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SUMMARY

A finite element computational model for the nonlinear analysis of
reinforced concrete solid, stiffened and cellular plates is briefly outlined.
Typically, Mindlin elements are used to model the plates whereas eccentric
Timoshenko elements are adopted to represent the beams. The layering
technique, common in the analysis of reinforced concrete flexural systems, is
incorporated in the model.

INTRODUCTION

The present studies were motivated by the need to develop finite element
computational models suitable for the efficient and accurate nonlinear
analysis of reinforced concrete bridge decks and flexural systems. In
particular solid as well as stiffened and cellular plates are of interest and
the full load-displacement history is required.

Previous studies have generally been based on Kirchhoff plate and Euler-
Bernouilli beam representation and one novel feature of the present studies
is the use of Mindlin plate and Timoshenko beam theories. Apart from the fact
that transverse shear deformation effects are then automatically taken into
account, the use of Mindlin/Timoshenko models allows the adoption of clo)
rather than C{1) finite elements in the discretisation pProCcess.

In the nonlinear analysis of reinfeorced concrete plates it is important
to allow for the gradual spread of cracking and yielding of the concrete over
the plate thickness as well as the yielding of the steel in the reinforcement.
To cater for these effects the well-known layered approach 1s adopted. Tension
stiffening, which will be described later, is included in the concrete model
and various unloading curves are considered. As well as providing a better
representation of the reinforced concrete behaviour during cracking, tension
stiffening appears to have a beneficial effect on the numerical stability of
the nonlinear solution scheme.

The authors have successfully experimented with a variety of nonlinear
solution schemes. In the present context, experience points to the use of
either the Quasi-Newton method with large load increments and a fine con-
vergence tolerance or the initial stiffness method with small load increments
and a coarser convergence tolerance. The results quoted here have been
obtained using the initial stiffness method with small load increments after
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initial cracking.has occurred and a coarse convergence tolerance (1%) on the
displacements norm.

Alsc quoted in this paper are results from a numerical experiment with a
tentative cellular plate model based on a beam-plate representaticn. A layered
beam models the webs whereas a layered plate with zero rigidity in the veoid
region is used to model the flanges. The transverse shear rigidity of the
plate in the plane perpendicular to voids is suitably modified. For cylindrical
volds the beams have variable width over the cross-section.

The basic formulation is now described in a little more detail.

BASIC FORMULATION

Main assumptions In Table I the main features of the Mindlin plate formul-
ation are indicated. (NB: The Timoshenko beam formulation, which is based on
similar concepts, is omitted.) In the uswual Mindlin plate representation
integration through the plate thickness is performed explicitly prior to dis-
cretisation and therefore the present model is really a degenerated 3D model
with restricted (flat) geometry. The main assumption is that normals to the
plate midsurface remain straight but not necessarily normal after deformation.
Thus the displacements u, v and w at any point in the plate with coordinates
(x,y,z) can be expressed as

ulx,y,z) uo(x,y] -z eX[x,y)
vix,y,z) = vo(x,yJ -z ey[x,y) (1}
w(x,y,z) wo[x,y]

where Us» Vg and w, are the displacements at the plate midsurface (xy plane]
in the x,y and z directions respectively and ex and ey are the rotations of

the normal in the xz and yz planes respectively.

The strain-displacement relationships may therefore be expressed as

€ Z €
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Elasto-plastic behaviour of concrete Concrete is idealised as an elastic-
perfectly plLastic material in uniaxial compression. The behaviour of concrete
in biaxial stress states is described by an idealised version of the failure
envelope obtained by Kupfer et al. (Ref.1). A Von Mises failure surface
is used in the biaxial compression zone. See also reference 2. Concrete
which has yielded can sustain compressive strains smaller than a limiting
strain € . However, when the concrete reaches this strain it is assumed

cu . - . .
to crush. The crushing surface adopted here is given as

cle) = €2 -¢ e +e2 + §-y - € =0 (3)
- X X 'y y 4 'xy cu
where ¢ and e are the strains in x and y directions and ¥y is the shear
strain. y xy

In tension, the concrete is assumed to behave elastically until the
tensile strength (f!) is reached. The concrete then cracks in a direction
orthogonal to the stress direction and loses strength. An unloading curve is
assumed to account for tension stiffening in the cracked concrete. The stress
level in the cracked concrete is interpolated using the tension stiffening
curve depending on the degree of straining in the concrete. Cancrete cracked
in one direction is assumed to have uniaxial properties in that direction only.
Concrete cracked in two directions is assumed to lose all of its strength.

The constitutive relations of the concrete are continuously updated
according to the stress state in the concrete. However, it must be noted that
the shear rigidities always retain their elastic values. The constitutive
relations can also be written in partitioned form by separating out the
membrane-flexure and shear strain energy terms.

Yielding of steel The steel reinforcement is smeared into steel layers which
are assumed to be in a state of uniaxial tension or compression. When the
longitudinal stress exceeds the proportionality 1limit, the steel starts to
yield. Strain hardening of the steel can be included if the strain hardening
parameter, H' is known. The constitutive relation for yielded steel is

given as

_ N E
o, Oy * ey E|[ {EZHT} (4)

in which o and e, are the stress and strain in steel, E is the Young's

Modulus and oy is the yield stress.

Slab-beam idealisation The first step in the analysis of a slab-beam system
such as the one shown in figure 1 is to discretize the structure into a

suitable number of plate and beam elements. In order to simplify the analysis,
the stiffeners must be attached along the mesh lines of the plate elements.

The selectively integrated, isoparametric 9-node Hetercsis element
(Ref.3) is used to model the plate. A hierarchical formulation is adopted
to represent all degrees of freedom. Thus the shape functions Ei in Table I

15



are constructed as follows:

N1[E] ... to NB(E) are the 8-node Serendipity shape functions and NQ(EJ
is the bubble shape function (1-22) (14-n2) associated with the 9tN internal

node. Note that a.(e] = [u.IE), v.EE), w.(e], 6 .(e], 6 .(EJ], a (e) to
—i i i i X1 vi -1

a (e) are the vectors of displacements at nodes 1 to 8 on the boundary of the

;?ement and a (e)
=9

central node 9. To obtain the displacement vector at node 9 the following
expression 1s used

is the vector of the degrees of freedom at the hierarchical

e) (5 o) Ei(e) . Eg[e) s

&
al = 1 N
1=1

The 8-node Serendipity representation can be obtained if all degrees of
freedom at node 8 are constrained to zero. If they are all left free, a
8-node Lagrangian representation is obtained. For the Heterosis type rep-
resentation, only the hierarchical lateral deflection at node 38 is restrained
to zero and (5) is used to interpret displacements at node 9.

The 3-node isoparametric Timoshenko beam element is adopted for the beams.
The reader should consult reference (4) for further details regarding this
element. Beam elements can be located along the mesh lines of the plate
elements. The properties of each element are calculated first in the local
direction and then transformed to the global cocordinate system.

Since the stiffener element is assumed to be monolithically connected to
the plate, compatibility of deformation along the juncticn line between the
beam and the plate is enforced since a related system of displacement functions
is used for the plate and beam elements. As the details of the stiffness
matrix evaluation are standard they are not included here.

The layered beam and plate elements are shown in figure 2.

Nonlinear solution A very small load increment is first applied to the
structure, and the cracking load is then estimated. The size of the successive
load increments 1s chosen to be egual to 0.1 times the cracking load as
suggested by Johnarry (Ref.5); this improves the rate of convergence since
nonlinearities are induced gradually in the structure. For each linearised
increment, the unknown displacements are obtained using the initial uncracked
stiffness matrix. Strains calculated at the centre of each layer are taken

as representative for the whole layer. Stresses are then calculated using

the material properties from the previous material state. After checking the
state of stress for possible yielding, cracking or crushing, the internal nodal
resisting forces can then be calculated and compared with the external forces.
The lack of equilibrium between internal and external forces is corrected by
applying the out-of-balance or residual forces. The out-of-balance forces

are successively applied through a series of iterations of the solution and new
corrections to the unknown displacements are obtained until the equilibrium and
the constitutive relations are satisfied within a certain allowable limit.
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The following convergence criterion is used:

1 1
(8a' 6a)?/(a’ a)® < 0.01 (6]

where 8a and a are the vectors of iterative and total displacements respectively.

The analysis is terminated when convergence is not achieved within a
specified number of iterations. This usually occurs when a structure is about
to fail. An estimate of the failure load can then be obtained.

SOLID AND STIFFENED PLATES

Corner supported slab A corner supported doubly reinforced concrete slab
(Ref.B) is analysed using & 3x3 mesh in & symmetric quadrant. Initially it

is assumed that there is no tension stiffening. Crack patterns on the lower
surface of the slab for two load levels (12 kN and 62 kN) are shown in

figure 3. Figure 4 shows the load displacement curve. After the steel yields
the norm of the out-of-balance membrane forces is rather large even though the
displacement convergence tolerance is satisfied. When the displacement tol-
erance is decreased from 1% to 0.1% after the steel yields,an improved result
is obtained as shown in figure 4.

When tension stiffening is used, improved displacement values are

obtained. However, this results in higher failure loads. When the unloading
part of the tension stiffening curve is extended, better results are obtained
for the displacements but the failure loads are still high. When a finer

tolerance is used after steel yielding,excellent results are obtained as shown
in figure 5.

Stiffened slab The load-central deflection curve predicted by the present
model for a reinforced concrete T-beam tested by Cope and Rac (Ref.7) are
given in figure 6, which also includes some gecmetric details of the beam.

The load-deflection graphs obtained by Cope and Rao, both experimentally and
using a finite element shell formulation, are also reproduced in figure 6.

The good agreement between the load-deflection graphs predicted by the present
analysis and both Rac’'s experimental and numerical analyses shc''s that the
proposed approach provides an inexpensive yet fairly accurate analysis for
reinforced concrete slabs with RC beam stiffeners.

REINFORCED CONCRETE VOIDED PLATES

Voided reinforced concrete and prestressed concrete plates are widely used
for their economic advantages. Although the behaviour of such structures has
been studied in the elastic range (Ref.8 , Ref.3), very little experimental
" and analytical work appears to have been carried out on the behaviour of these
structures in the overloading and ultimate stages. In the elastic analysis,
equivalent values of the flexural, torsional and shear rigidities of a voided
plate can be calculated in different ways (Ref.9 , Ref.10) and used in a
finite difference or a finite element analysis of an equivalent orthotropic
solid plate. The nonlinear analysis is, however, rather more complex. The
spread of plasticity and nonlinearities due to cracking and crushing of concrete
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through the depth of the plate must be taken into account. A nonlinear finite
element analysis using a 3D or shell formulation to represent different
structural elements of the voided plate seems ideal. Unfortunately such a
formulation, though feasible, is very expensive. In the present approach, a
less -expensive approach to the nonlinear analysis of RC voided plates is
tentatively suggested. The analysis is based on the formulation of RC
stiffened plates described earlier, where the voided plate is assumed to con-
sist of voided plate elements representing the upper and lower flanges and
beam stiffeners representing the webs.

The basic assumption is basically that of Mindlin: a transverse plane
normal to the middle plane of the plate remains plane but not necessarily
normal after deformaticn, thus implying that the deformations of both flanges
are related. This assumption may be justified for voided slabs with large
numbers of voids, which have an overall bending behaviour predominantly in the
longitudinal direction. In situations where the upper flange is directly
loaded by a concentrated load, better results can be achieved if an over-
lapped mesh is used for a small part around the loaded area to represent the
upper flange solely while the original mesh in this part represents the lower

flange.

Documented experimental evidence for such structures is provided by
Elliott, Clark and Symmons (Ref.11). In this work the results of a quarter
scale model reinforced concrete voided bridge have been reported. The geo-
metrical details of the slab are summarised in figure 7. A number of tests
were made to study the performance of the slab in the service as well as the
over-loading stages and finally an ultimate load test was carried out. This
example has been solved using the proposed approach for voided slabs. The
discretization and cross section representation of a symmetric guarter of the
plate is given in figure 8, while the load-central deflection graphs obtained
experimentally and analytically are compared in figure 8. It is reported that
the cracking load was nearly equal to the working load which is in agreement
with that predicted by the proposed model. The agreement between the exper-
imental and analytical graphs shown in figure 9 is very encouraging. The
experimental results show that the slab failed by the formation of a mechanism
which involved longitudinal shear/flexural yield lines and transverse hogging
flexural yield lines. The analytical study, however, slightly overestimates
the failure load since shear failures cannot be predicted by the present model.

CONCLUSIONS
The proposed computational model for the nonlinear analysis of solid and

stiffened reinforced plates provides an inexpensive and reasonably accurate
approach which can be extended for use with voided plates.
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TABLE I.- MINDLIN PLATE FORMULATION

Virtual work eguation

T T
Iéz1a1 dv+j§:202dv-jég EdV—J §u tds=0
st
where
displacements u = [u. v, w]T virtual displacement Sy = [6u, v, dw]T
in-plane strains g, = [u v u, v ]T §g, = (6u _, dv , du  + dv ]T
=1 LxD Lyt Ty X =1 % Y 3% %
- _ _ T - _ _ T
shear strains £ [w.x 8 vy ey] 8g, [Gw.x 88, . 6w.y 5ey]
in-plane stresses o, = [0 , o T ]T g, = [So0_, 85 ., &7 ]T
= x" Tyt Txy =1 x y xy
shear stresses 9, = { T ]T 8g, = [8 81 ]T
=2 Txz' yz 2 Txz’ vz
Incremental stress/strain relationships
dg, = D, de,
ag, = 0y de,
Elastic Plastic
1 v 0
T -1
o -p-—E- 1 4 o o, ~o-0 P Pe) o fa. 22
A RV - %] (% 2, ~ 39,
0 0 J-v
2
in which F is the yield function
. __E oo F=Flg,. M . A=-2%q
~ 20+ = X 3H
a 1
A 1s the proportionality constraint
a is a modification factor (usually' a = 7,2) H is the hardening parameter
Finite element discretization
u= E N, a;
Eq 7 L lz‘Ii 24
£, 18y 8
i
where N, =N, 1 0 0 -z O a, = [u, v,. w B.S]T
24 1 2y 10 Vi Y e i
[o] 1 0 o -z
a 0 1 o o
Bygm My, 0O N0 e e T 0
- -N
1} Ni,y 1} 0 ZNl.y o] 0 Ni,y o N
My Mk 0 ANy Ty

Stiffness Matrices

T T
= o dv
Ki3 jEu By By v JEZi 9, By
v v

Resigual forces

i T A
11=J§1151 d"'ngrﬂzd\’ L
v

\
T T <
where the consistent nodal forces f—i = Ei b dv o+ [\l_1 tas
v S
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Figure 1l.- Typical slab-beam system and
its structural idealisation.
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(a) Layered finite plate element. (b) Layered beam element.

Figure 2.~ Layered plate and beam elements.
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Figure 3.- Crack patterns on the lower side of Mueller's slab.



70.0

—
60.0 s
/ o
/
50.0 /e
P
a
Load (kN) 40.0- 7 o
/o Experiment
30.0 ,/ e o Present model
//" —=== Mueller
20.0 /° . Reduced tolerence
/o
Ve
10.0+4/6
0.

T
0. S.0 10.0 15.0 20.0 250 30.0
Deflection (mm)

Figure 4.- Load-central deflection curves for Mueller's slab.

cr 10 Eel E=, 28 :=r
Tan ante 1 Ten wme 2
70.0+
a o
-]
60.0 ;g,,
a
2
Load (kN) 50.0 ©
o0
40.0-] o0
e . Experiment
30.0 oo ©  No ten. stiff.
e a o Ten. stiff. 1
20.0- o . Ten. stiff. 2
o ---- Ten. stiff. 2 with
red. toler.
10.0- po
0.

0. sS'o 100 15.0 20/0 25'0 30.0
Defiection (mm)

Figure 5.— Effect of tension stiffening on Mueller's slab.



24

»
./'/ Ry
- .
Vs Experimental
" e 2 Failure Load
Ry
/
/
s
Load{kn) ’

Deflection

measurements
discontinued
24
Experimental
{ ~0—0— Unreliablel
. — —-— — Cope and Rao
2k 27

L e 4 ymmcee —— —— =— Present study

T o i B T iy
a0 smmo .t 150mm crc ™Y
. [———10mm st 100mm crc
1imme
:«::{TT igg_r—\mm. corer
[ L . B - .l
4 8

16
Central deflection{mm)

Figure 6.- Load—central deflection curves for T-beam.

=

100 — - 5500 span - e 10
~ = 120 120 o -

— ELEVATION
abutmen

3

oo € support
3360 overall widtn
- -
140 1 spaces a1 280 = 3080 10
voids 220 dra

[COCOTC T 00 e

| [FR—
SECTION

Figure 7.- Details of voided bridge deck model.



}._ Simple support

T -

6 at 280.0
1
|
{
1
I
|
[
1]
[
|
|
[
i
1]
[
[
[
|
|
[
i
|
|
|
|
)
|
|
|
|
I
T
|
i
i

I .

780. 660. 530. 400. 250. 130.
1 [

ot
=t =T T

- — —

(a) Discretisation of voided plate.

|

Plate element Beam element
(b) Cross-section representation.

Figure 8.- Finite element discretisation of voided plate.

500.0 - o
max. test load

Load (kN) 400.0-

. o
300.0 o
-1 o Experiment
200.0 o o Present model
4 o
100.0- working load

0. T T T T T T T |
0. 10.0 20.0 30.0 40.0

Deflection (mm)

Figure 9.- Load-central deflection curves for voided plate model.



