

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

"Made OVAL !e under NASA sponsOmhy 	

JSC- 13789

1 Q. 2 5.4
in the interest of early and wide di- .	a 0 _	 r
38mination of Earth Resources Survey 	

DFTAIL DESIGN SPECIFICATION
Program intcrri3tion and without liability	 FOR

_	 for any use made the, f "
ENHANCEMENT OF THE AUTOMATIC STATUS

AND TRACKING SYSTEM SOFTWARE

Job Order 71-695

(TIRF 77-0035)

Prepared By

Lockheed Electronics Company, Inc.

System and Services Division

Houston, Texas

Contract NAS 9-15200

For

EARTH OBSERVATIONS DIVISION

fir

x

N.g SA CR-

SCIENCE AND APPLICATIONS DIRECTORATE

(L8U-IU254) DETAIL DESIGI1 SeLC1k'ICA1A.UN FUL
EtiHANCESLbiT OF THE AUI'0ni► 11C ^>IliIJS A,+D
TuALK16G SYS'iri`f SUF'ToiARE (..ockuees
Electronics Cu.)	 102 p ri g AuulMi' A01

C.SI.L J5D 63/43

..8J-30837

bLCIds
^, u., 5 4

National Aeronautics and Space Administration

LYNDON B. JOHNSON SPACE CENTER
Houston, Texas

November 1977

LEC- 11512

JSC- 13789

DETAIL DESIGN SPECIFICATION

FOR

ENHANCEMENT OF THE AUTOMATIC LTATUS

AND TRACKING SYSTEM SOFTWARE

Job Order 71-695

(TIRF 77-0035)

Prepared By

D. K. McCarley

J. M. Everette

K. P. Eckel

J

APPROVED BY

LEC
	

NASA

P. L. K mm, SupE.cvisor
	

V. M. Daup in
Applications Software Section
	

Systems & Facilities Branch

Prepared By

Lockheed Electronics Company, Inc.

For

Earth Observations Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TEXAS

November 1977

LEC- 11512

1

CONTENTS

Sc.:_: ion Page

1.	 INTRODUCTION . .	 1-1

2.	 REFERENCES .	 2-1

3.	 OVERVIEW OF MODIFICATION . .	 3-1

3.1 GENERAL . .	 3-1

3.2 PROGRAM ORGANIZATION. .	 3-2

4.	 DETAIL DESIGN. .	 4-1

4.1 GENERAL . .	 4-1

4.2 NEW SUBROUTINE DETAIL DESIGN . .	 4-2

4.3 DESCRIPTION OF SUBROUTINE MODIFICATIONS .	 4-69

4.4 DESCRIPTION OF NEW SYSTEM TABLES. .	 4-77

Figures Page

3.2-1 Subroutines required for commands not using
arithmetic operators .	 3-4

3.2-2 Subroutines required for connands using
arithmetic operators .	 3-5

3.2-3 Structure Diagram for Change Field Command . .	 3-6

3.2-4 Structure Diagram for Display Formatted and
Joint Display Formatted command. .	 3-7

3.2-5 Structure Diagram for the Select Non-key and
Joint Select Non-key Commands 3-8

l

3.2-6 Structure Diagram for Report and Joint Report
Commands .	 3-9

V
^t

ii

1. INTRODUCTION

I	 This document provides a detail design for enhanced data

management capabilities of the LACIE Automated Status and

Tracking System (ASATS) as requested in Reference 2. ASATS

was implemented on the PDP 11/45 using the Regional Informs-

tion Management System (RIMS), a generalized data base

management system. The requested enhancements will be made

to RIMS. They included:

a. Additional Data Base Protection - In order to prevent

inadvertent destruction of the data base, additiona). user
interaction to verify the user's desire to execute the

command is requested for certain data base update commands.

b. Null Set Detection and Control - In order to prevent

production of headers for reports containing no data, a
test and jump command is requested.

c. Arithmetic Operators - The ability to allow arithmetic

operations on fields of data for certain operations is

requested.

d. Interdata Base Comparisons and Arithmetic - RIMS currently

has the ability to generate sets by specifying arith-

metic relationships between fields and literal values.

The ability to specify arithmetic relationships between

fields is requested. These relationships should allow

the use of arit hmetic operators and allow the comparison

of fields between a FLOCON record and its parent DAPTS

record.

e. Subgrouping by Field with Maximum, Minimum and Count

Functions-The ability to specify fields for which records

are to be grouped by value and print field values,

maximum or minimum field values, or count of records for

the resulting groups is requested. The capability should

1-

include multi-level.groupings.

Reference 9 identifiez new RIMS commands to be added and

existing RIMS commands which will be modified to provide the

required enhancements. Reference 10 describes the new

commands and changes to existing commands. It also

functionally describes new subroutines and modifica-

tions to existing subroutines for satisfying those commands.

Section 3 of this document provides an overview to the modifi-

cations required to implement the required enhancements.

Section 4 provides a detail description of each new and

modified subroutine.

2. REFERENC Ar S

The following documents provide a baselii:e for overall develop-

ment and implementation of the enhancements to the Automatic

Status and Tracking System:

• Reference 1 - Implementation Specification for LACIE ASATS,

JSC-11401, Revision A.

• Reference 2 - TIRF 77-0035.

• Reference 3 - Operators Guide for LACIE ASATS, JSC-12729.

• Reference 4 - Users Guide for ASATS, JSC-12535, Revision A.

• Reference 5 - Users Guide for RIMS, LEC-9301, Revision A.

• Reference 6 - "As-Built" Design Specification for ASATS,

JSC-12743, Revision A.

• Reference 7 - Functional Design for ASATS, JSC-11835.

• Reference 8 - RIMS Maintenance Document, LEC-9566.

• Reference 9 - Project Development Plan for the Enhancement

of the Software of the LACIE Automatic Status

and Tracking System.

• Reference 10 - Functional Design Specification for Enhance-

ment of the Automatic Status and tracking

system, LEC-11199 and JSC 13110

3.0 OVERVIEW OF MODIFICATION

3.1 GENERAL

In order to satisfy the requirements stated in Reference 2

certain RIMS commands will be modified and certain others will

be added. Reference 10 describes the function and Syntax for
each of these commands. The modified commands are:

• Delete Set (DS)

• Delete Record (DR)

• Delete Key (DK)

• No Key (NK)

• Select Non-key (SN)

• Change Field (CF)

• Display Formatted (DF)

• Joint Display Formatted (JF)

The new commands are

• Test and Jump (JT)

• Label (LA)

• Joint Select Non-key ON)

• Joint Sort (JS)

• Report (RP)

• Joint Report (JP)

Delete set, Delete Record, Delete Kev, and No Kev are being

modified to satisfy the data base protection requirement.

Test and Jump and Label are being implemented to satisfy

the null set detection and transfer requirement. Select Non

key, Change Field, Display Formatted, and Joint Display

Formatted are being modified and Joint Select Non key is

being implemented to satisfy the arithmetic operations and

interdata base comparison requirements. Joint Sort, Report,

and Joint Report are being implemented to satisfy the sub-

grouAing requirement.

3.2 PROGRAM ORGANIZATION

!	 Subroutines which comprise the RIMS system can generally be

categorized as (1) system control routines, (2) individual

command control routines, (3) common routines and (4) ele-

mentary routines. The system control routines are SEL (the main

routine) and JLASYS. Usually, command control routines exist

for each RIMS command. Common routines are used for those

functions common to several commands. Elementary routines

i
	 perform those functions common to all of RIMS such as string

manipulation and data base I/0.

The new data base protection feature will be incorporatL4 by

defining two routines which are referenced from the system

control routine. The command will be verified before execut-

ing the appropriate command control routine.

The Jump Test and Label commands will be implemented by two

command control routines referenced from the system control

routine.

The Joint Sort command will be implemented by modifying the

current sort command control routine..

All other new and modified commands must be able to handle

arithmetic operators. Several new subroutines common to

these commands have been defined for interpreting command

lines, building internal tables and formats, and performing
arithmetic operations. While these commands have many common

functions, a separate control routine will exist for each

command and its associated joint command. Reference 10

describes the general approach for implementing commands which
4

require arithmetic operations.

Figure 3.2-1 though 3.2-6 provides detail program information
to illustrate program structure of the modifications and

additions. It also provides information for constructing
new system overlays. Contents of the figures are:

• Figure 3.2-1- Subroutines required to execute (1) commands

requiring input verification (2) Jump Test command

s	(3) label command, and (4) Joint Sort command.

• Figure 3.2-2- Subroutines required for each command which

handles arithmetic operators.

• Figure 3.2.3- Structure D_agram illustrating the hierarchical

relationship of change Field Subroutines.

• Figure 3.2-4- Structure diagram illustrating the hierarchical

relationship of subroutines used by the Display Formatted

and Joint Display Formatted Commands.

• Figure 3.2-5- Structure diagram illustrating the hierarchical

relationship of subroutines used by the Select Non-key and

Joint Select Non-key commands.

• Figure 3.2-6- Structure diagram illustrating the hierarchical

relationship of subroutines used by the Report command and

Joint Report command.

Subroutines classified as elementary routines; SUBSTR, GET,

PUT, ROLL, INDEX, ETC., are shown on any of the figures

because of their extensive usage.

Subroutines identified in Figure 3.2-1 through 3.2-6 are

described in Section 4 of this document, Reference 6,

and Reference 8.

3

« K # K « # K

WN U Zz) 	E4
H fi q̂g,, 04 z Z)

CH4aE.Ei90H^pd

y ((1)0cwncw xX9w

to

`^ w

vi
N

h
h

Nb
b N

0

O 41
U b

w

0 04
Y. O

14 4J

'C U

$4

to

N b
d

O O
w

O
cn C

H
IN
cn

n^
$4

ar
.A
w

A

N
aa

	 >4

al N

cn

E-4l NCH

K K * # K « *

*

* K K #

a c^nAG cn WE4 ►z-4 HzaEE- E+UO

zl^o0 Haa^

K K

X14 W E1

w`naa a

W
z
H
Ei

as
A) cnIAQ'

a

«««
c^
zH

VI	 (,	 U
E'4
NH

a
c^

w`na^a^
cn^oaww^.

x
w

haQa o
w
H

« K « « K « K « K # « «
H

cn	 cn E^ xx E4 r+ 	 U	 E• E+

^+ a1 E^ z W	 H	 a	
D	 z 0

Z ZacnacnwE4HHZME^aE:'

C
o
E

a^ 13304Wxw	 wawa
cna 0a

^
hQUa^aacn^ec^aE^asaaa «

7

W

H
H

O
a

xH
E4

H
w

WH
wM
°
O

*

* *	 * *

acaa^W^ZaWa a ►E-1aL+E•C4, 2Ha04

a	 !a-) ,C(nwxuraC+^ x^W ►'++-^^'^tEic0E4wWG^E4

*
	 ** *	 *

cna E+ Ew a 	 E+	 awr	 u° u N ^

h av>'i44ZW44 wazozaaaHz^^UHUa u
° HNLI M ULIO° ° OHwHasWXH OWIw

u
uC^cOi. Hw^

Q `^1-3pli na`u^a^a+^^^Aaxaca^nxw aawc^E^wwuEia

* * * * *	 *	 * *

Z	 HUH Oa+HZE+ZZ
t-4 E-4 	

Nqq	 E-4W
►^ w2:zw ►A4ZQH44 aN ^.,^p,UGZZH0

uu^OG

z uwi^zwaaO°°°nHAWHW XE1	 a ww	 X

cn	 r^hacn a^aaaa^axu^^n^ wawca E+ wwu>cw

N

O
U N

0
w ro

w

v a
w O
-4
O u

•.4

cr4
-ri	 $4

$4 a
A •rq
^ N

N
N

a
a^

w

* * * * *	 *	 * * * *

aN	 E-4 E-4

,a>4 H 0aE-4ZE4ZZ ZZHE4WX.Haw^00 D^

W	 uwzl4,^nUaAGDWOatH1^ -4z W W CZ ZU E 0a-1004woll4U
ul W	 l Nuw

N^ju^c^nu ^C°raCQ^°d^^cwnK(Es^a^10,r,W7^WwuaEW+a4aam

J

i

H

y^	 of	 v

N

	

	 IL'

ti v

U^
V

rl7

ro

U
'O

(D
14

W

0

ro

U
$4
O
w

ro

ro

a

v

u
a

N

rn

N
t+^

d
1r
O

W

I.

w
at

V

L	 4

r^

e

=	 3	 .s
i .+	 s

v o	 3

A

d	
ti

'r
^	 t

^	 a
^	 r

\2	 v

H
rc
ac

Zh
1.
Y
N

ti

t	 ^)

46

LL
V	 ^

V	 ^
J
r.

ti

2 ^
N rN
w	 ar
^C	 y

3

`i

s

4b
s

s

Z

s

•	 W

i	 4

s

s

ti
a

Ift

I

t

LL	 ►^

^ t
#A	 s
40	 V

^v	 ^
p	 V

Ch	 u
u	 K
^'`	 w	 a

M-

3

v
w

^	 O

I^ 4h.	 ►̂ -

H

L	 w
v -s

2	 IL

r,	
y
♦ 	

^

x	 v	 ^	 H
^	

x

J

o	 a
w s
4	 ^
LL	 ^^ hV	 v+	 _
N	 t
V

•
A ^^M
s

V	 ^	 ^	
4

JJ	 U	 s
J
•

h W	
s

s

^ G
0
w

0
>, U
ro
.^ to
04 ai
N

A ro
rz
w

G O
44

ro ro

tr
ro

A A
v 41
w
o •^

u h
^ ro
v ^
Lo ro

v
N
to

C1

0
cr

J N ^
H ^ ^

u ^
ti

h

W
N
0
Z
W

e
x
x	 %

a u
G
f p V
K Zy v

uĤ.
F-^ q

Y

u
w
F-
W

a

'^̂
-

N
rz

L
o

J

Z	 w
H	 ^x	 u
K	 .̂a

v
N

N

V
J

1

GL	 O

F

W	
t

Cpl

^ N
	

^

W

I

2

4
U ro
G1

Q) o
U) U
U ^
^ U4 x
sa	 s~

w z
N

ro +^
i4 U
sT U
ro ^

a w
G) +1

4J O

^ b
4 C
^ ro

to
1N

f'7

N

IT

ct
e
zv

4

t
N
pV at

V =

W	 g
v
x ^
W ^N

o
H

Q

.3
F
eL
h

H o

_aw—^ V E ^

^ 4

IL

H
IL

^ V
OL

J

w

H v
V o 'a

t

L' of
^ Ww li

Z t Z
H
K
X Z

JL
q
4

2N
I..

W
h

N	 w

'At	 1W

W
Q	 h

ro
a
ro

s4
0a
roa
^4 ro

w
rz

ro

(d

O^ U
ro

o

^ a
41
U +^

4.)	 0
^ h

1D

I
N

cn

tv
$4
7
fT

W

4. DETAIL DESIGN

4.1 GENERAL

The following sections contain detail program descriptions for
all new subroutines, description of all subroutine modifica-

tions, description of new system tables, and a description

of new common blocks.

/3

4	 _	 .

4.2 NEW SUBROUTINE DETAIL DESIGN

This section contains the Detail design for all new subroutines.

They are listed in alphabetical order by subroutine name.

I

Name:	 ADDD'1

Purpose:

	

	 To initialize the Working Buffer Format for

a date encountered in the input command.

Linkage:

	

	 • Calling sequence: CALL ADDDT (FC, NC, ROW)

• Common blocks used: SY3COM

• Subroutines or functions used: DTEINT

• Files used: None

Input Description:

	

	 FC = integer variable; character number in

array CMD of /SY3COM/ where the date starts
(# sign).

NC = integer variable; number of characters in

the date literal, including the # sign. 	 !

Output Description: ROW = integer variable; the row number of the

Working Buffer Format into which the date

reference is placed.

Process Description: The pointer to the last used row of WBF, the

Working Buffer Format,is incremented by one.

$L is stored into the second word of the row

of WBF. The value of 4 is stored into the

sixth word of the row of WBF. The value of -1

is stored into the seventh word of the row of

WBF. The subroutine DTEINT is used to convert

the date from a character string in the command

line to a binary integer in the first word of

the row of WBF. The row number is stored in

ROW, and a return to the calling routine is

made.

4^

iE
f

Name:	 ADDFN

Purpose:	 To initialize the Working Buffer Format for

a field name encountered in the input command

line.

Linkage:	 • Calling sequence: CALL ADDFN (FC, NC, ROW)

• Common blocks used: SY3COM

o Subroutines or functions used: COMM, SUBSTR

e Files used: None

Input Description:	 FC = integer variable; character number in array

CMD of /SY3COM/ where the field name starts.

NC = integer variable; number of characters

in the field name.

Output Description:	 ROW = integer variable; the row number of the

Working Buffer Format, WBF, into which the

field name reference is placed.

Process Description: Column two of WBF is searched for the field

name. If it is found, the row number is stored

into ROW, and a return is made to the calling

routine. If it is not found, the pointer to

the last used row of WBF is incremented by

one, the field name is placed in column two

of that row, that row number is stored in ROW,

and a return is made to the calling routine.

J'

4

l^

Name:	 ADDLT

Purpose:	 To store a reference to an alphanumeric

literal into the Working Buffer Format

Linkage:	 a Calling sequence: CALL ADDLT (FC, NC, ROW)

Common blocks used: SY3COM

• Subroutines or functions used: None

• Files used: None

"	 Input Description:	 FC = integer

array CMD of
0

(first quote

NC = integer

in the liter,

ending quote

variable; character number in

/SY3COM/ where literal starts

mark).

variable; number of characters

al, including the beginning and

marks.

Output Description: ROW = integer variable; the row number of the

Working Buffer Format into which the reference

to the literal is stored.

Process Description: The pointer to the last used row of WBF, the

Working Buffer Format, is incremented by one.

$T is stored into the second word of the row

of WBF. The value of FC+1 is stored into

the fifth word of the row of WBF. The value

of NC-2 is stored into the sixth word of the

row of WBF. Zero is stored into the seventh

word of the row of WBF. The row number is

stored into ROW, and a return to the calling

routine is made.

/7

i

4	 Name:

{

Purpose:

1

Linkage:

ADDNM

To initialize the Working Buffer Format for a

number literal encountered in the input command.

• Calling sequence: CALL ADDNM (FC, NC, ROW)

• Common blocks used: SY3COM
i

• Subroutines or functions used: INPARM

• Files used: None

r

Input Description:	 FC = integer variable; character number in

array CMD of /SYSCOM/ where the number starts.

NC = integer variable; number of characters in

the number.

Output Description: ROW - integer variable; the row number of the

Working Buffer Format, WBF, into which the

number reference is placed.

Process Description: The pointer, NWBF, to the last used row of

WBF is incremented by one. then $L, 4, and -1

are stored in WBF (2, NWBF), WBF (6, NWBF),

and WBF (7, NWBF), respectively. INPARM is

used to convert the number from a character

string in CMD to a binary integer in WBF

(1, NWBF). The row number, NWBF, is stored in

ROW, and a return is made to the calling routine.

S'

Name:	 AEINIT
k

Purpose:	 To initialize standard areas of core for

commands which allow arithmetic expressions

in their syntax.

Linkage:	 • Calling sequence: CALL AEINIT(IND, SETNO,

FMTNO, ERR)

• Common blocks used: SYSCOM, SY3COM, CLTBL

i
	 • Subroutines or functions; used: SQZE,

INPARM
i

• Files used: Command file (logical unit

13), Message file (logical unit 7)

Input Description:	 IND = integer variable; indicator to cause

special processing for certain commands.

Set 0 for SN, JN, and CF commands. Set 1

for DF and JF commands. Set 2 for RP and

JP commands.

Output Description:	 SETNO = integer variable; contains the set

number converted from the input command

line.

FMTNO = integer variable; contains the

format number converted from the input

command line, if there is one.

ERR = integer variable; returned zero if

no errors found, non-zero if any error is

found.

Process Description:	 1. Zeroes are stored in all words of /SY3COM/.

2. Blanks are stored in all words of the

Working Buffer, WBUF.

3. Word 6 of row 1 of the BY Processing Table,

EPT, is initialized to '+$-F,' to cause the

first record read in an RP or JP command

to create a top level BY change.

I

4. The first word of array COMMAS in

t
	 /CLTBL/ is initialized to 1. Variable

PC, used to point to the next available

character in array CMD of /SY3C0M/ (where

the input command will be packed), is

initialized to 1. The logical unit

number for the command file, U13, is

retrieved from U(13) in /SYSCOM/.

t	 The logical unit number for the message

file, U7, is retrieved from U(7).

S. A call is made to SQZE (STR, 1, 80, CMD,

PC, NCS, COMMAS) to transfer and compact

the input command string (in STR of

/SYSCOM/) into array CMD. NCS is returned

as the number of characters stored by

SQZE into CMD, and pointers to syntactically

meaningful commas are returned in COMMAS.

6. PC is incremented by NCS.

7. If PC <401, go to step 9.

B. Set ERR = 1 and return to the calling

routine.

9. If COMMAS(1) < 0, meaning the last input

card has been processed for an RP or JP

command, then negate COMMAS(1) and go

to step 13.

10. If IND = 2, go to step 12.

11. If the last character stored in CMD is

a comma, then go to step 13, otherwise

increment COMMAS(1) by 1, store FC

into COMMAS(COMMAS(1)), and go to step

13.

12. Read, from unit U13, 80 characters into

the beginning of array STR. If the

actual	 unit number for the message

file = 7, then go to step S, otherwise

echo the input string by writing, to

unit U7, 80 characters from the

beginning of STR, and go to ;tep S.

4

13. Calculate NC, the number of characters

in the input set number, - COMMAS(2)-3.

Then convert SETNO - INPARP4

(CMD, 3, NC).

14. If SETNO S 0 or SETNO Z TABNO, then go

to step 8.

15. If IND f 1, go to step 18.

16. Calculate NC, the number of characters

in the input format number, - COMMAS (3)

- COMMAS(2)-l. Then convert FMTNO -

INPARM(CMD, COMMAS(2)+1, NC).

17. If FMTNO,.-, 0, go to step 8.

18. Return to the calling program.

Name: AEPR

y Purpose: To parse an arithmetic expression made

up of arithmetic operators and

operands	 (Field names, dates, or integer

constants), entering operands	 (or pointers

to them) into the working buffer format

and building a sequence of internal

commands to evaluate the expression and

store the value into a specified result

variable.

Linkage: •	 Calling sequence:	 CALL AEPR (FC, NC,

PTR, ERR)

•	 Common blocks used:	 SY3COM

• Subroutines or functions used: APUN,

COMM, DTF:INT, INDEX, INPARM, STAEPR,

VERIFY

• Files used: None

Input Description:	 FC - integer variable; character number

in command line at which to begin

processing.

NC - integer variable; number of

characters to process.

PTR - integer variable; location into

which the results are to be stored.

Output Description:	 ERR = integer variable; processing or

oyntay. error indicator. Normal command

table containing internal commands to

evaluate the expression and store the

results.

Ptocess Description:	 Error flag set to zero and all internal

variables set to appropriate value.

The expression is scanned for.paired

4-10

brackets and valid alphanumeric

characters. If brackets not paired or

any invalid character found ERR set

to 2 •nd return executed. Otherwise,

the number of paired brackets saved for

later use, character Pointers and

counters set as needed and the

expression is scanned and PASS 1 executed

as follows:

1. (a) If the next character encountered

is not an open bracket do step 2.

Otherwise an open bracket is stored

in the next location of VTAB and a

-99 is stored in the next location of

UPC (b).	 If this is the last

character the error exit is taken

otherwise update pointers and counters

and redo step 1(a).

2. If the i:ext character encountered is

a closed bracket ERR is set to 2 and

return executed. Otherwise do step 3.

3. The next 13 characters are searched

for either the end of the scan or

an arithmetic operator. If the end

of the scan is found the painter is'

set to the end of the scan +1

location otherwise the location of the

next operator or bracket will be

found. Then the current character will

be checked to see if it is a pound

sign. If it is not a pound sign step

4 is executed. Otherwise the next

four characters past the pound sign

are checked to see if they are numeric

digits.	 If they are not digits, ERR

is set to 2 and return executed.

Otherwise DTLINT is called to convert

the date to an integer, the appropriate

4-
n^

J

data is stored in the normal command

buffer and step 6 executed.

4. The current character is checked

to see if it is a literal value.

If it is not a literal value step 5

is executed. Otherwise the literal

is converted to an integer, the

appropriate data is stored in the

normal command buffer and step 6

executed.

5. If none of the above were executed

then the next operand is a field

name. In this case ADDFN is called

to store the data in the normal

command buffer and step 6 executed.

6(a) If the last operand or operator has

been processed a-999 is placed in

the current location of OPC and the

pass 2 is executed as shown starting

at step R. Otherwise the next

operator is checked to see if it is

either an open or close bracket. 	 If

it is an open bracket the error exit

is taken.	 If it is a closed bracket

step 7 is taken.	 (b) Otherwise the

operator is stored in the next

location of OI'C and step 1(b) executed.

7. The character after the closed

bracket is checked. If it is an

open bracket the error exit is taken.

Otherwise a-88 is stored in the next

location of VTAH & OPC and the

pointer and counters updated. if

the character after the closed

bracket was itself a closed bracket

step 6 is taken.	 It the operator

after the closed bracket was not a

4 -1-r-

1;

closed bracket and at the same

time located at the end point of

the expression to be processed,

the error exit is taken otherwise

step 6b is taken.

8. The count of data in VTAB $ OPC is

saved for later use. If the number

t
	

of paired brackets is zero, PASS 3

f
	

is executed as shown starting at

step 10. Otherwise step 9 is

executed.

9. The OPC table is searched and the
V

innermost paired brackets, as

indicated by a -99 and a -88

respectively, is found along with

their index location. Then STAEPR

is called to store the data into

the normal command table. Then

the remainder of the VTAB & OPC

tables is written over the area where

the paired brackets were stored, the

count of data in VTAB & OPC is

decreased by the amount of data

processed by STAEPR, the number of

paired brackets is decreased by 1

and step 8 taken.

10. If more than one line of data is left

in VTAB & OPC STAEPR is called to

store the data into the normal

command table. Otherwise the normal

command table is updated with the

calling argument PTR and column S

of all used areas of the normal

command table is updated to point

to the next expression area to be

processed.

4 3

Name:	 BLDTBF

Purpose:	 To convert a data base format into a form

suitable for standardized processing.

Linkage:	 • Calling sequence: CALL BLDTBF(P)

s Common blocks used: SY2COMOSY3COM

• Subroutines or functions used: COMSTR

• Files used: None

Input Description:	 P = integer variable; page number of array FMT

in /SY2COM/ where the data base format is

currently stored.

Output Description:	 None

Process Description: 	 1. Initialize K to zero.

2. Initialize I to two, the first row of the

data base format which contains a field

name.

3. If NWBF, the pointer to the last used row

of WBF, the Working Buffer Format in

/SY3COM/, is = 0, go to step 8.

4. Initialize J to one, the first row of WBF.

5. If WBF (2, J) _ $R, $T, or $L, go to step 7.

6. Use COMSTR to compare the field name in

column 2 of WBF to the field name in

column 2 of FMT at row I. If a match is

found, go to step 9.

7. Increment J by one. If J < NWBF, go back

to step 5.

8. Increment NWBF by one. Set J = NWBF.

Transfer the field name from column 2 of

row I of FMT to column 2 of row J of WBF.

9. Increment NTBF, the pointer to the last

used row of TBF, the Target Buffer Format

in /SY3COM/, by one. Store a one in

^4''1

TBF (1, NTBF) and store J in TBF (2, NTBF).

Transfer columns 3, 4, and 5 of row I of 	 y

FMT to columns 3, 4 and 5 of row NTBF of	 J

TBF.

10. If the target field type, TBF (7, NTBF),

4, set K = 1.

11. Increment I by one. If I < FMT (6, 1, P)

+1, then go back to step 3.

12. If K = 0, return to the calling routine.

13. Search column 2 of WBF for the field names

"UNLOAD" and "LSD". If "UNLOAD" is found

at row I, set TBF (4, 1) _ -I. If "LSD"

is found at row I, set TBF(4, 2) _ -I.	 a

14. If "UNLOAD" is not found in WBF, increment

NWBF by one, store "UNLOAD" as a field

name in column 2 of WB^^ at row NWBF, and

set TBF(4,1) _ -NWBF.

15. If "LSD" is not found in WBF, increment

NWBF by one, store "LSD" in column 2 of

WBF at row NWBF, and set TBF (4,2)

=-NWBF.

16. Return to the calling routine.

^7

Name:

F

CFiND

Purpose: To locate any single character of one string

within another string.

Linkage: •	 Calling sequence:	 CALL CFIND (STRA,

f
STA, NCA, STRB, STB, NC6, LOCA, LOCB)

•	 Common blocks used:	 None

•	 Subroutines or functions used: 	 INDEX

•	 Files used:	 None

y

Input Description: STRA = integer array name; start of string

to be searched

STA = integer variable; character number of

STRA at which to begin search

NCA = integer variable; number of characters

in STRA to be searched

STRB = ; nteger array name; start of string

containing characters for which to search

STB = integer variable; character number of

STRB where search characters start

NCB = integer variable; number of search

characters in STRB to be used.

Output Description: LOCA = integer variable; character number in

STRA where the first find was made. Zero if

no characters in STRB were found in STkA.

LOCB = integer variable; character number in

STRB of the character found. Zero if none

found.

Process Description: Successive characters of STRA, starting at

STA and continuing for NCA characters, are

individually compared to the characters in

STRB (via the INDEX function) until a match

is found or STRA is exhausted. a

h !/

I
I^

C

Name:	 CICFDF

Purpose:	 To direct the command interpretation phase

of the CF, DF, and JF commands.

Linkage:	 e Calling sequence: CALL CICFDF(IND, ERR)

* Common blocks used: SY3COM, CLTBL

e Subroutines or functions used: CFIND,

RPCLPR, RLCLPR

• Files used: None

Input Description:	 IND = integer variable; indicator for which

command is being processed. Set zero for

CF command. Set non-zero for DF or JF

commands.

Output Description:	 ERR = integer variable; error indicator.

Returned zero if no errors found. Returned

non-zero if any error is found.

Process Description: 1. The error indicator, ERR .,is initialized

to 0. The replacement expression

found indicator, REF, is initialized to 0.

The commas pointer, CP, is initialized

to 2.

2. If IND # 0, CP is changed to equal 3.

3. The first character pointer, FC, is

calculated = COMMAS(CP)+l. The number

of characters, NC, between commas is

calculated = COMMAS(CP+l)-FC.

4. Use CFIND to check the character at FC

for a single quote mark, a number sign,

or a numeric character. If any of these

are found, go to step 9.

S. Use CFIND to check all NC characters for an

arithmetic operator, parenthesis, equal

sigh or period. If one of these is found,

go to step 7.
r

4

6. Set ERR - 1 and return to the calling
t

routine.

7. If an equal sign was found, go to step

14.

8. Since no equal sign was found, the

clause must be a relational clause.

Since all relational clauses are to

be before replacement clauses, check REF

to see if a replacement clause has been

found. If REF # 0, go to step 6.

9. Use RLCLPR(FC, NC, ERR) to process the

relational clause and return ERR

non-zero if errors were found.

10. If ERR # 0, go to step 6.

11. Increment CP by 1. I CP # COMMAS (1),

go to step 3.

12. If IND # 0, return to the calling routine.

13. The CF command must have a replacement

clause, so if REF = 0, go to step 6,

otherwise return to the calling routine.

14. Set REF = 1 and use RPCLPR (FC, NC,I, IND,

ERR) to process the replacement clause.

I was returned previously from CFIND as

the location of the equal sign, and ERR

will be returned non-zero from RPCLPR

if any errors are found.

15. If ERR # 0, then go to step 6, otherwise

go to step 11.

^0

Name:	 CIRP

i	 Purpose:	 To direct the activities of parsing the

J	 command line, building tables, and
F

building buffer formats for the RP and JP
f

commands.

Linkage:	 • Calling sequence: CALL CIRP(CIND,
f

RECID, ERR)

• Common blocks used: SY3COM, CLTBL

• Subroutines or functions used: COMSTR,

CFIND, ADDFN, AEPR, ADDLT, INDEX,

INPARM, FTFMT, FTCMP

• Files used: None

Input Description:	 CIND = integer variable; command indicator.

Set 0 for RP command or non-zero for JP

command.

RECID = integer variable; contains the

record ID (accession number) of the

first record of the input set.

Output Description:	 ERR = integer variable; error indicator.

Returned zero if no errors are found

and non-zero if any error is found.

Process Description: 1. Counters and pointers are initialized.

2. If there are some clauses in the command,

go to step 4.

3. Set ERR = 1 and r(-.tturn to the calling

routine.

4. If there are no characters in the clause,

go to step 3.

S. If this clause is the first one and it

is not a BY clause, then go to step 5.

6. If this clause is not a BY clause and

not the first clause, then go to step 16.

7. If this BY clause is occurring after

an E$E BY clause has occurred, then go

to step 3.

8. If this is the sixth BY clause, then

go to step 3.

9. If there is no grouping field name for

this BY clause, then go to step 3.

10. If this is an E&E BY clause, then if

there are no report expressions, then

go to step 3, otherwise store zeroes

in the first 3 columns of the BY

Processing Table, BPT in /SY3COM/,

for this BY clause and go to step 15.

11. Use CFIND to check the grouping field

name for arithmetic operators or

parentheses. If any are found, go

to step 13.

12. Set columns 2 & 3 of BPT = 0 for this

BY clause, use ADDFN to store the

grouping field name in the Working

Buffer Format, WBF in /SY3COM/, store

the row number returned by ADDFN into

column 1 of BPT for this BY clause,

and go to step 15.

13. Store the negative of the next

available row number of WBF in column 1

of BPT for this BY clause. Store $R

in column 2 of that row of WBF. Store

the next available row number of the

Normal Command Table, CTBL in

/SY3COM/, into column 2 of BPT for

this BY clause. Store 4 and-1 into

columns 4 & 5 of the $R row of IaBF.

14. Use AEPR to generate the commands which

evaluate the arithmetic expression.
	 a

If AEPR found any syntax errors, go

to step 3. Calculate the number

44
3,

of commands generated by AEPR and

store this number into column 3 of

BPT for this BY clause.

15. Move to the next pair of commas. If

there is none, go to step 29, otherwise

go back to step 4.

16. If this report expression is not a

text type, go to step 18.

17. Use ADDLT to create an entry in WBF for

this text literal and store values in the

Target Buffer Format, TBF in /SY3COM/,

to cause this text to be printed at the

start or conclusion of this BY clause

(depending on whether single or double

quote mark characters were used). Go

to step 15.

18. Compare the beginning characters of the

report expression with an internal table

of function names. If no match is

found, go to step 21.

19. If this function reference is found

in an E$E BY clause, then go to step 3.

20. Use ADDFN to create the field name

reference in WBF for the field name

specified in the function. Create a

$R row in WBF for the results of the

function to be carried and create a

reference in TBF to get the results

printed upon the conclusion of this

BY clause. Based on which function

was specified, store an initialization

value in column 1 of the $R row of WBF.

Then go to step 15.

21. Use INDEX to check for an equal sign

in the report expression. If there

is one, go to step 24.

22. This report expression is only a field

name. If it has greater than 12

characters, go to step 3.

23. Use ADDFN to create a reference to the

field name in WBF, and create an entry

in TBF to cause the value of this field

to be printed at the beginning of this

BY clause. Then go to step 15.

24. Use CFIND to determine if this report

expression begins with an I or a D.

If it begins with neither, then go

to step 3.

25. Use INPARM to convert the input field

width to a binary integer. If it is

greater than 99, then go to step 3.

26. Create a results field ($R) in WBF

and a target field for printing in

TBF. Store the target field type in

TBF as a 1 or a 2 based on whether the

report expression began with an I or a

D, respectively.

27. Initialize column 4 of BPT for this BY

clause if it has not already been done.

28. Use AEPR to process the arithmetic

expression to the right of the equal

sign, and accumulate the number of

commands generated into column 5 of

BPT for this BY clause. Then go to

step 15.

29. If CIND = 0, then set NLVLS, the number

of data base levels, = 1, otherwise

set NLVLS = 2.

30. Use FTFMT (RECID, NLVLS, ERR) to

search the data base formats,

collecting field information for WBF

and SBF, the Source Buffer Format in

/SY3COM/. If ERR is returned non-zero,

go to step 3.

31. Now that the type and length of data base

fields are known, this information is

used to complete needed portions of WBF

and TBF where just field names and

functions with field names are the

report expressions.

32. Where function results are called for

in WBF, a command is entered in the

Function Command Table, FCTBL in

/SY3COM/.

33. Use FTCMP to generate starting character

positions in WBF and initial values in

WBUF.

34. Use FTCMP to generate starting character

positions with two spaces between fields

in TBF.

35. Return to the calling routine.

...yam'
3s

t

1
s

Name:	 CFCR

Purpose:	 To direct the overall processing sequence

for the CF command.

Linkage:	 • Calling sequence: CALL CFCR

• Common blocks used: SYSCOM, SY2COM,

SY3COM, CLTBL

• Subroutines or functions used: AEINIT,

CICFDF, APSINT, SETINI XXIN1, FTFMT,

FTCMP, GETREC, TFORMW, EXCMDS, APSTUP,

TFORMZ, REPR, APSCNT, AUPOST

• Files used: Message file (logical unit

7), Deleted keys file (logical unit 10),

New keys file (logical unit 9)

Input Description:	 None

Output Description: None

Process Description: 1. Initialize file pointer 117 to the value

stored in U(7) of /SYSCOM/ and use

AEINIT to initialize /SY3COM/,

returning input set number in SETNO

and a non-zero in LRR if any errors

were found.

2. If ERR - 0, go to step 4.

3. Write on U7, "Command terminated due to

syntax error." and return to the calling

routine.

4. If COMMAS(1)L2, meaning there are no

replacement clauses, then go to step 3.

S. Use CICFDF(O, FRR) to complete the

command interpretation, returning ERR

non-zero if any errors were found.

6. If ERR # 0, go to step 3.

7. Use APSINT to initialize for storing

deleted keys on file U(10) and new

Y

keys on file U(9). Use SETINI to

initialize for returning record ID's

via XXIN1. Use XXIN1 (RID) to return the

first record ID in RID.

8. If RID . 0, return to the calling

routine.

9. Use FTFMT (RID, 1, ERR) to complete the

buffer formats with information about

fields whose names occurred in the input

command, returning ERR non-zero if an

error occurred.

10. If ERR #	 go to step 3.

11. Use FTCMP to complete starting location

information in the working Buffer Format,,

WBF in /SY3COM/.

12. Loop through the Target Buffer Format,

TBF in /SY3COM/, comparing its column 2

contents with the values found in column

2 of the Multilevel Move Table, MLMT in

/SY3COM/. When a match is found at

row I of TBF and row K of MLMT, extract

L - column 1 of row K of MI.MT , so that

L points to the matching; row

of the Source Buffer Format, SBF in

/SY3COM/. Then transfer the key field

indicator from SBF(1,L) to TBIJ3,I),

the data base format row number from

SBF(2,L) to TBF(4,I), the starting

character position in the data hose

record from SBF(5,1.) to TBF(5,I), the

length of the field from SBF(6,L) to TBF

(6,I)^ and the type of the field from

SBF(7,L) to TBF(7,I).

13. Use GETREC(1, RID, STAT) to retrieve

record RID into row 1 of BUF, the

record buffer in /SY2COM/, returning;

STAT non-zero if there was any problem

with tiie retrieval.

14. If STAN # 0, bypass this record by

going to step 23.

15. Use TFORMW(1,1) to transfer needed

fields from row 1 of BUF to WBUF,

difected by row 1 of the Move Table

Control Table, MTCT in /SY3CO4/.

16. Set EF - 0 and use EXCMbS to execute

the commands in the Normal Command

Table, CTBL in /SY3COM/, returning

CFLAG as false if there was a failure

of a relational clause, and returning

EF non-zero if a command could not

be executed for some reason.

17. If CFLAG is false, bypass this record

by going to step 23.

18. If FF # 0, bypass this record by

going to step 23.

19. Loop through TBF looking for key fields.

When one is found (TBF(3,I) # 0), then

use APSTUP to store the key to be

deleted on file U(1O).

20. Use TFOPOIZ(1,1) to transfer changed fields

from WBIII' to row 1 of IMF.

21. Loop through TIT, and for each key

field found, use APST111' to store "--c

new key on file 0(9).

22. Use RFAIR to replace the d recc. in

the data base with the revised one in

row 1 of BUF.

23. Use XXIN1(RID) to get the next record

ID into RII1.

24. If RID # 0, meaning there was a next

record, then go hack to ste^ 13.

25. Use APSCNT to retrieve the	 of

keys to he changed in the data base.

26. Use Al1POST to delete the keys stored

on file U(IO).

S'

27. Use AUPOST to add the keys stored on

file U(9).

28. Return to the calling routine.

Name:	 DBPRO

Purpose:	 To prevent accidental alteration of the

data base for certain commands.

Linkage:	 a Calling Sequence: CALL DBPRO (FLAG)

a Common block used: SYSCOM

a Subroutines or functions used: INDEX

File used: None

Input Description:	 A command line containing the input command
line plus a "YES" or "NO" after the command

or a command line containing the input

line then another input line containing

"YES" or "NO" in response to an output query.

Output Description:	 FLAG = integer variable; where FLAG = 0 means

do not allow data base to be altered and

FLAG = 1 means do allow data base to be

altered.

Process Description: 	 The input command line is searched for a

"YES" or "NO" on the command line past the

command. If a "YES" is found, flag is set

to 11 1 " and a return performed. If a "NO"

is found flag is set to 11 0" and a return

is performed. If neither is found, the

command line followed by "YES or NO ?" is

output to the appropriate device. Then

the response is accepted and flag set to

"1" for "YES" or "O" for "NO" as above

then a return is performed.

fG0

Name:
	

DISFMT

Modification Purpose:

Linkage Modification:

Input Description Modification:

Output Description Modification:

To display characters from the input

string without transferring them to

another array.

• Calling sequence: No change

• Common blocks used: No change

• Subroutines or functions used:

SUBSTR is no longer used

• Files used: No change

No change

No change

Process Description Modification: The call to SUBSTR to transfer the input

string to array X is deleted. The

WRITE statements are changed to write

from array STk instead of X.

Name:	 DTEINT

Purpose:	 To convert date format to/from a binary

integer.

Linkage:	 • Calling sequence:
CALL DTEINT (FUNC, INT, STR, ST, NC)

• Common blocks used: None

• Subroutines or functions used:

SUBSTR , CHAR, INPARM, MOD

a Files used: None

Input Description:	 FUNC = Ihdicator, if FUNC = 0, converts

character string (STR) to an integer (INT).

If FUNC # 0, converts an integer to a

character string (STR).

INT = Integer input.

STR = character string input.

ST = starting position of character string.

NC = number of characters of STR-to be

converted.

Output Description: 	 INT = Integer output from converted

character string.

STR = character output from input integer.

Process Description:	 In addition to the input variables, this

routine contains an internal Julian

day conversion table DTAB. DTAB is a

one—dimensional array with each element

representing the total number of days trom

the base year to year 'N', where N is the

relative position of the array element

representing an offset from the base

year. If FUNC indicates an integer is

to be converted to a character string the

input integer date is tested for an invalid

date. If this date is greater than the

3,;,^3t I--^ I,,-

greatest value of DTAB, the input date

is replaced with that particular DTAB

element and the conversion process

continued.	 However, if the integer date

is less than or equal to zero, blanks

are moved to the output string (STR).

Assuming the integer date is greater than

zero, DTAB is searched until a value

that is greater than or equal to the input

integer is found. The input integer minus

'the previous table value gives the day

segment of the Julian date. The year

segment is then calculated by adding the

base year to the DTAB index minus a

constant of two. Having converted the

integer date ^o a Julian date formats the

results are then converted to an

alphanumeric character string by use of

the CHAR subroutine. To convert from an

alpha Julian date format the year and

day segments are calculated. The year

portion is subtracted from the base year

to serve as an index to pick up the

appropriate DTAB element. Once this

element is obtained this value is added to

the day segment to produce the output

integer.

^" ^3

Name:

Purpose:

Linkage:

EXCMD

To perform the operations specified in one row

of a command table.

• Calling sequence: CALL EXCMD (TBL, ROW, ERR,

CFLAG)

• Common blocks used: SY3COM

• Subroutines or functions used: SUBSTR,

DTEINT, INPARM, CHAR, COMSTR

• Files used: None

Input Description:	 TBL = integer array name; starting location of

the table containing the command to be executed.

ROW = integer variable; contains the row number

of TBL where the command to be executed is

stored.

Output Description: 	 ERR = integer variable; contains zero on normal

command execution or non-zero when command

cannot be executed.

CFLAG = logical variable; contains .TRUE.

normally, but is set to .FALSE. when the

command is a logical comparison and the

comparison fails.

Process Description:	 Refer to the Command Table and Command operations

Table layouts in section 4.4 as a supplement

to this description. The value retrieved from

the references in columns 1-4 of the command

table will be referred to as OPND(1), OP, OPND(2),

and RESULT, respectively, in this description.

1. ERR and CFLAG are initialized to zero and

trues OP is retrieved from TBL (2, ROW),

OPND(1)'s pointer, P, is retrieved from

TBL (1, ROW), and N is initialized to one.

4

2. If OP > 0 and < 17, go to step 4.

3. Set ERR = 1 and return to calling routine.

4. If OP > 10, go to step 24.

5. If P = 0, go to step 3.

6. If P < 0, negate P, retrieve OPND(N) from

REG (P), an array in /SY3COM/, and go to

step 10.

7. Retrieve OPND(N)'s type from column 5 at

row P of the Working Buffer Format, WBF,

in /SY3COM/.

8. If OPND(N)'s type = 0, then if OP < 5, then

go to step 3, otherwise if N = 2, then go

to step 3, otherwise go to step 20.

9. Convert the value of OPND(N) from the

Working Buffer, WBUF in /SY3COM/, based

on the type, using either subprogram

SUBSTR (type < 0, a binary integer),

INPAkM (type = 1, a numeric character

string), or DTEINT (type = 2, a date

character string).

10. If N = 1, then set N =2, retrieve a new

P from TBL (3, ROW), and go to step 5.

11. If OP > 4, go to step 22.

12. Perform the arithmetic operation specified

by OP, using OPND(1) and OPND(2) and storing

the result in RESULT. If OPND(2) of a divide

operation = 0, then go to step 3.

13. Retrieve a new P for RESULT from TBL (4, ROW).

14. If P = 0, go to step 3.

15. If P < 0, negate P, store RESULT in REG(P),

and go to step 19.

16. Retrieve RESUL'1''s type from column 5 at row

P of WBF.

17. If type = 0, go to step 3.

18. Convert the value in RESULT into WBUF

based on the type, and using subprogram

SUBSTR (type < 0), CHAR (type = 1), or

DTEINT (type = 2).

4 ^^ ^

s r

19. Return to the calling routine.

20. If OPND(2)'s pointer in TBL (3, ROW)

- 0, or if OPIND(2)'s type # 0, then

go to step 3.

21. Perform an alphanumeric comparison

between OPND(1) and OPND(2) and set 1 to

be negative, zero, or j)ositive according

to whether OPND(1) < OPND(2), OPND(1) =

OPND(2), or OPND(1) > OPND(2), respectively.

Go to step 23.

22. Perform arithmetic comparison by setting

I = OPND(1)-OPND(2).
v	

23. Leave CFLAG = true or change CFLAG = false

based on the following table and then

return to calling routine:

I< 0	 1= 0	 1> 0

OP = 5	 true	 false	 false

OP = b	 true	 true	 false

OP = 7	 false	 true	 false

OP = 8	 true	 false	 true

UP = 9	 false	 true	 true

OP = 10 false	 false	 true

24. If OP = 16, go to step 40.

25. Retrieve OPND(2)'s pointer, P2, from

TBL(3, ROW). If P2 = 0, go to step 3.

26. If OP > 13, go to step 35.

27. It OPND(Z) in WBUF is blanks, go to step

39.

28. Retrieve OPND(1) from WBUF using SUBS'IR.

29. if OF = 11, set OPND(2) = OPND(1) +1,

and go to step 34.

30. Retrieve OPND(2) from WBUF, converting

based on its type and using 1NPARM or

DTEINT.

31. Perform a numeric comparison between

OPND(1) and OPND(2). It OPND(1)

OPND(2), go to step 39.

0.11--

32. If OPND(1) > OPND(2), then if OP - 13,

then go to step 39, otherwise go to

step 34.

33. If OP - 12, then go to step 39.

34. Use SUBSTR to store OPND(2) into

OPND(1)'s place in WBUF and go to step

39.

35. Perform an alphanumeric comparison between

OPND(1) and OPND(2). If OFND(1) - OPND(2),
to to step 39.

36. If OPND(1) > OPND(2), then if OP = 15,

then go to step 39, otherwise go to step

38.

37. If OP - 14, go to step 39.

38. Use SUBSTR to store OPND(2)'s character

string in WBUF into OPND(i)'s character

string in WBUF.

39. Return to calling routine.

40. if P - 0, go to step 3.

41. If P < 0, negate P, retrieve RESULT from

REG(P), and go to step 13.

42. Retrieve OPND(1)'s type from column 5

at row P of WBF. If type - 0, go to step

44.

43. Convert OPND(1) from WBUF into RESULT

based on type using subprogram SUBSTR

(type < 0), INPARM (type - 1), or

MINT (type s 2). Go to step 13.

44. Retrieve RESULT's pointer, P2, from TBL

(4, ROW). If PZ - 0, go to step 3.

45. Transfer OPND(1) 1 s character string in

WBUF to RESUL'I's location in WBUF, using

SUBSTR, and then to go step 39.

Name:	 EXCMUS

Purpose:	 To execute a sequence of related command

rows in a command table.

Linkage:	 • Calling sequence: CALL EXCMliS (TBL, SR, NR,

ERRFNC, CFLAG)

• Common blocks used: SY3COM

• Subroutines or functions used: EXCMD,

SUsSTR

• Files used: None

Input Description: TBL - integer array name; starting location

of the table which contains the commands to

be executed.

SR - integer variable; starting row number

within the command table.

NR - integer variable; number of rows to be

executed.

ERRFNC - integer variable; indicator for what

procedure is to be followed if an error occurs:

Zero means do nothing to the results field-

non-zero means store blanks or zero in the

result e, field(depending on field type).

Output Description:	 ERRFNC = integer variable; set to zero if no

errors were encountered. Set to one if an

error was encountered.

CFLAG - logical variable; contains .TRUE.

except when a relational comparison command

has failed, then it contains .FALSE..

Process Description:	 1. The last row to be processed is calculated

into LR, ERRFNC is saved in EF and set = 0,

and I is initialized to SR.

2. A call is made to subroutine EXCMD to

execute the command at row I.

'	 3

4

S.

6.

7.

r

8.

9.

10.

11.

12.

13.

If CFLAG from EXCMD is returned with a

value of false, return immediately to

the calling routine.

If the error indicator from EXCMD is

returned non-zero, go to step 7.

Increment I by 1.

If I > LR, return to the calling, routine.

Set ERRFNC =1 and retrieve P from

column 5 of the current row of the

command table. P is the row number to

which a jump should be made.

If EF - 0, go to step 13.

Retrieve the result pointer, P1, from

column 4 of row P-1 of the command table.

If P1 - 0, go to step 13.

Retrieve the result type from column 5

of row P1 of the ►ti'orkig Buffer Format.

Based on type, store binary zeroes

(type < 0), alpha zeroes (type > 0), or

blanks (type - 0) into the result location

in the Working Butfer.

Set I = P and go to step 6.

M.

Name:	 FTCMP

Purpose:	 To calculate starting character positions

for fields in generated formats.

Linkage:	 • Calling sequence: CALL FTCMP (A, NS)

• Common blocks used: SY3COM

• Subroutines or functions used: SUBSTR

e Files used: None

Input Description:	 A - integer array name; starting location of

the array which contains the format to be

completed.

NS - integer variable; the number of spaces

to be inserted between fields.

Output Description:	 A - integer array name; starting location o l

the array which contains the completed format.

Process Description: 1. The start character counter, SC, is

initialized to one, as is the row counter,

ROW.

2. The length of the field at ROW is transferred

from A(6, ROW) to L.

3. If L - 0, then processing is finished, so

return to the calling routine.

4. If 4,(2, ROW) contains $T then bypass start

character calculations for this row (since

text remains in the command line instead of

being transferred to the Working Buffer,

WBUF in /SY3COM/) and go to step 7.

S. If A(2, ROW) contains $L or $R, then use

SUBSTR to initialize WBUF from A(1, ROW).

6. Store SC into A(S, ROW) and calculate the

next SC - SC+L+NS.

7. Increment ROW by one and go to step 2.

4

t

Name: FTFMT

I
Purpose; To retrieve information from formats associated

with records in the same family tree.

Linkage: • Calling sequence:	 CALL FTFMT (RECID, NLVLS,

ERR)

• Common blocks used:	 SYSCOM, SY2COM, SY3COri

• Subroutines or functions used:	 LOCREC, GET,

INPARM, LODFMT, COMSTR, PRNTID

• Files used:	 Message file

Input Description: RECID - integer variable;	 record ID of a record

at the lowest level of the data base where

format information collection is to begin.

NLVLS - integer variable; 	 the number of levels

of the data base to be used in tracing the

family tree for format information.

Output	 Description: ERR - integer variable; returned non-zero if

any errors were encountered.

Process Description: 1. The input record ID, RECID, is moved to

variable ID. U7 is initialized to whatever

unit has been designated as the message

file, and the data base top level indicator,

TLF, is set to zero.

2. The pointer, NMTCT, to the last used row

of the Stove Table Control Table, MTCT in

/SY3COM/, is incremented by one.

3. The next available row number of the

Multilevel Move Table, MLMT in /SY3COM/,

is stored in 7olumn one of row NMTCT of

MTCT.

4. Subroutine LOCREC is used to locate the

pointer to the recorL with accession

number - ID. If the pointer is found, go

to step 7.

5. Write "Record not in data base" on unit U7.

6. Set ERR : 1 and return to calling routine.

7. Use GET to retrieve the pointer to the

record, and use GET again to retrieve

the format number of the record from the

second word of the record ((:hara r.ters 5-8).

Convert the format number c;:aracter string

to a binary integer via INPARM, and store

the format number in FMTID(1) of /SY2COM/

and in column 3 of row P'MTCT of MTCT.

8. Use LODPIT to retrieve the format whose

number is in FMTID(1) and store the format

in page 1 of FMT in /SY2COM/. If the format

was not found in the data base, go to step 6.

9. Calculate the last used row, N, of page 1

of FMT as FMT(6, 1, 1) +1.

10. For each field name in column 2 of the

Working Buffer Format, WBF in /SY3CONI/,

which is not $R, $T, or $L, compare that

name against the names up to row N in

column 2 of page 1 of FMT, and if a match

is found, do steps 11-21, otherwise just

move to the next name in WBF until thev

are all processed, and then go to step 22.

11. If the row number, I, of WBF where the

match was found, _ -TBF(4,1), then negate

TBF(4,1) and go to step 13. TBF is the

Target Buffer Format in /SY3COM/, and

TBF(4,1) contains the negative of the row

number of the field whose name is "UNLOAD".

This value was placed in TBF (4,1) by

subroutine BLDTBF when a target field

type of 4 was encountered, meaning a

special output conversion was desired

which depended on the contents of the

"UNLOAD" field.

12. If I a—TBF(4,2), then negate TBF(4,2).

This is the row number of the "LSD"

i

k

i

field which is similar to the "UNLOAD"

field in step 11.

13. The length of the field is transferred

from column 4 of FMT to WBF(6,I).

14. The type of the field is transferred

from column 5 of FMT to WBF(7,I).

15. The pointer, NSBF, to the last used row

of the Source Buffer Format, SBF of

/SY3COM/, is incremented by one.

16. The key field indicator is transferred

from column 6 of FMT to SBF(1, NSBF).

17. The starting character number is

transferred from column 3 of FMT to SBF

(5, NSBF).

18. The length of the field is transferred

from column 4 of FMT to SBF(6, NSBF).

19. The type of field is transferred from

column 5 of FMT to SBF(7, NSBF).

20. The row number within FMT of the field

is stored in SBF(2, NSBF) for later use

in the Change Field command.

21. The pointer, NMLMT, to the last used row

of MLMT is incremented by one. The

value of NSBF is stored in MLMT (1, NMLMT),

and the value of I is stored in MLMT

(2, NMLMT) .

22. After processing all fields of'WBF that

were found in the format for records at

this data base level, calculate the

number of rows of MLMT which were generated

(=NMLMT -MTCT(1, NMTCT) +1) and store it

in MTCT(2, NMTCT).

23. Check column 4 of all fields of WBF. If

any lengths are still = 0, then more

formats need to be examined if possible,

so go to step 24, otherwise set TBF(4,1)

and TBF (4,2) to zero if they are still

negative and return to the calling

routine.

24. If NMTCT # NLVLS, go to step 26.

^.SJ

i
t
k^

4 25. Write "Unidentified field(s)" on unit

U7, and go to step 6.

26. If TLF # 0, then go to step 25, otherwise

use PRNTID to get the next level record

ID and go to step 2.

4 Sy

i

Name:	 JFDFCR

Purpose:	 To direct the overall processing sequence

for the JF and DF commands.

Linkage:	 • Calling sequence: CALL JFDFCR(CIND)

• Common blocks used: SYSCOM, SY2COM,

SY3COM, CLTBL

• Subroutines or functions used: AEINIT,

LODFMT, CICFDF, BLDTBF, SETINI, XXIN1,

FTFMT, FTCMP, GETREC, TFORMW, PRNTID,

EXCMDS, TFORMZ, DISFMT.

• Files used: Message file (logical unit 7)

Input Description:	 CIND - integer variable; command indicator.

Set zero for DF and non-zero for JF.

Output Description:	 None

Process Description:	 1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/.

2. Use AEINIT to initialize /SY3COM/,

returning the input set number in

SETNO, the input format number in FMTNO,

and error indication of non-zero in ERR.

3. If ERR = 0, go to step S.

4. Write on U7, "Command terminated due to

syntax error;', and return to the calling

routine.

5. Store FMTNO in FMTID(2) and use LODFMT

(2,HIT) to load the format into page 2

of arra y FMT in /SY2COM/, returning

HIT as zero if the format could not be

found in the data base.

6. If HIT = 0, then write on U7, "Format

not found. " s and return to the calling

routine.

q^
t

i

7. If COMMAS(1) = 3, meaning there were

no clauses in the input command, then

go to step 10.

8. Use CICFDF to process the clauses in

the input command, returning ERR non-

zero if any errors were found.

f 9. If ERR # n , go to step 4.
s

10. Use BLDTBF (2)	 to convert the data base
's

rormat in page 2 of FMT to a standard

format in the Target Buffer Format,

w TBF in /SY3COM/.

11. Use SETINI to initialize the input set

for record ID's to be returned by XXIN1.

Use XXIN1 (RID) to return the first record

ID in RID.

12. If RID = 0, meaning there were no records

in the input set, return to the calling

routine.

13. Set NL, the number of levels in the data

base to be used, to 1 or 2, depending on

whether CIND = 0 or # 0, respectively.

Then use FTFMT(RID, NL, ERR) to complete

the buffer formats with information about

fields whose names occurred in the input

command, returning ERR non-zero if an

error occurred.

14. If ERR # 0, then go to step 4.

15. Use FTCMP to complete starting location

information in the Working Buffer

Format, W8F in /SY3COM/.

16. Initialize I, the pointer to the desired

row of MTCT, the Move Table Control Table

in /SY3COM/, to 1.

17. Transfer the format number for records

at this data base level from MTCT(3,I)

to FMTID(1). This prevents an unnecessary

retrieval o" the format record by GETREC.

4 4 5^

18. Use GETREC(1, RID, STAT) to retrieve

record RID into row 1 of BUF, the

t

19.

i -

20.

f

21.

22.

23.

record buffer in /SY2COM/, returning

STAT non-zero if there was any problem

with the retrieval.

If STAT # 0, ignore this record by

going to step 27.

Use TFORMW (1,I) to transfer data from

row 1 of BUF to WBUF, the Working Buffer

in /SY3COM/, as directed by row I of

MTCT.

If I > NMTCT, the last used row of MTCT,

then go to step 23.

Increment I by f use PRNTID to get record

RID's parent record, PID, set RID to PID,

and go back to step 17.

Set EF = 1 and use FXCMDS to execute the

commands in CTRL, the Normal Command

Table in /SY3COM/, returning CFLAG as

false if any of the relational clauses

failed to be true.

24. If CFLAG is false, go to step 27.

25. Use TFORMZ(2,1) to transfer data from

WBUF to row 2 of BUF.

26. Use DISFMT to display the record in row

2 of BUF according to the format in

FMTID(2).

27. Use XXIN1 (RID) to retrieve the next record

in RID.

28. If RID # 0, meaning there was a next

record, go back to step 16.

29. Return to the calling routine.

4- ^^

Name:	 JNSNCR

Purpose:	 To direct the overall processing sequence
c	

for the JN and SN commands.

Linkage:	 • Calling sequence: CALL JNSNCR(CIND)

• Common blocks used: SYSCOM, SY2COM,

SY3COM, CLTBL

• Subroutines or functions used: AEINIT,

RLCLPR, SETINI, SETOUT, XXIN1, FTFMT,

FTCMP, GETREC, TFORMW, PRNTID, EXCMDS,

XXOUT, ENDSET

• Files used: Message file (logical unit

7), pointer lists file (logical unit 5)

Input Description: 	 CIND = integer variable; command indicator.

Set zero for SN and non-zero for JN.

Output Description:	 None

Process Description:	 1. Initialize file pointer U7 to the value

stored in U(7) of /SYSCOM/. Initialize

the comma array pointer, CP, to 2.

Initialize the number of records

selected, HITS, to 0.

2. Use AEINIT to initialize /SY3COM/,

returning the input set number in SETNO,

and returning ERR non-zero if any errors

were found.

3. If ERR = 0, go to step 5.

4. Write on U;, "Command terminated due to

syntax error,	 and return to the

calling routine.

S. If COMMAS(1) < 3, meaning that there

were no relational clauses input, go to

step 4.

tg
P

6.
i

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Calculate FC, the first character of

the relational clause, - COMMAS(CP)+1.

Calculate NC, the number of characters

in the relational clause, = COMMAS

(CP+1)-FC. Then use RLCLPR(FC,NC,ERR)

to process the relational clause,

building buffer formats and commands

to be executed, and returning ERR non-

zero if any errors were found.

If ERR # 0, go to step 4.

Increment CP by 1. If CP # COMMAS(1),

go back to step 6.

Use SETINI to initialize the input set

for record ID's to be returned by XXINI.

Use SHOUT to initialize file U(5) to

receive selected record ID's.

Use XXIN1 (RID) to return the first

record ID in RID.

If RID = 0, meaning there were no

records in the input set, go to step 27.

Set NL, the number of levels of the data

base to be used, to 1 or 2, depending

on whether CIND = 0 or # 0, respectively.

Then use FTFMT(RID, NL, ERR) to complete

the buffer formats with information

about fields whose names occurred in

the input command, returning ERR non-

zero if an error occurred.

I£ ERR # 0, go to step 4.

Use FTCMP to complete starting location

information in the Working Buffer

Format, WBF in /SY3COM/.

Initialize I, pointer to the desired

row of MTCT, the Move Table Control

Table in /SY3COM/, to 1. Set R = RID.

Transfer the format number for records

at this data base level from MTCT (3,I)

to FMTID(1). This prevents an

unnecessary retrieval of the format

rec p: by GETREC.

4	 ^^'

17. Use GETREC(1, R, STAY') to retrieve

record R into row 1 of BUF, the record

buffer in /SY2COM/, returning STAT

non-zero if there was any problem with

the retrieval.

18. If STAT # 0, ignore this record by

going to step 25.

19. U-5e TFORMW(1,I) to transfer data from

row 1 of BUF to WBUF, the Working

Buffer in /SY3COM/, as directed by

row I of MTCT.

20. If I > NMTCT, the last used row of

MTCT, then go to step 22.

21. Use PRNTID to get record R's parent

record, PR. Then set R = PR, incre-

ment I by 1, and go back to step 16.

22. Set EF = 1 and use EXCMDS to execute

the commands in CTBL, the Normal

Command Table in /SY3COM/, returning

CFLAG as false if any of the

relational clauses failed to be true.

23. If CFLAG is false, go to step 25.

24. Increment HI'T'S by 1, and use XXOUT

(RID) to store the selected record

ID on-file U(5) .

25. Use XXIN1(RID) to return the next

record ID in RID.

26. If RID # 0, meaning there is a next

record, go back to step 15.

27. Use ENDSET (HITS, U(5)) to create and

display an entry in the status table

of sets.

28. Return to the calling routine.

i

4-

Name:	 JPRPCR

Purpose:	 To direct the overall processing sequence

for the JP and RP commands.

Linkage:	 • Calling sequence: CALL JPRPCR(CIND)

• Common blocks used: SYSCOM, SY2COM,

SY3COM

• Subroutines or functions used: AEINIT,

SETINI, XXIN1, CIRP, GETREC, TFORMW,

PRNTID, EXCMDS, COMSTR, SUBSTR, TFORMZ

• Files used: Message file (logical

unit 7), Report file (logical unit 12).

Input Description:	 CIND - integer variable; command indicator.

Set zero for RP command and non-zero for

JP command.

Output Description:	 None

Process Description:	 1. Initialize file pointers U7 and U12

to the values stored in U(7) and U(12)

of /SYSCOM/. Initialize first and

last record indicator, FLREC, to zero.

2. Use AEINIT to initialize values in

common, return the input set number

in SETNO, and return an error indicator,

ERR, non-zero if any errors were found.

3. If ERR - 0, go to step 6.

4. Write on U7, "Command terminated due to

syntax error.",

S. Return to the calling routine.

6. Use SETINI to initialize sez number

SETNO for returning record ID's via

XXIN1.

7. Use XXIN1 to return the first record

ID, RECID, from the input set.

4-	 ,

8.

9.

10.

11.
i

12.

13.

14.

15.

16.

17.

18.

19.

20.

s

If RECID n 0, then write on U7, "Null

Input Set." and go to step S.

Use CIRP (CIND, RECID, ERR) to inter-

pret the command, build tables and

buffer formats, and return ERR non-

zero if any errors were found.

If ERR # 0, go to step 4.

Initialize the Move Table Control

Table pointer, MTCTP, to one.

Transfer the format number for this

level of the data base from MTCT(3, MTCTP)

to FMTID(1). This prevents actual

retrieval of the format record by

GETREC, since it is not needed.

Use GETREC(1, RECID, STAT) to get record

RECID into row 1 of BUF in /SY2COM/,

returning STAT non-zero if a problem

occurred.

If STAT ^ 0, ignore this RECID by

going to step 28.

Use TFORMW(1, MTCTP) to transfer data

from row 1 of BUF to WBUF, the Working

Buffer in /SY3COM/, based on the

directions provided by row MTCTP

of MTCT.

If MTCTP> last used row of MTCT, NMTCT,

then go to step 18.

Use PRNTID to get the record ID, PID,

of the parent of RECID. Store PID

into RECID, increment MTCTP by one,

and go back to step 12.

Initialize the BY Processing Table

pointer, BPTP, to one.

Get the Grouping Field Name pointer,

GFN, from column 1 of row BPTP of the

BY Processing Table, BPT of /SY3COM/.

If GFN - 0, go to step 33.

21. If GFN> 0, go to step 24.

22. Negate GFN, set ERR - 0, and use

EXCMDS to execute the commands in

CTBL, the Normal Command Table of

/SY3COM/, as specified by columns

2 and 3 of row BPTP of BPT, returning

ERR non-zero if the commands c6uld

not be executed for some reason.

23. If ERR # 0, assume no change in

this GFN, and go to step 25.

24. Use COMSTR to compare the new GFN

in WBUF to the current GFN in column

6 of BPT. If they are different,

go to step 49.

25. If BPTP.a last used row of BPT, NBPT,

then go to step 27.

26. Increment BPTP by 1 and go back to

step 19.

27. Set ERR - 0 and use EXCMDS to execute

all the commands stored in the

Function Command Table, FCTBL in

/SY3COM/.

28. Use XXIN1 to get the next record ID

into RECID.

29. If RECID # 0, meaning there is

another record to be processed, then

go back to step 11.

30. Set FLREC - 2 to mean that the last

record is being processed.

31. Set BPTP = 1 and get GFN from column

1 of row 1 of BPT.

32. If GFN< 0, negate GFN.

33. If FLREC - 0, meaning we are processing

the first record, then set FLREC = 1

and go to step 39.

34. Initialize the local BPT pointer,

LBPTP, to the current value of BPTP.

35. If BPT(l, LBPTP) - 0, go to step 38.

36. Transfer all function results and

concluding text from this BY level

by setting PFLAG = 2 * LBPTP and

calling TFORMZ(2, PFLAG) to transfer

from WBUF to row 2 of BUF.

37. If LBPTP< last used row of BPT,

NBPT, then increment LBPTP by 1

and go back to step 3S.

38. Write to U12 the first 120 characters

of row 2 of BUF. If FLREC - 2,

meaning we were processing the last

record, then return to the calling

routine.

39. Blank out the first 120 characters

of row 2 of BUF.

40. Initialize LBPTP - BPTP.

41. Set ERR - 1 and use EXCMDS to execute

the commands of CTBL specified by

columns 4 and 5 of row LBPTP of

BPT.

42. Transfer from WBUF to row 2 of BUF

field values, calculations, and

beginning text by setting PFLAG -

2 *LBPTP-1 and calling TFORMZ(2, PFLAG).

43. If LBPTP>_ NBPT, then go to step 27.

44. Increment LBPTP by 1 and get GFN

from BPT(1, LBPTP).

45. If GFN - 0, go to step 41.

46. If GFN> 0, go to step 48.

47. Negate GFN, set ERR - 0, and use

EXCMDS to execute the commands of

CTBL specified by columns 2 and 3

of row LBPTP of BPT. If ERR is	 1

returned non-zero, go to step 41.

48. Use SUBSTR to store the new value

of GFN from WBUF to column 6 of row

LBPTP of BPT, and then go to step

41.

49. Use SUBSTR to store the new value

of GFN from WBUF to column 6 of

row BPTP of BPT, and then go to

step 33.

i52 ^:,^

dw

Name:	 PRNTID

t

	 Purpose:	 To return the record ID of the next higher

f	 level record in the same family tree of an

inverted tree logically structured data base.

Linkage:	 • Calling sequence: CALL PRNTID (CID, PID,

TLYLAG)

• Common blocks used: None

• Subroutines or functions used: None

• Files used: None

Input Description:	 CID - integer variable; child record ID.

Output Description:	 PID - integer variable; parent record ID.

TLFLAG - integer variable; set zero or non-

zero depending on whether output parent ID

is not or is at the top level of the data

base, respectively.

Process Description: Coded specifically for ASATS, the child

record ID consists of the segment number

concatenated with the acquisition date.

To get the parent record ID, the acquisition

date portion (lower 16 bits) is set to zero.

TLFLAG is set to 1 since ASATS parent records

are at the top level of the data base.

4- 53-

t

!	 Name:

(

RLCLPR

Purpose: To parse a relational clause of the form

`. AE.OP.AE (where AE is an arithmetic expression,

fi and OP is a comparison operator) and build a

table of commands to evaluate the clause.

Linkage: •	 Calling sequence CALL RLCLPR (FC, NC, ERR)

•	 Common blocks used: SY3COM

• Subroutines or functions used: COMSTR, INDEX,

ADDLT, CFIND, AEPR, ADDNM, ADDDT, ADDFN

• Files used: None

Input Description:	 FC = integer variable; first character number of

the string to be processed in array CMD of

/SY3COM/.

NC = integer variable; number of characters in

the string to be processed.

Output Description: ERR = integer variable; returned zero if no errors

are found, non-zero if ai, error is found.

Process Description: 1. Initialize ERR = 0, F = FC, N = NC, and K = 0.

2. If the character at F is not a single quote

mark, go to step 11.

3. Use INDEX to find the next quote mark at J.

4. If J # 0, go to step 6.

5. Set ERR = 1 and return to the calling routine.

6. If J < F+1, go to step S.

7. Use ADDLT (F, J-F+1), V(1)) to add the literal

to the Working Buffer Format, WBF in /SY3C0 111/,

getting the row number of WBF returned in V(1).

8. Set K = 1 to indicate that the left hand side

of the relational clause has been processed.

9. Recalculate the number of characters remaining,

N, = N -(J-F+1).

10. Reset the first character pointer, F,

= J+1.

11. Use INDEX to find the first period in N

characters beginning at F and store

the location in I.

12. If I = 0, go to step 5.

13. Use COMSTR to compare the four characters

that start at I with an internal table of

legal operators. If a match is found, then

J is set to the row number of the internal

table, otherwise go to step S.

14. The actual operator number, OP, to eventually

be stored in the command table is calculated

by adding 4 to J.

15. J is initialized to 1.

16. If K = 0, go to step 19.

17. If I # F, go to step 5.

18. J is reset to 2, i' is incremented by 4 to

set it past the operator, N is decremented

by 4 to account for the operator characters,

and a jump to step 20 is made.

19. N is set to the number of characters to the

left of the operator by setting it equal to

I-F.

20. If N < 0, go to step S.

21. If the character at F is not a single quote

mark, go to step 28.

22. If N < 2, go to step S.

23. If the character at F+N-1 is not a single

quote mark, go to step S.

24. Use ADDLT (F, N, V(J)) to add the literal to

WBF and receive the row number in V(J).

2S. If J = 2, go to step 27.

26. Set J = 2, F = I+4, and N = NC-N-4 to adjust

to the right hand side of the operator, and

go back to step 20.

27. Increment NCTBL, the pointer to the last

used row of the Normal Command Table, CTBL in

/SY3COM/, by 1. Store V(1) in CTBL

(1, NCTBL), OP in CTBL(2, NCTBL), V(2) in

CTRL (3, NCTBL), NCTBL+1 in CTBL (5, NCTBL),

and return to the calling routine.

28. Use CFIND to locate any arithmetic operator,

storing its location in K.

29. If K = 0, go to step 33.

30. Increment NWBF, the pointer to the last used

row of WBF, by 1. Store NWBF in V(J), 0 in

WBF(1,NWBF), $R in WBF(2,NWBF), 4 in

WBF (6, NWBF), and -1 in WBF (7, NWBF). 	 i

31. Use AEPR (F, NI V(J), ERR) to process the

arithmetic expression, building commands in

CTBL which store a result at V(J) of WBF,

and returning ERR non-zero if any errors were

found.

32. If ERR # 0, go to step 5, otherwise go to

step 25.

33. Use CFIND to determine if the character at

F is the number sign (K will be returned = 1

and L will be returned = 8) or a numeric

character (K will be returned = 1 and L will

be >8).

34. If K = 0 (implying a field name), go to step

38.

35. If L # 8 (implying a numeric literal), use

ADDNM (F, N, V(J)) to add the number to

WBF, receiving the row number back in V(J),

and go to step 25.

36. If N # 5, go to step 5.

37. Use ADDDT (F, N, V(J)) to add the date to WBF,

receiving the row number in V(J), and go

to step 25.

38. If N >12, go to step 5.

39. Use ADDFN (F, N, V('J)) to add the field name

to titiBF if necessary, receiving the row number

back in V(J), and go to step 25.

_A<6 y

Name:	 RPCLPR

Purpose:	 To parse a replacement clause of the form FN = AE

(where FN is a field name and AE is an arithmetic

expression) and build a table of commands to

perform the replacement.

Linkage:	 • Calling sequence: CALL RPCLPR (FCS, TNC,

LOCEQL, IND, ERR)

• Common blocks used: SY3COM

Subroutines or functions used: INDEX, ADDFN,

COMM, ADDLT, CFIND, ADDDT, AEPR, ADDNM

• Files used: None

Input Description:	 FCS = integer variable; first character number

of the string to be processed in array CMD of

/SY3COM/.

TNC = integer variable; total number of characters

in the string to be processed.

LOCEQL = integer variable; the character number

which is the location of the equal sign in the

input string. If zero, the equal sign will be

searched for internally.

IND = integer variable; command indicator to

allow special processing for different commands.

A value of zero means the Change Field command

is being processed. A non-zero value means the

Display Formatted or Joint Display Formatted

command is being processed.

Output Descri2tion:	 ERR = integer variable; set to zero if no errors

are found and set to non-zero if an error is

found.

Process Description: 1. If LOCEQL < 0, then INDEX is used to find the

equal sign and its character position is

stored in I, otherwise I is set = LOCEQL.

2. If the equal sign is located, go to step 4.

__^' 1^

3. Set ERR = 1 and return to the calling routine.

4. Initialize the first character pointer, FC,

to FCS.

S. Calculate the number of characters, NC, in

the field name = I-FC.

6. If NC < 0, go to step 3.

7. If NC > 12, go to step 3.

8. Use ADDFN (FC, NC, K) to add the field name

to the Working Buffer Format, WBF in

/SY3COM/, if it is not already there, and

receive back the row number of WBF in K.

9. If IND = 0, then increment NTBF, the pointer

to the last used row of TBF, the Target Buffer

Format in /SY3COM/, by one, store a one in

TBF (1, NTBF) and store K in TBF (2, NTBF).

10. Move the first character pointer, FC, to the

first character past the equal sign by setting

FC = I+1. Calculate NC, the number of

characters to the right of the equal sign,

by NC = TNC-I.

11. If NC < 0, go to step 3.

12. If the character at FC is not a single quote

mark, go to step 17.

13. If NC < 3, go to step 3.

14. Use ADDLT (FC, NC, L) to add the text literal

to WBF and receive the row number back in L.

15. Increment NCTBL, the pointer to the last used

row in CTBL, the Normal Command Table in

/SY3COM/, by one. Store L in CTBL (1, NCTBL),

16 in CTBL (2, NCTBL), K in CTBL (4, NCTBL),

and NCTBL+1 in CTBL (5, NCTBL).

16. Return to the calling routine.

17. Use CFIND to determine if the character

string to the right of the equal sign is

an arithmetic expression by locating any

or), and pointing to it with

I.

18. If I # 0, then call AEPR (FC, NC, K, ERR)

to process the arithmetic expression,

creating commands in CTBL to evaluate the

expression and store the result in K,

returning ERR as non-zero if any errors

were found, otherwise go to step 21.

19. If ERR # 0, go to step 3.

20. Return to the calling routine.

21. Check the character at FC for the number sign

or a numeric character via CFIND.

22. If neither was found, the right side of the

equal is assumed to be a field name. If

NC > 12, then go to step 3, otherwise call

ADDFN (FC, NC, L) and go to step 15.

23. If character FC is a number sign, then a date

literal is expected. If NC # S, then go to

step 3, otherwise call ADDDT (FC, NC, L) to

add the date literal to WBF and go to step

15.

24. If character FC is a numeric character, then

a numeric literal is expected, and ADDNM

(FC, NC, L) is called to add it to WBF. Then

go to step 15.

Name;
	

STAEPR

Purpose:	 To store arithmetic processing data into the

normal command table in mathematic

hierarchical order.

Linkage: s Calling sequence: Call STAEPR (VTAB, OPC,

FIRST, LAST, TREG)

• Common blocks used: SY3COM

• Subroutines or functions used: None

• Files used: None

Input Description:	 VTAB = integer array; contains pointers to

variables or literals in the working buffer

format table, intermediate storage registers

or special integers representing close or open

brackets.

OPC = integer array; contains either

mathematical operator indicators or

special integers representing close or open

brackets.

FIRST = integer variable;

pointer to first variable in VTAB

and OPC to be used for processing.

LAST = integer variable; pointer to last

variable in VTAB & OPC to be used in

processing.

TREG = integer variable; index pointer

into intermediate storage register buffer

used for intermediate data storage.

Output Description:	 Normal command table filled with appropriate.

arithmetic processing data. TREG updated

as intermediate storage registers are

needed.

Process Description:

r

A loop is set up to search the entries in

the OPC table. Steps 1 thru 3 performed

for all entries.

1. The intermediate storage register pointer

(TREG)is updated . The OPC entry for the

next two adjacent locations is checked

for mathematical hierarchy. If they

are of equal hierarchy or if the first

is of a lesser hierarchy, step 2 is

performed otherwise step 3 is performed.

2. The next normal command table entry is

loaded with values from the current and

next entry of VTAB, the current value of

OPC and the intermediate storage register

pointer (TREG). Then the next entry of

VTAB is loaded with the intermediate

storage register pointer (TREG) and return

to step 1.

3. The next normal command table entry is

loaded with values from the next and next

+1 entry of VTAB, the next

+1 value of OPC and the intermediate

storage register pointer (TREG). The

r., ext +1 entry of VTAB $ OPC is loaded

with the current value of VTAB $ opc

respectively. The next +2 entry of VTAB

is loaded with the intermediate storage

register pointer (TREG) and return to step

1.

73

Name:	 SQZE

Purpose:

	

	 To delete extraneous blanks from a

character string and build an array of

pointers to the commas in the character

string.

Linkage:	 • Calling sequence: CALL SQZE (INARY,

INST, INLEN, OUTARY, OUTST, OUTLEN,

COMMAS)

• Common blocks used: None

• Subroutines or functions used: None

o Files used: None

Input Description:

	

	 INARY = integer array name; starting location

of the array containing the input string

INST = integer variable; character number

0
of INARY at which to begin processing

INLEN = integer variable; number of

characters in INAR^ to be processed

OUTST = integer variable; character number

of OUTARY at which to begin storing output

COMMAS = integer array name; contains the

Comma Location Table. The first word

contains the number of the last used word

in the array and should be input containing

the value one upon the first call within

any one command.

Output Description:	 OUTARY = integer array name; starting

location of the array to contain the output

OUTLEN = integer variable; number of

characters stored in OUTARY

COMMAS = integer array name; contains the

Comma Location Table. The first word

conta-ns the number of the last used word

in the array. The other words contain the

character number of OUTARY where commas occur

(exclusive of those commas occurring between

pairs of quote marks). The first word

will be output as a negative value when

an exclamation mark has been encountered

and stored as a terminating comma for

the command.

Process Description:	 1. Counters and pointers are initialized.
t	 2. If the last character of INARY hast

been passed, go to step 10.

3. If processing is between quote marks

(QSET - 2 or 3), check this character

for the terminating quote mark, reset

QSET to 1 if it is, and go to step 8.

4. If the character is a blank, 4o to

step 9.

S. If the character is a quote mark, set

QSET (- 2 for single quote, - 3 for

double quote) and go to step 8.

6. If the character is a comma, store the

OUTARY pointer in the next availi.fle

location in COMMAS, increment the pointer

to the last used word of COMMAS, and go

to step 8.

7. If the character is an exclamation mark,

store the OUTARY pointer in the next

available location in COWIAS, increment

and negate the pointer to the last used

word of COMMAS, store a comma in

OUTARY, increment the OUTARY pointer,

and go to step 10.

S. Transfer the character to OUTARY and

increment the OUTARY Dointer.

9. Increment the INARY pointer and go to

step 2.

10. Store the pointer to the last used word

of COMMAS into word one of COMMAS,

calculate OUTLEN as the OUTARY pointer

minus OUTST, and return to the calling

program.

4-y3^^

«--

Name:	 TFORMW

Purpose:	 To transfer data from a source buffer to

the Working Buffer.

Linkage:	 • Calling sequence: CALL TFORMW(ROW, MTCTRW)

• Common blocks used: SY2COM, SY3COM

• Subroutines or functions used: SUBSTR

• Files used: None

Input Description:	 ROW = integer variable; the row number of the

{	 source buffer, BUF in /SY2COM/, where the

input data is stored.

MTCTRW = integer variable; the row number

of the Move Table Control Table, MTCT in

/SY3COM/, to be used for control.

Output Description:	 None

Process Description: The starting row of the Multilevel Move Table,

MLMT in /SY3COM/, is retrieved from MTCT

(1, MTCTRW). The number of rows of the

MLMT to use is retrieved from MTCT (2, MTCTiti4)

and used to calculate the final row number.

Then for each of these rows, (1) a pointer

for the Source Buffer Format, SBF in /SY3COA1/,

is retrieved from the first word of the row

of MLMT, (2) a pointer for the Working Buffer

Format, WBF in /SY3COM/, is retrieved from

the second word of the row of MLMT, and (3)

SUBSTR is used to transfer the data from

BUF to WBUF, the Working Buffer in /SY3COM/.

After the specified number of rows have

been processed, a return is made to the calling

routine.

r

Name:	 TFORMZ
A

F

Purpose:	 To transfer data from the Working Buffer to

a target buffer, converting the data

representation when needed.

Linkage:	 • Calling sequence: CALL TFORMZ(ROW, PF)

• Common blocks used: SY2COM, SY3COM

* Subroutines or functions used: SUBSTR,

MINT, CHAR, COMSTR

• Files used: None

Input Description:	 ROW - integer variable; the row number of the

target buffer, BUF in /SY2COM/, where the

data is to be stored.

PF - integer variable; indicator for which

fields of the target buffer are to be

filled from the Working Buffer, WBUF in

/SY3COM/. A field is filled i.f word one of

its Target Buffer format, TBF in /SY3COM/,

is equal to PF.

Output Description: 	 None

Process Description: For each row of TBF, the following process is

done, and then a return is made to the

calling routine:

1. If column 1 of TBF is not equal to 11F,

ignore this row and go to step 25.

2. Retrieve F, the pointer to the WBF row

number, from column 2 of TBF.

3. If the output field type, column 5 of TBF,

is > 3, go to step 9.

4. If column 2 of row I- of WBF indicates text

type (by $T), then use SIIBSTR to transfer

the text from the command line array, Ctrl

in /SY3COM/, to BUF and then go to step 25.

^^J

S. If column 2 of row F of WBF does not

indicate a results field (by $R), then

go to step 7.

If column S of row F of WBF does not

indicate text type (contains non-zero),

then go to step 8.

7. Use SUBSTR to transfer the data from

WBUF to BUF and if WBUF was a results

field, then use SUBSTR to reinitialize

WBUF from the first word of row F of WBF

and go to step 25, otherwise just go to

step 25.

8. Use SUBSTR to transfer the data in WBUF

to an integer variable named RESULT and

based on the target type (column S of

TBF), use CHAR (type - 1) or DTEINT

(type = 2) to convert RLSULT to a

character string in BUF. Then reinitialize

WBUF from the first word of row F of 101:

and go to step 2S.

9. Extract the first character of the field

in IOUF and store this character in

CRI)TYP .

10. If the target field type # 5, go to step 12.

11. Search the array FLMTYP until a match with

CRDTYP is found at element L. If no

match is found, set L = 8. Store the 12

characters of row 1. of table FLMTAB into

the field in the target buffer and go

to step 25.

12. If the target field tyr,,; # 4, go to

step 23.

13. Search the array CMPTYP until a match

with CRDTYP is found at element L. If

no match is found, set L - 11.

14. If L < 5 or = 11, go to step 22.

15. If 1. > 7, go to step 19.

16. Extract the pointer to the "UNLOAD"

field from TBI: (4,1) and Store it in K.

17. If K - 0, go to step 22.

18. If the "UNLOAD" field is non-blank,

then increment L by 3 and go to step 22,

otherwise go to step 22.

19. Extract the pointer to the "LSD" field

from TB>: (4, 2) and store it in K.

20. If K - 0, then set L r 11 and go to

step 22.

21. Use SUBSTR to transfer the contents of the

"LSD" field from WBUF to the target field

and go to step 25.

22. Use S11BSTR to store the 12 char.:^ters

of row L of table CMPTAB into the field

in the target buffer and go to step 25.

27. If the target field type # 9, go to step 7.

24. Search the arra y GCMTYP until a match

with CRDTY1' is found at element L. 	 If

no match is found, set L = 1. Use

SUBSTR to store the 12 characters of row

L of tahle GCMTAB into the field in the

t:;rget buffer.
25. Move to the next row of TBF and start

over at step 1.

A^^v r_^y

r:

Name:	 TJUMP

Purpose:	 To eliminate headers and other data

associated with a null set.

Linkage:	 • Calling sequence: CALL TJUMP
E

• Common blocks used: SYSCOM, SYZCOM

t Subroutines or functions used: INDEX,

SUBSTR, INPARM

• Files used: None

Input Description:	 A command line containing the set to be

checked.

Output Description:	 None

Process Description: The set in question is checked to see if

it contains data. If it does contain data

no action is required and the routine exits.

If there is no data in the set, the label

from the command line is saved for later

use. Next the input file is read until a

label card containing "LA" followed by

the label saved from the JT command line is

found. The routine then exits.

4.3 DESCRIPTION OF SUBROUTINE MODIFICATIONS

This section contains all subroutines requiring minor

modifications. Those requiring major redesign are in 4.2

1

Name:
	

CHAR

Input Description Modification:

To allow conversion of negative numbers.

• Calling sequence: No change

• Common blocks used: No change

• Subroutines or functions used: The
Fortran function IABS is now used.

• Files used: No change

V = integer variable; may now contain

values less than zero.

Modification Purpose:

Linkage Modification:

Output Description Modification:	 STR = integer array name; leftmost

position will contain the minus

character if the input value in V

was negative.

Process Description Modification: Convert the absolute value of V to a

character string by the original process.

Then, if V is negative, store the minus

character as the leftmost character of

the output field.

Name:
	

JLASYS

Modification Purpose: To allow the following new capabilities:

1. Data base protection for Delete

Set, Delete Record, Delete Key and

No Key commands.

2. Null set detection and control

transfer.

3. Joint Sort, ,joint Select Non-Key,

Report and Joint Report commands.

No change

No change

No change

1. When the input command JT is

encountered call TJUMP subroutine.

2. When the input command LA is

encountered treat it as a NOP and

process next input command.

3. When either of the commands DK,

DR, DS or NK is encountered, call

DBPRO. If DBPRO . • eturns a flag = 0

do not execute the command. If

DBPRO returns a flag not = 0

process the command as before.

4. When the JS command is encountered

set SFLAG = 2 and call the SORTP

subroutine.

S. When the SO command is encountered

set SFLAG = 1 and call the 5ORTP

subroutine.
6. When the "JN" or "SN" command is

encountered call the JNSNCR

subroutine.

Linkages Modification:

Input Description Modification:

Output Description Modification:

Process Description Modification:

J^

7. When the "RP" or "JP" command

is encountered call the JPRPCR

subroutine.

8. When the TF " or "DF " command is

encountered call the JFDFCR

subroutine.

Linkage Modification:

SEL (Main program)

To echo 80 characters of the input

command instead of 40 to the message

file (unless it is the terminal).

• Calling sequence: No change

• Common blocks used: No change

a Subroutines or functions used:

No change

• Files used: No change

Name:

Modification Purpose:

Input Description Modification: No change

Output Description Modification: No change

Process Description Modification;When the WRITE statement with array

X in it is executed, the entire array

(20 words) is written instead of

just the first 10 words.

J `^r

SORTSName:

Modification Purpose:

Linkage Modification:

Input Description Modification

Out put Descri p tion Modification

To allow the user to order a

set of FLOCON records based

upon the contents of fields in

either the FLOCON or DAPTS

records for that set.

* Calling Sequence: CALL SORTS

(SET, NF, LIST, SF)

• Common Blocks used: No change

• Subroutines or functions used:

No change

• Files used: No change

SF: integer value, where SF =1

means sort on FLOCON data, SF =2

means sort on either FLOCON or

DAPTS data.

No change

Process Description Modification: For SF = 2 only, the DAPTS record

for each appropriate FLOCON

record is retrieved. Next the

formats for DAPTS or FLOCON records

are loaded as needed, a table of

sorting names is loaded in proper

hierarchical order and a buffer

pointer table is also built to

point to the proper buffer for

data retrieval. Lastly, the data

retrieval section is altered to

get data from the appropriate

buffer by use of the buffer

pointer table as an index.

Name:
	

SORTP

Modification Purpose:

Linkage Modification:

Input Description Modification:

To pass an argument to SORTS to

indicate the type of sort to

perform.

• Calling sequence: CALL SORTP(SF)

• Common blocks used: No change

• Subroutines or functions used: No

change

• Files used: No change

SF = integer variable, indicates

which type of sort SORTS is to per-

form. 1 = normal sort, 2 = joint sort.

Output Description Modification:
	

None

Process Description Modification:	 The argument SF received from JLASYS

is passed to SORTS to allow SORTS to

perform the appropriate type of

sort.

i
i

Name:

Modification Purpose:

Linkage Modification:

Input Description Modification:

Output Description Modification:

SPCSET

To stop the input process when an

end-of-file is read as well as a

zero record ID.

• Calling sequence: No change

• Common blocks used: No change

• Subroutines or functions used:

No change

• Files used: No change

No change

No change

Process Description Modification:	 Insert an end-of-file branch to

statement number 3 into the state-

ment that reads from the data file.

4.4 DESCRIPTION OF NEW SYSTEM TABLES

This section describes the common blocks and tables used in

conjunction with implementing arithmetic operators.

4

t	 BUI-FER FORMATS

4

General layout for Source Buffer Format (SBF), Working Buffer

Format (WBF), and Target Buffer. Format (TBF).
4

Column 1 - 1 word - SBF: temporary key field indicator for CF

command

WBF: the value to be used for initialization after

printing of a results field

TBF: print flag to associate printing of this field

with a change of a BY field (BY pi,,c(^:-,sing table

row number N)

Print flag = 2*N-1 means print this field at top

of BY number N

Print flag = 2*N means print this field at bottom

of BY number N

Column 2 - 3 words - SBF: first word is data base format row

number of key field for CF command.

WBF: four tykes of data: (1) alphanumeric characters

representing field names, (2) $Lbb in first word

for integer literal in command line, (3) $Tbi, in

first word for alphanumeric literal in command line,

(4) $'Zbb in first word for calculation results

TBF: First word is row number of WBF of desired output

field. Second word is key field indicator for CF

command. Third word is data base format row

number of ke y field for CF command.

Column 3 - 1 word - SBI f , WBF, 'TBF: starting character for actual

value in bu,-for being used.	 (In WBF, the data is actually

in the comr::and line instead of the w.;rking buffer if

column 2 = $,.rbb)

Column 4 - 1 word - Sli p , lVBF) TBF: length of field (in characters)

Column 5 - 1 word - SBP', WBF, TBF: type of data in the field:

-1 means a binary integer contained in 4 characters

r
0 means an alphanumeric character string

1 means an integer in a numeric character string

2 means a date in YDDD numeric character string format

BY PROCESSING TABLE

Each successive row of this table defines a successively lower

level subgroup of the input data and the processing associated

with a change at that subgroup level.

Column 1 - 1 word - binary integer; index to Working Buffer

Format (i.e., row number) pointing to the Grouping Field

Name (GFN) . If 0, it me.ns the GFN was E&E. If <0, than

a calculation must be performed before a test for the BY

change can be made.

Column 2 - 1. word - binary integer; starting row number of normal

command table when column . 1. is <0.

Column 3 - 1 word - hinar y integer; number of rows of normal

command table to be processes: when column 1 is <0.

Column 4 - 1 word - binary integer; starting row number of normal

command table for use when the value of this BY field or

calculation changes.

Column 3 - 1 word - binary integer; number of rows of normal

command table to process when the value of this BY field

or calculation changes.

Column G - 5 words - current value of the GFN for this subgroup

level. An integer or calculation result is stored in

the i'irst word, whereas a text field may he all 20

characters.

COMMAND OPERATIONS TABLE

This table does not exist as an identifiable entit y in the

software. It	 is an explanation of what is meant by a row

of a command table and a definition of what operation 	 is

performed for each operator by the subroutine 1:XCMD.	 In

the description below, columns 1-4 of a command table are

referenced by the terms OPND(1),	 OPERATOR, OPND(2), 	 and

RESULT,	 respectively, and CFLAG is a logical argument 	 in

the call	 to EXCMD.

OPERATOR OPERATION PERFORMED

1 ADD I'T 1 ON: OPND (1)	 + GPND (2) -► RESULT

2 SUB'TRAC'TION: OPND(1)	 -	 OPND(2)-► RESULT

3 MIJLTI1)1,ICAT'I0N: OPND(1)	 *	 OPND(2)-► RFSUL'T

4 1)1VA S ION: OPND(1) /OPND(2)-+RESULT

S .LT.:	 I1 : OPND(1)	 <	 OPND(2),	 THEN	 .TRUE.-,-CFLAG,

OTIII.RWIS1: .I-'AI.SIi.	 +CFi,AG

G .LF.:	 !V OPNI)(1)	 <	 OPND(2) ,	 THEN	 .TRUE.-CFLAG,

OT1II:RIVI SI: .I:AI,SI:.--CFLAG

7 .I;Q.:	 11 : 01 I ND(1)	 =	 OPNI)(2),	 TH1:N	 .'TRU1:.--CFLAG,

OTHERWISE .FA1,S1:	 C1;LAG

h .Nl:.:] I : 01)ND(1)	 #	 01'ND(2) ,	 THEN	 .TR111:.

OTI1FRIVISE . FAI.S1:. *CFLAG

9 .GI;.:	 IF OPND(I)>	 OPNI)(2),	 I'hI:N	 . TRUE. -a	 CFLAG,

O'1'H1`.lth' 15}:	 . 1^^11.51^:. -^C1^1.^1(^

1t) i.'1'.:	 IF OJ I ND(I)>	 OPND(2), THEN	 . TRUE. - ► CFLAG,

011FRIti ISE ±-:1I,K .	 WFLAG

11 COUNT:	 11 : OPND(2)	 1S NOT BLANK, THIN OPND(1)

+1 ^,	 0PND(1)

12 N11M.	 '•MIN.: THE NUMERICAL MINI1\IIIM OF	 OPND(I)	 AND

OPND(2) > OI'NI)(I

13 NIM.	 MAX.: THE NUMERICAL MAXIMUM OF OPND(1 1 AND

OPND(2) j OPND(I)

OPERATOR	 OPERATION PERFORMED

14	 ALPHA MIN.: THE ALPHA MINIMUM OF OPND(1) AND

OPND(2) - OPND(1)

15	 ALPHA MAX.: THE ALPHA MAXIMUM OF OPND(1) AND

OPND (2) - 0PND(1)

16	 TRANSFER: OPND(1)i RESULT

r

-4,^ 2 yy

COMMAND TABLE

General layout for the normal command table and the function

command table. Each row of this five-column table represents

an operation to be performed by the execute command subroutine,

FXCNID.

Column 1 - 1 word - hinary integer pointing to the first operand.

A positive number is the rot: number of the Working Buffer

Format. A negative number means an intermediate storage

register, and its absolute value tells which register.

Column 2 - 1 word - positive binary integer representing the

operation to be performed. See Command Operations Table.

Column 3 - 1 word - binar y integer pointing to the second operand

for binary operations. Same type pointer as column 1.

Column 4 - 1 word - bina.-y integer pointing to the location where

+-he result of the operation is to be stored. Same type

pointer as column 1.

Column S - 1 word - hinary integer whose value is the row number

of this command table to which a jump is made when the

current operation cannot be performed due to absence

of data in an operand.

COMMON BLOCK CLTBL

This common block contains the 50 word array named CObMS,

wh 4- ch is the Com,^na Location Table.

^l

CONBION BLOCK SY3COM

Variable or Array	 Usage

CTBL(5,50) Normal Command T-ble

FCTBL(5,10) Function COMM'	 l T,.ble

WBUF(50) Working Buffer

WBF(7,50) Working Buffer Format

SBF(7,20) Source Buffer Format

TBF(7,30) Target Buffer Format

NILMT(2,20) Multilevel 'Move Table

MTCT(3,2) Move Table Control Table

BPT(10,5) BY Processing Table

REG(16) Intermediate storage registers

CMD(100) Packed input command

NCTBL last used row number in CTRL

NFCTBL last used row number in FCTBL

NWBF last used row number in WBF

NSBF last used row number in SBF

NTBF last used row number in TBF

NMLNIT last used row number in MLMT

NMTCT last used row number in MTCT

NBPT last used row number in BPT

^^ yJ

COMMA LOCATION TABLE

Table that points to the commas which surround relational,

replacement, and BY clauses, and report expressions in the

packed input string for the command. 	 it is a one-dimensional

ar-ay of four-byte integers.

Word 1 - cn_:ry integer whose absolute value is the last used

word of the Comma Location Table. A negative value is

used for the JP G RP commands to indicate that the

command terminating exclamation point was encountered

by subroutine SQZE.

Words Z-n - binary integers whose values are the character

numbers in array DID of /SY3CONI/ where significant

syntactical commas occur.

4 ^^

MULTILEVhL MIUVE '!ABLE

Each row of this two-column table represents a move of data to

be made by TFORMW subroutine.

Column 1 - 1 word - binary integer whose value is the row n-amber

of the Source Buffer Format array where information

about the field In the Source Buffer is located.

Column 2 - 1 word - binary integer whose value is the row number

of the Working Buffer Format array where information

about the field in the Working Buffer is located.

Each row o

Multilevel

the Source

1
Column 1 -

row

MOVE TABLE CONTROL TABLE

f this three-column table defines which moves in the

Move 'fable are to be performed for the record in

Buffer from a particular data base level.

1 word - binary integer whose value is the starting

number in the Multilevel ;dove Table.

Column 2 - 1 word - binary integer whose valu: is the number of

rows in the ?Multilevel Move Table to be proc ssed via

TFORMW subroutine to get all the needed data transferred

from the Source Buffer to the Working Buffer at a

particular data base level.

Column 3 - 1 word - binary integer whose value is the format

number for records at this data base level.

i	 _

	1980022332.pdf
	0024A02.JPG
	0024A03.JPG
	0024A04.JPG
	0024A04.TIF
	0024A05.TIF
	0024A06.TIF
	0024A07.TIF
	0024A08.TIF
	0024A09.TIF
	0024A10.TIF
	0024A11.TIF
	0024A12.TIF
	0024A13.TIF
	0024A14.TIF
	0024B01.TIF
	0024B02.TIF
	0024B03.TIF
	0024B04.TIF
	0024B05.TIF
	0024B06.TIF
	0024B07.TIF
	0024B08.TIF
	0024B09.TIF
	0024B10.TIF
	0024B11.TIF
	0024B12.TIF
	0024B13.TIF
	0024B14.TIF
	0024C01.TIF
	0024C02.TIF
	0024C03.TIF
	0024C04.TIF
	0024C05.TIF
	0024C06.TIF
	0024C07.TIF
	0024C08.TIF
	0024C09.TIF
	0024C10.TIF
	0024C11.TIF
	0024C12.TIF
	0024C13.TIF
	0024C14.TIF
	0024D01.TIF
	0024D02.TIF
	0024D03.TIF
	0024D04.TIF
	0024D05.TIF
	0024D06.TIF
	0024D07.TIF
	0024D08.TIF
	0024D09.TIF
	0024D10.TIF
	0024D11.TIF
	0024D12.TIF
	0024D13.TIF
	0024D14.TIF
	0024E01.TIF
	0024E02.TIF
	0024E03.TIF
	0024E04.TIF
	0024E05.TIF
	0024E06.TIF
	0024E07.TIF
	0024E08.TIF
	0024E09.TIF
	0024E10.TIF
	0024E11.TIF
	0024E12.TIF
	0024E13.TIF
	0024E14.TIF
	0024F01.TIF
	0024F02.TIF
	0024F03.TIF
	0024F04.TIF
	0024F05.TIF
	0024F06.TIF
	0024F07.TIF
	0024F08.TIF
	0024F09.TIF
	0024F10.TIF
	0024F11.TIF
	0024F12.TIF
	0024F13.TIF
	0024F14.TIF
	0024G01.TIF
	0024G02.TIF
	0024G03.TIF
	0024G04.TIF
	0024G05.TIF
	0024G06.TIF
	0024G07.TIF
	0024G08.TIF
	0024G09.TIF
	0024G10.TIF
	0024G11.TIF
	0024G12.TIF
	0024G13.TIF
	0024G14.TIF
	0025A02.TIF
	0025A03.TIF
	0025A04.TIF
	0025A05.TIF
	0025A06.TIF
	0025A07.TIF

