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ABSTRACT

Natural radio emissions from pulsating radio sources (pulsars) have

been detect_,d ;it Goldstone on a regular basis since 1968. Scientific

analysis of these signals has stimulated ideas of traversing the inter-

planetary medium and beyond, to the "home" of comets, using these natural

beacons as navigation aids. Therefore, the techniques used in the ground-

based ob.qerv:ttit,ns of pulsars are described here in the required detail,

many of !llem bt, ing directly applicable in a navigation scheme. The

arrival times ,,f '.he pulses intercepting Earth are measured at time

intervals w_rying frem a few days to a few months. Low-noise, ,_ide-band

receivers, unique to the stations of NASA's Deep Space Network, amplify

signals intercepted by the 26-m, and 34-m, and 64-m antennas at Goldstone

and in Spain. Digital recordings of total received signal power versus

time are cro._s correlated with the appropriate pulse template, thereby

providing an estimate of the pulse arrival, time relative to the station

clock. Corrections are applied to the station clock to obtain arrival

times relative to ephemeris time. Drifts in phase encountered during

signal integration are removed. The arrival times are then referred to

the barycenter of the solar system for scientific studies, and to the

geocenter for export to other investigators.
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SECTION I

INTRODUCTION

Natural sources of pulsating radiation were first observed in 1967

(Refs. 1, 2) by radio astronomers at Cambridge University in England.

These pulsating radio sources (pulsars) are exciting because they (1)

are thought to represent a stage in stellar evolution known as neutron

stars (Ref. 3), providing a probe of an extremely dense state of matter;

(2) exhibit changing, often dramatically so, behavior in the pulse per-

iod, signifying changes in the spin rate of the neutron star driving

the pulse generating mechanism; and (3) have large space velocities,

implying violent origins.

A series of measurements is being established using the NASA--

JPL Deep Space Network (DSN) which will allow a probing of tile neutron

star interior and a direct measurement of changes in spin r;_te and

angular motion. The purpose of the measurements is to measure the phase

of the pulse train at known epochs. It requires little imagination to

realize that the simultaneous comparison of the phase of a pulse train

at two different DSN stations represents either a measurement of the

difference between the station clocks, or a measurement of the location

of one station relative to the other. In navigation, one assumes the

clocks are synchronized. Differences in pulse phase are then attributed

to differences in location. We need only to replace one DSN station

with a spacecraft to complete the Illustration.

The purpose of this report is to describe in appropriate detail

the tm,hniques timed currently in the DSN for measuring the arrival time

I
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of a particular pt,l_e (alternatively, the phase of the pulse train

relative to a given epoch). Phase measurements were begun in September

1968 and continue to the present. The 24 pulsars included in this series

are listed in Table i with appropriate dates on _,.ich measurements began.

_n example of the results of this long series of measurements is presented

in Table 7.

Marly characteristics of the pulsars have been or can be deduced

from the measurement of pulse phase at a series of epochs if the epochs

occur often enough (weekly to monthly _,and eve[ a sufficient time span

(years). Usually a parameterized model of the pulsar is constructed

which is used to predict tne time-of-arrival of a given pulse (or the

phase of tile pulse train at a given epoch). The parameters are then

adjusted to minimize the mean square difference between the predictions

and the meas oments. The final wllues of the model parameters are

dependent on the planetary ephemeris used in the data renu,'timl, since

all observations are usually referred to the barycenter of the solar

system. The importance of this is clear when one realizes that 2 milli-

seconds flight time in the displacement of the barycenter amounts to as

much as 1 arc-secmld displacement in the position of the pulsar. E_rors

in the knowledge of the harycenter with time scales of tens of yoars

are caused by inaccur,,cies in the w_lues of the masses of the t,uter

planets. These slow curvil inear errors affect the wilues ,_f the higher-

order derivatives of the pulse period, ltence, though all current

, ephemerides may prt_ducv similar puls:ll model param_ toys, improved

ephenwridcs dvai iat_le twenty vcars fr_m_ m,w will produce significantly

different results. Tables of geocentric arriwll times, being important

2
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Table t. 24 Pulsars Monitored at JPL at Frequencies
of 2295 blHzand 2388 MHz

Entry Pulsar Start Date

I 0031-07 5 Mar 1970

2 0329+54 5 Sep 1968

3 0355+54 5 May 1973

4 0525+21 I Jun 1969

5 0628-28 30 Dec 1969

6 0736-40 I Oct 1970

7 0823+26 12 Feb 1969

8 0833-45 22 Nov 1968

9 0950+08 5 Sep 1968

I0 1133+16 25 Oct 1968

Ii 1237+25 I0 Aug 1969

12 1604-00 1 Oct 1970

13 1642-03 12 Ju] 1969

14 1706-16 I Oct 1970

15 1749-28 2 May 1969

16 1818-04 29 Dec 1969

17 1911-04 5 Mar 1970

),

18 1929+10 29 dun 1969 '

19 1933+16 23 Dec 1968

,'() 2016428 5 Sep 1968

?) 20214-51 30 Dec" 1969

.'.' 2045-16 ]0 Dec 1968

.!_ '?111+!_, 30 Dec 1969

24 2217+./)) 30 Dec 1969

3
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archiw,_ of pulsar t>ehavi<_r, _lre indepe,ldenL of sm:l]l c'h:ln,;u,: _1 LI_.

ephemerides of Lhe pl;uneL_. They form the exported fc_rm of tht: _bsur-

vaL ional results.

The measurements were performed earlier at a frequency of 2388 MHz

on the 26-m antenna at Deep Space Station 13 (DSS 13) and the 64-m

antenna at DSS 14. Current observations are at 2295 MHz, utilizing all

facilities at Goldstone and in Spain. Detected pulsar signals are

sampled, integrated and recorded on magnetic tape. Data collection and

recording is discussed in Section II. The data are then edited and, for

the early years, collated according to the pulsar, as described in Sec-

tion III. The collated data, stored on magnetic tapes, was used to

derive a template for each pulsar, representing the average power level

across a pulse t_f radiation. The template is then cross correlated with

each data record of the particular pulsar to obtain an estimate of the

pulse arrivat time. The procedures used in constructing the templaLes

is described in Section IV and the cross correlation process is dis-

cussed in Section V. The correction of the arrival time cotimates for

various small effects is discussed in Section VI. A sample list of

geocentric times-of-arrival is presented in Section'VII.

4
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SECTION Il

DATA COLLECTION

A. RECEIVING, DETECTION, AND RECORDING

It was shown shortly after the discovery of pulsars that they could i

be detected at 2295 MHz (Ref. 4). Shortly thereafter, in August 1968,

JPL observations at 2388 MHz were b- ;unusing the 26-m antenna of DSS 13

at the Goldstone complex. 't_e_Ide bandwldths (about 12 MHz) and the 't

_, _ low system temperatures (about 16 K) aJlowed detection of three of the , _

first four pulsars discovered Over the following months the observa- ;

: _ tlons have been expanded to include 24 objects, utilizing all antennas ?

_ at Goldstone and Madrid. ?

: il T._ereceiver consists of the antenna, a right circularly polarized

! feed horn (left circularly polarized at 2388 MHz), a;_da maser pre- _

amplifier followed by conversion to and amplification at intermediate

; frequencl_, (IF). Low-loss cabling then carries the signal to the

i receiver room for more IF amplification. The receiver bandwidth is \

limited to 12 MHz by either the IF portion of the receiver or by a _
g e

i "filter inserted for that purpose. Square-law detection of the signal }

_, is then performed, followed by low-pass filtering. The_ovtput of the

low-pass filter is amplified by a wldeband DC amplifler to a I- to °

i 2-volt level. Subsequently, the signal is converted to digital form _i_

_' ! in a sampling process. The integration time (see Ref. 5 for a deflnl- .

_; } tlon) of the post-detectlon fllter is chosen to match the time Interval }

g i between analog-to-digltal (A/D) conversions. '

{ _,e data processing, from sampling to the dumping onto magnetic ,

tape, is u-_cr computer control. The detected signal is sampled at a

5

a?
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rate equal to 5000 times the apparent pulse period, _:orresponding to

sample intervals of 50 _sec up to _00 _sec. Converted to a digital sig-

nal by an A/D converter, the samples are stored in the memory of an

SDS 930 computer or a standard station Modcomp computer. Data samples

are superimposed modulo the pulse period. Samples from 500 pulse periods

are superimposed congruently. Then a 5000-word _rray re_resenting the

superposition of 500 pulses is dtunped onto tape. This accumulation of

pulses continues until (a) detection is ensured, or(b} it is clear _the _

: pulses are too weak at this time to be observed. Accumulations rarel-y.
l

run more than one hour.

The form of the recorded data is sketched in Figure 1. The pulse

is sitting on top of a system noise power corresponding to a temperature Ii

The peak equivalent temperature of the pulse is Tp. The 5000 i_Ts•
!

samples spanning one pulse period are ulotted from left to right. The
i

time of the first data sample, plotted at the left, corresponds to a ,i

particular epoch of Universal Time _UT) as recorded _ the station. I

This start time is recorded in UT (station). The train of received

pulses then has a particular phase relative to the start time. The

pulse train is folded in upon itself to beat down the effects of receiver !

noise fluctuations. Rather _han think in terms of the phase of the

< pulse train, we ask for _he arrival time of the first pulse after the

%
s_art time. Hence, the pulse delay is added to the UT (station)epoch

Lf

_' corresponding co the start time to yield _n epoch for the arrival time

_: of the pulse.

The phase of the pulse train may not remain constant during the

supr -positlon of many pulses. The subsequent drift in phase requires

that a correction be applied to the measured pulse delay. This

%

6
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, correction is discussed in Section V[, D. Small corrections are required i _"

_ in the start time and in tlleUT (station) defined by a particular clock, i )These corrections are discusspd in this section and in Section VI.

B. THE S'..,tEM,IONFIrdRATION CODES _

The measurement system is shown diagrammatically in Figure 2. The

experimental hardware is grouped into units defined by the dashed boxes, i _

%

Each subsystem so defined has been interchanged with other similar sub-

systems, causing significant changes in the measured phases. Hence, a i :"

" system configuration code has been constructed to alert the analyst to - ¢

" changes in the system. The code varies from 0 to 21, representing 22

' significantly distinct combinations of antenna, receiver, observing 4

frequency, computer, data collection controller, and station clock. A ;_

summary of the basic- configurations (0-5) and (17-21) appears in :_

,/

Table _ Additional configuration codes (6-16) were created to denote

the use of an observing frequency of 2295 MHz or 2328 Mllz, and their :

relationship to the basic codes are shown in Table 3. Left circular i ,
! /

polarization (LCP) is to be assumed unless specified as right circular

polarization (RCP).

Since the system configurations do not change in principle 'i :

from one to the other, only configuration 0 is described in detail.

_, Highlights of the other configurations are noted in the following para- _ _'

graphs. Configuration 0 Includes the 26-m antenna at DSS 13. The radio _{ _.

: frequency bandpass is determined by the IF amplifiers. The final IF _ ,

:" amplification, detection, and low-pass filtering is done by a receiver _ =

(labeled as receiver i) built in 1968 by C. F. Foster. The timing con- } _"

trol box was designed by G. A. Morr_ and is labeled timer 1. i _'

"" 8

• _
2

............. S
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_p_ _ :_ ....: __r'_ "__-'__<_'_'___

i
\

Table 3. The Configuration Codes Corresponding ,.
to Non-Standard Observing Frequencies

Observing
Conflguraclon, Configuration Frequency (_z) Description :,

8 } 0 2328 _9 2295

10 } 1, 2, 3 2328 _:Ii 2295
e

87 } 4 22952328 - _i

6 5 2295
Denotes a correction w,s made to

• 12 Any standard post-detectlon Af_ _r

13 4 2295 RCP

14 5 2295 RCP

15 5 2295 DSS 13 via link to
DSS 14 ::

16 5 2295 DSS 12 via link to

DSS 14 _

The relationship between the epoch-defining 1-second pulse and ,..

Universal Time as disseminated at the station, UT (station), is shown

; in Figure 3 along with the relationships for the other codes. Exact

_ relations between UT (station) and Coordinated Universal Time (UTC) is i
_ :

#_i_- discussed in Section VI. Data sampling in configuration codes less -_

_i_1 than 17 is performed by a 12-bit A/D converter with a 40 _sec con- ;
_ I version time. The samples are stored in an SDS 930 computer having a

16,384-word memory. The station telemetry processor assembly (TPA) :

is used in codes 17 or larger.

_ ,

t
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The final IF amplification and detection is performed in the steps

shown in Figure 2. The first unit buiit was transported between DSS 13

and DSS 14 unttI 10 Jan. 1974, when it was permanently installed at

DSS 14. This unit was replaced at DSS 13 by a programmable unit butit

by C. F. Foster (described in Ref. 6 and labeled receiver 2). This
' ?

change is not noted by a configuration code change. Hence, code 0 con-

sists of an early phase (pre-lO Jan. 1974, Julian date 2442057.5) and

: a late phase (post-lO Jan. 1974). s

The timing control box used here is not described elsewhere, so= #

a block diagram is presented here for tutorial purposes. Other control #

boxes used in other configurations operate on the same principle, but,

differ in complexity and detail. Careful study of Figure 4 shows that

a string of fast and slow pJlses are generated by the timing control

box to control the data sampling. The pulses are derived by counting ?

i

down pulses from a frequency synthesizer, starting at a well-defined

time by gating the synthesizer output. The gate must be armed and then

a 1-see pulse must be received before counting begins. To assist the

operator in determining on which second the counting started, the 1-sec

pulses are counted down by 10 so that counting wiI1 start modulo 10

seconds. •

; The fast pulses, occurring every P /5000 seconds, where P is the ha a

apparent pulse period, are used to strobe the A/D converter. The slower

_ pul_c_, occurring every P seconds, are used to control the data transfer

into core memory. On the first slow pulse, a computer interrupt is

coincident with the slow pulse commands the A/D converter to begin

operation. About 20 t_sec later the end-of-convertlon (EOC) interrupt _

force_ the computer to accept the new word, and about 20 _sec after ,;

,\

-?

1980024809-021



1980024809-022



, interruption, the word has been added to the proper memory location.

[ Note that although it takes time to set up the Computer to accept data,

; i}[

the EOC pulse arrives after the setup, so the first sample accepted is, ;

< Jn fact, coincident in time with the l-sec pulse modulo one pulse period. +t

However, a configuration exists in which the first sample is not coinci- ,:

dent, and a correction must be applied. ,_

The data sampllng and superpositlon is under the control of a
z

program written by G. A; Morris. The program also controlled the writ-

ing of the results onto magnetic tape for further reduction.

The apparent p_riod P is the result of the I_pplez effect causeda _

?

by Earth's motion about the barycenter of the solar system. Tables of

P are computed using a barycentric ephemeris of Earth and a crude but
a

+ adequate model of the pulsar. The model includes the ceIestial

coordinates of the object as well as the barycentrtc model of the pulse ,+

period (usually a period P0 at some epoch to, and the first derivative _

"i The values of P are tabulated at 15-mlnute intervals between rise

i and set for any given day. The operator then chooses the value cor- }+

responding to the middle of the intended interval of pulse integration. -_

Configuration i consists o_ the 64-m antenna at DS$ 14, the same

IF amplification and detection unit, and the same timing bpx.used in }

the early configuration O. A 12-MHz IF _ilter is added to the chain to )

:; limit the IF bandwidth. The computer is again the SDS 930_ The A/_ :)

_ - _ converter, howeveri responds within 5 _sec of being strobed wlth a

_ _ convert command. _k_computer, requiring about 20 _sec to arm the +

•+ _ interrupt and start the data flow, misses the first data sample. The

• _

i data stream is then shifted Pa/5000 seconds later in time. Thls shift +: +

Is as large as 0.8 msec and is added to the UT (station) recorded by

J +
the operator. + '_

l 7
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i_ Timer i was designed to accept the rising edge of a positive l-sec

pulse as the definition of UT (station). The l-set pulse distributed

at DSS 14 is negative-going, the rising edge being coincident with UT!

(station). The necessary pulse inversion then causes the timing box

to begin counting earlier than intended by a time equal to the width of •

the l-set pulse. This amounts to i00 _sec in configuration 1 and

200 _sec in configurations 3 and 5.

A programmable timing box, designed, built, and programmed by

A. G. Slekys (Ref. 7) replaced _he original timing box at DSS 14. This

timer is labeled timer 2, and pertains to codes 2 and 3. A failure

occurred in timer 2 which caused the start times of code 3 recorded

between Julian dates 2442460.5 and 2443105.5 (17 Feb. 1975 and

y

23 Nov. 1976) to be earlier than intended. The correction is a sub-

traction of nearly I second. The exact correction was determined from

a preliminary fit of a model of the pulsar emission times to the data.

A correction of -0.996550 Seconds to the start time aligned the affeLted

arrival times with the times measured at DSS 13 (code 0 and 4) and with

those unaffected from'DSS 14.

Timer 1 was replaced at DSS 13 on I April 1975 by a programmable

data collector/tlmer designed by S. S. Brokl (Ref. 8) and programmed by

K. I. Noyd. This timer is iabeled timer 3, and pertains to conflgura- i

_ tion code 4.

_ Occasionally a non-standard value is used for Af_ in the post-

detection filtering. If a correction is applied, the configuration code

is 12, corresponding to a correction to code 0 for dates prior to 1970

and to code 5 after 1976. (None occur in the intervening years.)
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During the first half of 1979, the SDS 930 computer was phased out

of service and removed in June 1979. This created thg need to transmit

IF signals over the microwave comuntcation links to DSS 14 for data

recor21ng. The required 12 MHz bandwidth was obtained from the 6 MHz ,_

bandwidth of the link by folding the IF spectrum about the midpoint _

during base-bandlng. This technique was also used in obtaining signals

_ from DSS 12. The configuration codes 15 and 16, then, indicate the = _
i 4-

recording at DSS 14 of signals from DSS 13 _d_DSS_I2 ,,resp_ti_eiy_ i:_i_'i'(°i:il;/_:--_:

the use of the telemetry processor assembly (TP_)found in:_ll:D_:: ......-_=-'"=7,_:_}_[_o-5_'_-_JL_;:;_,_

stations except DSS 13. The scheme was constructed, by J2 and M. Urech"S_' _7(!_<2:2.= ,_'Li;:;:i_-

at DSS 62. Many of the hardware functions of Figure 2-are-duplicate_i -........'-_:_2_::__:'':_"_;W,_t_:'_'_

i by their software. The data output is still in the form of 5000-word _w:_= ' ._-:e_

records on magnetic tape. The configuration cod- _.°fthis-scheme for _,.:_;,_• ,- ,/{
.J

? each station is listed in Table 2. ,
% , j;.

C. EFFECTS OF RECEIVER PARAMETERS ON :THE ARRIVAL TIN ...... - - q

Pulsar slgnals are dispersive since the interstellar plasma :Intrb- I, ,_i-

duces a frequency-dependent group velocity. A broadband pulsem. CoV_ing _. _ r:'_

the radio spectrum from 30 HHz to i0 GHz, will arrive at the rece_vlng ' : _!-

antenna and sweep through the receiver paasband at a ra_e given by

S KF3/DM (MHz/sec) (I) "' _ lib

At _

:_ where the bandwidth B is in MH_, the observin_ frequency T Is In MH_. _5
r,_

, _t is in seconds, DN is the dispersion measure in parsecs (pc) c_ "3, -_

and K = 1.205043 x i0"4. Let Eq. (i) define the amount of smear /_t in _ .,_

,I the received pulse shape when all the other parameters are known. At '_
I ;

F = 2388 Mllz, a dispersion measure of I0 pc cm causes th,_. pulse to
4

, _

1980024809-025



smear 75 psec when the receiver passband is 12-MHz wide. The smear is

750 _sec when the dispersion measure is I00.

Computed values of smear are presented in Table 4. As long as the

bandpass parameters remain fixed over the years, the dispersive effect
0

should not affect the measured arrival times. However, changes in a

filter element or the slight alteration in the tuning of the maser

_ amplifier will change the frequency centroid of the passband. This, in

turn, will change the time centroid of the detected pulse. The mag-

nitude of this effect must be determined experimentally and has not

i been done. The effect is expected to be small since it is not the

i limits of the passband that change, but on]y the shape

i The response of the post-detection filter is chosen such that the ]ii integration time z is close to the time interval Pa/5000. In the case

of these simple RC filters, _ = 2RC (Ref. 5), where R and C are the

filter resistance and capacitance, respectively. Considerable care is I;
i i _

I exercised in using the appropriate filter combination for each pulsar I_

throughout the observations. Use of non-standard values of T could cause

up to 200 usec of time shift in the arrival time. The values are listed

: in Table 4. Note that the change from pre-lO Jan. 1974 (Code O) to !
I

post-lO Jan. 1974 (Code O) is principally a change in the post-detection !

filters, and much care was taken to duplicate the previous values of _ ,_

_ in the new filters.

_. A quantitative measure of the system perform.nee is given by the

_a _ ratio of o, the root-mean-square (rms) value of the noise fluctuations

about the mean, divided by _, the mean. Letting N represent the : _

;
number of pulses superimposed,

C

} _L
g

18
4
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Table 4. Pulse Smearing Due to Dispersion

and Post-Detectlon Fi]terlng

Dispersion Smear for Integration
Measure* B ffi12 HHz Time

Pulsar (pc cm-3) (_sec) (_sec)

PSR 0031-07 10.89 79 200

0329+54 26.776 195 50

0355+54 57.03 416 50 _
0525+21 50. 955 372 400 4.

0628-28 34.36 251 200

0736-40 161.0 1174 100

0823+26 19.4634 142 400 _:

0833-45 69.08 504 50 •

0950+08 2.969 22 50

1133+16 4.8479 35 50

1237+25 9.296 68 200

1604-00 I0.72 78 i00

1642-03 35.71 261 i00
J

1706-16 24.88 182 150

1749-28 50.88 371 400

1818-04 84.38 616 150

1911-04 89.43 653 150

1929+10 3.176 23 50

1933+16 158.53 1157 50

2016+28 14.176 103 50

2021+51 22.580 165 I00
%

: 2045-16 11.51 84 200

_ 2111+46 141.50 1033 200

!:_ 2217+47 43.54 3]8 i00,!

*Values From Ref. 22

19
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I

One expects for N = 500, _ = 50 _sec and B = 12 _Iz, Lhat o/_ _ 0.OUiS.

Throughout the years of data collection this parameter has varied between

0.0013 and 0.0025, corresponding to 42 psec < T < 59 _sec. Hence, the

values of integration time listed in Table 2 were stable to within

16 percent of the tabulated value.

2O
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SECTION III

EDITING AND COLLATING

A. EDITING THE DATA

Successfully measuring the time-of-arrival of a pulse near a

given epoch does not ensure that the result is free of biases. The

editing process involves detecting the biases, correcting tilemeasure-

ment if the reason for the bias is known, or omitting the measurement

if the reason for the bias is known but does not allow correction. A

good example of a correctable situation is the use of a receiver fre-

quency other than the 2388 MHz frequency used in most of the measurements.

A preliminary model (positiop and pulse period) is devised for

each pulsar. These models are used in a computer program of adequate

accuracy to predict pulse arrival times at the barycenter of the solar

system. A barycentric ephemeris of the Earth is used to refer tlle

measured arrival times to the barycenter and a residual (measured minus

predicted) arrival time is computed. The occurrence of a residual that

is large compared to the average fluctuation is cause for further

investigation.

Several properties of the pulsar or the system are directly

responsible for the need to correct or omit the arrival time Measure-

ment. They are :

(1) Scintillations

Interstellar clouds of ionized hydrogen impose varlat.ions

on the received pulse power. The t_nle scale uf the fluc-

tuations is on the order of tens of minutes. If the pulsar

is far enough away, and several are, large fluctuations in

the pulse power force tho signal tlo_ into tile receiver

1980024809-029



noise for many minutes, causing a simrious estimaLe of thL

pulse arrival time,

(2) Start Times

The early timing box divides the incoming l-see pulse by

I0 (see Fig. 4), allowing the counting to be started at

well-deflned lO-sec intervals. It is imperative that the

counter status register be synchronized with the station

clock, modulo I0 seconds; i.e., on the even lO-second mark,

the counter should read O. Occasionally synchronization is

lost. In these cases it is easy to deduce how many integral

seconds (never more than i0) the start time has to be

retarded or advanced to obtain the true start time.

(3) Receiver Frequency

Dispersion caused by the interstellar plasma causes the

arrival time to be a function of observing frequency. Using

a non-standard receiver frequency produces a _orrectable

error (see Section VI, F).

(4) Post-Detection Filter

Occasionally a non-standard filter width was used, resulting

in unusual time delay through the filter. A correction is

readily applied.

During the summer months of 1969 a bad detector connection

caused unusually large (~I ms) time delays. The corrections

for this effect were derived by computing the autocorrelation

function of the system noise, the width of which then gave

the effective time constant of the filter. Both situations

are labeled as system code 12 (see Section II, A).

22
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f
(5) Miscellaneous

In a very few cases the reasons for a large residual are

unknown. Common experimental situations in such cases

are receiver tuning problems, repeated power failures, and

radio frequency interference (RFI). The measurement results

are usually omitted.

B. COLLATING THE DATA

A data tape produced at Goldstone contains data files corre-

sponding to the pulsars observed during a particular observing session.

This format is inconvenient for producing average pulse profiles. (These

profiles, discussed in Section IV, are a necessary part of optimally

estimating the pulse arrival time). Therefore, the early data files of

a particular pulsar were gathered onto one or more magnetic tapes in the

order they were collected at Coldstone. Preliminary editing took place •

5

during this process, to delete obviously faulty data. The main cause

for omission at this stage is RFI. These data were used to compute

the mean pulse profile presented in Section IV.

Data collected after August of 1972 is not collated according to

pulsar. Data files are merely written onto magnetic tapes in the order

they were collected without regard to the particular pulsar. The files

were condensed by editing the data and filling each tEpe completely.

Estimates of arrival times are obtained after each tape is filled (every

2 to 3 months).

"_ 23
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SECTION IV

PULSE-SHAPE TEMPLATES

In the presence of white noise the maximum signal-to-noise (S/N)

ratio for the output of a particular filter can be obtained when th_

filter response has the same form as the input signal (a matched filter).

The required matched filter is realized by cross correlating a received

pulse with an estimate of the nolse-free shape of the pulse. The esti-

mates of the noise-free pulse shapes are obtained by superimposing many

thousands of pulses to average down the effects of noise. The result

is referred to herein as a template.

The proper registration or alignment of the pulses needs to be

obtained to build a template with a minimum of smearing. Two passes,

each described below, are used to optimize tH4 registration. Correlation

with a triangular function is first performed to obtain first-order

estimates of pulse position within the data records. The template posi-

tion in the data array corresponding to the maximum cross correlation

coefficient is defined to be the pulse position. The numbers in each

data record are then shifted circularly by the amount required for proper

registration with all the other data records. Adding all the records

produces a preliminary template. This template is cross-correlated with

the original data to provide new estimates of pulse positions within

the data arrays. The second result of the addition of all the properly

registered data is taken as the correct average pulse shape. F .ally,

the central 4096 words of the 5000 word array are used to form the tem-

plate. See Section V regarding the choice of the 4096 words.

24
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A. CORRELATION WITH A TRIANGLE

In the early analyses of pulsar data (Ref. 9), the data were cross

correlated with a triangular function closely matched in width to the

pulsar signal. The pulses resemble the triangular function so the correla-

tion function provides an adequate estimate of the pulse position _thln

the data array.

The shape of the triangular function lends itself to a particularly _
i

fast algorithm for computing the cross correlation coefficients. Let the _"

data record be presented by fn' I _ n _ 5000. Then correlate with the _i

function

In-nolIn-n01

<i _

i - W ; W -

Tr(n, no, W) = (2) _"

0 ; otherwise !

W is the half-width of the base of the triangle and nO is the position

of the peak in the data array. This function is shown in Fig. 5

for no = W, W+I, and W+2. Inspecting Fig. 5, the correlation coefficients

CO and Cl can be written as

2N-I W-I 2W-i

CO = Tr(n'W'W)fn = fw + w fn + W n

n=l n=l n=W+l

and ,_

2N W 2W

n=2 n=2 n=W+2

The difference between the coefficients becomes

W

ct - % -- - w (fn - fw+n) (3)
n+l

' 25
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/

(0) (1) ('2) _-

DATA ARRAY - 1 2 .3,- - -W W+IW+2- 2W+l
POSITION

Figure 5. Three Triangular Functions Overlying a Data Array :

This is the first quantity computed (•

In a similar manner the difference between coefficients C2 and C1

W+I

C2 - C1 = - W (fn - fW+n ) (4) _
n=2

This is the second quantity computed, but in the fullowing manner• This

new quantity is obtained from Eq. (3) by adding the term

fl 2fW+l f2W+l

W W W

In general the new difference in adjacent coefficients is computed from

the previous difference by

c_ - c__1 = c__1 - c__2 + _ (f_-i- _.fw+_-i+ _2w+_-i) (5)

26 ,'_
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The value of C_ relative to the coefficient CI is calculated by accumulat-

ing the sums C£ - Cg_ 1 + C£_ 1 - C__ 2 from Eq. (4) through the many steps

suggested by Eq. (5):

C3 - C2 + C2 - C1 = C3 - C1

C4 - C3 + C3 - CI = C4 - CI

C_ - C___1 + C___1 - C1 = C£ - C1

The position of the peak of the triangular function corresponding

to the largest value of C_ - C1 denotes the position of the pulse in the

data array•

B. CORRELATION WITH THE TRUE TEMPLATE

The cross correlation function C(_) of two continuous functions

is written as

!

c(T) = [p(t)e(t - T) dt (6)
J

where p(t) is the pulse power as a function of time t, e(t) is the

expected pul_e shape (the pulse template) and I is the displacement in

time of the two functions relative to some well-defined reference time.

In the discrete case encountered here, the corr,,lation coefficients can

be evaluated by directly performing the operati_,n suggested in Eq. (6).

However, it is much faster to use Fourier analysls techniques. Direct

ewlluation of Eq. (6) requires 2.5 x 107 multiplications, while using

the fast Fourler transform (FFT) algorithm requires only about i._ x 105

multiplications.

27
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Consider the Fourier t_ansforms of the functions involved. The

transform of the correlation function c(_) becomes "

/ -I2_s_
C(s) = p(t) e(t - _) dt e dT

where s Is the transform variable. Interchanging the order of integration, _

: C(s) = t) e u) e du dT _

c(s)= P(s)E(-s) (7)

where P(s) and E(s) are the transforms of p(t) and e(t), respectively.

Hence, the procedure is to calculate E(-s) for each template (calculated

only once), P(s) for the data record, and then the complex function C(s).

Inverse transformation of C(s) yields c(_).

The FFT algorithm is used in a form that takes advantage of the fact

that a Fourier transform of a real function is the sum of a real even
=

function and an imaginary odd function. Hence, if the data array is L ,%

samples long, only L/2 values need be calculated in the transform. See

Ref. I0 for the original work on this form of the algorithm or the detailed

discussion of its use by Brigham (Ref. 11). Briefly, the data is placed

in an array L samples long, where L is a multiple of 2. Pretending that

!.

the array is complex of dimension L/2, an FFT is performed on the complex

_rray. A final step is needed to unscramble the result into (L/2) - I

: complex pairs, one 0-frequency value, and one Nyquist-rate value. Alter-

natively, putting complex data such as the quantities P(s)E(-s) in this

form, the Inverse of the above process can be formed. Software to per-

form the calculations was mrttten for this project by G. A. Morris. 2
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7
The central 4096 data points of the integrated pulse profiles were

selected for the templates since the correlation process involves using

the FFT algorithm for 212 data points. The correlation is done twice

to cover all 3000 data points. The details are presented in Section V.

The value of T corresponding to the maximum value of c(T) denotes the

position of the pulse in the data array.

C. SUBTRACTION OF THE BACKGROUND

Once an estimate of the pulse phase has been made, the pulsed rower ,

must be separated from the steady component contributed by the system.

Let the signal be represented by a pulse template U(t - z) of unity maxi-

mum height. The pulse is superimposed on a constant term N due to systems

noise. Associated with N are small noise variations n(t) caused by as

non-zero post-detection bandwidth. Hence, the total signal S(t) becomes

S(t) = gU(t - T) + n(t) + N (8)s

where g scales the template to the data. The expected value of n,

denoted by E{n}, is zero. The objective is to minimize the quantity

2

Ii =f IS(t) - gU(t - _) - Ns] dt (9)

All terms in I1 are constant except the term

2gf S(t) U(t - _) dt

. which must be maximized to minimize II. But this is merely the cross

_: correlation performed above.

Estimates of g and N are needed to separate the pulse froms

receiver noise. The estimates should minimize Ii:

-_g i 0 = - S(t) U(t _) dt + g (t - _) dt + Ns U(t-_) dt

_9
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r,

_--_-= 0 = - S(t) dt + g U(t - _) dt + N s dt ; :
s

i

where _ is the estimate of T from the correlation procedures. Solving

for the estimates g and Ns of g and Ns, respectively.

= dt S(t) U(t- _) dt- S(t) dt U(t -_) dt /D

Ns = (t) dt U2(t-_) dr- S(t) U(T-_)dt (t-_) dt /D i :
y

L

(io) :

where

2 _

Note that only the quantities involving S(t) need to be calculated for

each data record. All other terms are calculated once for each template.

The discrete version of Eq. (i0) is used in the data reduction.

The value Ns is subtracted from each data record before adding the

record to the evolving template.

D. THE TEMPLATES

Several hundced thousand pulses were superimposed as described ,._

above to form the final estimates of the average pulse shapes of 24 pul-

sars. The results appear in Figures 6 through 29. Part (a) of each

figure represents the template used in the data reduction. The abscissa

presents time in terms of the pulse period P, while the ordinate is in

) arbitrary units of power. The vertical marks above and below the main :

_- pulse define the time origin. Some templates were smoothed beyond the s

_; ] I'

30 .
}
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amount inherent in the receiver. The smoothing was obtained by convolving

a sinc(c) function of the appropriate width _ith the original data. The

amount of smoothing noted in the figure caption represents the interval !

from the peak to the first zero of sine(t). A quantitative discussion

of the choice of smoothing is presented in the next section.

Part (b) of each figure presents the details of the pulse on an
?

expanded time scale. If the data has been smoothed more than in part (a)

of the figure, the amount of smoothing is noted. The position of the T

pulse relative to the vertical marks above and below the main pulse

defines, for that pulsar, the "zero phase" condition relative to a given

epoch; i.e., to obtain a zero tlme-of-arrlval residual relative to a

given epoch, the vertical marks must be coincident with that epoch.

E. T_PLATE SMOOTHING

The accuracy with which one can estimate the arrival time of a pulse

increases as the rcndom fluctuations in the signal decrease and as the

sharpness of the pulse increases. However, attempts to smooth the signal

to lower the effects of receiver noise also tend to destroy the sharpness

of the pulse. A compromise must then be reached. This is done by esti-

mating the uncertainty in the arrival time measurement when the signal-to-

noise ratio is large.

Imagine that having performed the correlation process to measure .
A

i: the arrival time of the pulse, an estimate T has been obtained. The

i , have also_ scaling of the template, g, and the constant component, Ns

_I been estimated. Allowing for small errors in the estimates, the model

_ of Eq. (8) cdn De rewritten as a Taylor expansion:

A

S(T) = gU(AT) + AgU(AT) - gATU'(A_) + Ns+AN s + n(AT) (Ii)

1980024809-039



I I

(a)

_l_'r_" r_" '"T"_ I O'
0 P/2 0 80ms

Figure 6. The template of PSR 0031-07: (a) P = 0.943 sec;
(b) Expanded tlme scale

I I

(a)

_ 0 P12 0 40ms

_- _ Figure 7. The template of PSR 0329+54: (a) P = 0.715 sec|

.... (b) Expanded time scale
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(0) (b)

I I
0 P/2 ,0 i3ms

Figure 8. The template of PSR 0355+54: (a) P = 0.156 sec. The pulse

has been smoothed by a window 160 psec wide. (b) Expanded
time scale

1o) (b)

)

i'

.. -P/2 6 -180ms 60ms

Figure 9. The template of PSR 0525+21, (a) P = 3.745 sec. The pulse
has been smoothed by a window 2.2 ms wZde. (b) Expandedt

time scale
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I I

(o)

L ........ _, .., .... j_ .Ld 0

I • I
0 PI2 0 120ms

Figure 10. The template of PSR 0628-28: (a) P = 1.244 sec;
(b) Expanded time scale

I I

(o) (b)

I I
0 P/2 0 40ms

Figure ii. The template of PSR 0736-40: (a) P = 0.374 se¢;
(b) Expanded time scale

34
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I I

(o)

o I .... t _.... - I o '
I I "

0 PI2 0 15m$ ;

Figure 12. The temptate of PSR 0823-26: (a) P = O..531 sec;
(b) Expanded time scale

!

I I

(a) (b)

o-_ ---J " F -) -----I-o
I I _
0 PI2 0 6 ms

Figure I I. The template of PSR 08]3-45: (a) P = t).OSq ,';ec;
(b) Exl)anded ti-me scale

35
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I
(a) !

j :
I I
0 P/2 0 _5ms #

Figure 14. The template of PSR 0950+08: (a) P = 0.253 sec;
(b) Expanded time scale

I I

(a) (b)

I I ,
0 PI2 0 40ms ,_

Figure I5. The template of PSR 1133+16: (a) P = 1.188 sec;
(b) Expanded time scale
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I I

(a) (b) \
'"-"_"-I........UL-:':"-'-.... ""_',l"....' _ L_Or- ," -,--_---I....• ,--, -.--1_r----_,*',_- I

I
- P/2 0 - 60 ms 0 20ms

Figure 16. The template of PSR 1237+25: (a) P = 1.382 sec;
(b) Expanded time scale :.

?

I I

(o) (b)

O' r ......... _ - .i..,-_ r_--,..... ......... I-" I

I
0 P/2 0 15ms

Figure 17. The template of PSR 1604-00: (a) P = 0.422 sec;

(b) Expanded time sca]e ,

J_
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I I

(o) (b)

! _=__._.......... i 0 _0 .... _ .... _- "2.... _ 2- -- 2 - _ ,)I

0 P/2 0 20ms

Figure 18. The template of PSR 1642-03: (a) P = 0.388 sec;

The data has been smoothed by a window 230 _see
wlde. (b) Expanded time scale i

• t

I I :

(a) (b) _ : _:

: Flgure 19. The template of PSR 1706-16: (a) P = 0.b53 see;
Tiledata has been smoothed by a wlndow 390 psee

wide. (b) Expanded time scale
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I I

I I
0 P/2 0 20ms

Figure 20. The template of PSR 1749-28: (a) P = 0.563 sec;
(b) Expanded t_me scale

(o) (b)

!

0 ,:

0 P/2 0 20ms

Figure 21. The template of PSR 1818-04: (a) P = 0.598 see; )

(b) Expanded time scale

!

i
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_ m",-----1g

I I
I

(o)

0 PI2 0 20ms

Figure 22. The template of PSR 1911-04: (a) P = 0.826 sec;

(b) Expanded time scale

I I

(o) (b)

I I
0 P/2 0 25ms

Figure 23. The template of PSR 1929+10: (a) P = 0.227 sec;

(b) Expanded time scale
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'2

I I
0 P/2 0 20ms

Figure 24. The template of PSR 1933+16" (a) P = 0.359 sec; ._.
(b) Expanded time scale

j-

I I
0 P/2 0 25ms

Figure 25. The template of PSR 2016+28: (a) P - 0.559 sec;

(b) Expanded t£me scale :_
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i r
I I 1.

(a)

0 I _ .... - .JL__ , It.... -; :1 0 :
f I
0 P/2 0 25ms

Figure 26. The template of PSR 2021+51: (a) P = 0.529 sec; _"
(b) Expanded time scale _ ,

t ,

I

I I

;..._ -P/2 0 -120ms 0 30ms
/ ,

Figure 27 The template of PSR 2045-16: (a) P = 1,96 sec.

The data has been smoothed by a window 1.2 ms wide.

(b) Expanded time scale i

!
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Figure 28. The template of PSR 2111+46: (a) P = i.O15 sec;
(b) Expanded time scale, with the data smoothed
for display by a window 2.0 ms wide

(

!

,},

J !

¢

i' 0 0 54ms

Figure 29. The template of PSR 2217+47: (a) P = 0.538 sec;
(b) Expanded tima scale, with the data smoothed

for display by a window i m,_ wide
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where the prime denotes a derivative, and

Ag = g - g, ANs = Ns - Ns and A_ = _ - T

Substituting Eq. (ii) into Eq. (9) yields the mean square error

A

in using estimates g, Ns and _ instead of the mean values g, Ns and T. _ •

Minimize the mean square error with respect to AT to obtain i ;

_.---j_ 2 AgU(AT) - gA'rg' (AT) + _Ns + n(Aa) i"
0 _

where :"

6

U' --dU/dt, U'' = d2U/dt 2, etc. The integration is over one full '(

pulse period. Collecting terms, we make use of the following facts:

(i) U(O) = U(P) --0

(2) u'(o) .-- u'(e) = o

I'(3) n d'r = n(O) - n(P) = 0

and

(4) fnn' d_ _ 0

Then

IJ'n dr
\

A'I-'_ (12) ;

" f ,)2.... g (U d'r

where terms of the order Ag/g have been omitted, ii
i

Since

E{A_}-fu' E{n}dT/_f(u')2 dT= ,_,
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then

EIfU'(s) n(s) dsfU°(q) n(q)dq}
02 = E{Ar 2} =

_2 (u')2 dr

or _i

'(s) U°(q) Rn(S - q) ds dq
2 :

O =

' [i_2 (u'12dr

?

where Rn(Ar) is the auto-correlation function of the random fluctuation
2

n(t). Rn(0) ffi on. If Rn always decreases significantly before U' can

change significantly, then this result r_ains independent of the post-

detection bandwidth. Measuring tilevariance of the fluctuations in a

region not containing the pulse, we can _ite

(U')2 _

The denominator is corrected for contributions to U' from random fluc-

tuations. The expected standard deviation aF oclated with T is then or.

- The expression for oT satisfies our intuition with respect to how '

_} well z can be measured for a given signal-to-noise ratio (g/On) and a

., given pulse sharpness (measured byf(V')2 dz). A test of Eq. (13) was

performed which dia not rely on intuit_on. The, extremely noise-free

Lemplate for PSR 0833-45 was used as the basis for producing I00 records

of simulated data. A random number generator was used to superimpose

uncorrelated fluctuations onto the original template. Equatlon (13) was
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1
2

used to choose the variance on given that o = 5 _sec. The sharpnessT

f cu,)2
dr is known from the template, and g = 1 in this case.

Would the correlation method define a random process _ from the

I00 simulated data records wlch the correct standard deviation? It did, j_

The true value of z was known in this test, and the standard deviation I!

of the estimates _ about the expected value T was 5.2 _sec. !:!

The templates were smoothed to the resolution where or stopped i?

decreasing due to a lower un and began increasing due to loss in sharpness I_

of the pulse, t!
F. CENTRAL SPIKES i

Occasionally, the pulse strength in some of the weaker pulsazs _

ebbs to the point of invisibility (a S/N ratio of i or less), even aftor

an hour of integration. In these data records the template seeks out !

the stronger, sharper random fluctuation,. The resulting estimate of T

represents the position in the data array of one of the larger noise

spikes. In superimposing data records to produce a template, a narrow

central spike was formed. 7

The central spike phenomenon was observed in the templates for

PSR 1818-04 and PSR 2111+46. The spike was removed by placing in the _.

central nine array locations a random process with a mean computed from t"

the eight neighboring values. The variance was set equal to that of the i_i

pulse-free portion of the array.

G. DEFINING THE ZERO-LEVEL

Defining the zero-level of the pulsed radiation is straightforward

in the cases where the puL_s are narrow and confined to one window. !:

This is not to say that the radiation between the pulses is not in part i_,

pulsed and associated with the pulsar. In most cases, however, the I_
I "

!,

4b _,:

¢
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emission is featureless. If a portion of the flat intecpulse region

is also pulsed, measurements of a different nature are required to de_ect

this possible situation. In general, the mean value of the interp_ise

emission is used to define the zero-level.

In several cases, such as PSR 0950+08, the presence of sharp or

broad features requires a careful definition of the interpulse region.

ILl these carefully d_fined regions the mean value is then taken to be

the zero-level of pulsed emission.

47
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SECTION V •

ESTImaTING THF PULSE ARRIVAL TIME

Each data record on magnetic tape presents an opportunity to

measure the arrival time of a received pulse relative to a given epoch.

The measurement is completed by correlating the appropriate template

(Figures 6 through 29) with data records represented by Figure i. The

correlation process leads to an estimate of the maximum cross-correlation

coefficient. However, the coefficients occur only every Pa/5000 seconds
7

of delay, so interpolation in the neighborhood of the largest coefficient

is required to obtain the best estimate of the delay corresponding to the

true maximum of the coefficients. The value of the largest correlation

coefficient and an estimate of the random fluctuations due to receiver
7

noise are u_ed to estimate the uncertainty in the time delay.

A. THE CORRELATION PROCESS

The data records are 5000 words long. Two arrays of 4096 words

each are c_nstructed to allow easy use of the FFT algorithm. The two

separate results, each 4096 words, are combined to yield one 5000-word

array of cross-correlation coefficients.

The template is shifted in position before transformation, as

shown in Figure 30. The time within each pulse corresponding to th____ee

arrival time of the pulse is, in practice, tiletime marked "0" in Fig- _,

ures 6 through 29. Each template is shifted circularly until this time

occurs in the first word of each array. Hence, the position of the

largest correlation coefficient _.'illbe the estimate of the arrival time

of that particular pulse. In addition, this shift keeps the size of

the imagi_,ary component of the transformed template to a minimum.
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Figure 30. Shifting and Transforming the Template i
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obtained when no smearing is present represents a bias that can be

estimated and removed. The bias is estimated by first calculating the

expected arrival time based on the model of the pulsar, and then compar-

ing that with the arrival time expected for a pulsar with a constant
#

7

period and constant Doppler shift. The meaLl of the differences is the

estimate of the bias.

The expected arrival time tk of the kth pulse arriving after the

starting epoch t o is given by

t k = tbk +_ d(t k) - d(t 0) (15)C "

where tbk is the elapsed time between k pulses at the barycenter of the

solar syatem, d(t) is the distance of the received wavefront from the

barycenter, and c is the velocity of light. Expanding the barycentric

pulse period P(t) in a Taylor series about to, _

P = P0 + P0 (t - tO) + _0 (t - t0)2/2 + 0iP t3)

It can then be shown that

tbk _ k PO + k2 PO PO/2 + O(k3 P) (16)

The quantity d(t) can be replaced with the scalar product -r (t) i
a

•Up(t), where ra(t) is the position vector of the antenna relative to

the barycenter at time t. The unit vector I_ is the direction vector i'
P

of the pulsar as seen from the barycenter. Referring to Figure 34, note

that l_al = a - 1 AU, and R/a >> i. Usi,_g the facts that

Y - -a cos e - d

2(R-d)Y = X2 + y2

and

X2 + y2 . Z2 = d2 + a2 + 2ad cos e,

, /

2_
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Figure 31. Computing the Cross Correlation Coef[iclents
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DATA _,'w"_ .... ,,mr'_..... "r.',-,,','r'"_'..-,-r-,-_, - -.-- "r'.'.r-'-,....... '_1(PSR 1818- 04
27 JAN 1970)

16h 58 mO0 • (UTC )

Figure 32. All Example of tileCross Correlation Process;
PSR 1818-04 on 27 Jan. 1970 at 16h 58m O0s UT

B. ESTIMATING THE DELAY

The correlation coefficients are examined to determine the position

in tilearray of the largest coefficient. In the cases of PSR 0355+54 and

PSR 0833-45, two and three pulses, respectively, occur per data record.

In these cases two or three positions are determined, each separated by ",

a pulse period, and averaged together at the end of the estimation

process.

Subsequent refinement of the estlmate of the pulse position is

obtained through interpolation. Interpolation is obtained by fitting,

In a least-square sense, a fourth-order po]ynomial to M coefficients

either side of the largest coefficient. At poslrlon xI (measured rela-

tive to the position of the largest coefflcient) in the array of-
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correlation coefficients, a predicted value of Ci = _a£ x£i is obtained.

Note that xi+ 1 - xi = I. We have for the 2M + 1 coefficients involved,

4

C_M = a 0 + alX_M + ... a4x_M

= ;
C0 a0 f

4

C1 = a0 + alxI + ... a4x1

•

4 ::

CM = a0 + alxM + ... a4xM •

The polynomial coefficients aj need to be determined. Denoting the meas-

ured coefficient by Ci, we want to minimize the quantity

S = (Ci Ci)2 = Ci a£xi

i=-M £=0 o

8S ,:

Requiring 8a£ 0 for £ = 0 to 4, we find the set of equations

M

£=0; E Ci=a0 + al E xi+a2 _ x2i +a3 _ x31+a4 _ x4i /
i=-M i i i i "

M ._

_ =i; _ Cixi --ao Z xi + al _ x21+ ''" a4 E x_ (14) ,:
I=-M i i 1

e

.e S

j

M

i=-M i i i :

53
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Since the xi occur at uniform intervals, the sums of odd powers of xi are

zero, and the sums of even powers of x. are precomputcd for each pulsar.

The size of M is chosen separately for each pulsar. Within the range

x_M < xi < XM, the fourth-order polynomial provides a good fit to the

correlation coefficients obtained when the template is correlated with

itself.

The system of equations in Eq. (14) is solved for the polynomial

coefficients a£. The curvature of the resulting polynomial is computed.

A positive second derivative indicates a distortion due to a low signal-

to-nolse ratio, and the interpolation is not attempted. Otherwise, the

position x at which the polynomial peaked is determined. Then, stepping
P

in intervals of 0.01 between x -I and x +i, the refined estimate xd ofP P

where the polynomial reaches its peak is determined.

The arrival time t of the first pulse occuring after the starta

time ts is readily calculated. The separation between data array eleme,'=s

is Pa/5000 seconds. Hence, ta = ts + xd Pa/5000.

The interpolation performed near the peak coefficient in Figure 32

is presented in Figure 33. The measured values of the cross-correlatlon

coefficients (solid circles) are displayed versub the corresponding array

location, which is proportional to time delay. The solid curve is the

polynomial resulting from the least-squares fit. The pea of the poly-

nomial is near x = 589.0. The region near this value of x is enclosed

by the broken box, and reproduced on a finer scale in the inset. Pro-

' gressing from x = 589 to x = 590 in steps of 0.01, the peak, denoted

by the vertical arrow, is found at xd = 589.79.
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Figure 33. Correlation Coefficients Versus Time Delay

Near the Peak Shown in Figure 32

C. ADJUSTMENTS

If the template has been shifted due to a large asymetry about

the zero-phase position, the effect of that shift is removed at this

point in the data reduction. If two or three estimates of xd were made,

they are averaged together at this point.

D. UNCERTAINTY IN THE ARRIVAL TIME ,;

Each estimate of the arrival time _ i_ accompanied by an estimate

of the uncertainty or. A modification of Eq. (13) is used. The scale

factor _ and the baseline level Ns are f_rst estimated using Eq. (I0).
J

Quantities dependent on tile template U(T) only, having been computed t

earlier in the template generating process, are on magnetic tal,L. _'Ith
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the template itself. Note that the quantity J S(t)U(t - _) dt is merely

the maximum correlation coefficient. The root-mean-square (rms) noise

level o includes a contribution by the template. The denominator ofn

Eq. (13) is another quantity computed earlier.
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SECTION VI

GEOCENTRIC ARRIVAL TIMES

Now that the arrival time of the pulse has been measured relative to

an epoch defined by _ particular clock, it is time to consider referring

these station arrival times to the geocenter. There are several correc-

tions which must be applied to the measured arrival time before useful

geocentric results are obtained: (a) A bias in the arrival time, caused

by the smearing of the pulse during superpositioe, must be estimated and

removed; (b) the geometric correction, changing the spatial reference _:

from the antenna to the geocenter, must be applied; (c) an extra delay

• must be removed which is caused by using frequencies lower than 2388 Mliz;

(d) a small annual effect caused by the interaction of the Doppler and

dispersion phenomena must be removed; (e) the clock epochs used in the

measurements must be expressed as Coordinated Universal Time (UTC) epochs;

? (f) UTC epochs must then be expressed as ephemeris time (ET) epochs. The

result is then the arrival time that would have been obtained had the

measurement been performed et the geocenter using a clock running on

ephemeris time.

A. CORRECTION FOR PULSE SMEARING

A sm_ll amount of smearing is inevitable as the received pulses

are superimposed. The Doppler shift caused by Earth's rotation and r

orbital motion changes over the interval of integration. Also, differ-

ences can exist between the actual pulse period and the assumed period.

The result is a slow drift in the pulse phase -elative to the starting

epoch, causing the centroid of the integrated signal to drift forward

or backward in time as pulses are superimposed. The difference between

the phase of the centrold of the superlmposed pulses and tllephase
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obtained when no smearing is present represents a bias that can be

estimated and removed. The bias is estimated by first calculating the

expected arrival time based on the model of the pulsar, and then compar-

ing that with the arrival time expected for a pulsar with a constant
n

period and constant Doppler shift. The meaLl of the differences is the

estimate of the bias.

The expected arrival time t k of the kt h pulse arriving after the

starting epoch tO is given by

t k = tbk +_" d(t k) - d(t 0) (15)

where tbk is the elapsed tJme between k pulses at the barycenter of the

solar system, d(t) is the distance of the received wavefront from the i

barycenter, and c is the velocity of light. Expanding the barycentric

pulse period P(t) in a Taylor series about to,

P = Po + PO (t - tO) + _0 (t - t0 )2/2 + 0iP t3)

It can then be shown that

tbk = k PO + k2 P0 P0/2 + O(k3 P) (16)

The quantity d(t) can be ceplaced with the scalar product -r (t)
a

•Up(t), where ra(t) is the position vector of the antenna relative to

the barycenter at time t. The unit vector U is the direction vector
P

of the pulsar as seen from the barycenter. Referring to Figure 34, note

that I_al = a ~ 1 AU, and R/a >> 1. Usi,lg the facts that

Y = -a cos O - d

2(R-d)Y = X2 + y2

and

X2 + y2 = Z2 = d2 + a2 + 2ad cos 8,#
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Figure 34. Geometry for Calculating the Phase Drift

the distance d becomes
J

d=-a cos O =-r •
a p

where R/a >> I. (The smallest value of this ratio is about I07.)

Consider the arrival time obtained if P(t) - P over the entire
a

interval of integration. Suppose there is a delay of £ pulses from the

time the timing pulses are started to the time when the data collection

,f

is started (usually a few seconds at most). Then M groups of N pulses

_ (usually 500) are superimposed, with n pulses elapsing between groups

to allow for a vlsua] display of the progress of the observation. Fig-

ure 35 displays the nu_lerology used in counting these pulses. Under the

; 59 t
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o N N N

Figure 35. Nomenclature for Enumerating Pulses

assumption of a constant period, the arrival time tak of the kth pulse

after the start epoch to is

= = kP
tak [£ + J + (N + n)(m - i)] Pa a

where j is the pulse in question in the m th block of N pulses, and Pa

is the assumed constant period. (The synthesizer frequency fs used in

the observation, as per Figure 2, is 106/Pa .)

The mean of the difference tk - tak is given by

M N

- i - kPa)
E {tk takl = tk- tak" _ E E (tk

m-i J=l

Let 5 = tk - tak, representing t>e bias caused by the smearing. Sub-

stitutlng Eqs. (15) and (16) into the expression fo: D yields

D - NM _ {j + £ + (N + n)(m - i)} +--_-_ (17)
m=l J=:l m=l ]=i

M N

{J + £ + (N + n,(M - 1)}2 + _-_ {d(t k) - d(to)}

rn"lJ"l
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The mean of the distances d(tk) can be replaced by the distance near the

midpoint of the range of j, yielding for the third term of Eq_ (17),

m=l

Performing the indicated s_mmatlons, Eq. (17) becomes

D = [_--+ £ + (N + n)(M - i)] (P0-Pa)2 _.

2

+TPoPo I IN_+, +I _N + n,(M- 1,.]+2 (N2- I)+ _N+12n)2 (M2- 1_ Ii (18) :.

"It I ,-,1 E ra(tO) '- c-_ ra + E + (N + n)(m - i) -
m=l

It has been assumed that the signal strength is constant over the range

of k. Large fluctuations cause Eq. (18) to be in error, and if the drift
i

is large, the results may be _eJected.

The expression derived above for the drift is applied te all the

data. In all cases, N = 500. The delay £ is usually O. The plot time

n is equivalent to 30 seconds before Julian date 2440195.5, and 17 sec-

onds thereafter. The numbe" M of 500-pulse integrations varies depending

on pulse strength, ranging from the equivalent of a few minutes to over

two hours.

The Jet Propulsion Laboratory ephemeri_ DE 96 is used to compute

bar_ en=ric positions r . One major export from this observing programa

is ephemezis independent, geocentric arrival times. However, the drift

correction is needed, and is best done by the observer early in the

reduction process. The use of a different ephemeris of similar quality
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will not change the corrections of Eq. (18) significantly. _ large drift

correction is on the order of a few milliscc'unds, and a velocity differ-
]

ence between two ephemerides of greater than 0.i percent would be required

to produce a i ysec change in the drift estimate, fhis is usually less

than the error estimates encountered in these measurements. Note also

that this correction is dependent on a good knowledge of the pulse period

and its derivatives. These have been well-determined in a separate data

analysis effort.

The sum of the barycentric position vector of the geocenter a_Id

the geocentric position of the antenna, rg, yields ra. The computation

of _ is discussed in the next section. The direction vector U is
g P

derived from a model-fitting procedure, which is beyond the scope of

this report. All the pulsar positions used here are known to at l_ast

I arL-sec, an error that will pcoduce a geocentric _rrival time error

of 0.i _sec or le_s.

An example of phase drift and the subsequent correction for the

effect is shown in Figure 36. Sixteen groups of 500 pulses of PSR 0833--45

were examined separately to estimate T. The solid circles represent these

estimates relative to the estimate for m = i. The line through the solid

circles represents a fit-by-eye to the linear drift. The triangle is

the result of examining the accumulation of the 16 blocks of data. As

one would expect in a well-behaved situation, this estimate of T has ,._

drifted about one-half the distant _rom "0" as the estimate for the

m = 16 case alone. This line through the triangle and the zero for
l

this example (0 at m = I) delineates the hypothetical drift one would

find in examining ar ,n,ulation of the preceding blocks of data. The

quantity D, der_'ed from Cq. (18), is the amount the result represented
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Figure 36. An I(xample of Drift in tile Phase of I'SR 0833-45
on 1 Dee. 1968 at llh O0m O0s (UT)

by the triangle is shifted to correct for drift. Note that by shifting

the datum down by D ms_ it is nearly in line with the intersection of

the dashed 1._ne and the m = 0 axis. In a later analysis the resulting

was found ae only 15 psee away from the arrival time predicted by a

smooth model, which was fitted to several months of data.

B. AhV£ENNAPOSITION

The referral of the measured arrival time to the geocenter requires

- -Upg/C
the addition of th_ time delay r • , where r is the geocentric

g g

position of tileantenna and U is the geocentric direction vector of
Pg

tilepulsar. In practice U _ U . The coordinate system used here is
PR P

the right-handed rectangular system (×, v Z). Tilt' cot,rdinate X i,_ itl

tilt, dll'ectioll of ()|1 I_igl_t ._qt'tHlsion (P_) at ]tt_('_.O. Tilt' _tatitm p,,sit ion

,It ,l ]',tr[ [t llt,.l '_'l't' t[,,,,'h i:, t'd]cul.ttt'd J'l't'l;1 th, ;iut:' ll,q t't't'l't]i;I,ttt", J;:
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Table 5 and tile knowledge of tile Greenwich Hour Angle (CHA). The station

coordinates are a version of Location Set (LS) 44, which are based on the

ephemeris DE 96 (Ref. 19). The GHA is computed as outlined in Table 6

(see Ref. 20).

Table 5. Geocentric Antenna Coordinates

West

Longitude _ Latitude _ Radius R

Antenna (deg) (dog) (km)

DSS ii (26ra) 116.849390 35,20804) 6372.011

DSS 12 (34m) 116.805462 35. 118665 6371. 994

DSS 13 (26m) 116.79_863 35.066546 6372. 117

DSS 14 (64m) 116.889507 35.170847 6366. 227

DSS 62 (26m) 4.367811 40. 263145 6369. 963

DSS 63 (64m) 4.247991 40.241318 6370.048

Table 6. Relations Used in Computing the GHA of an
Observing Station

At the epoch d + SEC/86400,

10-13(:HA= 100.0755426 + d(0.985647346 + 2.9015 x d)

+ 0 SEC 4. _ cos(c) degrees

where: (1) d = Julian days pas_ 2433282.5

(2) SEC seconds past 0 b= on day d

10 -13(3) 0 = 4.17807417 x 10-3/(1+5.21 x d) deg/sec

' (4) _, the nutatlon in longitude, is taken from

: ephemeris DE 96

(5) _ --4.09205684 x 10-1

+ T[-2.28534 x 10-4 + T(-I.Sx 10-8+ 8.7 x 10-9)] radlans

where T Is in Julian centuries of 36525 days past

2433282.5.
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The components of the geocentric antenna vector are computed in the

1950.0 coordinate system, requiring rotations for precession and nutation.

Considering an antenna at longitude 8 and latitude _ at a given epoch,

rg = rgy I P21 P22 P22J X 4_cos(-6) 1 - g

'32 '33J LA'sinG)

p! _ /

gXl <

Xlr' [
gYl

t

Ir'

. gzj

where

"r' - -Rcos(A)cos(GHA - 6)"
gx

r' = Rcos(l)sin(GHA - 6)
gY

r'gzj _ Rsin(_)

The elements Pij of the precession matrix, given in Table 7, are f .....

Ref. 21. An approximation to the nutation matrix has been used, wh_
_w

6_ and _e are taken from the ephemeris DE 96, while e is computed as in

Table 6.

The approximations to the precession and nutatlon matrices are

accurate to a few parts in 109 in both angular position and radial

"' magnitude. Since Irgl _ 6 x 103 km, the corresponding error in arrival

time is on the order of picoseconds.

I:)

I
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Table 7. Elements of the Precession Matrix "

PII = 1.0 - T2(2.9697 x I0-4 + 1.3 x IO-7T)
i

_: _[__ x_0-_+_0,_x_0-__x _0-°_]

P21 = -PI2

P22 = 1 - T2(2.4976 x 10-4 + 1.5 x 10-7 T)

= _T2
P23 (1.085 x 10-4 + 3 x 10-ST)

P31 = -PI3

P32 = P23

[ P33 = i - T2 (4.721 x 10-5 - 2 x IO-8T)

Note: T is in Julian centuries of 36525 days past 2433282.423.

Larger errors appear when referring the arrival times to the solar

system barycenter. Since one normally works in 1950.0 coordinates and

solves for pulsar positions and proper n_otions in these coordinates,

barycentric arrival times are not highly sensitive to _he recent increase

in the accepted value of the general precession in longitude by i.i arc-sec/
J

century. However, changes in the Earth's barycentric position can vary

significantly as ephemerldes are improved. For example, the difference

in the angular position of Earth in DE 108 and that in DE 96 adds up to
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about 0.5 arc-sec/century.* In a ten-year observing program, the differ-

ence is then 0.05 arc-sec, similar to the errors in pulsar positions

derived from the arrival time data.

C. DISPERSION

Considerable effort was expended in the early observaLions to

obtain one frequency, 2388 MHz. This was not always possible, for

several observations occurred at 2295 and 2328 MHz. All observations

are now at 2295 MHz. Integration of Eq. (i) provides the corrections

in time to be added to an arrival time measured at F MHz to refer it
i

back to 2388 _z. Performing the integration, the correction ATD becJmes

Dbl 1
ATD

= F2J sec (19)2.410086 x 10-4 (2388)2

where the values of DM are fcom Table 4.

In the application of ATD to PSR 0833-45 it was found that an

addf:ional 250 _sec had to be subtracted frbm tilemeasurement when

F = 2295 MHz. No significant addendum was needed when F = 2328 MHz.

The average pulse shape must be independent of observing frequency if

the correction ATD is to be perfectly adequate. Most shapes do change

significantly with frequency, including that of PSR 0833-45, thus

creating the need to measure an addendum to ATD.

D. DOPPLER DISPERSION "\

The actual frequency of observation varies with the component of

antenna velocity laying along the direction of the pulsar. The measured

arrival time then llasa varying component since the interstellar medium

*E.M. Standish, prlwlte communication.
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is dispersive. TileDoppler-shifted observing freq,ency F0 is related to

the mean observing frequency F0 by

FO = F0 i + a pC

where V is the barycentric velocity of the antenna. In this situation,
a

integration of Eq. 1 leads to a form similar to Eq. (19). Performing

that operation,

ATDD = DM I - i
2 V U

1.205043 x 10-4 F0 1 + a p
C

where ATDD , the correction for Doppler dispersion is added to the meas-

ured arrival time. Using the fact that IVa/CI < I0-4, and setting F0 =

2388 Nttz, the correction becomes

-- x %)/c :
The magnitude of this yearly oscillation is abo,tt 6 bsec for

PSR 0833-45 and about 18 _sec for PSR 1933+16. This correction is not

small in all cases compared to the measurement accuracy, nor is it small

compared to the desired uniformity of the approximation to ephemeris

time.
l

E. ARRIVAL TIME IN UTC _'

The epoch at which the data sampling process begins is defined by

'"_" a l-sec pulse from the station clock. A sequence of l-seco_d pulses

(clock pulses) is sent continuously via microwave link from the Standards

Laboratory at the Goldstone complex to the individual tracking stations.

Allowing for the delay over the links, these pulses define a UfC which

is within 5 _sec of UTC as disseminated by the National Bureau, of
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Standards (NBS). The 1-second pulses generated at DSS 14, UT(DSS 14),

are kept within 5 _sec of the Standards Laboratory pulses. Therefore,

at DSS 14 the l-sec pulses are assumed to be within i0 _sec of UTC (NBS).

The l-sec pulse used at DSS 13, UT(DSS 13), is frequently synchronized

with the Standards Laboratory pulses to within i _sec. A plece-wise linear

curve approximating the deviation in this l-sec pulse from UTC(NBS) is

used to correct epochs at DSS 13 to UTC (NBS). The correction is at

most i00 _sec.

The correction equal to the width of the clock pulse at DSS 14 is

subtracted as part of this correction. (See the discussion of system

codes 2, 3, and 5, and Fig. 3.) The small correction equal to Pa/5000

is then added if appropriate.

F. CONVERSION FROM COORDINATED UNIVERSAL TIME TO EPHEMERIS TIME

Coordinated Universal Time (UTC) is an approximation to a uniform

time based on the rotati)n of Earth. Several steps are necessary to con-

vert to the truly uniform ephemeris time (ET). Of prime importance

is the correction for annual effects due to the orbital motion of the

Earth-based clocks about the Sun. The correction AET i_ given in

(Ref. 16) as

AET = 0.001658(_in E + 0.0368) sec (21)

whece E is the eccentric anomal_" of the Earth in a heliocentric orbit.
#

Letting M represent the mean anomaly of Earth and e the orbital
i

eccentricity,

sin E = sin M (i _ e cos M)
#
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Letting an ET epoch be represented by a Julian ephemeris date (JED) plus

the number of seconds (SEC) past Oh ET,

_' M = 358.000682 + 0.9856002628d - T2(1.55 x 10-4 +3.33x IO-6T) degrees

_5 IO_7T )e = 0.0167301085 - T(4.1926 x i0 + 1.26 x

where

d = (JED - 2433282.5 + SEC/86400) days

T ffid/36525 centuries

(see Ref. 17)

Eq. (21) omits a monthly term of 1.5 _sec, a 12-year term of 21 _sec,

and a 29-year term of 5 _sec (Ref. i0).

The ET epoch corresponding to each UTC arrival time, repcesented by

a Julian date JD plus the number of seconds SEC past Oh, is computed

from

I AET+38.662738+0.002592d sec; JD < 2441317.5

ET- UTC(USNO) = ) (22)
gET + 32.184 + n sec; JD > 2441317.5

where _ET is computed using Eq. (21), d = JD - 2440000.5 + SEC/86400, n _

is an integral number of seconds, increasing once or twice a year by i sec-

ond (Ref. 15), and UTC(USNO) is the UTC kept by the U.S. Naval Observa-

tory. The following assumptions and relations were used in computing i

Eq. (22) before 1 Jan. 197_:

(i) IUTC(NBS) - UTC(USNO) I < i0 _sec (Refs. 12, 13)

(2) A.I - UTC(USNO) = 6.5131177 + 0.002592d sec (Ref. 14)

(3) IAT - A.I = -0.03439 sec (Ref. 15)

(4) ET - IAT = 32.184 sec (Ref. 15)
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After Jan. 1972, the appropriate number of integral seconds is added to

the UTC epoch to obtain IAT (Ref. 15) under the assumption that IUTC(NBS)

- UTC (Bureau de l'Neure) I < i0 _sec (Ref. 12). Then ET is obtained from

ET - IAT = 32.184 sec.

G. AN EQUIPMENT IDIOSYNCRASY

The equipment problem of system code 3 requiring a correction of

-0.996550 seconds is taken into account along with the corrections

discussed _bove.

H. A TEST OF THE MEASUREMENT CONSISTENCY

The consistency of the measurements is determined by comparing the i

results using the procedures described earlier in the editing process

(Sec. III). This comparison led to the correction of 0.996550 sec for

the equipment failure, and the additional 250 _sec correction at

2295 MHz for PSR 0833-45. The question finally arises concerning the

consistency of arrival times measured at different stations. Six epochs

exist for PSR 0833-45 for which measurements were made at DSS 13 and

DSS 14 within i day of each other. Results of three of these measure-

ments showed DSS 14 results differing slgniflcaLtly from those at DSS 13.

There were, however, serious receiver tuning problems at DSS 14 at two i

of the three epochs. Of the three results showing agreement, two are

presented in Figure 37, where the difference (residual)between the

measured and predicted arrival times is presented for each Julian date

(JD) of observation (MJD = JD - 2440000.5). The agreement is remarkably

good, leading to the conclusion that no systematic differences between

DSS 13 and DSS 14 measurements remain in this data set,
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Figure 37. Time-of-arriwll Residuals of Measur¢,mcnts Made at
DSS-I3 and DSS-14 on tileModified Julian l)ate (M.ID)

of Observation for PSR 0833-45
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SECTION VII

THE TABULAR RESULTS

An example of the observational results is presented in Table 8.

- Columns i and 2 list the ephemeris time of the pulse arrival at the

geecenter as a Julian ephemeris date and the number of seconds past

oh(ET). (Note that no complete removal of the dispersion effect has

been applied. That is, these arrival times refer to F = 2388 MHz, not

F = _.) The estimate of the expected standard deviation of the measure-

ment (defining the 67 percent confidence interval if the measurement

errors are Gaussian) appears in Column 3. In Column 4, all of the time

conversions from UTC to ET discussed in Section VI are listed. Column 5

contains the applied drift correction, while the configuration code

appears in Column 6. Barycentric arrival times are listed in Column 7

for analysts satisfied with the accuracy of DE 96.
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