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ABSTRACT 

Newton's  method fo r   non l inea r   mechan ics   p rob lems   r ep laces   t he   gove rn ing  
non l inea r   equa t ions  by an  i terat ive sequence   o f   l i nea r   equa t ions .  When t h e  
l i n e a r   e q u a t i o n s  are l i n e a r   d i f f e r e n t i a l   e q u a t i o n s ,   t h e   e q u a t i o n s  are u s u a l l y  
so lved  by numerical   methods.  The i terative s e q u e n c e   i n  Newton's  method  can 
exh ib i t   poor   conve rgence   p rope r t i e s  when the   non l inea r   p rob lem  has   mu l t ip l e  
s o l u t i o n s   f o r  a f i x e d  set o f   pa rame te r s ,   un le s s   t he  i terative sequences are 
aimed a t  s o l v i n g   f o r   e a c h   s o l u t i o n   s e p a r a t e l y .  The t h e o r y   o f   t h e   l i n e a r  
d i f f e r e n t i a l   o p e r a t o r s  is  o f t e n  a b e t t e r   g u i d e   f o r   s o l u t i o n   s t r a t e g i e s   i n  
applying  Newton's  method  than  the  theory of l i n e a r   a l g e b r a   a s s o c i a t e d   w i t h  
t h e   n u m e r i c a l   a n a l o g s   o f   t h e   d i f f e r e n t i a l   o p e r a t o r s .   I n   f a c t ,   t h e   t h e o r y   f o r  
t h e   d i f f e r e n t i a l   o p e r a t o r s   c a n   s u g g e s t   t h e   c h o i c e   o f   n u m e r i c a l   l i n e a r   o p e r a t o r s .  
I n   t h i s   p a p e r   t h e  method  of va r i a t ion   o f   pa rame te r s   f rom  the   t heo ry   o f  l inear  
o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s  i s  examined i n   d e t a i l   i n   t h e   c o n t e x t   o f  
Newton's  method t o   d e m o n s t r a t e  how i t  might   be  used as a gu ide   fo r   numer i ca l  
s o l u t i o n s .  

INTRODUCTION 

Nonlinear  mechanics  problems  can  be  formulated as n o n l i n e a r   d i f f e r e n t i a l  
equa t ions  and assoc ia ted   boundary   condi t ions .  One approach   t o   so lv ing   t hese  
non l inea r   equa t ions  i s  Newton's  method.  Newton's  method  replaces  the  nonlinear 
equa t ions   w i th   an  i terative s e q u e n c e   o f   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .  The 
p resen t   pape r   emphas izes   t ha t   each   i t e r a t ipn  s t e p  c o n s i s t s  of  two s e p a r a t e  
ope ra t ions .  The f i r s t   o p e r a t i o n ,   r e f e r r e d   t o  as l i n e a r i z a t i o n ,  is t h e  
d e r i v a t i o n   o f   t h e   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .  The second  opera t ion  is  t h e  
s o l u t i o n  of t h e   l i n e a r   e q u a t i o n s   a n d  is r e f e r r e d   t o  by t h e  name o f   t h e  method 
o f   s o l u t i o n   f o r   t h e   l i n e a r   s y s t e m   ( e . g . ,  power series, asymptot ic  series, 
f in i t e -d i f f e rences ,   f i n i t e - e l emen t s ,   success ive   approx ima t ions ,   o r   boundary  
i n t e g r a l s ) .  

The e m p h a s i s   o n   d e f i n i n g   t h e   i t e r a t i o n   i n   N e w t o n ' s  method as two suc- 
cessive o p e r a t i o n s  is to  prevent   confusion  between  Newton 's   method  and the 
f a m i l i a r  Newton-Raphson method f o r  a set o f   non l inea r   a lgeb ra i c   equa t ions .  The 
confus ion  arises when the   s econd   ope ra t ion  is purely  numerical   and  depends  on 
a d i s c r e t i z a t i o n   o p e r a t i o n .   I n   t h i s  case, t h e   o p e r a t i o n   o f   d i s c r e t i z a t i o n  
c a n   b e   a p p l i e d   t o   t h e   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r s   f o l l o w e d   b y   t h e   l i n e a r -  
i z a t i o n  of t h e  Newton-Raphson  method. Or tega   and   Rheinbold t ,   ( re f .  l), prove 
t h a t   t h e   o p e r a t i o n s   o f   l i n e a r i z a t i o n  and d i s c r e t i z a t i o n  commute. Theopera t ions  
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r e s u l t   i n   t h e  same set o f   l i n e a r   a l g e b r a i c   e q u a t i o n s   f o r   e a c h   i t e r a t i o n   s t e p  
f o r   b o t h   t h e  Newton-Raphson  method  and  Newton's  method.  The  proof t h a t   t h e  
two o p e r a t i o n s  commute r e q u i r e s   t h a t   " t h e   d i s c r e t i z a t i o n s  are c a r r i e d   o u t  
i n   t h e  same way." 

The present   paper   examines   p roblems  where   the   d i scre t iza t ions  are no t  
c a r r i e d   o u t   i n   t h e  same way.  The c h o i c e   o f   d i s c r e t e  model is a f f e c t e d   b y   t h e  
t h e o r y   o f   t h e   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s .  Examples  of these   p roblems are 
boundary-va lue   p roblems  where   mul t ip le   so lu t ions   ex is t   for  a f i x e d  set of 
parameters .   This  class of   p roblems  inc ludes   per iodic   so lu t ions   o f   nonl inear  
dynamics  problems  and s t a t i c  buck l ing   p rob lems   w i th   b i fu rca t ion   po in t s   and  
wi th  l i m i t  p o i n t s .  

Newton's  method,  that is, t h e   o p e r a t i o n  of l i n e a r i z a t i o n   b e f o r e   d i s -  
c r e t i z a t i o n ,   s u p p l i e s  two k inds   o f   i n fo rma t ion   fo r   p rob lems   w i th   mu l t ip l e  
s o l u t i o n s .  The f i r s t   k i n d  i s  q u a l i t a t i v e   i n f o r m a t i o n   w h i c h  i s  r e l a t e d   t o   t h e  
conve rgence   o f   t he   i t e r a t ive   p rocedure   and  is  u s e f u l   i n   i t s e l f .  The second 
k ind   of   in format ion  i s  q u a n t i t a t i v e   i n f o r m a t i o n   t h a t   d i r e c t l y   a f f e c t s   t h e  
d i s c r e t e  model.  The l i t e r a t u r e   f o r   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s  is vast 
and much of  i t  p r o v i d e s   i n s i g h t   i n t o   t h e   c o n v e r g e n c e   p r o p e r t i e s  of Newton's 
method.  Rather  than  attempting a gene ra l  review o f . a p p l i c a b l e   t h e o r y ,   t h i s  
paper  examines  one  method i n   d e t a i l  as i t  relates t o  Newton's  method. The 
method  examined i s  v a r i a t i o n  of  parameters as i t  is app l i ed   t o   sys t ems   o f  
o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s .  The theory  i s  examined f i r s t ,   f o l l o w e d  by a 
d i s c u s s i o n   o f   t h e   a p p l i c a t i o n   o f   t h e   t h e o r y   t o   d i s c r e t e   s o l u t i o n s   o f   n o n l i n e a r  
p rob lems   w i th   mu l t ip l e   so lu t ions .  

The  main  body  of  the  paper  on  variation  of  parameters is preceded  by a 
p r e l i m i n a r y   s e c t i o n .   T h i s   s e c t i o n   d i s c u s s e s   t h e   l i n e a r i z a t i o n   o p e r a t i o n   i n  
Newton's  method. Once t h e   e q u a t i o n s  are l i n e a r i z e d ,   d i f f e r e n t   v e r s i o n s  of 
Newton 's   method  receive  different  names i n   t h e   l i t e r a t u r e .   T h e s e  
v e r s i o n s  are b r i e f l y   r e v i e w e d .  The sec t ion   a l so   d i scussed   conve rgence  of  
Newton's  method as i t  p e r t a i n s   t o   n o n l i n e a r   p r o b l e m s   w i t h   m u l t i p l e   s o l u t i o n s .  
The t h e o r e t i c a l   r e s u l t s   f r o m   v a r i a t i o n  of parameters   sugges t   changes   in  
dependen t   va r i ab le s   t ha t  are determined  by  the  given  problem  and,   therefore ,  
are app l i cab le   t o   adap t ive   compute r   so lu t ions .  A f i n a l   s e c t i o n   i n d i c a t e s  
t he   gene ra l   na tu re   o f   such   adap t ive   compute r   so lu t ions .  

NEWTON'S METHOD 

Fundamental  Concepts 

Nonlinear   mechanics   problems  that  are formulated as n o n l i n e a r   o r d i n a r y  
o r   n o n l i n e a r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   c a n   b e   s o l v e d   u s i n g   N e w t o n ' s  
method. The b a s i c   i d e a   i n  Newton's  method is t o  expand  the   nonl inear   opera tor  
abou t   an   a s sumed   o r   an   approx ima te   so lu t ion .   Th i s   expans ion   y i e lds  a new 
n o n l i n e a r   o p e r a t o r   t h a t   o p e r a t e s  on  an unknown c o r r e c t i o n   t o   t h e   a p p r o x i m a t e  
s o l u t i o n .  It is assumed i n  Newton's  method t h a t   n o n l i n e a r   t e r m s   i n   t h e  
c o r r e c t i o n  are small compared t o   l i n e a r  terms, and   t he   non l inea r   t e rms  are 
t empora r i ly   neg lec t ed .  The r e s u l t i n g   l i n e a r   d i f f e r e n t i a l   e q u a t i o n s  are 
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so lved   fo r   an   approx ima te   co r rec t ion   wh ich  is added t o   t h e  assumed s o l u t i o n   t o .  
make a new approximation. The procedure is  r e p e a t e d   u n t i l   t h e   c o r r e c t i o n s  are 
small. A t  e a c h   i t e r a t i o n   s t e p ,   t h e   r e s i d u a l   e r r o r   i n   t h e   s o l u t i o n   o f   t h e  non- 
l i nea r   p rob lem is a f u n c t i o n  of t h e   n o n l i n e a r  terms n e g l e c t e d   i n   t h e   p r e v i o u s  
i t e r a t i o n   s t e p .   C o n v e r g e n c e   o f   t h e  i terative sequence is a l m o s t   a s s u r e d   i f  
the   nonl inear   p roblem  has  a un ique   so lu t ion .  When the   nonl inear   p roblem  has  
mul t ip l e   so lu t ions ,   conve rgence  i s  no t   a s su red   i n   Newton ' s  method u n l e s s  
p r o v i s i o n s  are made t o   c o n v e r g e   t o   o n l y   o n e   s o l u t i o n   f o r   e a c h   i t e r a t i o n  
sequence.   Examples   of   problems  with  mult iple   solut ions are s ta t ic  buckl ing  
problems  wi th   b i furca t ion   po in ts   and   wi th  l i m i t  p o i n t s   a n d   c e r t a i n   n o n l i n e a r  
v ib ra t ions   p rob lems .  The t h e o r y   o f   l i n e a r   d i f f e r e n t i a l   o p e r a t o r s  is u s e f u l  
i n   gu id ing   numer i ca l   computa t ions  s o  t h a t  Newton's  method  converges t o   t h e  
des i r ed   so lu t ion   b ranch .  

The l i n e a r   o p e r a t o r   i n  Newton's  method i s  c a l l e d   t h e   F r e c h e t   d e r i v a t i v e ,  
and i t  is d e r i v e d   f r o m   t h e   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r   f o r   t h e   p r o b l e m .  
L e t  t h e   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r   b e  P ope ra t ing   on  a scalar func t ion  
o r   v e c t o r   f u n c t i o n   y .  The nonl inear   problem i s  

p lus   a s soc ia t ed   i n i t i a l   cond i t ions   o r   two-po in t   boundary   cond i t ions .   Deno te  
by ym t h e   a p p r o x i m a t i o n   t o   t h e   s o l u t i o n   o f   e q u a t i o n   ( 1 )   a f t e r   t h e  mth 
i t e r a t i o n   s t e p ,  and  denote  by 6ym+l t h e   c o r r e c t i o n   t o  y,. Then t h e  Newton 
i t e r a t i o n   p r o c e s s   s o l v e s   r e c u r s i v e l y   t h e   e q u a t i o n s  

p' CYm-,l @Ym) = -PcYm-ll 

m = 1 , 2 , 3 , . . . .  

The o p e r a t o r  P'[ym-l] i n   e q u a t i o n   ( 2 a )  is the   F reche t   de r iva t ive .   Fo rma l  
d e f i n i t i o n s  of t h e   F r e c h e t   d e r i v a t i v e   a p p e a r   i n   t e x t s   o n   f u n c t i o n a l   a n a l y s i s ,  
r e f e r e n c e   ( 2 ) .   F o r   n o n l i n e a r   d i f f e r e n t i a l   o p e r a t o r s   o p e r a t i n g  on  continuous 
f u n c t i o n s ,   t h e   F r e c h e t   d e r i v a t i v e   c o n s i s t s  of t h e   l i n e a r   o p e r a t o r s   t h a t   a p p e a r  
i n  a Taylor  series e x p a n s i o n   i n  several v a r i a b l e s .  The expansion i s  i n  terms 
of the   dependen t   va r i ab le s   r a the r   t han   t he   i ndependen t   va r i ab le s ,   r e f e rence  (3). 

Examples   of   Frechet   Derivat ives  

For  example,   consider a s i n g l e   n o n l i n e a r   e q u a t i o n .  



with C, x, F and w constants.  The  linear  variational  equation, 
equation (2a), for  equation (3)  is 

The  Frechet  derivative  for  the  nonlinear  operator  is  the  operator 

The  Taylor  series  expansion  in  Newton’s  method  is  readily  extended  to 
partial  differential  operators. A second  example  is  a  nonlinear  strain 
expression 

Then 

x u  a6w aum-l a 6u 

aZ ax ax az 

m  m m +- - E’ CYm-,I(6Ym) = - +- 
XZ 

aU avm-l m av a 6vm m-1 +- - m +- - +- - m-1 

aw m-1  aswn  awm-, a 6wm 
+- - +- - 

In  addition to the  linear  variational  equations  of  Newton’s  method,  the 
Frechet  derivative  appears  as  part  of  the  chain  rule  of  differentiation. 
If the  nonlinear  operator  is  written P(y(x),x)  to emphasize  that  y  is  a 
function of the  independent  variable,  the  total  derivative  of  P  is 
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- dx  dP = P.'Cyl(~) + E  = 0 

The  derivative  of  equation (3) with  respect  to t can  be  written 

d2 dY 
7 (z) + 2C dy (?) + X (cos  y) - = wF COS wt (9) 
dt dt dt dt dt 

It is  often  useful  to  think  of y as  a  function  of  parameters  in  addition to 
the  independent  variables  and  the  operator  as P(y(h,x),x,X). Then 

ax = P'CYl(%) + 6 = 0 

where  the  dot  notation  denotes  partial  differentiation  with  respect to a 
parameter  while  holding  both  the  independent  and  dependent  variables  fixed. 
If y is  considered  as  a  function of t and x is  equation ( 3 ) ,  

Some  versions  of  Newton's  method  make  use of equation  (10)  in  solving for 
particular  solutions  of  equations (2a). 

Different  Versions of Newton's  Method 

In  this  paper,  the  iterative  procedure  defined  by  equations (2)  is 
called  Newton's  method.  Bellman  (refs. 4 and 5) gave  the  procedure  the  name 
quasilinearization.  McGill  and  Kenneth  (ref. 6 )  use  the  terminology 
generalized  Newton-Raphson  operator  for  the  Frechet  derivative  of  nonlinear 
differential  operators.  The  three  different  names  are  synonymous  for  the 
general  iterative  method. 

When  the  linear  variational  equations,  equations (2a), are  solved  by a 
specific  algorithm,  different  writers  have  coined  different  names  for 
specialized  versions  of  Newton's  method.  Perrone  and  Kao  (refs. 7 and 8 )  
transform  equations (2) to  finite  difference  equations  and  solve  the  resulting 
linear  algebraic  equations by relaxation.  This  algorithm  is  called  nonlinear 
relaxation  by  Perrone  and  Kao. 
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Other  versions  of  Newton's  method  are  connected  with  solutions of the 
linear  variational  equations  depending  on  a  parameter. In-mechanics, it  is 
usual to compute  a  set  of  solutions  for  the  nonlinear  problems  for a given 
set  of  loads  or  other  parameters. It soon  becomes  apparent  to  a  user of 
Newton's  method  that a  solution  for  one  load  or  parameter  is  a  good  zeroth 
approximation  for  a  solution  for  a  nearby  parameter  (ref. 9). If P(u,h) = 0 ,  
then u is a good  zeroth  approximation  for  the  solution  for P(y,A + AI) = 0 .  
The  first  iteration  of  Newton's  method, m = 1 in  equations (2), is  then 

If  the  nonlinear  operator  is  linear  in  the  parameter so that  quadratic  and 
higher  order  terms  in AA do not  appear,  a  particular  solution  of  equation(12) 
follows  directly  from  equation (10). For  this  case, 

y1 = u + -  AA aU 
ax 

If  Newton's  method  is  terminated  after  one  iteration, m = 1, equation (14) 
becomes  the  zeroth  approximation  for  the  next  increment  on x. Na  and 
Turski  (ref. 10) call  this  version of Newton's  method a  solution  by  parameter 
differentiation.  When  the  parameter A is a load  parameter  and  the  iteration 
in  equations  (2)  is  continued  for  the  iteration  counter m > 1, Newton's 
method  is  also  known  as  the  incremental  method.  Stricklin  and  Haisler 
(ref. 11) review  various  versions of this  approach  when  the  linear  variational 
equations,  equations (Za),  are  solved  by  the  finite  element  method. 

The  idea  of  continuing  known  solutions of nonlinear  problems  into 
nearby  neighborhoods  gives  rise  to  higher  order  forms  of  Newton's  method. 
These  forms  retain  higher  order  derivatives in  the  Taylor  series  about  a 
known  solution.  These  higher  order  methods  stem  from  Taylor  series  expansions 
in  the  independent  variable  for  initial  value  problems.  Davis  (ref.  12) 
designated  this  method  as a  solution  by  analytic  continuation  because  the 
solutions  are  capable  of  extension  around  singular  points  in  the  complex 
domain.  Weinitschke  (ref.  13)  applied a  similar  approach  to  solve  axisymmetric 
shallow  shell  equations  for  particular  solutions  starting  at  one  boundary.  He 
used  the  Newton-Raphson  method  to  satisfy  boundary  conditions  at a  second 
boundary. 

Stricklin,  et  al.,  (refs. 14 and  15)  and  Noor  and  Peters  (ref.  16) 
combine  the  idea  of  analytic  continuation  with  parameter  differentiation 
by  computing  higher  partial  derivatives  with  respect  to a parameter. 
Stricklin  and  Haisler  (ref. 11) refer to the  general  scheme  as  a  self-correcting 
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incremental  approach  to  nonlinear  problems. Noor.does not  substitute  the 
high  partial  derivatives in a  Taylor  series in AA, but  uses  them as basis 
vectors in a  Rayleigh-Ritz  solution  of  the  original  nonlinear  problem. 

The  modified  Newton's  method  uses  the  same  Frechet  derivative  for  each 
iteration.  Instead  of  equations (2), the  iterative  sequence is 

m = 1 , 2 , 3 . . .  

Convergence 

The  advantage  of  having  the  same  linear  operator  for  each  iteration 
step in the  modified  Newton's  method  is  offset  by  slower  convergence  to  the 
solution  of  the  nonlinear  problem.  Parameter  differentiation  exhibits 
slow  convergence  near  limit  points  where h/aA is  infinite. 

Kantorovich  (ref. 2) proves  sufficient  conditions  for  the  convergence 
of  Newton's  method.  The  sufficient  conditions  are  restrictive,  but,  when  they 
apply,  the  nonlinear  problem  has  a  unique  solution  near  the  zeroth 
approximation. 

In  practical  applications  of  Newton's  method,  there  is  not  enough 
information  to  apply  Kantorovich's  convergence  criterion.  However,  it is a 
useful  guide  because  nonlinear  problems  with  unique  solutions  for  a  fixed 
range  of  parameters  will  exhibit  rapid  convergence  of  Newton's  method.  When 
the  solutions  are  not  unique,  Newton's  method  can  still  converge.  The  lack 
of uniqueness in the  nonlinear  solutions  is  reflected  by  lack of uniqueness in 
6Ym  at  some  iteration  step  m.  A  decision  on  which  solution  branch  to  pursue 
must  be  made  before  continuing  the  iteration. 

The  theory  of  the  linear  differential  operators  is  a  guide  for  making 
these  decisions.  Application  of  the  theory  of  linear  ordinary  differential 
equations  in  finding  multiple  solutions  of  nonlinear  problems  is  the  topic  of 
the  next  section. 

VARIATION OF PARAMETERS 

One  method  of  analysis is examined  here in  detail to  show how linearization 
can influence  discretization.  The  method  is  variation of parameters  which 
i s  used  for  finding  particular  solutions  for  systems  of  linear  ordinary 
differential  equations.  The  theory  for  linear  ordinary  differential  equations 
is well understood  and  is  a  reliable  guide  for  computing  their  solutions.  The 
variational  equations  of  Newton's  method  are  linear  ordinary  differential 
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equations  when  the  nonlinear  problem  is  governed  by a system of nonlinear 
ordinary  differential  equations. 

Assume  that  the  nonlinear  problem  can  be  written  as 

P(y) = 2 + F(y,x,X) = 0 a < x L b  - 

plus  two-point  boundary  conditions, 

The  dependent  variable y is a  vector  function  with  n  component 
functions  of  the  independent  variable  x.  There  are n boundary  conditions 
which  may  be  nonlinear. 

The  sequence  for  the  mth  iteration  step,  equations (Z), is 

The  Frechet  derivative  F'[ym-l,x,A]  for  this  case  is  the  Jacobian 
of  the  function F(y,l,x,X). The  shorthand  notation 

will  be  used  in  subsequent  equations. 

The  solution  of  the  linear  variational  equations,  equation (18a),  can 
be  written  in  matrix  notation  as  (see  ref. 17, for  example) 
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The  matrix  Qm  contains  n  columns,  each  column  contains  a  linearly 
independent  solution +(x) of  the  homogeneous  differential  equations. 

- a+ $ = O  dx " Jm-l 
The  vector Em is  constant.  The  vector  function  6ym  is  the  particular 
solution  of  the  differential  equation  system.  The  metgod  of  variation  of 
parameters  is  a  method  of  deriving  the  particular  solution  using  the  solutions 
of  the  homogeneous  equations am. The  method  introduces  the  change  in 
variables 

where z is a  vector  function.  In  the  new  variables z,, equation  (21a) 
is m 

The  terms  multiplying z, vanish  identically  from  equation  (23)  since  each 
column Qm satisfies  the  homogeneous  equations,  equation (21). The 
equations 

are  solved  by  inverting  the  matrix (3 and  integrating  each  equation. m 

Substituting  equation  (25)  back  into  equation  (22)  completes  the 
solution  for  6ym.  Comparing  like  terms  with  equation (20) shows  that  the 
particular  solution  is 
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Whenever  the  integrals  in  equation  (26)  exist,  the  particular  solution 
always  exists  and  depends  on  both  the  residual  error  and  the  solutions  of  the 
homogeneous  equations,  equation (21). 

Boundary  Conditions  and  Compatability 

Determining  the  values  of  the  constants  of  integration sm completes 
the  mth  iteration  step.  The  constants  depend  on  the  linearized  boundary 
conditions,  equation (18b). Substitution of equation  (25)  into  equation (18b) 
yields  a  set  of  linear  algebraic  equations 

B C = D  -m -m -m 

B = U' -m -m 

Assume  that  the  boundary  conditions  are  posed so that E,, is an  n X n  square 
matrix.  Then  three  possible  conditions  exist  for  the  solution  of  equations (27). 
Let  the  rank of matrix gm be (n - k) where  the  number  k  is  the  index of 
compatibility  (Ince,  ref. 18). Let  the  rank  of  the  matrix  obtained  by 
augmenting gm with  the  column  vector lIm be (n - p). The  three  conditions 
are  the  following: 

1. k = 0 There  is  a  unique  solution of equations  (27)  for  the  constants 
of integration sm. The  mth  iteration  step  is  complete  with  a  unique 
correction  vector By, given  by  equation (20). 

2. k < p The  algebraic  equations  are  incompatible  (also  referred to 
as  inconsistent)  and  no  solution  exists  for  the  constants of integration, 

-m' c; 

3 .  k = p There  are k arbitrary  constants  in  the  solutions of 
equations (2  7) 

B C J = O  -m -m j = 1,2, . . k 5 n 
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The  solution of the  linear  variational  equations,  equation (18), contains k 
arbitrary  constants A,. 

J 

k 

BYm = s j v m j  + BYml 
j =1 

The  Vm  are  linear  combinations  of  the  solutions  of  the  homogeneous 
equatiods , 

v = @  cj mj  m -m j = 1,2, .. k < n - 

The  particular  solution  Byml  is  completely  determined  and  satisfies  the 
boundary  conditions, 

"ml = QmGm + BY mP 

The  constants  of  integration Em in equations (32) are  solutions  of  a 
reduced  (n - k) square  matrix. 

The  theory  for  the  compatibility  of  the  boundary  conditions  is  related 
to  Kantorovich's  convergence  criteria  for  Newton's  method. The  first  condition 
k = 0 is  part  of  the  sufficient  conditions  for  convergence  of  Newton's 
method  to  a  unique  solution.  Problems  with  unique  solutions  converge  rapidly 
using  Newton's  method  and  the  numerical  solution  strategy  for  the  zeroth 
approximation  and  incrementing  parameters  is  not  crucial  for  convergence. 

The  second  condition k < p indicates  a  break  in  the  iteration 
sequence.  This  condition  is  not  usually  met  in  practice.  The  matrix Em 
becomes  ill-conditioned  near  limit  points  and  approaches  the  condition k < p, 
but  does  not  satisfy  the  condition  exactly.  If  the  assumed  solution  ym-l 
is  modified,  the  boundary  conditions  may  be  shifted  to  make k = 0 or 
k = p. This  modification  follows  the  same  lines  as  the  procedure  for  the 
third  condition, k = p,  which  is  considered  next. 

When k = p,  there  are k arbitrary  constants  of  integration Aj in 
the  correction  function  6ym  in  equation (30). If  the Aj can  be  assigned 
values,  the  iteration  can be continued. 
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Multiple  Solutions 

If k constants  of  integration A j  are  arbitrary  after m iteration 
steps,  the  nonlinear  problem  can  have  multiple  solutions  for a fixed  set of 
input  parameters.  The  procedure  for  determining  the  different  solutions 
depends  on  the  details  of  the  problem,  but  the  analysis  contains  general 
guidelines  for  assigning  values  for  the A j .  The  discussion  here  considers 
the  (m+l)th iteration  for  the  case 6yd = 0 in  equation ( 3 0 ) .  In other 
words,  it  is  assumed  that  convergence  has  been  obtained  for a solution  ym-l 
of  the  nonlinear  problem  for a certain  value  of X = x when  the A j  are 
zero. 

The  next  step  is  to  investigate  continuing  the  iteration  with  at  least 
one  of  the A j  small  but  finite.  The  residual  error  for  the (nt+l)th 
iteration  using  6ym  from  equation ( 3 0 )  is 

The  residual  is  nonlinear  in  the  constants A j .  The  lowest  order  terms  are 
quadratic  in  the  constants  unless F"[ym,x,T]  containing  second  derivatives 
in  the  Taylor  series  vanishes.  The  linear  variational  equation  for  the 
(mtl)  iteration  becomes 

The  Jacobian Jm is  shifted  from  Jm-l  and  is  also a function  of  the 
A * .  The  difference  in  the  two  Jacobians  appears  if  the transfomtion from 
tie  mth  iteration  is  applied  to  the  (m"1)th  step 

- 
"m+1 - @mzm+l 

Then,  equation ( 3 4 )  is  transformed  to 

( 3 5 )  
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The  difference  in  the  Jacobians  is  a  matrix 

( 3 7 )  

The  leading  terms  in  an  expansion  for  each  coefficient  of  the  matrix  is 
linear  in  the A j  when  the  residual  error  expansion  starts  with  quadratic 
terms.  The  leadlng  exponent  is  always  one  less  than  the  leading  exponent  in 
the  residual. 

In  theory,  equation ( 3 6 )  can  be  solved  by  variation  of  parameters. A 
new  set of constants of integration s,,+1 appears  in  the  solution  to  be 
determined by a  new  set  of  boundary  conditions. 

The  formal  solutions  contain  the  undefined Aj as  parameters.  In  numerical 
solutions,  the  explicit  dependence  of  the  solution  on  the Aj is  not known. 
A procedure  that  can  be  implemented  for  numerical  solutions 1s to  partition 
the  problem  of  determining  the  constants of integration -&+I, equation ( 3 8 ) .  

The  partitioning  identifies  k  constants of integration  as  corrections 
6 A j  on  the A .  and  partitions  equation ( 3 8 )  into a  k by k problem  to  fix 
the A .  and $Aj. An iterative  procedure  is to use  trial  values  for  the 
A j  and  solve  for  the 6Aj .  The k by k problem  is  solved  when  the 6 A j  
vanish  for  finite  real A j .  

The 6 A j  appear  as  the  first k variables  of E,+l when  the Vmj 
from  equation ( 3 0 )  are  arranged  in  the  first k columns of am in 
equation ( 3 5 ) .  Once  the A j  and 6 A j  are  determined,  the  remaining (n - k) 
equations  in  equation (38) are  a  linear  set  of  algebraic  equations in the 
remaining (n - k) constants  in sm+l. 

To  avoid  converging  back  to  the  solution  ym-l  with  the A -  = 0, 
a  shift  in X is  introduced  to  provide f o r  nonzero,  real  solutions  for 
the  constants A j .  

J 

The  shift  in X is  introduced  in  the  right  side  of  equation ( 3 4 )  
which  is  replaced  by 



and the r i g h t   s i d e   o f   e q u a t i o n  (36) is  

-@;lP(ym,x,X) = -@-lP(ym,x,x) - Qm -1. P(ym,x,'j;)(A - X) + . .. - 
m 

In t roduc ing  X as a f r e e   p a r a m e t e r   a l l o w s   i t e r a t i n g   o n   t h e   r e d u c e d  k by k 
problem  by  assigning a v a l u e   t o   o n e  A j  and   us ing  X as p a r t   o f   t h e  
minimization  on b y d l  by  making 6Aj z e r o   o r  small compared t o  A j .  

Which Aj t o   r e p l a c e  as a v a r i a b l e  by h depends  on  the  modal   coupl ing 
i n   t h e   g i v e n   p r o b l e m .  When k = 1, t h e r e  is only   one  Aj  = A 1  s o  t h e  
cho ice  is n o t   a r b i t r a r y .  

The case k = 1 i s  a common case fo r   p rob lems   w i th  l i m i t  p o i n t s   o r  
i s o l a t e d   b i f u r c a t i o n   p o i n t s .   T h e r e f o r e ,   t h e   g e n e r a l  i terative procedure 
f o r  k = 1 w i l l  be   examined   fur ther .  

I s o l a t e d   B i f u r c a t i o n   P o i n t  

F o r   a n   i s o l a t e d   b i f u r c a t i o n   p o i n t ,   y m - l  i s  i d e n t i f i e d  as a s o l u t i o n  
of   the   nonl inear   p roblem a t  X = x and k = p = 1. I n   a p p l i c a t i o n s  of 
Newton's  method,  the  solution  ym-l  can  be  generated  by  simply  incrementing 
the   parameter  X i n   n u m e r i c a l   s o l u t i o n s   t o   a p p r o a c h   t h e   b i f u r c a t i o n   p o i n t  
and   cont inue   pas t  i t .  A s  X is v a r i e d   i n   i n c r e m e n t s   i n   a n y   n u m e r i c a l  
solut ion  using  Newton 's   method,   the  boundary  condi t ion  matr ix   approaches 
B i n   e q u a t i o n  (29).  The  rows  of B can   be   r ea r r anged  by  elementary "m 
o p e r a t i o n s  so t h a t   t h e   c o e f f i c i e n t s  Gf a t  least one row, s a y  row  k = 1, 
are small as X approaches X. For a b i f u r c a t i o n   p o i n t ,   t h e   e l e m e n t  k of 
t h e  D v e c t o r  i s  i d e n t i c a l l y   z e r o   f o r  X n e a r  x. 

For a limit p o i n t ,   t h e   k t h  component o f  D may b e  small bu t   t he  small 
d i v i s o r s  of B prevent   convergence a t  X = x w i t h o u t   a n a l y s i s  similar t o  
t h e   b i f u r c a t i o n   a n a l y s i s   d e s c r i b e d   h e r e .  

When  ym-1 is a s o l u t i o n  a t  t h e   b i f u r c a t i o n   p o i n t  A = A ,  s e t t i n g  
- 

A 1  = 0 s o  t h a t  ym = ym-l  and  varying X c o n t i n u e s   t h e   s o l u t i o n  s o  t h a t  

as n o t e d   i n   t h e   d i s c u s s i o n  on p a r a m e t e r   d i f f e r e n t i a t i o n   a n d   e q u a t i o n  (13) .  

Having  one  solut ion  near  X ,  the  problem is t o   i n v e s t i g a t e   t h e   s e c o n d  
- 

so lu t ion   o f   t he   non l inea r   p rob lem whose e x i s t e n c e  i s  i d e n t i f i e d  by Vl, 
t h e   n o n t r i v i a l   s o l u t i o n   o f   t h e   l i n e a r   v a r i a t i o n a l   e q u a t i o n s .  

A s imple   p rocedure   fo r  Newton's  method is t o   a s s i g n  a v a l u e   t o  A 1  so  
t h a t  ym = ym-l + A l V l  i s  a known f u n c t i o n .   S o l v e   t h e   f i r s t  scalar equa t ion  
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of  the  set  of  equations (36)  where the  equations  are  arranged so that  the  first 
element  of zwl multiplies  the  vector  function VI. The  right  side  of 
the  single  differential  equation  is  the  first  element  of  equation (40). The 
constznt  of  integration 6A1 for  this  equation  can  be  set  to  zero  if 
(X - X) is  selected  to  make  the  first  component  of I))l in the  boundary 
conditions,  equation ( 3 8 ) ,  vanish. 

For  numerical  solutions,  the  analysis  required  by  the  expansion in 
equation (40) can be circumvented  by  recognizing  that  while the solution  for 
6A1 is nonlinear in AI,  it is approximately  linear in (X - X). The 
constant  of  integration  for 6A1  can  be minimized  by  interpolating  linearly 
between  solutions  for  residuals  P  (Ymyx,X + Axel) and  P(ym,x,x) where 
AXM1 is small  but  arbitrary.  This  interpolation on X to  determine 
X = XM1 for  fixed A1 is  shown  schematically in figure 1. The  figure 
represents  the  surface 6A1 = BAl(A1,h). It is  desired  to  compute  inter- 
sections  of  the  surface  and  the A1 - X plane.  The  surface  is  tangent  to 
the  plane  along  the A axis, but  solutions  with  A1 = 0 are  already  assumed 
known by  equation (41). Curves on the  surface  for  constant X are  nonlinear 
in A1  while  curves  for  constant  A1  are  assumed  to  be  nearly  linear. 
Therefore,  one  can  fix 20 and  approximate = X, + AX by  inter- 
polating 02 A between  the  calculated  points 6~&1)~,~~] and 
6A1[  (Al)m,X]  to approximate 6Al[  (Al)m,Xdl] = 0. 

of  equation (38) can  be  solved  to  complete  the  (d1)th  iteration.  When A1 
is  small,  the  terms  in [J, ; Jmsl ] can  be  neglected  in  these  equations  or 
handled  by  successive  approxlmatlons. 

Once  A1  is  determined  and X = Awl the  remaining (n - 1) equations 

Since  [Jm - Jm-l]  is  of  lower  degree  than  the  residual,  successive 
approximations  should  converge  rapidly  for  the  remaining (n - 1) equations, 
(ref. 18). 

If  the  linearized  boundary  conditions  are  no  longer  singular  because  of 
a  finite  AI,  the  usual  Newton  method  iteration  can  be  continued  with X 
prescribed as  an  independent  parameter. If the  boundary  conditions  are 
nearly  singular,  another  interpolation on X may  be  required. 

Once  the  analysis  shows how to  start  the  Newton's  method  iteration  with 
a  finite  value  of  Al,  different  implicit  or  explicit  numerical  integration 
methods  can  be  used  to  find X as  a  function  of A1 - 

NUMERICAL  SOLUTIONS 

In  applying  the  results  of  the  theory,  numerical  solutions  do  not  need  to 
follow  the  analysis in every  detail.  For  example,  "shooting"  methods 
(ref. 19) are  used  for  computing  particular  solutions  rather  than  variation 
of  parameters.  When  the  problem  is  partitioned  into  a  reduced k by k 
problem,  the  complete  transformation  indicated  by  equation (35) need  not be 
carried  out. The  transformation 
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"ymtl = w z  m+l 

is  sufficient  where  w  is  not  singular  and  contains  the k eigenfunctions 
Vmj as  its  first k columns. 

The  interpolation  on X for  fixed A1 can  be  carried  over  to  nonlinear 
partial  differential  equations  which  are  solved  by  matrix  methods. A finite- 
element  code  for  general  shell  problems  was  used  to  generate  the  end-shortening 
u  as  a  function  of  center  deflection  w  for an isotropic  square  plate  in 
compression.  The  amplitude  w = A1 was  held  constant  at  1.7h  where h is 
the  thickness  while  u  was  varied  in  the  role  of X. The  interpolation  on 
X is  indicated  by  the  dashed  lines in  figure 2.  One  iteration  cycle  of 
Newton's  method  (m = 1) with  input  wo = 1.7h  and u = 1.0 Ucr  (point A 
in  the  figure)  shifted  the  output to w1 = wo + 8wl = 1.32h  (point B). 
Another  separate  iteration  with  input  at  point C shifted  the  output  to 
w1 = 1.99h  and u = 4.47  ucr  (point D). Interpolating on u  gives 
8w1 = 0 at u = 2.97  Ucr  (point E). The  latter  value  of u  was  sufficiently 
accurate  to  obtain  convergence of Newton's  method  at  point F on the  solid 
curve.  The  solid  curve  was  generated  by  varying u in  increments  starting 
at  point F using  the  standard  Newton  iteration  of  the  computer  program. 
Varying  the  end-shortening  with  w = 0 over  all  the  plate  would  merely 
change  the  in-plane  solution  which  does  not  couple  with  the  transverse 
equilibrium  equation  for  an  initially  flat  plate.  Starting  the  iteration  on 
the  computer  solution  with  an  assigned  amplitude  of  the  lowest  buckling  mode 
shape  is  sufficient  to  achieve  convergence  on  the  postbuckled  curve. 

When  matrix  methods  are  used  for  the  numerical  solution of static 
boundary-value  problems,  a  similarity  transformation  on  the  tangent  stiffness 
matrix  is  analogous  to  the  change of variables  in  variations of parameters. 
When  the  equations  are  partitioned  using  only  k  modes,  equations (42), 
the  analog  is  an  equivalence  transformation  in  matrix  theory. 

The  numerical  analogies  will  not be developed  in  this  paper,  but  the 
general  development  should  parallel  the  discussion  here.  Eigenvectors 
the  numerical  analog  to  the  Prechet  derivative  replace  eigenfunctions. 
k by k reduced  problem  has  been  suggested  by  Almroth,  et  al.,  (ref. 
Solving  the  remaining (n - k) equation  by  successive  approximations  as 
suggested  here  preserves  linear  independence. 

of 
A 

20). 

CONCLUDING REMARKS 

Linearization  before  discretization  in  Newton's  method  allows  classical 
linear  theory  to  be  applied to nonlinear  mechanics  problems.  The  linear 
theory  provides  useful  qualitative  information  that  can  affect  convergence 
of  the  iterative  solution. 

The  example  in  the  paper,  variation of parameters  from  the  theory  of 
linear  ordinary  equations,  shows  clearly  the  interdependence of the  residual 
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error  and  the  properties  of  the  linearized  operator  in  Newton's  method. 
Variation  of  parameters  suggests a change  of  dependent  variables  for  computing o 

particular  solutions.  The  change  in  variables  is  also a means  of  partitioning 
the  problem  to  speed  convergence  of  Newton's  method  when  the  nonlinear 
problem  has  multiple  solutions  for a given  set  of  parameters. 

The  change  of  variables  can  be  extended  to  numerical  solutions  using 
matrix  methods  by  an  equivalence  transformation.  The  new  variables  arise 
naturally  in  the  problem  which  is  an  advantage  for  writing  computer  codes 
for  matrix  solutions.  No  prior  quantitative  information  on  choice  of 
variables  is  required  by  the  program  user. 
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Figure 1.- Schematic diagram of calculation of parameter  increment 
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Figure 2.- Variation of end shortening  with  transverse  deflection of  plate 
in compression. 
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