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11CSTRACT

Complex spacecraft requiring a "drag-free" capability are often troubled

by disturbances due to self-gravity and charge. To cope with these, estimation

techniques, derived from modern control theory, have been proposed. This report

presents the results of a study of the feasibility of applying those techniques,

r	Throughout, special reference is made to the Solar Probe, a spacecraft for which

these problems are regarded as unusually difficult. However, wide application

t	 of the technique to other missions is foreseen.

I



f-

s

CONTENTS

INTRODUCTION AND SUMMARY	 ...........	 .... .........................
1.1	 Statement of the Problem	 ......................................

1.2	 Estimation	 ...................................................... 	 4

1.3	 In-Flight Calibration	 ...........................................	 10

1.4 Summary of Results	 .....................	 14

2. ON-BOARD ESTIMATION 	 ....	 .........	 ........	 .........	 17

2.1 Structure of the Estimator	 ........... ...	 ........	 17
2.2 Self-Gravity 	 .............	 ..	 20
2.3	 Charge Identification	 ...........................................	 23
2.4 Estimator Design and Variance Propagation ........................ 	 29

3. GROUND ESTIMATION	 .................................................... 	 39

3.1	 Objective	 ....................................................... 	 39

3.2 Structure of the Estimator	 40

3.3	 Data and Trajectories	 ........................................... 	 42

3.4 Preliminary Results	 ..................... 	 44

3.5	 Comments	 ........................................................ 	 53

4. SELF-GRAVITY	 ...........	 ....	 ........................... 	 60

4,1	 Mathematical Model	 ............................	 60

4.2	 Application	 ..............................	 .............	 ....	 63
4.3	 Summary of'Self-Gravity	 .........................................	 69

5. REFERENCES	 ........................................................... 	 70
v

	

PRECEDING PAGE BLANK .-NOT FILMED	 _

1.



FIGURES

Figure 1.	 Spacecraft Orbit Variation 	 ................................	 18

Figure 2.	 Potentials Attained by Probe Forebody ..................... 	 24

Figure 3. Proof Mass and Proof Mass Housing Model 	 26

Figure 4. Euler-Hill	 Coordinate Frame ............................... 31

Figure 5. Trajectory Uncertainties Due to	 X	 Disturbance	 ............. 36 i

Figure 6. Trajectory Uncertainties Due to	 Y	 Disturbance	 ............. 37

Figure 7. Trajectory Uncertainties Due to Z Disturbance

Figure 8. Orbital	 Elements	 ........... ............................... 44

k
Figure 9. Behavior of a,	 Under Baseline

2
Conditions

(i = 90°,	 W = 1300 , AQ = 450 ) 46............................
p

Figure 10. Baseline Except 41 - 1350 (AR =	 900 )	 ....................... 47

Figure 11. Baseline	 Except M! =	 200	 ............. .................. 48

L	 Figure 12. Final o	 as a Function aF AV ..............	 ....	 ....... 50

Figure 13.
"J	

as a Function of Argument
2

of	 Perihelion	 ............... 51

Figure 14.
oJ2 

as a Function of Inclination ........................ 52

Figure 15. Minimum ad 2 as a Function of Perihelion	 Distance	 .......... 54

C
Figure 16. Minimum «d 2 as a Function of Random

r Acceleration Level	 (Baseline Geometry	 Case)	 ............... 55

Figure 17. Minimum rid	 as a Function of

2
Random

x

Acceleration Level	 (Improved Geometry	 Case)	 .............. 56	 .

Figure 13. Gravity Gradient Produced by Mass	 ......................... 66

Figure 19. Specific Force (Acceleration) Produced by Mass 67

vi



1.	 INTRODUCTION AND SUMMARY

1.1 Statement of the Problem

Within the past few ,years, interest has grown in a close flight past the Sun—

the Solar Probe. Amongst the miss?on objectives, a particular set is referred to

here as "radiometric science". The set consists of all the scientific information

that is potentially extractable from the Probe's orbit by DSN tracking. This in-

cludes the solar oblateness and n,er gravitational potential terms, measurement

of some of the relativistic PPN 'Parameters, and, possibly, the solar angular momentum.

Early in the mission design, it was recognized that uncertainties in the external

forces, primarily solar pressure, would affect the orbit far more than the parameters

that are intended to be measured. To circumvent this it was proposed to fly a drag

compensation system. This is based on an instrument in which a small dense ball or

"proof mass" floats free in a larger spherical cavity. Whenever the ball gets too

close to the wall, an appropriately placed thruster is fired to keep the spacecraft

away. Since the ball is protected from all external forces except gravity, it flies

a "drag-free" orbit; and the spacecraft is never far behind. In 1973 this arrangement

was flown aboard the navy TRIAD satellite and demonstrated drag compensation at the

10-10 m/sect level (10 -11 g), in spite of air drag and solar pressure effects that

were orders of magnitude larger.

i	 In Chapter 3 below, it will be shown that variations from a drag-free trajectory

must be suppressed, or at least known, to within an overall error of 10-8 m/sect . This

requirement could tighten, if better tracking is available than is there assumed. In

_w	 Reference 1, it is shown that even the 10
-8
 m/sect level isn't feasible without drag

f

F	
compensation. Early rough calculations along these lines, together with the known

TRIAD performance, seemed to assure that the Solar Probe requirements could easily be met.

Unfortunately, the Solar Probe is a rather hostile environment for a drag-free

instrument; and by mid-1978 it was widely perceived that the TRIAD design, as is, could

not be counted on to perform, even at the 10 -8 m/sect level. One of the problems is

self-gravity --the gravitational attraction of the ball to' every other part of the

i

i
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spacecraft. On a rigid spacecraft, this effect could be balanced by a counterweight

(as on TRIAD), or merely allowed for in analyzing the actual trajectory. On Solar

Probe, however, articulated antennas and instruments, sloshing liquid propellant, and

a thermally unstable main structure, all complicated the picture.

The other main problem is charge. Unpredictable levels of high-energy radiation

can cause unsymmetrical charge transfer between the cavity walls and the proof mass.

The resulting charge on the ball causes it to be attracted to the nearest wall. TRIAD

did not suffer greatly from charge buildup, probably because its orbit was low enough

to avoid most of the Van Allen radiation. However, some electrostatically supported

gyros and accelerometers, with very similar geometries, have observed charge effects,

both in orbit and in the laboratory. A recent estimate for Solar Probe (Reference 2),

indicates that very severe charging could occur in both the Jovian and solar environ-

ments. In Chapter 2 below, it is shown that these levels are incompatible with even

the relaxed performance requirement of 10 -8 m/sect.

In late 1978 it was proposed to solve both of these problems by an application

of estimation theory, together with a set of new on-board measurements. The proposal

became RTOP 790-40-15 (-05), which was accepted, and funded equally from three NASA

Divisions (Codes RSS, ST-5, and SC-7). This Final Report is the culmination of the

resulting feasibility study.

The report is organized as follows. In the next section, an overview of estimation

theory will be given, as applied to the present problem. Following that, the subject

of in-flight calibration is introduced. This natural companion of estimation was not

studied, due to lack of funds, but several ideas along this line were suggested by

the study team members and are presented here. The introduction closes with a summary

of the results and conclusions of the study.

Chapters 2-4 give a more detailed discussion in each of the three main areas of

study - the on-board estimator, the ground estimation process, and the self-gravity

model. In each case they were written by the team member who did most of the work.

Because of the central role played by the drag compensation system in the Solar Probe

2
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spacecraft and mission design, these three diverse views merit close attention by those

directly concerned with the Solar Probe mission.

In retrospect, prior to this study, whether a drag compensation system was

regarded as a tool for navigation, for aeronomy, or for the study of gravitational

fields, it has widely been regarded as imposing very difficult constraints on the

spacecraft and system design. The Solar Probe, by imposing its own barely tolerable

constraints, has caused a rethinking of this position. The authors believe that the

addition of estimation techniques to drag compensation systems will tend to cause

them to be viewed as just another spacecraft system.

3



1.2 Estimation

Since the main tool for improving drag-free pePformance discussed here is

estimation, and as the essential ideas are not widely known outside the controls

field, this section is devoted to an exposition of those ideas. It is, however,

confined to those aspects of the field that presently appear to be relevant to

the drag-free problem.

To begin, suppose some physic«1 process is thought to be described, with

adequate accuracy, by a set of first order ordinary differential equations:

X = F(x,t) + w(t)

Here, the vector x is referred to as the "state" of the system, the set of

functions F are the known drivers of the process, and w is a random disturbance

vector, for which some statistical information may be available. In controls

jargon, w is referred to as "process noise".

Also, suppose that there Exists a set z of measurements of the process,

which can be modeled as:

z = H(x,t) + v(t)
	

(2)

in which the functions H are the known model of the measurements, and v is a

random measurement noise vector, for which statistical information may exist.

Finally, suppose we were to build a model of the system. After deleting the

unknown disturbance w from (1), that system could be integrated, yielding some

supposed state history x(t). Platting this into (2), and ignoring the unknown

noise v, a prediction of the measurements H(x,t), could be computed. Of course,

even if the initial state x(0) were guessed perfectly, the prediction H would in

general diverge from the actual measurements z(t),

r
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In an "estimator", we put this divergence to work by feeding back the

measurement discrepancy. Letting x be the "estimate" of x, an estimator based

on (1) and (2) has this form;

A = F(x,t) + K(t)[z - H(ic,t)]	 (3)

where K is a rectangular matrix of time varying feedback gains, Loosely speaking,

{	 if it is possible to find gains K(t), such that except for w and v, H(x,t)-!- z, and

A
x-► x, then the state x is said to be "observable" by the measurements z.

There are several possibilities for K. If the joint covariance of w and v is

known, then Kk1 t) may be derived Frori a theory due to R. E. Kalman, which strives to

minimize the integrated, weighted covariance of x - x. An estimator based on that

theory is often Galled a "Kalman filter." In the case that F and H are not explicitly

time dependent, and that w and : are stationary random processes, it often happens

that the Kalman derived K(t)-}K asymptotically, where K is a constant matrix. If

KC. is used in (3), the estimator may be slow to converge; but it's much easier to

build. For this reason, a constant K may be attempted, even if all this time

independence and stationarity doesn't hold.

In some cases, a more sophisticated feedback is required than that allowed

in (3). One form of this occurs when there are uncertain or slowly changing parameters

in the F or H functions. Suppose a is a vector of these parameters. It is common
i

practice to append a to x, and extend the state equations (1) by a = 0. The estimate

A	 n
x is extended in the same way by a, and the appropriate equations are appended to (3).

This scheme permits a direct extension of Kalman theory to estimate a. along with x,

but there is no guarantee that the augmented state will continue to be observable.

More radical departures are possible in which the residuals z - H(x,t) appear

nonlinearly in (3). For instance, settling times can be improved at the cost of

greater sensitivity to v and w by raising K when large residuals are encountered,

r^
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A more sophisticated technique is to regard larqe residuals as a symptom that the

covariance of w and v has been underestimated. If this additional feedback is

instituted, and K is contin!)ously evaluated from Kalman theory, it will rise in

response to increased residuals. These techniques for improving estimator performance,

and others, are usually referred to as "adaptive" filters.

To see how all this applies to the present problem, consider the ground estimator

for radiometric science. A possible (simplified, nonrelativistic) structure for

this would use state variables

x = [R,V,a]	 (4)

where R and V are heliocentric position and velocity of the proof" mass and a would

include the scientific parameters of interest, uncertain parameters of the DSN, and

suspected system biases. The state equations corresponding to (1) could then take

the form:

RV

V = g (R,t) + f(t) + A(t)	 (5)

a 0

Here g is the gravitational acceleration due to the Sun and planets, f is the

combined self-gravity and' charge disturbing acceleration as determined by the on-

board estimator, and W(t) comprises the errors in both f and g. An alternative

formulation, in which f(t) is integrated on-board is discussed in Chapter 2 below,

and is being actively considered. Whatever modifications to (5) are finally chosen,

a ground estimator of the type (3) would get its measurements z from the DSN.

A structure similar to (5) for the ground estimator is analyzed in Chapter 3

below. It is shown there that for reasonable assumptions on the DSN measurement

noise, the ability to extract 
`12 

of the Sun ( a component of a) approaches its

theoretical peak, provided the standard deviation on w( t ), CF	 10-em/sec`

R
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However, possible improvements in the DSN, and the need to free more scientific

4	 2
parameters than Just J2 , indicate that we should aim higher, i.e,c'w < 10^ m/sec,

Of course, individual contributions to the error in estimating -f on board must be

held on a still tighter leash.

Turning now to the oR-board estimator, its purpose is to provide f in some

form to the ground estimator. A number of conceptual difficulties make this problem

harder than it at first appeared, so that even now, it is unclear what the saute

variables should be, or how the state equations (1) should look. Some of these

difficulties will be touched on here — their resolution will have to await future

effort.

The first problem is coordinate systems. Unlike the ground problem, there is

nothing here even resembling inertial coordinates. Even the proof mass is acted

on by the unknown f, and it has no natural attitude reference. Perhaps best are

cavity coordinates, where the origin is at the center of the cavity, and the axes

are fixed in the instrument and aligned to the spacecraft attitude sensors. The most

critical measurement is the position r  of the proof mass in this system. It may

be assumed that the rotation connecting cavity coordinates to the heliocentric

coordinates of the ground estimator is available from the attitude determination

system.

The utility of cavity coordinates is best seen by expanding f within them;

T - a SGO + G
Or5 + —ac (q,'FBI V i )
	

(6)

Here, aSGO 
is the acceleration that would be seen by the ball if it were centered

in the cavity, GO is the tensor gradient of a SG as seen at the center, and a c is

the electrostatic acceleration, shown as a function of the charge q on the ball,

r6, and the set of potentials V i of the plates in the cavity. That the two self-

gravity terms used in (6) give sufficient accuracy is demonstrated in Chapter 4.

7



If ac did not exist, it would be relatively straightforward to evaluate f. A

combination of pre-flight measurements, in-flight calibrations, and various on-board

mass, motion, and temperature sensors could be used to determine a SGO and 60 ; and

the proof mass position sensor of course measures TB . In part, the ac term is

difficult because its functional form is not yet established. Progress in this di-

rection is reviewed in Chapter 2. A good deal of further work will be needed to

complete this, and find reasonable approximations to the exact solutions.

Far more important is the fact that while r6 and the potentials V i may be

directly measured, there appears to be no simple way to determine q. Methods for

discharging the proof mass are underdevelopment at Johns Hopkins University Applied

Physics Lab; but there has been no testing and no publication of their analysis, A

direct measurement of q b y means of its effect on the cavity electric field has

been suggested, but the precision needed for such a sensor at the largest q values

makes this douhtful.

The approach discussed in Chapter 2 is simple — in principle. A set of six

plates in the cavity are used as a position sensor in the TRIAD design. If time

varying potentials V i are applied to these plates, a motion of the proof mass will

result, depending in part on a c . An analysis of this forced motion can presumably

f	
yield q. Theoreticall-v, the best way to go about this is an estimator, in which q

is one of the state variables, with the state equation q = 0. The structure of the

estimator would include the expressions (G), and would have to predict r B . The

difficulty is that many other things contribute to T B - °attitude .motions, center

of mass shifts due to,a variety of causes, external forces on the spacecraft, and

thruster firings. A full treatment of all this might require an' estimator of 20

states or more

While the study is yet to be attempted, there is an excellent chance that all this

i
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complication i5 unnecessary. Since the motion in all three axeS'`is correlated,

and as the different pairs of plates could be excited with different frequencies,

and as these frequencies could be chosen to avoid other known motion frequencies,

some of the drivers of rg might be ignored. How many state variables could be

deleted in this way, while retaining sufficient accuracy in the determination of q

is not known. On the other hand, much of the estimation task gust described is

needed anyway for the spacecraft attitude determination system. Thus, a merging

of the spacecraft drag-free and attitude estimators may be desirable. Much work

will be needed to clarify all this.

9



1.3	 InFlight Calibration

Within the mathematical models used in the on-board and ground estimators,

there are a number of fixed parameters; e.g., the self-gravity terms in -SGO and

GO that don't depend on moving or changing masses, and Earuo ephemeris and track-

ing station location parameters. For many of these parameters, it is believed

that the best a priori estimates of their values will be inadequate and that some

kind of -in-flight assessment is required. Indeed, in the ground estimator simu-

lation discussed in Chapter 3 below, very modest Earth ephemeris errors completely

prevented filter convergence.

Consider a parameter p appearing in either the around or in-flight state

equations	 (1), or in the measurement models (2). 	 If there is reason to believe

that p may change in flight, then it may be added to the state equations as p = 0,

and the estimator may be augmented as discussed in the last section. 	 If a model

for the variation of p exists, then we might improve this to p	 = model.	 On the

other hand, if we are merely uncertain of the value of p, and don't believe it

can change, we may opt for in-flight calibration.	 In this case, we pick a time

when we are far from the Sun, and deliberately excite some motion such that the

measured quantities will depend upon p, which is then estimated by the technique

just discussed.	 During the critical parts of the mission, the augmentation is

deleted from the estimator, and p is fixed at the value determined by calibration.

The obvious advantage of in-flight calibration of some parameters over
1

continuing estimation is the smaller set of estimation equations during the p	 a
S	 j

critical	 parts of the mission. 	 This is especially important for the on-board
3

estimator; but even on the ground, the possibilities for reducing the a priori
i

3

covariance of the Earth ephemeris and station location errors before perihelion 1
passage are attractive.	 The expected worsening of doppler tracking near the Sun,

z

due to coronal effects, adds importance to such a calibration.

The disadvantage of calibration is equally obvious --for each calibrated

10



parameter it is necessary to justify the assumption of time invariance. To

alleviate this somewhat, it is intended to have several calibration periods on

both sides of perihelion. If a parameter changes significantly between cali-

brations, a post-flight correction may be possible.

It had been intended to investigate the possibilities for in-flight

calibration during the present study, but lack of funds forced its deletion.

Nevertheless, during the course of the study, a number of suggestions have been

made. For example, the main self-gravity terms, 
aSGO 

in (6), can be evaluated

by flying drag-free . for long periods far from the Sun, when little or no

compensation will be needed. The solar pressure effe t<, can be distinguished

from outgassing and propellant leaks by rotating the spacecraft, and b,Dth can

be distinguished from proof mass disturbances by ground tracking. The gradient

terms G  can be excited by articulating parts of the spacecraft, or modifying

the drag compensation law, or both, to produce an rB history that covers the

cavity.

The suitability of the actual vector function ac for charge effects in

(6), and the parameters within it, can probably be established in ground test;

however, a recalibration during flight is certainly desirable. During quiet parts

of the mission, the charge q on the ball is liable to be small, especially if

it has been recently uncaged. On the other hand, external forces will also be

small, reducing interference due to unmodeled variations in rB . As a further

aid in identification, excitation of any plate pair causes correlated motions in

all three axes, a correlation which is increased if other plate pairs are excited

at different frequencies. Calibration sensitivity can be further increased by

operating with the ball quite close to the wall — sensitivity increases logarithm'!-

cally with decreasing gap width.

Since the main on-hoard estimator has not yet been worked out, it is

'	 unclear, at this writing, whether the parameters in the spacecraft mass model

11
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(mass, c.m „ inertia tensor) will be individually observable. Certainly, any

important effects due to articulated members can be seen by merely moving

those members. Since many parameters are involved, much work will be needed to

clarify this.

The biggest uncertainties in the charge estimation process probably lie in

the solar pressure and propulsion models. To get solar pressure parameters, we

will need calibration periods relatively close to the Sun, in which the shield is

pointed at the Sun, and also displaced from it in both directions, for long enough

to make the various effects observable. The possibility that changes in the shield's

surfacs2 properties, near perihelion, may render calibration inadequate, must be

seriously considered. As for propulsion parameters, the force and torque histories,

during a firing of any thruster, can probably be deduced oil-board by analysis of the

i^g data in an appropriately extended main estimator. Times remote from the Sun are

probably best for this. However, to believe in this kind of a calibration, it

will have to be shown that variations due to propellant temperature and catalytic

bed history can be ignored, or at least adequately modeled.

Finally, there are some uncertain parameters in the around filter. These

include the ephemeris constants of the Earth's orbit, the ground station antenna

locations, clock errors, doppler extractor biases, and the parameters of the

coronal propagation model. For all but the last, some long drag-free periods,

when little compensation is needed, could yield significant improvements. As

for coronal problems, it is expected that a solar occultation will occur in the

early portion of the trajectory. If so, it will permit a test of the propagation

model, and a calibration of its parameters, under conditions similar to those at

encounter.

As this discussion has shown, a great deal of work will be needed to

design practical calibration sequences, investigate the observability of the

parameters to be calibrated, simulate the process, and apply the results in

1
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future system design iterations. The results will be critical in determining the

accuracy with which we must measure the calibrated parameters before departure,

and in working out mission sequencing and operations. They also provide necessary

inputs to the science simulation for determining the overall performance in

achieving the radiometric science objectives.

1



1.4 Summary of Results

The assumptions and results of the, study are complex, and are dealt with in

detail in the following chapters, Mere is a distillation to give an overall feel-

ing for the problem,

Chapter 2 deals mainly with the on-board estimator. A tentative structure

was proposed and a covariance study was done, as with the ground estimator.

The main conclusions are;

s The estimator, limited by modeling errors below and complexity above,

will probably be in the range of 10 to 20 states.

• The structure can be arranged to integrate the deviation between the actual

and a truly drag-free trajectory. For white Gaussian modeling errors of

10
-10 

m/sect in each axis, the covariance was integrated on a parabolic

orbit, inside of 0.25 A.U. The results were errors in the deviation of

3-10 m at perihelion, and 100-300 in at the outbound end.

The charge problem is also addressed in Chapter 2. This includes charge-

discharge mechanics, an electrostatic force model, and the design of a charge

identification system.

The main findings are:

• Of all charging effects, the worst appears to be secondaries from external

high--energy electrons. The worst time for this is likely to be Jupiter

encounter, if no flare is active near the Sun. Near Jupiter, a bail

charge of ti10
-g
 coulomb is possible, leading to a potential of ti20 kV.

Spark discharges would probably prevent higher potentials in any case.

• Without charge identification, holding the acceleration due to this below

10
-g III/sec t requires that the charge should not exceed about 2 x 10-12

coulomb.. Thus, either discharge to this level (about 40 V), or charge

identification is required.

14
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• No proven discharge technique appears to exist; but identification by

electrostatic forcing and estimation looks feasible.

Chapter 3 looks at the ground estimator. A simplified Kalman filter was

constructed and a covariance anz^lysis was performed relating the tracking and

drag-free estimation errors to the level of accomplishment of the radiometric

science objectives. While, for simplicity, only the extraction of the solar J2

was considered, many variations in the orbit, and the type and quality of track-

ing and drag-free data were studied. Here are some of the conclusions:

• The accuracy with which J 2 can be determined, a, 2 , depends strongly on

the orbit chosen. Quite apart from the obvious improvement from a closer

perihelion, the orbit planned for Solar Probe at the time of this study

was not the best for this purpose.

• At present levels of accuracy, range and angle information do little

to augment the basic doppler tracking data; i.e., the filter runs nearly

as well without them.

• If the doppler noise is taken as a r = 0.5 mm/sec, then a drag-free es-

timation random error goal of 10 -8 m/sec t (10 -9g) should be adopted. Drag-

free errors smaller than this will not significantly reduce Q^ J 

2

. However,

a tighter goal should be set if a smaller a . can be assured.

Finally, Chapter 4 is concerned with the self-gravity model, particularly

the effect of moving masses. For charge estimation, the center of mass is also

a concern. Here are some results:

• Except for parts extremely close to the drag-free sensor, the effect of

moving masses on the center of mass is more important than the change in

self-gravity.

• Self-gravity variations due to high-gain antenna motion may be neglectable.

The effect on the center mass is not.

• If the imaging instruments are articulated as a whole, the self-gravity

variation is significant.

15



• Location of propellant to 1-2 cm is necessary for center of mass

knowledge, and its mass must be known to better than 1 kg for self-

gravity. A special tank will be needed for this.

9 Thermal-structural stability of 1 cm or better is adequate to neglect

self-gravity variations from this source. Much better stability is

needed if center of mass variations are to be neglected, indicating

that structural monitoring, by strain gauges, or temperature sensors,

or both, will be needed.

It must be pointed out that most of these conclusions were derived from

an overall drag-free estimation accuracy requirement of 10
-g
 m/see 2 , which came,

in turn, from a doppler accuracy specification of 0.5 mm/sec. More accurate

tracking systems, now being proposed, would tighten the drag-free accuracy, and

the above conclusions.

It should also be pointed out that the work, on which most of this is

based, simulated a filter in which the solar J 2 was the only quantity extracted.

The actual filter will attempt to find several other parameters; e.g., relativity

parameters and the solar angular momentum. The final variance for some of these

parameters may prove to be more critically dependent on the drag-free data than

is J2 . That is, estimation accuracy substantially better than 10
-8
 m/sect may

be desired, even if the doppler data is not improved.

16



2. ON-BOARD ESTIMATION

The on-board estimator for the Solar Probe has evolved from the following

considerations:

1) What information can the ground estimation process best use?

2) What telemetry bandwidth is available for returning this
information to Earth?

3) What estimator structure is feasible to implement in real time
aboard a flight computer?

4) What information is available (either a priori or measured)
to the on-board estimator?

Some of the results of this study have led to the following conclusions:

1) In order for the ground estimator to eliminate the effects of

self-gravity and proof mass non-gravitational forces from the spacecraft

trajectory, these forces, or the effect of these forces, must be obtained,

along with their associated statistical covariance.

2) Due to the low bandwidth telemetry requirement of the Solar Probe,

it is required that an averaged or integrated effect of the proof mass

disturbances be radioed to Earth, rather than the raw sensor data.

3) Effort has been made to implement an estimator using linear system

theory. This results in simple system models, and allows the wide body

of knowledge pertaining to linear estimator theory to be applied. Since

all computation must be performed in real time, the order of the estimator

must be no larger than 10 to 20.

4) The on-board sensor information available to the estimator is

the drag-free sensor, and any additional sensor information on the spacecraft

ZP
mass distribution, charge, magnetic properties, etc.

2.1 Structure of the Estimator

A simple model for the proof mass disturbance evolves in the following

digression. Consider an inertial frame of reference. (See Fig. 1) In this
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reference frame, it is assumed that a model of the proof mass forces has

been provided. This model will assume the following form when the drag-

free control system is working properly;

x = a + m
	 (7)
pm

where mpm is the mass of the proof mass, x is the proof mass position relative

to an inertial cram.., a is the external gravitational acceleration, and

ri = mpmIi is the internal force applied on the proof mass by portions of

the spacecraft. In :order to fly a drag-free orbit to a level required by

the Solar Probe Mi m,on, i must be known. or estimated to high precision.

A more details examination of f  now follows. f  is composed of

self-gravitational forces, electrostatic forces, magnetic forces, pickoff

forces, Brownian motion, etc., listed roughly in decreasing order of

importance. With the use of a (perhaps 20th to 100th order) model of all

the forces on the proof mass, and an inertial measurement of spacecraft

position, it becomes possible to "fit" best coefficients to the modeled

.function form, e.g. to determine various gravitational harmonic coefficients

of the Sun, and to distinguish these effects from self-gravitation forces

and other internal forces. It is not realistic to assume that such a high

order esti rtin.c.ion scheme can be implemented in real time using the oii-board

computer. At best, only 10 to 20 real time integrations should be assumed

available.

However, this low bandwidth information is not actually required from the

on-board estimator. Its purpose should be to provide the high bandwidth
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information (which may have a iron-zero averaged affect) to the ground

estimator, either directly, or more desirably, in some integrated .Corm.

This latter scheme will be examined in greater detail.

2.2 Self-Gravity

In order to make the spacecraft a drag-free satellite, some effort

is devoted to organizing the mass distribution. of the satellite in a

spherically symmetric configuration. 	 However, due to initial

calibration errors, fuel depletion, moving masses, thermal effects,

etc., the net force and its gradient, at the center of the proof mass

housing is not zero, and thus, drag-free errors are produced. The effects

of these terms can be estimated using the following apprcach.

Consider the quantity I i , the internal spacecraft acceleration on the

proof mass. It will be assumed that this acceleration can be represented

in terms of the proof mass position in the cavity y and a vector of

parameters a. a may be composed of such things as boom extensions, hinge

angles, proof mass charge, etc. So,

fi = 
fi (Y9 a)	 (8)

I'	
}

'The  perturbation effect of fi on the nominal trajectory xn (t) can be obtained

by noting

x a(x) + fi(Y^ a)	 (9)

r	 ••

xn - a (xn)

Letting A x = x - xn , then

Ax = 8x a( xn)	 Ax + fi (Y, a)	 (10)

3
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The first term in (10) is the gradient of the external gravitational

acceleration and can be accurately precalculated. The second term represents

the effect of the perturbing internal forces. The second term can be

further expanded by linearization of f  about the point (0,a).

Ax = 2x a(xn)	 Ax + €i (0,a) + ay fi (O,a) • y + HOT
	

(11)

or using an appropriate notational substitution for simplicity

Ax = X • Ax + i (O,a) + Gy y
	

(12)

A detailed explanation of each term of (12) follows:

• A
-r
x is the vector difference between the actual flown path, and the

"perfect" drag-free path. This is the quantity to be determined in real

time aboard the spacecraft, and is of prime importance for correcting the

actual trajectory flown to the s?stimated drag-free path:

-r

• G  is a tensor (mainly the solar gravity gradient tensor) which

includes the effects of the difference of gravity along the nominal trajectory

from that along the actual drag-free trajectory. X can be computed and
stored in advance.

• fi (0,a) is the total acceleration due to self-gravity, electrostatic

forces, etc. at the center of the cavity. It looks like a bias, so there is

no possibility for updating this value from its a priori computed value

using a measurement y or a. The only possibility for obtaining i(0,ya)

is through a measurement of Ax. Furthermore, even with this measurement,

i (0,a) can only be distinguished if it looks different from, say, the

solar gravity. By changing orientation of the spacecraft relative to the

solar gravity vector, this discrimination is possible but only if inertial

position information is available. This procedure may be used during a

calibration phase of the mission,

21



Since the effects due to fi($,ct) are "slow," it would seem appropriate

to allow these effects to be included in the ground estimation. This amounts

to redefining a nominal trajectory which includes the effects of zi(,^) and

to let px now represent the departure away from this new nominal trajectory

due to proof mass motion, y, and changing spacecraft parameters, a.

Now, Hh equations of motion reduce to

Ax = GX • 6x + Gy • y
	

(13)

• Gy is the self-gravity gradient at the center of the cavity. Note

that spatial variation in G y , as well as variations in Gy due to changes in

a are both lrodeled here as higher order terms. G  can be computed in

advance.

• y is the position of the proof mass relative to the cavity center. A

measurement of y is available.

• a is a vector of spacecraft parameters.	 If they are

measured, they can be used as inputs to (13). If they are not measured, they

can be assumed to be random disturbances acting on the proof mass.

At this point, it is worth pointing out that any a priori known inputs

(such as antenna pointing angle) and their effects on the trajectory may be

computed in advance and thus included in determining the nominal trajectory.

only effects which are not known a priori, such as fuel slosh, proof mass

charge, thermal distortions, etc., need to be included in (13).

Equation (13) is easily put into state variable format

.
d

d
at

[A"
-r

= [

aX
X

^x ^
III

• + Yy
'X G

Y

(14)

22

e.""; _..	 ,.	 __....k..	 4YYli4..•rx•sxef•o5.w..^a.rurr+:., 	 > e	 _. . ,.-_



Inclusion of measurement error and process disturbance call also be included

for determination of the variance of the state vector. It should be noted

that without updates of the state from the ground, the variance of the

state will continue to grow.

2.3 Eh ea Identiftcatlon

After spacecraft self-gravity, proof mass electrostatic charge has

the biggest impact ock drag-free performance. Both the mechanism of proof

mass charging, and the process of identifying proof mass charge will be

analyzed. Reference 2 first showed bow bad this could be for Soltir Probe.

First, this section diSCUSSCI $ SOOa concepts of electrical charging of

the Solar Probe drag-free mass resultilig from penetration of energetic

charged particles. The two portions of the mission of most concern are

perijove and perihelion. The basic phenomenon of spacecraft charging involves

the balance between the charged particle fluxes to and from (resulting from

secondary emis^sion processes) the spacecraft. A complete 4111alysis of 
the

problem requires knowledge of 
the 

energy spectrum of the particles as well

as surface properties of the spaeecraft. Analysis of charging :intcrllally
,`also requires detailed knowledge of the spacceraft configuration.

'.Glee Pioneer model of the ,ovum environment is satisfactory for

determining charging effects during the perijove phase;. (3) No satisfactory

model exists for solar particles, but 
the 

Jovian enviromlicut (^aa be taken as an

upper bound. 
(4) 

No detailed configuration design excists for 
the 

Solar Probe,

but estimates 
call be 

ma4la on tile beasts of other simeocrafV dosigns.

Reference 3 describes calculations on internal charging for the Galileo

JopiLer Probe. Figure 2, taken from that report, shows some of 
the 

msults.,

The broken curve represents potentials 
on 

the internal alumintim structure mid
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should be representative of internal charging levels in the neighborhood

of Jupiter. No secondary electron emission from the aluminum structure

was included. If the drag-free mass is treated as an isolated

spherical capacitor, 20 keV implies a free charge of ~10 -9 coulombs on it.

Inclusion of secondary emission would probably lower this by a

factor of 10 to 100.

j	 The response time of the ball will depend on both the environmentali

fluctuations and the natural Leakage from the ball. Since most

environmental changes are probably slow compared to the time constant of

the ball, the charging process should follow the environment for increasing

IA	 charging levels. However, if the ball is well isolated (e.g., very low
r

$	 residual gas surrounding it) the decay time should be very long (hours?).

Alternatively, it will be necessary to provide some continuous leakage
i

path between the ball and cavity. For example, a low-pressure electro-

negative gas such as SF  could perhaps scavenge free charge from the sphere

and deposit it somewhere on lkr he cavity surface or vice versa. A more refined

analysis must await a detailed specification of the spacecraft configuration.

In fact, a maximum charge level on the drag-free mass could be made a design

requirement.

Putting aside the proof mass charging mechanism, the effects and

.±	 identification of proof mass charge are yet to be resolved,
iF

Consider the arrangement shown in Figure 3. A proof mass of radius

a is displaced a distance x from the center of the cavity of radius b.
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Vl w

Regarding the inside of the cavity as a complete spherical conductor, the

ball-to-wall capacitance has been shown to be (5,6) approximately

C = 4n ,, b^ I n C1 'h t^, " 1_^	
(l )

J

where e\ 'tibx	 (I G)

and co = 8.85 x 10' 12 Farad/m = permitivity of free space. Also the

gradient of C in the direction of the displacement is:

dC	 2nk`o1 
2	

2	 1 In 1 +	 (17)
k'y 	

.1-„',J - a

III
	 present Solar Probe design, a - .011 n ► and b = .02 m, giving

\ - 2.22. Then, if the ball is displaced half way to the wall,

x = .0045 m and tt = 0.5, from which C = 3.21 x 10 `12 Farad and

dC/dx = 2.58 x 10`10 Farad/ire.

V2

V3

Vq

Figure 3. Proof mass and proof mass housing model.
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F = 1	 g+v),2- q_v)2dCp=2gvdCP
2 C C	 C	 dx	 C dx

Here C is found from (15) with a = 0:

(20)

(21)

y
a

Now, if the proof mass carries an absolute charge q, it is not hard

to show that it is attracted to the nearest point on the wall by a force

F =	 2 dC
2C2 dx

Thus, if there is a maximum tolerable disturbing acceleration A, then the

tolerable charge is

2m A
(dC -1	 (19)Iql	 CJ pm \ dx,

Well, a 70% gold, 30% platinum ball has a specific gravity of 20, and thus,

mpm Z. 0.112 kg. Then, for A = 10-10 m/sec2 , we get Iq) < 9.43 x 10-.13

coulomb. Since this is well below the expected levels, something must be done.

A possible approach to this is to apply varying voltages to the sensor

plates, and thus, excite a motion proportional to q. By observing the actual

motion, we can hope to identify q by estimation. To examine this, suppose for

simplicity that the proof mass is centered, and that a vo'itage + v is applied

to a pair of opposing plates. Then the absolute proof mass potential is q/C,

and the force on it can be shown to be(6)

(18)

C = 4nr-0aa
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whila C p is the capacitance 11..111 ulfG NM11 U- V114 0^110V1 '.IIMu-.

CO = 21re	
dG 

poaa(1 - c') ; d = 'Troa 2 s 2 a
	

(22)

where 0 is the half cone angle subtended by the sensor plate at the center

of the cavity. For 0 = 35 deg and the above dimensions, C	 2.72 x 1012

Farad, Cp = 2.46 x 10-13 Farad, and dC p/dx = 4.52 x 1011 Farad/m.

Now, if this applied voltage is taken as sinusoidal;

v = vo s(wt)	 (23)

then, from (20), the amplitude of the induced motion is;

x =	
2gy0	

dCp	
(24)

III	
mpm 

w2C dx

Then if vo = 10 3 volts, w = 1 radian/sec, and q is the maximum tolerable

value from (19), we get x111 = 2.71 x 10-7 m.

While this level of resolution in the proof mass position sensor would

be very difficult to obtain, there are several possibilities for relaxing

the requirement. First, the ball and cavity dimensions are not yet fixed,

and could be adjusted to increase xM* Second, a higher vo or a lower w

may be possible. Third, a square wave excitation in place of the sinusoid

28
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(23) would be helpful. Fourth, sensitivity can be improved by exciting all

three pairs of sensor plates at different frequencies. Finally, the

estimator bandwidth could be reduced by lowering the feedback gains, thus,

averaging the sensor noise. If, say, 1 hour of settling is allowed with this

w, the required sensor resolution could be increased by a factor of around

60, or 1.6 x 10`5 ni with the above numbers. This level was achieved on

TRIAD. While this discussion does not constitute a design, it seems clear

that charge identification by estimation is feasible.

2.4 Estimator Design and Variance Propagation

The real time integration of the vector equation 13 in Section 2.3

requires that these equations be resolved in some suitable reference

frame. With this accomplished, a nominal spacecraft trajectory and a

statistical description of the proof mass disturbance forces are sufficient to

propagate the covariance of the estimated correction to the position and

velocity of the Solar Probe through the solar encounter. Recall that this

information, along with the position and velocity corrections themselves,

is precisely what is needed by the ground estimator to improve the drag-

free trajectory knowledge. The analytical approach may be summed up as

29
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follows. A dynamic model of the perturbed trajectory of the Solar Probe

away from an exact drag-free path is obtained in terms of random disturbanr

The vector equations are resolved in a Ettler-liill accelerated frame (see FJ

since 1) the solar gravity gradient is easily written in this frame and

2) the spacecraft maintains a fixed orientation in this frame through solar

encounter and hence the statistics of many of the random disturbances are

likely to be constant. These are the equations which will be integrated

on-line aboard the spacecraft. The propagation of the radial, in-track,

and cross-track position and velocity variances are obtained for unit

variance acceleration inputs. Since the dynamic equations are linear, the

resulting covariances may be scaled and added to fit the actual statistics

of the disturbance environment.

The unperturbed equation of motion of the Solar Probe can be written

in vector form as

R - a (I)	 (25)

where a is the external gravitational acceleration and R is the position
vector of the unperturbed position of the solar probe relative to the sun.

Due to random disturbances fd , the actual position of the spacecraft,

and the dynamic equation of motion can be written

j
R + r a (it + i) +fd 	 (26)

The vector difference of (13) and (12) yield 1 1

r - 8R - r + fd	 (27) i

Equation (27) is the perturbation dynamic equation of motion. The

natural dynamics are due to the solar gravity gradient () and the forced
DR

behavior is due to the proof mass disturbance.
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x is the radial direction

z is perpendicular to the orbit plane in the direction of the orbital angular
momentum vector

r
y is z x x

Figure 4. Ruler-Hill coordinate game.

The soar gravity gradient in the Ruler-Hill coordinate system of

Figure 4 is easily shown to be

2 0 04.

_- 	 0 -1 0 (28)
aR R3 0 0 -1

where R = LRl

.1
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and the disturbance force and position vector become:

f 

	

	 1
x

d	 f 
	 and	 r	 Y	 (29)

f	 Z
Z

Since the accelerations are measured in an accelerated reference frame,

kinematics must be used to derive the following result:

x - 2wy - w2  - ay

r = y + 2wx - W2  + ax	 (30)

z

where w - 6 is the angular velocity of the reference frame (and also

the angular velocity of the unperturbed satellite position

about the Sun)

and	 a - 8 is the angular acceleration of the re-erence frame (and

also the angular acceleration of the unperturbed satellite

position about the Sun)

From orbital mechanics, R. w, and a can all be obtained as a function of

the angular position of the satellite from perihelion, 6.

The two basic equations used are

R	 31P	 ( )l+e cos 6 

Rte - h(32)

Equation (31) is the polar equation of a conic section in terms of two known
f

constants p, the semilatus rectum,and e,the eccentricity of the orbit. p

depends only on the known orbit angular momentum about the Sun, h.

r

M
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Equation (32) is the statement that the angular momentum of the

	

	 1
a

unperturbed orbit, h, is a constant.
U

From (31) and (32), and defining a new known constant N to be 3 (not
the mean motion)

w = 8 = N(l + e cos 0) 2 	(33)

i

a = 8= 
w l	

2 N2e(1 + e cos 0) 3 sin 0	 (34)

i	 t	
u3	

N2 (1 + e cos ©) 3 	(35)

R

Collecting the results thus far, equation (27) in the Euler-Hill

reference frame can be written

2x - 2w y - (w +2P)x - ay = 
f 

..	 2
Y + 2w x - (w - P) y + as = fy	(36)

z + rz	 f
z

Furthermore, by resealing the time variable so that

N dT	 (37>= dt 

the equations can be condensed to state variable form.
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I

x	 0	 1	 0	 0	 0	 0	 x	 0

x'	 w*2+2r*	 0	 a*	 2w*	 0	 0	 x'	 f*
x

d Y	 0	 0	 0	 1	 0	 0	 y	 0

dt Y 	 _Q*	 -2w* w* 
2_

r* 0	 0	 0	 y1	 f *	 (38)
Y

z	 0	 0	 0	 0	 0	 1	 z	 0

Z '	 0	 0	 0	 0	 —r*	 0	 z' 	 fz*j

where O denotes do 1,
f i* f 1IN2 and

m*= (1 + e cos e) 2

of*- -2e(1 + e cos 0)3 sin 8

1*- (1 + e cos 0)3

These are the equations which must be integrated aboard the

spacecraft in real tame.	 The input forces are those obtained from

knowledge of the proof mass position, the satellite mass distribution, and

the proof mass charge. Note that w*, a*, and r* can all be precomputed

along the nominal spacecraft trajectory. For the present discussion,

assuming the f*'s random variables, and perfect initial state information,

it is possible to propagate the the covariance of the state error through

encounter by using

X, . FX + XFT + Q	 x(0) - 0	 (39)

where X is the covariance of the state error, and Q is the spectral density of

the disturbances.

A final change of variables from scaled time T to a yields

dd e)
	

w(e) [F(6)X(6) + X(e)FT (e) + Q(e)]	 X(eo> ° o	 (40)
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Equation (40) is linear in Q (the forcing function) and so X may be

obtained for general inputs by superposition of the unit Solut i.ans for

Q(2,2) = 1

Q(4,4) - 1

Q (6, 6) = 1

The nominal trajectory studied was an orbit of 0.02 AU perihelion

and eccentricity 1.0. This results in a convenient value of N2 _ 10-10/sect

The covariances were propagated from - 1/4 AU to + 1/4 AU, i.e., through

solar encounter and the unit solutions are shown in Figures 5, 6, and 7.

Note the somewhat strange behavior of all the covariances. The wiggles are

due to the rapidly changing orientation of the reference frame.

As a scale, a random radial acceleration of 10-10 m/sect acting

through the entire solar encounter phase with exactly known initial

conditions at the start of solar encounter propagates to a 100-mater

uncertainty in drag-free position along the y coordinate.

i
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3.	 GROUND ESTMATION

3.1 Weetivo

Major radiometric objectives of the Solar Probe iiiission will be to

extract the relativistic parameters 'Y and 111 , and 
tile 

quadrupole moment

of the Sun, .]'2 .  In this report, attention has been directed to the

estimation of :J 2 .  This estimation will 
be 

performed by accurately

determining the trajectory of the spacecraft and relating tile devia-

tion from 
tile 

pure inverse square gravitational. path to the effect

attributable to .i'3.

To this end, to ground estimator will be c.onstructod which mathematically

:links J,) to the trajectory. Since the estimation will be based on

observations of 
tile 

spacecraft from the Eartli, an optimal estimator of

the 'Kalman typo 
is 

indicated.

In order to determine to ghat aocuracy1 2
 11111Ilt be Calcul"Itod" a sim-

ulation was performed. 1;ecause only the variance of .T')') is rL q

and it will be extracted from the crijectory, only major contribut tons

to the traloctory hohavior nood be considered In the simulation. 'fire

actual c-0-1,11intol, will, of eourso, 1w required to account 
for 

all 'knoN%Rl

offects.
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3.2 Structure of the Estimator

M ordinary Kalman filter was implemented to perform the estimation.

The model used for state updating is the Taylor series expansion

for the position 
-Ek 

and velocity rk of the probe relative to the

Sun augmented by an equation expressing our expectation that J2

will remain approximately constant. Thus we have

Tic-
1+irk

-1+2D-=k+6D=k+2U^	 (41)

rk k-1 + irk + 2 p2=-k —k

Jk ik-1 + wk



where D is the time interval between updates, and r lt and rk are derived

from the solar gravity potential. The notation (r k) l = x, (r
-k

) 2 = y,

(rk)3 = z, r = (x2 + y2 + z 2) , and (J
2 )k= 

Jk is used.

Stochastic forces uk are assumed to perturb the spacecraft Motion. These

forces arise through deviations from drag-free performance attributable

to spacecraft self-gravitational forces and electromagnetic

disturbances to the proof mass. The uk force can also have a component of

"force" associated with model truncation errors or mismodelling of other

gravitational sources such as planets.

For the solar gravitational potential

XGm3X 1 +2
2

r
J2	 s 2	 1

2

-5 z2
r r r

r 2 2
y=-Gm3y 1+ZJ2

82	
1 -5 Z2

r r r

2r 2
z=-Gm3z 1 +2 J2	

s2	
3-

5Z2
r r r

where	 r	 = solar radius = 6.96 x 105 km, and
s

x = - 5 x(r 2 -3x2) + y(-3xy) + z(-3xz)

r

Gm [x(-3,y) +
; (r 2 -3y2)+

z(-3yz)
5

r

z'= - _Gm [;(-3xz) + y(-3yz) + 2(r2-3 
z 2 )

r

(42)

(43)
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Terms in J2 have been omitted above because of their negligible effect at

this level of expansion. (For the Sun, J 2 = 0(10-7)).

3.3	 Data and Trajectories

The estimator is able to process as observables simulated spacecraft

range, range rate, and angular position measurements obtained from a

single station located at 45° N Latitude. Observations are generated

regularly	 at one minute intervals. For purposes of this simulation,

the earth is assumed to be transparent. The measurement equations are

Range

zl - IArl	 + vl a = 25 m
1

Range Rate
Ar • Ar

z2
=	

Ac	
+ v2 Qv	 = 0.5 mm/sec

2

Angular

z3
= 

tan-1
Ar

Ar 
Y- + v3 dv	 = 0.05 Arad
x 3

z4 - tan-1
Az 1/2 + v4	 a 
	 = 0.05 Arad
4

(Arx2 + Ar

where ArT =where [x, Yo z•J probe Ix ' Y, ']Earth

x

(44)

ij
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The above a's are consistent with current expectations for

accuracies achievable with radiometric observables in the late

1980'x. The values for 
ova 

and av correspond to the accuracies achievabl

through an operational AVLBI system as now contemplated for the

Galileo mission. A discussion of possible impediments to obtain-

•

	

	 ing the indicated accuracy for the range rate measurement occurs

later.

The initial value for the state covariance matrix P as required by

i	 the Kalman filter was chosen as follows:

2	 2	 2	 2	 2	 2
v
	 2

Po = diag tap . opa Qp . ov, ov a Q r oJ)

4

where Qp = 10 km, av = 10 cm/sec, and of = 10-6.

The above accuracies are easily achievable by the usual tracking

algorithms in use today, and can be generated well before solar

encounter. While this a priori of is questionable, it will be

seen that the important results are not very sensitive to it.
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orbital information for the Earth and probe is read in by the program during

the run as orbital elements (a, e, i, Mo , w, Q). This information coupled

with a variable time from epoch (also read in) is converted to (x,y,a)

coordinates, in which form the Earth and probe position and velocity are

mapped in time. The geometry of M, w, and Q are indicated in Figure 8.

Note that M is a mean anomaly.

N

I

T

Figure 8. Orbital elements.

3.4	 Preliminary Results	 .

For comparison studies, a baseline case was selected and variations

of individual parameters made around the baseline. For reasons discussed

later, only range and range-rate observations were used in the baseline

case. The following parameters were chosen for the baseline case:
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Earth Elements: (1.5 x 10 
8
km, 0.02, 5.7°, 0 0 , 0% 450)

8
Probe Ele!n-:nts: (3.914 x 10 km, 0.9928461, 90 °, 0% 180% 90°)

(Aphelion at Jupiter, perihelion at 4 solar radii)

4	 au (self-gravity process noise) = 10 -8 m/sect (10-9 g)

a J 2 (process noise on J2) = 0

Start of estimation : Perihelion - 40 hrs

End of estimation: Perihelion + 40 hrs.

The above probe elements embody current thinking in trajectory design

for this mission. The elements represent an aphelian at Jupiter which

is used in a close swingby to create a highly eccentric polar orbit with

perihelion occurring at four solar radii.

The estimation procedure is chosen to start and end at a far enough

distance so that no J2 information is lost. The times, t40 hours,

correspond to perifocal angles of t 137° and a distance from the sun

of 29 solar radii (0.14 AU).

The self-gravity noise level is chosen to correspond to a nominal

level of drag-free performance.

A large number of simulation runs were performed. The measure of

goodness of any particular parameter set or encounter geometry is

chosen as the minimum a for the error in the estimated value of J2.

The behavior of a 	 is plotted for the baseline case in Figure 9.

The notation AQ = S 	
Earthprobe -SZ
	 is used. The behavior of a	 is

J2
shown for a significantly poorer geometry (AQ = 90°) in Figure 10 and

for a slightly better one (AQ = 165°) in Figure 11.
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Figure 9. Behavior of a under baseline conditions.
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Figure 10. Baseline except Q = 135° (AQ = 90°).
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Figure 11. Baseline except AP = 2000.
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Some of the qualitative aspects of the estimation problem can be

idec;tified in these figures. The flattening of the curve for a 

is indicative of a loss of estimation capability at that point. 2

The flattening of the curve at encounter minus five minutes in

Figure 9, for example, corresponds roug: ►ly to the probe's passage

over a pole of the Sun. The very poor overall_ estimation behavior exhibited

in Figure 10 can be attributed to observing the probe from a direction

normal to the flight path for which there is no probe-induced doppler shift,

and thus, no information for estimating J2.

The poor behavior when perihelion occurs at the solar equator (t = 0

in Figure 9) might be attributed to one or more of the following

reasons:

(a) Observability of J2 is poor near the equator.

(b) There is no probe-induced doppler shift when the Earth and probe

are in exact opposition, and thus no information for estimating J2.

(c) The point of closest approach, which should be the point of

greatest effect of J2 , occurs when J2 cannot be extracted because

of (a) or (b) above.

Figure 12 shows the behav3nr of Q,J2 as a function of AQ; Figure 13 shows

the behavior as a function of the probe's argument of perihelion; and

Figure 14 as a function of probe inclination.

A study of Figure 13 indicates a significant improvement from the baseline

case when the probe perihelion is moved away from the solar equator

(w = 1800) in either direction. Ordinarily, a change in w would require

y	 a change is the line of apsides with a concomitant large energy cost.

Fortunately, the Sun's polar axis is shifted approximately 7.25° from

the normal to the ecliptic. Thus, by timing the approach correctly, a shift

in w of up to 7.25° may be obtained essentially for free. Referring to

Figure 13 we see that a 7.25 0 shift to either side of 1800 reaps most of

the off-equator benefit available.

i
119

1

7
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Figure 12. Final aJ as a function of AQ.
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Further comparison runs were performed for which perihelion was varied

from 3 to 10 solar radii. The results from both the baseline and an

improved parameter set (i=82 0 , w=187 0 0 AQ=150°) at various radii are

shown in Figure 15.

Finally, the level of random acceleration noise was varied at several

levels of doppler measurement accuracy. Results are presented in Figure 16

for the baseline case and in Figure 17 for the following improved geometry

case:

Earth Elements: (1.5 x 10 8km, 0.02, 7.25°, 0°, 0 0 , 900)

Probe Elements: (3.914 x 108km, 0.9928461, 95°, 0°, 187.25°, 2300)

We observe that in the left-hand portion of the graph, estimation

performance is dominated by the doppler accuracy. On the right-hand

portion, performance becomes strictly a function of the drag-free noise

level. We note that unless a. can be brought below the approximate
r

0.4 mm/sec leve1(over 60 sec. integration periods) there is no level of

drag-free performance which will allow estimation of J2 to the 10-8

accuracy desired for this mission.

3.5 Comments

The initial version of the simulation program would not work. The

estimated state diverged badly from the "true" state. An investigation

Ir	 of the gravitational forces involved and. the method of propagating the

equations of motion led to a solution to the problem and an insight into

potential problems the mission software might encounter:

(a) Solar force terms had to include terms to r'i.n the discrete update,

h
(b) Time steps had to be relatively small (10 sec/step at perihelion),

(c) It was found that relativistic terms of order (v 4 /c4 ) generate accelera-

tions of order 10-11 m/sec2 at perihelion. Thus, the current JPL orbit

determination program which neglects these terms might need to be
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updated to include them. We note that the peculiarities of

this mission will likely require other changes. Before any

changes are initiated, all mission requirements should be carefully

investigated.

Initial trials indicated that angular measurements, either directly

through VLBI or indirectly through doppler measurements, had very little

n

	

	influence on improving filter state estimates. A quick calculation gave

an 8 km angular position resolution for AVLBI and a 75 km angular resolu-

tion from the doppler data. Since steady state position errors are of the

order of a few hundred meters it became clear that currently available

angular measurements will not be useful for tracking purposes. Thus, the

balance of the testing was performed with only range and doppler as

observables.

For the case of doppler data, the implication was that low declinations

(for which the angular information vanishes) would not adversely affect the

estimation results. This supposition was tested empirically and found to

be true.

Because it is clear that the doppler data will be the dominant data

type, special attention should be given to it in preparation for the mission.
4

i	 A possible problem area might be the doppler integration time requirement. For

interplanetary missions no great change in the doppler signal is expected with

averaging over a few minutes time. For the Solar Probe mission, this is not

true — the spacecraft is moving very rapidly (% 300 km/sec) in a rapidly

changing gravitational environment. Thus, special doppler processing beyond

simple averaging might be required. Furthermore, multiple, frequent,

discrete accelerations of the drag-free thrustors at the 10 
-3 

m/sec 2level

could seriously degrade or even impede doppler performance. In any case.
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the extraction and processing of doppler data should be an item for early

attention.

In the generation of the observations, two of the largest unmodeled

error sources were included.. These are station location errors and Earth

ephemeris errors.

Station location errors were chosen from values consistent with currently

known accuracies. In cylindrical coordinates these are of magnitude: (7)

Radial	 - 1 meter (la)

Longitudinal - 2 meter (la)

Spin axis - 10 meter (la)

It was found that station location errors of the above magnitudes did

not adversely affect the estimation process until the larger values of

self-gravitational disturbances were used.

Earth ephemeris errors to which the ephemeris providers will currently

commit are as follows: (8)

Radial - 10 km (1a)

Downtrack - 40 km (la)

Out-of-Plane - 70 km (la)

It was found that Earth ephemeris errors, even at levels only 1% of

the above magnitudes, were extremely destructive to the estimation process.

Over the approximately three days of perihelion encounter however, these

errors will remain nearly unchanged. Thus, if the filter is expanded so

that these terms are estimated, it is reasonable to believe that their

deleterious effects will be overcome.
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As can be seen from the above, there are many navigation aspects of

a Solar Probe drag-free mission which need further attention. Even

the current ideas concerning the baseline mission need examination.

We note that nearly every variation irom the current baseline gives

some measure of improvement in the e3timate of 6J . Of course, as

mentioned previously, there are other objectives o the Solar probe

mission, and the trajectory cannot be designed for J 2 estimation alone.

I

^1
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	4.	 SELF-GRAVITY

Spacecraft self -gravity will be one of the largest perturbations of the

drag-free system, with specific forces at the sensor on the order of

3x10
-8
 m/sect . There will also be time-varying changes in self-gravity

due to articulated instruments, propellant expenditure, thermal distor-

tion, etc. We must therefore devise some strategy to estimate or

calibrate the self-gravity parameters to obtain the required accuracy,

which may be as tight as 10 -9 m/sect.

	

4.1	 Mathematical Model

The spacecraft may be considered to be an assembly of masses at various

positions about the drag-free sensor. Pefining a coordinate system with

the origin at the center of the sensor, consider one of the individual

masses Mn at some position r  from the sensor.

rn ^^^ Mn

Drag-Free Sensor

The gravitational potential at the origin due to mass Mn is given by:

GM
V  (n) _ } n	 (46)

1 rnj

Where G is the universal gravitational constant.

Vo is not useful in any direct way, but the next two derivatives (with

4.
respect to rn) are. These give us the acceleration (or specific force)

-}

fn and the gradient of the acceleration G n , as follows:
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f = ar 
GMn	

(47)
n	 -

1 rn 1

GMn

G	 = a rr	 (48)
n	

1rn1

-r
Spatial variation of G  and higher order terms is negligible.

The total acceleration (f i ) and gradient (Gy) at the sensor is just the sum of

individual contributions:

GM
ri 

= E 
r i n	 (49)

fr 1

n

4
Gy = n arr GMn	(50)

-r r
ri and Gy now represent the initial self-gravity and the gradient thereof. How-

ever, these parameters may change with time due to changes in mass or position.

A change in mass of an element will clearly produce a proportional change in that

element's specific force, and the total change in self-gravity will be the sum

of the individual contributions, or:

AM

i	 n M	 n	 (51)
n

If mass Mn changes position by an amount Arn and the positional change is small

enough so that Gn is not significantly affected, then the total change in specific

force at the sensor due to all motions can be written:
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1

	Afi = -n Sn • nrn 	 (52)

It is possible to have relatively large motions for which 
Sn 

changes appreciably,

in which case we must integrate the quantity S • r
n n n

dr from the starting pos-

ition to the final position.

Liquid propellants present the problem of simultaneous changes in mass and loca-

tion. With a propellant level measurement a p , the mass distribution and therefore

the self-gravity should be determinable, or:

	

Afi = 1(a 
p 
	 (53)

The function r(aP ) will not be a straightforward one, but some simplified mod-

eling undoubtedly be done depending on specific applications. Tanks which do -not

have positive propellant control will need additional study in that the measure-

ment of remaining fuel may be insufficient to completely determine the mass dist-

ribution.

Structure deformation and thermal distortion_ can be considered as an extension

i
of the moving mass case. For each mass element, several spacecraft parameters

y

	

	 (structure temperature and strain readings) may simultaneously affect that element's

position. For small deflections, all effects can be considered independent and

linear, so that we can write:

Qr = S . a	 (54)

	

n	 n

f	 }
Where Sn is a tensor, specific to each mass element, which converts the overall

}

set of readings a into a positional change. Sn should be determinable from

configuration and thermal expansivity information.

l3
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combining ( 54) t^7°i;h 2) v and defining a new tens or D =GnSn , we can salve

for fi:

fi = -D - a	 (55)

Again, higher order terms will be negligible.

However, our assumption of independent ,effects may not be valid in that a may

w	 overdetermine the ,spacecraft's mass distribution. In this case, we could

derive D from some sort of least squares fit, weighted with the assumed

quality of the individual sensors. This has the virtue that if a sensor should

fail, we would merely replace D by command with a new best fit solution,

containing a column of zeros corresponding to the failed sensor. In any case,

D might be improved by in-flight calibration.

4.2 Application

The first step in defining a drag-free system for a spacecraft is to

determine what accuracy is required, and then develop an error budget

to distribute the allowable error among the various sources. The

report of the "Mass Attraction of TRIAD 1/ DISCOS" 7 provides a good

example of this procedure.

An attractive alternative to the TRIAD method of extensive mass attraction

.	
calculations and tight manufacturing tolerances is the possibility of in-

flight calibration. Since we are concerned only with the accuracy of

the knowledge of spacecraft self-gravity and not trying to obtain any

specific value, a program of ground tracking and prescribed spacecraft

maneuvers could prove a more cost-effective way of determining the self-

gravity parameters.

The drag-free system might be further simplified by elimination of the
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a
t	 G

a
y • y term (in Chapter 2, eq. 14), where y is the proof mass displacement,

through the use of an integral control scheme which would force the average

value of y to zero, The same result can be gotten by tightening the deadband
-► 	 a

of the proof mass, thus reducing the impact of G  • y; or G  can be reduced

by careful compensation of the calculated gradient. In-flight gradient

compensation would probably create more problems than it would solve.

For the Solar Probe spacecraft, the overall drag-free accuracy requirement

will be in the range of 10 -7 m/sect to 10 
9 
m/sect . Proof mass charge and

spacecraft self-gravity will be the main sources of drag--free uncertainty,

so the following table 'as been generated assuming 10% of the total allow-

able error can be produced by a single item. Items are listed in approximate

order of importance. The configuration used for this table was taken from

Reference 8.

Figures 18 and 19 can be used to find the acceleration and gradient fields

produced by a point mass at any distance. The tables give components in the

radial direction; horizontal-horizontal components are half this value,

.

s
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Accuracy	 Factors

10-9 m/sect • Less than 1% error allowed in calculating (or calibrating)

self-gravity acceleration.

• Articulations, deployment, etc., will have a major

although easily accounted for impact on self-gravity

specific force. No special sensors will be required.

0 Knowledge of propellant mass and location is critical;

new methods of propellant measurement may be required.

• Self-gravity gradient and proof mass position will be

important.

• Thermal distortion may have to be measured or preuicted

for a few critical elements of structure.

• Spatial variation of the gradient could be important

for large (5 mm or so) proof mass excursions.
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10 8 m/sect 0 Self-gravity acceleration must still be found, but a

small scale analysis for a priori determination, or a

short in-flight calibration period should be sufficient.

• Only some of the articulated instruments will have to

be modeled, and even those will need only back-of-envelope

definition.

• Propellant level must be tracked, but existing measurement

techniques are adequate.

• Rough calculation of the gravity gradient should be

accurate enough.

10 m/sec a • With a reasonably spherical pickoff housing, everything

can be neglected.

The preceding list is a fairly generalized one, but some more specific require-

ments for Solar Probe have been calculated for 10 -9 m/sec2 accuracy. They are

included here to give a feeling for the dynamic constraints on the spacecraft.

Antenna - must know orientation within 18 degrees.

Telescope - must know pointing position within 2 degrees.

Spin platform - must know position within 4 cm.

Structure thermal warpage - must know temperature of sensor support

structure within 70 K.

Mass Loss - must know mass of main shield within 3.3 kg.

Propellant - must know mass within 1.5 kg and position within 9 mm.

Existing techniques of measuring pressurant pressure or bookkeeping

thruster firings may only be accurate to 8.7 kg. Positive propellant

control, such as a diaphragm or bellows type tank, will.be needed.
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4.3	 Summary of Self-Gravity

The inclusion of a drag-free sensor on a multipurpose spacecraft will

not impose any harsh requirements on the design. Only the highest

foreseeable level of drag-free accuracy will require a moderate amount

of work and possibly some propellant tank development; otherwise existing

techniques and simple analysis will suffice. Proof mass position and

structure warpage are the only "fast" variables to be handled by the

on.-board estimator, and the chances are good that even these do not

seriously impact the drag-free accuracy and may be dropped from consideration.

All other parameters are "slow" and/or predictable, and can be handled

in the ground estimator.

1
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