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ABSTRACT

Newton's method for nonlinear mechanics problems replaces the governing
nonlinear equations by an iterative sequence of linear equations. When the
linear equations are linear differential equations, the equations are usually
solved by numerical methods. The iterative sequence in Newton's method can
exhibit poor convergence properties when the nonlinear problem has multiple
solutions for a fixed set of parameters, unless the iterative sequences are
aimed at solving for each solution separately. The theory of the linear
differential operators is often a better guide for solution strategies in
applying Newton's method than the theory of linear algebra associated with
the numerical analogs of the differential operators. 1In fact, the theory for
the differential operators can suggest the choice of numerical linear operators.
In this paper the method of variation of parameters from the theory of linear
ordinary differential equations is examined in detail in the context of
Newton's method to demonstrate how it might be used as a guide for numerical
solutions.

INTRODUCTION

Nonlinear mechanics problems can be formulated as nonlinear differential
equations and associated boundary conditions. One approach to solving these
nonlinear equations is Newton's method. Newton's method replaces the nonlinear
equations with an iterative sequence of linear differential equations. The
present paper emphasizes that each iteration step consists of two separate
operations. The first operation, referred to as linearization, is the
derivation of the linear differential equations. The second operation is the
solution of the linear equations and is referred to by the name of the method
of solution for the linear system (e.g., power series, asymptotic series,
finite-differences, finite-elements, successive approximations, or boundary
integrals).

The emphasis on defining the iteration in Newton's method as two suc-
cessive operations is to prevent confusion between Newton's method and the
familiar Newton-Raphson method for a set of nonlinear algebraic equations. The
confusion arises when the second operation is purely numerical and depends on
a discretization operation. In this case, the operation of discretization
can be applied to the nonlinear differential operators followed by the linear-
ization of the Newton-Raphson method. Ortega and Rheinboldt, (ref. 1), prove

that the operations of linearization and discretization commute. Theoperations

27



result in the same set of linear algebraic equations for each iteration step
for both the Newton-Raphson method and Newton's method. The proof that the
two operations commute requires that "the discretizations are carried out

in the same way."

The present paper examines problems where the discretizations are not
carried out in the same way. The choice of discrete model is affected by the
theory of the linear differential equations. Examples of these problems are
boundary-value problems where multiple solutions exist for a fixed set of
parameters. This class of problems includes periodic solutions of nonlinear
dynamics problems and static buckling problems with bifurcation points and
with limit points.

Newton's method, that is, the operation of linearization before dis-
cretization, supplies two kinds of information for problems with multiple
solutions. The first kind is qualitative information which is related to the
convergence of the iterative procedure and is useful in itself. The second
kind of information is quantitative information that directly affects the
discrete model. The literature for linear differential equations is vast
and much of it provides insight into the convergence properties of Newton's
method. Rather than attempting a general review of applicable theory, this
paper examines one method in detail as it relates to Newton's method. The
method examined is variation of parameters as it is applied to systems of
ordinary differential equations. The theory is examined first, followed by a
discussion of the application of the theory to discrete solutions of nonlinear
problems with multiple solutions.

The main body of the paper on variation of parameters is preceded by a
preliminary section. This section discusses the linearization operation in
Newton's method. Once the equations are linearized, different versions of
Newton's method receive different names in the literature. These
versions are briefly reviewed. The section also discussed convergence of
Newton's method as it pertains to nonlinear problems with multiple solutions.
The theoretical results from variation of parameters suggest changes in
dependent variables that are determined by the given problem and, therefore,
are applicable to adaptive computer solutions. A final section indicates
the general nature of such adaptive computer solutiomns.

NEWTON'S METHOD
Fundamental Concepts

Nonlinear mechanics problems that are formulated as nonlinear ordinary
or nonlinear partial differential equations can be solved using Newton's
method. The basic idea in Newton's method is to expand the nonlinear operator
about an assumed or an approximate solution. This expansion yields a new
nonlinear operator that operates on an unknown correction to the approximate
solution. It is assumed in Newton's method that nonlinear terms in the
correction are small compared to linear terms, and the nonlinear terms are
temporarily neglected. The resulting linear differential equations are
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solved for an approximate correction which is added to the assumed solution to.
make a new approximation. The procedure is repeated until the corrections are
small. At each iteration step, the residual error in the solution of the non-
linear problem is a function of the nonlinear terms neglected in the previous
iteration step. Convergence of the iterative sequence is almost assured if
the nonlinear problem has a unique solution. When the nonlinear problem has
multiple solutions, convergence is not assured in Newton's method unless
provisions are made to converge to only one solution for each iteration
sequence. Examples of problems with multiple solutions are static buckling
problems with bifurcation points and with 1limit points and certain nonlinear
vibrations problems. The theory of linear differential operators is useful

in guiding numerical computations so that Newton's method converges to the
desired solution branch.

The linear operator in Newton's method is called the Frechet derivative,
and it is derived from the nonlinear differential operator for the problem.
Let the nonlinear differential operator be P operating on a scalar function
or vector function y. The nonlinear problem is

P(y) =0 1)

plus associated initial conditions or two-point boundary conditions. Denote
by ypn the approximation to the solution of equation (1) after the mth
iteration step, and denote by Oypt+1 the correction to yp. Then the Newton
iteration process solves recursively the equations

P'ly 1y = -Ply__,] (2a)
+ 8y_ m=1,2,3,.... (2b)

The operator P'[ymrl] in equation (2a) is the Frechet derivative. Formal
definitions of the Frechet derivative appear in texts on functional analysis,
reference (2). TFor nonlinear differential operators operating on continuous
functions, the Frechet derivative consists of the linear operators that appear
in a Taylor series expansion in several variables. The expansion is in terms
of the dependent variables rather than the independent variables, reference (3).

Examples of érechet Derivatives
For example, consider a single nonlinear equation.
a’y  fay\’
— + Cl—] + A siny - Fsinwt =0 (3

dt2 dt
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with C, A, F and w constants. The linear variational equation,
equation (2a), for equation (3) is

2
d”dy dy ddy
5+ 2C —ml) —=+ X (cos y__;) sy = -Ply__,] (4a)
dt dt dt
d2y dy 2
Ply ]1=—22L, of[—=L1) 4 Asiny -~ F sin wt (4b)
m-1 dt2 dt m—-1

The Frechet derivative for the nonlinear operator is the operator

' da () dym—l d
P'ly 1C) = 2 +2CT (—i:()+>\cos V.q () (5)

The Taylor series expansion in Newton's method is readily extended to
partial differential operators. A second example is a nonlinear strain
expression

du . Ow _ Ou du , 9v dv _ oW 3w 6)

—_— o — —_—

€z T 9z T 9x " 9z 9z ' 9x 9z | 9x oz

Then

-1 m
e! [y 1@y ) = + — +
xz " m-1 n 2z ox oxX 3z
ou ddu ov 3dv oV odv
+ m—1 m o, m—-1 m m—1 m
o0z 9% ox 2z oz ox
ow 1 Bdwn 3wm_l Bdwm
+ —= + (7)

In addition to the linear variational equations of Newton's method, the
Frechet derivative appears as part of the chain rule of differentiation.
If the nonlinear operator is written P(y(x),x) to emphasize that y 1is a
function of the independent variable, the total derivative of P is
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P _ _,ro7(dy) . 2P _
ax - P. [}'](E}Y{') + 3% Y (8)

The derivative of equation (3) with respect to t can be written

2

ac /dy dy d ([dy dy
— ]+ 2C— — [— ]+ X (cos y) — = wF cos wt €]
dt dt dt dt \dt dt

It is often useful to think of y as a function of parameters in addition to
the independent variables and the operator as P(y(A,x),x,A). Then

2. pv[y](g§) +B=0 (10)

where the dot notation denotes partial differentiation with respect to a
parameter while holding both the independent and dependent variables fixed.
If y is considered as a function of t and A 1is equation (3),

d2 oy dy d /9y oy
— |—)+2C— —|—])+Acosy—+siny=0 (11)

dt2 oA dt dt \9A oA

Some versions of Newton's method make use of equation (10) in solving for
particular solutions of equations (2a).

Different Versions of Newton's Method

In this paper, the iterative procedure defined by equations (2) is
called Newton's method. Bellman (refs. 4 and 5) gave the procedure the name
quasilinearization. McGill and Kenneth (ref. 6) use the terminology
generalized Newton-Raphson operator for the Frechet derivative of nonlinear
differential operators. The three different names are synonymous for the
general iterative method.

When the linear variational equations, equations (2a), are solved by a
specific algorithm, different writers have coined different names for
specialized versions of Newton's method. Perrone and Kao (refs. 7 and 8)
transform equations (2) to finite difference equations and solve the resulting
linear algebraic equations by relaxation. This algorithm is called nonlinear
relaxation by Perrone and Kao.
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Other versions of Newton's method are connected with solutioms of the
linear variational equations depending on a parameter. In.mechanics, it is
usual to compute a set of solutions for the nonlinear problems for a given
set of loads or other parameters. It soon becomes apparent to a user of
Newton's method that a solution for one load or parameter is a good zeroth
approximation for a solution for a nearby parameter (ref. 9). If P(u,)) =0,
then u 1s a good zeroth approximation for the solution for P(y,A + A\) = 0.
The first iteration of Newton's method, m = 1 in equations (2), is then

2
P'[ul(6y,) = -P(u,A + AA) = ~[B(w)ar + l’-(%—f—AM— +...] (12)

If the nonlinear operator is linear in the parameter so that quadratic and
higher order terms in AX do not appear, a particular solution of equation (12)
follows directly from equation (10). For this case,

_ ou
6yl = EX-AK (13)
Ju
vy = u +-§X AX (14)

If Newton's method is terminated after one iteration, m = 1, equation (14)
becomes the zeroth approximation for the next increment on A. Na and

Turski (ref. 10) call this version of Newton's method a solution by parameter
differentiation. When the parameter A 1is a load parameter and the iteration
in equations (2) is continued for the iteration counter m > 1, Newton's
method is also known as the incremental method. Stricklin and Haisler

(ref. 11) review various versions of this approach when the linear variational
equations, equations (2a), are solved by the finite element method.

The idea of continuing known solutions of nonlinear problems into

nearby neighborhoods gives rise to higher order forms of Newton's method.

These forms retain higher order derivatives in the Taylor series about a

known solution. These higher order methods stem from Taylor series expansions
in the independent variable for initial value problems. Davis (ref. 12)
designated this method as a solution by analytic continuation because the
solutions are capable of extension around singular points in the complex
domain. Weinitschke (ref. 13) applied a similar approach to solve axisymmetric
shallow shell equations for particular solutions starting at one boundary. He
used the Newton-Raphson method to satisfy boundary conditions at a second

boundary.

Stricklin, et al., (refs. 14 and 15) and Noor and Peters (ref. 16)
combine the idea of analytic continuation with parameter differemntiation
by computing higher partial derivatives with respect to a parameter.
Stricklin and Haisler (ref. 11) refer to the general scheme as a self-correcting
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incremental approach to nonlinear problems. Noor does not substitute the
high partial derivatives in a Taylor series in AA, but uses them as basis
vectors in a Rayleigh-Ritz solution of the original nonlinear problem.

The modified Newton's method uses the same Frechet derivative for each
iteration. Instead of equations (2), the iterative sequence is

P'ly I1Gy) = -PGy__;) (15a)

+ Sy m=1,2,3... (15b)

Convergence

The advantage of having the same linear operator for each iteration
step in the modified Newton's method is offset by slower convergence to the
solution of the nonlinear problem. Parameter differentiation exhibits
slow convergence near limit points where du/dA is infinite.

Kantorovich (ref. 2) proves sufficient conditions for the convergence
of Newton's method. The sufficient conditions are restrictive, but, when they
apply, the nonlinear problem has a unique solution near the zeroth
approximation.

In practical applications of Newton's method, there is not enough
information to apply Kantorovich's convergence criterion. However, it is a
useful guide because nonlinear problems with unique solutions for a fixed
range of parameters will exhibit rapid convergence of Newton's method. When
the solutions are not unique, Newton's method can still converge. The lack
of uniqueness in the nonlinear solutions is reflected by lack of uniqueness in
8y, at some iteration step m. A decision on which solution branch to pursue
must be made before continuing the iteration.

The theory of the linear differential operators is a guide for making
these decisions. Application of the theory of linear ordinary differential
equations in finding multiple solutions of nonlinear problems is the topic of
the next section.

VARTATION OF PARAMETERS

One method of analysis is examined here in detail to show how linearization
can influence discretization. The method is variation of parameters which
is used for finding particular solutions for systems of linear ordinary _
differential equations. The theory for linear ordinary differential equations
is well understood and is a reliable guide for computing their solutions. The
variational equations of Newton's method are linear ordinary differential
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equations when the nonlinear problem is governed by a system of nonlinear
ordinary differential equations.

Assume that the nonlinear problem can be written as
P& =L+ Fx) =0 a<x<h (16)
plus two-point boundary conditions,
U(y (a), y(d),A) =0 17)

The dependent variable y 1is a vector function with n component
functions of the independent variable x. There are n boundary conditions

which may be nonlinear.

The sequence for the mth iteration step, equations (2), is

dem
' = -
+ F [Ym_lsx,}\](s}’m = P(Ym_l,x,l) (188.)

dx

Sy (a)
U1 {7 ) = W (18b)

Sy (P)
Yoy = Yog + Gym m=1,2,3,... (18c)

The Frechet derivative F'[ym_l,x,X] for this case is the Jacobian
of the function F(yp-15%,A). The shorthand notation

J 1= Fly _;.xA] (19)

will be used in subsequent equations.

The solution of the linear variational equations, equation (18a), can
be written in matrix notation as (see ref. 17, for example)

Sy = o C + Gym (20)

m p
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The matrix ¢, contains n columns, each column contains a linearly
independent solution ¢(x) of the homogeneous differential equations.

d¢

ax + Jm—l ¢=0 (21)

The vector ¢, is constant. The vector function &y, is the particular
solution of the differential equation system. The method of variation of
parameters is a method of deriving the particular solution using the solutions
of the homogeneous equations ®,. The method introduces the change in
variables

8y =90 z (22)

equation (21a)

where z is a vector function. 1In the new variables <z,

is

d@m dzm
— z + @m-——— +J %z = —P(ym_l,x,l) (23)

dx dx m~1 m m

The terms multiplying 2z, vanish identically from equation (23) since each
column @m satisfies the homogeneous equations, equation (21). The
equations

dzm
(I)m - = -P(Ym_l,X,A) (24)
dx

are solved by inverting the matrix @m and integrating each equation.

|
2, = C —J e 1) 2y, 1,00 4 (25)
a

Substituting equation (25) back into equation (22) completes the
solution for dJyp. Comparing like terms with equation (20) shows that the
particular solution is

X
8Ypp = ~8, (0 j $L@) Ply__;,0.0) dz 269
a
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Whenever the integrals in equation (26) exist, the particular solution
always exists and depends on both the residual error and the solutions of the

homogeneous equations, equation (21).
Boundary Conditions and Compatability
Determining the values of the constants of integration C, completes
the mth iteration step. The constants depend on the linearized boundary

conditions, equation (18b). Substitution of equation (25) into equation (18b)
yvields a set of linear algebraic equations

B C =D 27)

p—q) (a) —
B = H% - - - (28a)
(b)

Assume that the boundary conditions are posed so that Bn is an n X n square
matrix. Then three possible conditions exist for the solution of equations (27).
Let the rank of matrix B, be (n - k) where the number k is the index of
compatibility (Ince, ref. 18) Let the rank of the matrix obtained by
augmenting Bm with the column vector D be (n - p). The three conditions
are the follow1ng

1. k¥ =0 There is a unique solution of equations (27) for the constants
of integration ;. The mth iteration step is complete with a unique
correction vector &y, given by equation (20).

2. k < p The algebraic equations are incompatible (also referred to
as inconsistent) and no solution exists for the constants of integration,

Cc .
~m

3. k = p There are k arbitrary constants in the solutions of
equations (27)

~1ngIJn=o §=1,2, .. k<n (29)
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The solution of the linear variational equations, equation (18), contains k
arbitrary constants A,.

J
k
Gym = | E Aijj + Gyml (30)
j=1
The V_. are linear combinations of the solutions of the homogeneous
equations,
= j 1 =
ij @m gm 3j 1,2, .. k<n (31)

The particular solution 6ym1 is completely determined and satisfies the
boundary conditions,

ayml = <I)mgm + 6ymp ' (32)

The constants of integration C, in equations (32) are solutions of a

reduced (n ~ k) square matrix.

The theory for the compatibility of the boundary conditions is related
to Kantorovich's convergence criteria for Newton's method. The first condition
k = 0 is part of the sufficient conditions for convergence of Newton's
method to a unique solution. Problems with unique solutions converge rapidly
using Newton's method and the numerical solution strategy for the zeroth
approximation and incrementing parameters is not crucial for convergence.

The second condition k < p indicates a break in the iteration
sequence. This condition is not usually met in practice. The matrix B
becomes ill-conditioned near 1limit points and approaches the condition k < p,
but does not satisfy the condition exactly. 1If the assumed solution Ym-1
is modified, the boundary conditions may be shifted to make k = 0 or
k = p. This modification follows the same lines as the procedure for the
third condition, k = p, which is considered next.

When k = p, there are k arbitrary constants of integration A: in

the correction function &y, in equation (30). If the Ay can be assigned
values, the iteration can be continued. '
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Multiple Solutions

If k counstants of integration A: are arbitrary after m diteration
steps, the nonlinear problem can have multiple solutions for a fixed set of
input parameters. The procedure for determining the different solutions
depends on the details of the problem, but the analysis contains general
guidelines for assigning values for the Aj. The discussion here considers
the (mt+l)th iteration for the case dOyp] = 0 in equation (30). In other
words, it is assumed that convergence has been obtained for a solution yp_q
of the nonlinear problem for a certain value of A = 1 when the Aj are
zero.

The next step is to investigate continuing the iteration with at least
one of the A4 small but finite. The residual error for the (m+l)th
iteration using &y, from equation (30) is

Sy 2

Sy 3
R " m 119 3 _m
P(YmsXJ\) =F [Ym_l:x,ﬂ (2! ) + F [Ym_l,X,l] (3! ) + .. (33)

The residual is nonlinear in the constants A;. The lowest order terms are
quadratic in the constants unless F"[ym,x,Xj containing second derivatives
in the Taylor series vanishes. The linear variational equation for the
(mt+1l) iteration becomes

ddy

41 T
dm ¥ Jm 6ym+1 N —P(ym,x,A) 34)
X

The Jacobian J; is shifted from Jp 7 and is also a function of the
A:. The difference in the two Jacobians appears if the transformation from
tﬂe mth iteration is applied to the (mt+l)th step

Y1 = nPmel (35)

Then, equation (34) is transformed to

dz
o+l -1 P | -
-t Qm [Jm - Jm—l]q)mzm+l - <I)m P(ym,X,A) (36)

dx
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The difference in the Jacobians is a matrix

[Jm—J

oe1d = F'ly 4 + 8y .x,0] - F'ly__;,x,2]

F"[ym_l,x,k](ﬁym) + ... 37

The leading terms in an expansion for each coefficient of the matrix is
linear in the A; when the residual error expansion starts with quadratic
terms. The leading exponent is always one less than the leading exponent in
the residual.

In theory, equation (36) can be solved by variation of parameters. A
new set of constants of integration Cpyj appears in the solution to be
determined by a new set of boundary conditions.

Bt Sor1 T P (38)

The formal solutions contain the undefined A; as parameters. In numerical
solutions, the explicit dependence of the solution on the A. is not known.
A procedure that can be implemented for numerical solutions 1s to partition
the problem of determining the constants of integration Cm+1> equation (38).

The partitioning identifies k constants of integration as corrections

SA: on the A3 and partitions equation (38) into a k by k problem to fix

the A: and A:. An iterative procedure is to use trial values for the
Aj ana solve for the G8A:. The k by k problem is solved when the 6Aj

vanish for finite real Aj?

The G6A; appear as the first k variables of Cp4] when the Vp
. = . J
from equation (30) are arranged in the first k columns of ¢, in
equation (35). Once the A:; and G&A; are determined, the remaining (n - k)
equations in equation (38) are a linear set of algebraic equations in the
remaining (n - k) constants in 9m+l'

To avoid converging back to the solution Ym-1 with the A. = 0,
a shift in A is introduced to provide for nonzero, real solutions for
the constants Aj.

The shift in A dis introduced in the right side of equation (34)
which is replaced by

P(y ,%x,A) = P(y_,%x,0) + P(y_,x, (A - R) + ... (39)
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for k=1 will be examined further.

and the right side of equation (36) is
ol L,z = —0 ey =M - 8By L,k D - 1) + (40)
m Ym, ’ m Ym, s m ym, > cee

Introducing A as a free parameter allows iterating on the reduced k by k
problem by assigning a value to one Aj; and using A as part of the
minimization on dJyp4; by making 6Aj zero or small compared to Ay.

Which A. to replace as a variable by A depends on the modal coupling
in the given problem. When k = 1, there is only one Aj = Ay so the
choice is not arbitrary.

The case k =1 is a common case for problems with limit points or
isolated bifurcation points. Therefore, the general iterative procedure

Isolated Bifurcation Point

For an isolated bifurcation point, yp-3; 1is identified as a solution
of the nonlinear problem at A = A and k =p = 1. In applications of
Newton's method, the solution yp-j can be generated by simply incrementing
the parameter A in numerical solutions to approach the bifurcation point
and continue past it. As A 1is varied in increments in any numerical
solution using Newton's method, the boundary condition matrix B approaches
B in equation (29). The rows of B can be rearranged by elementary
operations so that the coefficients of at least one row, say row k = 1,
are small as A approaches A. TFor a bifurcation point, the element k of

the D vector is identically zero for A near A.

For a limit point, the kth component of D may be small but the small
divisors of B prevent convergence at A = A without analysis similar to
the bifurcation analysis described here.

When yp-1 1is a solution at the bifurcation point A = A, setting
A; = 0 so that y, = yp,-1 and varying A continues the solution so that

Sy _
> —mL o 7y (41)

Sy
-+
m+1 ax
as noted in the discussion on parameter differentiation and equation (13).
Having one solution near ), the problem is to investigate the second
solution of the nonlinear problem whose existence is identified by Vjy,
the nontrivial solution of the linear variational equations.

A simple procedure for Newton's method is to assign a value to Aj so
that yp = yp-3 + A1V] is a known function. Solve the first scalar equation
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of the set of equations (36) where the equations are arranged so that the first
element of 2zpyq multiplies the vector function V3. The right side of

the single differential equation is the first element of equation (40). The
constant of integration G8A; for this equation can be set to zero if

(A = X) is selected to make the first component of D L in the boundary
conditions, equation (38), vanish.

For numerical solutions, the analysis required by the expansion in
equation (40) can be circumvented by recognizing that while the solution for
S8A; 1is nonlinear in Aj, it is approximately linear in (A - ). The
constant of integration for J§A; can be minimized by interpolating linearly
between solutions for residuals P (yp,X, 2+ Akm+1) and P(yp,x,A) where
Mpy1 1is small but arbitrary. This interpolation on A to determine
A = Apyy for fixed Ay 1is shown schematically in figure 1. The figure
represents the surface &8A; = 8Aj(Aj,A). It is desired to compute inter-
sections of the surface and the Aj - A plane. The surface is tangent to
the plame along the ) axis, but solutions with A, = 0 are already assumed
known by equation (41). Curves on the surface for constant A are nonlinear
in A; while curves for constant Aj are assumed to be nearly linear.
Therefore, one can fix (A1), 0 and approximate +1 = Ap + AA by inter-
polating on A between the calculated points 6A1E(Al)m,Km] and
6A1[(Al)m,A] to approximate SAl[(Al)m,Am+1] = 0.

Once A1 is determined and A = A ,, the remaining (n - 1) equations
of equation (38) can be solved to complete the (m+l)th iteration. When Ay
is small, the terms in [Jm - Jm-l] can be neglected in these equations or
handled by successive approximations.

Since [Jm - Jm_1] is of lower degree than the residual, successive

approximations should converge rapidly for the remaining (n - 1) equations,
(ref. 18).

If the linearized boundary conditions are no longer singular because of
a finite Ay, the usual Newton method iteration can be continued with A
prescribed as an independent parameter. If the boundary conditions are
nearly singular, another interpolation on A may be required.

Once the analysis shows how to start the Newton's method iteration with
a finite value of A, different implicit or explicit numerical integration
methods can be used to find A as a function of Al'

NUMERICAL SOLUTIONS

In applying the results of the theory, numerical solutions do not need to
follow the analysis in every detail. For example, "shooting" methods
(ref. 19) are used for computing particular solutions rather than variation
of parameters. When the problem is partitioned into a reduced k by k
problem, the complete transformation indicated by equation (35) need not be
carried out. The transformation
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6ym+l =wz . (42)

is sufficient where w 1is not singular and contains the k eigenfunctions
Vps as its first k columns.

The interpolation on A for fixed A; can be carried over to nonlinear
partial differential equations which are solved by matrix methods. A finite-
element code for general shell problems was used to generate the end-shortening
u as a function of center deflection w for an isotropic square plate in
compression. The amplitude w = A; was held constant at 1.7h where h is
the thickness while u was varied in the role of A. The interpolation on
A 1is indicated by the dashed lines in figure 2. One iteration cycle of
Newton's method (m = 1) with input w, = 1.7h and u = 1.0 ucy (point A
in the figure) shifted the output to wy = wy + 6wy = 1.32h (point B).

Another separate iteration with input at point C shifted the output to

wi = 1.9%h and u = 4.47 ucr (point D). Interpolating on u gives

Swy =0 at u = 2.97 ucy (point E). The latter value of u was sufficiently
accurate to obtain convergence of Newton's method at point F on the solid
curve. The solid curve was generated by varying u in increments starting
at point F using the standard Newton iteration of the computer program.
Varying the end-shortening with w = 0 over all the plate would merely
change the in~plane solution which does not couple with the transverse
equilibrium equation for an initially flat plate. Starting the iteration on
the computer solution with an assigned amplitude of the lowest buckling mode
shape is sufficient to achieve convergence on the postbuckled curve.

When matrix methods are used for the numerical solution of static
boundary-value problems, a similarity transformation on the tangent stiffness
matrix is analogous to the change of variables in variations of parameters.
When the equations are partitioned using only k modes, equations (42),
the analog is an equivalence transformation in matrix theory.

The numerical analogies will not be developed in this paper, but the
general development should parallel the discussion here. Eigenvectors of
the numerical analog to the Prechet derivative replace eigenfunctions. A
k by k reduced problem has been suggested by Almroth, et al., (ref. 20).
Solving the remaining (n - k) equation by successive approximations as
suggested here preserves linear independence.

CONCLUDING REMARKS

Linearization before discretization in Newton's method allows classical
linear theory to be applied to nonlinear mechanics problems. The linear
theory provides useful qualitative information that can affect convergence
of the iterative solution.

The example in the paper, variation of parameters from the theory of
linear ordinary equations, shows clearly the interdependence of the residual
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error and the properties of the linearized operator in Newton's method.
Variation of parameters suggests a change of dependent variables for computing
particular solutions. The change in variables is also a means of partitioning
the problem to speed convergence of Newton's method when the nonlinear

problem has multiple solutions for a given set of parameters.

The change of variables can be extended to numerical solutions using
matrix methods by an equivalence transformation. The new variables arise
naturally in the problem which is an advantage for writing computer codes
for matrix solutions. No prior quantitative information on choice of
variables is required by the program user.
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Figure 1l.- Schematic diagram of calculation of parameter increment AX
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Figure 2.- Variation of end shortening with transverse deflection of plate

in compression.




