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Summary 
The creep  behavior  of the niobium  alloy C-103 

(Nb-1OHf-1Ti-0.7Zr) has been studied  as a  function 
of stress,  temperature,  and  grain size for test times to 
19 OOO hr. Over the  temperature  range 827" to 1204" 
C and  the stress  range 6.89 to 138 MPa, only  tertiary 
(accelerating)  creep was observed. The creep  strain 
can be related to time by an exponential  relation 
recently developed by the  authors: 

E = E O  + K(eS' - 1) 

where E O  is the  initial  creep strain, K is the  tertiary 
creep  strain  parameter,  and s is the  tertiary  creep  rate 
parameter.  The initial  tertiary  creep  rate Ks (the  zero- 
time  intercept of  the differential  of  the  strain-time 
relation)  can be related to stress,  temperature,  and 
grain size by a  modified power-law relation: 

where A is the  proportionality  constant, a is stress, E 
is Young's  modulus, f is the grain-size factor, d is 
grain size, Q is the  activation  energy, R is the  gas 
constant,  and T i s  temperature.  The  observed  stress 
exponent 2.87 is similar to the  three-power law 
generally observed  for  secondary  (linear)  creep of 
Class I solid solutions. The  apparent  activation 
energy 374 kJ/g mol is close to  that observed  for  self- 
diffusion of pure  niobium.  The initial  tertiary  creep 
rate was slightly faster  for  fine-grained than  for 
coarse-grained  material. The  strain  parameter K can 
be expressed as a  combination  of power functions of 
stress and  grain size and  an  exponential  function of 
temperature.  Strain-time curves generated by using 
calculated  values for K and s showed  reasonable 
agreement with observed  curves to strains  of  at least 
4  percent. The  time to 1  percent  strain was related to 
stress,  temperature,  and  grain size in a  similar 
manner  as  the initial  tertiary  creep  rate. 

Introduction 
Expressions  relating  creep  strain to time  during 

tertiary  creep  have been proposed  for several alloys, 
for example,  Nimonic 80 (ref. l),  iron (ref. 2), alpha- 
brass  (ref.  3), and stainless steel (ref. 4). Although 

these  expressions appear  capable of  mathematically 
describing  tertiary  creep  curves, they all  require as 
input  the  time  to  initiation of  tertiary  creep.  This 
requirement limits the usefulness of  these  expressions 
in predicting  tertiary  creep curves as  functions  of  the 
usual  inputs  of  stress,  temperature,  and  grain size. 

Power  terms  of  time  have  also been used to 
represent  creep  curves  containing  segments  of 
tertiary  (accelerating)  creep  (ref.  1).  For  refractory 
ailoys we previously proposed  relations of one or 
more power terms  of  the  total  creep  time to represent 
tertiary  creep in tantalum  and niobium  alloys,  such 
as (refs. 5 and 6) and (At)312 
(ref.  7).  This  type  of  relation  does  not  require 
knowledge  of  the  time to the  initiation of  tertiary 
creep,  but  the  requirement  for  multiple power terms 
to model extensive portions  of  tertiary  creep  makes 
this  approach  cumbersome. 

More recently we proposed an exponential  term 
for  tertiary creep  that  overcomes at least some of the 
objections  to  previous  approaches.  This  tertiary 
creep  term is similar to the Garofalo exponential 
term  proposed  for  primary  creep  (ref.  8)  and  can be 
combined with that  primary  creep  term to express 
curves  exhibiting  both  primary and tertiary  creep: 

This  relation is capable of describing well the  creep 
curves for  the  tantalum alloy Astar 81 1C to creep 
strains  of  3  percent  (ref. 9). 

The usefulness of the new exponential  tertiary 
creep  term in describing  the  creep  behavior  of the 
niobium  alloy C-103 is examined in this  paper.  The 
original  purpose for  conducting this  creep  study was 
to provide design data  to facilitate use of C-103 in 
the heat  exchanger and related  components  of  a 
small,  2-kW,  electric,  isotope-fueled  Brayton cycle 
space  power system (ref. 10). An analysis  of  the  time 
to 1 percent strain for C-103 alloy is included, since it 
was the design criterion for this system. 

The nonlinear regression programs used in this 
study were designed by Steven M. Sidik and 
Raymond  W.  Palmer  of  the Lewis Research Center. 

Symbols 
A proportionality  constant, various 

dimensions 
a stress  exponent, dimensionless 
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proportionality  constant,  various 

grain-size exponent, dimensionless 
temperature  factor, dimensionless 
grain  diameter, pm 
Young's  modulus, MPa 
grain-size factor, cm2 
tertiary  creep  strain  parameter, 

stress exponent, dimensionless 
grain-size-independent  stress  exponent 
grain-size-dependent  stress  exponent 
activation  energy, kJ/g mol 
gas  constant,  kJ(g mol)(deg) 
primary  creep  rate  parameter, sec" 
tertiary  creep  rate  parameter, set" 
temperature, K 
time, sec 
time to 1  percent strain, sec 
creep  strain, dimensionless 
total  primary  creep  strain, 

initial  creep strain, dimensionless 
creep  rate, sec 
stress, MPa 

dimensions 

dimensionless 

dimensionless 

Experimental  Procedure 
The niobium C-103 alloy was commercially 

procured  as 0.076-cm-thick sheet. The principal 
constituents of the alloy were determined to be: 

Hafnium, wt 070 .......................................... .9.75 
Titanium, wt To.. ........................................ .1.11 
Zirconium, wt 070 ........................................ .0.45 
Tantalum,  wt% .......................................... 0.31 
Tungsten, wt Yo.. ........................................ .0.25 
Oxygen, wt ppm ......................................... .2 14 
Nitrogen, wt ppm ......................................... .62 
Carbon, wt ppm ........................................... .37 
Hydrogen, wt ppm ....................................... .0.8 
Niobium ............................................. .Balance 

Creep specimens  having a 0.635-cm-wide  by 
2.54-cm-long gage  section were machined  from  the 
0.076-cm-thick  sheet.  These  specimens  were 
degreased,  rinsed in distilled  water and  alcohol, 
wrapped  in  tantalum  foil,  and  annealed in a  vacuum 

of 1O-Io Pa at 120.1" to 1760" C for 1 to 5  hr  before 
creep  testing.  Average  grain  diameters  (measured by 
the intercept method)  ranged  from 15 pm after 
annealing  for 1 hr at 1204" C to 83 prn after 
annealing  for  1  hr at 1760" C. Weight changes 
associated with annealing  generally amounted  to  only 
a few  milligrams,  equivalent to changes  in  interstitial 
content  of  a few tens  of  ppm. 

Constant-load  creep tests were conducted in the 
internally  loaded,  high-vacuum  creep  units  described 
in reference 11. A  tantalum split-sleeve resistance 
heater was  used for  heating  the  specimens.  The 
pressure was generally about 10"O Pa at  the  start  of  a 
creep test and decreased into  the  10-I2-Pa  range  after 
several hundred  hours.  Strains were measured by 
frequent  optical  readings  of  fiducial marks in the 
reduced  gage  section during  creep.  Strains on loading 
were of  the  order  of 0.05 percent and  are not 
included in the  creep  strain  data. 

Test temperatures  ranged  from  827" to 1204" C, 
and stresses from 6.89 to 138 MPa. Tests were 
generally  terminated  after 1 percent strain,  although 
a few  were continued  to  strains  as high as  4 percent. 

Grain sizes measured after  creep  are  included in 
table I;  these  values are essentially the  same  as  those 
measured on annealed  and uncrept  specimens, an 
indication  that  the  grain sizes were stable  under  the 
creep  conditions  studied. 

Results and Discussion 
Shapes  of  Creep  Curves 

Typical  long-time  creep  curves  for C-103 are 
shown in figures 1 and 2. These  curves consist 
entirely  of  tertiary  (accelerating)  creep, with no 
apparent  period of primary  (decelerating) or 
secondary  (linear)  creep. All strain-time  data were 
computer  fitted by  using nonlinear regression 
techniques  based on  the exponential  relation recently 
developed by the  authors  to described  tertiary  creep 
in the  tantalum alloy Astar 81  1C (ref. 9): 

E = ~0 +K(eS' - 1) (2) 

The  good fits  of  the data  to this relation seen in 
figures 1 and  2  are  representative of those  obtained in 
the 35 tests  included i n  this  analysis.  Table I presents 
the  creep curve  parameters derived from regression 
fitting  of  the  individual  curves  and  other  pertinent 
creep  data  from this study. 

Differentiating  equation (2) gives the  creep  rate  as 
a function  of  time: 

2 



= Ksesi (3) 

This  relation  predicts  a linear increase in log creep 
rate with time.  In contrast,  the  Garofalo  primary 
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Figure 1. - Typical creep  curves  for  C-103 tested at 927O and 
977' C, showing  only  tertiary  creep.  All  specimens  annealed 
1 h r  at 1327O C to average grain diameter of 27 pm. 

1.6 

SPECIMEN TEST  TEST 
TEMPERATURE, STRESS, 

OC M Pa 

A T33 982  34.5 
0 T35 982 20.7 - CALCULATED  BY EQ. (21 

- 

0 4oMl 8ooo 12000  1 6 W  20000 
TIME, hr 

Figure 2. - Typical creep  curves  for C-103  tested at 982' C. 
showing  on1  tertiary creep.  Both  specimens  annealed 
3 h r  at  1593 LY C  to  average grain  diameter of 75 pin. 

creep  term  (ref.  8)  predicts  a  linear  decrease in log 
creep rate with time.  Creep  rates  determined by linear 
regression over  sequential  segments of several creep 
tests are seen in figure  3  to be fairly well related to 
time by equation (3). The initial  tertiary  creep  rate, 
which is equal to Ks, is the  creep rate  at zero  time 
(intercept of  the rate-time  curve with the  ordinate in 
fig. 3). Equation (3) appears valid to  at least a 
threefold  range in creep  rates. 

Relation  of  Tertiary  Creep  Rate to Stress, 
Temperature,  and  Grain Size 

In  determining  the  effects  of  stress,  temperature, 
and  grain size on  tertiary  creep,  the initial  tertiary 
creep rate Ks was used rather  than  the  rate  parameter 
s. Stresses were compensated for  modulus by 
dividing the  applied  stress by the  modulus  for 
unalloyed  niobium  at  the  creep  temperature  (ref.  1 l), 
since dynamic  moduli data  for C-103 are not 
available. It  is expected that  the moduli  for C-103 are 
close to those  for unalloyed niobium. 

The initial  tertiary  creep rate Ks was found to vary 
as a power function  of  the  stress  modulus  ratio,  as 
shown in figures 4 and 5 .  The exponent n was 
determined to be 2.87 and did  not  vary  significantly 
with stress,  temperature, or grain size. The proximity 
of  the  stress  exponent  to  3 suggests that C-103 
behaves like a  Class I solid solution  (ref. 12). The 
rate-controlling  reaction  for  secondary  (linear)  creep 
for this type of alloy is considered to be solute 
viscous drag  on gliding dislocations and is termed 
microcreep.  Although C-103, under  the  conditions 
of this study, showed  only  accelerating  creep,  a 
similar  type of reaction  may be rate  controlling. 

The initial  tertiary  creep  rate was also  found to 
vary  exponentially with inverse temperature,  as 
shown in figure 6. The  apparent activation energy 
was determined  from  the  slope of figure 6 to be 
374 kJ/g mol and did  not  vary with stress, 
temperature, or grain size. This  activation energy is 
close to  the 402 kJ/g mol  determined for self- 
diffusion in niobium  (ref. 13) and is consistent with 
solute-drag-controlled  creep. 

The effects of grain size were evaluated at 982" C 
and 48.3 MPa.  The variation  of  the  initial  tertiary 
creep rate Ks with grain size under  these  conditions is 
shown in figure 7. The finest-grained  material, with 
an average  grain  diameter of 15 pm,  had a 
significantly  higher  creep rate  than materials with 
grain sizes from 27 to 83 pm. Based on previous 
observations  of  the  variation of creep rate with grain 
size for niobium and  tantalum alloys (refs. 5 ,  6, and 
9), it was assumed that  the creep rate  tended  toward a 
l /d2 variation with grain size at small  grain sizes but 
became  constant  at  large  grain sizes. 

3 
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TABLE I. - CREEP DATA FOR NIOBIUM  ALLOY C-103 

- 
Tee 

- 
11 

7 
5 
6 

18 
3 
4 

17 
23 

9 

1 3  

14  

38 
30 
35 
33 
61 
36 
50 
37 
32 
51 
39 
34 
52 
49 
40 
45 
44 

29 
28 
27 
26 

16 

- 15  

'7 Annealing  condition 
- 

Time 
hr 

1 

1 

1 

5 

1 

3 

1 

i 1 

1 - 

Tempera. 
ature, 

O C  

1204 

1327 

1 

1427 

1538 

1 

1649 

1760 

1649 

3 

Test 
temper. 
ature, 
OC 

98 2 

827 
927 
927 
977 
977 
977 

1027 
1027 
1027 

98 2 

98 2 

927 
954 
98 2 
98 2 
98 2 

1002 
1002 
1052 
1093 
1093 
1093 
1149 

I 
1204 
1204 

87 1 
927 
982 

1093 

98 2 

98 2 

- 
Stress 
MPa 

48.3 

138 
55.2 
82.7 
41.4 
50.1 
60.1 
20.7 
41.4 
55.2 

48.3 

48.3 

68.9 
34.5 
20.7 
34.5 
48.3 
27.6 
34.5 
17.2 
13.8 
17.2 
34.5 
10.3 
13.8 
20.7 
34.5 
6.89 

10.3 

89.6 
62.1 
41.4 
20.7 

48.3 

48.3 

Stress- 
modulus 

ratio, 
o/E 

4.61X10d 

13.41 
5.30 
7.94 
3.96 
4.79 
5.75 
1.97 
3.95 
5.26 

4.61 

4.61 

6.62 
3.31 
1.98 
3.30 
4.61 
2.63 
3.29 
1.64 
1.32 
1.64 
3.29 

.984 
1.32 
1.98 
3.30 

.661 

.998 

8.65 
5.97 
3.95 
1.97 

4.61 

4.61 

Initial 
tertiary 
creep 
rate, 
Ks 9 

sec-1 

17.9X10-1 
." " 

1.67 
3.68 
8.47 
6.34 
8.04 
5.66 
2.68 

31.5 
66.4 

11.2 

11.2 

1.64 
1.39 
1.07 
2.83 
9.68 
3.91 

11.9 
2.10 
3.92 

14.6 
91.2 
7.85 

20.9 
43.6 
62 
4.76 

L5.0 

1.38 
6.54 
8.38 

15.8 

11.4 

14.8 

~~ 

Tertialy 
creep 
strain 

parameter 
K 

~~ 

0.299X10-' 

". . 

. l o 1  

.230 

.224 

.396 

.112 

.063 

.134 

.884 

.481 

.354 

.531 

.075 

.177 
1.89 

.283 

.410 

.983 
1.51 
.733 
.847 

2.42 
,812 

5.89 
L.73 
1. 38 
1.06 
1.83 
.665 

.305 

.873 

.755 
,.04 

.a 57 

.467 
-~ 

~~ ~ 

Tertiary 
creep 
rate 

parameter 
5, 

sec-l 

6 0 . 0 ~ l 0 - ~  
- - ." 

16.5 
16.0 
37.8 
16.0 
71.8 
89.9 
20.0 
35.6 

138 

31.5 

21 .o 
21.8 
7.88 

.565 
10.0 
23.6 

3.98 
7.89 
2.86 
4.63 
6.05 

LOO 
1.14 

12.1 
31.6 

127 
2.60 

22.6 

4.51 
7.49 

11.1 
15.2 

13.3 

31.6 
~~ 

Time to 
1 percen 

strain, 
hr 

... __ 
670 

3 960 
2 980 
1 260 
2 210 

876 
867 

2 930 
545 
229 

1 1 3 5  

1 330 

3 370 
6 467 

a20 800 
4  125 
1 440 
5 200 
1.820 
8 215 
4 630 
1 524 

228 
3 245 
1 052 

510 
89 

4 630 
1 200 

8 975 
2 790 
2 030 
1 170 

1 600 

1 060 
-~ 

~ 

G r ~  
d i m  
eter, 

d, 
pm 

~ 

15 

22 
26 
24 
27 
31 
29 
24 
30 
27 

42 

49 

80 
73 
77 
65 
70 
62 
85 
74 
71 
86 
70 
69 
85 
83 
80 
80 
72 

71 
77 
85 
92 

83 

63 
~ 

Test duration 
1 - 

Time, 
h r  

~ 

818 

4 867 
4 897 
2 034 
2 498 

98 2 
960 

3 016 
1 294 

433 

1 387 

2  a53 

3  931 
6 575 

18  873 
5  041 
1 717 
5 230 
2  013 
9 237 
4 748 
1 790 

295 
3  715 
1 827 
1 030 

240 
5 066 
1 415 

9  023 
3  861 
2 275 
1 676 

2 541 

1 153 
.. ~ 

~ " 

To strain 
percent 

1.36 

1.81 
3.37 
3.17 
1.24 
1.28 
1.30 
1.10 
3.35 
3.55 

1.42 

2.59 

1.44 
1.01 

.96 
1.39 
1.30 
1.06 
1.18 
1.14 
1.07 
1.25 
1.62 
1.27 
2.10 
3.04 
4.11 
1.10 
1.32 

1.02 
1.67 
1.18 
1.57 

2.12 

1.19 

Based on these  observations  of C-103 and  prior Values for the constants in equation (4) are given in 
observations  of  other  refractory  alloys  (refs. 5 ,  6 ,  table 11. The plot of  temperature-  and grain-size- 
and 9), the  relations for initial tertiary  creep  rate as a compensated  initial  tertiary  creep  rate  as  a  function 
function  of stress, temperature,  and grain size  is of stress-modulus  ratio in figure 8 shows  a  reasonable 
expressed  as fit to equation (4). 

The strain  parameter K was also  studied and was 
Ks=A(a/E)"( l+  f/d2)e-QIRT (4) determined  to  vary  as a power  function  of  stress  and 

grain size and  an  exponential  function  of  inverse 
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I SPECIMEN TEST  TEST 
TEMPERATURE,  STRESS, 

4 ~ 1 0 - ~  
OC M Pa 

T39  1039 34.5 
L" 0 T49  1149  20.7 

T52  1149  13.8 
R 7  982 
133  982 

41.4 
34.5 

CALCULATED BY EO. (3) 

0 800 1600 2400 3200 4ooo 4800 
TIME, h r  

Fiqure 3. - Crew rates as a function of time. Soecimen 
7-27 annealed'3 h r  at 1649' C; others  preannealed 3 hr 
at 1593O C. 

A 

0 
0 

0 

TEST 
TEMPERATURE, 

OC 
1027 
977 
927 
827 

2.87 

1 

10-10  10-4 I, 10-3 4 ~ 1 0 - ~  

STRESS-MODULUS RATIO, olE 

Figure 4. - Initial  tertiary  creep  rate as a function of stress- 
modulus ratio  for  material  annealed 1 hr at 1327O C to 
average grain diameter of 27 pm. 

temperature.  The relation  for K is expressed as 

K=A(a/E)= dbeClT ( 5 )  

4 ~ 1 0 - ~  r 

TEST 
TEMPERATURE, 

OC 
12c4 
1149 
1093 
1052 
1002 
982 
927 

STRESS-MODULUS  RATIO,  o/E 

Figure 5. - Initial  tertiary  creep  rate as  a func- 
tion of stress-modulus  ratio  for  material  an- 
nealed 3 hr at 1593O C to average grain  diam- 
eter of 75 vm. 

with the  proportionality  constant A determined by 
regression fitting to be 17.9 cm-b; the  exponents a 
and b to be -0.23 and 0.717, respectively; and c to be 
-7960 K". Figure 9 compares  calculated  and 
observed  values of K .  

The  variation of K with stress and  temperature  for 
C-103 is different  from  that  observed previously for 
Astar 811C (ref. 9), although  for  both materials K 
increased with increasing  grain size. 

Comparison  of  Calculated  and  Experimental 
Creep  Curves 

It is of  interest to  compare calculated  creep  curves 
with experimental data.  The  strain  parameter K can 
be calculated  from equation (5) ;  the  rate  parameter s 
can  be  obtained by dividing Ks from  equation (4) by 
K .  The creep  curve  can  then be generated by inserting 
these  calculated  parameters into  equation (2) and 
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TABLE II. - CREEP CONSTANTS FOR C-103 

Constant 

Proportionality  constant, A, s e c - l  

Stress  exponents: 

n 
n1 (grain-size  independent) 
n2 (grain-size  dependent) 

Grain-size  factor,  f,  cm 

Activation  energy, Q. kJ/g mol 

Correlation coefficient, R 

2 

2 

W 
W 

E 
V 

Equation 

1. 31xlOl6 

2 .87  

. . 1 7 ~ l O ~ ~  

. - - - - - - - - 
2.95  
2 .52  

..27x10m7 

336 

0.988 

0 / 

1 
Id 

4 
PI 
a 
w" 
PI 

AVERAGE 
GRAIN DIAMETER, : 102 

PI d, 
5 w 

Figure 8. -Temperature-  and  grain-size-compensated 
initial  tertiary  creep  rate  as a function of stress- 
modulus  ratio. 

assuming E O  to be zero.  Figure 10 and 11 compare 
calculated  curves with experimental  data  points.  The 
agreement is reasonable,  especially  considering  the 
probable  error in calculation  of  the  strain  parameter 
K as indicated by the  scatter  in  figure 9. 

Relation of Time  to 1 Percent  Strain to Stress, 
Temperature,  and  Grain Size 

The  time-to-1  -percent-strain  data were analyzed in 

L2 
c E 
vr 

Figure 6. - Stress-compensated initial  tertiary  creep  rate as 
a function of inverse  temperature  for C-103 of two different 
average grain diameters. 
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v) 

- 
- A INTERPOLATED  DATA POINTS 
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> 

\ 

NUMBER OF 
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+ ar 
5 10-9- 
- a 
t z 17 

- 
- l-44 

- 
- 
- 

4 ~ 1 0 - l ~  I I I I I I I I I I I I I I I  

40 Id 103 
AVERAGE GRAIN DIAMETER,  d, 

Figure 7. - Initial  tertiary  creep  rate as  a function of 
grain  diameter  for C-103 creep tested at 48.3 MPa 
at 982O C. 

a  manner  similar  to  that  used  for  analyzing  the  initial 
tertiary  creep  rate Ks. The  time  to 1 percent strain 
varied  as  a  power  function of the  applied  stress; 
however,  unlike  for Ks, the  stress  exponent n for  the 
time  to 1 percent strain decreased  from 2.97 to 2.75 
as  the  grain  diameter decreased  from 75 to 27 pm. A 
decrease in n with decreasing  grain  size  had been 
observed  previously  for Ta-1OW (ref. 5 ) ,  tantalum 
T-222 (ref. 6), and  stainless steel (ref. 14). Matlock 
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Figure 9. - Observed strain  parameter K as a function 
of K as calculated  from  equation (51. 
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Figure 10. - Strain-time  curves for C-103 annealed  for 
1 hr  at 1327' C. 

and Nix (ref. 15) also  have suggested that  the n for 
grain-boundary  sliding, which predominates  at  small 
grain sizes, is about 1 less than  the n for  intragranular 
creep. 

The  apparent  activation energy for  time to 
1 percent  strain was determined to be 336 kJ/g  mol, 
less than  the 402 kJ/g mol for self-diffusion of 
niobium  (ref. 13). The  apparent  activation energy did 
not  vary  significantly with stress,  temperature, or 
grain size. 
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1.2 - 
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Figure 11. - Strain-time curves for C-103 annealed 
for 3 hr at 1593' C. 

The  time  to 1 percent strain varied with grain size 
in a  similar  manner as observed for Ks. The inverse 
time  (proportional  to  a  linear  creep  rate to 1 percent 
strain)  increased with decreasing  grain size. The  data 
were analyzed as  done previously for Ks by assuming 
that  the inverse time to 1 percent  strain was 
proportional to l/d2 at  fine  grain sizes but  invariant 
at large  grain sizes. The variation  of  inverse  time to 
1 percent strain with grain size is shown in figure 12. 

A relation expressing time to 1 percent  strain as a 
function of stress,  temperature,  and  grain size was 
developed as 

Values for the  constants in equation (6) are given in 
table 11. Here,  two  stress  exponents  are  required  since 
the  stress  dependency varies with grain size. Figure 13 
shows the  good  correlation between ternperature- 
compensated inverse time to 1 percent  strain and 
stress for C-103 with average  grain  diameters of 27 
and 75 pm. 

The calculated  stress for 1 percent creep  strain  in 
10 OOO hr  for C-103 is shown in figure 14. This  stress 
ranges from  about 50 MPa a 900" C to  about 6 MPa 
at 1100" C and is about 15 percent  greater for  coarse- 
grained  than  for fine-grained  material. C-103 is 
about  one-fourth  as  strong  as  the  commonly used 
niobium  alloy FS-85 (ref. 16). 
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Conclusions 
From  a  study  of  the  creep  behavior  of C-103 as a 

function of stress,  temperature,  and  grain size the 
following  conclusions were drawn: 

1 .  The exponential  relation  for  tertiary  creep  strain 
as a  function  of  time  can well describe  creep  curves 
for C-103, which shows  only  tertiary  creep at 827" to 
1204" C at stresses of  6.89 to 138 MPa. This  relation 
is 

where c is creep strain, E O  is initial  creep  strain, K is 
the  tertiary  creep  strain  parameter, s is the  tertiary 
creep  rate parameter,  and t is time. 

2. The initial  tertiary  creep  rate Ks can be related to 
stress through  the well-known power law. The  rate 
Ks  can be expressed by a single activation energy 
(over the  range of  this  study) that is slightly less than 
the  self-diffusion  activation energy for niobium. 
Fine-grained C-103 creeps slightly faster  than  does 
coarse-grained C-103. 

3.  The  strain  parameter K can be expressed as a 
function of grain size, stress, and  temperature. 

4. Strain-time  curves  calculated  from  predicted 
values of K and s agree  fairly well with observed 
strain-time  curves. 

Lewis Research Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio, May  15, 1980, 
506-53. 
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