ITERATIVE METHODS BASED UPON RESIDUAL AVERAGING

J. W. Neuberger

This paper concerns iterative methods for solving boundary value prob-
lems for systems of nonlinear partial differential equations. The methods
involve subtracting an average of residuals from one approximation in order
to arrive at a subsequent approximation.

The paper is divided into five parts. The first part gives two ab-
stract methods in Hilbert space. The second part shows how to apply these
methods to quasilinear systems to give numerical schemes for such problems.
The third section contains some specific applications. The fourth part con-
tains a discussion of some potential theoretic matters related to the iteration
schemes. The final part indicates work in progress concerning extensions and
improvements of the above.

1. Two abstract iterative schemes. Suppose H is a Hilbert space, H’ a
closed subspace of H and P is an orthogonal projection on H whose range is a
subset of H’. Suppose also that L is a strongly continuous function from H to
L(H,H) so that L(U) is an orthogonal projection for each U in H. It will be
seen how a variety of boundary value problems for nonlinear systems may be re-
duced to the problem of finding U€H’ so that

(1) L(D)U=0, P(U-W) =U-W
where W is a given element of H’. It will be seen that the first part of (1)
represents a quasilinear system and the second part of (1) is a way of as~
serting that U satisfies boundary conditions described by the given element W.
For §>0 an iterative scheme for attempting to find U satisfying (1) is

(2) Wo =W, W, =W -6PL(W )W ,n=0,1,2, ...

1
d ‘

1f {Wn}n=0 converges to UE€H’, then
(3) P(U-W) =U-W and PL(U)U=0.

A solution U to (3) is called a quasisolution to the problem (1). See ref. 1
for a discussion concerning quasisolutions vs. actual solutioms.

A second scheme uses a continuous iteration parameter but is otherwise
similar to (2): Define Z :(0,»)> H so that

(4) Z(0) =W,z7 (t) =-PL(Z (£))Z (t) , t=0.

If U=1lim Z (t) exists, then U satisfies (3).
t> o>
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For numerical schemes one is interested in finite dimensional choices
for (2) under fairly unrestrictive hypothesis on P and L. In ref. 2 it is
shown that (2) always “converges in the linear (L(x) independent of x€H) for
§=1. Similar results may be obtained for (4) by noting that (4) is a lim-

iting case of (2) as § 0.

2. Quasilinear systems; use of finite differences. It is first indi-
cated how a fairly general second order quasilinear system may be placed in a
setting to which the iterative schemes (2), (4) apply. Extensive generali-
zations will be evident.

Suppose Q is a bounded open subset of R? and each of R,S,T is a contin-
uous real-valued function on R3. Functions z,u,v on Q are sought so that

R(z,u,v)uy +S(z,u,v) (up +v;) +T(z,u,v)v, =0
(5) zl—u=0
zo —v=0
where uj =8u/8x, up =68u/dy etc.
If appropriate derivatives exist and (5) holds, then
(6) R(z,21,29)2z11+25(2,21,29)212,+T(2,21,22 )220 =0.

Pick two Biecewise smooth one-dimensional curves T and T/ in Q and a
function WE€C (). Consider boundary conditions for (5):

z(p) =w(p),p€T

U(P) £(p) W1<P) f(p))
@) <(V(p) 4 g(p) > < Wz(P) s (P)> ,PET

where <§Eg;> denotes the direction normal to T’ at p.
Define A:R3+L(R%,R3) modeled on (5) so that
A(rssyt)(a,al9323bsb1’b23Csc1:C2) =
R(r,s,t)b; +S(r,s,t) (by +c;) +T(r,s,t)co
al -b
as —c¢C
(r,s,t),(a,a]_,az),(b,bl,bz),(c,cl,c2)€R3 .
Note that if z,u,ve€ ‘1 (?) and

A(z(p) ,u(p),v(p))
(z(p) ,z1(P) »22(p) ,ulP) ,u; (p) ,us (p),v(p),v1(p),va(p))=0,
then z,u,v satisfy (5).
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Denote L, (R)? by H, denote by H’ the set of all (z,z’,u,u’,v,v')CH
where z’/ = (z1,2) etc. and all indicated derivatives are L, generalized deri-
vatives (cf ref. 3). Denote by HY the set of all (z,z’,u,u’,v,v/)€H’ so that

z(p) =0, p€T
u(p)> f(p)> - /
=0, T
<(v<p) : <g<p) pe
and denote by P the orthogonal projection of H onto Ha.

To complete a description of how (5), (7) are carried over to (1) a de-
scription of L is required. Denote L2(§)3 by K and define C:H-+L(H,K) so that
if U,Z€H, then for almost all p€Q,

(C(0)Z) (p) = (ACQ)A(Q) ™ ~2A(q) ‘21 (p)

where q = (r,s,t) and r,s,t are the first, fourth and seventh elements respec-—
tively of U(p). Finally for U€H, L(U) = C(U)*C(U).

For w as above, define W= (w,w;,ws). Start iteration (2) with W. Then
for n=0,1,2, ..., W, has the property that the triple consisting of the first,
fourth and seventh elements of Wn satisfy (7). Similar statements hold for the

iteration (4).

It is now indicated how a finite difference scheme for (5),(7) may be
constructed by defining finite dimensional spaces H and K which approximate H
and K above. Suppose Gy is a rectangular grid with even spacing § so that
G =Gg ﬂﬁ has the property that if p€G, then at least one of p+<Sei is in
G,i=1,2, where ej,ep is the standard basis for R2. Define K to be a vector
space of all real-valued functions on the grid G. For u€XK, define

(u(p+6ei)~u(p—6ei))/(26) if p+6ei,p—6ei€G
(Diu)(p) = (u(p +38e,)-u(p)) /8 if p-de; ¢c
(u(p)—u(p—éei))/d if p+de; €G,1i=1,2, p€G.
Define §_=_I§9. For (z,u,v)E_IS?’, define
p(z,u,v) = (z,D12z,Dp2z,u,D1u,Dou,v,D1v,Dov). Denote by H’ the range of D.
’

Define I',I'" subsets of G approximating I' and I'’ respectively. Denote by Ho'
the set of all D(z,u,v)€H’ such that

z(p) =0, p€L

EE) )Y - o per

Denote by P the orthogonal projection of H onto Ho' . Pick wEK approxi-
mating w above. Define z=w, u=Diw, v=Dow and choose
EO = (_Z_,Dl5,D2_Z_,5,D1_1}_,D22_,17_,D1Y_,D22) and

(9) Wo,,=W -PL(W )W ,n=0,1,2, ...
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where L is defined essentially as above. Condition (8) on P implies that
boundary conditions are preserved under the iteration (9) and hence are sat-
sified by a limit of {Wn}:=0'

Similar statements hold for a finite dimensional counterpart to the
iteration (4).

Process (4) in this finite dimensional setting becomes a variant of the
"method of lines". It specifies one equation and one 'unknown' for each point
in the grid G. The 'time' parameter is iteration number, not a distinguished
variable in the system of differential equations. Use of (4) then may extend
the use of the 'method of lines' to a larger class of problems.

3. Applicatiomns.
Take Q to be a bounded region in R%. Define R,S,T in (5) so that

R(z,u,v) =1+v?
S(z,u,v) =-uv
T(z,u,v) =1+u?.
System (5) then is

1 +V2)U,1 ~uv(uy +vy) + (1+u?)v2=0

z1-u=0

zo-v=0

As a single second order equation this is

(1+2z3)z11 ~ 22725215+ (1 + z%) z95 =0,

the minimal surface equation for real-valued functions on a region in R2.
Conditions are specified by

Z(P) = f(P) ,PE D Q,

for some given function f. The FORTRAN code listed in ref. 4 may be easily
modified to deal with this equation.

If y,a_,u_ are given positive numbers and R,S,T are chosen so that
R(z,u,v)==a°2°+((Y—l)/Z)(ui—uz—vz)-—u2

S(z,u,v) =-uv

T(z,u,v)==a°2°+((y—l)/2(u°2°—u2—v2)--v2
then (5) reduces to the transonic flow equation used in reference 4 (and
taken from reference 5). Tor numerical computations, boundary conditions at

infinity are replaced by appropriate boundary conditions on the boundary of a
large box. One also has zero normal derivative conditions on an airfoil inside
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the box. See references 4, 5 for details. The FORTRAN listing in reference 4
is specifically for this problem. Printouts of results for various mach num-
bers (u,/a,) are given there.

4. Finite dimensional potential theory. The main computational effort
connected with (9) is the calculation of Px for various x€H. Denote by Jj
all (z,u,v) €K3 satisfying (8) and denote by m the orthogonal projection of__Ig3

onto Jg. From ref. 2 it follows that P =DE™l7D* where EIEWD*D[JO. Hence

the main work in calculating the action of P is the solving for x (given y)
in linear systems

(10) Ex=y.

Now Jy is a Dirichlet space in the sense of ref. 6 and E is the corresponding
Laplacian for Jg. So, E~! being the inverse of a Laplacian, the effect of
multiplying a vector y by E-! is to take a certain nonnegative weighted aver-
age of the components of y. References 2 and 4 contain descriptions of methods
for solving (10).

5. Extensions and Improvements.
A promising replacement for (4) is given by
(11) z(0) =wz'(t) =-(V$)(2(t)), t =0

where o(x) E%[[A(X)XHZ,XGII, A being defined as in section 3. One has the
following explicit expression for the gradient of ¢:

(V¢) (x) =P[A(x)*+(Xx)*]A(x)x,xEH.

Then (11) becomes a steepest descent process. In a number of examples, the
only critical points of ¢ seem to be solutions to (3). Furthermore, solutions
z to (3) remain bounded and so converge to a solution u to (3).

Work is in progress concerning the adaptation of (2), (4) and (11) to
finite element spaces rather than finite difference schemes. It is expected
that methods will be developed which use finite element spaces but have little
else in common with conventional finite element methods. See reference 7 for
some preliminary results.
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