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SUMMARY 

Photodiodes are used as opt ical   photomixers   in  Laser Heterodyne  Spectro- 
meters (LHS) systems to   enable   high  resolut ion  spectroscopy.  A very  important 
parameter i n  any  photomixer  application is  the  photodiode 's  quantum e f f i c i ency  
because of i t s  d i r e c t   e f f e c t  on the  system's  signal-to-noise ratio. Quantum 
e f f i c i ency ,  however, is usua l ly   spec i f i ed  by photodiode  manufacturers as the  
d i r ec t   cu r ren t   (dc )  quantum ef f ic iency .  It is impor tan t   for  the LHS applica- 
t i o n  t o  determine i f   t h e  quantum ef f ic iency   d i f fe rs   for   the   he te rodyne  mode of 
operat ion and by how  much. This paper descr ibes  the measurement techniques 
used by t h e  LHS Conceptual  Design Team (CDT) t o  determine  photodiode  dc  and 
heterodyne quantum e f f i c i e n c i e s .  The theory  behind  these measurements as w e l l  
as a c t u a l  measurement d a t a   f o r  two cu r ren t ly   ava i l ab le  HgCdTe photodiodes are 
presented. 

DC QUANTUM EFFICIENCY 

The dc quantum e f f i c i ency  of a photodiode  represents a f i g u r e  of mer i t  of 
how wel l   the   device   conver t s   l igh t   energy   in to   e lec t r ica l   energy   or ,  more 
s p e c i f i c a l l y ,  how  many amperes  of  photocurrent  are  generated  for  each w a t t  of 
o p t i c a l   s i g n a l  power. The response (R) of a photodiode i n  amperes/watt is 
given by 

R =  ?l dc (5) 
where : 

'ldc 
q = electron  charge = 1.602 Coulombs 
h = 6.625 (10-34) Joule-sec 
f = 3 (10141/X with  the  wavelength (x) expressed  in  micrometers 

= dc quantum e f f i c i ency  

A s  can  be  seen by equation (l), t he   t heo re t i ca l   r e sponse  i s  maximum f o r  
100 percent   dc quantum ef f ic iency .  A t  a wavelength  of  10.6 pm, t h e  m a x i -  
mum response is 8.544 amperes per  w a t t .  

, The dc quantum e f f i c i ency  of a given  photodiode  can  be  determined by 
measuring  the  photocurrent  generated  for a given  s ignal  power impinging on the  
photodiode ' s   sens i t ive  area. The d i f f i c u l t y  (and  any possible  inaccuracy) l ies  
in   the   de te rmina t ion   of   the   fac tors  that  in f luence   t he  amount of   s igna l  power. 
The measurement s e t -up   t ha t  w a s  used for   photodetector   response measurements 
(see f i g .  1) cons is t s   o f  a blackbody  radiation  source,   an  optical  filter, and 
focusing mirrors. This  set-up w a s  par t  of an o v e r a l l  LHS layout  and not  



optimized  for  photodetector  response  measurements. The chopper  and the  beam 
spli t ter  are no t   r equ i r ed   fo r  the dc  measurements,  but are needed. fo r   he t e ro -  
dyne  measurements discussed later i n   t h i s  paper.. 

The blackbody  emittance (NX) is given by 

c, dX watts 

where c 1  is  3.7405 (lo4) and c2 is  1.4388 ( l o 4 )  if the  wavelength is 
expressed  in  micrometers and t h e  blackbody  temperature (T) is  in   deg rees  
Ke1vi.n. The tests were conducted a t  10.6 um with a 0.3963 vm o p t i c a l   f i l t e r  
r e s u l t i n g   i n  a radiance of 1.866  (104) 

The o p t i c a l  power a t  t he   de t ec to r  

-l m 
3 

'det A CH F M = N T T (T 1 TBSTpOL 

watts /cm2's ter   €or   the 1273 K source.  

is r e l a t e d   t o   t h i s   r a d i a n c e  by 

(iI2 Adet cos 0 watts 

where : 

T = chopper  factor = 0.5 

= f i l t e r   t r a n s m i s s i o n   f a c t o r  = 0.65 

= mirror   t ransmiss ion   fac tor  = 0.97 

T = beam spli t ter  f a c t o r  = 0.5 

= po la r i za t ion   f ac to r  = 0.5 

CH 

TF 

TM 

TPOL 

BS 

d = lens  diameter = 5.0 cm 
R = foca l   l eng th  = 15.2 c m  
8 = of f  normal de t ec to r  mounting angle  = 3C0 
A = d e t e c t o r  area = 1 . 2 1  cm2 f o r   u n i t  (A)  

d e t  = 1 .7  cm2 f o r   u n i t  (B) 

u s ing   t hese   g iven   f ac to r s   i n   equa t ion   (3 )   r e su l t s   i n   op t i ca l  powers  of 
0.0123 microwat t s   for   un i t  (A) and  0.0173 microwatts f o r   u n i t  ( B ) .  These 
powers d i f fe r   because   de tec tor  (B) has  about 40 pe rcen t   g rea t e r   s ens i t i ve  area. 
To assure  a v a l i d  comparison  the  detectors  have t o  be overf i l led.   This   condi-  
t i o n  was v e r i f i e d  by t ransverse  movement of the  photodetectors   without  loss 
of photocurrent.  The measured photocurrents  were 0.05 and 0 .1  microamperes 
f o r   d e t e c t o r s  (A) and (B) , respectively.   Application  of  equation (1) r e s u l t s  
i n  ndc = 48 pe rcen t   fo r   de t ec to r  (A)  and n = 68 pe rcen t   fo r   de t ec to r  (B) . 

dc 

HETERODYNE QUANTUM EFFICIENCY - THEORY 

The heterodyne quantum e f f i c i ency  i s  more d i f f i c u l t  t o  ascertain  because 
it involves  the  heterodyne mode of   operat ion,  i .e. ,  t h e  mixing  of t w o  o p t i c a l  
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s igna l s  t o  obta in  a "bea t   s igna l "   i n   t he  microwave frequency  range. The t e s t  
set-up  used  for the heterodyne  efficiency  measurements (see f i g .  2 )  c o n s i s t s  
of a blackbody  source, a 50 percent  duty  cycle  chopper,   focusing  optics,  and a 
50 /50  beam s p l i t t e r  t o  combine the  s ignal   (blackbody)   with  the local o s c i l l a t o r  
((202 laser).  The RF p o r t i o n   c o n s i s t s  of a 5 t o  550 MHz preampl i f ie r ,  a 
10 t o  115 MHz amplifier,   and a square-law  detector  to  detect   the  heterodyne 
s igna l  power i n   t h e  midband frequency  range (10 t o  155 MHz).  The de tec to r  
output  i s  then  synchronously  demodulated  and f i l t e r e d  by a running-mean 
i n t e g r a t o r  whose value is read  a t  a 1-second i n t e g r a t i o n  t i m e  and r e s e t  t o  
zero. The chopper rate w a s  chosen t o  be  1024 Hz t o  s implify  the  generat ion  of  
the   requi red   cont ro l   pu lses .  

The scheme followed t o   o b t a i n  a heterodyne quantum e f f i c i ency  measurement 
is  similar t o   t h e   d c  quantum e f f i c i ency  measurement excep t   t ha t   fo r   t he   he t e ro -  
dyne case,   the  measured  signal-to-noise  ratio (SNR) is  compared t o   t h e  maximum 

~ 

t heo re t i ca l   ob ta inab le  SNR. 

The SNR for  the  described  implementation is given by 

4 '" 
2q (Iph + Id) 

where : 

'Het = heterodyne quantum e f f i c i ency  

I = signal  induced  photocurrent 

t = opt ica l   t ransmiss ion   fac tor  = 0.093 

T = pos t   de tec t ion   in tegra t ion   t ime = 1 sec  
F = no i se   f ac to r  of preampl i f ie r  = 1.58 ( N F  = 2 dB) 

Ph 

BIF = I F  bandwidth = 105 MHz 

T = 290 K 

Rll = equivalent   input  impedance  of preampl i f ie r  

Id  

0 

= dark  photocurrent 

A s  can  be  seen by equation ( 4 ) ,  t he  SNR is d i r e c t l y  dependent  on t h e  
photodiode's  heterodyne quantum ef f ic iency .  I t  should   be   no ted   tha t   the   op t i -  
ca l   t ransmiss ion   fac tor   has   the  same impact on the  system SNR as t h e  quantum 
ef f ic iency   ind ica t ing   tha t   bo th   fac tors   should   be  maximized. A n  i n c r e a s e   i n  

~ t he   IF  bandwidth o r   t h e   i n t e g r a t i o n  t i m e ,  however, has less effect ;   doubl ing 
e i t h e r   o n l y   r e s u l t s   i n  a 41.4 percent  improvement in   the   s igna l - to-noise  ra t io .  
Also, i n t eg ra t ion  t i m e  i s  mission  dependent  and  cannot  be  arbitrarily  increased 
e x c e p t   f o r   s t a t i c  measurements (as i n   t h e  lab). The IF  bandwidth i s  l imi t ed  
by  two f ac to r s :  (a) the  photomixer 's  own frequency  response  l imitation, and 
(b) the   increased   no ise   fac tor   o f  wide  bandwidth  preamplifiers. 

Other   important   factors   that   inf luence  the SNR are the  temperature  of  the 
blackbody  source and the  effect ive  temperature   of   the   noise   sources   operat ing 
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i n   t h e  LHS system The blackbody  source  temperature  affects the SNR v i a   t h e  
[exp(hf/kT) - l]-i factor   of   equat ion ( 4 ) .  For  example, a t  10.6 microns  the 
SNR increases  by a f a c t o r  of approximately 7 when considering  the  blackbody 
temperature  of  the  sun a t  5600 K versus   the  temperature   of  1273 K of  the  labora- 
tory  source.  

The noise   sources   opera t ing   in  a LHS system are b a s i c a l l y  Johnson noise  
r e fe r r ed  t o  the   input  of the  preamplifier  and  photodiode  shot  noise.   Their 
e f f ec t s   a r e   accoun ted   fo r  by the  (F - l)kT0/Rl1 and  2q(Iph + I d )   f a c t o r s ,  
respec t ive ly .  Because  an  unstable  reference  source w i l l  cause  an  apparent 
noise  component as w e l l ,  a C02 l a s e r  was chosen as t h e   l o c a l   o s c i l l a t o r   f o r   t h e  
heterodyne quantum e f f i c i ency  measurements. 

HETERODYNE QUANTUM EFFICIENCY MEASURE3ENTS - MIDBAND 

The heterodyne quantum e f f i c i ency  measurements f o r   t h e  midband case were 
conducted i n   t h e  10 t o  105 MHz frequency  range  (determined by the   ampl i f ie r  
bandwidth  of  the A I L  2392C radiometer  of  f ig.  2 )  t o   a s s u r e   t h a t   t h e  measurement 
is within  the  photodetector  response  bandwidth. I t  should  be  noted  that   the  
t e s t   s e t - u p  w a s  pa r t   o f   an   ove ra l l   op t i ca l   l ayou t   fo r   t he  LHS system  and w a s  
not  optimized  for  photomixer  response  measurements. The inab i l i t y   t o   de t e rmine  
the   exac t   t ransmiss ion   fac tors ,   therefore ,  w i l l  cause   e r rors   in   the   absolu te  
measurements, but  should  be more than  adequate  for  determining  heterodyne 
frequency  response  rolloff.  The SNR w a s  measured by using a microprocessor 
con t ro l l ed   d ig i t a l   vo l tme te r  (DVM) t o  measure the  average  of  the RF d e t e c t o r  
output   vol tage (1 second i n t e g r a t o r )  and i t s  s tandard   devia t ion .  The measured 
SNR w a s  determined as follows: 

V 
LO+BB - 'BB V~~~ 

SNR = " - 

where : 

V = average  detected  output  with  the C02 l a s e r  and BB heterodyning 

V = average  detected  output  with  the C02 laser   path  blocked 
LO+BB 

BB 
0 = standard  deviation  of  detected  output  during  heterodyning 

%ET 
= heterodyne  signal  output 

The SNR w a s  measured for   photocurrents  up to   about  1 milliampere. The 
t e s t   r e s u l t s  are provided  in table I for  both  available  photomixers.  It should 
be noted  that   the   photocurrents  shown are above the  photomixer  dark  currents. 
Table I1 depicts  the  parameter  values  used and t h e   t h e o r e t i c a l  SNR ca l cu la t ion  
r e s u l t s .  It should be noted  that   for  photomixer ( B ) ,  the   dark  durrent   para-  
meter va lue   u sed   i n   t he   t heo re t i ca l  SNR ca l cu la t ions  w a s  about 50 percent  of 
the  measured dark  current  because it w a s  found that  only  about  half   of  the 
dark   cur ren t   for   th i s   photomixer   cont r ibu ted   to   shot   no ise .   This  phenomenon 
needs   fur ther   inves t iga t ion   bu t  is  outside  the  scope of th i s   paper .   F igure  3 
shows both  the measured  and the   ca lcu la ted   va lues  for  the  SNR i n  the  10 t o  
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115 MHz band. A comparison  between t h e   t h e o r e t i c a l  and the  measured SNR's 
r e su l t s   i n   he t e rodyne  quantum eff ic iencies   of   16.5  percent   for   photomixer  (A) 
and about 62 percent  for  photomixer (B) . 

HETERODYNE QUANTUM EFFICIENCY VERSUS FREQUENCY 

The quantum eff ic iency  for   photodiode (A) decreased from 48 percent  a t  dc 
t o  16 .5   percent   in   the  10 t o  115 MHz band  and photodiode (B) decreased from 
68 percent  t o  62 percent .   This  prompted  implementation  of  the tes t  set-up 
shown i n   f i g u r e  4 t o  enable a heterodyne  frequency  response  check. The r e s u l t s  
of these  tests are shown i n   f i g u r e  5 f o r  photomixer (A)  and i n   f i g u r e  6 f o r  
photomixer (B). Because the  dc  response  cannot  be  obtained  with  this tes t  
implementation, no d i r e c t  comparison t o  the   dc  quantum eff ic iency  can  be made. 
A l s o ,  this  implementation  introduces i t s  own s igna ture  on the  overal l   f requency 
response  because  of VSWR, ampl i f i e r  in-band ripple, and RF mixer  response 
e f f e c t s .  These e f f e c t s h a v e  been  "backed  out"  result ing  with  the  corrected 
response  curves shown i n   f i g u r e s  5 and  6. I t  i s  seen  that  photomixer (A)  has 
a r o l l - o f f   i n   t h e  10 t o  110 MHz band t h a t  is no t  as pronounced f o r  photomixer (B). 
Photomixer (A) appears t o  be a t  i t s  ha l f  power po in t  a t  about 450 MHz. 
Photomixer (B) has  not  approached i ts  ha l f  power po in t s  a t  the 500 MHz 
l imi t a t ion   o f   t he   t e s t   s e t -up  and requi res  a wider  bandwidth  implementation t o  
inves t iga t e .  

CONCLUSIONS 

Photodiodes  used as photomixers  in LHS systems  exhibi t  quantum e f f i c i e n c i e s  
in   the  heterodyne mode of   opera t ion   tha t  are lower  than  their   dc quantum 
eff ic iencies .   Also,   th is   heterodyne  eff ic iency is  not  constant  over  the  photo- 
diodes  specif ied  bandwidth,   but   exhibi ts  a gentle  roll-off  with  frequency. 
Consequently,  photodiodes  that are t o  be  used in  heterodyne  applications  should 
be t e s t e d   i n   t h a t  mode and a minimum heterodyne quantum e f f i c i ency   spec i f i ed  
a t  t he  upper  frequency  of  interest .   These  tests  require much ca re ,  however, 
due t o  the   s igna ture  of t he  RF components i n   t h e  test  setup.  

Langley  Research  Center 
National  Aeronautics and  Space  Administration 
Hampton, VA 23665 
August  26, 1980 
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TABLE I .- SNR MEASUREMENTS  (MIDBAND) 
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TABLE 11.- SNR CALCULATIONS 

PARAMETER 

3B Temperature (K) 

'HET 

?F (dB) 

i (ohms) 
11 

lark Current (ya) 

i (MHz) 

. (sec) 
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*Portion of 375 pa dark current t h a t  
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Figure 1.- Photodetector dc response test. 
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