NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

TECHNOLOGY INCORPORATED LIFE SCIENCES DIVISION

FINAL REPORT

A MICROPROCESSOR-BASED CARDIOTACHOMETER

Prepared for the NASA Johnson Space Center Cardiovascular Research Laboratory

October 31, 1979

Contract NAS9-14880 Project 0160-20

(NASA-CR-160607) A MICROPROCESSOR-BASED CARDIOTACHOMETER Final Report (Technology, Inc., Houston, Tex.) 92 p HC A05/MF A01 CSCL 06B

N80-33082

Unclas

G3/52 33199

TECHNOLOGY INCORPORATED LIFE SCIENCES DIVISION HOUSTON, TEXAS

FINAL REPORT A MICROPROCESSOR-BASED CARDIOTACHOMETER

Prepared for the NASA Johnson Space Center Cardiovascular Research Laboratory

October 31, 1979

Contract NAS9-14880 Project 0160-20

Prepared by:

John A. Donaldson

William G. Crosier

APPROVAL SHEET FOR A MICROPROCESSOR-BASED CARDIOTACHOMETER

Approved by:

Stanley Fink, Ph.D., Project Leader Technology Incorporated

Approved by:

Joseph A. Baker, Section Supervisor Jechnology Incorporated

Approved by:

Philip Johnson, M.D., Branch Chief Medical Research Branch

NASA Johnson Space Center

MICRO CARDIOTACHOMETER DEVELOPMENT PERSONNEL

DESIGN

John A. Donaldson

DESIGN SUPPORT

William Crosier

GRAPHICS

Kay Elton

FABRICATION

John A. Donaldson

SOFTWARE

John A. Donaldson

SOFTWARE SUPPORT

William Crosier

DOCUMENTATION

John A. Donaldson, William Crosier, Joe Baker, Sally Grill

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	GENERAL DESCRIPTION	3
III.	HARDWARE DESCRIPTION	5
IV.	SOFTWARE DESCRIPTION	9
	Heart Rate Monitor Routine D/A Setup Routine D/A Ramp Routine	9 11 11
٧.	APPENDIX A - FLOW CHARTS	13
VI.	Start Routine Input Routine Count Routine Check Routine Output Routine Err1 (Underrange) Routine Err2 (Overrange) Routine D/A Setup Routine D/A Ramp Routine Input 2 Routine APPENDIX B - ASSEMBLY PROGRAM LISTING	14 15 16 17 18 19 19 20 21 22 23
VII.	APPENDIX C - PROGRAM EXECUTION TIMES	30
VIII.	APPENDIX D - WIRE WRAP LISTS	32
IX.	APPENDIX E - COMPONENT LOCATION LAYOUT DRAWINGS	40
х.	APPENDIX F - CIRCUIT DIAGRAMS	45
XI.	APPENDIX G - SAMPLE OUTPUT	58

INTRODUCTION

In the early development of the Cardiopulmonary Data Acquisition System (CDAS) for the NASA/JSC Cardiovascular Laboratory, one of the main requirements was a device which would provide reliable measurements of instantaneous heart rate during treadmill and ergometer stress testing. Cardiotachometers which were commercially available generally were not designed to handle the rather large amount of noise, baseline wandering, and amplitude changes that are frequently seen in the electrocardiogram (ECG) during exercise testing. In addition, most commercial units were not reliable enough for research use and generally would be difficult to interface with the existing laboratory instrumentation and computers. As a result, the development of a completely new cardiotachometer was undertaken so that highly accurate and reliable measurements could be made of the heart rate of test subjects.

In summary, the principle requirements for the new cardiotachometer were as follows:

- (1) Reliable heart rate mesurements during either rest or exercise stress testing.
- (2) Accurate heart rate measurements over the range of 30 to 250 beats/
- (3) Analog output for interfacing with an FM tape recorder and a micro-computer analog to digital (A/D) converter.
- (4) Instantaneous (beat to beat) updates on the system output were also desirable so that occasional noise artifacts or ectopic beats could be more easily identified except that occasional missed beats caused by switching ECG leads should not cause a change in the output.

The first unit developed for this task utilized discrete transistors and small and medium-scale integration integrated circuits (IC's) for all of the logic and digital-to-analog (D/A) conversion required. This original system has been in use for about 3 years and has been fairly reliable, but its accuracy and noise immunity sometimes were not satisfactory. In addition, modifications to this system were difficult to make since any logic modifications would require wiring changes and hardware additions. As a result, a completely new cardiotachometer was developed, using an improved analog filter and R-wave detector and an Intel 8080A microprocessor to handle all of logic and arithmetic necessary. By using the microprocessor, all of the above requirements could more easily be met and future hardware modifications could be minimized if functional changes were needed.

GENERAL DESCRIPTION

In the implementation of the new cardiotachometer, a new approach was used to calculate heart rate. Instead of using the discrete transistor D/A converter to invert and display the count as was used before, a 16 bit precision software math routine is used, together with a monolithic 8-bit D/A converter. Also the previous model used 8 bit wide counters while the new one uses 16 bit wide registers. Thus accuracy and resolution is greatly increased. The interface hardware was built around an 8255 programmable peripheral interface IC. To this IC was added a D/A IC, switches with debounce circuits, light emitting diodes (LED's) with drivers, and a single bit A/D consisting of a special filter, automatic gain controller (AGC), and pulse detector. Also a calibration circuit was used consisting of an 8253 programmable interval timer, opto-isolators, and a digital multiplexer.

By using a microprocessor based system, future modifications can be added easily. Such modifications could be software digital filtering, a continuously updated averaging heart rate output, or other similar features.

A summary of the characteristics of the new cardiotachometer is given in Table 1,

TABLE 1 DEVICE OPERATIONAL SPECIFICATIONS

Input

-Single lead ECG

Output

-Analog voltage 0-3VDC representing 0-300 beats/min. (BPM)

Accuracy

-Better than 2% of reading over entire range

Typically better than 1% over the range 39-230 BPM

Output Resolution -1.13 BPM

Internal Resolution-0.45 msec. in R-R interval measurement

Under & Over Range -LED illuminates and output drops to 0 when heart rate Indications drops below 30 BPM or increases above 300 BPM

Calibration

-60 BPM or 180 BPM pulses obtained by dividing CPU crystal-controlled clock pulses can be switched to the system

analog input for calibration and troubleshooting.

Accuracy: ± 1 msec.

HARDWARE DESCRIPTION

The Central Processing Unit (CPU) board consists of the following:

8080A - CPU

8228 - System controller

8224 - System clock generator

74LS138 - Memory decoder

2708 - 1K x 8 bit Erasable Programmable Read-Only Memory (EPROM)

 $2111-1 - 256 \times 4$ bit static RAM (2 ea)

C6136P - - 5VDC 50 MA regulator

7404 - Hex inverter

18.432 MHz - crystal

The 8080A chip set is configured as a 2 MHz system using isolated I/O-linear select. This allows up to 14 devices to be selected without a decoder chip.

The memory is configured by using a 2708 EPROM and two 2111-1 RAM's. This gives 1K of ROM and 256 bytes of RAM's. Due to using wire-wrap techniques and the availability of 2716 2Kx8 and 2732 4Kx8 EPROMS and 2114-1 1Kx4 static RAM's, the memory could be expanded up to 8K of ROM and 2K of RAM. Only minor changes in the wire-wrapping would be needed.

The 8224 system clock chip uses an 18.432 MHz crystal which gives a system clock frequency of 2.048 MHz.

The Input/Output (I/O) board consists of the following:

8255 - Programmable peripheral interface

8253 - Programmable interval timer

DAC-IC8BC - 8 bit D/A converter

LM1458 - Dual 741 op-amps

SN7404 - Hex inverter

SN7406 - LED Drivers

74153 - 4 to 1 digital multiplexer

6N138 - Opto-isolators

74123 - Dual one-shot multivibrators

The 8255 is the main IC for interfacing inputs and outputs to the CPU-Memory board. Port A (PAO-PA7) are used to feed the 8-bit output to the D/A converter and half of a LM1458 op amp to produce a O-3VDC analog signal. This signal represents heart rate (O-300 BPM).

Port B (PBO-PB7) is not used at the present time.

Port C (PCO-PC7) is split via software control to use (PCO-PC3) as input and (PC4-PC7) as output. All outputs used are latched outputs so no refreshing is required.

Port C inputs (PCO-PC3) are not latched.

The 8253 is configured via software as a rate generator (mode 2) for constant output, and has three separate 16-bit timers.

Timer 0 is used to divide the main CPU clock via 2048 to produce a 1KHZ signal.

Timer 1 is used to divide the 1KHZ output from timer 0 to produce the Low Cal

signal. This signal is fed to half of the 74123 to produce a 10 msec. wide 60 BPM Low Cal signal. Timer 2 is used to divide the IKHZ output from timer 0 to produce the High Cal signal. This signal is fed to the other half of the 74123 to produce a 10 msec. wide 180 BPM High Cal signal.

These two signals plus the TTL pulses from the conditioned ECG input signal are fed to a 74153 4-input, I output digital multiplexer. This multiplexer is controlled from the main CDAS computer via two 6N138 opto-isolaters. Control codes are:

00 input to the 6N138's connects the ECG input to the cardiotachometer peripheral interface input.

Ol input to the 6N138's connects the 60 BPM Low Cal pulses to the input.

10 input to the 6N138's connects the 180 BPM High Cal pulses to the input.

11 input to the 6N138's disconnects the cardiotachometer input for the Standby mode.

The raw ECG signal is specially conditioned by 3 circuits which were developed from a modified Skylab type cardiotachometer to produce a 10 msec. pulse which represents the R-wave of the ECG. The ECG is first sent to a 10 HZ-30HZ bandpass filter. The output of the filter is then sent to the automatic gain control (AGC) circuit. The AGC circuit outputs a pulse with constant amplitude even with varying ECG input amplitudes. This output is then sent to the pulse detector.

The pulse detector outputs a 10 msec. wide pulse. The pulse detector also incorporates a pulse width controller. This circuit produces a constant pulse

width output even with changes in the ECG input. This allows the 8080 CPU to do all of its calculations and displaying during the pulse. The output, along with the 60 BPM Low Cal, 180 BPM High Cal, and 0 BPM Standby signals, is then fed to the 74153 digital multiplexer. The multiplexer output is then fed to the PCO input of the 8255 peripheral interface.

PC1 and PC2 are also inputs which are connected to two SPDT push button switches via 7404 debounce circuits. Switch 1, connected to PC1, causes the CPU to select a D/A setup routine. This routine outputs via the D/A either a 0 or full scale signal each time switch 1 is pushed. This allows for adjustments of the D/A for zero and full scale values. Switch 2, connected to PC2, causes the CPU to select a ramp routine. This allows for checking D/A linearity and missing code conditions, and checks other functions of the microprocessor as well.

The front panel LED's are connected to other 8255 port C outputs via 7406 LED drivers as follows: ECG LED to PCO, Underrange LED to PC4, and Overrange LED to PC5. PC3, PC6, and PC7 are not used at present.

SOFTWARE DESCRIPTION

Heart Rate Monitor

Refer to the flowcharts and program listing for this discussion. The program starts at address 0000. None of the interrupts are used. The stack pointer is set and then the initialize routine initializes the 8255, 8253 timers, ectopic flag, pause flag, misbeat reference storage area, and the ectopic reference storage area.

It next calls the input routine from the start routine and waits for either a ECG/Cal input or for switch 1 to be pushed. If switch 1 is pushed, the program jumps to the D/A setup routine. If an ECG/Cal pulse is present, it returns and waits for the ECG/Cal pulse to end.

When the pulse has ended the program enters the Count routine, where the HR counter is initialized and then a timing loop is entered. The program loops until either the count reaches the under range count or there is another ECG/Cal/Switch input.

If the count reaches the underrange count, it then jumps to the underrange routine ERR1. The D/A is set to 0 VDC and the underrange LED is turned on. The program then jumps to start.

If an ECG/Cal pulse is detected, the program then enters the Check routine.

There it first determines if the ectopic flag, ECTFLG, was set on the previous beat. If so, the Pause flag is then set, since there may be a compensatory

pause (longer than normal R-R interval) following a premature beat. If ECTFLG was not set, then the current R-R interval count is compared with the missed beat reference value (MISBEAT), which is a number equal to slightly less than twice the previous normal R-R interval count. If the current count is greater, then the program simply assumes that one or more beats have been missed due to an ECG dropout, lead change, or similar temporary problem. MISBEAT is then reset and the program jumps back to Start.

Nothing is changed on the output, and this procedure therefore keeps a short signal dropout from causing an erroneous heart rate from being output.

If there was no missed beat condition or if the Pause flag was set, then the current count is compared with the ectopics reference count, ECT. This number is approximately 3/4 of the previous normal R-R interval count. If the current count is less, then the current beat is probably an ectopic and therefore the ectopic flag ECT is set before continuing.

Next, the count is checked for an overrange condition. If the count is less than that corresponding to a heart rate of 300, the program jumps to ERR2. There, the D/A converter is set to 0 VDC, the overrange LED is turned on, and the program jumps back to start.

If it is not overranged then ECTFLG is checked. If ECTFLG is set, the program goes to the output routine. If not set, the pause flag is checked. If the pause flag is set the program goes to the output routine. If the pause flag is not set then a new MISBEAT reference count and ECT reference count are calculated and stored and then the program goes to the output routine.

The MISBEAT reference and ECT reference are variable indicators, based on the previous normal R-R interval count, which are used to determine if a missed beat or ectopic has happened.

The program then goes to the Output routine. The count is divided by a constant. The result is an eight bit number which is sent to the D/A and outputed. Both under and overrange LEDS are turned off and the pause flag is reset. The program then goes back to Start for the next heart beat.

D/A Setup Routine

In the Heart Rate Monitor Program if the Input routine detects switch 1 it then jumps to the setup routine.

The setup routine first outputs a 00 to the D/A converter. This sets the D/A to zero volts output. This allows for adjustment of the D/A zero.

When switch 1 is pushed again a FF is sent to the D/A. This is the full scale condition and allows for adjustment of the full scale value (normally 3 volts) on the D/A.

Each time switch l is pushed either a zero or full scale output appears on the output of the D/A.

D/A Ramp Routine

If switch 2 is pushed during the setup routine, the program jumps to the D/A Ramp routine. Inis routine first outputs a zero to the D/A. It then enters

a wait loop. Upon completion of the wait period the D/A is updated by one count and the routine jumps back to the wait loop,

This routine allows for checking that the D/A responds correctly and if the 8255 outputs a wrong code.

Pressing the reset switch at any time returns the program to the beginning of the Heart Rate Monitor routine.

APPENDIX A

INPUT ROUTINE
(For Switch 1 and ECG/Cal Pulses)

COUNT ROUTINE

OUTPUT ROUTINE

ERR 1 (Underrange)

ERR 2 (Overrange)

D/A RAMP ROUTINE

INPUT 2 KOUTINE (For Switch 2)

APPENDIX B

```
0000
        31FF1C
                         BEGIN:
                                  LXI, SP
                                                   SET UP STACK POINTER
0003
        CDCA 00
                                  CALL INIT
                                                   :INITIALIZATION ROUTINE
                                  CALL INPUT
0006
        CDOA01
                         START:
0009
        CA0600
                                  JZ
                                       START
                                  CALL INPUT
000C
        CDOA01
                             S1:
                                                   :WAIT FOR R-WAVE
000F
        C20C00
                                  JNZ S1
                                                   :TO END THEN GO
0012
        110000
                         COUNT:
                                  LXI D, E
                                                   ;INITIALIZE HR COUNTER
        23
                             C1:
                                  INX D, E
0015
                         TIMER:
                                  LX1 B.C
0016
        011301
0019
        OD
                             T1:
                                  DCR C
001A
        79
                                  MOV A, C
        FE00
001B
                                  CPI A,00
                                                   ;SEE IF C IS ZERO
001D
        C2 1900
                                  JNZ
                                      T 1
                                                   ; IF NOT GOTO T1
0020
        05
                                  DCR B
        78
0021
                                  MOV A, B
        FE00
                                                   :SEE IF B IS ZERO
0022
                                  CPI A,00
                                                   ; IF NOT GOTO T1
        C2 1900
0024
                                  JNZ T1
0027
                          UNDER:
                                  XCHG
                                                   ;SWAP D, E WITH H, L
0028
        11F813
                                  LXI D, E
                                                   ;LOAD UNDER RANGE CODE
                                                   ; CHECK FOR UNDER RANGE
002B
        CD1801
                                  CALL HILO
002E
        CD3E01
                                        ERR1
                                                   ; IF SO GOTO ERR1
0031
        EB
                                  XCHG
                                                   ;SWAP D, E WITH H, L
0032
        CDOA01
                             C2:
                                  CALL INPUT
                                                   ;LOOK FOR NEXT R-WAVE
0035
        CA1500
                                       C1
                                                   ; IF NOT GOTO C1
                                  LDA ECTFLG
                                                   ;LOAD ECTOPIC FLAG
0038
        3A041C
                         MISBT:
                                  CPI A, FF
003B
        FEFF
                                                   ;SEE IF SET
003D
        C2 7401
                                  JNZ MISCNT
                                                   ; IF FLAG NOT SET JMP
0040
        3E01
                                  MVI A, 01
                                                   ; IF FLAG SET THEN
0042
        32041C
                                  STA PAUSE
                                                   ; SET PAUSE FLAG
                          ECT:
0045
        2 A 02 1 C
                                  LHLD
                                                   ;LOAD ECTOPIC REF INTO H,L
        ΕB
0048
                                  XCHG
                                                   ;SWAP D,E WITH H,L
        CD1801
                                                   CHECK FOR ECTOPIC BEAT
0049
                                  CALL HILO
0040
        D2 5A 00
                                  JNC FLAG1
                                                   ; IF SO GOTO FLAG1
004F
        3A041C
                                  LDA
                                       ECTFLG
                                                   GET ECTOPIC FLAG
0052
        3E00
                                  MVI A,00
                                                   RESET ECTOPIC FLAG
0054
        32041C
                                  STA
                                       ECTFLG
                                                    STORE ECTOPIC FLAG
0057
        C36100
                                  JMP
                                       OVER
                                                    GET ECTOPIC FLAG
005A
        3A041C
                          FLAG1:
                                  LDA
                                        ECTFLG
005D
        2 F
                                  CMA
                                                    COMPLIMENT FLAG
005E
        32041C
                                  STA ECTFLG
                                                    STOR ECTOPIC FLAG
        00
                           OVER:
0061
                                  NOP
                                                   ;SWAP D, E WITH H, L
                                                   ;LOAD OVER RANGE CODE
0062
        11C001
                                  LXI D, E
        CD1801
                                                   CHECK FOR OVER RANGE
0065
                                  CALL HILO
        D24901
0068
                                  JNC ERR2
                                                   :IF SO GOTO ERR2
006B
                                                   ;SWAP D,E WITH H,L
        EB
                                  XCHG
006C
        00
                                  NOP
006D
        3A041C
                         FLGCK:
                                  LDA ECTFLG
                                                    GET ECTOPIC FLAG
                                  CPI A, FF
0070
        FEFF
0072
                                                    ; IF NOT SET GOTO DIVIDE
        CA8D00
                                        DIVIDE
                                  JZ
0075
        3A051C
                                  LDA
                                      PAUFLG
                                                    :GET PAUSE FLAG
0078
        FE01
                                  CPI A,01
        CA8D00
                                                    :IF NOT SET GOTO DIVIDE
007A
                                  JΖ
                                        DIVIDE
007D
        OE1C
                         HRREF:
                                  MIV C, 1.75
                                                   :MISBT CONSTANT
```

```
007F
         CD5401
                                     CALL MULT
                                                       ; CALCULATE NEW MISBT
0082
         22001C
                                     SHLD
                                                       :STORE NEW MISBT REF
0085
                                     MIV C, . 75
         OEOC
                                                       :EUTREF CONSTANT
0087
         CD 5401
                                     CALL MULT
                                                       ;CALCULATE NEW ECTREF
A800
         22021C
                                     SHLD
                                                       STORE NEW ECTREF
008D
         010507
                           DIVID:
                                     LXI B, C
                                                       ;THIS ROUTINE IS
0090
         7A
                                     MOV A,D
                                                       ;AN UNSIGNED 16-BIT
0091
         2 F
                                     CMA
                                                       DIVIDE ROUTINE
0092
                                     MOV D,A
         57
0093
         7B
                                     MOV A, E
0094
         2 F
                                     CMA
0095
         5 F
                                     MOV E,A
         13
0096
                                     INX D, E
0097
         210000
                                    LXI H.L
009A
         3E17
                                     MVI A.17
         E 5
009C
                              DVO:
                                     PUSH H.L
                                                       ; REGISTERS H, L USED
009D
         19
                                     DAD D, E
                                                       ;TO STORE DATA
009E
         D2A200
                                     JNC DV1
                                                       ;TEMPORARIL Y
00A1
         E 3
                                     XTHL
00A2
         E 1
                              DV1:
                                     POP H.L
00A3
         F 5
                                     PUSH PSW
00A4
         79
                                    MOV A, C
00A5
         17
                                     RAL
0 0 A 6
         4 F
                                    MOV C, A
00A7
         78
                                    MOV A, B
00A8
         17
                                     RAL
00A9
         47
                                    MOV B, A
00AA
         7 D
                                    MOV A,L
OOAB
         17
                                     RAL
OOAC
         6 F
                                    MOV L,A
OOAD
         7 C
                                    MOV A, H
OOAE
         17
OOAF
         67
                                    MOV H, A
                                    POP PSW
00B0
         F 1
00BI
         3D
                                    DCR A
00B2
         C2 9C00
                                     JNZ DVO
00B5
         B 7
                           CLEAN:
                                     ORA A
00B6
         7 C
                                    MOV A, H
00B7
         1 F
                                    RAR
00B8
         57
                                    MOV D,A
00B9
         7 D
                                    MOV A,L
OOBA
         1 F
                                    RAR
00BB
         5 F
                                    MOV E,A
                           OUTD/A: MOV A, C
OOBC
         79
                                                       ; PUT RESULT IN A
OOBD
         3 C
                                    INR A
                                                       ;ADD ONE TO A
OOBE
                                     OUT D/A
         D304
                                                       ;LOAD PORT A-D/A
00C0
         3 E 0 0
                           CLEAR:
                                    MVI A,00
00C2
         D306
                                    OUT LEDS
                                                       ;LOAD PORT B-LEDS
00C4
         32051C
                                    STA PAUFLG
                                                       ;SET PAUSE FLAG TO 00
00C7
         C30600
                                    JMP START
```

OOCA	3E81	INIT:	MVI A,81	;LOAD MODE O &
0000	D307		OUT PPI	OUTPUT TO PPI-8255
OOCE	3E34		MVI A,34	;LOAD MODE 2 &
0 O D O	D30B		OUT ITO	;OUTPUT TO COUNTER 0-82 53
0 O D 2	3E74		MVI A,74	;LOAD MODE 2 &
00D4	D 3 O B		OUT IT1	OUTPUT TO COUNTER 1-8253
00D6	3 E B 4		MVI A, B4	;LOAD MODE 2 &
0 O D 8	D 3 O B		OUT IT2	;OUTPUT TO COUNTER 2-8253
OODA	3 E O O		MVI A, FF	;LOAD COUNTER O
OODC	D308		OUT ITO	;DIVIDE BY 2047
OODE	3E08		MVI A,07	•
OOEO	D308		OUT ITO	
00E2	3EE8		MVI A, E8	;LOAD COUNTER 1
00E4	D309		OUT IT1	;DIVIDE BY 1000
00E6	3E03		MVI A,03	40
00E8	D309		OUT IT1	;60 BPM CAL SIGNAL
OOEA	3E 4D		MVI A,4D	;LOAD COUNTER 2
OOEC	D30A		OUT IT2	;DIVIDE BY 333
OOEE	3E01		MVI A,01	.100 ppv dir 370vir
00F0	D3OA		OUT IT2	;180 BPM CAL SIGNAL
00F2	3EFF		MVI A, FF	;INITIALIZE MISBT REFERENCE
00F4 00F7	32001C 32011C		STA	;TO FFFF
OOFA	00		STA NOP	
OOFB	3E00		MVI A,00	
OOFD			STA	;INITIALIZE ECTOPIC
	32 03 1 C		STA	REFERENCE TO 0000
	32 04 1 C		STA	;SET ECTOPIC FLAG TO ZERO
0106	32 0 5 1 C		STA	;SET PAUSE FLAG TO ZERO
0109	C9		RET	, SET TROBE FERG TO ZERO
0103				
010A	DB06	INPUT:	IN PORTC	;CHECK IF SWITCH 1
010C	0602		MVI B,02	; WAS PUSHED
010E	A 0		ANA B	
010F	C29401		JNZ SETUP	; IF SO GOTO STEP
0112	DB06		IN PORT C	
	0601		MVI B,01	;CHECK FOR ECG OR
0116	A 0		A NA B	;CAL SIGNAL
0117	C 9		RET	
0118	C 5	HILO:	PUSH B,C	;THIS ROUTINE COMPARES
0119	47		MOV B,A	;H,L WITH D,E
0 1 1 A	E 5		PUSH H,L	
0 1 1 B	7A	•	MOV A,D	
011C	B3		ORA A	; IF H, L IS LESS
011D	CA3901		JZ HILO1	;THAN D, E THEN
0120	2 3		INX H,L	;CARRY IS SET O
0121	7C		MOV A, H	TR W I TO ORDINATE
0122	B5		ORA L	; IF H, L IS GREATER
0123	CA3901		JZ HILO1	;THAN OR EQUEL

0126 0127 0128 012A 012B 012C 012F 0130 0131 0132 0133 0134 0135 0136 0137 0138 0138 0138 0138	E1 D5 3EFF AA 57 3EFF AB 5F 13 7D 83 7C 8A D1 78 C1 C9 E1 78 C1	HILO1:	POP H, L PUSH D, E MVI A, FF XRA D MOV D, A MVI A, FF XRA E MOV E, A INX D, E MOV A, L ADD E MOV A, L ADD E MOV A, H ADC D POP D, E MOV A, B POP B, C RET POP H, L MOV A, B POP B, C STC RET	;TO D,E THEN CARRY ;IS SET 1
013E 0140 0142 0144 0146	3E00 D304 3E10 D306 C30600	ERR1:	MVI A,00 OUT D/A MVI A,10 OUT LEDS JMP START	;SET D/A TO ZERO ;AND TURN ON UNDER ;RANGE LED
0149 014B 014D 014F 0151	3E00 D304 3E20 D306 C30600	ERR2:	MVI A,00 OUT D/A MVI A,20 OUT LEDS JMP START	;SET D/A TO ZERO ;AND TURN ON OVER ;RANGE LED
0154 0155 0156 0157 0158 0159 015A 015B 015D 015F 0160	D5 EB 29 29 29 29 EB 0600 1E09 79	MULT:	PUSH D, E XCHG DA DH DA DH DA DH DA DH XCHG MVIB, 00 MVI E, 09 MOV A, C RAR	;THIS ROUTINE MULTIPLIES ;2 UNSIGNED 8 BIT ;NUMBERS AND ;PRODUCES AN ;UNSIGNED 16 BIT ;RESULT ;REGISTER D IS ;MULTIPLICAND ;REGISTER C IS
0161 0162	4 F 1 D		MOV C,A DCR E	;MULTIPLIER

0163	CA 7001		JZ DONE	REGISTER B IS
0166	78		MOV A, B	MSB RESULT
0167	D26B01		JNC MULTI	,
0 % 6A	82		ADD D	;REGISTER C IS
016B	1 F	MULT1:	RAR	LSB RESULT
016C	47	,	MOV B, A	,
	C35F01		JMP MULTO	
0170	60		MOV H, B	
0171	69		MOV L,C	
0172	D 1		POP D, E	
0173	G 9		RET	
0174	2A001C	MISCNT:	LHLD HR REF '	LOAD HR RE
0177	EB		XCHG	•
0178	CD1801		CALL HILO	
017B	D20045		JNC ECT	
017E	3 E F F		MVI A, FF	
0180	32 001 C		STA	
0183	32 011C		STA	
0186	31FFIC		LXI SP	
0189	C30600		JMP START	
018C	000000		NOP	
018F	000000		NOP	
0192	0000		NOP	
		8080 MICRO CARD	IOOTACHOMETER SO	FTWARE
		ZERO & FU	LL SCALE PROGRAM	

		ZERO & FI	JLL SCALE PROGRAM	
0194 0196	3E00 D304	STEP:	MVI A,00	;THIS ROUTINE
0198	CDD 501	T 1.	OUT D/A	;ALLOW ADJUSTMENT
019B	CA9801	L1:	CALL IN2 JZ L1	;OF THE D/A FOR ;ZERO AND FULL
019E	3EFF		MVI A, FF	SCALE OUTPUT
01A0	D304		OUT D/A	SCALE OUTFUL
01A0		T 0 .		
01A2		L2:	CALL IN2	
01A3		L3:	JNZ L2	
01AB		и э :		
	CDD801	7 / .	JZ L3	
		L4:	CALL IN2	
	C2AE01		JNZ L4	
0184	C39401		JMP STEP	
		R.A	MP PROGRAM	
0187	0300	RAMP:	MVI C,00	
01B9	7 9		MOV A, C	
0 1 BA	D304		OUT D/A	
01BC	CDDDO1	Tl:	CALL IN3	
01BF	1 B		DCX D,E	
0100	7A		MOV A,D	
01C1	FEOO		CPI A,00	
0103	C2 BC 01		JNZ T1	
0166	CDDD01	т2:	CALL IN3	

01C9 01CA 01CB 01CC 01CF 01D0 01D2	1 B 78 BA C2 C 6 O 1 79 D 3 O 4 C 3 B 7 O 1	DCX D, E MOV A, E CMP D JNZ T2 MOV A, C OUT D/A JMP RAMP
		SUBROUTINE FOR STEP & RAMP PROGRAMS
01D5 01D7 01D9 01DA	DB06 0604 A0 C2B701	IN2: IN PORTC MVI B,04 ANA B JNZ RAMP
01DD 01DF 01E1 91E2	DB 0 6 0 6 0 2 A 0 C 9	IN3: IN PORT C MVI B, O2 ANA B RET

APPENDIX C

8080 MICRO CARDIOTACHOMETER SOFTWARE

REAL-TIME HEART RATE PROGRAM EXECUTION TIMES

OPERATION	TIMES
START-UP NO SIGNAL IN	144.6 µs
DELAY TIMER ROUTINE	422.08 µs
EACH COUNT OF D,E REGISTER	584 .26 μs
UNDER RANGE LED & ZERO OUTPUT	21.98 µs
OVER RANGE LED & ZERO OUTPUT	21.98 μs
UNDER RANGE <30 BPM	2.307 sec.
OVER RANGE >300 BPM	187.07 ms
16 BIT DIVISION ROUTINE	1.74 ms
OUTPUT & CLEAR ROUTINE	23.94 µs
CALCULATE & DISPLAY TIME	1.77 ms
OPERATING SPEED RANGE	>187.07 ms to <2.307 sec.

APPENDIX D

WIRE WRAP LIST CPU-MEMORY

<u>+3VDC</u>	<u>-5VDC</u>	GND
C20 to +5 A1 to A2 to A3 to A4 to A6 to +5 A27 to A28 to +5 B10 to +5 B18 to +5 B36 to +5 D22 to +5 D32 to +5 J1 to +5 J16 to +5 J29 to +5 A23 to +5	A44 to J32 to J19 to C11 to 25 +12VDC 1 to 7 to A34 to B17 to E12 to J21 to J34 -12VDC 24 to 30 to A45	A17 to GND A25 to GND A42 to GND A46 to GND B5 to GND B44 to B45 to GND C2 to GND C13 to GND C30 to GND C40 to GND D25 to GND D35 to GND G14 to GND G27 to GND G40 to GND J22 to GND J22 to GND
		J35 to GND

WIRE WRAP LIST CPU-MEMORY

SIGNALS		DATA
B1 to A36 to A16 to 27 B2 to A37 to C14 B3 to B4 to 2 A5 to A11 to 3 B6 to A12 A15 to 26 A7 to A8 B7 to B11 B8 to B12 B24 to C15	27	DATA G13 to G24 to G37 to D29 to 23 (D0) J13 to G25 to G38 to D28 to 22 (D1) G11 to G26 to G39 to D27 to 21 (D2) G9 to J27 to J40 to D26 to 20 (D3) G5 to J26 to J39 to D39 to 43 (D4) J11 to J25 to J38 to D38 to 44 (D5) J9 to J24 to J37 to D37 to 45 (D6) G7 to J23 to J36 to D36 to 46 (D7) ADDR E16 to G23 to G36 to C25 to C35 to 19 (A0) E15 to G22 to G35 to C24 to C34 to 18 (A1)
A13 to E18 A10 to C12 to 40 A14 to C19 B16 to E19 C10 to J14 C9 to J12 C8 to G12 C7 to G10 C3 to G6 C4 to J10 C5 to J8 C6 to G8 E20 to G2 C17 to G4 C18 to G3 B34 to J6 J2 to 41 J4 to 42		ADDR E16 to G23 to G36 to C25 to C35 to 19 (A0) E15 to G22 to G35 to C24 to C34 to 18 (A1) E14 to G21 to G34 to C23 to C33 to 17 (A2) E12 to G20 to G33 to C22 to C32 to 40 (A3) E11 to G19 to G32 to D23 to D33 (A4) E10 to G18 to G31 to C26 to C37 (A5) E9 to G17 to G30 to C27 to C38 (A6) E8 to G16 to G29 to C28 to C39 (A7) E7 to J17 to J30 (A8) E6 to J18 to J31 (A9) C1 to A18 (A10) E1 to A20 (A12) E3 to A21 (A13) E2 to A22 (A14)
CONTROL-SIGNALS		
B19 to B27 to J20 B20 to B28 to J33 A24 to D30 to D40 D24 to D34 to J5 C30 to C40 to J3 J6 to B34	(<u>CSO</u>) (<u>CST</u>) (<u>CST</u>) (<u>MEMR</u>) (MEMW)	
J4 to 42 J2 to 41	(<u>RD</u>) (WR)	

WIRE WRAP LIST

INTERFACE BOARD

GROUND-BLK	+5VDC-RED	+12VDC-WHITE
AC14 to GND AA33 to GND AD22 to GND AH7 to GND AH15 to GND	AA6 to +5 AC22 to +5 AE15 to +5 AE9 to AF4 to +5 AJ1 to AJ9 to +5	AE1 to GA7 AG5 to B43 AE1 to AE5
-12VDC-GREEN		8255 & 8253 SIGNALS
AD4 to AD8 to AB50 to AF10 to GA30		GA40 to AH 3 to AC25 GA41 to AA16 to AC23 GA42 to AC16 to AC24 GA28 to AA15
8255 & 8253 SIGNALS		MILO 00 /MI/O
GA23 to AA14 to AA29 GA22 to AA13 to AA28 GA21 to AA12 to AA27 GA20 to AA11 to AA26 GA43 to AA10 to AA25 GA44 to AA9 to AA24 GA45 to AA8 to AA23 GA46 to AA7 to AA22 GA19 to AC12 to AC27 GA18 to AC13 to AC26 GA17 to AH1 AH2 to AC15		DEBOUNCE SWITCHES GB23 to AH5 to AJ7 GB46 to AJ6 to AH6 to AC6 GB22 to AJ3 to AJ4 GB45 to AJ2 to AJJ to AC5 LEDS 2 & 3 LED2 under LED3 over
ECG LED AH13 to BA16		
AH14 to BC7		
UNDER LED		
AC8 to AH9 AH10 to BC5 BD5 to 5B44 (LED2 out)		
OVER LED		

AC9 to AH11 AH12 to BC6 BD6 to GB20 (LED3 out)

WIRE WRAP LIST INTERFACE GROUP

FILTER CIRCUIT

TILLER GIRGOTT	
SIGNAL GND AG30 to GND AE27 to GND AG34 to GND AD30 to GND AF33 to GND AD37 to GND	PULSE DETECTOR GNDS AJ17 to GND AJ24 to AJ26 to GND AJ21 to GND
SIGNALS	AJ32 to GND
AD24 to AD25 to AG29 AD26 to AD27 to AF28 AF29 to AD28	AH37 to GND AJ41 to GND AH37 to GND
AE28 to AE29 to AE31 to AG32	+12VDC
AD29 to AD33 to AG33	
AE33 to AE34 to AE30 to AD31 AD34 to AD35	AG19 to AG23 to AG27 to AG31 to AG38
AE35 to AE36 to AE38 to AF31	-12VDC
AD36 to AD37 to AF32	AF22 to AF26 to AF30 to AF34 to AH39
AD38 to AE39 to AE37	711 22 00 711 20 00 711 00 00 711 0 F 00 711 00 F
INPUT	SIGNALS
Bouleansen	AJ18 to AJ19 to AG21
AD40	AH19 to AH21 to AH22
OUTPUT	AH2O to AG22 AJ2O to AD47
001101	AD50 to AB43
AE25 to AF27	AJ22 to AF19
OUTDUTO	AH24 to AH27 to AH28 to AF20
<u>OUTPUT2</u>	AH26 to AH35 to AH36 to AF21 to AF25 AJ28 to AH29 to AG25
AE24 to AG28	AJ29 to AG24
DIN OF DETERMINE	
PULSE DETECTOR	LSI-11 INTERFACE
SIGNALS	GNDS
AH32 to AH33 to AG26	BB4 to GND
AJ36 to AJ37 to AJ38 to AF24 AF23 to AJ31	BB8 to GND
AH30 to AH31	BA17 to BB11 to GND BA12 to GND
AJ30 to AJ27 to AJ44	DATZ TO GNU
AH44 to AH28	
AH45 to AJ39 AH40 to AH41	
AJ40 to AJ39	•
The second second	

WIRE WRAP LIST INTERFACE BOARD

D/A_	SIGNAL GND	SIGNAL
AC17 to AE10 AC18 to AE11 AC19 to AE12 AC20 to AE13 AA20 to AD13 AA19 to AD12 AA18 to AD11 AA17 to AD10	AG4 to GND AG7 to AG8 to AG4 AD6 to AD7 to AD3 to GND AG1 to AG4	AF1 to AF2 to AF3 to AD2 to AD9 to AC43 AD1 to AG3 to AC50 to GB18 AE8 to AG6 AG10 to AE6 AG2 to AA47 AF6 to AF5 to AF8 AF7 to AE7
AGC CIRCUIT +12VDC		
AD43 to AE43 AF38 to AF34 AG35 to AG31 AD50 to AE50		CIRCUIT AG40 to AG41 to AG42 to AF36 AF41 to AF43 to AG46 AG44 to AF37 AG43 to BB44 to AF35 AF45 to AF47
SIGNAL GND		BA44 to BA45 BB45 to BB46
AF44 to GND AG46 to GND BB47 to BB48 to GND BB50 to GND)	BA46 to BA47 to BA48 to AG38 BA49 to BA50 to AG37 BB49 to AG36 to AG45
pppo to and		<u>OUTPUT</u>
		BB44 to AJ35
		INPUT

AF27 to AF40

<u>INPUTS</u>

AJ33 to AJ35

OUTPUTS

AH17 to AH18 to AG20 to BA15

LSI-11 INTERFACE

+5VDC

BB1 to +5 BB5 to +5 BB10 to +5 BD3 to BD4 to +5

SIGNALS

BD1 to BD2 to GB42 BA3 to GB43 (CSRO) BA7 to GB19 (CSR1) BC1 to BA2 BC2 to BA6 BB3'to BC3 to BB12 BB7 to BC4 to BA11

INPUTS

AG20 to BA15 (ECG) AE18 to BA14 (LOW CAL). AD19 to BA13 (HIGH CAL)

OUTPUTS

BA16 to AC7

WIRE WRAP LIST INTERFACE BOARD

CALIBRATION CIRCUIT

+5VDC

AA32 to +5 AC32 to +5 AC30 to +5 AE15 to +5 AD16 to AD17 to +5 AE19 to AE20 to +5 AF11 to AF13 to +5

GNDS

AD22 to GND

SIGNALS

GA26 to AA30 AA31 to AC28 to AC31 AC29 to AE22 AC33 to AD15 AG11 to AG12 to AE16 AG13 to AG14 to AD21 AF12 to AE17 AF14 to AD20

OUTPUTS

AE18 to BA14 (LOW CAL) AD19 to BA13 (HIGH CAL)

APPENDIX E

N

· FULDOUT FRAME

1458

(1) PULSE DETECT OUT

(3) PULSE PETECT IN

(4) FILTER IM

(5) AGC

TUO A/Q (2)

TECHNOLOGY INCORPORATED LIFE SCIENCES DIVISION HOUSTON, TEXAS 77058

	973079 973079	TITLE 8080A-BASED CARDIOTACHOMETER
J.A. DONALDSON	/1-14-79	COMPONENT LAYOUT
PROT. ENG. W. G. CROSIER		DWG. NO. MPCT-2009-L
		SHEET I OF Z

BOLDOUT, PRANT

 η_{ϕ}

FOLDOWN PRIME

2

TECHNOLOGY INCORPORATED LIFE SCIENCES DIVISION HOUSTON TEXAS TIOSS

**			
M. H. UTLEY	97879 97879	TITLE 8080 A - BASED CARDIOTACHOMETER	
J.A. DONALDSON	11-14-79	COMPONENT LAYOUT -IMTERTING BOILED	
PROSE ENG. W. G. CROSIER	11-14-79	PWG, NO, MPCT-2009-L	
		SHEET 2 OF Z	

 χ^{γ_2}

ORIGINAL PARK IS OF Wald

POLDOUT PRAME

NOTESS(1) DESHED LINES INDICATE LOCATIONS FOR IC'S TO BE ADDED LATER FOR FUTURE EXPANSION I'M MECESSARY.

TECHNOLOGY INCORPORATED LIFE SCIENCES DIVISION BEOFF EAXBT, NOTEUOH

drawn by M.H.UTLEY	10-17.79	BOBOA - BASED CARDIOTACHOMETER
JA. DONALDSON	11-14-79	TUDYAL THENDEMOS
PRUS. ENG W.G. CROSIER	11-14-79	WEC1-5011-F
		SHEET

COMP 1

COMPZ

AMANA TUOULUR

 k_{ij}

COMP 3

FOLDOUT FRAME

APPENDIX F

FOLDOUT FRAME

14.10

FOLDOW FRAME

. ^?: . **`**.

ATTEN Y

 $N_{d'}$

SHEET

1 OF 1

MOTABLE ABYMA

1/01

72

CONTRUL		74/53
53	5\	のウィアント
Ç	0	用いよ
l	. 0	JAS OJ
0	\	HI CAL
\	\ \	STAND BY

ROLDOUT FRAME

TECHNOLOGY INCORPORNTED LIFE SCIENCES DIVISION HOUSTON, TEXAS 77058

DRAWN BY		DATE	エバエアを
M.H.OTLE		10-12नव	BOBO A - BASED CARDIOTACHOMETER
DESIGN EV	100,		COMPUTER CONTROL &
J.A. DONALD	SON	1/-/4-79	IMPUT MULTIPLEXER
PROJ. ENG	5		DMG. NO.
W. G. CROSI	ER	11-14-79	MPCT-2005-5
		<u> </u>	SHEET
			1041

1,34

UNDER PC4

CYTR FCS

ECG/CAL OPCO

SYSTEM CALIBRATE 1 & Z.
IM PUT & DEGOUNCE

red

POTOOUT FRANCE

 C_{i}

1404 18012 0 LED 1

D OUTPUT DRIVERS

COLDONE PRAME

9

W	HODS.	CETHROPRODULL YOURS OF THE SOLUTION OF THE SOL
DRAWN BY M.H. UTLE	DATE 10-13-79	TITLE BOBOA - BASED CRRTOTACHOMETER
J.A. DONALOS	1 :	CAL. I FZ, INPUTE OF BOUNCE AND LED OUTPUT DRIVERS
W. G. (ROSIE)	R 11-14-79	MPCT-2007-5
		1 OF 1

EXTERNAL VIEW

	31 ONTRO (MALE		ट र १३)	./0 ./0
o ³	0 ²	ø\	o³	اه
,lo	్రాప్	ø.	ما •	•
Φ.	• ⁸	•1	•4	• 1
				

- (1) 5PMG
- (Z) 348 1393
- (3) SPNRE
- (A) 614D
- (5) SHINE
- (6) CPARE
- 17) IMI (636 0)
- (i sei) SM1 (8)
- (9) 45 VIN

- (1) SENR
- (な)さわから
- WA 32 (E)
- (A)RESE
- (E) was
- (いうしほり)
- CMO (T)
- Pas
- (B) LED
- (A) LED

WILDOUT FRAME

COMNECTOR

10

MALE

0,5 C 1

•5 •4

•B •¹

NRE

PARE

PARE

FRET

PINRE

ED 3 (OVER RANGE)

ND

(JA2/1027) 1 (TE

ED Z. (UNDER RANGE)

SOLDOUT FRAME

2

TECHNOLOGY INCORPORATED
LIFE SCIENCES DIVISION
HOUSTON, TEXAS TIOSS

4,000		
DRAWN BY	DMTE	14/4 1 m 12
M. H. UTLEY	9-2479	DB3AB-A0808
DESIGN ENG.		CARDIOTACHOPNETER
J.A. DONALDSON	17-14-79	COMTROL-I O CONNECTOR
PROJ, ENG.		BMG. HO.
		W661-5008-1
		SHERT
		1 06 1
	1	9.

54

4.

* SEE NOTE *1

MOTES & (1) FOR FUTURE EXPANSION.

FOLDOUT FRAME

TECHNOLOGY INCORPORATED

LIFE SCIENCES DIVISION

HOUSTON, TEXAS 77058

DRAWN BY	DATE	TITUE
M.H. UTLEY	10-1079	BOSOA -BASED
DESIGN ENG.		CARDIOTACHOMETER
J.A. DONALDSON		
PROT. ENG.		DING, NO.
· · · · · · · · · · · · · · · · · · ·	!1-14-79	MPCT-2010-5
		SHEET
		2 073

A700 A500 A300 A200 A200 A000 1/0 \ ŧ, 16 B.W P हरू GND CS, 8 81 AI H/07 HAS H/07 AA H/03 AA H/04 AA H/04 AD Z///-/ CS7 O MEM RWO 16 RW 9 MEM ROO 20 GND . CSI

Sh

FOLIDOUS PRASS

TECHNOLOGY INCORPORATED
LIFE SCIENCES DIVISION
HOUSTON, TEXAS TTOSE

1			
DRAWN BY	DATE	TITLE	
M.H.UTLEY	PFOI-OI	8080 A-BASED	
DESIGN ENG.		CARDIOTACHOMETER	
J.A. DONALDSON	11-14-79	CPU	
PROJ. ENG.		DWG. NO.	
W.G. CROSIER	11-14-79	MPCT-2010-5	
		SHRET 3 OF 3	

FOLDOUT FRAME

4

FOLDOUT FRAME

TECHNOLOGY INCORPORATED
LIFE SCIENCES DIVISION
HOUSTON, TEXAS 77058

		· · · · · · · · · · · · · · · · · · ·
DRAWN BY	DULE	TITLE
アルノナン、エ・ア	10-13-79	8080 A - BASED .
DESIGN ENG.		CARDIOTACHOMETER
J. A. DONALDSON	11-14-79	POWER SUPPLY
PROZ, ENG		DMG NO.
W G. CROSIER	11-14-79	MPCT-2012-5
, V		SHEET
		1051

APPENDIX G

APPENDIX G SAMPLE OUTPUT

ü