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SUMMARY

A theoretical method has been developed for computing approximate laminar
heating rates on three-dimensional configurations at angle of attack. The
method is based on the axisymmetric analogue which is used to reduce the three-
dimensional boundary-layer equations along surface streamlines to an equivalent
axisymmetric form by using the metric coefficient which describes streamline
divergence (or convergence). The method has been coupled with a three-
dimensional inviscid flow field program for computing surface streamline paths,
metric coefficients, and boundary-layer edge conditions. Good agreement has
been obtained with experimental data on a spherically blunted 15° half-angle
cone, a spherically blunted 80° sweep slab delta wing, and a Space Shuttle
Orbiter type configuration at angles of attack up to 25°, The method provides
a useful means of computing heating rates on advanced entry configurations.

INTRODUCTION

With the development of the Space Shuttle transportation system well under
way, attention is being focused on more advanced Earth orbital transportation
systems which will be expected to replace the Space Shuttle system near the end
of this century. These vehicles will be subjected to severe aerodynamic heating
during reentry, and the design of their thermal protection systems will require
detailed information on surface heating rates. Three-~dimensional winged config-
urations are currently being considered (refs. 1 and 2) and they will probably
fly at relatively large angles of attack. It will first be necessary to compute
the three-dimensional viscous flow over the vehicle in order to accurately pre-
dict the surface heating rates.

With advances in high-speed computers and numerical techniques, much prog-
ress has been made in recent years in computing viscous compressible flows using
the Navier-Stokes equations (ref. 3). However, solutions for general three-
dimensional winged configurations are far beyond the "state of the art" of cur-
rent applications, and their demand on computer resources would far exceed the
capabilities of the current generation of computers.

Much of the needed information on surface heating rates can be obtained
from a "classical approach" where the outer inviscid flow field is computed
independent of the boundary layer and is used to provide edge conditions for a
three-dimensional boundary-layer calculation near the surface. Solutions have
been obtained for the general three-dimensional compressible boundary-layer
equations. (See, for example, refs. 4 to 8.) To date, the application of these
methods has been limited to relatively simple geometries. An attempt has been
made to extend the method of reference 5 to more realistic configurations; but,
it has not yet been successful. However, even if these methods could be applied
to the configurations of interest in the present study, their use would be cost
prohibitive for design calculations.



Cooke has developed an axisymmetric analogue for the general three-
dimensional compressible boundary-layer equations (ref. 9) which greatly simpli-
fies the calculation of three-dimensional viscous flows. Following that
approach, the general three-dimensional boundary-layer equations are written in
streamline coordinates and the cross-flow velocities (tangent to the surface and
normal to streamline direction) are assumed zero. This reduces the three-

. dimensional boundary-layer equations to a form identical to that for axisymmet-
ric flow provided: (1) the distance along a streamline is interpreted as dis-
tance along an "equivalent axisymmetric body" and (2) the metric that describes
the spreading of the streamlines is interpreted as the radius of the equivalent
axisymmetric body. This allows any existing axisymmetric boundary-layer program
to be used to compute three-dimensional heating rates along a streamline in
regions where the small cross~flow assumption is valid. By considering multiple
streamline paths, an entire vehicle can be covered.

Hayes (ref. 10) has shown that the cross flow in the boundary layer is
small when the streamline curvature is small. Vaglio-Laurin (ref. 11) has shown
that when the wall is highly cooled the cross flow in the boundary layer is
small even for cases where the streamline curvature is not small. Further, in
references 12 to 14, for example, comparisons with experimental data and other
theoretical calculations, including some cases where the cross flow in the
boundary layer is not small, indicate that reasonably accurate heating rates can
be obtained using the axisymmetric analogue.

The most obvious difficulty in applying this technique is that of computing
the three-dimensional inviscid flow field from which the surface streamline pat-
tern and the metrics are determined. 1In reference 15, DeJarnette and Hamilton
present a relatively simple method of calculating the streamline location and
metric coefficient along the streamline from a known surface pressure distribu-
tion. With this approach the path of a single streamline is computed on the
surface; simultaneously, a second-order differential equation is solved along
the streamline for the metric. The major difficulty with this approach is that
second derivatives of the surface pressure are required to calculate the metric.
These are very difficult to obtain with sufficient accuracy from either experi-
mental measurements or approximate methods (such as Newtonian theory) except for
a few simple cases. 1In reference 16, DeJarnette presents an improved method for
calculating the inviscid surface streamlines. Two adjacent streamlines are com-
puted from a known surface pressure distribution, using only first derivatives
of the pressure; and the metric is obtained by determining the rate at which the
streamlines spread on the surface. This is a much better approach since it
relaxes some requirements upon the accuracy of the input surface pressure dis-
“tribution. However, it still requires more detailed pressure distributions than
are generally available from most experimental studies.

In both references 17 and 18, methods have been presented for computing the
metric coefficient on the surface of a body from an inviscid flow field solu-
tion. However, in each case it would be very difficult to accurately compute
the metric coefficient at the boundary-layer edge using these methods. Although
this will not be considered in the present paper, it is important that the cho-
sen technique should not have such a limitation. Since in the present approach,
the metric coefficient is computed from information on two adjacent streamlines,




it will be very easy to extend the method to use boundary-layer edge conditions
to compute the metric coefficient at the boundary-layer edge.

Recently, a method has been developed for computing the three-dimensional
inviscid flow field over general configurations at angle of attack. (See
refs, 17 and 19.) Using information about the velocity directions from the
inviscid solution, streamlines can be traced on the vehicle surface. Then, a
method similar to that presented by DeJarnette (ref. 16) can be used to compute
the metrics along each streamline. This approach offers the advantage of com-
puting heating rates on three-dimensional vehicles without requiring experimen-
tal pressure distributions.

In the present paper, an axisymmetric analogue method for computing heating
rates on three-dimensional configurations at angle of attack is developed. The
necessary inviscid streamline information was obtained using the inviscid-
solution procedure of reference 17. The accuracy of this solution technique is
demonstrated by direct comparison of computed heating rates with experimental
data.

The information presented in this report was included in a report entitled
"Calculation of Heating Rates on Three-Dimensional Configurations" submitted in
partial fulfillment of the requirements for the Degree of Engineer, The George
Washington University, December 1979.

SYMBOLS

A parameter in transformation from cylindrical to local polar
coordinates

a parameter in transformation from local polar to cylindrical
coordinates

Cp specific heat at constant pressure, J/kg-K

Cy specific heat at constant volume, J/kg-K

h static enthalpy, J/kg

he local enthalpy at edge of boundary layer, J/kg

hy reference heat-transfer coefficient, W/m2-s-K

hg stagnation-point heat-transfer coefficient, W/m2-s-K

hy, heat-transfer coefficient at wall, W/m2—s—K

hy metric coefficient in E~direction, m

ho metric coefficient in B-direction, m



H total enthalpy, J/kg

K thermal conductivity, W/m-K

k streamline curvature, 1/m

L length, m

1 distance measured along leading edge of delta wing, m
M Mach number

Npr Prandtl number, cpu/k

NRe unit Reynolds number

n distance normal to surface, m

P pressure, N/m2

q heat-transfer rate, W/m2

q distance normal to streamline oﬁ surface, m
RF recovery factor

Rp radius of curvature of spherical nose, m
ro displacement of coordinate pole, m

R,@,x local polar coordinates (see fig. 4)

r,$,x cylindrical coordinates (see fig. 4)

s constant in Sutherland's viscosity law, K

s distance along streamline, m

s arc length, m

T temperature, K

te ratio of enthalpies, hg/Hg

u velocity component in &£-direction, m/s

V. free-stream velocity, m/s

v velocity component in B-direction, n/s

Vi velocity component defined by equation (Bl1), m/s



Vn velocity component defined by equation (B2), m/s

w velocity component in n-direction, m/s
Wi velocity component defined‘by equation (B3), m/s
Wi, Wo, W3 Cartesian velocity components defined by sketch (a) of

appendix B, m/s

X ¥r2 Cartesian coordinates (see fig. 5)
a angle of attack
B coordinate normal to streamline on surface
E boundary-layer velocity gradient parameter
r geometry angle defined by equation (22) (see sketch (¢) of appendix B)
Y ratio of specific heats, cp/cv
6¢ geometry angle defined by equation (21) (see sketch (b) of appendix B)
Lw ratio of total enthalpies, Hy/Hq
, d (H/Hg)
Cw slope of total enthalpy profile at wall, —_Sﬁ—_%]w
n transformed boundary—laye; coordinate normal to wall
e angle defining velocity direction on surface measured relative to

meridional plane (see fig. 8)

viscosity, N--s/m2

u

£ coordinate along streamline on surface

I3 transformed boundary-layer coordinate along surface
streamline

o} density, kg/m3

5 dissipation function,.W/m3

Subscripts:

b body

max maximum



e edge of boundary layer

s inviscid stagnation point
w wall
@ free stream

METHOD OF SOLUTION

In the sections that follow, a method for calculating heating rates on
three-dimensional configurations using the axisymmetric analogue (ref. 9) is
described, and the equations necessary for applying the technique are developed.
The assumptions made from the outset are that: (1) the Reynolds number of the
flow is sufficiently large so that boundary-layer concepts apply; (2) the fluid
is a perfect gas; (3) the flow is laminar; and (4) the entropy at the edge of
the boundary layer is constant. Although the last three assumptions are not
necessary, they will simplify the development of the technique.

Axisymmetric Analogue

Consider an orthogonal streamline coordinate system (£,8,n) where f |is
directed along an inviscid surface streamline and n 1is distance measured along
the outward normal from the surface (fig. 1). The element of arc length ds in
such a curvilinear coordinate system is given by the equation

- 2 2
ds2 = h1dg2 + hy dR2 + dn? (1)

where hy and hgy are metric coefficients. By restricting attention to a thin
boundary-layer region near the surface, both h; and hjy; can be assumed to be

functions of £ and B only.

Taking the velocity components in the £-, B-, and n-directions as wu, vV,
and w, respectively, the general three-dimensional boundary-layer equations can
be written as follows (ref. 9):

Continuity
! 3 ) 0 hihow) 0 (2)
—— | — (phou) + — (Phyv) + —(p W} =
hihy |38 2 38 | an 1 2



£ -momentum

p w— +
hy 9L hsy a8 on hihsy 3B hqhsy at

<% du v du du uv 9hy v2 3hé>

1 3p d ( du
S = m—e— - '[J -
h-‘ 35 on an (3
f-momentum
u dv v dv v uv dh2 u2 9y
Pl — 4 o= — + — —_— - —— —
hy 3  hy 3B dn  hyhy 3 hihp g
1 3p 9 ( 8v>
= e e m— o — ].1 -
n-momentum
op
5;1 =0 (5)

Energx

v 9T v 3T aT - u Jp
Pep|— — + — — +w—|= d + — —

hy 0§ ho aB on hy 14
3 3 ] aT
+ vE +w & + —|k — (6)
ho 98 dan 9n\ dn

where & is the dissipation function. (See ref. 9.)

It is convenient to express derivatives in the E-direction in terms of the
distance s along a streamline as

1 9 3

;; EE " 3s




Further, it is assumed that the cross-flow velocity v and its derivatives are
small. With these simplifications, equations (2), (3), (5), (6), and (4) are as
follows:

Continuity
9 d
~—(phpu) + —(phyw) =0 , (7)
ds on

s~momentum

< du Bu) dp 9 ( 8u> | _
pPlu—+w—J=-—+ —( — (8)

n-momentum

op 0
— =2 9
™ (9)
Energy
2
3T 3T oap 9 o aT (au)
c —tw—) a0 =+ — — |+ ul — 10
i ey 3n 55 an\ 3n/ "\&n e

v dv  uv oh2 - 1 9p 3 v
plu —+w—+—— -ku?) = - — — + —[p — (1)
3 hyp 38 dn\ 9n

where k is the streamline curvature term given by the equation

_ 1 9

ks — — 12
hihs oB (12)



Equations (7) to (10) are identical to the usual axisymmetric boundary-layer
equations (ref. 20) if s is interpreted as distance along an "equivalent
axisymmetric body"™ and hjy 1is interpreted as the radius of that body. This

set of equations can be solved for u, Ww, P, and T through the boundary
layer along a streamline using one of the many methods that have been developed
for solving the axisymmetric boundary-layer equations (for example, refs. 21

and 22). With u, w, P, and T assumed known from a previous solution, equa-
tion (11) becomes a linear equation which can easily be solved for v, the
cross~flow velocity component. In the present application, only the heat trans-
fer is of interest; thus it is unnecessary to solve the cross-flow momentum
equation since in the axisymmetric analogue it has no effect on heating rates.

Coordinate System and Surface Geometry

The present paper is concerned with calculating heating rates on three-
dimensional configurations - typical of the configuration illustrated in fig-
ure 2 - which are symmetric about the XZ-plane (pitch plane). The fuselage of
these vehicles can be easily described in cylindrical coordinates (ry,¢,x)
using a function of the form (fig. 3)

rp = rp(d,x) (13)

where the pole of the coordinate system is located on the X-axis. However, when
wings extend from the fuselage, equation (13) may become multivalued. (See

fig. 4.) One solution to this problem is to allow the pole to be a function

of x

rg = rg{x) (14)

Then, at a given =x-~station, the pole can be located such that rp is a single-
valued function. This new coordinate system Ry,®,X will be called a "local
polar coordinate system" in which the vehicle surface can be represented by a
function of the form

Rp = Rp (%, X) (15)

which is much more general than equation (13). It should be noted that the new
coordinate system is generally nonorthogonal; however, for the special case
where rg(x) = 0, it reduces to the standard cylindrical coordinate system which
is orthogonal.

Vachris and Yaeger (ref. 23) have developed a computer program called QUICK
which uses the local polar coordinate system to describe vehicle geometries. 1In
this program, analytic curves are patched together to give a functional repre-



sentation of the wvehicle geometry similar in form to equation (15). The QUICK
program is compatible with the method that will be used to obtain the inviscid
flow field solution (refs. 17 and 19). Thus, it will be used exclusively in the
present study to describe vehicle surface geametry. :

The detailed relationship between local polar and cylindrical coordinates
on a surface are given in appendix A, but the transformation equations are sum-
marized here for convenience. First, the equations describing the transforma-
tion from cylindrical coordinates rp,$,x to local polar coordinates Rp,®,X
on a surface are

Rp = rp VA2 + 1 cos ¢ (16a)

® = tan~! A (16b)
X =X (16¢c)
where

o
i

tan ¢ - rg(x)/(rp cos 9) (16d)

Similarly, the inverse transformation from local polar coordinates Rp,®,X to
cylindrical coordinates on a surface is expressed as

rp = RbV§2 + 1 cos (17a)

¢ = tan~! A ’ (17b)

X =X (17¢)
where

A =tan & + ro(X)/(Rp cos o) (174)

Since the wvehicle geometry will be obtained from the QUICK program in the func-
tional form of equation (15), the inverse transformation equations should be

more useful.

10



Calculation of Inviscid Surface Streamlines
and Metric Coefficients

One of the most difficult steps in applying the axisymmetric analogue is
calculating the inviscid surface streamlines and the metric coefficient hj
along each streamline. 1In the present study the inviscid streamline information
will be calculated using the results of a set of three-dimensional inviscid
flow field programs described in references 17, 19, and 24. The manner in which
the flow field is calculated is illustrated in figure 5. First, the subsonic/
transonic flow over the nose is computed using a time dependent method BLUNT
similar to that described in reference 24. From this solution an initial data
plane (IDP) normal to the X—axis is obtained, in a region where the flow is
entirely supersonic. Then, a finite-~difference marching technique STEIN
(refs. 17 and 19) is used to continue the solution downstream in the supersonic
region step by step in planes normal to the y-axis. These solutions provide
the inviscid flow field data over the entire vehicle which will be used to cal-
culate the streamlines and metric coefficients.

Nose region.- In the nose region of a blunt body, the surface streamlines
originate at the stagnation point as illustrated in figure 6. Letting £ be
the coordinate in the streamline direction and B the coordinate in a direction
normal to the streamline and tangent to the surface, the differentials of arc
length are

ds = hy 4g (18a)

and

dq = hp dB (18b)

respectively. The metric coefficient h; gives a measure of the divergence or
convergence of the streamlines on the surface and is the "equivalent radius"
that must be used in the axisymmetric boundary-layer equations.

The nose geametry of most nonablating blunt reentry vehicles is smooth;
thus, the pressure distribution in the nose region of these vehicles is also
relatively smooth. Because of this, the pressures can be computed by BLUNT and
used as inputs to the computer program described in reference 16 to calculate
the streamlines and metric coefficients from the stagnation point to the station
where the initial data plane intersects the body surface. (See fig. 6.) 1In
principle, the same technique could be used to continue the streamline solutions
downstream; but it oould lead to large inaccuracies since the pressure distri-
bution can change radically downstream of the nose on general three-dimensional

11



configurations. Thus, downstream of the IDP, a new technique for obtaining

streamline solutions has been developed, and it will be described in detail in
the next section. .

Downstream supersonic region.- DeJarnette (ref. 16) presents the following
two equations which can be used to calculate the streamline position:

36 1 [tan 6 cos & '
—| = —|———=—— - tan T sin §, (19)
9x/g rp cos T

and the metric coefficient hy
3¢ cos 64
_> = ( ———— |hy (20)
aB X rb [o-0 15 e

The angles 6¢ and T

are the body-geometry angles defined in reference 15.
(See also fig. 7.)

They are given by the equations

1 [3tp
tan 6¢=;;-a—¢g—x (21)

and

arb
tan I' = cos 6¢ 5—— (22)
/¢

The angle © is related to the velocity direction on the surface (fig. 8) and
can be obtained from the inviscid flow field solution.

The distance along a streamline can be calculated from the following dif-
ferential equation:

as 1
i (23)
(BX)B cos B cos T
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Since B 1is constant on a given streamline, equation (19) can be inte-
grated along a streamline to determine the variation of the cylindrical
angle ¢ with respect to x. Similarly, equation (23) can be integrated to
give the streamline length. To obtain the metric coefficient along a stream-
line, the primary streamline -~ the streamline along which heating rates are
calculated - and an adjacent streamline (separated from the primary streamline
by AB) are computed simultaneously. Then, at a given x-station the metric
coefficient hy is computed from equation (20) after first approximating the
derivative (3¢/3B),, numerically using one-sided differences. 1In reference 16
nunerical experiments were performed using several types of difference schemes
to approximate (9¢/98), and the preceding procedure was found to be suffi-
ciently accurate.

The angles 6¢ and T’ given by equations (21) and (22) are defined in
terms of cylindrical coordinates ¢ and x. 1In order to apply these equations
to general wing-body configurations, they must be transform~d to local polar
coordinates. This transformation leads to the following results (see appen-

dix A for details):

tan 6¢ = (24)

Rb\h + A2 cos O

and

3

a0 arp arp
cos 6¢ <——> ——-) + | — (25)
3x b ad X X /¢

where

1 + A2 (R2 cos? ¢)
ad
(_) _ ( ) b (26)
x

3/, 3R
¢ R2+r[Rbsin<I>—(—b> cos <I>:]
b 0 30 X

3R 1 ) 3Ry
- ————(R< + rg|Rp sin ¢ - | =—/ cos ¢ (27)

13



——
| @
g 5
~Z
>

0

\/ 32 9| - (aRb) bt (a;) tan ® (28)
Rpy1 + A< cos —\| \=—/ - tan
b Rp\8® /y 1 4 A2\00/y

= 1 (9Rp A (oA
RbVT + A2 cos -—( ) + ( ) (29)
¢ ®

Rp\9X 1 + A2\3X

T
W @
><'r-1
~Z
©

n

9Rp dRp
The derivatives _— —_ are obtained from the geometry description
ad X X /&
program QUICK.

Similarly, equation (19) gives the location of the streamline in terms of
the cylindrical angle ¢. For wing-body configurations, the angle ¢ may not
describe a unique point on the body cross section. (See fig. 4.) To avoid this
problem, equation (19) can be rewritten in terms of the local polar angle ¢
in the following form (see appendix A for details):

3% _2 Rp cos? 3¢' ] ro/oRp drg
— =(]+A) - + ——|——] - — (30)
3X/B Rp + rg sin ¢/|\3%/g Rp cos ®|Rp\dx /g dx

where
- (), - 6@, - &
_ = —_ + |— —_ —— + | — (31)
x /g 9x o 3x/g \3d/ » [\32 X X /o

dro ro(aRb)
90 ay = Rp\3X/ o

=—| = =Ry cos ¢ (32)
ox ) 2 ] aRb .
R, + r, Rb sin & - 55— cos ¢
X

b
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3%

a¢
and where (5—> (-5) are given by equations (19) and (26), respec~
X/g X

3 Rp, d Ry, drg
tively, and - -] , and —— are calculated in the geometry descrip-
ad /y X/ ¢ ax

tion program QUICK.

After obtaining the angle 0, which is related to the velocity direction
on the surface, from the inviscid solution (appendix B), equation (30) can be
integrated to obtain the streamline location on the body surface as a function
of ® and ¥X. This is a general equation and can be applied to any configu-
ration where the pole can be located to give Rp as a single-valued function
of & and X. (See fig. 4.) For the special case where rg = 0, the local
polar coordinate system reduces to a cylindrical coordinate system, and equa-
tion (30) reduces to the form

o) [ .
X/ B 9x/g

as would be expected.

The metric coefficient hy and distance along a streamline s are
obtained by solving equations (20) and (23), respectively, as previously
discussed.

Calculation of Heating Rates

Approximate three-~dimensional heating rates along surface streamlines can
be calculated through the axisymmetric analogue using any available axisymmetric
boundary-layer solution. Although heating rates are usually calculated from a
solution of the complete axisymmetric boundary-layer equations (egs. (7) to
(10)), this is unnecessary because very accurate results can be obtained more
easily from approximate heat-transfer relations similar to those presented in
reference 25. Following the nomenclature of reference 25, the expression for
the heating rate to the surface is given by the following equation (see appen-
dix C for details):

He(pu)wuehz .
ay = | ———— o (34)

Npr, w\/;g

15



where the transformed surface distance g is given by

g = j (pu)ywuehy ds (35)
o :

The parameter C; is the derivative of the nondimensional enthalpy profile

3 (H/Hg)
normal to the wall —_—— and is approximated by the expression (see
an w
appendix C)

1/2
' Pelle) | [Pele
Tw = 0.47(|1.48 - 0.23
PwHw/ | \PwHw,
x (Np, (1 - 0.24Np (1 - te)?]}<1 + o.11¢§)(caw - Ty (36)

where the velocity gradient parameter é, the nondimensional adiabatic wall
enthalpy Tgys and the recovery factor RF are given by the following .

expressions:
_[due '
% ds
- (37)

te (ou)y (ugh3) 2

g =

Taw = RF + (1 - RF)tg (38)

and

RF = Np, (39)

The approximate expression for C& (eq. (36)) has been found to predict values
that agree with exact similar solutions (tabulated in ref. 26) to within
+4 percent for the following range of conditions:

16



PeHea
0.1835 < < 1.385 (40a)
Oy
0.25 tg S 1.0 (40b)
0.0076 £ T, S 0.75 (40c)
05 B S 3.5 (40d)

Boundary-layer edge properties for the heat-transfer calculation are
obtained by assuming that the flow expands isentropically along an inviscid sur-
face streamline from the stagnation pressure to the local pressure obtained from
the inviscid solution. Thus, the properties at the edge of the boundary layer
{(which are assumed equal to the inviscid wall conditions) can be expressed for a
perfect gas as follows: ' '

Pe = Pg(Pe/Ps) /Y (41)
p
he = _f(_;i_ﬁ (42)
peY‘]
and
ue =\/2(Hg - he) (43)

The wall temperature is assumed to be known; thus, the nondimensional
enthalpy ratio at the wall can be calculated from the equation

The viscosity ratio W, /Mo is computed from the Sutherland viscosity formula
{ref. 27)

Te

e | (Ty/Te) + (S/Te)

u,, 1 + (S/Te) T, \3/2
(45)

17



where S 1is a dimensional constant defined in the present work as
S =110.33 K (46)

RESULTS AND DISCUSSION

In the sections that follow, the limitations and range of applicability of
the method will be discussed; also, a comparison of calculated heating rates
with experimental measurements for a spherically blunted 15° half-angle cone, a
spherically blunted 80° sweep slab delta wing, and a Space Shuttle Orbiter type
configuration will be presented.

Limitations and Range of Applicability

The basic assumption of the axisymmetric analogue is that the cross flow in
the boundary layer is small (ref. 9). It has been shown that the cross flow in
the boundary layer will be small when the streamline curvature on the surface is
small (ref. 10) or when the wall is highly cooled (ref. 11). The first condi-
tion is rather restrictive since in general it will be satisfied only for smooth
bodies (that is, bodies with only small changes in curvature) at small angle of
attack. The second condition is less restrictive because for many applications
the wall temperature is only a small fraction of the adiabatic wall temperature.
However, these conditions are both qualitative and it is necessary to compare
calculated heating rates with experimental data to validate the theory.

In the present paper, it is assumed that the Reynolds number is large
enough for boundary-layer concepts to apply but not large enough to cause tran-
sition to turbulent flow. The first of these assumptions is necessary since
the concept of the axisymmetric analogue is based on boundary-layer theory. The
second assumption is not necessary since Cooke and Hall (ref. 13) have shown
that the axisymmetric analogue can be extended to turbulent flows. However,
turbulent flows are not considered in the present paper.

Further, it has been assumed that the boundary layer follows inviscid sur-
face streamline paths and that the entropy of the fluid at the edge of the
boundary layer is constant. This is equivalent to assuming that the boundary
layer is very thin and that all of the fluid entering the boundary layer has
passed through the normal portion of the bow shock wave. This is a good assump-
tion in the nose region and for some distance downstream of the nose for high

Reynolds number laminar flow.

In the region far downstream of the nose, the boundary-layer thickness is
no longer negligible, and the entropy of the fluid entering the boundary layer
is not constant., 1In this region, it becomes increasingly important to account
for boundary-layer growth in calculating the metric coefficient h,; and vari-
able entropy in calculating boundary-layer edge conditions, both of which can
have a strong influence on heating rates. These effects have not been consid-
ered in the present paper because they would unnecessarily complicate the devel-

18



opment of the method and are considered of small importance for the experimental
comparisons which follow. These effects can be incorporated in the heating cal-
culations at some future time.

Camparisons With Experimental Data

Spherically blunted 15° half-angle cone.- Calculated heating rates are com-
pared with experimental measurements from reference 28 on a spherically blunted
15° half-angle cone at angles of attack of 09, 10°, and 20°, The experimental
tests (ref. 28) were performed in air (y = 1.4) at a free-stream Mach number of
10.6 and a free-stream unit Reynolds number of 1.31 x 106 per meter. The ratio
of wall to boundary-layer edge stagnation enthalpy g,, for these tests was
0.27. The Prandtl number was assumed to be 0.72.

The o = 0° case is of particular interest because the flow is axisymmet-
ric and results obtained by the present theory can be compared with other theo-
retical results. First, it is well-known that the metric coefficient which
describes the divergence or convergence of streamlines in axisymmetric boundary-
layer flows is equal to the body cross-sectional radius (refs. 20 and 29). To
check this result, the metric coefficient obtained from the present theory for
this case is compared with the body cross-sectional radius in figure 9. The
results for the nose region (x/R, £ 2) are presented in figure 9(a) and the
downstream region (x/R, 2 2) in figure 9(b). As would be expected for any axi-
symmetric body at o = 09, the calculated metric coefficient hjy; agrees almost
exactly with the body radius ry.

The axial distribution of heat-transfer rate for o = 0° is presented in
figure 10. The present theory is compared with experimental data from refer-
erence 28 and the results of a nonsimilar axisymmetric boundary layer solution
canputed by the method of reference 21, Both calculated results are in very
good agreement with the experimental data. The approximate heat-transfer
relations used in the present theory (egs. (34) to (39)) yield results compara-
ble to those obtained using the differential boundary-layer solution procedure
(ref. 21).

The axial heat-transfer distributions along two meridional planes - the
windward symmetry plane (® = ~90°) and the side meridional plane (® = 0°) - are
presented in figure 11 for an angle of attack of 10°. Experimental data from
reference 28 for two different nose bluntness are presented for comparison. The
calculated heating rates are in good agreement with the experimental data along
each meridional plane although there is considerable scatter in the experimental
measurements in the windward symmetry plane (® = -909) for values of =x/Rp
greater than about 12,

The circumferential heating distributions for o = 10° are presented in
figure 12 at two axial stations: x/R, = 3.1 and x/R, = 12.0. The abscissa
for each part of the figure begins in the windward symmetry plane (& = -909)
and continues around to the leeward symmetry plane (9 = 90°). Heating rates
calculated by the present method agree well with the experimental data around
the cone at each axial station.
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The axial heating-rate distributions at & = 20° are presented in fig-
ure 13, and the circumferential heating-rate distributions for this angle of
attack are presented in figure 14. The calculated heating rates are in good
agreement with the experimental data in each instance. These good comparisons
are very encouraging because the inviscid surface streamlines for this angle
of attack (see fig. 15) exhibit large divergence over much of the lower surface
and side of the cone. This suggests that the small cross-flow analogy can yield
reasonably accurate heat-transfer results even in regions of relatively large
streamline divergence for values of I, as large as 0.27.

In all of the theoretical results presented previously the pole of the
local polar coordinate system has been coincident with the body axis. Thus,
ro(x) 1is equal to zero; and since the geometry is axisymmetric, ORp/0% is
also equal to zero. This greatly simplifies the problem since many of the terms
drop out of the equations and may have the effect of masking errors in the pro-
gram that would show up later for more complicated geometries. Thus, the invis-
cid flow-field and heat-transfer calculations were repeated using the shifted
pole configuration defined by the following expressions:

For 0% x5 1.5,
ro(x) =0
For 1.5 % x £ 15,0,
rg(x) = -0.13991(x - 1.5)

which is illustrated in figure 16. The calculations were performed for o = 0°
and 109, and the results are compared with previous heat-transfer calculations
in figures 17 to 19, The heating rates obtained using the shifted-pole config-
uration agree closely with those obtained previously when the pole was aligned
with the body axis (i.e., rg(x) = 0). With these results, heating rates on
more complicated body geometries can be computed with added confidence.

Spherically blunted 80° sweep slab delta wing.— Next, calculated heat-
transfer coefficients are compared with experimental measurements, from refer-
ence 30, on a spherically blunted 80° sweep slab delta wing (fig. 20) at angles
of attack of 09, 109, and 20°. The experimental tests in reference 30 were per-
formed in air (y = 1.4) at a free-stream Mach number of 9.6 and a free-stream
unit Reynolds number of 3.94 x 106 per meter. The ratio of wall to boundary-
layer edge stagnation enthalpy Z, in the tests was 0.33, and the Prandtl num-

ber was assumed to be 0.72.

The axial distribution of heat-transfer coefficients for o = 0° is pre-
sented in figure 21, The heat-transfer coefficients calculated by the present
theory are seen to be in good agreement with the experimental data.
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The circumferential distributions of heat-transfer coefficient for o = 0°
are presented in figure 22 at three stations (1/R, = 4, 8, and 12) measured from
the beginning of the wing leading edge. These distributions were obtained along
cross-sectional cuts normal to the wing leading edge (i.e., the dashed lines in
figure 20). Even at a = 09, the heating about a delta wing is not axisymmetric
because of the geametry; but it is symmetric about the wing leading edge
(® = 0°). At the upstream station, 1/R, = 4, the present theory underpredicts
the experimental data slightly around the leading edge; but at the two down-
stream stations, 1/R, = 8 and 12, the theory is in very good agreement with the
data.

The axial distribution of heat-transfer coefficient at o = 10° is pre-
sented in figure 23, As at the lower angle of attack, the heat-transfer coef-
ficients calculated by the present theory are in very good agreement with the
experimental data. Circumferential distributions at this angle of attack are
presented in figure 24, At each station, the heating increases in a direction
away from the windward symmetry plane (® = -90°) until it reaches a peak
slightly ahead of the wing leading edge (¢ < 0°) and then decreases rapidly
around the leading edge on the lee side. The heat-transfer calculations do not
extend all the way around to the leeward symmetry plane (® = 90°) because a
cross-flow shock wave occurs in the inviscid flow field solution on the lee side
of the body, and the boundary-layer equations cannot be used to accurately com-
pute the heating in this region. Heat-transfer coefficients predicted by the
present theory are generally in good agreement with the experimental data. The
most notable exception occurs near peak heating for Z/Rn = 12; however, the
experimental data point in this region takes an inexplicable dip and may be in
error.

The axial distribution of heat-transfer coefficients at o = 20° is pre-
sented in figure 25. It can be noted that the present theory is in good agree-
ment with the experimental data. The circumferential distributions at this
angle of attack are presented in figure 26. The heating at this higher angle of
attack is qualitatively similar to the heating at o = 109, except the level on
the windward side and leading-edge region is much higher. Again, it is found
that the present theory is in good overall agreement with the experimental data.

The inviscid surface streamlines for the delta wing at o = 0° are pre-
sented in figure 27. There is one streamline that lies in the wing leading-edge
symmetry plane (fig. 27 (a)) which divides the streamline pattern into a symmet-
rical upper and lower part. Near the bottom symmetry plane (fig. 27(b)) where
the heating is low, the streamlines have very little curvature. However, on the
wing leading edge (fig. 27(a)) where the heating is relatively high, the stream-
lines diverge very rapidly.

The overall agreement between the predicted and measured heating rates on
the blunt-slab delta wing is very good. This is the first time that three-
dimensional heating rates on a blunt-slab delta wing have been calculated suc-
cessfully. This is very encouraging because this configuration is not axisym~
metric and, although analytic, has many features that are similar to more
complicated vehicles,
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Space Shuttle Orbiter type configuration.- Finally, calculated heat-
transfer coefficients on a Space Shuttle Orbiter type configuration are compared
with experimental measurements from reference 31 at angles of attack of 20°
and 25°. The experimental tests in reference 31 were performed in air (y = 1.4)
at a free-stream Mach number of 7.9 and a free~stream unit Reynolds number of
1.64 x 108 per meter. The ratio of wall to boundary-layer edge stagnation
enthalpy £, for the tests was 0.31, and the Prandtl number was assumed to be
0.72. The model used in the experimental tests was 0.0]175-scale model of the

full-scale wvehicle shown in figure 28.

In constructing the mathematical geametry model fraom the QUICK geametry
program to use in the inviscid flow field calculations, the canopy was faired
smooth as shown by the dashed line in figure 28, and the vertical tail and
reaction jet control pod on the rear of the vehicle were omitted. Difficulties
were encountered when computing the lee-side flow field with the "realistic”
cross~sectional geometry; thus the lee-side cross section was smoothed out using
an elliptical segment. (See dashed line in section A-A of fig. 28.) The lower
side of the vehicle geometry was accurately modeled so that the flow on the
windward surface could be accurately computed. The modifications to the lee-
side geometry had no effect on the windward-side flow calculations because in
all cases the cross-flow velocity went supersonic before the geametry modifica-
tions were encountered. The inviscid solutions were computed over the forward
60 percent of the vehicle length, back to where the wing started to flare out
rapidly. (See dashed line in top view of fig. 28.) At this point, the axial
velocity at the wing tip became subsonic and the solution could not proceed far-
ther downstream. (See discussion of limitations of supersonic marching tech-
niques in refs. 17 and 19.) Thus, the heating rates could only be computed on
approximately the forward 60 percent of the windward side.

The axial distribution of heat-transfer coefficient along the windward sym-
metry plane at O = 209 jis presented in figure 29. As can be noted, the heat-
transfer coefficients calculated by the present theory are in very good agree-
ment with the experimental data.

Lateral distributions of heat-transfer coefficient across the lower surface
of the model at o = 20° are presented in figure 30 for two axial stations:
x/L = 0.4 and x/L = 0.5. The calculated heat-transfer coefficients are in very
good agreement with the few experimental data points that are available.
Although no data are available near peak heating, the excellent results noted
previously for the delta wing in this region lend confidence to the present

predictions.

For O = 259, axial distributions of heat-transfer coefficient are pre-
sented in figure 31, and lateral distributions are presented in figure 32. As
at the lower angle of attack, the present theory is in very good agreement with
the experimental data.

The inviscid surface streamlines on the windward surface of the Space Shut-
tle Orbiter type configuration are presented in figure 33. It should be noted
that near the symmetry plane where the heating rates are relatively low the
streamlines have little curvature; whereas at the outer edge of the body where
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the heating rates increase sharply, the streamline curvature also increases
rapidly - as would be expected.

Thus, on the windward surface of a Space Shuttle Orbiter type configuration
where the inviscid flow field can be accurately computed the present theory has
been shown to predict heating rates that are in very good overall agreement with
experimental data at moderately high angles of attack.

From the present study, it appears that accurate three-dimensional heating
rates can be computed on most regions of a vehicle where boundary-layer concepts
apply if g, 1is not too large (i.e., less than approximately 0.4) and an accu-
rate inviscid flow field solution can be computed. The range of g, might be
extended even higher through future comparisons with other experimental data.
From the experience gained in the present study it is estimated that the heating
over a "complete” wvehicle can be obtained in a few minutes computing time on a
Control Data CYBER 175 (or equivalent) computer once the inviscid flow field has
been obtained. Consequently, the present theory should prove very useful in
studying the heating on advanced Earth entry vehicles.

CONCLUDING REMARKS

A theoretical method has been developed for computing approximate laminar
heating rates on three-dimensional configurations at angle of attack. The
method is based on the axisymmetric analogue which is used to reduce the
three-dimensional boundary-layer equations along streamlines to an equivalent
axisymmetric form by using the metric coefficient which describes streamline
divergence (or convergence). The method has been coupled with a three-
dimensional inviscid flow field program for computing surface streamline paths,
metric coefficients, and boundary-layer edge conditions. Using this method,
accurate laminar heating rates can be computed for a wide range of three-
dimensional configurations at moderately large angles of attack. This conclu-
sion is supported by good comparisons with experimental data on a spherically
blunted 15° half-angle cone, a spherically blunted 80° sweep slab delta wing,
and a Space Shuttle Orbiter type configuration at angles of attack up to 259°.
Computations proceed very rapidly with the heating calculations for a complete
configuration requiring only a few minutes of computing time.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 15, 1980
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APPENDIX A

TRANSFORMATION FROM CYLINDRICAL COORDINATES
TO LOCAL POLAR COORDINATES

The equations relating local polar coordinates and cylindrical coordinates
are given by equations (17a) to (17d)

rp = Ry\/A2 + 1 cos © (A1)

¢ = tan~! (A) _ (A2)

X=X (A3)
where

A =tan ® + rg(x)/(Rp cos 9) (A4)

The transformation operators for transforming derivatives from cylindrical
coordinates on a surface (¢,x) to local polar coordinates on a surface (&,Y)

& - G, - GG
5, - GLE, GGk

Now since

and
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<?Z) = 1
9x )

APPENDIX A

equations (A5) and (A6) can be written as

7. G5,

and

), - GL6),

(&

Similarly, the reverse transformation operators are

&, - GG,

5, - b

Now solving equation (A9) for

). - O-(—)

30

|

=

)
9x )

P
-—) the following result is obtained:
X

Comparison of equations (A7) and (Al1) shows that

(A7)

(28)

(A9)

(A10)

(al11)
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a® _ 1
55 x = (3¢) (A12)
X

]
Similarly, solving equation (A10) for (5-) and using equation (A11) to
%/ ¢

]
replace (-j> results in-
9t/ x

(5){ (a¢> (B‘I’)X (ax)q>

Comparing equation (A10) with equation (A13) gives

—<3¢> ﬁ
(a¢) X/ @
= =5 (A14)
3%/ ¢ (aq;)
X4

a¢ 1)
The derivatives — and — can be obtained from equation (A2) as

follows:

3 3 3
_) - () (tan-1 &) (a15)
2/,  \30/,

or
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90 1 da
-] = —| — (A16)

Similarly,

(a¢) o (ai) a7
o 1+ 2\Bx ’
X/ 1 + A°\9%/d

From equation (A4), the following expressions can be obtained for the deriva-

A oA
tives — and — | , respectively:

X
(ag) ! { 2 [ in ® ( aRb) @J} (A18)
— = —— + ro Rb sSin - — CcOSs
)y R2 cos? o b 20 /
oA 1 arg ro<3Rb)
i S A DU g (A19)
9X/p Rp cos &|dx Rp\3X / ¢

3¢
Combining equations (A16) and (A18) gives the following expression for (E)Tb) :
X

dRp,
R‘g+r0Rbsin¢-— cos ¢
ad X

(a_.¢) = (A20)
98/ (1 + 1-\2) (Rg cos? (I))

Similarly, from equations (A17) and (A19),
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drg rg <9Rb
ax " Rp\X/ &

¢
(a—-) = (A21)
Xo (1 + 3%) (R, cos )

From equations (Al12}) and (A20},

3/x 3R
% Rg-f-roE!b sin@—(—a-d)—b) cosﬂ
X

Similarly, from equations (Al14), (A20), and (A21),

drg ro(aRb>
30 dX  Rp\dX /¢
— = -Rp cos 9 (A23)
9x ) R2 . . _ oRp
b rg|Rp sin ¢ -— cos 91}
ad X

In summary, the transformation operators defined by equations (A7) and (A8) can

50 ('I + 32) (Rg cos? <I>)
)

L ,
be used with equation (A22) which defines (-—) and equation (A23) which
X

ad
defines (——) to transform derivatives from cylindrical coordinates to local
¢

dx drg [9Ry 9Rp
polar ooordinates., The quantities Rp, rgr — — ] , and — used

in the previous equations must be obtained from the geometry description
program.

These operators will now be used to transform the equations for the body
geometry angles G¢, and T £from cylindrical coordinates to local polar
coordinates. First, oonsider 6¢ which is given by equation (21)
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1 (9%b
tan 8 = —|— - (A24)
rb 34) x

arp
Using equation (A7), the derivative (-3_4’—) can be written as
X

<3rb> ) (34») <3rb) 325y
30 /x  \09/x\a¢ / ,

From equation (Al),

3rp = 1 (3Rp A [oA
_— = R,\1 + A" cos O|—|— + _ - tan & (A26)

1 +A

Substituting this result into equation (A24) and using equation (Al) gives

5)4),

tan 5¢ = (A27)

RbV'I + 22 cos @

20 drp

where —_ is given by equation (A22) and — is given by equation
3/ x 3 /y

(A26) .

Next, consider I' which is given by equation (22)

Brb
tan I = cos 6¢ a—- (A28)
X/¢
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arb

From equation (A8), the derivative (5—7) can be written as
/%

(3 rb> 3% (Br b> (Brb>
—] === +|— (a29)
3% /¢ (Bg)b ¢ /y X/

Prom equation (Al),

arp - 1 (9Rp A [oa
(-—-> = RbV'I + A2 cos & —(— + _— (A30)
X /o Rp\9X /& 1 + B2 X /o

Substituting equation (A29) into equation (A28) yields

drp (arb)
—_— + | - A3
2 )x o /o (a31)

30 3rp
where (——) is given by equation (A23), <567) is given by equation (A26),
¢ X

ad
tan I' = cos 6¢ (5i)
X/

X

drp
and — is given by equation (A29).
X /¢

Next, consider the transformation of the equation describing the streamline
location (eg. (19)):

3 1 [tan @ cos 6¢
—_) =z —|—_—— — _ tan T sin 6¢ (A32)
ox/g  rp cos T

from cylindrical coordinates ¢,x to local polar coordinates ¢&,y. Using
equations (A2) and (A4), the following are obtained:

Ed_) = ! é.l_.\ (A33)
ox 8 1+ 1_\2 9x 8
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and

oA Rp + rg sin ¢\ /59 1 drg ro([9Rp
—] = - +—|—] - =|— (A34)
9x/g Ry, cos2 & 9x/g Rp cos $(\9x /g RL\Ix/g
ad
Now, combining equations (A33) and (A34) and solving for 5— yields
8
20 a0 _ Rp cos? @ 3
\¥X/8 9x/g R, + rg sin ®/|\3x/p

1 ro<3Rb) (aro
+ e | — ] - [ — (A35)
Rp cos 9| RL\3x /g dx /g

Next, changing from an x,8 coordinate system to an Xx,¢ coordinate system,

- @

Further, using equations (A7) and (A8),

SR NN RN

or rearranging terms,

B - |GG, -

Now, since rg = rg(X),

ad d ]
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(31‘0) (aro) drg (830
— = — = e— . . (A
ox B8 X /o dax )

With the use of equation (A38), the following is obtained:
— == + == =] +[— (A40)
dx /g 9K/ ¢ 3x/g\3d/x|\3® / X /o
ad

1)
where  |— is given by equation (A23), — is given by equation (A32),
ax s - ax/g

9% dR Ry,
— is given by equation (A22), and —_— and _— are given by

the geometry description program QUICK.
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CALCULATION OF SURFACE VELOCITY DIRECTION FROM
INVISCID SOLUTION

In order to integrate equation (30) to determine the location of a stream-
line on the surface, it is necessary.to know 0= 6(& x) . This must be obtained
from a solution of the inviscid flow field. The solution is obtained using the
STEIN (supersonic three-dimensional external inviscid) flow field code described
in references 17 and 19, From the inviscid solution the Cartesian velocity com-
ponents are known; these can then be used to determine the velocity direction 8
on the surface.

Consider sketch (a), which shows the Cartesian velocity components wj, wap,
and w3, and sketch (b), which shows a cross—-section plane normal to the body
axiss:

z W3

A Gn
v
t

Wj 7z
A w2
Ty
0
Yo >y
vy —— Yy ———~———___‘—‘_’////}

Sketch (a) Sketch (b)

The velocity components vy and ;n are given by the equations

vg = w3 00S (¢ - 8p) - wa sin (¢ - §gp) (B1)

<
o]
|

= w3 sin (¢ - 5¢) + wg cos ($ ~ 5¢) (B2)
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Now, in a plane parallel to the axis and normal to the body shown in sketch (¢),

Sketch (c)

the velocity component tangent to the body wy is given by the equation
Wwg =V sin T + wy cos T (B3)
Finally, the streamline direction € is given by the equation

0 = tan~1 (vi/wg) (B4)
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DEVELOPMENT OF EQUATIONS FOR CALCULATING
HEAT-TRANSFER RATE AT WALL

The heat-transfer rate to the wall q, is given by the expression

oT
Qw = ky|== (cn
an/,
T ,
where k is the thermal conductivity of the fluid and 5— is the derivative
n/y '

of the temperature of the fluid normal to the wall. Equation (Cl1) can be
rewritten in terms of the static enthalpy derivative as follows:

kw [3h
qy = —[— (C2)
Cp,w an/y

Neglecting cross flow in the boundary layer, the static enthalpy h 1is related
to the total enthalpy H by the equation

uZ + w2
h=H————2 (C3)

Differentiating the terms in equation (C3) with respect to n yields

oh oH au ow
on on an on

and since u w =0 at the wall,

(Bh) _ (an) ca)
on/y, - on W
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Substituting equation (C4) into (C2) yields

kw [(oH
&y = é—' (C5)

Cplw n/w

Multiplying and dividing the right-hand side of equation (C5) by W, yields

k <3H> Hw fom\ <6)
= u — —— = S— c
R v cpu)w an/y  Npr,w\on/y

The laminar boundary-layer equations are usually solved in a Levy-Lee type
coordinate system (§,n) given by the following equations (ref. 25):

- S . v 2

£ = f (pu) yughy ds (c7)
0

n= - p dn : (c8)

Using these variables, equation (C6) can be transformed to the following form:
Hy (35) (BH) (Pu) yueh2 (oH
9y = —_ -] = ——— (C9)
Npr, w\3n/y\3n/y -\ y
! NPI’WJZ_;

The total enthalpy in equation (C9) can be nondimensionalized bz multiplying and
dividing the right-hand side by Hg (which is independent of n) to obtain the

following:

Hg (PU) yuehy |} 3 (H/Hg)

NPr,wV25 on v

(C10)

dw =
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Now defining

.| amme
Ly = | ——— (c11)

an w

equation (C10) can be written as

He (pu) wueh2

—_— T (c12)
NPr,w\lz_g

qQy =

which is the same as equation (34).

In reference 25 it was shown that C; could be approximated by the
expression

Dol 0.475

' ete

To = o.47(———-> [1 - (1 = Npp,w) (1 = te)]
PuwHy,

x (1 + 0.1 Ete)(1 - Ty) (C13)

where f 1is the velocity gradient parameter given by the equation

28—
- ds
B = (C14)
te (PU) y (ughs) 2

Equation (C13) predicts values of C; that agree with tabulated results from
boundary-layer solutions presented in reference 26 to within #10 percent for
the following range of conditions:

Pele

0.1835 = ( > £ 0.9367

PwHy
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(=)
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Thus, from equations (C12) and (C13), heating rates can be rapidly calculated
- from boundary-layer edge and wall parameters without having to solve the com-
plete set of boundary-layer partial differential equations (7) to (10).

¥n the present study, it was found that a slightly more accurate prediction
of ¢, oonld be obtained by using the following equation (same as eq. (36)):

0.5
' 1.48 - 0.23 Pelle)|(2ete (Npr,w(1 - 0-248p,, ,(1 )2]
C = 0. 47 . - . P - . P -t
w pw“w pw“w L,wW L,w e }

x (1 + 0.11\/5) (Caw —- Cw) (C15)

where gy, 1is given by

Taw = RF + (1 - RF)tg (C16)

and the wall recovery factor RF for laminar flow is assumed to be

Predicted values of C& from equation (C15) agree with results of the boundary-
layer solutions presented in reference 26 to within approximately *4 percent for
the following range of conditions:

Pele
0.1835 < £ 1.385 (C18a)
PyHy,
0.2 s te £1.0 (C18b)
0.0076 £ Cw £ 0.75 “(C18c)
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0 £B s 3,5 (C184)

A few typical comparisons are presented in table I.

The range of conditions over which equation (C15) has been correlated
covers the range of experimental conditions of interest in the present study
which are given for experimental data by the following:

PeMe
0.6 = £ 1.1 (C19a)
Puly
0.4 £ty £1.0 (C19b)
0.27 £ g, £ 0.33 (C19¢)
0<BE<0.7 (C194)
Equations (C12) (or eq. (34)) and (C15) (or eq. (36)) have been used in the

present study to provide a simple but accurate method of calculating heating
rates along a surface streamline.
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TABLE I.- COMPARISON OF VALUES OF C‘; FROM EQUATION (C15) WITH EXACT

SIMILAR BOUNDARY~LAYER SOLUTIONS FROM REFERENCE 26

Pele - C‘:I
N g
Pwhw Reference 26 | Equation (C15)
0.51221.0|0.152 |0.709| 0 0.2845 0.2755 -3.16
l 1 .5 . 3055 . 2969 -2.82
! 3.5 .3377 .3322 -1.63
.9149 (1.0 .75 .735( 0 .1013 .1049 3.55
.5 114 .1130 -.96
. 1 v 3.5 .1316 .1265 -3.88
1.3850| .2 .5 .699 ] 0 .1518 .1479 ~-2.57
1.0 .1697 .1641 -3.30
4 1 . 3.4 L1817 .1778 -2.15
.2322|1.0| .0152 | .709] 0 .2230 . 2256 1.17
.5 .2399 .2431 1.33
1 Y 3.4 . 2659 .2713 2.03
.2505| .8 .0152| .709]| 0 .2206 .2246 1.81
.5 . 2365 . 2421 2.37
1 1 3.2 .2616 .2688 2.75
.3462| .6 | .03 .680 (0 .2293 .2308 .65
.5 .2454 .2487 1.34
v v 3.0 .2715 .2747 1.18
.6249 | .4 | .10 .768| 0 .2891 .2940 1.69
.5 . 3099 .3169 2.26
! ! l 3.5 .3498 .3545 1.34
.3897| .8| .05 .768 | 0 . 2871 .2877 .21
1 .5 .3087 . 3101 .45
) ¥ 3.2 . 3426 .3444 .53
.7931| .2| .10 .768 | 0 .2889 .2947 2.01
' .5 . 3086 .3177 2.95
! 1 l 3.5 .3518 .3554 1.02
.9367| .6 | .50 .699 ]| 0 .1723 .1700 -1.33
.5 .1882 .1832 -2.66
v l 3.5 .2118 .2050 -3.21
1.0810| .4{ .50 .699 | 0 .1628 .1587 -2.52
.5 .1763 L1711 -2.95
i 1 1 l 3.5 .1978 L1914 -3.24
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Figure 1.- Typical surface streamlines and boundary~layer velocity profile.
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Figure 2.- Typical advanced reentry vehicle,
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Figure 3.- Cylindrical coordinate system.
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Figure 4.- Local polar coordinate system,
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Symmetry plane

Initial data plane

Figure 5.- Illustration of flow field calculation procedure.
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Figure 6.- Streamline pattern of nose of general three-dimensional vehicle.
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Figure 7.- Definition of body-geometry angles 6¢ and T.
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Figure 8.- Definition of velocity-direction angle 6.
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Figure 9.- Comparison of metric coefficients with body cross-sectional radius
for spherically blunted 15° half-angle cone. a = 0°; M_=10.6; Y =1.4.
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Figure 10.- Axial distribution of heating rate on a spherically blunted 15° half-angle
cone at a = 0% M_=10.6; Y =1.4; NRe, o = 1.31 X 106 per meter; T, = 0.27;
R, = 0.95 cm; gg = 224.32 kW/m2-s.
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Figure 11.~ Axial distribution of heating rate on a spherically blunted 15° half-angle
cone at a =100, M_=10.6; Y = 1.4; Npg, =1.31 x 10 per meter; g, = 0.27;
dg = 224.32 kW/m2-s.
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Figure 12.- Circumferential distribution of heating rate on a sphericall

half-angle cone at o = 10°, M_ = 10.6;
Ty = 0.27; qg = 224.32 kW/m2-s.
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lunted 15°
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Figure 13.- Axial distribution of heating rate on a spherically
blunted 15° half-angle cone at a = 20°. M_ = 10.6; Y = 1.4;
Nre,o = 131 x 106 per meter; I, = 0.27; qg = 224.32 kW/mz-s.
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Figure 14.- Circumferential distribution of heating rate on a spherically blunted 15° half-
angle cone at a = 209, M_=10.6; Y = 1.4; NRe,e = 1.31 x 109 per meter; Cw = 0.27;
qg = 224.32 kW/m2-s.
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Figure 16.- Geometry of shifted pole for spherically blunted 15© half-angle cone,
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Figure 17.- Comparison of axial heat-transfer calculations on a spherically blunted 159
half-angle cone with shifted and unshifted poles at o = 0°, M_=10.6; Y = 1.4;
Npe,o, = 1.31 x 106 per meter; Ly = 0.27; Ry = 0.95 cm; dqg = 224.32 kiW/m2-s.
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Figure 18.- Comparison of axial heat-transfer calculations on a spherically blunted 15°
half-angle cone with shifted and unshifted poles at o = 10°, M_ = 10.6; z =1.4;
NRe,w = 1.31 x 100 per meter; &, = 0.27; Ry = 0.95 cm; qg = 224.32 kW/m-s.
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Figure 19.- Comparison of circumferential heat-transfer calculations on a spherically blunted 15°
half-angle cone with shifted and unshifted poles at @ = 109, M_ = 10.6; Y = 1.4;
NRe,w = 1.31 x 100 per meter; %, = 0.27; R, = 0.95 cm; gqg = 224.32 ki/m2-s.
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Figure 20.- 80° sweep slab delta wing.

Ry, = 1.27 cm.
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Figure 21.- Axial distribution of heat-transfer coefficient in windward
symmetry plane of 80° sweep slab delta wing at a = 0°. M_ = 9.6;
Y = 1.4; Npe,o, = 3.94 x 108 per meter; I, = 0.33; R, = 1.27 cm;
hg = 0.3796 kW/m2-s-K.
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Figure 22.- Circumferential distribution of heat-transfer coefficient on a spherically blunted
80° sweep delta wing at @ = 0°, M_=9.6; Y = 1.4; NRe, o = 3.94 X 106 per meter;

[+

Tw = 0.33; Ry =1.27 cm; hg = 0.3796 kW/m2-s-K.
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Figure 23.- Axial distribution of heat-transfer coefficient in windward symmetry
plane of spherically blunted 80° sweep slab delta wing at a = 10°, M_ = 9.6;
Y = 1.4; Ngg,,, = 3.94 x 106 per meter; Ty, = 0.33; R, = 1.27 cm;
hg = 0.3796 kW/m2-s-k.
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Figure 24.- Circumferential distribution of heat-transfer coefficient on spherically blunted
80° sweep slab delta wing at o = 109, M,=9.6; Y =1.4; Npe,, = 3.94 x 106 per meter;
Ty = 0.33; Rp = 1.27 cm; hg = 0.3796 kW/m2-s-K.
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Figure 25.- Axial distribution of heat-transfer coefficient in windward
symmetry plane of a spherically blunted 80° sweeg delta wing at
a =209, M =9.6; Y =1.4; NRe,o = 3-94 % 10° per meter;
Ty = 0.33; Rp = 1.27 cm; hg = 0.3796 kW/m2-s-K.
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Figure 26.- Circumferential distribution of heat-transfer coefficient on a spherically blunted
80° sweep slab delta wing at o =20°, M_=9.6; Y = 1.4; Nge,, = 3.94 X 106 per meter;
Ly = 0.33; Ry =1.27 cm; hg = 0.3796 kW/m2-s-K.
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(b) Bottom view,

Figure 27.- Inviscid surface streamline pattern on a spherically blunted
80° sweep slab delta wing at a =00 M_=9.6; Yy = 1.4,
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Figure 28.- Space Shuttle Orbiter type configuration,
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Figure 29.- Axial distribution of heat-transfer coefficient on
Shuttle Orbiter type configuration at o = 20°, M_=7.9;
Y =1.4; Npe,, = 1.64 x 106 per meter; Zy = 0.31;
h, = 0.4984 kW/m2-s-K.
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Figure 30.- Lateral distribution of heat-transfer coefficient
on Space Shuttle Orbiter type configuration at a = 20°.
M_=7.9; Y =1.4; Npo _ =1.64 x 106 per meter;

Ly = 0.31; h, = 0.4984 kW/m2-s-K.
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Figure 31.- Axial distribution of heat-transfer coefficient
on Space Shuttle Orbiter type configuration at a = 259,
M_=7.9; Y =1.4; Npe,, = 1.64 x 106 per meter;

Ly = 0.31; h, = 0.4984 kW/m2-s-K.
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