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SUMMARY 

A method has been developed for contact problems which may be  either  frictional or 
frictionless  and may involve extensive sliding between deformable bodies. It i s  based  on an 
assumed stress hybrid approach and on an  incremental variational  principle for  which  the 
Euler's equations of the functional  include  the  equilibrium and compatibility conditions at 
the  contact surface. The tractions at an assumed contact surface are  introduced as Lagrang- 
ian  multipliers i n  the formulation. It has been concluded from the results of several example 
solutions that  the  extensive sliding  contact between deformable bodies can be solved by  the 
present  method. 

INTRODUCTION 

The finite element method has been applied by many  authors for solving  solid mechan- 
ics problems which  involve undetermined  contact surfaces. They include  the  relatively 
simple Hertz  contact problem for which there i s  no sliding between  contact surfaces and the 
small displacement model can be used [ l ,  21. They also include problems involving  relative 
sliding  either  with  friction or i n  frictionless  conditions [31. Existing solutions are based 
largely  on the  conventional assumed displacement finite element model. 

The present paper i s  based on an assumed  stress approach and  on  an  incremental vari- 
ational  principle for which  the Euler's equations of the functional  include  the  equilibrium 
and compatibility conditions at the  contact surface. An assumed contact surface is  inserted 
between bodies in  contact and i s  divided  into elements. Contact  tractions  are  independently 
assumed i n  terms of unknown values of such  nodes of the contact elements. Thus, a finite 
element equation  includes  nodal displacements and nodal contact  tractions as unknown. 
This paper i s  to present the  variational  principle and the corresponding finite element imple- 
mentation  for this problem. 
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SYMBOLS 

Coordinates before  deformation 

Displacements defined  within  an  element 

Displacements defined  along element boundaries 

Tractions 

Contact  tractions 

Coefficient  of  friction 

The whole boundary of the  body 

The contact surface 

The portion  of  the boundary  where  displacements are  prescribed 

The portion  of  the boundary  where  loads are  applied. 

Volume 

Strains 

Stresses 

Quantity  tangential to the  contact surface 

Quantity normal to the contact surface 

Matrix 

Tensor 

Prescribed quantity 

Quantity  pertinent to  body A 

Quantity  pertinent to body B 

Quantity  pertinent  to bodies A and B 

Quantity  pertinent  to element N 

incremental auantitv 

21 2 



I 

GENERAL INCREMENTAL ASSUMED STRESS FORMULATION FOR CONTACT PROBLEM 

The requirements for contact (the conditions  of  contact)  are as follows: 

( 1 )  At the  point  of contact between two bodies tractions  exerted 
on each other are  the same in  magnitude and are opposite i n  
directions. 

(2) The normal tractions  are compressive and the tangential 
tractions  counteract relative movement of the bodies. 

(3) There should be no gap and no penetration  of  material  points 
at  the  place  of  contact. 

A B 
Consider two bodies A and B shown in  Fig. 1 with volumes V and V , and boundary 

B A B 
surfaces, a@ and 2V which are composed of portions, S,,- and Sf, and SA and S 

These two bodies share a  contact surface, S through  which  they interact. The previously 

B 
U U '  

C 
mentioned  conditions of  contact i n  incremental form are 

+  AT^) + (TB + AT B ) = 0 
n  n 

(TB  +  AT^ ) B 
S G -  + ( T ~  n +  AT^) n 
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and the signs in  Eqs. 3 and 4 are chosen  such that  tangential  tractions on this surface act  to 
restrain  the relative movement of contacting points. 

A f inite element method which i s  based on  a variational  principle  with  relaxed con- 
tinuity requirement at interelement boundaries i s  defined as a hybrid model [4]. Boland and 
Pian [5] have applied  an incremental assumed  stress hybrid method for  large  deflection 
analyses of  thin  elastic structures. The functional IT that has been derived in the refer- 
ence [5]i based on  the Updated Lagrangian coordinate system i s  used  as ;base for   der iv ing 
the  functional  for  the  present problem. 

me 

The conditions of no gap and no overlapping on t,he plac%of  contact are $traduced 
into the functional by means of Lagrangian multipliers, T + A T  and 7 + A T  . The 
functional K becomes Pmc, i.e. 

n  n S S 

mc 

AT. ( AU. - AU. dS 
-A -40 

I I 

A +B 

s C N  s C N  
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The Euler's equations  of T are 
C 

rnc 

On the contact surface S , in addition to Eqs. 5 and 6 
cN 

(TB n + ATB) n + (7 n + AT n ) = o  

Introducing frictional constraint on 7 + A? and 'i +z such that 
S S n n' 

cu 

T + A T  < + , , T  + A T  
S S - [n  -n) 

and rearranging Eqs. 11, 12,  13, 14 and 15, results i n  Eqs. 1, 2, 3, and 4. Thus, 
it has been proved that the conditions of contact are Eulers's  equations of the functional 7i' C 
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These Euler  equations are the strain displacement relations, the mechanical boundary 
condition, the stress equilibrium requirements along  the  interelement boundaries  and the 
conditions of contact. Since they are only satisfied in an average sense within an increment 
they cannot be expected to satisfy  these conditions i n  the usual sense. It is, therefore, 
necessary to consider a compatibility check, a stress equilibrium check,  and a  contact check. 

It i s  seen that Eq. 7 already has al l  of these built-in checks. The 5 t h  and 6-th 
integral terms in the  functional correspond to the equilibrium check and 7-th term to the 
compatibility check. Also, the compatibility and equilibrium checks of the contact surface 
(contact check) are easily identified, the equilibrium check being  the 8-th integral term 
and the compatibility check, the 9-th term. 

FINITE ELEMENT IMPLEMENTATION 

Since the aim of the present  work i s  to solve contact problems by the finite element 
method,  expressions arising from nonlinearities,  not due to contact, are excluded from 
equations. A technique for solving these  equations, with only  contact nonlinearities, wi l l  
be discussed here. 

Neglecting  nonlinearities not due to contact, the assumed  stress hybrid  functional, 

77 takes the form 
mc 

3 
cN 



The  stresses AS are expressed in  terms of  a  finite number of stress  parameters, A P  and 
the element boundary  displacements interpolated in terms of the nodal displacements, CJ, 
and AZ. Also, coordinates  are interpolated in terms of their nodal values. As a  solid 
continuum i s  subdivided into elements, the  contact surface is  also discretized into  finite 
number of elements referred to here as ''contact elements" with "contact nodes. 'I The con- 
tact  traction J + AI i s  interpolated in terms of i t s  nodal values, t. 

Y 

+ 
N 

Thus, interpolatbns  otthem are: A z  = P a ~ 2 ,  A: = 5 A:, lJ = q, 
A = ACJ and 1 + A$ = M i. Substituting these interpolations into Eq. lz, 

H 

v 

Y 

and defining the following matrices 

R0 L T -  T d S ,  R: 
N N = \ s h j T * [ ( g A  + ) -  (GB + gB)]dS 

A 
-E N 

IC. 

c N  

FA = \ M - L  d S ,  F L  = M - L B d S  
4N " - *  

A 

C C 

JcN JcN 

the functional, becomes 
mcN 
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in  which S i  and 5; result from  stress equilibrium checks  on S ,  and on the contact 

surface S , and RC , from the init ial mjsmatch  checks on S . N n 
0 

cN N cN 

Equation 17 contains three unknown  vectors, the incremental stress parameters AZ, the 
incremental displacements AI, and the contact stresses . Whereas, the vector are 
independent on the element level, a q  and are not. Thus, eliminating AZ from Eq. 17, 
n' becomes 

w 

mc 

Summing  up over a l l  elements and !aking the   va r ia t i ons  of t h e   f u n c t i o n a l   w i t h  
respec t   to  a q  and t ,  resulk in 

' W  r u  

where 

K hr = GjN* T tiN - 1  - S N ,  Q = x(,aN + Q i  - Ro ) u -E N * N  N 

&C 
K =  

Equation 19 represents the total assembled finite element matrix equation. 
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TECHNIQUE OF ITERATIVE SOLUTION 

Once  the  contacting bodies are  adequately constrained such that  the inverse of the 
global stiffness matrix, 5-1 i n  Eq. 19 can be  calculated, it can be used throughout the 
iteration procedure. Thus, i n  locating  the  contact surface only K needs to be recomputed 
i n  each  iteration. The global stiffness matrix 5 remains constant % uring this process.  Even 
in  the case of  material and/or large deflection nonlinearities, it i s  possible to use a modified 
Newton-Raphson method; hence the  global stiffness matrix 51 may remain constant during 
this process. 

For a two-dimensional problem, before each iteration,  the  contact surface i s  a  line, 
f ixed  in the coordinate system, but  not  to the contacting bodies. Such line i s  assumed 
known i n  order to perform the necessary integrals. But if, before  the  iteration, one has 
assumed the location  of  the  contact surface and the positions on i t  that  the  contacting nodes 
of  the bodies wi l l  occupy, then it would appear that  the  displacement  increment can be 
specified. Th is  i s  not  the case.  Instead, the problem i s  solved for  the  displacement incre- 
ments and i f  the contact surface found therefrom i s  not  coincident  with  the one  presupposed, 
a new contact surface location i s  calculated, and then  an iteration can be  followed. 

It has been found that the length  of the  contact  element  which  yields best results i s  
the same  as the  length of the contacting side of boundary elements of  the bodies. In order 
to facilitate programming, the nodes of the contact  element  are chosen to be coincident 
with those of one of  the  contacting bodies. As a  result  of  variations i n  load, the place  of 
contact changes: thus a vital part  of the  solution i s  to establish a procedure for calculating 
this change. A tr ial and error scheme i s  employed because i t  i s  virtually impossible to form- 
ulate a variationalprincipleincluding unknown variables  which locate  the surface of contact. 

The overall strategy for solving  the  contact problem i s  discussed here. First, an  incre- 
ment in  the  external  load or prescribed displacement i s  applied. Second, a  contact surface 
i s  assumed together with  the points on it through which nodes of the bodies contact  each 
other. Also, the types of  contact  (sliding or non-sliding) at each of the above-mentioned 
points areassumed .For the initial  calculation  of the first load increment, the above assump- 
tions  are made simply by  inspection,  and  for  the first iteration  after each new load increment, 
the converged solution  of  the previous load step i s  used. Third, a l l  the necessary matrices 
are calculated and assembled. At the i-th iteration of the N-th load step, incremental 

displacement, AU and contact  tractions '(Tk + A T  ) are  solved from a finite element 

matrix equation, Fourth, knowing  the total displacement U at the end of,the previous k 
loading step N-1, the total displacements U + 'A U on the boundary, and contact 

tractions (Tk + A? ) are  checked to determine i f  they  satisfy the  conditions of contact. 

If they do not satisfy these conditions, the location  of the assumed contact 
surface i s  modifi'ed and  the  procedure  repeated until they do. Next,  a 
convergence test i s  made, and i f  the  solution i s  not convergent, the location  of  the 

I c 

k N-1 

N-1 
k k 

I 

k 
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contact surface i s  further  modified and  the solution procedure  repeated. 

To determine i f  the  solution satisfies the  conditions of contact,  the following 
assurances are made: 

( 1 )  That  nodes of either body beyond the  last  contacting nodes  from the 
previous iteration have  not  penetrated the other  body. 

(2) That tractions a t  the  contacting nodes are compressive. These normal 
tractions  can  be  calculated  by  three  different methods; (a) from the 
stress coefficients, (b) from the  equivalent  nodal forces, and (c) from 
the  contact  tractions, $ + A.. Here  the  last method was  used. 

(3) That the  relationship  between normal and tangential  contact tractions, 

i s  satisfied.  Depending on which of the above checks, i f  any, i s  violated, one of the 
following procedures i s  employed to modify  the assumed location  of the  contact surface. 

(a) If ( 1 )  i s  violated,  the  contact surface may be  extended to  include  the 
points at  which  penetration has occurred. 

(b) If (2) i s  violated,  the  contact surface i s  reduced  by  ekcluding nodes 
at  which  the  tractions  are  tensile. 

(c) If (3) i s  violated,  sliding i s  allowed  to occur. 

After  the  conditions  of  contact  are satisfied, a  test  for  convergence can be made by 
calculating  the  following  quantity: 

where AU i s  the  displacement at  the k-th degree of freedom. If R i s  less than  a  precribed 
quantity, say 0.01, the  solution i s  considered as converged. 

k 

EXAMPLE SOLUTIONS 

The finite element model and solution scheme are  applied  to problems of contact 
between  a disk and a semi-infinite  half-plane. The overall mesh pattern,  the location of 
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the prescribed displacement and relevant dimensions  are  shown in Fig. 2-a, with the area 
immediately surrounding the  contact surface shown in great detail in  Fig. 2-b. The semi- 
infinite half-plane has been modeled  by a finite one with  overall dimensions  much larger 
than those of the disk. The basic element used i s  four-node quadrilateral element derived 
by assuming  seven P -parameters and I inear displacement distribution  along each  edge. 
Five-node and six-node elements are also introduced in  transition regions between coarser 
and finer meshes. Contact tractions  along each contact element are approximated by linear 
interpolations. 

Non-Sliding Contact 

Problems are solved for the case with both  applied loads  and prescribed displacements 
at the top of the disk. In the problems, the ratio  of Young's moduli are varied over a range 
from 1 to and slightly  different mesh patterns  near the contact surface  are used to 
accornrnoda te'. node-to-node  and node-to-internode contacts. Loads  or displacements  are 
applied by hethree increments until the length of contact surface becomes about 2.4 mm, 
For each  increment, the converged  solutions  are  reached with three or four iterations. For 
these solutions, the best results for contact tractions are obtained when calculated from 
equivalent nodal  forces  and  are  compared excellently  with the Hertz  solution i n   a l l  cases. 

Frictionless Contact With Extensive SI iding 

The half disk and the semi-infinite  half-plane are  also  used to demonstrate the capa- 
bi l i ty of this forrnulat ion to solve extensive sliding contact problems.  Since the contact 
between the two bodies i s  frictionless, the solution i s  independent of the path;  thus a Hertz 
solution i s  again available for comparison.  Solutions  are obtained for prescribed displace- 
ments at the top of the disk by eight increments. Stress distributions on the p l a n e  of con- 
tact, for two prescribed displacements,  are plotted in Fig. 3 where zero position represents 
the point of initial contact. It i s  seen that the solution agrees  almost exactly  with  that  of 
the Hertz solution. It i s  noted that the center of symmetry of the stress distribution moves 
to the left  as the half-disk slides in that  direction. 

Frictional Contact With Extensive SI iding 

The  same problem i s  again solved here with  friction between the disk and the half- 
plane as an added consideration. No solution to this problem, analytic or otherwise,  can 
be found;  thus, results arrived  at here wil l  be justified by comparison with the results of the 
previous section and  by  showing that they satisfy the conditions of contact. 

The normal tractions at the contacting nodes between the disk and the half-plane for 
every 4th displacement increment are shown in Fig. 3 and  are  compared with those of the 
frictionless case.  Because of  friction, i t can be seen that  the displacement of the  contact 
surface is  retarded. That the normal tractions of the plane and disk are equal i n  magnitude 
and  opposite in sign i s  also evident i n  the figure. This implies that  the normal tractions 
satisfy a condition of contact. A condition of sliding  contact requires the ratio between 
normal  and tangential components of tractions to be constant  and equal to the coefficient  of 
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fr iction . They were approximately  verified for all  contacting nodes. Finally,  the  con- 
tacting surfaces of  the disk and  the  plane  are shown in  Fig. 4 along  with  the  locations  of the 
.nodes obtained in previous solutions. It can be seen that  friction retards the movement of 
the  contact surface, and as in the  previous  solution,  through averaging  over  the  entire con- 
tact surface, the  contact  condition  of no separation or penetration i s  satisfied. 

C.0NCLUS IO NS 

An  incremental  variational  principle and a corresponding finite element 
formulation have been made for contact problems based on an assumed  stress 
hybrid method. An iterative scheme for the  solution has been  developed. 

Successful applications  of the present method  for plane  elasticity problems 
have been demonstrated for 

(a) Non-sliding problems with node-to-node contact 
and with node-to-internode  contact, 

(b) Frictionless  contact with extensive  sliding,  and 

(c)  Frictional  contact  with  extensive  sliding. 

The present method should be extended to problems involving  material 
and/or geometrical  nonlinearities in  addition  to  contact  nonlinearity. 
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Figure  2.- Mesh pa t te rn .  
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Figure 4.- Location of nodes. 
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