NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

AgRISTARS

"Made avallable under NASA sponsorship in the interest of early and wide disSemination of Earth Pasources Survey Program iniormation and without liability for any use made thereos. ${ }^{\text {ER }}$

Foreign Commodity Production Forecasting

NHN. 301980 NASACR.
160728
A Joint Program for
Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing June 1980

STATISTICAL OUTLIER DETECTION (SOD): A COMPUTER PROGRAM FOR DETECTING OUTLIERS IN DATA
R. S. Chhikara; C. L. Horton, and M. A. Mendlowitz Lockheed Engineering and Management Services Company, Inc.
and
A. H. Feiveson

National Aeronautics and Space Administration
(E80-10275) STATISTICAL OUTLLER DETECTION
(SOD): A COMPUTRR PROGRAM FOR DETLECTLNG

N80-30848

G3/43 Unclas

LOCKHEED ENGINEERING ANO MANAGEMENT SERVICES COMPANY, INC.
1830 NASA Road 1, Houston, Texas 77058

STATISTICAL OUTLIER DETECTION (SOD): A COMPUTER PROGRAM FOR DETECTING OUTLIERS IN DATA

Job Order 74-432

This report describes Sampling and Aggregation activities of the Foreign Commodity Production Forecasting project of the AgRISTARS program.

PREPARED BY
R. S. Chhikara, C. L. Horton, and M. A. Mendlowitz (Lockheed) and
A. H. Feiveson (NASA)

APPROVED BY

NASA

LOCKHEED

PREPARED BY

LOCKHEED ENGINEERING AND MANAGEMENT SERVICES COMPANY, INC.
Under Contract NAS 9-15800
For
Earth Observations Division
Space and Life Sciences Directorate NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LYNDON B. JOHNSON SPACE CENTER HOUSTON, T'EXAS

June 1980

CONTENTS

Section Page

1. DESCRIPTION 1
2. USER GUIDE 2
3. EXAMPLE 3
4. REFERENCES 5
Appendix
A. AN ITERATIVE PROCEDURE FOR DETECTING MULTIPLE OUTLIERS A-1
B. PROGRAM LISTING B-1

TABLES

Table Page
1 COMPUTER OUTPUT FROM SOD. 4
A-1 ESD STATISTICS AND CRITICAL VALUES. A-3
A-2 STATISTICAL OUTLIER DETECTION A-7

Described in this paper is a computer program that detects outliers in a univariate data set. This program, called SOD (statistical outliers detection), is capable of detecting as many as 19 outliers in a data set. It is written in FORTRAN and can be run in either an interactive or batch mode.

The SOD software consists of a main program and a subroutine. The main program (1) reads the data file, (2) writes the initial section of the report, and i^{3}) iterates sequentially for testing the next number of potential outliers. The subroutine (1) calculates the test-critical values based on the number of potential outliers being tested and compares these to the observed values of test statistics and (2) gives the number of observations tested, total number of observations considered, mean, standard deviation, extreme observation, critical value, and computed test statistics. Also, it prints the number of observations declared as outliers and their values.

The number of potential outliers may be specified by the user or selected by the program. Though there is no limitation on the number of observations, it is not advisable to use it when there are more than 100 observations.

It is assumed that the set of observations is from a population which has a normal distribution. A significance level of 5 percent is assumed in developing the statistical test. If one or more observations do not conform to the hypothesis that all observations are from a common population, these observa... tions are declared as outliers by the statistical test procedure. Refer to appendix A for a brief outline of the test procedure. Details of the procedure are described in references 4 and 6 . The iterative procedure used for specifying the number of potential outliers is discussed in appendix A, and a program listing is given in appendix B.

It should be mentioned that the observations declared as outliers are not necessarily "bad" data points, but may be indicative of a nonnormal or multimodal distribution; hence, outlying observations should not necessarily be rejected, but must be treated cautiously.

2. USER GUIDE

The SOD program is operative on the PDP Support Processor at NASA/JSC, Houston.

To use the program, the ser signs on to the computer by simultaneously depressing the control key (ONTR) and C key to begin the following dialogue: MCR HEL [130,1] (carriage return)
TASK NAMEDSOIL M (carriage return)
YOUR NAME ${ }^{\text {User's name (carriage return) }}{ }^{1}$
MCR>PIP SOD.IN=DATA.DAT ${ }^{2}$ (carriage return)
MCR $>$ RUN SOD (escape)

The report will be written on the line printer.

It may be necessary to simultaneously depress the CNTR and C keys.
${ }^{2}$ The data should have been keypunched previously and entered into a file (DATA.DAT) with the following format:
TITLE FOR REPORT
VALUE 1
value 2
VALUE 3
VALUE 4
Each number should include a decimal point.
Value N

3. EXAMPLE

The following example illustrates the 500 program.
MCR>HEL [130.1]
TASK NAME>SOIL M
YOUR NAMEPHORTON
MCR>PIP SOD.IN=DANIEL.DAT
MCR>RUN SOD\$
DANIEL (1959)
0.0
0.028
-. 056
-. 084
-. 098
.126
. 168
.196
.225
$-.253$
. 295
-. 309
.393
. 407
.421
.435
.463
-. 477
. 547
.660
.744
-. 744
-. 758
-. 814
-. 814
-. 898
1.080
-1. 305
2.147
-2.666
-3.143
ENTER NUMBER OF ITERATIONS AS A 2 DIGIT NUMBER OR ENTER BLANKS FOR DEFAULT = SQUARE OF NUMBER OF POINTS

```
SOD -- ' STOP
```

TABLE 1．－COMPUTER OUTPUT FROM SOD

DANIEL（1940）

| $08 S E R V 1910 N S 1$ | | 0.0290 | 0.0560 | 0.0840 | 0.0980 |
| :---: | :---: | :---: | :---: | :---: | :---: |$\quad 0.1200$

```
NOPTS E 31
```

MEANS E 0.1317
STANCAFDSEVIATICA = 1.UDNI

NUMEER OF	TOTAI NIIMAEE		STANDAFU	ExTQEME	ESり	CHDT」CAL IEST
POTENTIAL	Ofesegvations	Mfodis	TEVEATIUN	1］HSFQVATIUN		－

OUTLIERS

b	31	－ 0.1217	1．0101	－3．1430	3．0111	5.3025
6	30	－ 0.0314	0．R435	－2．0000	3.1234	2．8205
－	29	C．1595	0.6932	2．1410	3.0118	2.6562
0	29	－0．0151	9． 5754	－1．305k	2．2417	2.5508
0	27	त． 4727	0.5265	1.10090	1． 4.842	2.4956
0	26	－¢0， $0 \rightarrow 74$	0.4730	－い，入の禹	1.0003	2．4400
5	31	－ 0.1317	1．0001	－3．1430	3.0111	S．2208
5	31	－ 0.0314	0.8435	－2．000．	3.1234	2．5049
5	e	ก．1995	0.6952	2．1470	3.4110	2．5477
5	？ 2	－0．0151	0.5754	－1．3050	2．6417	6.5509
5	27	8.0327	0.5200	1.0506	1．tad？	2.4744
4	31	－ 0.1317	1．0）（1）1	－3．14311	3.0111	1.2016
4	50	－ 0 － 0314	0.8435	－2．0004	3.1234	2.7824
4	39	0.10595	0.6432	2.1470	3．0110	2.6540
4	38	－¢9．j151	0.5754	－1．3030	2.2417	2.5001
3	31	－ 0.1317	1．0011	－3．1430	3.0111	5．1302
3	30	－0．0314	8．8．835	－2．6000	3.1234	2．7597
3	29	ก．9595	$0.693 ?$	2.1470	3.0116	2.5499

OUTLIERS＝ 3

```
POINTS -3.143 -2.646 2.147
```


4. REFERENCES

1. Barnett, V. D.; and Lewis, T.: Outliers in Statistical Data. Wiley, Chichester, (England), 1978.
2. Barnett, V. D.: The Study of Outliers: Purpose and Model. J. Appl. Statistics, vol. 17, no. 3, 1978, pp. 242-250.
3. Chhikara, R. S.: A Screening Procedure for Improving Large Area Crop Acreage Estimates. American Stat. Assn., 1979 proceedings of the section on Survey Research Methods, 1979, pp. 301-304.
4. Chhikara, R. S.; and Feiveson, A. H.: Extended Critical Values of Extreme Studentized Deviate Test Statistics for Detecting Multiple Outliers. Communications in Statistics, vol. B9, no. 2, 1980.
5. Daniel, C.: Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments. Technometrics, vol. 1, 1959, pp. 311-341.
6. Rosner, B.: On the Detection of Many Outliers. Technometrics, vol. 17, 1975, pp. 221-227.

APPENDIX A
AN ITERATIVE PROCEDURE FOR DETECTING MULTIPLE OUTLIERS

APPENDIX A

AN ITERATIVE PROCEDURE FOR DETECTING MULTIPLE OUTLIERS

A. 1 THE STATISTICAL TEST

Given a set of N observations, suppose one wishes to test the null hypothesis of no outijers present in the data set against the alternative hypothesis that from one to k outliers exist, where k is specified in advance. This may be done by constructing a sequence of subsets of the data, $\left\{A_{1}, A_{2}, \cdots, A_{k}\right\}$, where A_{1} is the full set of data and the subset A_{i+1} is formed by deleting from A_{i} the observation farthest away from the mean of A_{i} ($i=1,2, \cdots, k-1$). For each subset, the extreme studentized deviate (ESD) statistic is defined to be the maximum of the absolute values of the studentized residuals. (A studentized residual is the deviation of an observation from the sample mean divided by the sample standard deviation.)

Let t_{i} be the ESD from the ${ }^{\text {th }}$ subset, A_{j}. Then corresponding to each t_{j} is a critical value λ_{i} such that either (a) $t_{i}<\lambda_{i}$ for $1 \leqslant i \leqslant k$, or (b) $\left.t_{i}\right\rangle \lambda_{i}$ for $1 \leqslant i \leqslant h$ and $t_{i}<\lambda_{i}$ for $i>h$ where $1 \leqslant h<k$. If (a) occurs, the hypothesis is accepted that there are no outliers; in case (b), the data are declared to have h outliers, with the observations deleted to form A_{h+1} as the outliers.

A. 2 CHOICE FOR k

The critical values λ_{i} in 500 were constructed for the 5 -percent significance level by numerical simulation using normally distributed data. These values are not independent of k; in fact, for a fixed value of i, they increase monotonically with k. As a consequence, even if the basic data are normally distributed, the power of the test against a fixed number of outliers decreases as k increases so that grossly overspecifying k may result in the failure to detect some or even all outliers. On the other hand, if k is underspecified, it is more likely that up to k outliers will be detected,
but additional ones will not be found since the test assumes no more than k outliers are present. In either case, power is lost by using an inappropriate value of k.

If the underlying distribution of the data is nonnormal, especially it it is multimodal, the test will have a tendency to find many "outliers"; hence, if this situation occurs, even for fairly large k, one should be suspicious about the distribution of the data and look for underlying mechanisms which might have made the data multimodal or highly skewed.

The following two examples illustrate some of the above points.

Example 1: Soil moisture was measured at a depth interval of 5 to 9 centimeters for a wheat field near Colby, Kansas, on July 18, 1978. The following gravemetric measurements of water content in percentage of dry weight were obtained from 17 points within the field:

$$
\begin{aligned}
& 5.9,6.4,5.6,7.5,6.7,4.0,5.3,5.5,5.5,3.5,4.6,10.5,5.7, \\
& 7.3,5.2,9.7,4.0
\end{aligned}
$$

Two observations, 10.5 and 9.7 , are suspicious, and one wants to know whether or not they could be regarded as outliers. An application of the test procedure with $k=2$ declares these two observations as outliers; however, looking at the data and then choosing k alters the significance level of the test by an unpredictable amount. It is interesting to see what would have happened had k been chosen (in advance) as $1,2,3$, or 4 .

Table A-1 provides the computed ESD test statistic, t_{i}, and the corresponding 5 -percent critical value, $\lambda_{i, k}(i=1,2, \cdots, k)$ for different cases.

TABLE A-1.- ESD STATISTICS AND CRITICAL VALUES

Subset	Extreme observation	ESD statistic $\left(t_{j}\right)$	Critical value $\left(\lambda_{i}, k\right)$			
			$k=2$	$k=3$	$k=4$	
A_{1}	10.3	2.365	2.61	2.74	2.86	2.93
A_{2}	9.7	2.549		2.39	2.53	2.57
A_{3}	7.5	1.722			2.35	2.44
A_{4}	7.3	1.728				2.34
Number of outliers declared	0	2	2	0		

From this table, it can be seen that, if the number of potential outliers were specified as either 1 or 4 , none of the observations would have been declared as an outlier since $t_{i}<\lambda_{i, k}$ for all i. In the other two cases, $t_{2}=2.549$ exceeds both $\lambda_{2,2}=2.39$ and $\lambda_{2,3}=2.53$; hence, the two observations, 9.7 and 10.5 , would be flagged as outiiers. Thus, suspected observations may not be flagged as outliers by the test when k is under- or over-spesified.

Example 2: The following soil moisture observations were obtained for a corn field near Colby, Kansas, on July 18, 1978, from the top soil layer (0 - to 1 -centimeter interval). In this case, gravemetric measurements of water content in percentages of dry weight were taken from 35 randomly selected points within the field:

$$
\begin{aligned}
& 11.5,3.2,19.2,21.6,5.7,24.6,2.1,3.4,4.4,3.7,4.2,7.9 \text {, } \\
& 7.1,2.6,3.5,8.9,1.8,2.4,6.0,2.8,29.2,29.1,19.6,1.4, \\
& 4.4,4.4,2.9,4.7,3.2,3.8,2.6,4.4,4.6,4.7,4.6
\end{aligned}
$$

At the top layer, soil moisture can be affected by a number of heterogeneous factors; thus, the observations which appear to be outliers may very well be legitimate.

Numerical ordering results in the following data set:

$$
\begin{aligned}
& 1.4,1.8,2.1,2.4,4.6,2.6,2.8,2.9,3.2,3.2,3.4,3.5,3.7, \\
& 3.8,4.2,4.4,4.4,4.4,4.4,4.6,4.6,4.7,4.7,5.7,6.0,7.1, \\
& 7.9,8.9,11.5,19.2,19.6,21.6,24.6,29.1,29.2
\end{aligned}
$$

A quick glance shows that at least one significant gap occurs - between 11.5 and 19.2. Six observations are greater than or equal to 19.2. When the test procedure is applied assuming $k=6$, these six observations are declared outliens. Furthermore, its repeated application with $k=2,3, \cdots, 10$ resulted in every additional extreme observation being flagged as an outlier. The flagged observations are 7.1, 7.9, 8.9, 11.5, 19.2, 19.6, 21.6, 24.6, 29.1, and 29.2. The first four of these observations should not be regarded as outliers since water content in this range was found to be quite reasonable for places at higher ground on the particular day of measurement. In this case, the blind applications of the test leads to the identification of false outliers. It must be recognized that these four observations simply cannot be lumped together with the remaining 25 observations and analyzed uni data analysis techniques based on normal and/or unimiodal models.

Ideally, one should not look at the data before specifying k. Rosner (1975), among owners, suggested the use of a certain percentage of the number of observations to specify k. Barnett and Lewis (1978) proposed that a fractional power of N may be used for k. In the author's own work [Chhikara (1979)], the rule of $k=\sqrt{N}$, to the nearest integer, was employed and often proved quite satisfactory. Presently, this rule is extended to safeguard against errors of undetected outliers as described in the next section. While this modified method undoubtedly alters the signifiance level of the test, it still provides a useful device for screening data with no prior information. If outliers are detected using this procedure, one should not blindly accept such a declaration; instead, this should be taken as a starting point for further investigations about the cause of the suspected observations.

A. 3 AN ITERATIVE METHOD

Start with $k=\sqrt{N}$ and compute the ESD test statistics. When the statistics t_{i} and the critical values $\lambda_{i, k}$ are compared, one of the following cases arises.
(a) $t_{h} \geq \lambda_{h, k}, h<k$, and $t_{i}<\lambda_{i, k},(h+1) \leq i \leq k$
(b) $t_{i}<\lambda_{i, k}, 1 \leq i \leq k$
(c) $t_{k} \geq \lambda_{k}, k$

The test procedure described in section A.l would declare h outliers in case (a), none in case (b), and k outliers in case (c). It is reasonable to assume that all potential outliers in the data were detected in case (a); and, hence, no further application of the procedure is needed. On the other hand, as we have seen, some outliers may have remained undetected in the other two cases; ie., in case (b), the critical values $\lambda_{i, k}$ would have been smaller had a lesser number been specified for k; whereas, in case (c), additional extreme observations might have been declared as outliers had the test been made for more than k extreme observations. This suggests that an iterative procedure should be used to decrease k in case (b) and increase k in case (c). When k is decreased successively by one, a set of smaller critical values is being used, thus increasing the power of the test for declaring outliers. In case (b), the decision to stop iterating is made when $t_{h} \geq \lambda_{h, k}(0 \leq h<k)$ which results in h outliers being declared. in case (c), In case (c), k is increased sucessively so that more extreme observations are tested as potential outliers. The test procedure is iterated until

$$
t_{k+j} \geq \lambda_{k+j, k+j+1}
$$

and

$$
t_{k+j+1}<\lambda_{k+j+1, k+j+1}
$$

with the number of iterations not to exceed a certain preset limit. The number of outliers declared is then set equal to ($k+j$).

The critical values estimated by the SOD computer program are based on smoothing functions which fit the Monte Carlo-estimated critical values for $k=1,2, \cdots, 19$, and $N \leq 100$. Thus, one can apply the test procedure to detect as many as 19 outliers in a data set of up to 100 observations. However, as pointed out by Chhikara and Feiveson (1980), one would rarely need to consider testing for more than a few outliers. Since, at most, 50 percent of a set of observations can be thought of as outliers, the SOD program specifies $k \leqslant \min (I, 19)$, where I is the largest integer less than or equal to $N / 2$, for the upper bound on the number of iterations.

When using the iterative procedure to obtain k, the significance level of the test increases from 5 percent. Any such increase would depend upon the data size; however, it is insignificant for large samples since the critical values become insensitive to k in such situations.

A. 4 EXAMPLES

Returning to Example 1 in section A.2, it is easily seen that the iterative test procedure will start by specifying $k=4$ under the \sqrt{N} rule and then will consider $k=3$, since no outliers are declared in the first case. Because $t_{2}>\lambda_{2,3}$, it will stop and declare two outliers for the data in Example 1 .

In the case of Example 2, the procedure will continue iterating from the initial case of $k=6$ to the last case of $k=11$, declaring 10 outliers, since $t_{10}>\lambda_{10,11}$ and $t_{11}<\lambda_{11,11}$. However, as mentioned earlier, the 10 outlying observations are not necessarily outliers and flagging them using the test procedure reflects primarily on the data distribution being probably nonnormal and at least biomodal.

Example 3: Daniel (1959) reported the following data consisting of 31 contrasts in order of absolute value in a 2^{5} experiment:

$$
\begin{aligned}
& 0.000,0.028,-0.056,-0.084,-0.098,0.126,0.168,0.196,0.225, \\
& -0.253,0.295,-0.309,0.393,0.407,0.421,0.435,0.463,-0.477, \\
& 0.547,0.660,0.744,-0.744,-0.758,-0.814,-0.814,-0.898,1.080, \\
& -1.305,2.147,-2.666, \text { and }-3.143
\end{aligned}
$$

The test procedure started with $k=6$ by the \sqrt{N} rule and declared the last three points as outliers. The results, as output from the SOD computer program, are presented in table A-2 and show for each iteration: (a) the number of potential outliers specified; (b) the number of observations and the mean and standard deviation for each subset, (c) the extreme observation and the corresponding computed ESD statistic; (d) the 5-percent critical values; (e) the number of outliers declared; and (f) the outliers.

TABLE A-2.- STATISTICAL OUTLIER DETECTION (EXAMPLE 3)

Number of potential outliers	Number of observations	Mean	Standard deviation	Extreme observation	ESD	Critical value
6	31	-0.1317	1.0001	-3.1430	3.0111	3.3025
	30	-0.0314	0.8435	-2.6660	3.1234	2.8205
	29	0.0595	0.6932	2.1470	3.0116	2.6562
	28	-0.0151	0.5754	-1.3050	2.2417	2.5568
	27	0.0327	0.5268	1.0800	1.9882	2.4936
	26	-0.0076	0.4930	-0.8980	1.8063	2.4406
Number of outliers $=3$						
	Outlying	data poin	ts $=-3.143$	-2.666, 2.1		

Interestingly, all three points, 2.147, -2.666, and -3.143 [which previously have been considered highly discordant on the null normal distribution; e.g., refer to Barnett (1978)], were flagged here as outliers even though the testing of a greater number of outliers was considered. Furthermore, the iterative procedure would have considered smaller values of k, thus increasing the power of the test, had these data points not been detected in the first instance.

A. 5 CONCLUSION

The proposed iterative method deals with the problem of specifying the number of outliers being tested and should minimize the error that otherwise would

occur in not detecting outliers when they exist in a data set. Although the chances of declaring false outliers may increase, the program still provides useful information for data screening prior to subsequent analysis.

Although the iterative test procedure is considered using the ESD test statictic, the basic approach can be adapted for any of the test statistics proposed in the literature; egg., studentized range (STR), kurtosis (KUR), and R-statistic (RST). Details on these test statistics can be found in Rosier (1975).

It is desirable to determine the actual significance level reached by the iterative test procedure, particularly for small sample sizes. Also needed is an evaluation of its power again the non-null hypothesis of a smaller number of outliers. A theoretical solution is probably intractable; therefore, one should attempt to make these evaluations by using the Monte Carlo technique.

APPENDIX B

PROGRAM LISTING

PROGRAM LISTING

```
FORTRAN IV-PLUS VOR-aI
SOR.EIN...- LIP:BLOCKSlNO-
0001..... LOGICAL*I INFO.
0002 DIMENSTONTHETA゙(IN),IITLE(15)
```



```
    1 EXPPK,EXPPKI,ISTEGT,OUTLIE(IUOS
```



```
0005 NATATHFTA, 5.425, 1.213, .3043, 1.5342, .6934,
C
        ******** ASSIGN INNTTS
    CALG ASSIGN(1,iSDN.IN!)
    CALL ASSIGN(2,iLPi';
    CALL ASSIGN(3,iTT:')
0006
000A
0009
2010
001%
0012
2013
00:4
0015
0015
    1080 conin
    CONTINHE
    1090 CONTINHE
C
```



```
        #EADTITLE
            REAC11.1150) (TIPLF(1).!=1.15)
0017
    115U FORMAT(15A4)
C
            READ DATA DOIATS
            i=0
0019
3020
0021
0022
3023
0024
0025
            2020
C
0027
0028
2029
0030
0031
2032
0033
0034
2035
0036
2037 C
0038
    1551 FORMAT (', MOPTS =1,15,',1 MEAVS = = F10.4,1,
    I I STANDARD DEvIAPION=1,FiQ.4,1/1)
    #RITE (3.1551) NODTS, AVF, SDEV
2039
*******
    C
        ********* INITIALILF CONSTANTS *******
        10SO COMTINUE
            $1=1).0
            S220.0
    OO 10AO t=1.11NO
    O(I)=0.0
    M(I)=0
0018
    1200 EOATINIE
            I= I l I
            OEAD(1,1つ50, E4n=150!)J!(1)
    1250 FOEmA(PiFi5.5)
    1250 FOFmAP(Fi5.5)
    1250 FOFmAP(Fi5.5)
    {250 FOFma(PIFi5.5)
```



```
    1504 EONPINIE
            MgPTS=I-1
            PNEFIOATOYODTS,
            AVESSI/PR
            VAF=(S? - SI*ST/BN) / (ON-1.)
            SDEVESART (VAR)
    SDEVESAOT(VAR)
```



```
    WGITF(3,15\mp@subsup{A}{0}{\prime}) iTIMLf(1),T=1,15)
    1580 FOMMAT (1X,15A g,%)
    WFITF (2.1551) NOOIS, AVF, SNEV
    C
```


CALL ITER (NIPERATHETA)
0087
2088
0080
0090
0091
0092
0093
3094

```
O001 SUBROUTINE ITES (NITER, THETA)
0003_.... OIMENSION IHETA(1)
```



```
0004 LSTEGT=0
C calculate eonstanis
    MgN:FLQAT(NP)
0006 AROEMN/2. FLGAT(NIIER)
```



```
0008 CONIE 2. EXE(CON!)
0009 AKIGTHETA(1) -THFTA(2)#EXP(-THETA(3)) 中
    1 THETA(S)=LOG;FLGAT(NTTER))
        AKKETMETA(1) - PHETA(2)-EXP(-THETA(3)^FGOAT(NITER))
        RK\sTMETA(A) - THFTA(IO)MLOG{FLHAT(NITER))
        BKMETHFTA(Q) - PHETA(9)MbO(FLOAT(NIIER))&EONL.
    c
    ********* EEGINTIERAIIONS *********
0013
    DO 3000 T=, ,NITER
    c
    C SET O! valuf
        If(I.EO.1)QI=0'0
```



```
        1 %LOat(1) ) )
        IF(I.EQ.NITER)AI=1.0
    C
    c sey akl value
0017 AKIa(jI*AKk+(F.0日I)*AK!
0018 IF(I.ER.1)AKI=AK!
2019
    IF(I.ER.MITFO)AKI=AKK
    C SET F ValuE
    IF(NITFR.NE,I)T= PFLUAT(I)-1.) /PFL(JAT(NITEFI-1.)
    C
    C SET GKI VAl!l!
        T=SNHT(T)
```



```
        fF(I.EO.1)AKI=aMl
        IF(I.EO.NITER)OKI=HKK
    C finNo sum mf valilea and vallies gouamev. coumt nuivzeru values
            SUMIE0.0
            SUN2=0.0
            ICOUNT = "
            DO 220n }|=1,m
            If(M(J), Cor:0)fin in zzu(0
            ccomNT = [GOlint * 1
            SUM|=S|M| & D(J)
            SUMz=S|Mz+n(J)+D(J)
        2200 CONTINHE
            IFCICDIINT.IT.T,GO Tr. 3100
            COINT=FLOAT(IERUNT)
            C compute mfan, stamDaro levilation
```

```
0036
2037
0038
0039.
0040
904!
0042
0043
9044
0045
0046
0047
0046
0049
0050
0051
052
0053
0054
2055
0056
0057
205a
0059
0060
2061
0062
0063
0064
006%
```

0036

0039

```
    AVEIESHMI/COLN:
```

 AVEIESHMI/COLN:
 VARIE(SUM2-SUMï-SUM:/COUNI) /(EOUNI-I)
 VARIE(SUM2-SUMï-SUM:/COUNI) /(EOUNI-I)
 DEVIESART(VAE)
 DEVIESART(VAE)
 ${ }^{C}$
${ }^{C}$
FIND EXTRFME Vabuf
FIND EXTRFME Vabuf
5IGEU. 0
5IGEU. 0
DO 240n JEI,ND
DO 240n JEI,ND
IF (M(1).Gi.O)GA T0 240n
IF (M(1).Gi.O)GA T0 240n
DIFFxARS(nes)-ivE1)
DIFFxARS(nes)-ivE1)
IFIDIFF.GT.RIGqLCEAPEEJ
IFIDIFF.GT.RIGqLCEAPEEJ
IFPOIFFGPAAGIAIG工DLFF
IFPOIFFGPAAGIAIG工DLFF
2400 CONTINHE
2400 CONTINHE
c
c
C SAVFEXPFRIMENTAG AND PMEQRICAL VALUES
C SAVFEXPFRIMENTAG AND PMEQRICAL VALUES
JF CDEVI.LT. 1.F. 20 IEXFF=O.O

```
            JF CDEVI.LT. 1.F. 20 IEXFF=O.O
```



```
            YHEOZAKI + AKI \& AHCOLCG
```

 YHEOZAKI + AKI \& AHCOLCG
 C
C
C
C
SaVE LOCATfOA MF alifliek
SaVE LOCATfOA MF alifliek
M(LOCATE) $=1$
M(LOCATE) $=1$
OUTLIEPY = O(1OCATF)

```
            OUTLIEPY = O(1OCATF)
```



```
\(C\)
\(C\)
```

```
\(C\)
\(C\)
```



```
            If (I EN. NOTFA) EXPFKI = EXPF
```

```
            If (I EN. NOTFA) EXPFKI = EXPF
```



```
            If (KMPD GE PHEC) LSIEGT = I
```

 If (KMPD GE PHEC) LSIEGT = I
 3001 CQNTINIIE
 3001 CQNTINIIE
 hepllat.
 hepllat.
 3100 CONPIAIIE
    ```
                    3100 CONPIAIIE
```



```
            EETUKN
```

 EETUKN
 ENO
    ```
    ENO
```

