NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

et o 7 Y -/ v' /v' s ‘é.
- 13789
“Made avalfabe IS¢
altable under NASA sponsorship - 54
In the interest of early ang wide dis 890 1 60222
:Nnmanqn of Earth Resources Survey DFETAIL DESIGN SPECIFICATION
Mmggmu:euorrgaﬁon and without liability FOR NASA CR-
m ”
ade thereof. ENHANCEMENT OF THE AUTOMATIC sTaTus /60634

AND TRACKING SYSTEM SOFTWARE
Job Order 71-695

(TIRF 77-0035)

Prepared By

Lockheed Electronics Company, Inc.
System and Services Division
Houston, Texas
Contract NAS 9-15200

For
EARTH OBSERVATIONS DIVISION

SCIENCE AND APPLICATIONS DIRECTORATE

(EB0-10254) DETALL DESIGN SPLCIFICATLON KUk 5~80-30837

EN HANCEMENT OF THE AUTOMALLC STATUS AnD

TRACKIL NG SYSTbM SOFTWARE (LocCkheed

Electronics Co.) 102 p dC AUL/ME AO1 luclas
CSCL udB G3/43 L0254

National Aeronautics and Space Administration

LYNDON B. JOHNSON SPACE CENTER

Houston, Texas

November 1977

LEC- 11512

JsCc- 13789

DETAIL DESIGN SPECIFICATION
FOR
ENHANCEMENT OF THE AUTOMATIC tTATUS
AND TRACKING SYSTEM SOFTWARE

Job Order 71-695
(TIRF 77-0035)

Prepared By

“s D. K. McCarley
J. M. Everette
K. P. Eckel

APPROVED BY

NASA

V..M. Dauphin
Applications Software Section Systems & Facilities Branch

Prepared By
Lockheed Electronics Company, Inc.
For
Earth Observations Division
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

November 1977

LEC- 11512

CONTENTS

Seciion Page

1., INTRODUCTION . . . =« « ¢ o o o o s o o =« 1=1

2. REFERENCES » & & w » » & e = s & = s w21
3. OVERVIEW OF MODIFICATION « +« =+« + =« = 3-1
3.1 GENERAL « . .« =« =« o & o o o o o « + 3-1
3.2 PROGRAM ORGANIZATION. . . . +« +« « « o« o 3=2
4. DETAIL DESIGN. . .« « ¢ ¢« o o o o« o o o+ o 4-1

4.1 GENERAL . . =« =« ¢ ¢ o ¢ o o o o o o« 4-1

4.2 NEW SUBROUTINE DETAIL DESIGN 4-2

4.3 DESCRIPTION OF SUBROUTINE MODIFICATIONS . . . 4-69

4.4 DESCRIPTION OF NEW SYSTEM TABLES. 4-77

Figures Page

3.2-1 Subroutines required for commands not using
arithmetic operators« .+« . . 3-4

3.2-2 Subroutines required for commands using
arithmetic operators+ .+ .+ . 3-5

3.2-3 Structure Diagram for Change Field Command . . . 3-6

3.2-4 Structure Diagram for Display Formatted and
Joint Display Formatted command. 3-7

3.2-5 Structure Diagram for the Select Non-key and
N Joint Select Non-key Commands 3-8

3.2-6 Structure Diagram for Report and Joint Report
CommandS . « « « o « o« « « « « « « .39

\

-

ii

1. INTRODUCTION

This document provides a detail design for enhanced data
management capabilities of the LACIE Automated Status and
Tracking System (ASATS) as requested in Reference 2. ASATS
was implemented on the PDP 11/45 using the Regional Informa-
tion Management System (RIMS), a generalized data base
management system. The requested enhancements will be made
to RIMS. They included:

a. Additional Data Base Protection - In order to prevent

inadvertent destruction of the data base, additional user
interaction to verify the user's desire to execute the

command is requested for certain data pase update commands.

b. Null Set Detection and Control - In order to prevent
production of headers for reports containing no data, a
test and jump command is requested.

c. Arithmetic Operators - The ability to allow arithmetic
operations on fields of data for certain operations is
requested.

d. Interdata Base Comparisons and Arithmetic - RIMS currently
has the ability to generate sets by specifying arith-

F metic relationships between fields and literal values.
The ability to specify arithmetic relationships between
fields is requested. These relationships should allow
the use of arithmetic operators and allow the comparison
of fields between a FLOCON record and its parent DAPTS

record.

e. Subgrouping by Field with Maximum, Minimum and Count
Functions-The ability to specify fields for which records
are to be grouped by value and print field values,
maximum or minimum field values, or count of records for
the resulting groups is requested. The capability should

include multi-level groupings.

Reference 3 identifies new RIMS commands to be added and
existing RIMS commands which will be modified to provide the
required enhancements. Reference 10 describes the new
commands and changes to existing commands. It also
functionally describes new subroutines and modifica- -

tions to existing subroutines for satisfying those commands.

Section 3 of this document provides an overview to the modifi-
cations required to implement the required enhancements.

Section 4 provides a detail description of each new and
modified subroutine,

Dl gkl 4 Ll

T v —————— e .

2. REFERENC:S

The following documents provide a baseliiie for overall develop-

ment and implementation of the enhancements to the Automatic

Status and Tracking System:

® Reference l -

® Reference 2 -
® Reference 3 -
® Reference 4 -
® Reference 5 -

® Reference 6 -

® Reference 7 ~
® Reference 8 -

® Reference 9 -

Implementation Specification for LACIE ASATS,
JSC-11401, Revision A.

TIRF 77-0035,

Operators Guide for LACIE ASATS, JSC-12729.
Users Guide for ASATS, JSC-12535, Revision A.
Users Guide for RIMS, LEC-9301, Revision A.

"As-Built" Design Specification for ASATS,
JSC~12743, Revision A.

Functional Design for ASATS, JSC-11835.
RIMS Maintenance Document, LEC-9566.

Project Development Plan for the Enhancement
of the Software of the LACIE Automatic Status
and Tracking System.

® Reference 10 - Functional Design Specification for Enhance-

ment of the Automatic Status and tracking
system, LEC-11199 and JSC 13110

o 8. T e Ty WeETe S e— et R v e —

3.0 OVERVIEW OF MODIFICATION
3.1 GENERAL

In order to satisfy the requirements stated in Reference 2
certain RIMS commands will be modified and certain others will
be added. Reference 10 describes the function and Syntax for
each of these commands. The modified commands are:

Delete Set (DS)

Delete Record (DR)

Delete Key (DK)

No Key (NK)

Select Non-key (SN)

Change Field (CF)

Display Formatted (DF)

® Joint Display Formatted (JF)

The new commands are

e Test and Jump (JT)

e Label (LA)

® Joint Select Non-key (JN)

e Joint Sort (JS)

® Report (RP)

® Joint Report (JP)
Delete set, Delete Record, Delete Key, and No Key are being
modified to satisfy the data base protection requirement.
Test and Jump and Label are being implemented to satisfy
the null set detection and transfer requirement. Select Non
key, Change Field, Display Formatted, and Joint Display
Formatted are being modified and Joint Select Non key is
being implemented to satisfy the arithmetic operations and
interdata base comparison requirements. Joint Sort, Report,

and Joint Report are being implemented to satisfy the sub-

grouring requirement.

e

e e i 08 -

3.2 PROGRAM ORGANIZATION

Subroutines which comprise the RIMS system can generally be
categorized as (1) system control routines, (2) individual
command control routines, (3) common routines and (4) ele-

e —————
— - mr——

mentary routines. The system control routines are SEL (the mz2in

routine) and JLASYS. Usually, command control routines exist
for each RIMS command. Common routines are used for those
functions common to several commands. Elementary routines
perform those functions common to all of RIMS such as string
manipulation and data base I/0.

The new data base protection feature will be incorporated by
defining two routines which are referenced from the system
control routine. The command will be verified before execut-
ing the appropriate command control routine.

The Jump Test and Label commands will be implemented by two
command control routines referenced from the system control

routine.

The Joint Sort command will be implemented by modifying the
current sort command control routine. ,

All other new and modified commands must be able to handle
arithmetic operators. Several new subroutines common to
these commands have been defined for interpreting command
lines, building internal tables and formats, and performing
arithmetic operations. While these commands have many common
functions, a separate control routine will exist for each
command and its associated joint command. Reference 10

- s T e T e

T vy rw——— e e - -
—~— =

ey et = s

describes the general approach for implementing commands which

require arithmetic operations.

Figure 3.2-1 though 3.2-6 provides detail program information
to illustrate program structure of the modifications and
additions. It also provides information for constructing

new system overlays. Contents of the figures are:

e Figure 3.2-1- Subroutines required to execute (1) commands
requiring input verification (2) Jump Test command
+ (3) label command, and (4) Joint Sort command.

e Figure 3.2-2- Subroutines rejuired for each command which
handles arithmetic operators.

@ Figure 3.2.3- Structure Diagram illustrating the hierarchical
relationship of change Field Subroutines.

e Figure 3.2-4- Structure diagram illustrating the hierarchical
relationship of subroutines used by the Display Formatted
and Joint Display Formatted Commands.

@ Figure 3.2-5- Structure diagram illustrating the hierarchical
relationship of subroutines used by the Select Non-key and
Joint Select Non-key commands.

® Figure 3.2-6- Structure diagram illustrating the hierarchical
relationship of subroutines used by the Report command and
Joint Report command.

Subroutines classified as elementary routines; SUBSTR, GET,
PUT, ROLL, INDEX, ETC., are shown on any of the figures

because of their extensive usage.

Subroutines identified in Figure 3.2-1 through 3.2-6 are

described in Section 4 of this document, Reference 6,
and Reference 8.

>

siojeaado oTILUWY3ltTI®E pursn 3ou
SpueWWOD X03 paxtnbax saurInOAqNS -T°¢E 2anb1d

INILAOY ONILSIX3A Qdl JIQOWNN»

« Lsodnvy

+ LSOdN¥ » INDSAV

* L3vd » LNDSAY » g1daa
» LOPXX » dALSd¥Y » dNIsdv L

» TINIXX +« WJO4L + WJOJL

» J4LdO0SS » SVYLART » GYLART

+ LOGBLIS ¥ OTELIO » OTULID

+ TNILIS » TNIXX + TINIXX

+ OFELID » TNILIS s INIL3S

sSLY0S » LNISdY » LNISAVY

d1d¢gs » Xdls3d » OTAOGT s Xd41Ls3d

» LWJIAOT x JIVOPT * a13ada + LWJA@T

s SILSIUD D & b g fc (¢! » Odd1dada « SLSTED

dWNerL gadda pdddada gaddd gadda

SASYIC SASYIL SASYIL SASYIL SASVIL SASYIL SASVIC

148 149S 14S T3S 14S T3S 1ds

. ——

oS ‘sl Y1 ic AN xa ad sd w

A S ST T

! o
. AR T TR

siojexado or3awyltTae bursn

|
| SpuewwoD 103 paxtnbax saut3noaxqns z2-2°¢ 2anbtra 43IH
| : : : ¥d10dd
| « 1S0dnv
: « IWISIa « LNOSAV
, ZWHO0JL . L3SaANd . d4day
| gNILNOY ONILSIXJd Q3T IIAOWNN AVYHO . LOOXX ZWd0JdL
awoxd AVHO » dnlsdvy
, sawoxd awoxd dVHO
MWEOJL SaWOXd anoxa
ZWIO0JdL % ict: AACE] sawoxd
AVHD dWOLd MWNEOJL MW OJL
INIZLA aIiNydd * 2TALAD » OdYLID
awoxd . OTIOBT dWOLI dWOLd
SAWOXd IWdLd aIINad aliNdd
M BIL . TINIXX * IWJag1 « IRIAZT
¢ OFTULID ¥ INILAS * 038091 v OTHOAT
AWOLA Jdra1d INJLA IWJLd
ariNud dd10dd ¥ INIXX ¥ INIXX ///
« IWIA@T J4dIH . Lnoyrds » TINIL3S N\ oo
» OTUOFT ddav * INILIS + LNISAVY o
IWJLA INIJLd J4dIH ddav
l1aavy Laaav 4ddv NJaav
dIIH WNAavY N3aav INIJLA
d4d3avy I1aay INIZLA laaav
NJaav NJIaav laaav WNaav
J¥ID ¥dTOT WNaQav l1cav
» INIXX Jdado1d 11aav da1omd
+ TINILIS * IWJdag1 d4dI101d dadoid
420S 4208 qz0S 3208
LINIAV LINIAY LINIIY LINIIV
dodddr dodade HONSNC dodd
SASVIL SASVIL SKSYIL SASVIL
1dS 14S 13s 14ds

dar ‘ayd dr‘da NL‘NS d9

s+ YAl < A Y, W n

. b e

_—
“ puewuo) pIatd abueyd 103 weiberqg 3In3dNIIS £-T°E a2anbtg
|
_

o W R

INH AT JIUK AnINLC

|] o

4979 10000 Weet¥ Lieqy pateV Y Jeeey wptey 1Ny pied¥

WD Llerue

< ATinad Lugebr 23997
JINI3Y

Asbiny LNIsdy W43s 21l darsqy WX mwyddi 393139 Jwild LwdLd 55:. Inzdas ANISIY 444012

zvuu

|
SASyIL _

1
q3S

amamerant

42

“ . puBwwo) pa3jjewioj Aej.sTg jurTOoL pue
,_ pw3zewiod Aeydstg 103j wexberg INIVNIIG y-7°L ainbr3

¥ dnrnid PEIO T eI |

Jvn> anIdLe %—\ <

< R T RE2 t TRER} .w/ =
Lo //

I¥n awX3
ATLwdd Awi0d: 397

. . .
u-..u/.“:‘: . < umﬂm

AW4STd TwWifdl SQWIN3 QIANGS mwiddl OFYLDP Jwisd LW4Ld INIXX INTL3Y 491912 404212 AN LINIIY

, / \
o NUL_.uH : _”
SAsSyL

! J—

q3s 41 4@

ﬁ . VP EL .h:/../taa. L1y NHeY i3IV 1000y waey 1144V pieeY

haia

W TR

S e,

spuewwo) A9}-UON S3ID9[9S JUTIOL pue
A9)-UON 309T9S 9Yy3 I03 weaberq 9IN3d0NIIS ¢-z° g 2INbTA

331H 113 e

yyh2 Aoxud WY NV Laow wreey 1r4a¥

/\ . ~
WHI Qw2 AXL0d LWH406 23y H//
32Ys .

_

LIsINF LPORX SAWIrZ? dILNI mWIb 233135 Jwold _LW41d I0TRX Loblas inTrzs WI1273 LTIV

Jowsnt

~

SASYID

| :

73S

spuewwo) 3xoday IutTor

pue 3xoday I0JF wexberg aaIn3ionIls 9-7°¢ sanbtd

ATLNI IW3a61 392671

, ,9
331N M//.W%

JVHD 4013149
dwitd Lwd4id L1799y AdV N=Ada¥

YYHD _LaxsC JYrO gwax3
k-
320§

O3AL3% 432 INIXX - INILl3S LINI3ZY

ATLlpdd MWIFAL

SqWI X3

ZWidal

e pmat T e —" ———— S—A

- e TN T

rp e e s

4. DETAIL DESIGN
4.1 GENERAL

The following sections contain detail program descriptions for
all new subroutines, description of all subroutine modifica-
tions, description of new system tables, and a description

of new common blocks.

TR - A)

o o .- S e e e

B s P U

4.2 NEW SUBROUTINE DETAIL DESIGN

This section contains the Detail design for all new subroutines.

They are listed in alphabetical order by subroutine name.

PO

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

ALDDT

To 1nitialize the Working Buffer Format for
a date encountered in the input command.

e (Calling sequence: CALL ADDDT (FC, NC, ROW)
e Common blocks used: SY3COM
e Subroutines or functions used: DTEINT

® Files used: None

FC = integer variable; character number in
array CMD of /SY3COM/ where the date starts

(# sign).

NC = integer variable; number of characters in
the date literal, including the # sign.

ROW = integer variable; the row number of the
Working Buffer Format into which the date
reference is placed.

The pointer to the last used row of WBF, the
Working Butfer Format, is incremented by one.
$L is stored into the second word of the row
of WBF. The value of 4 is stored into the
sixth word of the row of WBF. The value of -1
is stored into the seventh word of the row of
WBF. The subroutine DTEINT is used to convert
the date from a character string in the command
line to a binary integer in the first word of
the row of WBF. The row number is stored in
ROW, and a return to the calling routine is
made.

e

Name:

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

ADDFN

To initialize the Working Buffer Format for
a field name encountered in the input command
line.

e Calling sequence: CALL ADDEN (FC, NC, ROW)

e Common blocks used: SY3COM
e Subroutines or functions used: COMSTR, SUBSTR

e Files used: None

FC = integer variable; character number in array
CMD of /SY3COM/ where the field name starts.

NC = integer variable; number of characters

in the field name.

ROW = integer variable; the row number of the
Working Buffer Format, WBF, into which the
field name reference is placed.

Column two of WBF is searched for the field
name. If it is found, the row number is stored
into ROW, and a return is made to the calling
routine, If it is not found, the pointer to
the last used row of WBF is incremented by

one, the field name is placed in column two

of that row, that row number is stored in ROW,
and a return is made to the calling routine.

e e e

T e e e e A T IR mgrmriny . ot . eGPV S K IRV SIS, NNy

T A AT S b gD £ s BT =0k 3 e A e 7. ! o Ao em o

Name:

Purgose:

Linkage:

Input Description:

Output Description:

Process Description:

ADDLT

To store a reference to an alphanumeric
literal into the Working Buffer Format

e Calling sequence: CALL ADDLT (FC, NC, ROW)
e Common blocks used: SY3COM
o Subroutines or functions used: None

e Files used: None

FC = integer variable; character number in
array CMD of /SY3COM/ where literal starts
(first quote mark).

NC = integer variable; number of characters
in the literal, including the beginning and
ending quote marks.

ROW = integer variable; the row number of the
Working Buffer Format into which the reference
to the literal is stored.

The pointer to the last used row of WBF, the
Working Buffer Format, is incremented by one.
$T is stored into the second word of the row
of WBF. The value ot FC+1 is stored into
the fifth word of the row of WBF. The value
of NC-2 is stored into the sixth word of the
row of WBF. Zero is stored into the seventh
word of the row of WBF. The row number is
stored into ROW, and a return to the calling
routine is made.

(7

Name :

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

ADDNM

To initialize the Working Bufter Format for a
number literal encountered in the input command.

e Calling sequence: CALL ADDNM (FC, NC, ROW)
e Common blocks used: SY3COM
e Subroutines or functions used: INPARM

o Files used: None

FC = integer variable; character number in
array CMD of /SY3COM/ where the number starts.
NC = 1integer variable; number of characters in
the number.

ROW = integer variable; the row number of the
Working Buffer Format, WBF, into which the
number reference is placed.

The pointer, NWBF, to the last used row of

WBF is incremented by one. Then $§L, 4, and -1
are stored in WBF (2, NWBF), WBF (6, NWBF),

and WBF (7, NWBF), respectively, INPARM is

used to convert the number from a character
string in CMD to a binary integer in WBF

(1, NWBF). The row number, NWBF, 1s stored in
ROW, and a return is made to the calling routine.

/

e

———

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

AEINIT

To initialize standard areas of core for
commands which allow arithmetic expressions
in their syntax.

e Calling sequence: CALL AEINIT(IND, SETNO,
FMTNO, ERR)

e Common blocks used: SYSCOM, SY3COM, CLTBL

e Subroutines or functions used: SQZE,
INPARM

e Files used: Command file (logical unit
13), Message file (logical unit 7)

IND = integer variable; indicator to cause
special processing for certain commands.
Set 0 for SN, JN, and CF commands. Set 1
for DF and JF commands. Set 2 for RP and
JP commands.

SETNO = integer variable; contains the set
number converted from the input command
line.

FMTNO = integer variable; contains the
format number converted from the input
command line, if there is one.

ERR = integer variable; returned zero if
no errors found, non-zero if any error is
found.

1. Zeroes are stored in all words of /SY3COM/.

2. Blanks are stored in all words of the
Working Buffer, WBUF.

3. Word 6 of row 1 of the BY Processing Table,
BPT, is initialized to '+$-§' to cause the
first record read in an RP or JP command
to create a top level BY change.

T

/

D

10.
11.

12.

The first word of array COMMAS in
/JCLTBL/ is initialized to 1. Variable
FC, used to point to the next available
character in array CMD of /SY3COM/ (where
the input command will be packed), is
initialized to 1. The logical unit
number for the command file, Ul3, is
retrieved from U(13) in /SYSCOM/.

The logical unit number for the message
file, y7, is retrieved from U(7).

A call is made to SQZE (STR, 1, 80, CMD,
FC, NCS, COMMAS) to transfer and compact
the input command string (in STR of
/SYSCOM/) into array CMD. NCS is returned
as the number of characters stored by
SQZE into CMD, and pointers to syntactically
meaningful commas are returned in COMMAS.
FC is incremented by NCS.

If FC <401, go to step 9.

Set ERR = 1 and return to the calling
routine.

I1f COMMAS(1) < 0, meaning the last input
card has been processed for an RP or JP
command, then negate COMMAS(1l) and go

to step 13.

If IND = 2, go to step 12.

If the last character stored in CMD is

a comma, then go to step 13, otherwise
increment COMMAS(1) by 1, store FC

into COMMAS(COMMAS(1)), and go to step
13,

Read, from unit U13, 80 characters into
the beginning of array STR. If the
actual unit number for the message

file = 7, then go to step 5, otherwise
echo the input string by writing, to
unit U7, 80 characters from the
beginning of STR, and go to =ztep 5.

P

- eeen s TR

13.

14,

15.
16.

17,
18.

T ey e e
——— r————

Calculate NC, the number of characters
in the input set number, = COMMAS(2)-3.
Then convert SETNO = INPARM

(CMD, 3, NO).

If SETNOS 0 or SETNO 2 TABNO, then go
to step 8.

IfIND ¢ 1, go to step 18.

Calculate NC, the number of characters
in the input format number, = COMMAS (3)
- COMMAS(2)-1. Then convert FMTNO =
INPARM(CMD, COMMAS(2)+1, NC).

If FMTNOZ 0, go to step 8.

Return to the calling program.

A e A Y

B AT et s

Name:

Purpose:

e —,

Linkage:

Input Description:

Qutput Description:

Process Description:

4

-

AEPR

To parse an arithmetic expression made

up of arithmetic operators and

operands (Field names, dates, or integer
constants), entering operands (or pointers
to them) into the working buffer format
and building a sequence of internal
commands to evaluate the expression and
store the value into a specified result
variable.

e Calling sequence: CALL AEPR (FC, NC,
PTR, ERR) |
e Common blocks used: SY3COM

e Subroutines or functions used: AI'DEN,
COMSTR, DTEINT, INDEX, INPARM, STAEPR,
VERIFY

e Files used: None

FC = integer variable; character number
in command line at which to begin
processing.

NC = integer variable; number of
characters to process.

PTR = integer variable; location into
which the results are to be stored.

ERR = integer variable; processing or
syntax crror indicator. Normal command
table containing internal commands to
evaluate the cxpression and store the
results,

Error flag set to zero and all internal

variables set to appropriate valuce.
The expression is scanned for.paired

4-10
i

ST e TR

ik g

-

brackets and valid alphanumeric

characters. If brackets not paired or

any invalid character found ERR set

to 2 zad return exeruted. Otherwise,

the number of paired brackets saved for

later use, character pointers and

counters set as needed &nd the

expression is gcanned and PASS 1 executed

as follows:

1. (a) If the next character encountered
is not an open bracket do step 2.
Otherwise an open bracket is stored
in the next location of VTAB and a
-99 is stored in the next location of
OPC (b). If this is the last
character the crror cxit is taken
otherwise update pointers and counters
and redo step 1(a).

2. If the next character cncounterced is
a closed bracket ERR is set to 2 and
return executed. Otherwise do step 3.

3. The next 13 characters are searched
for cither the end of the scan or
an arithmetic operator. If the end
of the scan is found the pointer is’
set to the end of the scan +1
location otherwisce the location of the
next operator or bracket will be
found. Then the current character will
be checked to see if it is a pound
sign. If it is not a pound sign step
4 is exccuted. Otherwise the next
four characters past the pound sign
are checked to sce if they are numeric
digits. If they arc not digits, ERR
is set to 2 and return excruted.
Otherwise DTEINT is called to convert
the date to an integer, the appropriate

e
2%

A

/

data is stored in the normal command

buffer and step 6 cxecuted.
4. The current character is checked

to sce if it is a literal value.

If it is not a literal value step §
is executed. Otherwise the literal
is converted to an integer, thce
appropriate data is stored in the
normal command buffer and step 6
executed.

5. If nonc of the above were cxecuted
then the next operand is a ficeld
name. In this case ADDFN is cailed
to store the data in the normal
command buffer and step 6 cexecuted.

6(a) If the last operand or operator has
been processed a-999 is placed in
the current location of OPC and the
pass 2 is cxeccuted as shownstarting

at step 8. Otherwise the next
operator is checked to sece if it is
cither an open or close bracket. If
it is an open bracket the error cxit
is taken. If it is a closed bracket
step 7 is taken. {b) Otherwisc the
operator is stored in the next
location of OPC and step 1(b) exccuted.
7. The character after the closed
bracket is checked. If it is an
open bracket the error exit is taken.
Otherwisec a-88 is stored in the next
location of VTAB § OPC and the
pointer and counters updated. 1f
the character after the closed
bracket was itself a closed bracket
step 6 is taken. 1t the operator
after the ciosed bracket was not a

Randdh

10.

closed bracket and at the same
time located at the end point of
the expression to be processed,

the error exit is taken otherwise
step 6b is taken.

The count of data in VTAB § OPC is
saved for later use. 1If the number
of paired brackets is zero, PASS 3
is executed as shown starting at
step 10. Otherwise step 9 is
executed.

The OPC table is searched and the
innermost paired brackets, as
indicated by a -99 and a -88
respectively, is found along with
their index location. Then STAEPR
is called to store the data into

the normal command table. Then

the remainder of the VTAB & OPC
tables is written over the area where
the paired brackets were stored, the
count of data in VTAB & OPC is
decreased by the amount of data
processed by STAEPR, the number of
paired brackets is decreased by 1
and step 8 taken.

If more than one line of data is left
in VTAB § OPC STAEPR is called to
store the data into the normal
command table. Otherwise the normal
command table is updated with the
calling argument PTR and column 5
of all used areas of the normal
command table is updated to point

to the next expression area to be

processed.

- . k] . .

SR

mr s

VL M MR LA Syt e - bey o s

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

BLDTBF

To convert a data base format into a form
suitable for standardized processing.

e Calling sequence: CALL BLDTBF(P)
e Common blocks used: SY2ZCOM,SY3COM
® Subroutines or functions used: COMSTR

@ PFiles used: None

P = integer variable; page number of array FMT
in /SY2COM/ where the data base format is
currently stored.

None

1. Initialize X to zero,

Initialize I to two, the first row of the
data base format which contains a field
name.

3. If NWBF, the pointer to the last used row
of WBF, the Working Buffer Format in
/SY3COM/, is = 0, go to step 8.

4, Initialize J to one, the first row of WBF,.
If WBF (2, J) = $R, §T, or $§L, go to step 7.

6. Use COMSTR tc compare the field name in
column 2 of WBF to the field name in
column 2 of FMT at row I. If a match is
found, go to step 9.

7. Increment J by one. If J < NWBF, go back
to step 5.

8. Increment NWBF by one. Set J = NWBF.
Transfer the field name from column 2 of
row I of FMT to column 2 of row J of WBF,

9. Increment NTBF, the pointer to the last
used row of TBF, the Target Buffer Format
in /SY3COM/, by one. Store a one in

7{
2t

10.

11.

12.
13.

14,

15.

16.

TBF (1, NTBF) and store J in TBF (2, NTBF).
Transfer columns 3, 4, and S of row I of
FMT to columns 3, 4 and 5 of row NTBF of
TBF.

If the target field type, TBF (7, NTBF),

= 4, set K = 1.

Increment I by one. If I < FMT (6, 1, P)
+1, then go back to step 3.

If K = 0, return to the calling routine.
Search column 2 of WBF for the field names
"UNLOAD" and "LSD". If '"UNLOAD" is found
at row I, set TBF (4, 1) = -I. 1If "LSD"
is found at row I, set TBF(4, 2) = -I.

If "UNLOAD" is not found in WBF, increment
NWBF by one, store "UNLOAD" as a field
name in column 2 of WB¥ at row NWBF, and
set TBF(4,1) = -NWBF.

If "LSD" is not found in WBF, increment
NWBF by one, store "LSD" in column 2 of
WBF at row NWBF, and set TBF (4,2)

=-NWBF.

Return to the calling routine.

I TR

R R oo L RPN

Name:

Purgose:

Linkage:

Input Description:

Qutput Description:

Process Description:

CFIND

To locate any single character of one string
within another string.

e Calling sequence: CALL CFIND (STRA,
STA, NCA, STRB, sTB, NCsB, LOCA, LOCB)

e Common blocks used: None

e Subroutines or functions used: INDEX

e TFiles used: None

STRA = integer array name; start of string
to be searched

STA = integer variable; character number of
STRA at which to begin search

NCA = integer variable; number of characters
in STRA to be searched

STRB = “nteger array name; start of string
containing characters for which teo search
STB = integer variable; character number of
STRB where search characters start

NCB = integer variable; number of search
characters in STRB to be used.

LOCA = integer variable; character number in
STRA where the first find was made. Zero 1f
no characters in STRB were tound in STRA.
LOCB = integer variable; character number in
STRB of the character found. Zero 1f none

found.

Successive characters of STRA, starting at
STA and continuing tor NCA characters, are
individually compared to the characters in
STRB (via the INDEX function) until a match
is found or STRA is exhausted.

g

S A e

AR A L LI

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

CICFDF

To direct the command interpretation phase
of the CF, DF, and JF commands.

e Calling sequence: CALL CICFDF(IND, ERR)
¢ Common blocks used: SY3COM, CLTBL

e Subroutines or functions used: CFIND,
RPCLPR, RLCLPR

o Files used: None

IND = integer variable; indicator for which
command is being processed. Set zero for
CF command. Set non-zero for DF or JF
commands.

ERR = integer variable; error indicator.
Returned zero if no errors found. Returned

non-zero if any error is found.

1. The error indicator, ERR,is initialized
to 0. The replacement expression
found indicator, REF, is initialized to 0.
The commas pointer, CP, is initialized
to 2.

If IND # 0, CP is changed to equal 3.

3. The first character pointer, FC, is
calculated = COMMAS(CP)+1. The number
of characters, NC, between commas is
calculated = COMMAS(CP+1)-FC.

4. Use CFIND to check the character at FC
for a single quote mark, a number sign,
or a numeric character. If any of these
are found, go to step 9.

S. Use CFIND to check all NC characters for an
arithmetic operator, parenthesis, equal
sigh or period. If one of these is found,
go to step 7.

P

© s

e

10.
11.

12.

13.

14.

15.

Set ERR = 1 and return to the calling
routine.

If an equal sign was found, go to step
14,

Since no equal sign was found, the
clause must be a relational clause.
Since all relational clauses are to

be before replacement clauses, check REF
to see if a replacement clause has been
found. If REF # 0, go to step 6.

Use RLCLPR(FC, NC, ERR) to process the
relational clause and return ERR
non-zero if errors were found.

If ERR # 0, go to step 6.

Increment CP by 1. 1If CP # COMMAS (1),
go to step 3.

If IND # 0, return to the calling routine.
The CF command must have a replacement
clause, so if REF = 0, go to step 6,
otherwise return to the calling routine.
Set REF = 1 and use RPCLPR (FC, NC, I, IND,
ERR) to process the replacement clause.
I was returned previously from CFIND as
the location of the equal sign, and ERR
will be returned non-zero from RPCLPR

if any errors are found.

If ERR # 0, then go to step 6, otherwise
go to step 11.

G T v —T—R———— PR, SRR N N

oL m =

-

|
|

o e R N

Name:

Purgose:

Linkage:

Input Description:

Qutput Description:

Process Description:

A W S Lpe e e A - s e

CIRP

To direct the activities of parsing the
command line, building tables, and

building buffer formats for the RP and JP
commands.

e Calling sequence: CALL CIRP(CIND,
RECID, ERR)

e Common blocks used: SY3COM, CLTBL

¢ Subroutines or functions used: COMSTR,
CFIND, ADDFN, AEPR, ADDLT, INDEX,
INPARM, FTEMT, ETCMP

e Files used: None

CIND = integer variable; command indicator.
Set 0 for RP command or non-zero for JP
command.

RECID = integer variable; contains the
record ID (accession number) of the

first record of the input set.

ERR = integer variable; error indicator.
Returned zero if no errors are found
and non-zero if any error is found.

1. Counters and pointers are initialized.

2. If there are some clauses in the command,
go to step 4.

3. Set ERR = 1 and return to the calling
routine.

4, If there are no characters in the clause,
go to step 3.

5. If this clause is the first one and it
is not a BY clause, then go to step 3.

6. If this clause is not a BY clause and
not the first clause, then go to step 16,

4ry

R i s it L]

e A, ST

L

O r—— e

10.

11.

12.

13.

14,

If this BY clause is occurring after
an EGE BY clause has occurred, then go
to step 3.

If this is the sixth BY clause, then
go to step 3.

If there is no grouping field name for
this BY clause, then go to step 3.

If this is an E§E BY clause, then if
there are no report expressions, then
go to step 3, otherwise store zeroes
in the first 3 columns of the BY
Processing Table, BPT in /SY3COM/,

for this BY clause and go to step 15.
Use CFIND to check the grouping field
name for arithmetic operators or
parentheses. If any are found, go

to step 13. ‘
Set columns 2 § 3 of BPT = 0 for this

BY clause, use ADDFN to store the

grouping field name in the Working]
Buffer Format, WBF in /SY3COM/, store ’g
the row number returned by ADDFN into ;
column 1 of BPT for this BY clause,

and go to step 15. i
Store the negative of the next
available row number of WBF in column 1
of BPT for this BY clause. Store $R

in column 2 of that row of WBF. Store
the next available row number of the
Normal Command Table, CTBL in J
/SY3COM/, into column 2 of BPT for

this BY clause. Store 4 and-1 into
columns 4 & 5 of the $R row of WBF.

Use AEPR to generate the commands which

B U

evaluate the arithmetic expression. !
If AEPR found any syntax errors, go
to step 3. Calculate the number

4520

-~y -~

- aew Va0 v R s R TR T m—m— e s o Toemes | e - =

of commands generated by AEPR and
store this number into column 3 of
BPT for this BY clause.

15. Move to the next pair of commas. If
there is none, go to step 29, otherwise
go back to step 4.

16. If this report expression is not a
text type, go to step 18,

17. Use ADDLT to create an entry in WBF for
this text literal and store values in the
Target Buffer Format, TBF in /SY3COM/,
to cause this text to be printed at the
start or conclusion of this BY clause
(depending on whether single or double
quote mark characters were used). Go
to step 15.

18. Compare the beginning characters of the
report expression with an internal table
of function names. If no match is
found, go to step 21.

19. If this function reference is found
in an EE BY clause, then go to step 3.

20. Use ADDFN to create the field name
reference in WBF for the field name
specified in the function. Create a
$R row in WBF for the results of the
function to be carried and create a
reference in TBF to get the results
printed upon the conclusion of this
BY clause. Based on which function
was specified, store an initialization
value in column 1 of the $R row of WBF,
Then go to step 15.

21. Use INDEX to check for an equal sign
in the report expression. If there
is one, go to step 24.

22. This report expression is only a field
name. If it has greater than 12
characters, go to step 3.

24.

25.

26.

27.

28.

29.

30.

31.

Use ADDFN to create a reference to the
field name in WBF, and create an entry
in TBF to cause the value of this field
to be printed at the beginning of this
BY clause. Then go to step 15.

Use CFIND to determine if this report
expression begins with an I or a D.

If it begins with neither, then go

to step 3.

Use INPARM to convert the input field
width to a binary integer. If it is
greater than 99, then go to step 3.
Create a results field ($R) in WBF

and a target field for printing in

TBF. Store the target field type in
TBF as a 1 or a 2 based on whether the
report expression began with an I or a
D, respectively,

Initialize column 4 of BPT for this BY
clause if it has not already been done.
Use AEPR to process the arithmetic
expression to the right of the equal
sign, and accumulate the number of
commands generated into column 5 of

BPT for this BY clause. Then go to
step 15.

If CIND = 0, then set NLVLS, the number
of data base levels, = 1, otherwise

set NLVLS = 2.

Use FTFMT (RECID, NLVLS, ERR) to

search the data base formats,
collecting field information for WBF
and SBF, the Source Buffer Format in
/SY3COM/. 1I1f ERR is returned non-zero,
go to step 3.

Now that the type and length of data base
fields are known, this information is
used to complete needed portions of WBF

4-27
3¢

70 i M- - i

32.

33.

34,

35.

and TBF where just field names and
functions with field names are the
Teporc expressions.

Where function results are called for

in WBF, a command is entered in the
Function Command Table, FCTBL in
/SY3COM/.

Use FTCMP to generate starting character
positions in WBF and initial values in
WBUF.

Use FTCMP to generate starting character
positions with two spaces between fields
in TBF.

Return to the calling routine,

35

Purgose:

Linkage:

Input Description:

Qutput Description:

Process Description:

CFCR

To direct the overall processing sequence
for the CF command.

Calling sequence: CALL CFCR

Common blocks used: SYSCOM, SY2COM,
SY3COM, CLTBL

Subroutines or functions used: AEINIT,
CICFDF, APSINT, SETINl XXIN1, FTEMT,
FTCMP, GETREC, TFORMW, EXCMDS, APSTUP,
TFORMZ, REPR, APSCNT, AUPOST

Files used: Message file (logical unit
7), Deleted keys file (logical unit 10),
New keys file (logical unit 9)

None

None

10

Initialize file pointer U7 to the value
stored in U(7) of /SYSCOM/ and usc
AEINIT to initialize /SY3COM/,
returning input set number in SETNO

and a non-zero in ERR if any errors
were found.

If ERR = 0, go to step 4.

Write on U7, "Command terminated due to

syntax error." and return to the calling
routine.

If COMMAS(1)2 2, meaning there are no
replacement clauses, then go to step 3.
Use CICFDF(0, ERR) to complete the
command interpretation, returning ERR
non-zero if any errors were found.

If ERR # 0, go to step 3.

. Use APSINT to initialize for storing

deleted keys on file U(10) and new

A4 3

i ————

T o tumitinliat e D o ur

T ¢

10.
11.

12.

13,

keys on file U(9). Use SETIN1 to
initialize for returning record ID's

via XXIN1. Use XXIN1 (RID) to return the
first record ID in RID,

If RID =« 0, return to the calling
routine.

Use FTFMT (RID, 1, ERR) to complete the
buffer formats with information about
fields whose names occurred in the input
command, returning ERR non-zero if an
error occurred.

If ERR # © go to step 3.

Use FTCMP to complete starting location
information in the Working Buffer Format,
WBF in /SY3COM/.

Loop through the Target Buffer Format,
TBF in /SY3COM/, comparing its column 2
contents with the values found in column
2 of the Multilevel Move Table, MLMT in
/SY3COM/. When a match is found at

row I of TBF and row K of MLMT, extract
L = ¢column 1 of row K of MLMT, so that

L points to the matching row

of the Source Buffer Format, SBF in
/SY3COM/. Then transfer the key field
indicator from SBF(1,L) to TB¥(3,I),

the data base format row number fvom
SBF(2,L) to TBY¥(4,1), the starting
character position in the data basc
record from SBF(5,L) to TBF(S5,I), the
length of the field from SB¥F(6,L) to TBF
(6,1), and the type of the field from
SBF(7,L) to TBF(7,I).

Use GETREC(1, RID, STAT) to retricve
record RID into row 1 of BUF, the

record buffer in /SY2COM/, returning
STAT non-zero if there was any problem
with tne retrieval.

205

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26‘

If STA1 ¢ 0, bypass this record by
going to step 23.

Use TFORMW(1,1) to transfer necded
fields from row 1 of BUF to WBUF,
difected by row 1 of the Move Table
Control Table, MTCT in /SY3COM/.

Set EF = 0 and use EXCMDS to execute
the commands in the Normal Comnmind
Table, CTBL in /SY3COM/, returning
CFLAG as false if thevre was a failure
of a relational clause, and returning
EF non-zero if a command could not

be executed for some reason.

If CFLAG is falsc, bypass this record
by going to step 23.

If FF ¢ ¢, bypass this record by
going to step 23.

Loop through TBF looking for key ficlds.
When one is found (TBF(3,1) # 0), then
use APSTUP to store the key to be
deleted on file U(10).

Use TFORMZ(1,1) to transfer changed ficlds
from WBUF to row 1 of BUF.

Loop through TBF, and for cach key
field found, use APSTUP to store *%e
new key on file U(9).

Use REPR to replace the .:d recc. @ in
the data basc with the revised onc in
row 1 of BUF.

Use XXINI(RID) to get the next record
ID into RID.

1f RID # 0, meaning there was a next
record, then go back to ste . 13,

Use APSCNT to retrieve the ser of
keys to be changed in the data basce.
Use AUPOST to delete the keys stored
on file U(10).

e

S

27, Use AUPOST to add the keys stored on
file U(9).
28. Return to the calling routine.

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description

: The input command line is searched for a

Y 8, gy Y o

DBPRO

To prevent accidental alteration of the
data base for certain commands.

e Calling Sequence: CALL DBPRO (FLAG)
o Common block used: SYSCOM
® Subroutines or functions used: INDEX

e File used: None

A command line containing the input command
line plus a "YES'" or '"NO" after the command
or a command line containing the input

line then another input line containing
"YES" or "NO" in response to an output query.

FLAG = integer variablej where FLAG = 0 means
do not allow data base to be altered and

FLAG = 1 means do allow data base to be
altered.

“"YES'" or "NO'" on the command line past the

command. If a "YES" is found, flag is set
to "1'" and a return performed. If a "NO"
is found flag is set to '"0' and a return |
is performed. If neither is found, the
command line followed by "YES or NO ?" is

output to the appropriate device. Then
the response is accepted and flag set to
"1 for "YES'" or "0" for '"NO" as above |

then a return is performed. 3

i Yo s 4o e e+ o 0 A g by @ o eert m 2t e ¢

S RTINS PRI AN 4 TR A TR

Name:

Moditication Purpose:

Linkage Modification:

Input Description Modification:

Qutput Description Modification:

Process Description Modification:

D1SFMT

To display characters from the input
string without transferring them to
another array.

e Calling sequence: No change
e Common blocks used: No change

e Subroutines or functions used:
SUBSTR is no longer used

e Files used: No change

No change

No change

The call to SUBSIR to transter the input
string to array X is deleted. The

WRITE statements are changed to write
from array STR instead of X.

Ay

¢
f
f i
¢ Name : DTEINT |
i i 1
Purpose: To convert date format to/from a binary i
E integer. |
‘ |
Linkage: e Calling sequence:

CALL DTEINT (FUNC, INT, STR, ST, NC)

I N i e o

e Common blocks used: None

2

: e Subroutines or func;ions used:
1 : SUBSTR , CHAR, INPARM, MOD

¥ e Files used: None

: 1
; Input Description: FUNC = Ihdicator, if FUNC = 0, converts i
character string (STR) to an integer (INT). |
If FUNC # 0, converts an integer to a

character string (STR).

INT = Integer input.

STR = character string input.

ST = starting position of character string.

NC = number of characters of STR to be

converted. |

OQutput Description: INT = Integer output from converted

character string,

STR = character output from input integer.

Process Description: In addition to the input variables, this

routine contains an internal Julian
day conversion table DTAB. DTAB is a |
one-dimensional array with each element
representing the total number of days trom
the base year to year 'N', where N is the
relative position of the array element
representing an offset from the base

year. If FUNC indicates an integer is

PPN N T,

to be converted to a character string the
input integer date is tested for an invalid

date. If this date is greater than the

4530 417

greatest value of DTAB, the input date

is replaced with that particular pTAB
element and the conversion process
continued. However if the integer date
is less than or equal to zero, blanks

are moved to the output string (STR).
Assuming the integer date is greater than
zero, DTAB is searched until a value

that is greater than or equal to the input
integer is found. The input integer minus
‘the previous table value gives the day
segment of the Julian date. The year
segment 1is then calculated by adding the
base year to the DTAB index minus a
constant of two. Having converted the
integer date to a Julian date format, the
results are then converted to an
alphanumeric character string by use of
the CHAR subroutine. To convert from an
alpha Julian date format the year and

day segments are calculated. The year
portion is subtracted from the base year
to serve as an index to pick up the
appropriate DTAB element. Once this
element is obtained this value is added to
the day segment to produce the output

integer.

S TR Sest S R e sy "

Name : EXCMD
Purpose: To pertorm the operations specified in one row

of a command table.

Linkage: e Calling sequence: CALL EXCMD (TBL, ROW, ERR,
CFLAG)

e Common blocks used: SY3COM

, e Subroutines or functions used: SUBSTR,
i DIEINT, INPARM, CHAR, COMSTK

i e Tiles used: None

Input Description: TBL = integer array name; starting location of

the table containing the command tc be executed.
ROW = integer variable; contains the row number
of TBL where the command to be executed is
stored.

Output Description: ERR = integer variable; contains zero on normal

command execution or non-zero when command

cannot be executed.

CFLAG = logical variable; contains .TRUE.
; normally, but is set to .FALSE. when the
; command is a logical comparison and the
comparison fails.

Process Description: Refer to the Command Table and Command Uperations

Table layouts in section 4.4 as a supplement

to this description. The value retrieved from

the references in columns 1-4 ot the command

table will be referred to as OPND(1l), OP, OPND(2),
and RESULT, respectively, in this description.

1. ERR and CFLAG are initialized to zero and
true, OP is retrieved from TBL (Z, ROW),
OPND(1)'s pointer, P, is retrieved from
TBL (1, ROW), and N is initialized to one.

T T r—_—— -
ey = .

© - ———, T, T

e s opme o

. BN

10.

11,
12.

13,
14.
15.

16.

17.
18.

1f OP > 0 and < 17, go to step 4.

Set ERR = 1 and return to calling routine.
If OP > 10, go to step 24.

If P= 0, go to step 3.

If P< 0, negate P, retrieve OPND(N) from
REG (P), an array in /SY3COM/, and go to
step 10.

Retrieve OPND(N)'s type trom column 5 at
row P ot the Working Buffer Format, WBF,

in /SY3COM/.

I1f OPND(N)'s type = 0, then 1f OP< 5, then
go to step 3, otherwise it N = 2, then go
to step 3, otherwise go to step 20.

Convert the value of OPND(N) from the
Working Butfer, WBUF in /SY3CUM/, based

on the type, using either subprogram

SUBSTR (type < 0, a binary integer),

INPARKM (type = 1, a numeric character
string), or DTEINT (type = 2, a date
character string).

If N =1, then set N =2, retrieve a new

P from TBL (3, ROW), and go to step 5.

If OP > 4, go to step 22.

Perform the arithmetic operation specified
by OP, using OPND(1) and OPND{2) and storing
the result in RESULT. 1If OPND(2) of a divide
operation = U, then go to step 3.

Retrieve a new P for RESULT from TBL (4, ROW).
If P =0, go to step 3.

If P< 0, negate P, store RESULT in REG(P),
and go to step 19.

Retrieve RESUL!I's type from column 5 at row
P of WBF.

If type = 0, go to step 3.

Convert the value 1in RESULT into WHUF

based on the type, and using subprogram
SUBSTR (type < U), CHAR (type = 1), or

DTEINT (type = 2).

43— 45

t dad e w—w.-'v'F<m, 7

e s < o

R e R

19,
20.

21.

22,

25.

4.
25.

26.
27.

28.
29.

30.

31.

Return to the calling routine.

If OPND(2)'s pointer in TBL (3, RONW)

= 0, or if OPNND(2)'s type # 0, then

go to step 3.

Perform an alphanumeric comparison
between OPND(1) and OPND(2) and set 1 to

be negative, zero, or positive according

to whether OPND(1l) < OPND(2), OPND(l) =
OPND(2), or OPND(1l) > OPND(2), respectively.
Go to step 23.

Perform arithmetic camparison by setting
I = OPND(1)-0OPND(2).
Leave CFLAG = true or change CFLAG = false
based on the following table and then
return to calling routine:

I1< 0 1 =290 1 >0

OP = 5 true false false
OP = 0 true true false
OP =7 false true false
OP = 8 true false true
0P =Y false true true
Obp = 10 false talse true

If OP = 16, go to step 40.

Retrieve OPND(2)'s pointer, P2, from
TBL(3, ROW). 1If P2 = 0, go to step 3.
If OP > 13, go to step 35.

It OPND(2) in WBUF is blanks, go to step
39.

Retrieve OPND(1) from WBUF using SUBSTR.
1f Oy = 11, set OPND(2) = OPND(1) +1,
and go to step 34.

Retrieve OPND(2) from WBUF, converting
based on its type and using 1NPARM or
DTEINT.

Perform a numeric comparison between
OPND(1) and OPND(2). It OPND(1l) =
OPND(2), go to step 39.

L

#o

- om————

32.

33.
34.

35.

36.

37.
38.

39.
40.
41.

42.

43.

44,

45.

It OPND(1) > OPNL(2), then if OP = 13,
then go to step 39, otherwise go to

step 34,

If OP = 12, then go to step 39.

Use SUBSTR to store OPND(2Z) into
OPND(1)'s place in WBUF and go to step
39.

Perform an alphanumeric comparison between
OPND(1) and OPND(2). If OPND(1) = OPND(2),
to to step 39.

It OPND(1) > OPND(2), then if O = 15,
then go to step 3Y, otherwise go to step
38.

If OP = 14, go to step 3Y.

Use SUBSTR to store OPND(2)'s character
string in WBUF into OPND(1)'s character
string in WBUF.

Return to calling routine.

1f P = 0, go to step 3.

If P< 0, negate P, retrieve RESULT from
REG(P), and go to step 13.

Retrieve OPND(1l)'s type trom column S

at row P ot WBF, If type = 0, go to step
44,

Convert OPND(1) trom WBUF into RESULT
based on type using subprogram SUBSTR
(type < 0), INPARM (type = 1), or

DTEINT (type = 2). Go to step 13.
Retrieve RESULT's pointer, P2, trom TBL
(4, ROW). |If PZ =0, go to step 3.
Transfer OPND(1)'s character string in
WBUF to RESUL1's location in WBUF, using
SUBSTR, and then to go step 39.

Name: EXCMLS

Purpose: To execute a sequence of related command
rows in a command table.

Linkage: ¢ Calling sequence: CALL EXCMDS (IBL, SR, NR,
ERRFNC, CFLAG)

e Common blocks used: SY3COM

e Subroutines or functions used: EXCMD,
SUBSTR
¢ Files used: None

Input Description: TBL = integer array name; starting location
of the table which contains the commands to
be executed.

SR = integer variable; starting row number
within the command table.

NR = integer variable; number of rows to be
executed.

ERRFNC = integer variable; indicator for what
procedure is to be followed if an error occurs:
Zero means do nothing to the results field:
non-zero means store blanks or zero in the
results field (depending on field type).

Qutput Description: ERRFNC = integer variable; set to zero if no
errors were encountered. Set to one if an

error was encountered.

CFLAG = logical variable; contains .TRUE. j
except when a relational comparison command
has failed, then it contains .FALSE..

Process Description: 1. The last row to be processed is calculated
into LR, ERRFNC is saved in EF and set = 0,

and I is initialized to SR, !

2. A call is made to subroutine EXCMD to }

execute the command at row I.

S

3., If CFLAG from EXCMD is returned with a
value of false, return immediately to

’ : the calling routine.
: 4. If the error indicator from EXCMD is
; § returned non-zero, go to step 7.

5. Increment I by 1.
If T > LR, return to the calling routine,
7. Set ERRFNC =1 and retrieve P from
column 5 of the current row of the
command table., P is the row number to
which a jump should be made.
8. If EF = 0, go to step 13.
9. Retrieve the result pointer, P1l, from
column 4 of row P-1 of the command table.
10. If P1 = 0, go to step 13.
11. Retrieve the result type from column 5
of row Pl of the Workig Buffer Format.
12. Based on type, store binary zeroes
(type < 0), alpha zeroes (type > 0), or
blanks (type = 0) into the result location
in the Working Butfer.
13. Set I = P and go to step 6.

-~

AT g

 ——

Name

Purpose:

Linkage:

Input Description:

Qutput Description:

Process Description:

FTCMP

To calculate starting character positions
for fields in generated formats.

e Calling sequence: CALL FTCMP (A, NS)
e Common blocks used: SY3COM
e Subroutines or functions used: SUBSTR

e Files used: None

A = integer array name; starting location of
the array which contains the format to be
completed.

NS = integer variable; the number of spaces
to be inserted between fields.

A = integer array name; starting location of
the array which contains the completed format.

1. The start character counter, SC, is
initialized to one, as is the row counter,
ROW.

2. The length of the field at ROW is transferred

from A(6, ROW) to L.

3. If L = 0, then processing is finished, so
return to the calling routine.

4. If A(2, ROW) contains $T then bypass start
character calculations for this row (since
text remains in the command line instecad of
being transferred to the Working Buffer,
WBUF in /SY3COM/) and go to step 7.

5. If A(2, ROW) contains $L or $R, then use
SUBSTR to initialize WBUF from A(1l, ROW).

6. Store SC into A(S5, ROW) and calculate the
next SC = SC+L+NS,

7. Increment ROW by one and go to step 2.

2

_

¥
i
:
é’.
&
E Name: FTFMT
f
! Purpose; To retrieve information from formats associated
| g with records in the same family tree.
‘ Linkage: e Calling sequence: CALL FTFMT (RECID, NLVLS,
| ERR)
p'
@ e Common blocks used: SYSCOM, SY2COM, SY3COM
:
5 e Subroutines or functions used: LOCREC, GET,
INPARM, LODFMT, COMSTR, PRNTID
¢ Files used: Message file
Input Description: RECID = integer variable; record ID of a record
at the lowest level of the data basc where
format information collection is to begin.
NLVLS = integer variable; the number of levels
of the data base to be used in tracing the
family tree for format information.
Output Description: ERR = integer variable; returned non-zero if
any crrors were encountered.
H Process Description: 1. The input record ID, RECID, is moved to
variable ID. U7 is initialized to whatever
unit has been designated as the message

file, and the data base top level indicator,
TLF, is set to zero,
2. The pointer, NMTCT, to the last used row
of the Move Table Control Table, MTCT in
/SY3COM/, is incremented by one.
3. The next available row number of the

H Multilevel Move Table, MLMT in /SY3COM/,
is stored in ~olumn one of row NMTCT of
MTCT.

4. Subroutine LOCREC is used to locate the
pointer to the recorc with accession
number = ID. If the pointer is found, go

6.
7.

10.

11.

12.

5.

Write "Record not in data base" on unit U7.

Set ERR =2 1 and return to calling routine.
Use GET to retrieve the pointer to the
record, and use GET again to retrieve

the format number of the record from the
second word of the record (chararters 5-8).
Convert the format number ciharacter string
to a binary integer via INPARM, and storc
the format number in FMTID(1) of /SY2COM/
and in column 3 of row MMTCT of MTCT.

Use LODFMT to retrieve the format whose
number is in FMTID(1) and store the format
in page 1 of FMT in /SY2COM/. 1If the format
was not found in the data base, go to step 6.
Calculate the last used row, N, of page 1
of FMT as FMT(6, 1, 1) +1.

For cach field name in column 2 of the
Working Buffer Format, WBF in /SY3COM/,
which is not $R, $T, or $L, comparc that
name against the names up to row N in
column 2 of page 1 of FMT, and if a match
is found, do steps 11-21, otherwise just
move to the next name in WBF until they

are all processed, and then go to step 22.
If the row number, I, of WBF where the
match was found, = -TBF(4,1), then negate
TBF(4,1) and go to step 13. TRF is the
Target Buffer Format in /SY3COM/, and
TBF(4,1) contains the negative of the row
number of the field whose name is '"UNLOAD'.
This value was placed in TBF (4,1) by
subroutine BLDTBF when a target field

type of 4 was encountered, meaning a
special output conversion was desired
which dc¢pended on the contents of the
"UNLOAD" field.

If I =-TBF(4,2), then neeate TBF(4,2).

This is the row number of the '"LSD"

)’w/ﬁ;

Apeaan. b~

S Y

B

13,

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

field which is similar to the '"UNLOAD"
field in step 11.

The length of the field is transferred
from column 4 of FMT to WBF(6,I).

The type of the field is transferred
from column S of FMT to WBF(7,I).

The pointer, NSBF, to the last used row
of the Scurce Buffer Format, SBF of
/SY3COM/, is incremented by one.

The key field indicator is transferred
from column 6 of FMT to SBF(1, NSBF).
The starting character number is
transferred from column 3 of FMT to SBF
(5, NSBF).

The length of the field is transferred
from column 4 of FMT to SBF(6, NSBF).
The type of field is transferred from
column 5 of FMT to SBF(7, NSBF).

The row number within FMT of the field
is stored in SBF(2, NSBF) for later use
in the Change Field command.

The pointer, NMLMT, to the last used row
of MLMT is incremented by one. The
value of NSBF is stored in MLMT (1, NMLMT),
and the value of I is stored in MLMT

(2, NMLMT).

After processing all fields of WBF that
were found in the format for records at
this data base level, calculate the
number of rows of MLMT which were generated
(=NMLMT -MTCT(1, NMTCT) +1) and store it
in MTCT(2, NMTCT).

Check column 4 of all fields of WBF, If
any lengths are still = 0, then more
formats need to be examined if possible,
so go to step 24, otherwise set TBF(4,1)
and TBF¥(4,2) to zero if they are still
negative and return to the calling
routine.

If NMTCT # NLVLS, go to step 26.

e — e — ey -

. Slemseats . . .

S R

A0 N

25. Write '"Unidentified field(s)" on unit
U7, and go to step 6.

26. If TLF # 0, then go to step 25, otherwise
use PRNTID to get the next level record
ID and go to step 2.

e i B G cgc o

1 Name: JFDFCR
; Purpose: To direct the overall processing sequence

for the JF and DF commands.

Linkage: e Calling sequence: CALL JFDFCR(CIND)
Common blocks used: SYSCOM, SY2COM,
SY3COM, CLTBL

e Subroutines or functions used: AEINIT,
LODFMT, CICFDF, BLDTBF, SETIN1, XXIN1,
N FTFMT, FTCMP, GETREC, TFORMW, PRNTID,
EXCMDS, TFORMZ, DISFMT.

e Files used: Message file (logical unit 7)

Input Description: CIND = integer variable; command indicator.

Set zero for DF and non-zero for JF.

Qutput Description: None

Process Description: 1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/.

2. Use AEINIT to initialize /SY3COM/,
returning the input set number in
SETNO, the input format number in FMTNC,
and error indication of non-zero in ERR.

3. If ERR = 0, go to step 5.

4, Write on U7, "Command terminated due to

syntax error)', and return to the calling
routine.

5., Store FMTNO in FMTID(2) and use LODFMT
(2,HIT) to load the format into page 2
of arrav FMT in /SY2COM/, returning
HIT as zero if the format could not be
found in the data base.

6. If HIT = 0, then write on U7, "Format
not found. ", and return to the calling

routine.

S LN 7oe TR L NI NPT

P VSCER YR

10.

11.

12.

13.

14.
15.

l16.

17.

1f COMMAS(1) = 3, meaning there were

no clauses in the input command, then

go to step 10.

Use CICFDF to process the clauses in

the input command, returning ERR non-
zero if any errors were found.

If ERR # 0, go to step 4.

Use BLDTBF(2) to convert the data base
format in page 2 of FMT to a standard
format in the Target Buffer Format,

TBF in /sSY3coM/.

Use SETIN1 to initialize the input set
for record ID's to be returned by XXIN1.
Use XXIN1(RID) to return the first record
ID in RID.

If RID = 0, meaning there were no records
in the input set, return to the calling
routine,

Set NL, the number of levels in the data
base to be used, to 1 or 2, depending on
whether CIND = 0 or # 0, respectively.
Then use FTEMT(RID, NL, ERR) to complete
the buffer formats with information about
fields whose names occurred in the input
command, returning ERR non-zero if an
error occurred.

If ERR # 0, then go to step 4.

Use FTCMP to complete starting location
information in the Working Buffer

Format, WBF in /SY3COM/.

Initialize I, the pointer to the desired
row of MTCT, the Move Table Control Table
in /SY3COM/, to 1.

Transfer the format number tor records

at this data base level from MTCT(3,I)

to FMTID(1). This prevents an unnecessary

retrieval o the format record by GETREC.

pe

!
f
f
i
F
é.
}
!

e VN

18.

19,

20,

21.

22.

23.

24.
25.

26.

27.

28.

29.

Use GETREC(1, RID, STAT) to retrieve
record RID into row 1 of BUF, the

record bufter in /SY2COM/, returning
STAT non-zero it there was any problem
with the retrieval.

I1f STAT # 0, ignore this Frecord by
going to step 27.

Use TFORMW(1,I) to transfer data from
row 1 of BUF to WBUF, the Working Buffer
in /SY3COM/, as directed by row I of
MTCT.

If T > NMTCT, the last used row of MTCT,
then go to step 23.

Increment I by 1,use PRNTID to get record
RID's parent record, PID, set RID to PID,
and go back to step 17.

Set EF = 1 and use EXCMDS to execute the
commands in CTBL, the Normal Command
Table in /SY3COM/, returning CFLAG as
false if any of the relational clauses
failed to be true.

If CFLAG is false, go to step Z27.

Use TFORMZ(2,1) to transter data from
WBUF to row 2 of BUF.

Use DISFMT to display the record in row
2 of BUF according to the format in
FMTID(2).

Use XXIN1 (RID) to retrieve the next record
in RID.

If RID # 0, meaning there was a next
record, go back to step 16.

Return to the calling routine.

r——r s ecw—— e

e A e ———r—g O B S)

e O

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

JNSNCR

To direct the overall processing sequence
for the JN and SN commands.

Calling sequence: CALL JNSNCR(CIND)

Common blocks used: SYSCOM, SY2COM,
SY3COM, CLTBL

Subroutines or functions used: AEINIT,
RLCLPR, SETIN1, SETOUT, XXIN1l, FTFMT,
FTCMP, GETREC, TFORMW, PRNTID, EXCMDS,
XXOUT, ENDSET

Files used: Message tile (logical unit
7), pointer lists file (logical unit 5)

CIND = integer variable; command indicator.

Set zero for SN and non-zero for JN.

None

1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/. 1Initialize
the comma array pointer, CP, to 2.
Initialize the number of records
selected, HITS, to 0.

. Use AEINIT to initialize /SY3COM/,

returning the input set number in SETNO,
and returning ERR non-zero if any errors
were found.

If ERR = 0, go to step 5.

Write on U’, '"Command terminated due to
syntax error, ", and return to the
calling routine.

If COMMAS(1) < 3, meaning that there
were no relational clauses input, go to
step 4.

P g

PRI]

6. Calculate FC, the first character of
the relational clause, = COMMAS(CP)+1.
Calculate NC, the number of characters
in the relational clause, = COMMAS
(CP+1)-FC. Then use RLCLPR(FC,NC,ERR)
to process the relational clause,
building buffer formats and commands
to be executed, and returning ERR non-

e e g AR s,

zero if any errors were found.

7. If ERR # 0, go to step 4.

8. Increment CP by 1, If CP # COMMAS(1l),
go back to step 6.

9. Use SETINl1 to initialize the input set
for record ID's to be returned by XXIN1.
Use SETOUT to initialize file U(5) to
receive selected record ID's.

10. Use XXIN1 (RID) to return the first
record ID in RID.

11. If RID = 0, meaning there were no
records in the input set, go to step 27.

12. Set NL, the number of levels of the data
base to be used, to 1 or 2, depending
on whether CIND = 0 o1 # 0, respectively.
Then use FTFMT(RID, NL, ERR) to complete
the buffer formats with information
about fields whose names occurred in
the input command, returning ERR non-
zero if an error occurred.

13. If ERR # 0, go to step 4.

14. Use FTCMP to complete starting location
information in the Working Buffer
Format, WBF in /SY3COM/.

15. Initialize I, pointer to the desired
row of MTCT, the Move Table Control
Table in /SY3COM/, to 1. Set R = RID.

16. Transfer the format number for records
at this data base level from MTCT (3,I)
to FMTID(1). This preyents an
unnecessary retrieval of the format

rece~da by GETREC.

- T s T T

17.

18.

19,

20.

21‘

22.

23.

24.

250

26.

27.

28.

Use GETREC(1, R, STAl) to retrieve
record R into row 1 of BUF, the record
buffer in /SY2COM/, returning STAT
non-zero if there was any problem with
the retrieval.

If STAT ¢ 0, ignore this record by
going to step 25.

Use TFORMW(1,I) to transfer data from
row 1 of BUF to WBUF, the Working
Buffer in /SY3COM/, as directed by
row I of MTCT.

If I > NMTCT, the last used row of
MTCT, then go to step 22.

Use PRNTID to get record R's parent
record, PR. Then set R = PR, incre-
ment I by 1, and go back to step 16.
Set EF = 1 and use EXCMDS to execute
the commands in CTBL, the Normal
Command Table in /SY3COM/, returning
CFLAG as talse if any of the
relational clauses failed to be true.
It CFLAG is false, go to step 25.
Increment HITS by 1, and use XXOUT
(RID) to store the selected record

ID on file U(5).

Use XXIN1(RID) to return the next
record ID in RID.

If RID # 0, meaning there is a next
record, go back to step 15.

Use ENDSET (HITS, U(5)) to create and
display an entry in the status table
of sets.

Return to the calling routine.

Name: JPRPCR

Purpose: To direct the overall processing sequence
for the JP and RP commands.

{ Linkage: e Calling sequence: CALL JPRPCR(CIND)
t

P e Common blocks used: SYSCOM, SY2COM,
g SY3COM

e Subroutines or functions used: AEINIT,
SETIN1, XXIN1, CIRP, GETREC, TFORMW,
. PRNTID, EXCMDS, COMSTR, SUBSTR, TFORMZ

e Files used: Message file (logical
unit 7), Report file (logical unit 12).

Input Description: CIND = integer variable; command indicator.

Set zero for RP command and non-zero for
JP command.

OQutput Description: None

Process Description: 1. Initialize file pointers U7 and Ul2
to the values stored in U(7) and U(12)

of /SYSCOM/. 1Initialize first and
last record indicator, FLREC, to zero.

2. Use AEINIT to initialize values in

common, return the input set number

in SETNO, and return an error indicator,
ERR, non-zero if any errors were found.

3. If ERR = 0, go to step 6.

4, Write on U7, '"Command terminated due to
syntax error.",

S. Return to the calling routine.

6. Use SETIN]l to initialize set number

SETNO for returning record ID's via
XXIN1.

7. Use XXIN1 to return the first record
ID, RECID, from the input set.

10.
11.

12,

13.

14,

15.

16.

17.

18.

19.

20.
21.

If RECID = 0, then write on U7, "Null
Input Set." and go to step S.

Use CIRP(CIND, RECID, ERR) to inter-
pret the command, build tables and
buffer formats, and return ERR non-
zero if any errors were found.

If ERR ¥ 0, go to step 4.

Initialize the Move Table Control
Table pointer, MTCTP, to one.

Transfer the format number for this
level of the data base from MTCT(3, MTCTP)
to FMTID(1). This prevents actual
retrieval of the format record by
GETREC, since it is not needed.

Use GETREC(1, RECID, STAT) to get record
RECID into row 1 of BUF in /SY2COM/,
returning STAT non-zero if a problem
occurred.

If STAT # 0, ignore this RECID by
going to step 28.

Use TFORMW(1l, MTCTP) to transfer data
from row 1 of BUF to WBUF, the Working
Buffer in /SY3COM/, based on the
directions provided by row MTCTP

of MTCT.

If MTCTP> last used row of MTCT, NMTCT,
then go to step 18.

Use PRNTID to get the record ID, PID,
of the parent of RECID. Store PID
into RECID, increment MTCTP by one,
and go back to step 12Z.

Initialize the BY Processing Table
pointer, BPTP, to one.

Get the Grouping Field Name pointer,
GFN, from column 1 of row BPTP of the
BY Processing Table, BPT of /SY3COM/.
If GFN = 0, go to step 33.

I1f GFN> 0, go to step 24.

}?0/5 2~

Pt o 1

22. Negate GFN, set ERR = 0, and use

: EXCMDS to execute the commands in

1 CTBL, the Normal Command Table of

/SY3COM/, as specified by columns

2 and 3 of row BPTP of BPT, returning

ERR non-zero if the commands could

’ . not be executed for some reason.

23, If ERR ¢ 0, assume no change in
this GFN, and go to step 25.

24, Use COMSTR to compare the new GFN
in WBUF to the current GFN in column
6 of BPT. If they are different,
go to step 49,

: 25. If BPTP2 last used row of BPT, NBPT,
then go to step 27,

26. Increment BPTP by 1 and go back to
step 19.

27. Set ERR = 0 and use EXCMDS to execute
all the commands stored in the
Function Command Table, FCTBL in 'i
/SY3COM/. |

28. Use XXIN1 to get the next record ID |
into RECID.

29, If RECID # 0, meaning there is
another record to be processed, then

g TR

go back to step 11.

30. Set FLREC = 2 to mean that the last
record is being processed.

31. Set BPTP = 1 and get GFN from column
1 of row 1 of BPT. j

32. If GFN< 0, negate GEN. |

33. If FLREC = 0, meaning we are processing
the first record, then set FLREC =1
and go to step 39.

34, Initialize the local BPT pointer,
LBPTP, to the current value of BPTP,

35. If BPT(1, LBPTP) = 0, go to step 38.

36. Transfer all function results and
concluding text from this BY level

by setting PFLAG = 2 * LBPTP and

4>51 di’

calling TFORMZ(2, PFLAG) to transfer
from WBUF to row 2 of BUF.

37. If LBPTP< last used row of BPT,

NBPT, then increment LBPTP by 1
and go back to step 35.

38. Write to Ul2 the first 120 characters
of row 2 of BUF., 1If FLREC = 2,
meaning we were processing the last
record, then return to the calling
routine.

39. Blank out the first 120 characters
of row 2 of BUF,

40. Initialize LBPTP = BPTP.

41, Set ERR = 1 and use EXCMDS to execute
the commands of CTBL specified by
columns 4 and 5 of row LBPTP of
BPT.

42. Transfer from WBUF to row 2 of BUF
field values, calculations, and

beginning text by setting PFLAG =

43, 1f LBPTP2 NBPT, then go to step 27.

44, Increment LBPTP by 1 and get GFN
from BPT(1, LBPTP).

45. If GFN = 0, go to step 41,

46. 1f GFN> 0, go to step 48.

47. Negate GFN, set ERR = 0, and use
EXCMDS to execute the commands of
CTBL specified by columns 2 and 3
ol vow LBPTP of BPT. 1If ERR is
returned non-zero, go to step 41.

48. Use SUBSTR to store the new value
of GFN from WBUF to column 6 of row

‘ LBPTP of BPT, and then go to step

| .

E 49. Use SUBSTR to store the new value

: of GFN from WBUF to column 6 of

row BPTP of BPT, and then go to

step 33.
4252 ¢y

2 *LBPTP-1 and calling TFORMZ(2, PFLAG).

.

Name:

: Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

PRNTID

To return the record ID of the next higher
level record in the same family tree of an
inverted tree logically structured data base,

e Calling sequence: CALL PRNTID (CID, PID,
TLYLAG)

e Common blocks used: None
e Subroutines or functions used: None

¢ Files used: None
CID = integer variable; child record ID.

PID = integer variable; parent record ID.
TLFLAG = integer variable; set zero or non-
zero depending on whether output parent ID
is not or is at the top level of the data
base, respectively.

Coded specifically for ASATS, the child
record ID consists of the segment number
concatenated with the acquisition date.

To get the parent record ID, the acquisition
date portion (lower 16 bits) is set to zero.
TLFLAG is set to 1 since ASATS parent records
are at the top level of the data basc.

R

Purgose:

Linkage:

Input Description:

Output Description:

Process Description:

RLCLPR

To parse a relational clause of the form
AE.OP.AE (where AE is an arithmetic expression,
and OP is a comparison operator) and build a
table of commands to evaluate the clause.

e Calling sequence CALL RLCLPR (FC, NC, ERR)
e Common blocks used: SY3COM

¢ Subroutines or functions used: CCMSTR, INDEX,
ADDLT, CFIND, AEPR, ADDNM, ADDDT, ADDFN

o Files used: None

FC = integer variable; first character number of
the string to be processed in array CMD of
/SY3COM/ .

NC = integer variable; number of characters in
the string to be processed.

ERR = integer variable; returned zero if no errors

are found, non-zero if au error is found.

1. Initialize ERR = 0, F = FC, N = NC, and K = 0.

2. If the character at F is not a single quote
mark, go to step 11.

3. Use INDEX to find the next quote mark at J.

4. If J # 0, go to step 6.

5. Set ERR = 1 and return to the calling routine.

6. If J< F+1, go to step 5.

7. Use ADDLT (F, J-F+1), V(1)) to add the literal

to the Working Buffer Format, WBF in /SY3COM/,
getting the row number of WBF returned in V(1).
8. Set K =1 to indicate that the left hand side
of the relational clause has been processed.
9. Recalculate the number of characters remaining,
N, = N -(J-F+1).

¢ ¢

10. Reset the first character pointer, F,
= J+1.

11. Use INDEX to find the first period in N
characters beginning at F and store

the location in I.
12. If I = 0, go to step 5.
{ ‘ 13, Use COMSTR to compare the four characters
' that start at I with an internal table of

E legal operators. If a match is found, then

E J is set to the row number of the internal

: table, otherwise go to step 5.

} 14, The actual operator number, OP, to eventually
be stored in the command table is calculated
by adding 4 to J.

15. J is initialized to 1.

16. If K = 0, go to step 19.

17. If 1 # F, go to step 5.

18. J is reset to 2, I' is incremented by 4 to
set it past the operator, N is decremented
by 4 to account for the operator characters,
and a jump to step 20 is made.

19. N is set to the number of characters to the
left of the operator by setting it equal to
I-F.

20. If N< 0, go to step 5.

21. If the character at F is not a single quote
mark, go to step 28.

22. If N< 2, go to step 5.

23, If the character at F+N-1 is not a single
quote mark, go to step 5.

24. Use ADDLT (F, N, V(J)) to add the literal to
WBF and receive the row number in V(J).

25. If J = 2, go to step 27.

26, Set J = 2, F = I+4, and N = NC-N-4 to adjust
to the right hand side of the operator, and
go back to step 20.

27. Increment NCTBL, the pointer to the last
used 1ow of the Normal Command Table, CTBL in

% |
_’ ’ ‘-I |||-||||I.‘.—|f|||||||l||l|| - . — |' v |

;
E
?

=TT

280

29.
30.

31.

32.

33.

34,

35.

36.
37.

38.
39.

/SY3COM/, by 1. Store V(1) in CTBL

(1, NCTBL), OP in CTBL(2, NCTBL), V(2) in
CTBL (3, NCTBL), NCTBL+1 in CTBL (5, NCTBL),
and return to the calling routine.

Use CFIND to locate any arithmetic operator,
storing its location in K.

I1f K = 0, go to step 33.

Increment NWBF, the pointer to the last used
row of WBF, by 1. Store NWBF in V(J), 0 in

WBF(1,NWBF), $R in WBF(2,NWBF), 4 in
WBF (6, NWBF), and -1 in WBF (7, NWBF).
Use AEPR (F, N,V(J), ERR) to process the

arithmetic expression, building commands in
CTBL which store a result at V(J) of WBF,

and returning ERR non-zero if any errors were

found.

If ERR # 0, go to step 5, otherwise go to
step 25.

Use CFIND to determine if the character at

F is the number sign (K will be returned =1
and L will be returned = 8) or a numeric
character (K will be returned = 1 and L will
be >8).

If K= 0 (implying a field name), go to step
38.

If L # 8 (implying a numeric literal), use
ADDNM (F, N, V(J)) to add the number to

WBF, receiving the row number back in V(J),
and go to step 25.

If N# 5, go to step 5.

Use ADDDT (F, N, V(J)) to add the date to WBF,

receiving the row number in V(J), and go

to step 25.

If N>12, go to step 5.

Use ADDFN (F, N, V{(J)) to add the field name
to WBF if necessary, receiving the row number
back in V(J), and go to step 25.

/“‘56/55/

Dttt e e e e et s

s p—y et T RED

L e

Name:

Purpose:

Linkage:

Input Description:

Output Description:

Process Description:

b agiien, _alLE o o 3 ¢ ot

RPCLPR

To parse a replacement clause of the form FN = AE
(where FN is a field name and AE is an arithmetic
expression) and build a table of commands to
perform the replacement.

e¢ Calling sequence: CALL RPCLPR (ECS, TNC,
LOCEQL, IND, ERR)

e Common blocks used: SY3COM

e Subroutines or functions used: INDEX, ADDEN,
COMSTR, ADDLT, CFIND, ADDDT, AEPR, ADDNM

e Files used: None

FCS = integer variable; first character number
of the string to be processed in array CMD of
/SY3COM/.

TNC = integer variable; total number of characters
in the string to be processed.

LOCEQL = integer variable; the character number
which is the location of the equal sign in the
input string. If zero, the equal sign will be
searched for internally.

IND = integer variable; command indicator to
allow special processing for different commands.
A value of zero means the Change Field command
is being processed. A non-zero value means the
Display Formatted or Joint Display Formatted
command is being processed.

ERR = integer variable; set to zero if no errors
are found and set to non-zero if an error is
found.

1. If LOCEQL < 0, then INDEX is used to find the
equal sign and its character position is
stored in I, otherwise I is set = LOCEQL.

2. If the equal sign is located, go to step 4.

PR it st had

10.

11.
12,

13.
14.

15.

16.
17.

. Set ERR = 1 and return to the calling routine.

Initialize the first character pointer, FC,
to FCS.

Calculate the number of characters, NC, in
the field name = I-FC.

If NC< 0, go to step 3.

If NC > 12, go to step 3.

Use ADDFN (FC, NC, K) to add the field name
to the Working Buffer Format, WBF in
/SY3COM/, if it is not already there, and
receive back the row number of WBF in K.

If IND = 0, then increment NTBF, the pointer
to the last used row of TBF, the Target Buffer
Format in /SY3COM/, by one, store a one in
TBF (1, NTBF) and store K in TBF (2, NTBF).
Move the first character pointer, FC, to the
first character past the equal sign by setting
FC = I+1. Calculate NC, the number of
characters to the right of the equal sign,

by NC = TNC-I.

If NC< 0, go to step 3.

I1f the character at FC is not a single quote
mark, go to step 17.

If NC< 3, go to step 3.

Use ADDLT (FC, NC, L) to add the text literal
to WBF and receive the row number back in L.
Increment NCTBL, the pointer to the last used
row in CTBL, the Normal Command Table in
/SY3COM/, by one. Store L in CTBL (1, NCTBL),
16 in CTBL (2, NCTBL), K in CTBL (4, NCTBL),
and NCTBL+1 in CTBL (5, NCTBL).

Return to the calling routine.

Use CFIND to determine if the character
string to the right of the equal sign is

an arithmetic expression by locating any

+, -, * /, (, or), and pointing to it with
I.

,1;58i7c)

18. If T # 0, then call AEPR (FC, NC, K, ERR)

19.
20.
21.

22.

23.

24,

to process the arithmetic expression,
creating commands in CTBL to evaluate the
expression and store the result in K,
returning ERR as non-zero if any errors

were found, otherwise go to step 21.

If ERR # 0, go to step 3.

Return to the calling routine.

Check the character at FC for the number sign
or a numeric character via CFIND.

If neither was found, the right side of the
equal is assumed to be a field name. If

NC > 12, then go to step 3, otherwise call
ADDFN (FC, NC, L) and go to step 15.

If character FC is a number sign, then a date
literal is expected. 1If NC # 5, then go to
step 3, otherwise call ADDDT (FC, NC, L) to
add the date literal to WBF and go to step
15.

If character FC is a numeric character, then
a numeric literal is expected, and ADDNM

(FC, NC, L) is called to add it to WBF. Then
go to step 15.

ﬂr,/

T AT e < e

iy Name: STAEPR

f

i ’
: Purpose: To store arithmetic processing data into the

normal command table in mathematic
hierarchical order.

Linkage: e Calling sequence: Call STAEPR (VTAB, OPC,
FIRST, LAST, TREG)

o Common blocks used: SY3COM

® Subroutines or functions used: None

o Files used: None

Input Description: VTAB = integer array; contains pointers to

variables or literals in the working buffer
format table, intermediate storage registers
or special integers representing close or open
brackets.

OPC = integer array; contains either

mathematical operator indicators or
special integers representing close or open
brackets.

FIRST = integer variable;

pointer to first variable in VTAB

and OPC to be used for processing.

1 LAST = integer variable; pointer to last
variable in VTAB § OPC to be used in
processing.

; TREG = integer variable; index pointer
| into intermediate storage register buffer
used for intermediate data storage.

Qutput Description: Normal command table filled with appropriate.

arithmetic processing data. TREG updated
as intermediate storage registers are
needed.

460
72

m‘-—_——___

Process Description:

-

A loop is set up to search the entries in
the OPC table. Steps 1 thru 3 performed
for all entries.

1. The intermediate storage register pointer
(TREG)is updated , The OPC entry for the
next two adjacent locations is checked
for mathematical hierarchy. If they
are of equal hierarchy or if the first
is of a lesser hierarchy, step 2 is
performed, otherwise step 3 is performed.

2. The next normal command table entry is
loaded with values from the current and
next entry of VTAB, the current value of
OPC and the intermediate storage register
pointer (TREG). Then the next entry of
VTAB is loaded with the intermediate
storage register pointer (TREG) and return
to step 1.

3. The next normal command table entry is
loaded with values from the next and next

+1 entry of VTAB, the next

+]1 value of OPC and the intermediate
storage register pointer (TREG). The
rext +1 entry of VTAB § OPC is loaded
with the current value of VTAB § opC
respectively. The next +2 entry of VTAB
is loaded with the intermediate storage
register pointer (TREG) and return to step
1.

et e et

|

e w————r

Name:

Purgose:

Linkage:

Input Description:

Output Description:

o

e s = e e e~ p—

SQZE

Tn delete extraneous blanks from a
character string and build an array of
pointers to the commas in the character
string.

e Calling sequence: CALL SQZE (INARY,
INST, INLEN, OUTARY, OUTST, OUTLEN,
COMMAS)

¢ Common blocks used: None
e Subroutines or functions used: None

® TFiles used: None

INARY = integer array name; starting location
of the array containing the input string
INST = integer variable; character number
of INARY at which to begin processing

INLEN = integer variable; number of
characters in INAR' to be processed

OUTST = integer variable; character number
of OUTARY at which to begin storing output
COMMAS = integer array name; contains the
Comma Location Table. The first word
contains the number of the last used word
in the array and should be input containing
the value one upon the first call within
any one command.

OUTARY = integer array name; starting
location of the array to contain the output

OUTLEN = integer variable; number of
characters stored in OUTARY

COMMAS = integer array name; contains the
Comma Location Table. The first word
conta-ns the number of the last used word

in the array. The other words contain the
character number of OUTARY where commas occur
(exclusive of those commas occurring between

L

> gl . han il e ant TIET WS e — = = ey T W

pairs of quote marks). ‘The tirst word
will be output as a negative value when
an exclamation mark has been encountered
and stored as a terminating comma for
the command.

Process Description: 1. Counters and pointers are initialized.
2. If the last character of INARY has
been passed, go to step 10.

3. If processing is between quote marks
(QSET = 2 or 3), check this character
for the terminating quote mark, reset
QSET to 1 if it is, and go to step 8.

4, If the character is a blank, 90 to
step 9.

5. If the character is a quote mark, set
QSET (= 2 for single quote, = 3 for
double quote) and go to step 3.

6. If the character is a comma, store the
OUTARY pointer in the next avail: ule
location in COMMAS, increment the pointer
to the last used word of COMMAS, and go
to step 8.

7. If the character is an exclamation mark,
store the OUTARY pointer in the next
available location in COMMAS, increment
and negate the pointer to the last used
word of COMMAS, store a comma in
OUTARY, increment the OUTARY pointer,
and go to step 10.

8. Transfer the character to OUTARY and
increment the OUTARY pointer.

9, Increment the INARY pointer and go to
step 2.

10. Store the pointer to the last used word
of COMMAS into word one of COMMAS,
calculate OUTLEN as the OUTARY pointer
minus OUTST, and return to the calling

program.

P

T . oy i gl ot o

Input Description:

Qutput Description:

Process Description:

TFORMW

To transfer data from a source buffer to
the Working Buffer.

e Calling sequence: CALL TFORMW(ROW, MTCTRW)
e Common blocks used: SY2COM, SY3COM
® Subroutines or functions used: SUBSTR

e Files used: None

ROW = integer variable; the row number of the
source buffer, BUF in /SY2COM/, where the
input data is stored.

MTCTRW = integer variable; the row number

of the Move Table Control Table, MTCT in
/SY3COM/, to be used for control.

None

The starting row of the Multilevel Move Table,
MLMT in /SY3COM/, is retrieved from MTCT

(1, MTCTRW). The number of rows of the

MLMT to use is retrieved from MTCT (2, MTCTRW)
and used to calculate the final row number.
Then for each of these rows, (1) a pointer

for the Source Buffer Format, SBF in /SY3COM/,
is retrieved from the first word of the row

of MLMT, (2) a pointer for the Working Buffer
Format, WBF in /SY3COM/, is retrieved from

the second word of the row of MLMT, and (3)
SUBSTR is used to transfer the data from

BUF to WBUF, the Working Buffer in /SY3COM/.
After the specified number of rows have

been processed, a return is made to the calling
routine.

s

Je¢

e s —— S 7 ARSI TV O 0

Name:

Purgose:

Linkage:

Input Description:

Output Description:

Process Description:

TFORMZ

To transfer data from the Working Buffer to
a target buffer, converting the data
representation when needed.

e Calling sequence: CALL TFORMZ(ROW, PF)
e Common blocks used: SY2COM, SY3COM

e Subroutines or functions used: SUBSTR,
DTEINT, CHAR, COMSTR

e Files used: None

ROW = integer variable; the row number of the
target buffer, BUF in /SY2COM/, where the
data is to be stored.

PF = integer variable; indicator for which
ficlds of the target buffer are to be

filled from the Working Buffer, WBUF in
/SY3COM/. A field is filled if word one of
its Target Buffer Format, TBF in /SY3COM/,

is equal to PF.

None

For each row of TBF, the following process is
done, and then a return is made to the
calling routine:

1. If column 1 of TBF is not equal to PF,
ignere this row and go to step 25.

2. Retrieve F, the pointer to the WBF row
number, from column 2 of TBE.

3. If the output field type, column 5 of TBVF,
is > 3, go to step 9.

4. If column 2 of row F of WBF indicates text
type (by $T), then use SUBSTR to transfer
the text from the command line array, CMD
in /SY3COM/, to BUF and then go to step 25.

65—
7

5.

9‘

10,
11.

13.

14.
15.
10.

——————————-—_.___

If column 2 of row F of WBF does not
indicate a results field (by $R), then
go to step 7.

If column S of row F of WBF does not
indicate text type (contains non-zero),
then go to step 8.

Use SUBSTR to transfer the data from
WBUF to BUF and if WBUF was a results
field, then use SUBSTR to rcinitialize
WBUF from the first word of row F of WBF
and go to step 25, otherwise just go to
step 25.

Use SUBSTR to transfer the data in WBUF
to an integer variabitc named RESULT and
based on the target type (column 5 of
TBF), use CHAR (type = 1) or DTEINT
(type = 2) to convert RESULT to a
character string in BUF. Then reinitialize
WBUF from the first word of row F of WBYF
and go tu step 25.

Extract the first character of the field
in WBUF and store this character in
CRDTYP,

1f the target field type # 5, go to step 12,
Search the array FLMTYP until a match with
CRDTYP is found at element L. If no
match is found, set L = 8. Store the 12
characters of row L of table FLMTAB into
the field in the target buffer and go

to step 25.

If the target field type ¢ 4, go to

step 23,

Scarch the array CMPTYP until a match
with CRDTYP is found at element L. 1If
no match is found, set L = 11,

If L< 5 o0or =11, go to step 22.

If L > 7, go to step 19.

Extract the pointer to the "UNLOAD"
field from TBYF(4,1) and store it in K,

s

17.
18.

19.

20.

21.

22,

4
.

o9
F-N

25.

If K = 0, go to step 22.

If the "UNLOAD" field is non-blank,

then increment L by 3 and go to step 22,
otherwise go to step 22.

Extract the pointer to the "LSD" field
from TBF(4,2) and store it in K.

If K= 0, then set L = 11 and go to

step 22.

Use SUBSTR to transfer the contents of the
"LSD" fiecld from WBUF to the target field
and go to step 25.

Use SUBSTR to storc the 12 characters

of row L of table CMPTAB into the ficld

in the target buffer and go to step 25.

If the target ficld type # 9, go to step 7.
Scarch the array GCMTYP until a match
with CRDTYP is found at eclement L. If
no match is found, set L = 1. Use
SUBSTR to storce the 12 characters of row
L of table GCMTAB into the field in the
target buffer.

Move to the next row of TBF and start

over at step 1.

S v T e T R

Name:

Purpose:

Linkage:

Input Description:

OQutput Description:

Process Description:

TJUMP

To eliminate headers and other data
associated with a null set.

Calling sequence: CALL TJUMP
e Common blocks used: SYSCOM, SY2COM

& Subroutines or functions used: INDEX,
SUBSTR, INPARM
o Files used: None

A command line containing the set to be
checked.

None

The set in question is checked tb see if
it contains data. 1If it does contain data
no action is required and the routine exits.
If there is no data in the set, the label
from the command line is saved for later
use. Next the input file is read until a
label card containing '"LA" followed by

the label saved from the JT command line is
found. The routine then exits.

[TR

4.3 DESCRIPTION OF SUBROUTINE MODIFICATIONS

D €

This section contains all subroutines requiring minor

modifications.

Those requiring major redesign are in 4.2

£

ST T T T -

Name: CHAR

Modification Purpose: To allow conversion of negative numbers.

Linkage Modification: e Calling sequence: No change

e Common blocks used: No change

e Subroutines or functions used: The
Fortran function IABS is now used.

e Files used: No change

Input Description Modification: V = integer variable; may now contain

values less than zero.

Output Description Modification: STR = 1integer array name; leftmost

position will contain the minus
character if the input value in V
was negative.

Process Description Modification: Convert the absolute value of V to a

character string by the original process.
Then, if V is negative, store the minus
character as the lettmost character of
the output field.

e . e
* ~- el s Ak 9 T TDW e —— e ————p—r—————.

e

e b

Name: JLASYS

Modification Purpose: To allow the following new capabilities:
1. Data base protection for Delete

Set, Delete Record, Delete Key and
No Key commands.

2. Null set detection and control
transfer.

3. Joint Sort, Joint Select Non-Key,
Report and Joint Report commands.

Linkages Modification: No change
Input Description Modification: No change
Qutput Descrip;}bn Modification: No change
Process Description Modification: 1. When the input command JT is

encountered call TJUMP subroutine. \

2. When the input command LA is
encountered treat it as a NOP and
process next input command.

3. When either of the commands DX,

DR, DS or NK is encountered, call
DBPRO. If DBPRO —eturns a flag = 0
do not execute the command. If
DBPRO returns a flag not = 0
process the command as before,

4, When the JS command 1s encountered
set SFLAG = 2 and call the SOKRTP
subroutine.

5. When the SO command is encountered
set SFLAG = 1 and call the SORTP
subroutine,

6. When the "JN" or "SN'" command 1is
encountered call the JNSNCR
subroutine.

\
A
- - P U At - DT

B]

7. When the "RP" or "JP" command
is encountered call the JPRPCR
subroutine.

8. When the 'OF" or “"DF'" command 1is
encountered call the JFDFCR
subroutine.

¥
¢
;
t
3
¥
!

-

Name :

Modification Purpose:

Linkage Modification:

T —— e ———re————— . .
v ——are-

SEL (Main program)

To echo 80 characters of the input
command instead of 40 to the message
file (unless it is the terminal).

e Calling sequence: No change
e Common blocks used: No change

o Subroutines or functions used:
No change
e Files used: No change

Input Description Modi 'ication: No change

Output Description Modification: No change

Process Description Modification: When the WRITE statement with array

X in it is executed, the entire array
{20 words) is written instead of
just the first 10 words.

e Y

Name:

Modification Purpose:

Linkage Modification:

Input Description Modification:

OQutput Description Modification:

Process Description Modification:

S ap————rre— v

SORTS

To allow the user to order a
set of FLOCON records based
upon the contents of fields in
either the FLOCON or DAPTS
records for that set.
e Calling Sequence: CALL SORTS |
(SET, NF, LIST, SF)
e Common Blocks used: No change
e Subroutines or functions used:
No change

e Files used: No change

SF: integer value, where SF =1

means sort on FLOCON data, SF =2

means sort on either FLOCON or '
DAPTS data.

No change #
3

For SF = 2 only, the DAPTS record

for each appropriate FLOCON

record 1s retrieved. Next the

formats for DAPTS or FLOCON records

are loaded as needed, a table of
sorting names is loaded in proper]

hierarchical order and a buffer
pointer table is also built to
point to the proper buffer for E
Lastly, the data

retrieval section is altered to

data retrieval.

get data from the appropriate
buffer by use of the buffer
pointer table as an index.

Name:

Modification Purpose:

Linkage Modification:

D . T

Input Description Modification:

Qutput Description Modification:

Process Description Modification:

SORTP

To pass an argument to SORTS to
indicate the type of sort to
perform.

e Calling sequence: CALL SORTP(SF)

e Common blocks used: No change

e Subroutines or functions used: No
change

® Files used: No change

SF = integer variable, indicates
which type of sort SORTS is to per-
form. 1 = normal sort, 2 = jeint sort.

None

The argument SF received from JLASYS

e T

is passed to SORTS to allow SORTS to
perform the appropriate type of
sort.

57

s« e——

e L Y e et T VY e

Name:

Modification Purpose:

Linkage Modification:

Input Description Modification:

Qutput Description Modification:

Process Description Modification:

SPCSET

To stop the input process when an
end-of-file is read as well as a
zero record ID.

e C(Calling sequence: No change
e Common blocks used: No change

e Subroutines or functions used:
No change

e Files used: No change

No change

No change

Insert an end-of-file branch to

statement number 3 into the state-
ment that reads from the data file.

e o mtlt

e ——, W ———"T T

4.4 DESCRIPTION OF NEW SYSTEM TABLES

This section describes the common blocks and tables used in

conjunction with implementing arithmetic operators.

BUFFER FORMATS

General layout for Source Buffer Format (SBF), Working Buffer
Format (WBF), and Target Buffer. Format (TBF).

Column 1 -

WBE:

TBF:

Column 2 -

WBI:

TBE:

Column 3 -

1

3

1

word - SBF: temporary key field indicator for CF
command

the value to be used for initialization after

printing of a results field

print flag to associate printing of this field

with a change of a BY field (BY piruccssing table

row number N)

Print flag = 2*N-1 means print this field at top
of BY number N

Print flag = 2*N means print this field at bottom
of BY number N

words - SBF: first word 1is data base format row
number of key field for CF command.

four types of data: (1) alphanumeric characters

representing field names, (2) $Lbb in first word

for integer literal in command line, (3) $Tbb in

first word for alphanumeric literal in command line,

(3) $®bb 1in first word for calctlation results

First word is row number of WBF of desired output

field. Second word is key field indicator for CF

command. Third word is data base format row

number of key field for CI command.

word - SBYF, WBY, TBF: starting character for actual

value in buifer being used. (In WBF, the data is actually

in the command line instead of the wurking buffer if

column 2 = $71bb)

Column 4 -

1

word - SBI, WBY, TBF: 1length of tieild (in characters)

A B s s

L et WL T TR

S eT e T, TR TR TN T T R T RN T T mmeemm————m—m—m . o - - — T T Trmemm— s oo T —

Column S5 - 1 word - SBEF, WBF, TRF: type of data in the field:

-1
0
1
2

means
means
means

means

a binary integer contained in 4 characters

an alphanumeric character string

an integer in a numeric character string

a date in YDDD numeric character string format

AT g

TR e

L

BY PROCESSING TABLE

Each successive row of this table defines a successively lower

level subgroup of the input data and the processing associated

with a

Column

Column

Column

Column

Column

Column

change at that subgroup level.

1 - 1 word - binary integer; index to Working Buffer
Format (i.e., row number) pointing to the Grouping Field
Name (GFN). 1If 0, it mcans the GFN was E§E. If <0, then
a calculation must be performed before a test for the BY

change can be made.

2 - 1 word - binary integer; starting row number of normal

command table when column L is <40,

3 - 1 word - binary integer; number of rows of normal

command table to be processed when column 1 is <0,

4 - 1 word - binary integer; starting row number of normal
command table for use when the value of this BY field or

calculation changes.

5 - 1 word - binary integer; number of rows of normal
command table to process when the value of this BY field

or calculation changes,

6 - 5 words - current value of the GEN for this subgroup
level. An integer or calculation result is stored in
the first word, whercas a text field may be all 20

characters.

380 0

COMMAND OPLRATIONS TABLE

This table does not exist as an identifiable entity in the
software. It is an explanation of what is meant by a row
of a command table and a definition of what operation is
performed for cach operator by the subroutine EXCMD, In
the description below, columns 1-4 of a command table are
referenced by the terms OPND(1), OPERATOR, OPND(2), and
RESULT, wvespectively, and CFLAG is a4 logical argument in
the call to EXCMD.

OPERATOR OPERATION PERFORMED
1 ADDITION: OPND(1) + OPND(2)-RESULT
2 SUBTRACTTON: OPND(1) - OPND(2)-+RESULT
3 MULTIPLTCATION: OPND(1) * OPND(2)~RESULT

4 DIVISION: OPND{(1)/0PND(2)+RESULT

5 I P IF OPND(1) < OPND(2), THEN .TRUE.~CFLAG,
OTHERWISE FALSE.-CFLAG

6 LB TE opND(D)Y < OPND(2), THEN .TRUE.-CFLAG,
OTHERWISE LJFALSE.»CFLAG

7 oL L OPND(LY = OPAND(2), THEN TRUE.-CFLAG,
OTHERWISE L FALSLE. ~CFLAG

8 CNEL TE OPND(1)Y # OPND(2), THEN .TRUE.»CIFLAG,
OTHERWISE JFALSLE.»CFLAG

9 LGEL 1F OPND(1) 2z OPND(2), THEN .TRUE.» CVFLAG,
OTHERWISYE L VFALSE.-CFLAG

10 LT TE OPND(1) > OPND(2), THEN ,TRUE.-» CFLAG,
OTHERWISE 2ALsEH., »CFLAG

11 COUNT: 1F OPND(2) 1S NOT BLANK, THEN OPND(1)
+1 5 OPND(1)

12 NUM, MIN. o THE NUMERICAL MINIMUM OF OPND(1) AND
OPND(2) > OPND(1]

13 NUM, MAX, : THE NUMERICAL MAXTMUM OF OPND(1Y AND

OPND(2) » OPND(])

OPERATOR OPERATION PERFORMED

14 ALPHA MIN.: THE ALPHA MINIMUM OF OPND(1) AND
OPND(2) » OPND(1)

15 ALPHA MAX.: THE ALPHA MAXIMUM OF OPND(1) AND
OPND(2) - OPND(1)

16 TRANSFER: OPND(1)- RESULT

| < 5

A2 77

COMMAND TABLE

General layout for the normal command table and the function
command table. Each row of this five-column table represents
an operation to be performed by the execute command subroutine,
EXCMD.

Column 1 - 1 word - binary integer pointing to the first operand.
A positive number is the row number of the Working Buffer
Format. A negative number means an intermediate storage
register, and its absolute value tells which register.

Column 2 - 1 word - positive binary integer representing the
operation to be performed. See Command Operations Table.

Column 3 - 1 word - binary integer pointing to the second operand

for binary operations. Same type pointer as column 1.

Column 4 - 1 word - binary integer pointing to the location where
the result ot the operation is to be stored. Same type

pointer as column 1.

Column 5 - 1 word - binary integer whose value is the row number
of this command table to which a jump is made when the

current operation cannot be performed due to absence

of data in an operand.

COMMON BLOCK CLTBL

This common block contains the 50 word array named COMMAS,
which is the Comma Location Table.

COMMON BLOCK SY3COM

Variable or Array

CIBL(5,50)
FCTBL(5,10)
WBUF (50)
WBF(7,50)
SBF(7,20)
TBF(7,30)
MLMT(2,20)
MTCT(3,2)
BPT(10,5)
REG(16)
CMD(100)
NCTBL
NECTBL
NWBE

NSBF

NTBF
NMLMT
NMTCT

NBPT

Usage

Normal Command Trble

Function Comm i« Table
Working Butfer

Working Buffer Format

Source Buffer Format

Target Buffer Format
Multilevel Move Table

Move Table Control Table

BY Processing Table
Intermediate storage registers
Packed input command

last used row number in CTBL
last used row number in FCTBL
last used row number in WBF
last uscd row number in SBF
last used row number in TBF
last used row number in MLMT
last used row number in MTCT
last used row number in BPT

el 4

COMMA LOCATION TABLE

Table that points to the commas which surround relational,
replacement, and BY clauses, and report expressions in the
packed input string for the command. It is a one-dimensional

array of four-byte integers.

Word 1 - cinary integer whose absolute value is the last used
word of the Comma Location Table. A negative value is
used for the JP § RP commands to indicate that the
command terminating exclamation point was encountered
by subroutine SQZE.

Words 2-n - binary integers whose values are the character
numbers in array CMD of /SY3COM/ where significant

syntactical commas occur.

MULTILEVEL MOVE TABLE

Each row of this two-column table represents a move of data to
be made by TFORMW subroutine.

Column 1 - 1 word - binary integer whose value is the row number
of the Source Buffer Format array where information
about the field 1in the Source Buffer is located.

Column 2 - 1 word - binary integer whose value is the row number
of the Working Buffer Format array where information
) about the t1ield in the Working Buffer is located.

MOVE TABLE CONTROL TABLE

Each row of this three-column table defines which moves in the
Multilevel Move Table are to be performed for the record in
the Source Buffer from a particular data base level.

Column 1 - 1 word - binary integer whose value is the starting
row number in the Multilevel Move Table.

Column 2 - 1 word - binary integer whose valuz is the number of
rows in the Multilevel Move Table to be proc:ssed via
TFORMW subroutine to get all the needed data transferred
from the Source Buffer to the Working Buffer at a

particular data base level.

Column 3 - 1 word - binary integer whose value is the format
number for records at this data base level.

	1980022332.pdf
	0024A02.JPG
	0024A03.JPG
	0024A04.JPG
	0024A04.TIF
	0024A05.TIF
	0024A06.TIF
	0024A07.TIF
	0024A08.TIF
	0024A09.TIF
	0024A10.TIF
	0024A11.TIF
	0024A12.TIF
	0024A13.TIF
	0024A14.TIF
	0024B01.TIF
	0024B02.TIF
	0024B03.TIF
	0024B04.TIF
	0024B05.TIF
	0024B06.TIF
	0024B07.TIF
	0024B08.TIF
	0024B09.TIF
	0024B10.TIF
	0024B11.TIF
	0024B12.TIF
	0024B13.TIF
	0024B14.TIF
	0024C01.TIF
	0024C02.TIF
	0024C03.TIF
	0024C04.TIF
	0024C05.TIF
	0024C06.TIF
	0024C07.TIF
	0024C08.TIF
	0024C09.TIF
	0024C10.TIF
	0024C11.TIF
	0024C12.TIF
	0024C13.TIF
	0024C14.TIF
	0024D01.TIF
	0024D02.TIF
	0024D03.TIF
	0024D04.TIF
	0024D05.TIF
	0024D06.TIF
	0024D07.TIF
	0024D08.TIF
	0024D09.TIF
	0024D10.TIF
	0024D11.TIF
	0024D12.TIF
	0024D13.TIF
	0024D14.TIF
	0024E01.TIF
	0024E02.TIF
	0024E03.TIF
	0024E04.TIF
	0024E05.TIF
	0024E06.TIF
	0024E07.TIF
	0024E08.TIF
	0024E09.TIF
	0024E10.TIF
	0024E11.TIF
	0024E12.TIF
	0024E13.TIF
	0024E14.TIF
	0024F01.TIF
	0024F02.TIF
	0024F03.TIF
	0024F04.TIF
	0024F05.TIF
	0024F06.TIF
	0024F07.TIF
	0024F08.TIF
	0024F09.TIF
	0024F10.TIF
	0024F11.TIF
	0024F12.TIF
	0024F13.TIF
	0024F14.TIF
	0024G01.TIF
	0024G02.TIF
	0024G03.TIF
	0024G04.TIF
	0024G05.TIF
	0024G06.TIF
	0024G07.TIF
	0024G08.TIF
	0024G09.TIF
	0024G10.TIF
	0024G11.TIF
	0024G12.TIF
	0024G13.TIF
	0024G14.TIF
	0025A02.TIF
	0025A03.TIF
	0025A04.TIF
	0025A05.TIF
	0025A06.TIF
	0025A07.TIF

