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1. SUMMARY 

Satisfying projected mission requirements will require missiles with 

capabilities exceeding those of current systems. Preliminary analysis has 

indicated that bank-to-turn control may provide the needed improvement in 

missile performance. This report summarizes the advantages of bank-to-turn 

steering, reviews the recent and current programs that are actively investi- 

gating or considering bank-to-turn steering, and assesses the status of the 

critical technology areas associated with bank-to-turn control. 



2.1 EXPANDED SUMMARY 

Increasingly severe mission requirements and the potential for improved 

performance offered by bank-to-turn (BTT) steering are generating renewed 

interest in BTT control. Table 2.1 lists the current programs which are 

actively investigating BTT control or are considering BTT control for one or 

more of the competing configuration designs. The most detailed BTT studies 

have been done for the short range air-to-air mission, which requires extreme- 

ly high lifting capability. Recent investigations funded by Eglin AFB have 

demonstrated the feasibility of BTT control and have shown that an off-the- 

shelf servo and seeker meet the system requirements. These studies have led 
to the Technology Integration of Missile Subsystems (TIMS) program. In addi- - 
tion, a BTT airframe is the required baseline configuration for the Air Force 

sponsored Ramjet Interlab Air-to-Air Technology (RIAAT) program. - - - - - 
Long range missions such as the Air Force ASAUl (Advanced Strategic Air 

Launched Multi-Mission Missile) and the Navy Al&W (Advanced Lnterceptor Air - - 
to Air Missile) and SOJS (ztandgff Jammer &ppression) programs are consider- 

ing BTT control because of its compatibility with ramjet engine inlet designs. 

The first phase of the ASALM program, a propulsion demonstration, is into the 

flight test stage. Both Phase II primary contractors are pursuing the critical 

problem areas of integrating BTT control into a tactical weapon. BTT is 

attractive for air-to-surface missions because of the increased lift to drag 

ratio obtained by eliminating the yaw lifting surfaces. Both the Medium Range 

Air-to-Surface Missile (MRASM) and the Advanced Conventional Standoff Eissile 

(ACSM) are in the very early stages of concept definition. 

Table 2.2 lists the critical technology areas and the status of current 

investigations. Because the requirements and constraints are different, the 

status is broken down into short range and long range missions. Body rate 

coupling, which can be severe for BTT systems with RF seekers, is not a problem 

for infrared seekers. In addition, the sideslip constraint is not as severe 

for rocket engines as for ramjets. These factors probably contribute to the 

short range mission having been studied in greater detail. Analysis is pro- 

gressing for the longer range, ramjet propelled, radar guided missiles. 

Depending on airframe aerodynamics, turn coordination can be a difficult 
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Table 2.1 

Current programs investigating or considering BTT steering 

1 
Program Development 

Name Application Sponsor Contractors Status Comments 

TMS Short Range Air-to-Air Eglin AFB Continuing Technology Formerly called IUAT. 
Missiles Development Effort Outgrowth of Eglin BTT Studies 

RIAAT Moderate to Long Range Eglin AFB and Hughes BTT contract let BTT investigation is an add-on 
Ramjet Propelled Wright-Patterson TASC Summer 1979 toDucted Rocket Engine develop- 
Missile AFB ment effort. 

AIAAM Long Range Air-to-Air Navy Hughes Concept Definition Probably Ramjet propelled 
(NWC-China Lake) McDonnell/ 

Douglas 

ASALM Long Range Air Wright-Patterson Martin/ Concept Validation Phase I - Propulsion Demonstration 
Launched Strategic AFB Marietta Test Vehicle flown Oct. 1979 
Missile McDonnell/ Phase II - Tactical Integration 

Douglas Study (TX) 

SOJS Long Range Surface- Navy Concept Definition Funding halted for FY 80. 
to-Air. Jarmner 
Suppression 

MRASM Medium Range Air- Joint NavyfAF FSI Concept Definition Large Tactical Targets 
to-Surface Missile Planned to have land and sea missions 

ACSM Long Range Air-to- Eglin AFB Vought Concept Definition we- 
Surface 



Table 2.2 

Status of critical technology areas 

Critical Area 

Performance 

Comments 

Long range caee may require trajectory 
shaping or transition to STT during 
terminal homing, 

A/P Design Recent studies have 
designed pitch, yaw 
and roll autopilots 
separately. 

No generally accepted approach 
to coordinated autopilot design 
exists. Designs used have 
required “trial and error” 
iteration. 

Coordinated autopilots, when required, 
depend strongly on specific airframe 
configuration and flight condition. 

Sensitivity Not a problem for high 
to Body Rate lift airframes with 
Coupling infrared seekers 

Methods to relieve this sensi- 
tivity are currently being 
investigated by several 
organizations, 

Body rate coupling must be considered 
for short range missiles with RP or 
strap down sensors. 

Subsystem 
Requirements 

Adequacy of off-the- 
shelf seeker, actuator 
and digital autopilot has 
been demonstrated via 
hardware-in-the-loop 
simulation. 

Detailed investigations of aub- 
system requirements have not 
been completed. 

One long range Air-to-Surface missile 
exhibited severe coupling due to seeker 
coulomb friction, 

* The short range missile envisioned here is the configuration used for the Eglin APB 
investigations (References LI-lo., 11-11, and 11-12). 



design task but can probably be done satisfactorily, The body rate coupling 
problem is as yet unsolved. This and the out-of-plane motion induced by BTT 

steering may require a hybrid bank-to-turn/skid-to-turn system for the final 

portion of terminal homing. 



3. INTRODUCTION 

Rank-to-turn steering may provide improved performance for future missile 

systems. For example, a missile can be designed to have very high lifting 

capability in one direction. This lift vector can then be directed using BTT 

control. In addition, the ramjet engine chin inlet configuration is believed 

to provide a greater range capability than other inlet configurations. BTT 

control is required to satisfy the sideslip constraints imposed by chin inlets. 

Despite these facts, there are unanswered questions concerning BTT system sta- 

bility during homing, guidance performance, autopilot and guidance logic design 

and subsystem requirements which must be investigated before BTT steering can 

be considered a viable method of control for high performance missiles. 

This report surveys the current status of BTT control technology. A 

literature search has been conducted and a variety of technical organizations 

have been contacted. The objectives of this survey are to identify missions 

and programs for which BTT steering has been or is being investigated, to 

identify potential problem areas, and to assess the progress of the various 

studies which are investigating these problems. It is hoped that this 

survey will serve as a reference point for future BTT investigations. 

The following section provides a brief background discussion of BTT steer- 

ing. Then, the various missions for which BTT control is applicable are cate- 

gorized in Section 5. As each of these missions is discussed, the relevant 

programs which have investigated BTT control are described. A more detailed 

description of some of the problem areas is contained in the appendixes, along 

with a complete bibliography. 

Use of trade names or names of manufacturers in this report does not 
constitute an official endorsement of such products or manufacturers, either 
expressed or implied, by the National Aeronautics and Space Administration. 
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4. BACKGROUND 

Missile systems designed to meet the threats of the future will require 

capabilities far in excess of those currently available. In many cases the 

potential advantages of bank-to-turn (BTT) steering, listed in Table 4.1, may 

provide the improved capability. 

TABLE 4.1 

POTENTIAL ADVANTAGES OF BTT STEERING 

o Increased lifting capability in one plane without weight 
and drag penalty of orthogonal surfaces 

o Enhanced aerodynamic stability characteristics 

o Compatibility with ramjet engine inlet designs 

For example, adequate protection of aircraft requires an air-to-air missile 

with very large lifting capability, especially if the missile must intercept 

a target behind the launch aircraft. Such a capability might be achieved by 

using a planar airframe with large wings to provide lift in one direction but 

without the weight/drag penalty of orthogonal lifting surfaces, In addition 

this configuration would satisfy the constraints of wing launch systems. BTT 

control would be required to direct the acceleration or lift vector of such a 

configuration. 

For cruciform configurations, angle-of-attack (and hence, lifting) capa- 

bility is often limited by roll-yaw aerodynamic stability considerations. 

This constraint can be relieved by rolling or banking the airframe to an 

orientation which has optimum aerodynamic stability characteristics. Inter- 

cepting long range standoff jammers (SOJ) significantly improves the effective- 

ness of inner defense weapons when defending surface targets against air 

attack. Ramjet engines appear to be the only propulsion system capable of 

providing the long ranges and high speeds required to intercept SOJs. BTT 

control will be required to achieve satisfactory ramjet engine performance for 

many of the proposed inlet designs. As a final example, air-to-surface glide 

weapons designed to achieve long ranges require an airframe with as little 

drag as possible and reasonably high lift. Here again a winged, planar con- 

figuration can be used with BTT control to null azimuth heading errors. 
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In addition to its potential advantages, BTT control introduces some 

problems which must be carefully examined. Table 4.2 compares some of the 

design considerations for skid-to-turn (STT) and BTT steering. In an STT 

system, acceleration commands are broken into orthogonal (Cartesian) components 

for steering. Thus the achieved maneuver lies in or very close to the desired 

plane of maneuver. However, in a BTT system, the acceleration vector can be 

directed out of the desired plane of maneuver while the missile airframe rolls 

to its preferred orientation. This out-of-plane component can potentially 

cause some degradation in performance. If the acceleration command is small, 

the preferred orientation is ill defined and guidance noise can cause excessive, 

undesirable roll motion. 

Homing missiles require some mechanism (e.g., a seeker) to generate guid- 

ance signals. These signals are inevitably corrupted by body motion, for 

example, due to radome aberration errors or incomplete seeker stabilization, 

The coupling from body motion to guidance closes the so-called parasitic loop 

and can lead to system instability. Preliminary investigations have indicated 

that BTT control is less tolerant of body rate coupling than STT systems are. 

This problem, in fact, appears to be one of the major limitations of BTT 

systems. 

In addition, BTT control may alter subsystem requirements. If sideslip 

angles must be constrained, a cross-coupled autopilot must be designed to coor- 

dinate the bank maneuver. Seeker tracking and slew rate capability and also 

signal processing must be compatible with an airframe that could roll up to 

several hundred degrees per second. Unmatched or varying polarization effects 

add another variable to the BTT guidance problem which does not exist for STT 

systems. Other areas where BTT control may affect requirements include point- 

ing a communications antenna, gyro and servo specifications, adaptive autopilot 

techniques and guidance policy implementation. 

As indicated in Table 4.2, some of these potential problem areas are 

discussed in greater depth in Appendices A through E. 
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Table 4.2 

Comparison of fundamental considerations for STT and BTT steering 

Guidance 
Prrfor!nance 

Guidance 
Logic 

Autopilot 

Seeker 

Body Rate Coupling 

Roll Yaw Aerodynami 
Coupling 

CcsQm”nicationB 
Antenna 

Analysis 

STT (Cruciform, Roll Stabilized) 

’ Maneuvers remain in desired plane 

* Response time dependent on pitch 
autopilot 

. Pitch and yaw systems can be 
independent 

. Pitch and ya” SyBtmS identical 

* Slew rate requirements determined 
by stabilization requirements 
and/or search pattern design 

’ Antenna polarization matched to 
radiation 

* Pitch and yaw rates couple into 
guidance signals 

* System may tolerate linear 
instability 

’ Co.upling can limit angle of attack 
for some orientations 

. Orientation fixed at all times 

* Probleu can usually be simplified 
by assuming two independent 
steering channels and a roll 
channel 

Bl-f 

* Bank maneuver causes airframe to leave 
desired anewer plane 

s Response tine depends on p&t& and roll 
autopPlots 

. Bank command undefined for small pitch 
accelerations 

* Additional noise reductionmay be required 
for these caees 

. Turn coordination required if side. slip 
is to be constrained 

. Requires compensation for aerodynamic 
and kinematic cross coupling 

. Slew rate capability must be compatible 
with missile bank motion 

* Lov frequency signal processing require- 
ments may differ from STT 

* Polarization mismatches decrease antenna 
gain and may increase radpme error for 
semi active systems 

. Polarization changes may alter aim point 
for active system against large targets 

* Pitch, yaw and roll rates couple into 
guidance signals 

* BTT systems appear to be more sensitive 
to body rate coupling 

- Orientation changes as missile banks 

* Complex coupling requires three dimensional 
analysis 

* Simulations are required 

usu444d 1 in 
Appendix 

-- 

A 

B 

C 

D 

-- 

-- 

E 

i 



5. MISSIONS FOR WHICH BTT CONTROL IS APPLICABLE 

The missions for which BTT steering is applicable can be divided into four 

categories: 

Short range air-to-air 

Moderate range against air targets 

Long range against air targets 

Air-to-surface. 

Table 5.1 lists these missions along with the basic airframe requirements and 

the programs which will be discussed in the following subsections. 

5.1 Short Range Air-to-Air Missions 

The application of BTT steering to the short range air-to-air mission has 

probably been studied in greater depth than the other missions. These studies 

have been funded primarily by Eglin AFB, Florida. Historically, however, the 

Eglin technology studies can be traced to two studies supported by the Navy and 

the Army. In 1970, Froning, et al., [II-5]* under contract to the Naval 

Weapons Center at China Lake, investigated the feasibility of BTT steering for 

highly maneuverable tactical air-to-air missiles. He concluded that BTT is a 

viable steering method and that BTT response times can be as fast as those for 

STT. The Froning study included a coordinated autopilot design, but the prob- 

lems associated with body rate coupling were apparently not realized. Another 

report [II-61, also by McDonnell-Douglas, investigated BTT for a re-entry 

vehicle interceptor. The concept used an elliptically shaped body and investi- 

gated both external burning and jet interaction control. This study was funded 

by the Army Advanced Ballistic Missile Defense Agency under project UpSTAGE. 

Froning [II-71, with support from Eglin AFB, then drew upon the technolo- 

gies described in those two reports to determine the feasibility of exploiting 

SAM technology to develop a low-cost, high-performance air-to-air missile. 

The promising technologies investigated included very high-lift airframe 

technology in conjunction with BTT control. He also felt that the high-lift air- 

frame would enable the use of pursuit guidance and thus a low-cost, all-weather 

* References are contained in the bibliography at the end of the report. 
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Table 5.1 

Missions for which BTT steering is applicable 

MISSION REQUIREMENTS RECENT PROGRAMS COMMENTS CONCERNING MISSION - 
1. Short Range Air High Maneuverability Eglin BTT studies Rocket propulsion 

to Air High Speed ILAAT Turn coordination probably not 
Short Range TIMS required 

If IR seeker meets guidance require- 
ments, body rate coupling problem 
greatly reduced. 

2. Moderate Range High Maneuverability SM Improvement Air Targets 
Program Ramjets used for some candidate con- 

RIAAT figurations 
AIAAM Probably requires coordinated auto- 

pilot 
Body rate coupling of concern during 

RF homing guidance 

3. Long Range Long Range ASALM Air Targets 
Moderate to High SOJS Ramjmet engine required 

maneuverability Coordinated autopilot required 
Communications antenna probably 

required 

4. Air to Surface Long Range GBU-15 Subsystem requirements probably less 
Low Drag MRASM severe than previously discussed 
Low Maneuverability ACSM anti-air applications, 

I 
I r’ 



radar seeker with fixed antenna. In a follow-on study [II-g] Froning 

"synthesized and analyzed advanced maneuvering air-to-air configurations that 

incorporated: Aimed cylindric and mass-focused directed energy warheads, active 
radar and passive infrared seekers, pursuit, lead-pursuit and proportional 

navigation, and bank-to-turn control of a highly maneuverable airframe." 

Proportional navigation was found to perform better than the pure pursuit 

guidance. Another follow on program was recommended to refine the most prom- 

ising configurations, more extensive subsystem development, etc, 

These recommendations were accepted by Eglin AFB, and in 1976 Emmert, 

et al., at Rockwell began a several-year study of BTT control [II-lo, II-12]. 

The result of the first study [II-lo] was a control system definition for a BTT 

autopilot. The baseline airframe used by Emmert was similar to one of those 

used by Froning. An IR seeker was assumed. Emmert's autopilot design does 

not include roll-yaw control cross coupling to minimize sideslip but does 

include a self adaptive dithering autopilot to adjust to varying flight con- 

ditions. His design produced "exceptional short range performance" using 

available components. The only discussion of body rate coupling is in a brief 

section investigating the applicability of a strap-down seeker. The allowable 

rate coupling for the pitch system only led him to conclude that "strap-down 

sensors could not be easily integrated with the BTT flight control system." 

(No consideration was given to roll-yaw loop, body-rate coupling problems.) 

A follow on study [II-121 performed detailed stability and control system ele- 

ment requirements and system performance. The major conclusion was that sub- 

system requirements could be satisfied with state-of-the-art components. It 

was recommended that these results be verified with a hardware-in-the-loop 

simulation. 

One such study, also supported by Eglin, was done in 1977 by McDonnell- 

Douglas [II-HI. The objective of the program was to demonstrate the ability 

of a Raytheon RAYSCAN infrared sensor to guide a BTT missile. This objective 

was met. 

In 1978, a hardware-in-the-loop simulation was developed at Eglin AFB to 

investigate three subsystems: a digital autopilot, infrared seeker and 

pneumatic actuator. Based on the results of this BTT hardware demonstration 

12 



program, *t was concluded that a BTT air-to-air missile system is feasible and 

that performance is superior to existing short range air-to-air weapons, The 

results of these simulation studies are reported in the open literature [(I-lo, 

I-U)]. 

The BTT investigations described above were formally concluded and the 

results transmitted to the ILAAT (Inter-Lab Air-to-Air Technology) program, 

which is now called TIMS (Technical Integration of Missile +bsystems). This 

program is defining system level performance requirements and doing trade 

studies to determine how best to meet these requirements. Bank-to-turn 

control is a requirement for these studies. 

Two points should be made concerning the Eglin studies. First, after the 

Froning studies, no attempt was made to coordinate the steering maneuvers; that 

is, no attempt was made to minimize sideslip while banking. The reason for 

this is that the short range missile will be rocket - not ramjet - propelled 

and therefore will not have inlet imposed sideslip constraints. The require- 

ment to limit sideslip angle in order to constrain the sideslip induced roll 

moment is usually less severe than the limit imposed by ramjet inlets, 

especially for the low angles-of-attack achieved by the high-lift airframe. 

Second, the effects of body rate coupling were generally not considered. There 

are two reasons why it may also be appropriate not to consider body rate coup- 

ling for this case. The high-lift airframe would not have large rotation rates 

in pitch and the altitudes considered have atmospheric pressure high enough to 

keep angles of attack reasonably small. Thus the gain through the airframe of 

the body-rate coupling (parasitic) loop is small. The second reason body-rate 

coupling is small is that these short range missiles were assumed to have 

infrared seekers, which do not have the level of radome aberration error asso- 

ciated with radar seekers. 

5.2 Moderate Range Missions Against Air Targets 

There are at least three programs which either have recently considered 

or are considering bank-to-turn control for moderate range missions against air 

targets. These are the Navy Standard Missile Improvement Program, the Air 

Force Ramjet Interlab Air to Air Technology (RIAAT) Program, and the Navy 

13 



Advanced Interceptor Air to Air Missile (AI&M) Program. 

5.2.1 SM Improvement Program 

One limitation on the maneuverability of the Standard Missile is the angle 

of attack constraint imposed by roll-yaw aerodynamic coupling. This constraint 

is less severe for maneuvers where the missile is oriented such that the accel- 

eration vector lies midway between the control surface panels, a so-called com- 

bined plane maneuver. One method suggested to relax the roll-yaw constraint is 

to roll the missile such that steering maneuvers always occur in the combined 

plane. 

A preliminary investigation was conducted into a version of BTT control 

which would simultaneously steer the missile using both steering channels and 

roll to the preferred orientation. These investigations revealed several 

problems which would require in-depth analysis, including the body rate coup- 

ling, guidance filter mechanization, and uplink antenna orientation, In addi- 

tion, laboratory tests indicated that radome errors may be increased when the 

polarization of the semiactive seeker is not aligned with the incoming radi- 

ation. The BTT alternative was discarded because schedules did not permit the 

several detailed investigations which would be required before the performance 

improvements could be realized. 

5.2.2 RIAAT 

In September of 1978, the Air Force Aero Propulsion Laboratory initiated 

a 55 month, $17M to $18M program to develop ducted rocket technology. 

Currently a fixed-fuel-flow study is underway with a variable-fuel-flow ducted 

rocket to be investigated in the future. The system is designed to be compati- 

ble with the AMRAAM forebody and will be a propulsion variant for AMRAAM. 

The RIAAT program is an amendment (approximately $lM) to the propulsion 

development program. Its objective is to develop armament technology for 

integration into a ducted rocket air-to-air missile in the post AMRAAM time 

period. The contract was let in the summer of 1979, and the system is not yet 

defined. However, it will be bank-to-turn at least through midcourse with a 

possible handover to STT during the last few seconds of terminal homing, Due 
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to inlet constraints and the probable use of a radar seeker, the studies will 

investigate coordinated autopilots and body rate coupling effects, 

5.2.3 AIAAM 

The Advanced Interceptor Air-to-Air Missile (AIAAM) program is funded by - - 
NAVAIR through the Naval Weapons Center at China Lake. Since the source selec- 

tion process was in progress when the program office was contacted for this 

survey, the funding levels could not be determined. As with the RIAAT program, 

the missile configuration is not yet defined nor have system requirements been 

specified. It will be an air breather, but the decision between liquid fuel, 

solid fuel or ducted rocket has not been made. 

At least one configuration being considered is: symmetric about just one 

plane. This and ramjet inlet considerations make BTT control a prime candidate. 

However, BTT has not yet been made a requirement. Preliminary investigations 

by China Lake and by contractors (McDonnell-Douglas and Hughes) have revealed 

potential problems associated with body rate coupling and coordinated autopilot 

design. These have led to the consideration of a hybrid BTT/STT system for use 

during the terminal portion of flight. In-depth investigations of these 

effects and other subsystem interactions will be required before the viability 

of BTT control for this mission can be determined. 

5.3 Long Range Missions 

5.3.1 ASALM 

Both the Air Force and the Navy are supporting programs for a long range 

mission against air targets. Ramjet engines will be necessary to provide the 

required ranges (greater than 200 nautical miles) for these missions. One of 

the missions of the Air Force Advanced Strategic Air Launched Multi-Mission - - 
Missile (PSALM) is the suppression of enemy Airborne Warning and Control 

(AWACS) aircraft. The ASAIM program is divided into two phases. The objective 

of Phase I is to develop and demonstrate the capability of a ramjet-propelled 

configuration. The competitive contract was won by Martin-Marietta, and the 

first propulsion test vehicle, a chin inlet rsmjet, was flown in October, 1979. 

Phase II is a Tactical Integration Study (TIS), with the objective to develop 
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the technology to move the program into Engineering Development of a tactical 

weapon'. Both of the primary aero-mechanical contractors (McDonnell-Douglas 

and Martinaarietta) have investigated a chin inlet configuration which would 

require bank maneuvers up to 180'. Both contractors have designed detailed 

coordinated autopilots and have investigated noise suppression techniques for 

low angle-of-attack maneuvers (see Appendix A). Both contractors also are 

concerned about the body rate coupling problem. Various techniques to relieve 

this stability problem include trajectory shaping, filtering those frequencies 

where instabilities occur, and a hybrid STT/BTT system near intercept. 

5.3.2 SOJS 

The Navy long range program is a raid suppression mission called ztandgff 

Lammer Suppression (SOJS) (formerly LRDMM). The purpose is to aid medium range 

and inner defenses by intercepting jamming equipment or forcing them to operate 

at ranges where they would be less effective. 

Anti-Shipping Missile (ASM) launch aircraft and the ASMs themselves are 

secondary targets after the standoff jammers. In addition some of the funda- 

mental problems related to guidance and control of long range missiles are 

being studied under the Navy Wide Area Guidance and Control program. A leading 

candidate configuration for these long range missions is the chin inlet ramjet. 

This will satisfy the range and speed requirements and still have sufficient 

space for effective guidance equipment. The chin inlet configuration requires 

BTT control and the associated problems are being investigated under the Wide 

Area Program. 

5.4 Air-to-Surface Missions 

5.4.1 GBU-15 

Long range glide weapons require large lift to drag ratios. These can be 

achieved with a planar, winged airframe which uses BTT steering to null heading 

errors. One program which has investigated BTT control for this application 

is the GBU-15 Planar Wing Weapon. During a study for the Air Force, Hughes 

developed and evaluated alternate BTT autopilot configurations in terms of 

dynamic response and guidance performance. It was found that the BTT configu- 
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ration, because of the airframe's greater maneuverability in the pitch plane, 

required considerably less range to null a heading error than an STT configu- 

ration. However, the BTT system was more sensitive to noise, windgusts, and, 

especially, seeker coulomb friction, and these effects reduced the accuracy 

of terminal guidance below that of STT. The coulomb friction seemed to be a 

major problem, significantly increasing miss distance unless maximum roll rates 

were reduced to about 60 deg/sec. Also, tests on the electro-optical seeker* 

indicated high sensitivity to body roll rates, especially when the seeker had 

a yaw gimbal angle. A combined BTT/STT system was also considered. This 

configuration showed promise, but its performance was not completely evaluated. 

5.4.2 MRASM 

Another air-to-surface missile program which is considering BTT steering 

is the joint Navy/Air Force MRASM (gedium Range Air to Surface Missile). The 

objective of the MRASM is to destroy large tactical targets such as runways, 

bridges and aircraft on the ground at ranges up to 200 miles. There is also a 

potential antishipping role. About $2.3M has been released for this study, 

with a large portion of this going for warhead development. The program is 

currently in system definition stage. Speed regime, guidance, propulsion 

and airframe have not been determined. However, some of the configurations 

under considerations would use BTT steering, 

5.4.3 ACSM 

The Air Force Advanced Conventional Standoff Missile (ACSM) is also in the 

early stages of system development. This missile is meant to have greater 

range than MRASM. Although configuration decisions have not yet been made, BTT 

is the baseline if no terminal seeker is to be used. Problems encountered in 

the GBU-15 program may dictate a STT system. However, the ACSM program is only 

in the conceptual stage and many studies remain. Advances in seeker technology 

may solve the problems encountered several years ago. 

* The seeker used was a Rockwell International Corporation unit, part number 
HGO 20501-201-00. 
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APPENDIX A 

GUIDANCE LOGIC 

Guidance logic involves the question of how to use guidance information 

to command a BTT system. This can be broken down into the problems of forming 

a roll command and of forming a steering command. 

Various methods have been used to form the bank or roll command. It is 

usually assumed that the seeker provides guidance information in two orthogonal 

channels. For example, if Gp and G 
Y 

are the line-of-sight (LOS) rates in the 

body fixed pitch and yaw channels, then the roll error can be shown to be 
. 

A4 
-1 oJ = tan 

;P 
. 

This quantity can then be used to form the roll command. Other methods to form 

the roll command would be to use commanded acceleration components rather than 

LOS rate components, or to use a ratio as an approximation to the arc tangent. 

The above discussion ignores the complexity required to always roll 

through the minimum excursion to achieve the desired orientation. There are 

various ways to realize this minimum excursion logic, and these depend on 

whether the maximum excursion is 180' (e.g., to keep a chin inlet windward 

when the maneuver direction changes), 90' (e.g., a planar configuration which 

can pull negatives angles-of-attack) or 45' (e.g., a cruciform configuration 

trying to achieve a combined plane steering maneuver). 

STT control may be called Cartesian control since the accelerations are 

commanded as components in two orthogonal planes. Following this analogy, 

BTT control can be called polar control [II-51. Here the acceleration magni- 

tude is the pitch command and the angle is the bank or roll command. In any 

Cartesian-to-polar conversion there is a singularity: the angle is undefined 

if the magnitude is zero. In a practical BTT system the singularity creates 

a problem at small but non-zero LOS rates because noise on the guidance signals 

increases the variation in roll error angle. This is illustrated in Figure A.l, 

which is similar to a figure from Reference 11-5. The top portion of the 

figure illustrates the situation where the noise component of LOS rate is small 

relative to the true LOS rate. In this case the roll uncertainty or roll vari- 
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ation due to the noise is small. However, if the true LOS rate is small, the 

noise component is relatively larger and can cause large variation in the roll 

command, as illustrated in the lower part of Figure A.l. 

To solve this problem, some sort of threshold, or hysteresis, or reduced 

roll gain is required in the roll command. In fact all three of these methods 

have been proposed. For any of these, either no command or a small command is 

the input to the roll system until the pitch system has developed some accel- 

eration. This has the disadvantage of initially maneuvering in the wrong 

direction (before the airframe begins to roll) and also of increasing the roll 

and, therefore, steering response times. 

There are also a number of methods to form the steering (pitch) commmand. 

The most straightforward is to command pitch with the magnitude of the LOS 

rate vector (square root of the sum of the square of the components) times the 

appropriate guidance gain, and to command yaw with zero. This method to com- 

mand the steering system may lead to excessive out-of-plane motion for missiles 

with slow roll systems. One variation which will reduce out-of-place motion 

is to reduce the gain on the pitch command until the missile pitch orientation 

is within some tolerance of the commanded maneuver direction. Of course, this 

technique tends to increase the steering time constant. Another method which 

can be used for symmetric configurations is to command both pitch and yaw 

simultaneously with roll. This is especially useful for a cruciform configu- 

ration being commanded to a combined plane maneuver. The steering maneuver 

can be initiated in the correct inertial direction as the airframe is rolled 

to preferred orientation. Of course any of these methods must be analyzed 

to insure they satisfy the requirements and constraints for both the mission 

and the missile subsystems for which they are being considered. 
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APPENDIX B 

AUTOPILOT -_--- 
If a BTT missile has stringent sideslip constraints, for example due to 

engine inlets, some sort of turn coordination will be required. Without this 

coordination, any achieved angle-of-attack might be rolled directly into side- 

slip angle. The coordination must nullify the aerodynamic, control and kine- 

matic cross coupling among the roll, pitch and yaw systems, 

One way to design a coordinated BTT autopilot would be to write the 

transfer function from roll control surface deflection to sideslip (see, for 

example, 11-8) including all cross coupling, and then to generate yaw control 

surface deflection which would cancel or compensate the cross coupling effects. 

Another way to achieve the same result would be to utilize decoupling techni- 

ques from linear systems theory [I-7]. Regardless of the approach, however, 

the cross coupling terms are functions of angle-of-attack and various aero- 

dynamic parameters which vary with flight condition. In addition, a controller 

which performs adequately when the missile banks and accelerates from zero may 

not do so if an angle-of-attack is present and the maneuver plane is to be 

tilted. Designing a coordination system which maintains adequately small side- 

slip for all flight conditions and all possible maneuvers is a difficult task 

requiring analysis, insight and probably detailed simulation. 
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APPENDIX C 

SEEKER REQUIREMENTS 

The seeker is an important missile subsystem. Its functions are to track 

a target, remain spatially stabilized or go into a search mode if target track 

is lost, and to provide a guidance signal, In order to satisfy the tracking 

and stabilization functions, the seeker slew rate capability must be compatible 

with the banking motion of the missile, taking into account the possibly large 

look angles. The impact of banking maneuvers on track loop requirements must 

also be assessed. Detailed seeker analyses would have to model inertial coup- 

ling between the two seeker channels and the effects of friction, which seemed 

to cause a substantial problem for the GBU-15 weapon. 

Reference II-12 documented an investigation in which seeker requirements 

were determined by simulating the equations describing seeker operation. In 

addition, Reference II-11 described hardware tests with infrared seekers in a 

hybrid simulation. These investigations were all part of the Eglin studies 

and are applicable to air-to-air missiles. The conclusion was that existing 

infrared seekers could satisfy the requirements for BTT steering. 

Some roll stabilized radar seekers generate line-of-sight (LOS) rate (G) 

by adding the seeker gyro output (8) to the derivative (2) of the error between 

the seeker pointing direction and the target direction, i.e., 

This is done for each seeker axis. It can be shown that this operation makes 

the measurement of ;r independent of the seeker track loop dynamics. A disad- 

vantage of this method is that the differentiation can amplify noise. In 

addition, the differentiation is electronic and is performed on a signal meas- 

ured in seeker coordinates. This operation, and indeed all seeker low-fre- 

quency signal processing, must be analyzed to determine its appropriateness 

when the missile and seeker are no longer roll stabilized but can bank at a 

rate of several hundred degrees per second. 

Polarization effects must also be investigated in light of missile banking 

maneuvers. For a semiactive, linearly polarized seeker with linearly polarized 
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radiation, the seeker gain goes to zero when the polarizations are 90" apart. 

This can occur, for example during a 90' bank. Potentially more serious are 

the changes in radome aberration error as the relative polarization of the 

seeker and incoming radiation change. If the radome is tailored for a given 

polarization, other angles may result in larger aberration errors. 

Polarization effects may also pose a problem for the case of an active 

seeker against a large target (e.g., a ship). If the reflectivity of the 

target depends on the polarization of the signal, the aim point may change 

as the missile banks. This rapid change in aimpoint might be interpreted by 

the guidance system as a spike in LOS rate, the result of which could cause 

the missile to miss the target. 

These polarization effects are not well understood, and there is admitted- 

ly some conjecture in the above descriptions. However, they do represent 

another problem which should be thoroughly understood before BTT steering is 

considered an acceptable control method. 
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APPENDIXD 

BODY EATE.COUPLING 

Figure D.1 illustrates the elements of a homing missile guidance loop. 

The target-missile engagement geometry is measured by an on-board sensor 

(seeker). This measurement of geometry is then transmitted to the guidance 

computer for processing. Most current missiles use some form of proportional 

navigation guidance. The geometry information consists of a measure of the 

rotation rate of the missile-to-target line-of-sight (LOS) and the missile- 

target closing rate. The guidance computer filters the LOS rate measurement 

and computes a lateral acceleration command proportional to this rate, The 

requirement for a measure of LOS rate is not limited,to conyentiongl propox- 

tional guidance; modern guidance methods based on optimization techniques are 

usually similar, perhaps with a time varying guidance gain or an additional 

term to account for target accelerations. 

As illustrated in Figure D.1, the measurement of LOS rate is invariably 

corrupted by body rotation rates. These undesirable perturbations on LOS rate 

can result from imperfect sensor stabilization or unmatched signal processing 

gains. However, for RF systems the primary source of these unwanted perturba- 

tions is radome aberration error. A body-rate-induced perturbation on the 

guidance signal causes a perturbation in the commanded and achieved accelera- 

tions and, hence, additional body rate. This "parasitic" loop can cause system 

instability and/or degraded performance. 

The above description can apply to either STT or BTT systems. For STT 

systems, the roll component of rotation rate is usually small and can be neg- 

lected, but the situation is not as simple for BTT. Figure D.2 shows a diagram 

of the parasitic loop for a BTT system. The input here is the LOS rate in 

inertial coordinates (the output of the engagement geometry block of Figure 

D.l). The transformation of this vector to seeker coordinates depends most 

strongly on the roll angle, as indicated. The line-of-sight rate, perturbed 

by the parasitic coupling, is transformed to roll stabilized coordinates for 

guidance filtering. In the absence of parasitic coupling (i.e., EE = 0) 

filtering in roll stabilized coordinates removes the guidance filter lags from 

the roll loop. The output of the guidance computer is then transformed back 
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to missile coordinates and used to command both the steering @itch) and the 

bank systems. Note that the closure of the loop from steering to roll is inher- 

ent in BTT systems but is not a part of STT systems. Outputs from both the 

steering and roll systems form the body rotation rate vector. In Figure D.2 

the body rate perturbation is modeled as a linear multiple (matrix $1 of the 

rotation rate vector added to the ideal LOS rate. 

It is interesting to note that Figure D.2 applies to an STT system as well 

as a BTT system if the roll command is set equal to zero. In this case the 

roll rate 6 will be zero and the roll angle @ will be a constant. Roll sta- 

bilized guidance filtering will then be the same as body fixed guidance filter- 

ing. Since 4 is zero, only the pitch and yaw rates will perturb the LOS rates. 

Preliminary analysis has indicated that the additional loop closed from 

steering to roll renders BTT systems more sensitive to body rate coupling than 

STT systems. To this writer's knowledge, the problem was first pointed out in 

Reference I-5, although the severity of the problem was not recognized. 

Notice that Figure D.2 has two loops, one from the rotation rates 0, 

including 4, through the matrix 'k and a second geometric loop from I$ to the 

transformations. The gain of the loop from 4 through RR is inversely propor- 

tional to the pitch acceleration command, nc since it is in the denominator of 

the roll command function. For this reason,P* it is possible to reduce the sen- 

sitivity of this loop to body rate coupling by shaping the trajectory during 

terminal homing so that the pitch acceleration is always substantial. This 

method may not provide satisfactory performance against maneuvering air targets 

but may be appropriate against ground or slowly moving surface targets. 

The geometric loop is independent of the pitch acceleration. This can be . 
observed by linearizing the feedback path from I$ to a 

S’ 
This feedback will 

have a term proportional to [?I] which cancels the denominator term in the bank 

command function. Thus trajectory shaping will not affect the dynamics of the 

geometric loop. 

No complete solution is known for the body motion coupling stability prob- 

lem. Partial solutions which have been investigated include increasing the 

guidance filtering, selecting the guidance filter and autopilot time constant 

relationship to minimize the problem, forming the roll command from LOS rates 
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rather than the acceleration commands, and selectively notching out the fre- 

quencies where the instability occurs. The first two of these approaches apply 

also to STT. Forming the roll command from LOS rates shows some improvement 

for the noise-free case; however, noise considerations and the imposed filter- 

ing may alter the results. Notching out the frequencies where instability 

occurs has the difficulty of knowing where to place the notch filter frequency 

since radome instability frequencies vary with flight cond5tion and even with 

the sign of the radome error. Body rate coupling is one of the major problems 

which must be solved before BTT steering can be considered a viable method for 

controlling homing missiles with radar seekers. 
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APPENDIX E 

ANALYSIS OF BANK-TO-TURN HOMING ENGAGEMENTS 1-1 
For STT missiles it is often possible to resolve the motion into two 

planes and consider the pitch and yaw control systems as independent two-dimen- 

sional problems. Using this assumption, guidance performance can be studied 

using a single plane simulation. This simplification is not possible in the 

case of BTT control and it is usually necessary to consider the entire three- 

dimensional problem. Since the resulting equations are nonlinear and difficult 

to analyze, simulations are required. 

Most preliminary BTT guidance studies are made using a simplified model 

which assumes that sideslip is zero. This assumption permits the use of sim- 

plified models, which are desirable so that many performance runs can be made 

at low cost. Models which represent dynamics in both pitch and yaw planes and 

also have a means for controlling sideslip have increased complexity, 

Graphical presentation of the data is also more difficult for BTT control. 

Figure E.l shows a miss distance versus time-to-go plot for a simple, single 

plane simulation of an STT system. The overshoots and undershoots resulting 

from autopilot dynamics are readily understood. In three dimensions however, 

the miss vector could be in any orientation and negative miss has no meaning, 

Thus, absolute value of miss should be used, as shown in Figure E.2, rendering 

the figure more difficult to interpret. 

For a single engagement a plot of ymt versus zmt (ymt, zmt = missile-tar- 

get separation along y, z inertdal axes) is sometimes useful, especially if 

missile roll orientation is also indicated. Such a trajectory is shown in 

Figure E.3 and indicates the orientation of the miss and that the missile is 

not spiraling into the target. Other polar plots are sometimes useful. For 

example, a comparison of commanded and achieved accelerations in nonrolling 

coordinates can help in understanding how turn coordination is affecting the 

trajectory. Of course, time histories of pertinent system variables are very 

helpful in reconstructing and interpreting the results. The point to be 

remembered is that BTT trajectories are inherently three dimensional and require 

careful examination to insure that the results are not misinterpreted. 
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