozen orbit:

Pos t-maneuver orbit

7168.6
0.0008
95
106.023
104.3

O E O M
RonR R

| 1 September Trim No. 1 Trim No. 1 was to correct any execution

| error resulting from OA No. 2. This maneu-
ver would ensure that the Bermuda overflight
would occur on 10 Sep *1 day.

8 September Orbit change No. 1 Orbit change No. 1 achieved the 3-day exact-
repeat which was a descending leg over
Bermuda Island.
Post-maneuver orbit:

7169.0
0.0008
90.0
108.023
126.7
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E. MANEUVER EVALUATIONS

The Seasat maneuvers were all executed successfully with near-perfect
results. All maneuver objectives were attained, and no abnormalities occurred,
The performance results for the maneuvers are summarized in Table 6-6.

Figure 6-4 shows the variatior of ¢ and w from launcn until 26 August
1978. The normal precession of £ a:d w prior to maneuvers is evident, and the
maneuvering to the "frozen" (zero precession) point is illustrated. Since
10 September, when the frozen orbit was established, the values of « and w,
while not entirely constant, shcw very small amounts of motion (Figure 6-5).
The small remaining variation in ¢ and w is due to scatter in OD solutions plus
the effects of high-order harmonics, solar radiation pressure, atmospheric drag,
sun and moon gravity, etc. Figure 6-5 also shows the GSFC predicted motion of ¢
and » for the next year with constant values of drag and solar radiation pressure.

It can be seen that the values would vary between 0.00075<¢ < 0.00084 and
86.5 deg < w <94.5 deg in a slow spiral during the next vear. Perturbation
analyses at JPL and GSFC iiave shown the main cause of the non-zero precession to
be solar radiation pressure and drag. These small variations are well within
the design goals needed to keep the altitude variation essentially constant over
any latitude. Also, corrections to € and w would have been made when maneuvers
were made to correct semi-major axis decay due to drag (about every 2 months),
or when the orbit ground trace pattern was changed. The next maneuver on
26 October would have been to go to the Cambridge ground trace pattern, The
values of ¢ and « would have been targeted to 0.0008 and 90 deg, respectively.

The semi-major axis history during the maneuver period is plotted in Fig-
ure 6-6, which shows both the actual and nominal values., The OD precision is
*30 m (98 ft) or better in semi-major axis. The largest execution error
{absolute value) was 57 m (187 ft) from maneuver 4 (Table 6-6). The effect »f
drag on semi-major axis can be seen in Figure 6-7. Although the scatter im OD
1s evident, a clear decay of about 3 m/day is predominant, especially after
18 September. TFigure 6-8 shows a plot of .olar activity since launch., Atmos-
pheric drag generally followed the splar flux activity. JPL and GSFC orbit
predicticn programs used an average value of fiux of 150 for most periods, and
generally had good ugreement with actual results.

Achieving the exact 3~day repeat orbit over Bermuda on a specific date was
the most challenging requirement. The nominal pre-launch Bermuda overflight
was 2 September. Aftoer launch, if no maneuvers were made, passes over Bermuda
would occur about every 17 days. However, because of the large difference in
semi-major axis between the launch orbit and the 3-day repeat orbit, a single
corrective maneuver would not be advisable because of the size of likely exe-
cution errors. Also, the overflight dates without maneuvers were 31 August and
16 September. Because of the previously discussed attitude problems, the
earliest first maneuver date was 15 August. The maneuver sequence of Table 6-5
waes designed to produce a Bermuda overflight on 8 September. The slip from
2 September was necessary because of the late maneuver start date and the number
of maneuvers required. TFigure 6-9 shows the ground trace position relative to
Bermuda Island during the maneuver period. The first two maneuvers changed O
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so that the nominal pre-launch nodes were matched on 26 August. The second two
maneuvers changed £ to match the nominal baseline orbit value (i.e., cause a
3-day near-repeat ground trace). After 26 August, the ground trace was about

42 km (23 nm) west of Bermuda and every 3 days the ground trace precessed 9 km

(5 nm) closer. The ascending nodes for a Bermuda overflight were achieved on

10 September at 01:10:36 GMT. A 28-s burn was centered around this time to
change  so that the 3-day drift rate was zeroed out (i.e., an exact 3-day repeat
was achieved).

Actually, a slight westward drift of 0.7 km (0.38 nm) every 3 days was
intentionally introduced to oppose the effects of drag and, therefore, increased
the time during which the Bermuda overflights would stay within tclerance. This
maneuver was intentionally small so that thrust or timing errors would not cause
a large miss distance or introduce large drift rates. This maneuver was
essentially perfect. The first Bermuda overflight was 100 m (328 ft) west of
the Bermuda laser site. Figure 6-10 shows the predicted and actual miss dis-
tances relative to Bermuda (i.e., at 30-deg latitude) from 10 September to
30 October. The maximum west miss was 3.7 km (2 nm). The ground trace stayed
within 5 km (2.7 nm) of the laser site for 45 days. The ground trace actually
drifted farther west than anticipated. This occurred because the semi-major axis
did not decay as much as predicted from 10 to 20 September (Figure 6-7) even
though the solar flux predictions were very close to actual values (Figure 6-8).

The hydrazine usage is shown in Figure 6-11. The ascent and early orbit
usages were much higher than nominal because of the attitude anomaly and the
delay in going to the wheel attitude control system. Table 6-7 lists the pre-
launch and actual AV budget. It can be seen from Table 6-7 “hat nearly one-half
of the total hydrazine was uncommitted and could have been used for additional
orbit changes or attitude maneuvers. To illustrate the capabilities of the
remaining hydrazine supply, enough fuel remained aboard the spacecraft to com-

plete all planned maneuvers and do maintenance trims to compensate for drag for
over 40 years.

As the power failure precluded any additional maneuvers, the spacecraft
will remain in a 3-day near-repeat orbit. The miss distance as of 1 November 1978
was 3 km (1.6 nm) west, which would grow to 7 km (3.8 nm) west every 3 days by
1 January 1979. The spacecraft will remain in a 3-day near-repeat orbit for
years, although the 3~day drift rate constantly increases. It is possible that
the spacecraft could be useful in future geodesy applications because it is large,
has a laser reflector ring, and is in an easily predicted orbit. Despite the
early end to experiment ata collection, all maneuver objectives were demon-
strated, except for long-term maintenance. The power failure also prcvented
long-term data collection from a uniform global coverage pattern.
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Table 6-7. Pre-Launch and Actual AV Hydrazine Allotment

e i e ke ik b e e A e o

Pre-Launch Post-Launch
¥ + 30, Nominal Actual, Planned,
n/s (u), m/s m/s m/s
Ascent attitude control 4.16 2,82 7.28 --
Orbit adjust 25.78 4.40 7.27 -
(incl. node control)
Baseline to exact 3-day repeat 0.52 0.48 0.45 -
Exact 3-day toc Cambridge 3.75 3.62 - 3.62
Cambridge to baseline 3.06 3.01 - 3.01
Maintenance trims (3 yr) 7.18 1.49 - 1.39
Thruster resolution (0.5 s) 0.31 0 - -
Total usage ( 38.0 ) 15.8 23,02
U+ 30
c = 1550 1
Total capability 47.2 47.2 47.51
Margin 9.2 31.4 24,5
6-22
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SECTION VII

SATELLITE FAILURE

A. INTRODUCTION

Seasat ceased downlink transmission following an electrical pcwer system
: failure on 10 October 1978. Subsequent attempts to re-establish communications
} with the satellite were unsuccessful, and flight cperations were discontinued on
10 November 1978. The contents of this section summarize Project Operations Sys-
tem (POS) activities from first observatlon of the malfunction until termination
of mission operationc.

B. MISSION OPERATIONS ACTIVITIES

The first indication of a satellite malfunction was observed during a

i rev 1503 contact by the Santiago, Chile (AGO) tracking station. At che AGO
acquisition time of 03:29 UTC, satellite engineering data indicated a number of

out-of -tolerance conditions for elerirical power and thermal systems measurements.

On observing these data, the on-duty mission controller and lead spacecraft

analyst agreed on a course of action thac included validation of the ground data

system, investigation of a potential Telemetry/Sensor Interface Unit (TSU) failure,

E and analysis of the power system measurements to identify a potential short

circuit.

The supposition that the problem could be attributable to ground processing
was based on pre-launch and early mission experience in which frequent instances
of erroneous data display were encountered. Data reliability was also questioned
in view of a TSU multiplexer failure potential identified during vehicle
pre-flight testing. Finally, detailed analysis of the power system measurements
was considered nccessary because the available data were indicative of a shorted
load, but no abnormal satellite subsystem loads could be identified.

1. Failure Observation

A detailed chronology of the events and activities that followed discovery
of the power anoti:ly is given in Table 7-1. Analyses were not completed before
the loss of :ignal at AGO at 03:42 UTC, and additional priority monitoring was
requested for 03:59 UTC at the Orroral, Australia (ORR) tracking station. The
majority of tie ORR data were not observed in real time because of data system
restarts and, following the loss of signal at 04:08 UTC, the station was requested
to replay the satellite data from analog station tapes. By the completion of the
ORR playback at 04:20 UTC, both ground system and TSU failure modes had been
discounted, and the investigation centerad on isolation of a satellite short
circuit.

At the next scheduled contact at 04:44, the Shoe Cove, Newfoundland (SNF)
station reported no acquisition of the satellite downlink. Following a second
report of no acquisition at 04:52 from the Merritt Island, Florida (MIL) station,
a spacecraft emergency condition was declared, and contingency command sequences




Table 7-1. Failure Event Chronology, 10 October 1978 (Day 283)

Time (UTC) Event
03:29:43 AGO acquisition
Unregulated bus voltage 24,03 v
Battery 1 current 51.50 A
Battery 2 current 51.80 A
Structure current 0.199 A
Vehicle and sensor subsystem lcads normal
Discussion of data condition and course of action
1. Potential ground processing problems
2, Potential TSU failure
3. Potential vehicle short circuit
03:31:37 Restart of control center computer
03532:01
03:33:08 Restart of stati decom and data processing computers
03533:40
03:40:00 Request for additional tracking coverage from ORR
03:42:53 AGO loss of signal
03:43:00 Status »f analysis
03:29:00 1. Control center engineering unit conversion suspect

2, TSU failure potential unresolved

3. Vehicle short circuit could not be attributed to a partic-
ular system failure

7-2
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Table 7-1. Failure Event Chronology, 10 October 1978

(Day 283) (Continuacion 1)

Time, UTC Event
03:59:09 ORR acquisition

Unregulated bus voltage 21,00 v

Battery 1 current 43.10 A

Battery 2 current 41.10 A

Structure current 10.00 A

Vehicle and sensor subsystem loads normal
04:03:08 Swap out contrel center disk containing engineering unit con-

to version tables (unsuccessful)
04:06:58
04:08:28 ORR loss of signal
04:09:00 ORR playback from analog tape
OASSO:OO
04:20:00 Status of analysis
OAEzA:OO 1. Ground processing valid
2, TSU failure not indicated
3. Vehicle short circuit indicated, but not localized; con-
tin _.ncy commands planned for MIL.
04:44:00 SNF (recefive-only site) reports no acquisition
04:52:00 MIL reports no acquisition
04:55:00 Spacecraft emergency condition declared
05:01:00 Contingency commands to remove sensor loads transmitted from MIL
to

05:04:00
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Table 7-1. Failure Event Chronoiogy, 10 October 1978
(Day 283) (Continuation 2)

Time, UTC Event

05:09:00 QUI reports no acquisition

05:10:00 Contingency commands to remove sensor loads transmitted from
to QUI
05:13:00

06:32:00 MIL reports no acquisition

06:35:00 Contingency commands to remove sensor loads transmitted from
to MIL
06:38:00

08:11:00 CDS reports no acquisition; both 9- and 26-m antennas searching
for downlink

08:15:00 Contingency commands for downlink recovery transmitted from GDS
to
08:18:00

designed to remove the sensor loads from the satellite power bus were transmitted.
Spacecraft controllers then continued to transmit these commands, as well as a
downlink recovery sequence, at each potential contact.

The spacecraft emergency was declared at 04:55, and project personnel at
JPL, GSFC, and LMSC were notified. Under the direction of the Mission Manager,
an anomaly investigation team was formed, and communication circuits were
obtained for team coordination. The organization, activities, and findings of
the anomaly team are documented in Volume II of this report.

2. Data Retrieval and Distribution

The role of the POS during the anomaly investigation included the retrieval
and distribution of pertinent satellite data as Jisted in Table 7-2.

3. Recovery Strategies

The implementation of recovery strategies recommended by the anomaly team
is given in Table 7-3.

7-4
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Table 7-2.

Failure Data Distribution

Site Orbit Data Type Data Time Via Format To IC Heads
MAD 1501 PB 282/1803-2153 IPD PMDF JPL/PDPS
ORR 1502 PB 282/2148- IPD Quicklook GSFC/POCC
283/0137 IPD PMDF JPL/PDPS

UKO 1502 RT 283/0122-0136 WNK Analog ETC

ETC NASCOM GSFC/POCC

ETC NASCOM 1PD

IPD PMDF JPL/PDPS
ORR 1502 RT 283/0217-0231 1PD PMDF JPL/PDPS
UKO 1503 RT 283/0300-0313 WNK-1 Analog ETC

ETC NASCOM GSFC/POCC

ETC NASCOM IPD

IPD PMDF JPL/PDPS
AGO 1503 RT 283/0329-0342 GSFC/ History JPL/PDPS

POCC Tape

IPD PMDF JPL/PDPS
ORR 1503 RT 283/0359-0408 IPD PMDF JPL/PDPS

Note: UKO 1502 and 1503 dar~ transmitted from Winkfield, UK via Data
Transmission System JTS) to GSFC Multi Satellite Operations Control
Center I (MSOCC I)

4. Possible Contacts

An intense tracking schedule was maintained through 21 October 1978, when
attempts to reacquire the downlink were reduced 10 periods during which the
satellite was in sunlight. During intensive tracking, a number of weak signals
were reported at the Seasat downlink frequency; however, these were subsequently
discovered to be other spacecraft transmitting at the same frequency or station
internally generated signals (Table 7-4).

On 10 November 1978, following 31 days of attempts to re-establish satel-

lite communications, flight operations were discontinued, and project activities
were directed to detailed failure analysis and science data evaluation.

7-5




Table 7-3.

Recovery Sequences

Seq. Downlink Upl Wk Commands Firet Use Regults
1 Freq: 2287.5 Mi:z None None MIL 1512 Neg
Tune: +5/-10 MHz
2 Standard procedure Freq: 2106.%4 sz + Doppler GDS 1513 Neg
Sweep: 745 kHz/20 s (auto) Sensors off.
Downlink recovery
3 Standard procedure 10° rise HAW 1514 Neg
Freq: 2106.32 MHz
Sweep: $25 kHz/20 s (auto)
6 sweeps: command Sensors off.
Downlink recovery
10° set
Freq: 2106.4 MHz
} Sweep: 225 kHz/20 s (auto)
1 sweep: command Sensors off.
Downlink recovery
4 Standard procedure AOS: 3 min HAW 1515 Neg
l Freq: 2106.373 Miz + Doppler
' Sweep: $45 kHz/20 s (auto)
| 3 sweeps: command Sensors off.
E Downlink recovery
LOS: 3 min
f Freq: 2106.373 MHz + Doppler
, Sweep: $45 kH2/20 @ (auto)
? 1 sweep: command Sensors off.
Downlink recovery
5 Standard procedure Freq: 7106.373 MHz GhS 1535 Neg
Sweep: * Doppler, +50 kHz/
] 20 s (manual)
1 sweep: command Sensors off.
Downlink recovery
! 6 A0S None None ULA 1541 Neg
Freq: 2287.495 MHz
-A0S Doppler
Tune: *50 kHz
(manual)
! 7 l~way sequence CWM 1544 Neg

Freq: 2287.5 MHz
Tune: £300 kHz

2-way sequence

Freq: 2101.373 MHiz + Doppler

Sweep: $45 kHz/20 s (auto)
3 sweeps: command

0072,0040, 0245,

0266, 0030, 0042,
0064, 0106, 0200,
0231, 0300

Contingency
sequence 1

Contingency
sequence 2

7-6




Table 7-4. Possible Seasat Contacts
Orbit  Site Time, UTC Description Data  pripable Source
st * Recorded u
1506 UKO 283/08:10 Tranet contact No GEOS=)
1507 URO 283/09:47-09:51 Tranet contact No GEOS-3
1508 UKo 283/11:12:45-11:12:52 Two bursts (7 & and 4 s) at No Downlink frequency
283/11:13:20-11:13:24 2282.5 MHz. No receiver lock. not Seasat
1509 ULA 283/13:13:00 Momentary signal at 2280.0 MHz No Site internal signal
1510 BDA 283/14:32-14:38 Approximately 6-min weak sig- No Landsat-3
nal at 2287.5 MHz., No
receiver lock.
1510 MIL. 283/14:37:20-14:37:25 5-8 weak signal at 2287.5 MHz. No Landsat-3
No receiver lock.
1511 SNF 283/16:18 Momentary signal at 2287.5 MHz. Yes Data not Seasat
Decom output SAR quicklook data.
SAR data erroneous.
1518 UKO 284/04:20:00 Momentary signal at 2280.0 MHz. No Downlink frequency
5 receiver lock. not Seasat
Y
: 1518 SNF 284/04:28:00 Momentary signal at 2287.5 MHz. Yes Data not Seasat
Decom output SAR quicklook
E data. SAR data erroneous.
‘ 1524 SNF 284/14:04 Momentary signal at 2287.5 MHz. No Undetermined
i No decom output.
1538 SNF 285/13:36:00 Momentary signal at 228/ 5 MHz. Yes Data not Seasat
Necom output SAR quicklooh data.
SAR data erroneous.
4 1542 ULA 285/20:46 Approximately !'-min weak signil No Landsat~3
at 2287.5 MHz. Ne -eceiver lick.
. 1551 SNF 286/11:33 Momentary signal at 2287.5 MH:. Yes Data not Seasat
\ Decom output SAR quick-look data.
SAR data erroneous.
1552 SNF 286/13:10 Momentary signal at 2287.5 MHz. Yes Data not Seasat
De:om output SAR quick-look data.
y SAR data erroneous.
L 1553 SNF 286/14:41 Receiver lock on strong No Landsat-3
4 signal at 2287.5 MHz. No decom
) output.
: > 1554 MIL 286/16/26:11-16:28:30  Approximately 20~s signal at No Site internal signal
1 2287.1 MHz,
: 1555 GDS 286/18:12-18:16 4-min weak signal at 2287.5 MHz. Ne Landsat-3
: No receivec lock.
]
3 1556 ULA 286/19:55-19:57 2-min weak sigral at 2287.4 MHz. No Landsat-3
No receiver lock.
1557 ULA 286/21:33:40 Momentary signal at 2287.5 MHz. No Landsat-3
No receiver lock.
1575 SNF 288/04:10 No indication of signal, but Yes Data not Seasat
decom output SAR quick-look data.
SAR data erroneous.
7.-7
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Table 7-4. Possible Seasat Contacts (Continuation 1)

Data
, Orbit Site Time, UTC Description Recorded Probable Source
1580 UKO 288/12:08-12:09 3-sipynal bursts at 2287.5 MHz. No Landsat-2
} No receiver lock.
1580 SNF 288/12:20:35 Same as orbit number 1575.
1582 ETC 288/15:29:30-15:38:30 9-min weak signal at 2287.5 MHz No Landsat-2
Doppler rate not indicative of
i Seasat track.
s 1582 SNF  288/15:32 Same as orbit number 1575
[ 1585 ULA 288/20:37:40-20:42:00 4-min weak signal at 2287.5 MHz. No Landsat-2
| Doppler rate not indicative of
X Seasat track.
i 1595 UKD 289/13:20-13:22 Two momentary signal bursts at No Landsat-3
' 2287.5 MHz. Yo receiver lock.
>
: 1596 ULA 289/15:14-15:21 8-min weak and intermittent sig- No Site internal signal
| nal at 2287.5 MHz. No receiver
] lock.
P
' 1599 ULA 289/20:08-20:13 Several signal burats at 2287.5 No Landsat-3
r MHz. No receiver lock.
X 1622 MAD  291/10:41:00-10:43:40 Over 2-min weak signal at 2287.5  No Landsat-2
‘ MHz. Doppler rate not indicative
’ of Seasat track.
1623 MAD 291/12:23:20 Momentary sfignal burst at 2287.5 No Landsat-2
MHz. No receiver lock.
4 1627 ULA 291/19:14:00-19:15:30 1 1/2-min weak signal at 2287.5 No Landsat-2
MHz. No receiver lock.
1662 SNF 294/06:19 Same as orbit number 1575,
’ 1663  SNF  294/07:53 Same as orbit number 1575.
| 1665 MAD 294/10:45:50-10:58:10 Over 2-min weak signal at 2287.5 N Landsat-2
MHz. Doppler rate not indicative
of Seasat track.
1690 SNF 295/05:18 Same as orbit number 1575.
} 1691 SNF 295/06:57 Same as orbit nuwber 1575.
| 1704  SNF  297/04:51 Same as orbit number 1575.
F 1718 SNF 298/04:21 Same as orbit numbev 1575.
1719 SNF 298/06:03 Same as orbit number 1575.
]
t 1720 SNF 298/07:41 Same as orbit number 1575.
' 1733 SNF 299/05:33 Same as orbit number 1575.
; 1734 SNF 299/07:11 Same as orbit number 1575.
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AAFE
ACMO
ACN

ACS

AFB
AF10S
AFSCF
AFSIC
AFWTR
AGC
AGO

ALT

A/O
A0S
AOT

APL
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APPENDIX

ABBREVIATIONS AND ACRONYMS

Advanced Application Flight Experiment
Assistant Chief of Mission Operations
STDN Station at Ascension Island, United Kingdom
Attitude Control System

Attitude Determination

Algorithm Development Facility
Analog Data Link

Auxiliary Data Record

Attitude Determipation System
Atmospheric Explorer

Air Force Base

Air Force Indian Ocean Station

Alr Force Satellite Control Facility
A... Torce Satellite Test Center

Alr Force Western Test Range
Automatic Gain Control

STDN Station at Santiago, Chile

Radar Altimeter

Amplitude Modulation

Attitude/Orbit

Acquisition of Signal

Attitude Orbit Tape

Applied Physics Laboratory, Johns Hopkins University
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ARIA
ATT
BDA
BECO
BED

CCOM
CCRS
CCSM
ccr
CDR
CLA
CMD
CMDF
CMDR
CMF
CcMOo
CMS
CRP
CRT
CSTA
CTU
CTV
cy
DAF
DAL
DDPS

DMT

Advanced Range Instrumentation Aircraft
Attitude

STDN Station at Bermuda, United Kingdom
Booster Engire Cutoff

Block Error Decoder

Control Center Operations Manager
Canadian Center for Remote Sensing
Control Center Systems Manager
Computer Compatible Tape

Critical Design Review

Control Logic Assembly

Command

Command Master Data File

Command Master Data Record

Command Management Facility

hief of Mission Operations
Command Management System

Command Request Profile

Cathode Ray Tube

Computer Sciences Technicolor Associlates
Central Timing Unit

Compatibility Test Van

Calendar Year

Definitive Attitude File
Data Accountability Log

Digital Data Processing System

Data Management Team




DoD
DOY
DREO
DRS
DSC

DTS

ESA

ETR

FNOC

FSK

GDS

GDSE
GE

GIC
GMT
GOASEX
GPS
GRTS
GSFC

GWM

Department of Commerce

Department of Defense

Day of Year

Defense Research Establishment, Ottawa
Data Records System

Data Set Controller

Data Transmission System

European Space Agency

Eastern Test Range

Flight Maneuver Operations Center

Fleet Numerical Oceanographic Center (U.S. Navy), Monterey, CA

(formerly Fleet Numerical Weathe.' Central)
Frequency-Shift Keyed

Fiscal Year

Ground Data System;
STDN Station at Goldstone, CA

Ground Data System Engineer
General Electric

Geocentric Ipertial Coordinate
Greenwich Mean Time (Zulu Time)
Culf of Alaska Seasat Experiment
Global Positioning System
Goddard Real~-Time System
Goddard Space Flight Center

STDN Ltation at Guam, Marianas Islands
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HAW

HDDR

HMRCC

HSD

HSDL

HSK

HVPS

IBM

1CD

1DPS

IF

Ip

1PD

IR

IRV

ISEE

JASIN

JPL

KSC

LMSC

LOB

LOS

LOX

LRT

STDN Station at Kauai, HA
High Density Digital Recorder

High Mode Reaction Control Cluster

High-Speed Data

High-Speed Data Line

High-Speed Keying

High Voltage Power Supply

International Business Machines
Intertface Control Document
Instrument Data Processing System

Iniermediate Frequency

Input Processor

Information Processing Division

Infrared

Interrange Vector

International Suu-Earth Explorer

Joint Air-Sea Interaction Experiment

Jet Propulsion Laboratory (NASA), Pasadena, CA
Kennedy Space Center (NASA), FL

Lockheed Missiles and Space Company, Inc., Sunnyvale, CA

Launch Operations Building

Loss of Signal

Liquid Oxygen

Lov.-Rate

-

:lemetry




b

LRTS

LSWA

LTWG

MCa
MCCC
MCCO
MCR
MCT
MDMT
MDR
MDS
MFR
MIL
M&O
MOA
MOCF
MOP
MOPT
MOR
MoS
MOSS
MPS
MPSS
MPT
MSA

[SC&AD

Low-Rate Telemetry System
Left Scan Wheel Assembly

Launch Test Working Group

STDN Station at Madrid, Spain
Magnetic Control Assembly

Mission Control and Computing Center
Mission Control Center Operations
Mission Control Room

¥ .ssion Control Team

MCCC Data Management Team

Mission Dress Rehearsal; Master Data Record
Mission Data System

Multifunction Receiver

STDN Station at Merritt Island, FL
Maintenance and Operations
Memorandum of Agreement

Mission Operations Computing Facility
Mission Operations Plan

Maneuver Operations Planning Team
Mission Operations Room

Mission Operatione Systen

Mission Operations Software System
Mission Planning Subsystem

Mission Planning Software System
Mission Planning Team

Mission Support Area

Mission Support Computing and Analysis Division
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MSDR
MSOCC

MSOE

NASA
NASCOM
NOAA
NOSP
NSP

NSSDC

OA
0ACS
OAMP

OAT

ocCD
oD
oDs
oJT
O&M
OPSCON
OR
ORB
ORPA
ORR
ORT

080

Master Sensor Data Record
Multi-Satellite Operations Control Center

Mission Sequence of Events

National Aeronautics and Space Administration

NASA Ground Communications System

National Oceanic and Atmospheric Administration (DoC)
Network Operations Support Plan

NASA Support Plan

National Space Science Data Center

Orbit Adjust

Orbital Attitude Control System

Orbit Adjust Maneuver Program

Orbit Adjust Thruster

Operations Control Center

Operating Control Directive

Orbit Determination; Operations Directive
Orbit Determination System

On-the-Job Training

Operations and Maintenance

Operations Control

Operations Requirement

Orbit

Operat ional Readiness and Performance Assurance
STDN Station at Orroral, Australia
Operational Readiness Test

Orbiting Solar Observatory
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PCM
PDP
PDPS
PM
PMDF
PMW
PGCC
POS
POST
PRD
PRF
PRT
QuUI
RBM

RCS

RFI
RG
RRW
RRWG
RSWA
RT

RTUDDS

SAGE

SAMDPO

Pulse Code Modulation

Projéct Data Package

Project Data Processing System
Phase Modulation

Project Master Data File

Pitch Momentum Wheel

Project Operativns Control Center
Project Operations System

POCC Operations Support Team
Program Requirements Document
Pulse Repetition Frequency
Prepass Readiness Test

STDN Station at Quito, Ecuador
Real-Time Batch Monitor
Reaction Control System (LMSC)
Radio Frequency

Radio Frequency Interference
Range

Roll Reaction Wheel

Range Requirements Working Group
Right Scan Wheel Assembly

Real Time

Real-Time User Data Demonstration System

Stratospharic Aerosol and Gas Experiment

Satelliie Mission Design Program
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SAMTEC
SAO
SAR
SARPLN
SASS
SCE
SCSRS
SDhPs
SDR
Sbup
SEAC
SECO
SFOP
SIRD
SLC
SMMR
SNF
SNR
soccC
SOE
SOWM
SPAT
SPC
SPE

SR

Space and Missile Systems Organization (USAF), Los Angeles, CA

Space and Missile Test Center (USAF)
Smithsonian Astrophysical Observatory
Synthetic Aperture Radar

SAR Plan

Seasat Scatterometer System

Satellite Command Encoder

Shoe Cove Satellite Receiving Station

SAR Data Processing System

Sensor Data Record; Software Design Review
Seasat Data Utilization Project

Seasat Applications Program

Sustainer Engine Cutoff

Space Flight Operations Plan

Support Instrumentation Requirements Document
Space-Launch Complex

—Scanning Multichannel Microwave Radiometer
STDN Station at Shoe Cove, Newfoundland, Canada
Signal~to~Noise Ratio

Simulation Operations Control Center
Sequence of Events

Spectral Ocean Wave Model

Satellite Performance and Analysis Team
Stored Program Command

Static Phase Error

Scanning Radiometer
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SS1
STC
STDN
STDS
STG
Sursat
SWA
TDPS
TELOPS
TLM
TPS
TRPLAN
TRS
TSU
TTY

v

UKO
ULA
UTAF
USB
UTC
VAFB
VECO

VIRR

Software Support Instructions
Sensitivity Time Control

Spaceflight Tracking and Data Network
System Test Data System (LMSC)

Space Test Group

Surveillance Satellite Project of the Canadfan Government
Scan Wheel Assembly

Telemetry Data Processing System
Telemetry On-Line Processing System
Telemetry

NASA Telemetry Processing System at VAFB
Tape Recorder Plan

USAF Telemetry Receiving Station at VAFB
Telemetry/Sensor Interface Unit

Teletype

Television

STDN Station at Oakhanger, Farnsborough, England, United Kingdom
STDN Station at Fairbanks, Alaska

United States Air Force

Unified S-Band

Universal Time Corrected

Vandenberg Air Force Base, CA.

Vernier Engine Cutoff

Visual and Infrared Radiometer
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WBDL
WFC

’ WLOD

NASA-JPL—Comt, LA, Cait

Wide Band Data Line
Wallops Flight Center (NASA), Wallops Island, VA
Western Launch Operations Division

Western Test Range, VAFB, CA
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