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CALCULATION OF THREE-DIMENSIONAIL UNSTEADY TRANSONIC FLOWS
PAST HELICOPTER BLADES
J. J. Chattot*

Ames Research Center
and
Aeromechanics Laboratory
AVRADCOM Research and Technology Laboratories

SUMMARY

A finite difference code for predicting the high-speed flow over the
advancing helicopter rotor is presented. The code solves the low-frequency,
transonic small disturbance equation and is suitable for modeling the effects
of advancing blade unsteadiness on blades of nearly arbitrary planform. The
method employs a quasi-conservative mixed differencing scheme and solves the
resulting difference equations by an alternating direction scheme, Computed
results show good agreement with experimental blade pressure data and illus-
trate some of the effects of varying the rotor planform. The flow unsteadiness
is shown to be an indispensible part of a transonic solution. It is also shown
that, close to the tip at high advance ratio, cross-flow effects can signifi-
cantly affect the solution.

INTRODUCTION

Air flow past a helicopter rotor blade exhibits many very complex features
such as three~dimensional unsteady effects, shock~wave motions, vortex inter-
actions, and stall. A complete numerical simulation cannot even be attempted
yet, but it is possible with the present-day computers and numerical methods
to model some of these features and acquire a better understanding of some of
the mechanisms involved.

The model used in this study is a perfect £luid model that is further
simplified by the small-disturbance approximation. Weak, almost normal shock
waves are accounted for by retaining the leading nonlinear term in the stream-
wise direction. This model is useful for simulating the subsonic and transonic
flow past the advancing blade. Under these conditions the incidence is usually
small, and the results presented correspond to nonlifting blades. A proper
wake representation is required to extend this simulation to lifting configur-
ations. Prediction of the complicated rotor vortex structure is not within
the scope of the present work.

*ONERA exchange scientist.



It is hoped that this report and the code named and referred to hereafter
as THREED will be useful tools in their limited scope and that enough flexibil-
ity has been built into THREED to allow for later improvement.

This work was done while the author was on assignment at the U.S. Army
Aeromechanics Laboratory, Ames Research Center, Moffett Field, California,
according to the Memorandum of Understanding (MOU) agreement between Office
National D'Etudes et de Recherches Aérospatiales (ONERA), France and U.S. Army
at Ames on helicopter research.

The author wishes to express his thanks to Dr. C. Capelier, Director of
the Aerodynamics at ONERA and Dr. I. C. Statler, Director of the U.S. Army
Aeromechanics Laboratory as well as his colleagues at the Ames Research Center
who made this visit possible, and most pleasant. Special thanks go also to
Mrs. C. Coulombeix and Mr. Le of ONERA for the hardship of losing their group
leader for nine months. Finally, a '"grand merci" to Chris Dolnack for the

very good typing.
EQUATION AND BOUNDARY CONDITIONS

The mathematical model used in this report is the three-dimensional
unsteady (low-frequency) small-disturbance transonic equation as derived by
M. P. Isom (ref. 1, p. 20). This equation is derived in a blade-attached
Cartesian coordinate system under the usual assumptions:

1 - M2(1 + )2 = 0(s2/%)

e = 0(8)
where
M= %B tip Mach number due to the blade rotation
u = Y advance ratio
R
§ blade thickness
e\ 1
€ = (ﬁ) inverse of the aspect ratio
R blade radius
c chord of reference
Q rotational velocity
= sound speed
v forward velocity of the rotor



In condensed notation the equation can be written:

%9 d (39 Y 2 326 , 5 2%
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where

A = 2M2 Ef?? (y + ¢ cos t)

_ 1 - M*(y + u cos t)?

62/3
B' = v ; 1 M?(y + U cos t)
Cc = 2M? 626/3 W sin t(y + 1t cos t)
2
£
D= 5273
E=1

t, x, y, and ? are the dimensionless dependent variables normalized by @,
-1/3 . . . A

c, R, and & c, respectively, and <y is the ratio of the specific heats.

At each time step NS in THREED, the coefficients are computed and stored in

one-dimensional arrays

A(J), B(J), BP(J), C(J), D(J), E(J), I =1, ... M

for all values of the spanwise index J. Allowance is made in the code for a
term A'3¢/d3t for which the value of the coefficient is stored in AP(J) and
has been set to zero for all present uses.

Initial and boundary conditions are required. To integrate this equation
the initial condition used is usually the quasi-steady solution (i.e., ¢4+ = O
in eq. (1)).

On the mean surface of the blade the flow tangency condition is expressed
(cf. ref. 1) as:

%%—= (y + 1 cos t)f'(x) at z=0
At the innermost grid location, Ymin® EWO boundary conditions can be

in
used:

1, A symmetry condition (equivalent to a flat tunnel wall in wing
calculations)

%% =0 (specified by setting JSYM = 1 in THREED)



2. A strip-theory condition (used for rotor blades or semi-infinite wings)

2
3% _

3y2

In the far field a Dirichlet (¢ = 0) or a Newman (3¢/on = 0) condition has been
used. The upstream boundary is usually taken as the uniform undisturbed flow

(¢ = 0).

COORDINATE TRANSFORMATION AND THE CORRESPONDING MESH SYSTEM

In order to treat a large class of planform shapes, a coordinate trans-
formation is made prior to the discretization of the equation. This transfor-
mation incorporates some one-dimensional stretching capabilities concentrating
the mesh in regions of large gradients; in particular, near the surface of the
blade, near the leading edge, and near the tip. The coordinate transformation

is of the form, (X,y,z) > (E,n,%),

where
€=€(X’Y)
n = n(y)
= t(z)
Equation (1) now becomes:
22 3 2
98 8% _ _ (3EY 8%¢ . o.(BEY B (3¢ aaaa J
A 5ege = 8 (55) 2z T 0 (3) o2 (ag) AT 322
2
9E an 9E 8ny 3%¢ _a_na_zg zc__cb g 3% 3¢
+ (C 5% oy T 2 3y 8y) 5tan T D(ay) sn2 T E az) sz T B ox? OF
2
v 9E 9%E (3¢ (aza 825)8_¢ 3%n 3¢ . 8%z 39
+ 2B N (ag) + {c x5y T D ayt) 3 +D T + E % ot
(2)

The coefficients in equation (2) are the partial derivatives of the trans-
formation. This form of the equation is called semiconservative; the metric
coefficients are brought outside the 3/3E, 3/9n, 3/9C symbols. It can be
shown that, if the transformation is sufficiently regular, the jump conditions
are preserved across a discontinuity.

Computation is made of four first partial derivatives and five second
partial derivatives. They are 29&/3x, 3&/dy, 8n/8y, and Bg/az (called in
THREED XIX, XIY YIY, and ZIZ, respectively) and 3%%/9x2, 3%£/5xdy, 32&/9y2,
32n/3y?, and 3 ;/az2 (called in THREED XIX2, XIXY, XIY2, YIY2, and ZIZ2,



respectively). These quantities are computed at each interior mesh point by
using finite difference approximations of the coefficients of the inverse
transformation and the following identities:

] = 3% 3%
9E ox
= 9y 9n

1 an oy
= 9z 3%
1= 3C oz

dx 9f 9x 9n
9¢ oy an Jy

and, similarly,
2
dx 92 32x (ag)
0 = — + —= =
£ 3x 3g2 \9x

dx 3%t | 9%x 9£ d& | _3%x 23E An
9E dx 3y ' 3g2 9x dy  BE 9n 9x dy

Upai

[\o]

0 =§z§2_u+3_2>:(8_n)2
on 3y2  gn2 \9y

2
0 = dx 2% ax 3%n 3%k _ag) + 9 3%x 3E 3n _32_x(§n)
9t ay?  8m ay2 3% \3y

3€ 3n 3y 3y  an? \dy
2 2 2
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L 3z 32
The derivatives 9x/3%, . . . are evaluated by finite differences at point
i,j as
(E) _ Mir,g T Fie1,j
3E 1,3 2AE

These expressions include second-order terms [0(AE + An)? + 0(Az)%]. The mesh
is constructed in three steps. In the first step the locations of the span-
wise stations are defined. The following stations are specified:

A innermost station on the blade, typically Yo = 0.5 (y_,_ 1is

WM referred to as YN in THREED) in min

Y. a special station on the blade (e.g., a kink in the planform),
typically Yo = 0.9 (yc + YC in THREED)

Y4 the tip of the blade Yq = 1 (yd -+ YD in THREED)



y outermost radial statiom, typically vy =1.5 (y_~»Y¥X in
WaX  HREED) max X

In addition to these real numbers the corresponding integers (JC < JD) must be
defined. This determines how many stations for computation are located
between 1 (ypin) and JC (yc), JC (yc) and JD (yd), and JD (yd) and JM (ymax)'
The following analytical expressions are used to define the mesh stations:

T n- nD
J > JD Y(J) = YX + cos{s —— (YD - ¥X)
21 - )
S
J < JC Y(J) = YN + cos E-_—7r—_-(YC - YN)
c
n—nc
JC < J < JD YJ) =YC + — (YD - YC)
nD - nc

where the variable n 1is defined between 0 and 1 by

_J-1
=M -1

The planform of the blade then yields the locations =x, and x§ of the leading
and trailing edges as functions of J. For this purpose, a piecewise analyti-
cal representation is made of the planform. The chordwise coordinate trans-
formation has no radial dependence for all points beyond the tip. In THREED
Xy and x¢ are called XA(J) and XF(J).

The second step in mesh construction, in the chordwise direction, is
defining

Xnin upstream boundary, typically =xpin = -8 (Xpin > XN)

Xpax  downstream boundary, typically xp .. = 6 (xp,, > XX)

and the indices IA < IF which determine how many stations are located

between 1 (xpjp) and IA (x,), TA (x,) and IF (x§), and IF (xf) and IM (Xpay) -
Similar analytical expressions are used to define the mesh stations in x:

m & - EF

I>1F X(1,J) = XX + COS(E'T——————>[XF(J) - XX]
— EF
m & - E‘_‘A

I < IA X(I,J) = XN + cos(E-—T————>[XA(J) - XN]
— _gA

{ T £ - gA
IA < I < IF X(I,J) = XA + |1 - cos(i-———————> [XF(J) - XAWI)]
S




where the variable £ 1is defined between -1 and 1 by

In the third step in the vertical direction the following are defined:
Zpin lower boundary, typically zpin = -3 (zgpin > ZN)
Znhax ~ upper boundary, typically zp,, = 3 (z .. > ZX)
and the indices KU = KO + 1 which determine how many stations are located
between 1 (zpi,) and KO (nearest to the lower surface of the blade), and KU

(nearest to the upper surface of the blade) and KM (zpsx). The mesh stations
in z are defined by using the analytical expressions:

cos(%-c)ZX

cos(% c)ZN

ZX

K > KO Z(X)

ZN

~
A
3
N
~
~
~
I

‘'where ¢ is defined between -1 and 1 by

_ a2k = 1)

r =-1+ M= 1

The mesh dimensions in the code are set up to allow for maximums of IM = 64,
JM = 32, and KM = 32.

FINITE DIFFERENCE SCHEME

In equation (1), the nonlinear term (9/5x)[B(8¢/5x) + B'(34/9x)?], which
is often written nonconservatively as V¢yy, is responsible for the mixed
character of the flow. It is well established that a mixed scheme must be
used for the nonlinear flux discretization (refs. 2 and 3), given as follows
for a uniform mesh spacing:

6. - O,

Let V.=B+2B'—_]—'j-l__—.l_l.
i 2Ax

In the following four cases tc be considered the nonlinear term is discretized;

e.g., '

Case 1 Vi >0 Vi_l >0 (subsonic point)

¢ " 2¢i + ¢i—1

Ax?

i+1

Discretization: Vi

(the indices j and k, which are invariant, are not indicated).



Case 2 Vi <0 v <0 (Supersonic point)

¢, — 2¢,  t b

Discretization: V., = = =2
1-1 Ax?
Case 3 V. <0 V. >0 (sonic point)
i i-1
b, — 2¢,  + ¢,
Discretization: V, = =2 1-2
i Ax?
Case 4 Vi >0 Vi—l <0 (shock point)
0., = 20, + b, b, - 20, +¢,
Discretization: V, 1+ = 1=l + V, = Ets =2
i Ax? i-1 Ax?

In contrast to most small disturbance codes (typified by refs. 4 and 5),
the discretization of the sonic point (case 3) eliminates some spurious oscil-
lations that appear when the sonic line is located close to the leading edge
of a blunt airfoil in a region where the flow experiences a rapid acceleration.
It can be shown that the discretization that is proposed here is consistent
with the equation, but it is not strictly conservative. However, the error of
conservation is small, and not larger than 0(Ax). The shock-point discre-
tization, however, ensures conservation of mass at the shock point.

The next term in equation (1) is the cross-derivative term. This term is
small inboard where the flow is subsonic and two-dimensional. However, for
large advance ratios (u = 0.5) and for values of azimuth and radius where the
transonic flow has a large radial component, its effects cannot be neglected.
In fact, in these cases the cross-derivative term, which is usually treated
explicitly (i.e., always at the previous time level (ref. 5)), has a destabi-
lizing effect and can strongly reduce the time step required for maintaining
overall stability.

For values of C > 0, corresponding to a negative sweep angle, the cross-
derivative term is discretized as:
.. - ¢, . — ¢, . + ¢, .
c ¢l,J+1 ¢1,J d)1—1,_‘1+1 ¢1--1,3
j Ax Ay

For values of C < 0, corresponding to a positive sweep angle, the following
discretization is used:

N R S
j Ax Ay

i-1,3-1

The schemes that are presented for uniform mesh spacing extend readily
to the mesh obtained from the coordinate transformation. The coefficient of

the cross-derivative is now

8



2E an 28 2n
3% 3y T 2D 3y 3y

For discretization of the term c(B&/Bx)(ag/By)(32¢/852) a centered scheme is
used at all points:

885,53 %61,5 ba41 T 203 T 05,
j ex  dy AE?

SOLUTION ALGORITHM

The time-accurate integration is obtained by using an Alternate Direction
Implicit (ADI) scheme that breaks the three-dimensional problem into three one-
dimensional problems in each coordinate direction. The advantage of this
scheme is its inherent stability, at least in the case of a linear equation,
regardless of the local Courant number. Indeed, when solving a complicated
problem, in a mesh where the cell sizes may vary by one or more orders of mag-
nitudes, it would be very time-consuming to limit the time step to satisfy the
Courant number associated with the smallest cell.

However, since the equation being solved is nonlinear, there is a prac-
tical limitation which can be associated with vortex shedding in lifting
cases or configurations with shock motion. This means that the cell sizes
must never be so small on the airfoil surface and near the trailing edge
that the allowable time step for maintaining stability is unnecessarily
limited.

A Crank-Nicholson averaging between the levels n and n + 1 is used
since it can be shown on the linearized equation that a stable scheme results.

The three steps of the ADI-Crank-Nicholson algorithm are as follows:

Step 1
> o 2/.5.1M 27 3 n .~ 2f,2.0 2%
a2 2 () B (aey (2R, 228, () 2 22k p () (2D, 57
dx 9% At 2 \9x 2 3g? 9x 9 3% d¢% 2 y 3g? 5g2
3g 3n 3g 3n\ 3%¢" 3g 3g 329"
+ (° % oy T ? 3y 3y) 3Eam T 9% 3y pe?

=3

2
324" sz a%y"
-+ B2 >
an z 3L

+ (3

o &

a2 n ~ 2 n .~ 2 n ~
+§i7(%_+%%4y§£i7iL§i+Bi__%_+%_
2 3x2 \3E ' 3 X gx2 & BE = 2 gy2 \BE = B
n
L p 2%n 29" | o 8% 39" b oo 2% 3¢"
ay2 9an 9z2 9L oxdy 3&



It should be noted that the underlined terms are treated explicitly. However,
an implicit scheme can easily be devised based on switching from a centered
difference approximation to 9824/3£2 when (c9&/9x)(9£/3y) > 0, and to an
upwind difference approximation when (c3&/9x) (3&/3y) < 0. Test results for a
swept tip showed very little difference between the implicit treatment and the

explicit scheme given previously.

Step 2
L2808 (6-8)_1 céga_n_”Da_am) 326 _ 229"
9x 9% At 2 9x dy dy 9y/\ 39&9n 3&3dn
D(Bn) 526 226"\ D 22n (5 o™
+ = + =+ - 2
2\3y/ \an®>  3n2/ 2 ay* \n n
Step 3
z 2
A 3E 3. iji_:_i_ ) E.(QE. a2¢n+1 _ 524" .\ E 2% a¢n+1 _ 3™
ax o& At 2 \9z 3C2 3;2 2 352 azC L

After these equations are discretized according to the method discussed in the
Finite Difference Scheme section, the algebraic system is inverted by using a
tridiagonal or quadradiagonal direct solver. Particular attention is given,
when defining the finite difference analogues, to ensure that the main diagonal
term could be chosen as pivot in the elimination process. All the terms, which
are treated implicitly, contribute to the main diagonal with the same sign.

Each complete time step requires approximately 2.5 sec of CPU time of the
CDC 7600 computer. A rectangular blade computation requires approximately
half an hour of total run time. For swept tips, where there is a more severe
time-step limitation, the total run time is an hour. The corresponding mesh
is composed of approximately 35,000 nodes.

RESULTS

Some three-dimensional steady (hover) flows are simulated for three blade
geometries: a rectangular blade, a swept-tip blade, and a blade combining a
swept and parabolic tip (fig. 1). The pressure distributions are presented
for three sections of the blades in figures 2(a-c) for blade A, figures 2(d-f)
for blade B, and figures 2(g-i) for blade C. As can be seen, the effect of
sweep is favorable inboard. The shock waves either are weakened or disappear
on blade C. Close to the tip, however, the opposite trend seems to occur, with
blade C experiencing the largest supersonic pocket. The global effect is

favorable for the swept tips in hover.

Three-dimensional unsteady flows past a rectangular blade of aspect ratio
R =7, have been computed at Mach numbers M = 0.6 and advance ratios (u) of
0.45, 0.5, and 0.55. The blade has no twist and is equipped with a symmetric
NACA 00XX profile of varying thickness along the span. ONERA experimental
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data for the same rotors and test conditions are available for comparison
(ref. 4). Tigure 3 shows the radial stations for the experimental pressure
measurements. The corresponding results are shown in figures 4(a-c) for the
azimuth of 60° and in figures 4(d-f) for the azimuth of 120° at the lowest
advance ratio. For the advance ratio of u = 0.5, the results are presented
in figures 4(g~l). Figures 4(m-r) show results for u = 0.55 for the same
two azimuth angles of 60° and 120°. Also plotted in these figures are the
quasi-steady results, which correspond to 32¢/8t3x = 0. As can be seen, the
unsteady results agree better with the experimental results, indicating a non-
negligible unsteady term 82¢/3t8x. Furthermore, a comparison of the quasi-
steady solutions at azimuth angles of 60° and 120° exhibits the influence of
the cross~derivative 32¢/8x8y, which increases toward the tip.

THREED CODE

THREED has been coded in FORTRAN by using only standard statements. In
its present form it is adapted to the CDC 7600 computer of the Ames Research
Center, NASA, Moffett Field, California. The Small Core Memory (SCM) length
is 27,257 decimal words and the Large Core Memory (LCM) length is 131,072 deci-
mal words. THREED is divided into one main program and four subroutines:

SUBROUTINE MESH defines the mesh and computes the metric coefficients
SUBROUTINE SLOPE computes the slope of the blade at each point
SUBROUTINE POT integrates the potential equation

SUBROUTINE CP computes the pressure coefficient on the blade

The data as they are read in and printed out are shown in appendix A. The
values shown correspond to the results plotted in figure 4(g-l1). A short
explanation of the parameters as well as the notation in THREED follows:

i) HM = 0.6 Mach number
ALPHO = O mean incidence of the sinusoidal motion, deg
DALPH = O amplitude of the incidence variation, deg
IROT =1 rotating blade case
IROT = O fixed blade or wing case
AV = 0.5 advance ratio
GM = 1.4 ratio of specific heats
ii) NSTP = 601 number of time steps
ITER = 400 number of iteration steps
DIN = 0.0001 minimum time-step size in the relaxation process (rad)
DTX = 0.01 maximum time-step size in the relaxation process (rad)
NMOD = 8 number of elements in the time-step sequence based on
DTN and DTX
TI = -1.5708 initial time (rad)
NPR = 100 time step at which results are printed
iii) YC = 0.9 location of the kink or a special span location
YD =1 tip of the blade

11



KSG =1 indicates that the blade is symmetric with respect to

z =0
KSG =0 indicates that the blade is mnot symmetric
DEL = 0.12 thickness of the basic profile as defined subsequently
AR = 7 aspect ratio of the blade
iv) JYSM = 0 indicates that a strip~theory condition is used at the
root
JYSM = 1 indicates that a symmetry condition is used at the root
KSYM = 1 there is a lower-upper symmetry
KSYM = 0 there is no lower-upper symmetry
KGRAD = 1 a Neuman boundary condition is used
KGRAD = 0 a Dirichlet boundary condition is used
v) IM = 64 number of mesh points in the & direction (<64)
JM = 32 number of mesh points in the n direction (<32)
KM = 32 number of mesh points in the ¢ direction (<£32)
vi) IA = 18 leading—edge index (IA < IF)
IF = 48 trailing-edge index (IF < 64)
JC =11 kink station index (JC < JD)
JD = 21 tip station (JD £ 32)
KO = 16 lower-surface index
KU = 17 upper-surface index (KU = KO + 1 < 32)
vii) XN = -8 location of most upstream surface
XX =6 location of most downstream surface
YN = 0.5 location of innermost surface
YX = 1.5849 location of outermost surface
ZN = -3 location of most bottom surface
ZX =3 location of most tip surface

viii) The basic airfoil is defined by two sets of values representing the
abscissas and the ordinates of points on the profile. The maximum number of
points is 101. The points are distributed in sequential order around the air-
foil, starting from the trailing edge describing the upper surface, then the
lower surface, and then back to the trailing edge.

NP = 101 total number of points (<101)
(NP + 1)/2 must correspond to the leading edge

When the geometry changes rapidly it is preferable to concentrate the
points near the leading and trailing edges in order to ensure the best pos-
sible accuracy for linear interpolation. The coordinate profile at the mesh
location N is

XP (N) abscissa .

ZP (N) ordinate of point N
The planform geometry of the blade is defined by piecewise-analytic formulas
in the subroutine MESH. An example is given in appendix B for a swept tip.
The functions XA(J) and XF(J) are defined in the loop starting with

12



77 DO 6J =1, M
and ending with
87 6 CONTINUE

as shown in the box.

CONCLUSIONS

A finite difference code for predicting the high-speed flow over an
advancing helicopter rotor is presented. The code solves the low-frequency
transonic small disturbance equation and is suitable for modeling the effects
of three-dimensional advancing blade unsteadiness. This work was inspired by
a similar method developed by F. X. Caradomna (ref. 5). However, the computer
code THREED incorporates some important new features, especially the capabil-
ity for treating nonrectangular blade tips. Computed results show good
agreement with experimental blade pressure data and illustrate some of the
effects of varying the rotor planform. The flow unsteadiness is shown to be
an indispensible part of a transonic solution. It is also shown that close to
the tip at high advance ratio, cross—flow effects can significantly affect the
solution.

Ames Research Center
National Aeronautics and Space Administration
and
Aeromechanics Laboratory
AVRADCOM Research and Technology Laboratories
Moffett Field, Calif. 94035, April 10, 1980
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SAMPLE OF DATA AS READ IN AND PRINTED OUT OF CDC 7600 COMPUTER

APPENDIX A

MACH MEAN INCIDENCE ROTATION ADVANCE HEAT
NUMBER INCIDENCE VARIATION Y/N RATIO RATIO
b 0. O. 1 «5 le4
NO.TIME NOLSTEPS MIN STEP MAX STEP RELAXATION INITIAL FINAL
STEPS RELAXATION RELAX RELAX CYCLE TIME TIME
601 40 . 0001 .01 8 -1.5708 1.5708
SPECIAL TIP GEOM, BASIC ASPECT
SPAN LOCATION SYMMETRY THICKNESS RATIO
LOCATION Y/N
-9 1. 1 «12 Te
ROOT SYM upP-LO LATERAL
CONDITION SYMMETRY GRADIENT
Y/N Y/N Y/N
0 1 1
NO « X NO.Y NO.Z
MESH MESH MESH
64 32 32
LEADING TRATILING SPECIAL TIiP LOWER UPPER
EDGE ENGE SPAN NO. NO. SURFACE NO. S«NO.
18 48 11 21 16 17
MIN.X MAX e X MIN,Y MAX .Y MIN.Z MAX . Z
SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE
-8.0 6.0 5 1.5849 -3. 3

14

IMPR,
STEPS
100




BASIC PROFILE

NOLPOINTS
101

ITNDEX

Nolie < BEN e IV VN NE S

[l e el el o B i
CoOoD~NTTHnHPpWNOHHD

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4]
42

ABSCTSSA

1.0000
«9990
« 0961
«G9843
«9755
« 9649
«9524
«9382
9222
« 3045
«R853
« 8645
«8423
«81R7
« 7939
« T6T79
« 7409
«7129
«6R41
« 6545
«6243
«5627
«5314
+5000
<4686
« 4373
«4N63
« 3757
« 3455
<2871
«2591
«2321
«1813
e 1577
«1355
<0955
«0778

ORDINATE

«0013
<0014
«00N18
« 0034
-0046
«Q077
« 0096
«0139
«0163
«(1188
<0214
«0241
« 0297
«N325
« 0354
«0382
« 0409
<0436
0461
« 0486
<0509
. 0529
« 0548
« 0564
«0N578
«0588
« 0596
« 0600
«N596
«0589
«0N577
« 0562
« 0542
«0519
« 0491
« 0460
« 0426

15
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BASIC PROFILE
NO. POINTS
101

INDEX

43
YA
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
b4
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
a2
83
84
RS
86
R7
88

ABSCISSA

<0618
0476
«N351
0245
<0157
. 0089
«0039
«0010
<0000
L0010
«.0039
0089
L0157
0245
<0351
0476
«0A1R
0778
.0a55
e 1147
«1355
e 1577
«1R13
« 2061
« 2321
« 2591
« 2871
«3159
+ 3455
« 3757
«4N63
« 4373
« 4686
« 5000
«5314
«5627
« 5937
«6243
«6545
L6841
« 7129
« 7409
« 7679
« 7939
<8187
«R423

‘ORDINATE

«0389

. 0348

<0305

«0259

«0211

<0161

«0109

«0055

- 0000
-« 0055
—-.N10%
- N161
—.0211
- 0259
-.0305
~e 034R
-.0389
~e 0426
~ e« N4A0
- 0491
-.0519
—eNbH4y
—.0562
—. 0577
-.058Q
-. 0596
- 0600
-. 0600
-.0596
-+ 0NHR8
—«0D7AR
—e 0564
-«0548
~e 0526
-.0509
-+ 0486
—.0461
-« 0436
-.0409
~. 0387
-—.0354
~—« 0325
-.0N297
-+ (0269
-.0241
-—eN214



BASIC PROFILE
NO. POINTS
101

INDEX

89
90
91
92
93
94
95
96
97
98
99

100

101

ABSCISSA

« 8645
.8853
«9045
«9222
<9382
«9524
« 9649
«9755
«9843
«9911
«9961
«9990
1.0000

ORDINATE

-.0188
~«0163
_00139
-.0117
-+0096
e 0077
-.0061
—-«0034
-+ 0025
-.0018
"-0013
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C sedleslesios

APPENDIX B

SUBROUTINE MESH

NDUM= (YT J=YIC)/(VIDN=-YIC)

Y (J)Y=YC+DUME(YD=Y(C)

GO TO 4

CONTINUE

NDUM= = 5xPx(YIJ=-YIC)/YIC
DUM=COS (NUM)

Y(J)=YN+DUME (YC-YN)

GN TN 4

CONTINUE

DUM= 5P TH(YTJ=YIN}/(1l.-YID)
DEM=COS (DUIM)
Y{J)=YX+DUmM(YD-YX)

CONTTNUE

TRF{JSYMJMELL) YI(1)=Y(2)
WRITE(6,1000)

na 5 J=14JM™

WRITEF(6,1001) JseYI(J),YI(J)
CNONTINUE

PLANFORM EQUATION XA(J) XE(J)

NN 6 J=14JdM

YJd=Y (J)

Xa(J)=0.

XF{Ji=1.
IF(J.LEJC) GO TO 6
XA(J)=3.531767%(YJI-YC)
XF(J)=1a+XA(J)
IF(J.LE.JN) GO TO 6
XALJ)Y=XA1J-1)
XF(J)Y=XF{J-1)
CNNTINUE

XALL)Y=XA(2)
XF{1)=XF(2)
WRITF(6,1002)
Do 7 J=1,JdM
WRTITEF(6,1001) JyXALJ) «XF{J)
CONTINUE
XIT==-1.-DNXI
NO & I=1,1IM
XIT=xII+NXI
XT(IY¥=XI11
CONTINUE

I=0
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COMPUTATION SECTION NO. J = @ ‘é

Figure l.- Simulations of three-dimensional steady (hover) flows for: A - a
rectangular blade; B - a swept-tip blade; and C - a combination of swept-

and parabolic~tip blade.
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Figure 2.- Pressure distribution computations; tip in hover.
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BLADE B BLADE B
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(e) Swept tip, station J = 16. (f) Swept tip, station J = 21.

Figure 2.~ Continued.
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Figure 2.- Concluded.
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l u=0.45, 0.50, and 0.55
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a =0

RECTANGULAR BLADE
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Figure 3.- Three-dimensional unsteady problem for forward flight.
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© EXPERIMENT
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Figure 4.- Pressure distribution computations.
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(d) Station 11.

Symbols denote data from

reference 4.
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© EXPERIMENT

THEORY
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(e) Station 16.
© EXPERIMENT
THEORY
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1
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(g) Station 1l.
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W =120°
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(f) Station 21.
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THEORY
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y = 0.95
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(h) Station 16.

Figure 4.- Continued.



O EXPERIMENT
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(k) Station 16.

Figure 4.- Continued.
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© EXPERIMENT © EXPERIMENT
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0 5 1
X

(o) Station 21.

Figure 4.- Continued.
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© EXPERIMENT © EXPERIMENT
UNSTEADY CALCULATION ———— UNSTEADY CALCULATION
— — — QUASI-STEADY CALCULATION — — — QUASI-STEADY CALCULATION
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(r) Station 21.

Figure 4.- Concluded.
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