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SUMMARY 

A finite  difference  code  for  predicting  the  high-speed  flow  over  the 
advancing  helicopter  rotor  is  presented.  The  code  solves  the  low-frequency, 
transonic  small  disturbance  equation  and  is  suitable  for  modeling  the  effects 
of  advancing  blade  unsteadiness  on  blades  of  nearly  arbitrary  planform.  The 
method  employs a quasi-conservative  mixed  differencing  scheme  and  solves  the 
resulting  difference  equations  by  an  alternating  direction  scheme.  Computed 
results  show  good  agreement  with  experimental  blade  pressure  data  and  illus- 
trate  some  of  the  effects  of  varying  the  rotor  planform.  The  flow  unsteadiness 
is  shown  to  be  an  indispensible  part of a transonic  solution. It is  also  shown 
that,  close  to  the  tip  at  high  advance  ratio,  cross-flow  effects  can  signifi- 
cantly  affect  the  solution. 

INTRODUCTION 

Air  flow  past a helicopter  rotor  blade  exhibits  many  very  complex  features 
such  as  three-dimensional  unsteady  effects,  shock-wave  motions,  vortex  inter- 
actions,  and  stall. A complete  numerical  simulation  cannot  even  be  attempted 
yet, but  it  is  possible  with  the  present-day  computers  and  numerical  methods 
to  model  some  of  these  features  and  acquire a better  understanding  of  some  of 
the  mechanisms  involved. 

The  model  used  in  this  study  is a perfect  fluid  model  that is further 
simplified  by  the  small-disturbance  approximation.  Weak,  almost  normal  shock 
waves  are  accounted  for  by  retaining  the  leading  nonlinear  term  in  the  stream- 
wise  direction.  This  model  is  useful  for  simulating  the  subsonic  and  transonic 
flow  past  the  advancing  blade.  Under  these  conditions  the  incidence  is  usually 
small,  and  the  results  presented  correspond  to  nonlifting  blades. A proper 
wake  representation  is  required  to  extend  this  simulation  to  lifting  configur- 
ations.  Prediction  of  the  complicated  rotor  vortex  structure  is  not  within 
the  scope  of  the  present  work. 

*ONERA exchange  scientist. 



It is  hoped  that  this  report  and  the  code  named  and  referred  to  hereafter 
as  THREED  will  be  useful  tools  in  their  limited  scope  and  that  enough  flexibil- 
ity  has  been  built  into  THREED  to  allow  for  later  improvement. 

This  work  was  done  while  the  author  was  on  assignment  at  the U.S. Army 
Aeromechanics  Laboratory,  Ames  Research  Center,  Moffett  Field,  California, 
according  to  the  Memorandum  of  Understanding (MOU) agreement  between  Office 
National  D'Etudes  et  de  Recherches  A6rospatiales (ONERA), France  and U.S. Army 
at  Ames  on  helicopter  research. 

The  author  wishes to express  his  thanks  to  Dr. C. Capelier,  Director  of 
the  Aerodynamics  at  ONERA  and  Dr. I. C. Statler,  Director  of  the U.S. Army 
Aeromechanics  Laboratory  as  well  as  his  colleagues  at  the  Ames  Research  Center 
who  made  this  visit  possible,  and  most  pleasant.  Special  thanks go also  to 
Mrs.  C.  Coulombeix  and  Mr. L; of  ONERA  for  the  hardship  of  losing  their  group 
leader  for  nine  months.  Finally,  a  "grand  mercil'  to  Chris  Dolnack  for  the 
very  good  typing. 

EQUATION AND BOUNDARY CONDITIONS 

The  mathematical  model  used  in  this  report  is  the  three-dimensional 
unsteady  (low-frequency)  small-disturbance  transonic  equation  as  derived  by 
M. P. Isom  (ref. 1, p. 20). This  equation  is  derived  in  a  blade-attached 
Cartesian  coordinate  system  under  the  usual  assumptions: 

1 - M 2 ( 1  + p ) 2  = 0 ( 6  2 / 3 1  

E = O ( 6 )  

tip  Mach  number  due to the  blade  rotation 

advance  ratio 

blade  thickness 

inverse of the  aspect  ratio 

blade  radius 

chord  of  reference 

rotational  velocity 

sound  speed 

forward  velocity  of  the  rotor 



In condensed  notation  the  equation  can  be  written: 

where 

B =  1 - M2 (y + p COS t)2 
6213 

B' = - " M2(y + F! cos t) 
2 

C = 2M2 - E u sin t(y + u cos  t) 
92/3 

D = -  E2 

62/3 

E = l  

t, x, y, and  are  the  dimensionless  dependent  variables  normalized  by $2, 
c, R ,  and 6-173 c, respectively,  and y is  the  ratio of the  specific  heats. 
At each  time  step NS in THREED, the  coefficients  are  computed  and  stored  in 
one-dimensional  arrays 

A(J),  B(J),  BP(J), C(J), D ( J ) ,  E ( J ) ,  J = 1, . . . JM 
for  all  values  of  the  spanwise  index  J.  Allowance is made  in  the  code  for  a 
term  A'a+/at  for  which  the  value of the  coefficient  is  stored  in AP(J) and 
has  been  set to zero  for  all  present  uses. 

Initial  and  boundary  conditions  are  required. To integrate  this  equation 
the  initial  condition  used  is  usually  the  quasi-steady  solution  (i.e., cPxt = 0 
in eq. (1)). 

On  the  mean  surface  of  the  blade  the  flow  tangency  condition  is  expressed 
(cf.  ref. 1) as: 

x = (y + 1-I cos t)f'(x) at z . =  o 
az 

At the  innermost  grid  location,  ymin,  two  boundary  conditions  can  be 
used : 

1. A  symmetry  condition  (equivalent  to a flat  tunnel  wall in wing 
calculations) 

?!& = 0 (specified  by  setting JSYM = 1 in THREED) 
aY 
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2. A strip-theory  condition  (used  for  rotor  blades  or  semi-infinite  wings) 

In the  far  field  a  Dirichlet (4 = 0) or  a  Newman  (a4/an = 0) condition  has  been 
used.  The  upstream  boundary  is  usually  taken  as  the  uniform  undisturbed  flow 
(4 = 0). 

COORDINATE  TRANSFORMATION AND THE  CORRESPONDING MESH SYSTEM 

In  order  to  treat  a  large  class  of  planform  shapes,  a  coordinate  trans- 
formation  is  made  prior  to  the  discretization  of  the  equation.  This  transfor- 
mation  incorporates  some  one-dimensional  stretching  capabilities  concentrating 
the  mesh  in  regions  of  large  gradients;  in  particular,  near  the  surface  of  the 
blade,  near  the  leading  edge,  and  near  the  tip.  The  coordinate  transformation 
is of the  form,  (x,y,z> -f ( < , n , < ) ,  

where 

Equation ( 1 )  now  becomes: 

The  coefficients  in  equation (2) are  the  partial  derivatives  of  the  trans- 
formation.  This  form of the  equation  is  called  semiconservative;  the  metric 
coefficients  are  brought  outside  the  8/85,  a/an,  a/as  symbols. It can  be 
shown  that,  if  the  transformation  is  sufficiently  regular,  the  jump  conditions 
are  preserved  across  a  discontinuity. 

Computation  is  made of four  first  partial  derivatives  and  five  second 
partial  derivatives.  They  are  ag/ax,  ag/ay,  an/ay,  and  as/az  (called  in 
THREED XIX, XIY,  YIY,  and ZIZ, respectively)  and  a2s/ax2,  a2c/axay,  a2c/ay2, 
a2n/ay2, and  a2c/az2  (called  in  THREED  XIX2, XIXY, XIY2,  YIY2,  and  ZIZ2, 
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respectively).  These  quantities  are  computea  at  each  interior  mesh  point  by 
using  finite  difference  approximations  of  the  coefficients  of  the  inverse 
transformation  and  the  following  identities: 

and , similarly , 

These  expressions  include  second-order  terms [ O ( A C  + + 0 (As) 2]. The  mesh 
is  constructed  in  three  steps. In the  first  step  the  locations  of  the  span- 
wise  stations  are  defined.  The  following  stations  are  specified: 

'min innermost  station  on  the  blade,  typically  y =l. 0.5 (ymin  is 
referred to as YN in  THREED) min 

YC a  special  station  on  the  blade  (e.g.,  a  kink in the  planform), 
typically  y = 0.9 (yc + YC in THREED) 

the  tip  of  the  blade  y = 1 (y + YD in  THREED) 
C 

'd d d 
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Ymax o u t e r m o s t   r a d i a l   s t a t i o n ,   t y p i c a l l y  ymax 1.5 ( yx + YX i n  
THREED) 

I n   a d d i t i o n   t o   t h e s e  real numbers the   cor responding   in tegers  ( J C  5 J D )  must  be 
def ined.   This   determines how many s t a t i o n s   f o r   c o m p u t a t i o n  are loca ted  
between 1 (Ymin) and JC (Y,) JC (yC>  and JD (Yd) and JD (Yd) and JM (ymaX) 
The fo l lowing   ana ly t i ca l   exp res s ions  are used t o   d e f i n e   t h e  mesh s t a t i o n s :  

n - nc 
J C  < J J D   Y ( J )  = YC + (YD - YC) 

‘D - ‘c 

where   t he   va r i ab le  n i s  defined  between 0 and 1 by 

n =  J - 1  
JM - 1 

The p lanform  of   the   b lade   then   y ie lds   the   loca t ions  x, and  xf of t h e   l e a d i n g  
and t r a i l i n g   e d g e s  as func t ions   o f  J. For t h i s   p u r p o s e ,  a p iecewise   ana ly t i -  
c a l  r ep resen ta t ion  is  made of the  planform. The chordwise  coordinate   t rans-  
formation  has no rad ia l   dependence   for  a l l  po in t s  beyond t h e   t i p .   I n  THREED 
x, and xf are c a l l e d  XA(J) and  XF(J). 

The s e c o n d   s t e p   i n  mesh cons t ruc t ion ,   i n   t he   chordwise   d i r ec t ion ,  i s  
d e f i n i n g  

sin upstream  boundary,  typically %in 2 -8 ( G i n  -f XN) 

%ax downstream  boundary,  typically %ax = 6 ( h a x  + XX) 

and t h e   i n d i c e s  I A  5 I F  which  determine how many s t a t i o n s  are loca ted  
between 1 (%in) and I A  (x,) , I A  (x,) and IF   (x f )  , and I F   ( x f )  and I M  (%ax). 
S imi l a r   ana ly t i ca l   exp res s ions  are u s e d   t o   d e f i n e   t h e  mesh s t a t i o n s   i n  x: 

I I I A  
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where   t he   va r i ab le  5 is  defined  between -1 and 1 by 

5 = - 1 +  2 ( I  - 1) 
I M  - 1 

I n  t h e   t h i r d   s t e p   i n   t h e  vertical d i r e c t i o n   t h e   f o l l o w i n g  are def ined:  

zmin  lower  boundary,  typically  zmin = -3 (zmin -+ ZN) 

zmax upper   boundary,   typical ly  zmax 3 (zmX -+ ZX) 

and t h e   i n d i c e s  KU = KO + 1 which  determine how many s t a t i o n s  are loca ted  
between 1 (zmin) and KO (nea res t   t o   t he   l ower   su r f ace   o f   t he   b l ade ) ,  and KU 
(nea res t   t o   t he   uppe r   su r f ace   o f   t he   b l ade )   and  KM (Zmax).  The  mesh s t a t i o n s  
i n  z are def ined  by u s i n g   t h e   a n a l y t i c a l   e x p r e s s i o n s :  

K > KO Z(K)  = ZX - COS - 5 ZX (x ) 

'where 5 i s  defined  between -1 and 1 by 

5 = - 1 +  2(k - 1) 
K" 1 

The  mesh dimensions i n   t h e   c o d e  are set up t o   a l l o w   f o r  maximums of I M  = 6 4 ,  
JM = 32,  and KM = 32. 

FINITE DIFFERENCE  SCHEME 

In   equat ion  ( l ) ,  the   nonl inear  term (a/ax)[B(aI$/ax) + B ' ( ~ I $ / ~ X ) ~ ] ,  which 
i s  o f t en   wr i t t en   nonconse rva t ive ly  as VI$,,, is  r e s p o n s i b l e   f o r   t h e  mixed 
cha rac t e r  of the  f low.  It  i s  w e l l  e s t a b l i s h e d   t h a t  a mixed  scheme  must  be 
u s e d   f o r   t h e   n o n l i n e a r   f l u x   d i s c r e t i z a t i o n   ( r e f s .  2 and 3) ,  given as fo l lows  
f o r  a uniform mesh spacing:  

L e t  Vi = B + 2B' 'i+1 - Qi-1 

2Ax 

In   t he   fo l lowing   fou r  cases tG be   cons idered   the   nonl inear  term is  d i s c r e t i z e d ;  
e * g .  9 

Case 1 vi z 0 Vi-1 - > 0 (subsonic   po in t )  

( t h e   i n d i c e s  j and k, which are i n v a r i a n t ,  are no t   i nd ica t ed ) .  
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Case 2 Vi < 0 Vi-l < 0 (Supersonic  point) 

'i - 2@i-l + @i-2 
Discretization:  Vi-l 

Ax2 

Case 3 Vi < 0 Vi-l 2 0 (sonic  point) 

@i - + $i-2 
Discretization: V. 

1 Ax ' 
Case 4 Vi L 0 Vi-l < 0 (shock  point) 

In contrast  to  most small disturbance  codes  (typified  by  refs. 4 and 5) ,  
the  discretization  of  the  sonic  point  (case 3) eliminates  some  spurious  oscil- 
lations  that  appear  when  the  sonic  line is located  close  to  the  leading  edge 
of  a  blunt  airfoil in a  region  where  the  flow  experiences  a  rapid  acceleration. 
It can  be  shown  that  the  discretization  that  is  proposed  here  is  consistent 
with  the  equation,  but  it  is  not  strictly  conservative.  However,  the  error  of 
conservation  is  small,  and  not  larger  than O(Ax). The  shock-point  discre- 
tization,  however,  ensures  conservation  of  mass  at  the  shock  point. 

The  next  term in equation (1) is  the  cross-derivative  term.  This  term  is 
small  inboard  where  the  flow is subsonic  and  two-dimensional.  However,  €or 
large  advance  ratios ( p  2 0 . 5 )  and  for  values  of  azimuth  and  radius  where  the 
transonic  flow  has  a  large  radial  component,  its  effects  cannot  be  neglected. 
In  fact,  in  these  cases  the  cross-derivative  term,  which is usually  treated 
explicitly  (i.e.,  always  at  the  previous  time  level  (ref. 5 ) ) ,  has  a  destabi- 
lizing  effect  and  can  strongly  reduce  the  time  step  required  for  maintaining 
overall  stability. 

For  values  of  C L 0 ,  corresponding  to  a  negative  sweep  angle,  the  cross- 
derivative  term  is  discretized  as: 

For  values  of C < 0, corresponding to a  positive  sweep  angle,  the  following 
discretization  is  used: 

The  schemes  that  are  presented  for  uniform  mesh  spacing  extend  readily 
to  the  mesh  obtained  from  the  coordinate  transformation.  The  coefficient  of 
the  cross-derivative  is  now 
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For  discretization  of  the  term  c(ag/ax)  (a</ay)  (a2@/a<2)  a  centered  scheme  is 
used  at  all  points: 

SOLUTION  ALGORITHM 

The  time-accurate  integration  is  obtained  by  using  an  Alternate  Direction 
Implicit (ADI) scheme  that  breaks  the  three-dimensional  problem  into  three  one- 
dimensional  problems  in  each  coordinate  direction.  The  advantage  of  this 
scheme  is  its  inherent  stability,  at  least  in  the  case  of  a  linear  equation, 
regardless of the  local  Courant  number.  Indeed,  when  solving  a  complicated 
problem,  in  a  mesh  where  the  cell  sizes  may  vary  by  one  or  more  orders  of  mag- 
nitudes,  it  would  be  very  time-consuming to limit  the  time  step  to  satisfy  the 
Courant  number  associated  with  the  smallest  cell. 

However,  since  the  equation  being  solved  is  nonlinear,  there  is  a  prac- 
tical  limitation  which  can  be  associated  with  vortex  shedding  in  lifting 
cases  or  configurations  with  shock  motion.  This  means  that  the  cell  sizes 
must  never  be so small  on  the  airfoil  surface  and  near  the  trailing  edge 
that  the  allowable  time  step  for  maintaining  stability  is  unnecessarily 
limited. 

A  Crank-Nicholson  averaging  between  the  levels  n  and  n + 1 is  used 
since  it  can  be  shown  on  the  linearized  equation  that  a  stable  scheme  results. 

The  three  steps of the  ADI-Crank-Nicholson  algorithm  are  as  follows: 

Step 1 

ag ag a2+n 
ax  ay ag2 

+c-" 
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It should  be  noted  that  the  underlined  terms  are  treated  explicitly.  However, 
an  implicit  scheme  can  easily  be  devised  based  on  switching  from  a  centered 
difference  approximation  to  a2$/ag2  when  (cac/ax)(ag/ay) 1 0 ,  and  to  an 
upwind  difference  approximation  when  (cag/ax)(ag/ay) C 0. Test  results  for  a 
swept  tip  showed  very  little  difference  between  the  implicit  treatment  and  the 
explicit  scheme  given  previously. 

Step  2 

Step  3 

After  these  equations.  are  discretized  according  to  the  method  discussed  in  the 
Finite  Difference  Scheme  section,  the  algebraic  system  is  inverted  by  using  a 
tridiagonal or quadradiagonal  direct  solver.  Particular  attention  is  given, 
when  defining  the  finite  difference  analogues,  to  ensure  that  the  main  diagonal 
term  could  be  chosen  as  pivot  in  the  elimination  process.  All  the  terms,  which 
are  treated  implicitly,  contribute to the  main  diagonal  with  the  same  sign. 

Each  complete  time  step  requires  approximately  2.5  sec  of  CPU  time  of  the 
CDC 7600 computer.  A  rectangular  blade  computation  requires  approximately 
half  an  hour  of  total  run  time. For swept  tips,  where  there  is  a  more  severe 
time-step  limitation,  the  total  run  time  is  an  hour.  The  corresponding  mesh 
is  composed  of  approximately  35,000  nodes. 

RESULTS 

Some  three-dimensional  steady  (hover)  flows  are  simulated for three  blade 
geometries:  a  rectangular  blade,  a  swept-tip  blade,  and  a  blade  combining  a 
swept  and  parabolic  tip  (fig. 1 ) .  The  pressure  distributions  are  presented 
for  three  sections  of  the  blades  in  figures  2(a-c)  for  blade A, figures  2(d-f) 
for  blade B y  and  figures  2(g-i)  for  blade  C.  As  can  be  seen,  the  effect of 
sweep  is  favorable  inboard.  The  shock  waves  either  are  weakened  or  disappear 
on  blade  C.  Close  to  the  tip,  however,  the  opposite  trend  seems to occur,  with 
blade  C  experiencing  the  largest  supersonic  pocket.  The  global  effect  is 
favorable  for  the  swept  tips  in  hover. 

Three-dimensional  unsteady  flows  past  a  rectangular  blade  of  aspect  ratio 
A =  7, have  been  computed  at  Mach  numbers  M = 0.6 and  advance  ratios (11) of 
0.45,  0.5,  and  0.55.  The  blade  has  no  twist  and  is  equipped  with  a  symmetric 
NACA OOXX profile  of  varying  thickness  along  the  span.  ONERA  experimental 
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data  for  the  same  rotors  and  test  conditions  are  available  for  comparison 
(ref. 4 ) .  Figure 3 shows  the  radial  stations  for  the  experimental  pressure 
measurements. The corresponding  results  are shown in figures  4(a-c)  for  the 
azimuth  of 60" and in figures  4(d-f)  for  the  azimuth  of 120" at  the  lowest 
advance  ratio.  For  the  advance  ratio  of p = 0.5, the  results  are  presented 
in figures 4(g-1). Figures  4(m-r)  show  results  for p = 0.55 for  the  same 
two  azimuth  angles  of 60" and 120". Also  plotted in these  figures  are  the 
quasi-steady  results,  which  correspond  to  a2$/atax = 0 .  As can  be  seen,  the 
unsteady  results  agree  better  with  the  experimental  results,  indicating  a  non- 
negligible  unsteady  term  a2$/atax.  Furthermore,  a  comparison  of  the  quasi- 
steady  solutions  at  azimuth  angles  of 60" and 120" exhibits  the  influence  of 
the  cross-derivative  a2$/axay,  which  increases  toward  the  tip. 

THREED  CODE 

THREED  has  been  coded  in  FORTRAN  by  using  only  standard  statements. In 
its  present  form  it  is  adapted  to  the  CDC 7600 computer  of  the  Ames  Research 
Center,  NASA,  Moffett  Field,  California.  The  Small  Core  Memory  (SCM)  length 
is 27,257 decimal  words  and  the  Large  Core  Memory  (LCM)  length  is 131,072 deci- 
mal  words.  THREED  is  divided  into  one  main  program  and  four  subroutines: 

SUBROUTINE  MESH  defines  the  mesh  and  computes  the  metric  coefficients 
SUBROUTINE  SLOPE  computes  the  slope  of  the  blade  at  each  point 
SUBROUTINE  POT  integrates  the  potential  equation 
SUBROUTINE  CP  computes  the  pressure  coefficient  on  the  blade 

The  data  as  they  are  read in and  printed  out  are  shown in appendix  A.  The 
values  shown  correspond  to  the  results  plotted  in  figure  4(g-1).  A  short 
explanation  of  the  parameters  as  well  as  the  notation  in  THREED  follows: 

i) 

ii) 

iii) 

HM = 0.6 
ALPHO = 0 
DALPH = 0 
IROT = 1 
IROT = 0 
AV = 0.5 
GM = 1.4 

NSTP = 601 
ITER = 400 
DTN = 0.0001 
DTX = 0.01 
NMOD = 8 

Mach  number 
mean  incidence of the  sinusoidal  motion,  deg 
amplitude  of  the  incidence  variation,  deg 
rotating  blade  case 
fixed  blade  or  wing  case 
advance  ratio 
ratio  of  specific  heats 

number  of  time  steps 
number  of  iteration  steps 
minimum  time-step  size  in  the  relaxation  process  (rad) 
maximum  time-step  size  in  the  relaxation  process  (rad) 
number  of  elements in the  time-step  sequence  based on 

DTN  and  DTX 
TI = -1.5708 initial  time  (rad) 
NPR = 100 time  step  at  which  results  are  printed 

YC = 0.9 location  of  the  kink  or  a  special  span  location 
YD=1 tip  of  the  blade 

11 



iv) 

VI 

vi) 

vii) 

KSG = 1 

KSG = 0 
DEL = 0.12 

AR = 7 

JYSM = 0 

JYSM = 1 
KSYM = 1 
KSYM = 0 

KGRAD = 1 
KGRAD = 0 

IM = 64 
JM = 32 
KM = 32 

IA = 18 
IF = 48 
JC = 11 
JD = 21 
KO = 16 
KU = 17 

XN = -8 
X X = 6  
YN = 0.5 
YX = 1.5849 
ZN = -3 
zx = 3 

indicates  that  the  blade is symmetric  with  respect to 

indicates  that  the  blade  is  not  symmetric 
thickness  of  the  basic  profile  as  defined  subsequently 
aspect  ratio  of  the  blade 

indicates  that  a  strip-theory  condition is used  at  the 

indicates  that  a  symmetry  condition  is  used  at  the  root 
there  is  a  lower-upper  symmetry 
there  is  no  lower-upper  symmetry 
a  Neuman  boundary  condition  is  used 
a  Dirichlet  boundary  condition  is  used 

number  of  mesh  points in the 6 direction (564) 
number  of  mesh  points in the q direction (532) 
number  of  mesh  points in the 5 direction (532) 

leading-edge  index ( I A  5 IF) 
trailing-edge  index  (IF 5 64)  
kink  station  index  (JC I JD) 
tip  station (JD 5 32)  
lower-surface  index 
upper-surface  index (KU = KO + 1 5 32) 

location  of  most  upstream  surface 
location  of  most  downstream  surface 
location  of  innermost  surface 
location of outermost  surface 
location  of  most  bottom  surface 
location  of  most  tip  surface 

z = o  

root 

viii)  The  basic  airfoil  is  defined  by  two  sets  of  values  representing  the 
abscissas  and  the  ordinates  of  points on the  profile.  The  maximum  number  of 
points  is 101. The  points  are  distributed in sequential  order  around  the  air- 
foil,  starting  from  the  trailing  edge  describing  the  upper  surface,  then  the 
lower  surface,  and  then  back to the  trailing  edge. 

NP = 101 total  number  of  points (5101)  
(NP + 1 ) / 2  must  correspond  to  the  leading  edge 

When  the  geometry  changes  rapidly  it  is  preferable  to  concentrate  the 
points  near  the  leading  and  trailing  edges  in  order  to  ensure  the  best  pos- 
sible  accuracy  for  linear  interpolation.  The  coordinate  profile  at  the  mesh 
location  N  is 

xp (N)  abscissa 
ZP  (N) ordinate of  point  N 

The  planform  geometry  of  the  blade  is  defined  by  piecewise-analytic  formulas 
in the  subroutine MESH. An example is given in appendix B for  a  swept  tip. 
The  functions XA(J) and  XF(J)  are  defined  in  the  loop  starting  with 

12 
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77 DO6J=l,.JM 

and  ending  with 

87 6 CONTINUE 

as  shown in the  box. 

CONCLUSIONS 

A  finite  difference  code  for  predicting  the  high-speed  flow  over an 
advancing  helicopter  rotor is presented.  The  code  solves  the  low-frequency 
transonic  small  disturbance  equation  and is suitable  for  modeling  the  effects 
of  three-dimensional  advancing  blade  unsteadiness.  This  work  was  inspired  by 
a  similar  method  developed  by F. X. Caradonna  (ref. 5). However,  the  computer 
code  THREED  incorporates  some  important  new  features,  especially  the  capabil- 
ity  for  treating  nonrectangular  blade  tips.  Computed  results  show  good 
agreement  with  experimental  blade  pressure  data  and  illustrate  some of the 
effects  of  varying  the  rotor  planform.  The  flow  unsteadiness  is  shown  to  be 
an  indispensible  part  of  a  transonic  solution. It is also  shown  that  close  to 
the  tip  at  high  advance  ratio,  cross-flow  effects  can  significantly  affect  the 
solution. 

Ames  Research  Center 
National  Aeronautics  and  Space  Administration 

and 
Aeromechanics  Laboratory 

AVRADCOM  Research  and  Technology  Laboratories 
Moffett  Field,  Calif. 94035, April 10, 1980 
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APPENDIX A 

SAMPLE OF DATA AS READ I N  AND PRINTED OUT OF CDC 7600 COMPUTER 

MACH M E A N  I N C I D E N C E  R O T A T I O N  A D V A N C E  H F A T  
NUMBER I N C I D E N C E  V A R I A T I O l u  Y / N  R A T I O  R A T I O  

- 6  0. 0. 1 .5 1.4 

N O . T I M E  N 0 . S T E P S  M I N   S T E P  M A X   S T E P  R E L A X A T I O N  I N I T I A L  F I N A L  I M P R .  
S T E P S  R E L A X A T I O N  R E L A X  R E L A X  C Y C L E  T I Y E  T I M E  S T E P S  

60 1 40 .000 1 .01 8 -1.5708 1.5708 100 

S P E C I A L  T I P  GEOM. B A S   I C  A S P E C T  
S P A N  L O C A T I f l N  S Y M M E T R Y  T H I C K N E S S  R A T I O  

.9 1. 1 . 12 7. 
L O C A T I O N  Y / N  

ROOT  SYM U P - L O  L A T E R A L  
C O N D I T I O N  SYMMETRY G R A D I E N T  

Y / N  Y / N  Y / N  
0 1 1 

N0.X  N0.Y  N0.Z 
M E S H  M E S H  M E S H  
64 32  32  

L E A D I N G  T R A I L I N G  S P € C I A L  T I P  L I lWER U P P E R  
E D G E  EDGE S P A N  NO. 1\10. S l J R F A C E  1\10. S.NO. 
18 48 1 1  21 16 17 

M1N.X M A X - X  M1N.Y MAX. Y M1N.Z MAX. 2 

-8 .0 6.0 .5 1 .5849  -3. ' 3. 
S U R F A C E   S U R F A C E   S U R F A C E   S U R F A C E   S U R F A C E   S U R F A C E  
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E i A S I C  P R O F I L E  
N O o P l ) I N T S  IPIDFX A H S C l S S A   O R D I h l A T t  
10 1 

1 1 00000 001 3 
2 0 9990 -0014 
3 09961 00018 
4 09911 -0025 
5 99843 9 0 0 3 4 
h 09755 9 0046 
7 09649 -0061 
8 -9524 90077 
9 -9382 90096 
10  09222 00117 
11  09045 00139 
12  .P853 00163 
1 3  0 8645 00188 
14  -8423 ,0214 
15 - 8 1 8 7  ,0241 
16 0 7939 0026s  
17 0 7679 90297 
18 9 7409 0 0325 
19 -7129 00354 
2 0 oh841 0 0 3 8 2  
21  96545 0 0409 
22 6243 0 0436 
23 0 5937 o 046 1 
2 4  -56327 0 0486 
3 5  -5314 0050Q 
26 0 5000 90529 
27  o4h86 00548 
28 94373 .0564 
2 9  -4063 00578 
30 03757 0 0 5 8 8  
31 0 3455 90596 
32  -3159 0600 
33  -2871 0600 
34  02591 n596 
35 9 2321 90589 
36  02061 0 0577 
37  01813 00562 
38 9 1577 0542 
39 9 1355 -0519 
40 9 1147 90491 
41  00955 0460 
42  00778 9 0426 
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BASIC  PROFILE 
NO. POINTS  INDEX 
101 

4 3  
4 4  
4 5  
46 
4 7  
48 
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
56  
57  
5 8  
5 9  
6 0  
h l  
6 2  
6 3  
6 4  
6 5  
66  
6 7  
6 8  
69 
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
7 6  
77  
7 8  
7c, 
8 0  
8 1  
P 2  
8 3  
8 4  
Fi5 
Ph 
8 7  
A H  

ABSC I SSA 

00618 
0 0 4 7 6  
o n 3 5 1  
,0245 
- 0 1 5 7  
,0089 
0 0 0 3 9  
. 0 0 1 0  
0 0000  . i) 0 1 0 
. o n 3 9  
00089 
- 0 1 5 7  
. 0 2 4 5  
on351  
o 0 4 7 h  
. n h l H  
. ! )778  
. 0 0 5 5  

1 1 4 7  
91355  
. 1577  
01813 
, 2 0 6 1  
- 2 3 2 1  
0 2 5 9 1  
.2R71 

3 1  59 
. 3 4 5 5  
e 3 7 5 7  

0 4 3 7 3  
0 4 6 8 6  . 5 n o 0  

5 3 1 4  
m5627 
. 5 9 3 7  
0 6 2 4 3  
9 6 5 4 5  
. h 8 4 1  
. 7 1 2 9  
e 7 4 0 9  . 7 6 7 9  
e 7 9 3 9  
081t17 
0 8 4 2 3  

- 4 0 6 3  

,ORDINATE 

- 0 3 8 9  
0 0 3 4 8  
. 0 3 0 5  
00259 
0 0 2 1 1  
00161 
00109 
0 0 0 5 5  
00000 

- 0  no55  
"0105, 
-on161 
- 0 0 2 1 1  
-.n254 -. 0 3 0 5  
- 0  0 3 4 8  
- 0 C 3 8 9  
- 0  0 4 2 6  
- 0 94hO 
- .04?1  
" 0 5 1 9  -. n 5 4 2  
"n562 
- 9 0 5 7 7  -.r)!iFlC! 
"0596 
- 0 0600  
-.Oh00 
" 0 5 9 6  -. n5R8 
" 0 5 7 8  -. 0 5 6 4  
- 0 0 5 4 8  
-.05.29 
- 0 0 5 0 9  -. 0 4 8 6  
- 0 046  1 
- 0  0 4 3 6  
- 0 0400 
" 0 3 8 2  
" 0 3 5 4  

- . 0 2 9 7  -. 0 2 6 9  

- 0  0 2  1 4  

-. n 3 2 5  

- . n z 4 1  
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BASIC  PROFILE 
NO. POINTS  INDEX 

101 

8 9  
90 
9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  

99 
1 0 0  
1 0 1  

9 8  

ABSCISSA 

8 6 4 5  
08853 
- 9 0 4 5  
- 9 2 2 2  
- 9 3 8 2  
0 9 5 2 4  
0 9 6 4 9  
- 9 7 5 5  
- 9 8 4 3  
09911 
- 9 9 6 1  
0 9 9 9 0  

1 .0000 

ORDINATE 
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APPENDIX B 

SUBROUTINE MESH 
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p = O  

E LAO ES I !  I 
i l i  

COMPUTATION  SECTION  NO. J = 066 11 16 21 

Figure  1.- Simulat ions  of   three-dimensional   s teady  (hover)   f lows for: A - a 
rec tangular   b lade ;  R - a swept-tip  blade;  and C - a combination of swept- 
and  parabol ic- t ip   blade.  
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BLADE  A BLADE  A 

y = 0.949 
Y = 0.9745 

.5 

-cp 0 

-.5 

0 .5 
X 

1 

(a) S t a t i o n  J = 11. 

BLADE A 

0 
1 I 

.5 1.0 
X 

( c )   S t a t i o n  J = 2 1 .  

-cP 

X 

( b )   S t a t i o n  J = 16.  

1 

.5 

-cP 

0 

0 

BLADE  B 

y = 0.949 

.5 
X 

1 

(d)  Swept t i p ,   s t a t i o n  J = 11. 

Figure  2.- P r e s s u r e   d i s t r i b u t i o n   c o m p u t a t i o n s ;   t i p  i n  hover. 
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BLADE B BLADE B 

1 

.5 

-CP 

0 

-.5 

1 
Y = 0.9745 

0 

"CP 

.5 

-.5 

y =  1 

.5 
X 

1 
.5 1 

X 

( e )  Swept t i p ,   s t a t i o n  J = 16. ( f )  Swept t i p ,   s t a t i o n  J = 21. 

F igu re  2 .  - Continued . 
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I' " 

.6 

-cp 0 

-.5 

BLADE C BLADE C 

o5 r y = 0.9745 

0 
5 x 

1 0 .5 
X 

1 

(g) Swept t i p ,   s t a t i o n  J = 11. (h) Swept t i p ,   s t a t i o n  J = 1 6 .  

BLADE C 

-.5 
0 .5 

X 
1 

(i) Swept t i p ,   s t a t i o n  J = 21. 

F i g u r e  2 .- Concluded. 
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1 p = 0.45, 0.50, and 0.55 

RECTANGULAR  BLADE 

I 

COMPUTATION SECTION NO. ++&j 
! !  

EXPERIMENTAL  DATA SECTION NO. @ @ 

Figure  3 . -  Three-dimensional  unsteady  problem fo r  f o r w a r d   f l i g h t .  
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X 

(a) S t a t i o n  11. 

1 

IL = 60" 
y = l  
p = 0.45 

I 
0 

.5 I I 

X 
1 

(c) S t a t i o n  21. 

0 EXPERIMENT 
THEORY 

IL = 60" 
y = 0.95 
1.1 = 0.45 

I 1 

.5 0 1 
X 

(b )   S t a t ion  16.  

0 EXPERIMENT 
THEORY 

1 

.5 

-cP 

a 

-.5 

JI = 120° 

.5 
X 

(d )   S t a t ion  11. 

1 

Figure  4 . -  Pressu re   d i s t r ibu t ion   computa t ions .  Symbols denote   da ta   f rom 
re fe rence  4 .  
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0 EXPERIMENT 
THEORY 

J, = 120" 
y = 0.95 
p = 0.45 

-cP 

0 .5 
X 

(e) S t a t i o n  1 6 .  

0 EXPERIMENT 
THEORY 

J, = 60" 
y = 0.9 
u = 0.50 

-.5 c 
0 .5 

x 

(g )   S t a t ion  11. 

1 

J, = 120" 
y =  1 
1.1 = 0.45 

I 1 

0 
1 

.5 1 
X 

1 

1 

.5 

-cP 

0 

-.5 

(f) S t a t i o n  21.  

0 EXPERIMENT 
THEORY 

$ = 60" 
y = 0.95 
p = 0.50 

1 1 

.5 1 
X 

(h)  S t a t i o n  16 .  

F igure  4 .  - Continued. 
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0 EXPERIMENT 
- THEORY 

0 .5 1 
X 

1 -  

.5 

-cP 

0 -  

-.5 

0 

' 

- 

( i )   S t a t i o n  21.  

0 EXPERIMENT 
L THEORY 

* = 120° 

Y = 0.95 
u = 0.50 

0 0  

$I = 120" 
y = 0.9 
Ll = 0.50 

0 

.5 

-cP 
a 

-.5 

.5 
X 

( j )  S t a t i o n  11. 

/ \ 1.1 = 0.50 

1 

(k) S t a t i o n  16. 

Figure 4 . -  Continued. 

.5 
X 

(1) S t a t i o n  21. 

.5 
X 

1 

1 
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0 EXPERIMENT 
UNSTEADY  CALCULATION "_ QUASI-STEADY  CALCULATION 

1 

. .5 

-cP 

0 

-.5 

1 
$ = SO" 
y = 0.9 
.u = 0.55 

.5 
X 

(m) S t a t i o n  11. 

1 

.5 

"Cp 

0 

-.5 

.5 

. cP 

0 

-.5 

0 EXPERIMENT 
UNSTEADY  CALCULATION 

"" QUASI-STEADY  CALCULATION 

\ 

I 

.5 
X 

1 

1 

( 

(n) S t a t i o n  16. 

"- QUASI-STEADY  CALCULATION 
UNSTEADY  CALCULATION 

$ = SO0 
y = 1  

.u = 0.55 

0 .5 
X 

$ = SO" 
y = 0.95 
.u = 0.55 

(0) S t a t i o n  21 .  

1 

Figure  4 .  - Continued . 
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0 EXPERIMENT 
UNSTEADY  CALCULATION 

”- QUASI-STEADY  CALCULATION 

0 EXPERIMENT 
UNSTEADY  CALCULATION 

”_ QUASI-STEADY  CALCULATION 

1 * = 120” 
y = 0.95 * = 120° 

y = 0.9 
p = 0.55 

.5 

-cP 

a 

-.5 
.5 
X 

1 0 

0 
L 

.5 
X 

1 

(9) S t a t i o n  1 6 .  ( p )  S t a t i o n  11. 

”- QUASI-STEADY  CALCULATION 
- UNSTEADY  CALCULATION 

* = 120” 
y = 1  

p = 0.55 
I /  -\ \ 

I 
0 

I I 

.5 1 
X 

(r) S t a t i o n  21 .  

Figure 4 . -  Concluded. 
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