
IMPROVEMENTS IN SPARSE MATRIX OPERATIONS OF NASTRAN

Shinichiro Harano
Hitachi, Ltd.

SUMMARY

This paper describes improvements in sparse matrix operations for
the NASTRAN program achieved by Hitachi, Ltd.(Japan). To solve a large
scale problem at a high speed, a great emphasis was laid on how to make
a reduction in execution time needed by matrix operations, since.! the size
of the problem depends largely on speed of matrix operations as well as
on hardware and program performance. The descriptions in this paper are
presented under Introduction plus five subjects: Sparse Matrix and Matrix
Packing, Matrix Decomposition, Forward Elimination and Backward
Substitution, Eigenvalue Extraction Methods and Parallel Processing
Oriented Matrix Operations. These improvements can be applied to other
versions of NASTRAN with a slight modification by using several
subroutines which we have developed.

INTRODUCTION

Since the introduction of NASTRAN level 15.5.1 in 1974, we have
improved it by a series of program enhancements. Highlights of them are
development of the IG/OG (input Generator/Output Generator) program to
perform automatic meshing and edit the_reiBJu.]Lts_pf._c.alcul_ation_t._and
addition of isoparametric elements of two dimensions, three dimensions c#
axi-symmetry. Dealt with in this paper is another highlight of them.

Recent drastic improvements in hardware performance have brought
a gradual moving from the third generation computers, typified by IBM 370
to distributed computers, also typified by IBM 3033. Being in step with
such worldwide trends, Hitachi has developed HIT AC M-180 closely
comparable with IBM 370/168 and HITAC M-200H providing a throughput three
times that of IBM 370/168. Along with these hardware breakthroughs, the
parallel processing feature appearing with vector and array processors

> will be increasingly brought in, changing a current software environment
< ! greatly.

Accordingly, in putting a further refined processing system fjor
: matrix operations into practice under such situation, one must direct his
attentions to hardware as well as software dimensions of the break-
throughs. We have confirmed that a more effective use of a vector
processor is well attainable by the Gaussian elimination of inner product
type, also called "the Skyline method", which was proposed by Prof.
Wilson GUCB;) , rather than by the conventional band matrix algorithm.

14

SPARSE MATRIX AND MATRIX PACKING

Generally, matrices for structural analysis are characterized by
j sparsity. To take full advantage of this characteristic in matrix opera-
' tions, NASTRAN carries out matrix data packing. The way of matrix data
3 packing is especially important for a problem where a large scale matrix
o is to be handled efficiently. So far, in transmission of matrix data
'; between a secondary storage device and a main memory via an input/output ;
buffer, packing routines have been used to transmit data from the input/
output buffer to allow matrix data to be referenced. However, this

; method is less advantageous to handle a large volume of matrix data since
it needs much overhead time for the transmission.

New "non-transmit" packing routine has been added to our version of
NASTRAN to allow matrix data to be refered to directly from the input/

..'. output buffer. The matrix packing format obtained as a result is shown
in figure 1. In this figure, the string is a set of successive non-zero

: terms, plus the row number and length of string ahead of these terms.
: Further, the number of strings in one column that are resident ait one
input/output buffer is given to control how to refer to matrix data resi-'
dent at the buffer. Padding information is also given to adjust a word
boundary for data provided in double precision. At the present, the new

- .packing routine to perform a direct reference to the input/output buffer
:/• makes only the READ option effective. This non-transmit type of routine
-7 called string by string receives or sends:

(l) the start adress of a string in a buffer
the foremost row number of a string
the length of a string
the instruction to show whether or not EOL (end of column detec-
tion is to be made.)

'•••'; (5) type of matrix data

-) Use of the packing routine permits various routines for matrix hand-
'^7 ling to perform a direct reference to the input/output buffer if once

they have received data addresses. The packing routine offers a buffer-
; by-buffer backspace feature for efficient backspacing in sequential

access. Unlike a conventional backspacing that needs twice back record
-for a single read of one record (one column), as shown in figure 2, this
feature omits overlapping of READ operation and back record, as also

.-.•; shown in figure J. This feature eliminates the necessity of writing, in
', y decomposition of a symmetric matrix, ,of a portion of the matrix to its
(.;.... upper triangular matrix from the last to the first columns of the sym-
i>'-_ metric matrix, thus saving time for generating the upper triangular
./matrix. Furthermore, the feature requires the writing of only a lower

triangular matrix onto the secondary storage device, bringing 10 to JQ%
reduction in use of the disk space of the storage device.

This new matrix packing technique is fully employed in the matrix
decomposition described in MATRIX DECOMPOSITION. Figure 4 reveals how
the technique is superior to conventional techniques by comparisons of

15-

packing routines to pack and unpack one column of the matrix in respect
to CPU> time versus non-zero term densities. The CPU time for packing/
unpacking of one column is on the ordinate, while non-zero term densities
are on the abscissa. The length of one column is 2000 and the whole CPU
time has been obtained as the result of 300 iterations. Packing routines
mutually compared in this figure are:

(1) IKPPK ' : Clears the area for one column to zero to perform ele-
ment—by-element unpacking. (This is a conventional
unpacking routine.)

(2) UNPACK : Unpacks a column at one time. (This is a conventional
unpacking routine.)

(3) PACK : Packs a column at one time. (This is a conventional
packing routine.)

(4) INPNT : Clear the area for one column to zero and transmit
string data directly from the buffer to the appropriate
location of the column. (This is the new packing
routine.)

Figure 4 also shows CPU time for READ and WRITE operations in case
of GINO (General Input Output Routines) as additional information.
Although the READ and WRITE operations may be performed irrespectively of
non-zero term density of the matrix, they cannot take advantage of spar-
sity in case of low density due to unsatisfactory efficiency. Further,
all elements including non-zero ones are written out onto the secondary
storage device, making an increase in disk storage space needed.

As a result, we adopted a combination of the clearing a core space
to zero and the new routine of non-transmit type to unpack columns in
matrix decomposition. In short, figure 4 reveals that the new unpacking
routine permits a speedup approximately 2.1 times the conventional .
unpacking routines in such a situation that densities of unpacked one
column usually fall in the range of 0.4 to 1.0, owing to the method of
matrix decomposition described":below.

MATRIX DECOMPOSITION

In solving a given system of linear equations, where the coefficient
matrix is a large scale sparse matrix, it is general to decompose the
matrix as,

A = L*D*U (l)

where, A is the original matrix (e.g. stiffness matrix), L is a unit
lower matrix, If is a unit upper matrix and D is a diagonal matrix
which is usually part of the diagonal portion of L or U , The discus-
sion below assumes that the original matrix is symmetric. To decompose
the matrix, the Skyline method was used. The name of "Skyline" is
derived from the fact that the contour line of column's all foremost
none-zero elements is similar to a skyline. This method divides a por-
tion enclosed in a skyline and a diagonal line into two groups whose

..,!£

sizes are such that the groups are capable of "being resident at a free
area of a virtual fgjtorage space. The contents of these groups may be
read from the secondary storage device which the results of calculation
may be written out onto as needed. This is shown in figure 5.

-.',- Unlike conventional techniques, the Skyline method employs an upper
i triangular matrix. The diagonal matrix is generated on a diagonal terms
6 iof triangular matrix 1 . The original symmetric, matrix is decomposed
o Jin the following algorithm.

-0
; The method carries out (2) through (4) in succession for j=2,...,n

;;.: 'where, n is the dimension of matrix A . d,_ = a_.. is assumed. First, -
>'. the algorithm for the Skyline method rused for an incore routine is desc-

ribed with the help of the explanatory illustration of figure 6, This
.'v jmethod employs the Gaussian elimination of inner product type, as shown
-;> in this figure. All column's elements from foremost non-zero ones to
f diagonal ones, including zero elements, are stored on the memory. The

•>; 'store address at that time is resident at array M. The address of the
;o !I-th row diagonal term is expressed by M(l) . The value at the I-th row
;0 -and the J-th column (position pointed by Ij) is determined by the inner
/, product of vectors P and Q , Vector P . has a length of:
• , . f

1 JE = M(J) - M(J-1) ' (5)

•;-) If JH=1, the diagonal terms are those obtained by matrix decomposition,
;,j and therefore, processing is skipped. Vector Qi',, a party of inner pro-
,, Iduct with P , satisfies:
- •"*

/' J > I > J-JH (6)

- Let HT be a length of the intersection of vectors P and Q . Since
,, the length of vector Q is,

IH = M(I) - M(I-1) (7)

-' length NT is,

NT = Min{l - (J - JH), IH'jL 1.-- ' (8)

The following processing is performed only if NT is positive. Let
NS be a start address of element being involved in inner product calcu-
lation of vectors P and Q . Then, NS may be expressed as:

.17

NS = M(l) - NT (9)

The address of the I-th row and the J— th column element to which the
inner product value is to be added is,

IJ = M(j) - (J-I) (10)

The distance (1C) between the addresses of foremost elements of vectors
P and Q is,

1C = IJ - M(l) (11)

Thus, letting X be a vector storing elements on the memory, .the foremost
elements for inner product calculation of vectors Q and p are, .

X(NS) and X(NS+IC), respectively. (12)

The length of inner product, then, is NT, Assuming that the value of
inner product between vectors P and Q is S, the I-th row and the
J-th column is obtainable by:

X(U) = X(IJ) - S (13)

By performing the calculation for all I restricted by (6), the
entire J-th column may be obtained. Notice that the value obtained by
(13) corresponds to that by (2). In a practical LU-decomposition, as
shown by (3)» each element of the J— th column must be divided the corres-
ponding dlagonalj element (See (15)) • The J-th row and the J-th column
diagonal term is,

X(IJ) = X(IJ) -; (I=J, KD=M(K)) (14)
K=NS MKJJ'

The last result for the I-th row and the J-th column is,

By carrying out the above process for 2̂ Ĵ n, the upper triangular matrix
of matrix A may be generated in X.

The above algorithm is well applicable to matrix calculation if all
matrix elements are capable of being stored on the memory. Otherwise,
matrix grouping is needed prior to implement the Skyline method.

Assume that the original matrix is such a matrix as shown in figure
7. First, this matrix is divided into some groups, each of which should
not have more elements than those restricted by a core space. In the
example of figure 7» the matrix is divided into four groups, each of
which has not more than 15 elements. These divided groups provide the

18

information of table I j headings of the table are:
: ther current group number
: minimum group5 number needed by calculation of group K(l)
: minimum column number in group K(l)
: maximum" column number in group K(l)
: pointer array of the diagonal term in the J-th column

With the matrix grouped above, the algorithm of the Skyline is pro-
ceeded as follows. Symbols used in the description are:

X : open core array
IA : start address of group A element
IB : sitart address of group B element
IM : start address of pointer array of diagonal terms
KA(l), KB(l) : group numbers for groups A and B
KA(2), KB(2) : minimum group numbers involved in calculation of

groups A and B
KA(3), KB(3) : minimum column numbers of groups A and B
KA(4) t KB(4) : maximum column numbers of groups A and B

Apart from the explanation of how to determine these values, we begin
our discussion with the following assumptions. The areas are already
assured for groups A and B (headings are X(lA) and X(lB)) and for the
address of diagonal terms (heading is X(lM)). The diagonal term address-
es are set in advance. Let NEQ be the number of unknowns of a given :

system of linear equations, and NGP be the number of groups. All control
information for NGP groups, except those for diagonal term addresses, are
generated on a scratch file in advance.

Then, the following steps are repeated for P until NGP.

P = 1, ... , NGP (P : group number in current calculation)
/

Mutually permutated, for IV1, are the address of A and that of B, and
group information of A and that of B, that is,

IA5±IB, KA(k);?KB(k) Ck=l,...,4)

Let Q be the minimum group number needed to generate group P. Then,
. •;•

Q = KA(2)

For P;*Q, group Q is already on B if Q = P-l; otherwise the control infor-
mation about group Q is read from the scratch file to be set to KB(k) ,
where 'Lk=l, . i ,4. 1 Then, the correlation values between groups P and Q are

: added to group P. This process is carried out for Q by an increment of 1
until Q = P-l. For Q = P, the correlation between P and Q becomes that
between P and itself on A. After the completion of the above step for
group P, the elements of i*t are written out onto the secondary storage
device; The implementation of these procedures for individual groups
(l-P-NGP) allows an upper triangular matrix to be generated in the column
directaon on the secondary storage device.

The correlation between groups P and Q is obtained as follows.

19 _

Assume that group P is on A (heading : X(lA) area), while group Q is on
B (heading : X(IB) area). Let NTA be the number of columns of group P
on A, and NTS be the number of columns of group Q on B. Then,

NTA = KA(4) - KA(5) + 1 (l?)

NTB = KB(4) - KB(3) + 1 (18)

Similar to figure 6, handling of groups P and Q is shown in figure 8.
Let J=l, ... , NTA be column numbers of group P on A. Then, the column
number of P on the entire matrix is,

JJ = KA(3) + J - 1 (19)

The length of column J is,

JH = M(JJ) - M(JJ-1) (20)

where, if JJ=1,

JH = M(JJ) ' (21)

Similarly, let 1=1, ... , NTB be column numbers of group Q on B. Then,
the column number of Q on the entire matrix is,

II = KB(3) + 1 - 1 (22)

The length of column I is,

IE = M(ll) - M(ll-l) (23)

where, if 11=1,

IH = M(II) (24)

Again, let NT be the length of inner product of column J in group P and
column I in group Q. Then,

NT = Min JlH, JH-(JJ-Il)j -1 (25)

Also, let NS be the start address involved in the inner product of
column I in group Q and NE be the address of the last portion. Then,

NS = M(II) - NT (26)

NE = M(ll) - 1 (27)

The displacement (IJ), where the inner product value is added on area A,
is expressed as:

IJ = M(JJ) - JJ + II (28)

20;

If NS>NE, column I in group Q has nothing to do with the calculation for
column J in group P; otherwise, inner product must be calculated. Since

'; the start addresses of areas A and B on the open core are IA and IB,
respectively, by putting,

o 1C = IJ - M(II) (29)
f

8 !the inner product is,
9 ;

'-' NE
!..- X(IJ) = X(IJ) - £ x(rB-HE-l)*X(lA-f£-KlC-l) ' (30)
' • * ' "••

The calculation of contributions from group Q to group P is completed i
the above steps are carried out for all columns in group Q.

' After calculations on all groups such that,

Q^P-1 • (31)

the autocorrelation of group P itself is obtained by the same procedure
a.a that used by previous calculation of the correlation between groups P
and Q by regarding that area A is the same as area B. In this calcula^
tion, I varies within the range:

J (32)
.> . ;
---'• If I=J, (30) must be replaced by the procedure below. For K such that,

!53 ! NS<K<NE (33)

}i., ID = IJ - KJ + 1 is obtained. If O = M(lD) is established, the column J
y'} is completed by (14) and (15) .
",>~: '
'•jo The implementation of the above procedure for the range of (32) '-
:;^ gives the autocorrelation of group P. The results are written out onto
>"•' :an upper triangular matrix data-block for each column,
; ;T

':•"; The interchange of addresses and control information by (l6) are
' -j needed for handling a succeeding group. This; takes the place of moving
•-".. group P completed on area A to area B simply by interchanging addresses

r- and control information. This eliminates a data transmission, and fur-
:^yj jther allows one group to be read in the core only once if the correlation
^- between two groups affects only adjacent groups.
; . c I~ ̂>
C As already suggested, the matrix must be prepared for grouping prior.
"' to the implementation of the algorithm of the Skyline method if matrix
- data overflows the core space available. First, the size of each group
r must be determined to provide such control information as in table I .
The size of a group depends upon how the open core is large at execution.
Figure 9 presents an open core layout. Given the open core size (NX) ,
the size of the memory to be allocated to one group may be obtained by

21

bisectioning the area excluding a working area needed. This allows up
to MAXT elements of one group to be stored. By use of the new unpacking
routine, only start row numbers of each matrix column are picked up to
create table I information. Such information are stored on a scratch
file in such a way that each group is on one record. At the same time,
the addresses of diagonal terms of each group at a working area are also
stored on array M. Thus, the preparation is completed.

To read group P, The unpacking method must be used in which the
input/output buffer can be directly referred to from an input matrix
data-block. This is also applied to reading Q, where the buffer is
directly referred to from an upper triangular matrix data-block. After
the completion of calculation, each group is written out following the
end of the upper triangular matrix. The diagonal elements are also
written out onto another output data-block for succeeding forward elimi-
nation and backward substitution.

The following are the results obtained by applying the Skyline
method to practical examples. Table IE gives matrix characteristics for
four data with a comparision of matrix characteristics in case of the
conventional band matrix method. Figure 10 compares CPU time for the
band matrix method with that for the Skyline method. The Skyline method
in these examples gives two cases in which a vector processor has been
applied and it has not been applied. The vector processor has been also
applied to the band matrix method, resulting in no improvement of CPU
time. This figure, therefore, does not that case. Figure 10 reveals .;
that the Skyline method consumes 33 to 66% of CPU "time needed by the
band matrix method. If the vector processor is applied to the Skyline
method, this value,drops to as many as 16 to 28% of the CPU time. Fur-
ther, for data of 7000 degrees of freedom, the Skyline method has needed
CPU time on the same percent basis as the band matrix method.

FORWARD ELIMIjNATION AND BACKWARD SUBSTITUTION

NASTRAN is designed to proceed forward elimination and backward
substitution while retaining vectors of load terms on the memory as much
as possible. As the result of matrix decomposition by the Skyline
method, an upper triangular matrix is generated and diagonal terms are
stored on another file. This means that forward elimination is an inner
product type and that store-type calculation is to be carried out after
division of load terms by diagonal elements. The procedure for solving
a system of linear equations:

U^DUX = B (34)

is separated into the forward elimination process

U*Y = B (35)

and the backward substitution process

22

ux = D'-Hr (36)

The forward elimination process is shown in figure 11. In this figure,
1. ., 1. . .,, 1. . 2 forms a string starting with the i-th column and the
jith element or'ilhe upper triangular matrix (string length is 3 here).
For this string, the following calculation is carried out.

" 'T^ : / \ / \
'•--'• i o """ *i a ^^ •? If " —! "\r a V 9 9 J / \ J ' /ia la k=)j'iK ka

• This is performed for all i-th column strings in the upper triangular
i ;matrix. Then, this procedure is repeated after setting i=i+l. Since

•', '(37) is an inner product type, high speed calculation is possible.
: Further, as for string's elements, the new packing routine refers to

_.'; the input/output buff er,, . saving time for data transmission and reducing
'/;< 'time for calling the unpacking routine due to string—by-string call un-
- •'; like conventional element-by—element call. Thus, the forward elimination
:-:j process is inner—product—type operation for matrix's factors decomposed
> by the Skyline method, while the forward elimination process of the con—
— .ventional method is store-type calculation.

On the other hand, the backward substitution process begins with
• ;; ,the generation of D~ Y for load term Y already generated by the forward
•_:< ̂ elimination process. The process allows calculations independent of the
'.;"/ following process because all diagonal term elements are already genera-
? ted on a file as one vector on matrix decomposition. After the division

-:_-.; :of load terms by diagonal terms, backward substitution is performed by
y; (backspacing the upper triangular matrix file buffer-by-buffer. This is
':' shown in figure 12. In the process,

.;"> y£ = yka ~ Uki* x'a (k=i,i+ST-l; a=l, 2, 3) (38)

)-•- as calculated for each string of each upper triangular matrix column,
v-' 'At that time, the non-transmit unpacking routine is called for each
••;• string, and only addresses in the input/output buffer are passed to the
•;>• routine of forward elimination and backward substitution.

- , Figure 13 gives the results of forward elimination and backward sub-
. stitution by use of data shown in table II :. This figure reveals that
Vthe new .method requires 'oQily.l6 to 54% of CPU time needed by forward eli^""

..\ mination and backward substitution of the conventional method. Taking
i:{ 'it into account that the coding for both processes are not oriented to
i - .the vector processor, more satisfactory results will be expected in res-
-'. Ipect to CPU time by further improvements.

EIGENVALUE EXTRACTION METHODS

In real eigenvalue extraction methods we attemped to develop these

23

methods in two directions: that is, partly the speeding up of the Inver-
se Power method, partly the development of a simultaneous iteration me-
thod.

At first we describe the Inverse Power method. Eigenvalue extrac-
tion methods are generally divided into two groups: tracking methods
(the Inverse Power method and the Determinant method) and transforma-
tion methods (the Householder method and the Givens method). Though
transformation methods are able to solve rapidly an eigenvalue problem
in the range of comparatively small scale problems, large scale problems
are unfavourable to them. On the contrary, the Inverse Power method has
been employed frequently owing to less restriction than transformation
methods.

Since the Inverse Power method in NASTRAN is accompanied by move-
ments of shift points, it needs to use iteratively matrix decomposition
and FBS (forward elimination and backward substitution). Improvements
that were previously mentioned were applied to the Inverse Power method,
so that we could improved the CPU performance of the Inverse Power me-
thod which is two or three times as much efficient as that of the con-
ventional Inverse Power method. Table HI shows that the CPU performance
of the new method without the vector processor amounts to 2.7 times that"
of the old one. If the vector processor is applied to the former, the
CPU performance of it will be equal to about 3.3 times that of the con-
ventional one.

Now we describe a simultaneous itetation method which is called the
Jennings method. There is a problem to find q eigenvalues in ascending
order from the lowest value and q eigenvectors corresponding to them
for the general eigenvalue problem:

K x = r M x (39)

where K is a symmetric matrix of positive definite type and M is a
symmetric matrix of non-negative definite type. The Jennings method is
useful for calculating a set of eigenvalues from the lowest value and
has no weakpoint that some important eigenvalues are often missed in
calculation. The algorithm is shown in figure 14. This method is diffe-
rent from the Subspace Iteration method on operations of orthogonaliza-
tion shown in (i), (j), (k), (l).

The Jennings method needs the following input data:
(1) ND : number of eigenvalues to be extracted (2 —ND29C-).
(2) LMAX: the maximum niunber of subspace iterations (the default

value is l6)Y
(3) IEP : convergence parameter (if IEP<0, then EPS=10 ;

otherwise EPS=O.OOOl).
The dimension "m" of subspace is decided on by

m = min(n, 2q, q+8) (40)

The selection of initial iteration vectors is most important for the

.24

convergence of subspace and the convergence ratio is decided on by the
"neighborhood" between subspace spanned by eigenvectors and subspace
spanned by initial iteration vectors. Assume that

K = (kj > , M = (m .) : k = k
J ! ^ J -*• J J -

m.. = m . (41)

Then, k^ £ 0 is always satisfied as K is positive definite. The
matrix Go which is composed of m initial vectors will be generated
as follows2;

(1) At first, the first column of Go is a vector D, where
»(«- -lt

(2) check k ^0 , and

(3) sort D(l) (l=l» ... , n) and select (m-l) values in decending
order from the largest:

D(Î)̂ D(I)>...̂ .D(I) (43)
\ 2' y ••• mx v^'

where the i-th vector of Go (i= 1, ... , m) is the unit vector, the i-th
component of which is equal to 1.

(42)

The
(1)

8!
criterions of convergency are as follows:
q eigenvalues and q eigenvectors are extracted,
number of subspace iterations amounts to LMAX.
there is no CPU time to execute three subspace iterations,
because output of the results needs a little time.

Let the eigenvalues in the L-th iteration loop be on a vector E(l) (l= 1,
... , m). After reordering E(l) in ascending order, the eigenvalues in
the (L-l)-th iteration loop are stored on a vector E*(l) (l= 1, ... , m),
If E(l) satisfies the following relation*

- E*(I) EPS (44)

then E(l) is already converged; otherwise E(l) is not converged. If (44)
holds true for all I (l<I<q), the convergence will be achieved owing to
criterion (l). If (44) doesn|t hold true for some I and number of sub-
space iterations is equal to LMAX, the calculation of eigenvalues will be
stopped due to criterion (2).

The orthogonalization of subspace is also important for a simultane-
ous iteration method. If a mass matrix M is non—positive definite and
operations of orthogonalization isn't applied to subspace during itera-
tion loops, the orthogonality of subspace will be breaking. For a eigen-
value problem with a non-positive definite mass matrix, the orthogonali-
zation of subspace is necessary for iteration vectors to converge to
eigenvectors. Consequently we adopted the Jennings method which ortho-
gonalizes iteration vectors just after the calculation of eigenvalues in
subspace. The generalized Jacobian method is adopted in the eigenvalue
extraction on subspace.

Table HI shows that the CPU performance of the Jennings method with-
out a vector processor (or with it) is 4»0 (or 4.1) times as high as that

, of the conventional Inverse Power method. Thus, the Jennings method
consumes about two-third of CPU time used by the new Inverse Power meth-

; od. This fact results from the following reason. While the Inverse
- Power method needs several decompositions of full size matrices in every
'movements of shift points, the Jennings method is more efficient to solve
3.large scale eigenvalue problems than!the Inverse Power method, for the
9!former needs only one decomposition of full size matrix and several deco-
ct mpositions of small scale matrices oh subspace,

PARALLEL PROCESSING ORIENTED MATRIX OPERATIONS

Our vector processor adopts a pipeline system and uses a compiler
;system in which a FORTRAN source program is translated into a set of
instructions specially for the vector processor with recource to the

; option active in compilation. This means that the object program gene—
: rated by the compiler depends on the skillfulness of coding.

To discuss more^specifically, this section presents the results, of
; our test. In this test, we measured CPU time per single term for the
length of a DO loop (string length) by carrying out thjree inner product

r., type operations and one store type operation, in order to determine the
.:'basic operation in matrix decomposition. The results are shown in figure

~"i 15. As for the inner product type operations, two cases were further
-'•..'. considered: the case where the vector processor was applied and the case

r; where it was not applied. The examples of coding1! used in our test are:

(1) Complete inner product type

REAL*8 A(lOOO), B(lOOO), X(lTER), SS
DO 10 I = 1,ITER
SS = O.ODO
DO 20 J = 1,LL 1 _ , . . .

20 SS = SS + A(J)*B(J) l Inner product loop
xfi^ = xfl) — ss

'10 CONTINUE

(2) Index explicit type

REAL*8 X(l), SS
DO 10 I = 1,ITER
SS = O.ODO
DO 20 J = 1,LL 1 Explicit index type

20 SS = SS + X(lA+J_i)*x(lB+J-l) ' inner product loop
X(IC+I-1) = X(IC+I-1) - SS

10 CONTINUE

26

(3) Subroutine inner product type

8
o

REAL*8 X(;l) , SS
DO 10 I = 1,ITER
SS = O.ODO
CALL DOTP (X(IA), ;X(IB)* ss, LL)
x(ic+i-i) = x(ic+i_i) _ ss

10 CONTINUE

SUBROUTINE DOTP ;(A, B, SS, LL)
REAL*S A(LL), B(LL), ss, s
S = O.ODO
DO 10 I a 1,LL
S = S 4

10 CONTINUE
SS = S
RETURN
END

(4) Store type (the three terms operation)

X(IA+J-1)*X(IB+J-1)

REAL*8 X(l) ,SS
DO 10 I = 1,ITER
DO 20 J = 1,LL

20 CONTINUE
10 CONTINUE

The above examples of coding are only for our test and there is no mean-
'ing in operation itself. The index ITER is the number of iteration loops
and ITER = 2000 in our test. Though the store type (the three terms)
operation is applicable to the vector processor by changing its indices,
;at that time we left it as it was, and then it was not applicable to the
'vector processor.

A close observation of figure 15 first exhibits that, as for the
complete inner product type operation, use of the vector processor brings
about an improvement in 'speed as much as 5.5 times that obtained by the
same type of operation without the vector processor. Unfortunately,
however, NASTRAN is not oriented to the way of coding for the complete
inner product type, since it uses an open core as a working area. Thus,
two possible ways for coding are explicit index and subroutine inner
product types . Without a vector processor, the subroutine inner product
itype is more advantageous than the explicit index type. On the other
.hand, with the processor, the former is less advantageous than the V \
latter.

Further, figure 15 reveals that, with the vector processor, the
explicit index type almost keeps in step with the complete inner product
type in respect to CPU time. However, without the processor, the former
has consumed CPU time as much as 2.2 times that the latter has consumed.
For a longer inner product loop, the subroutine inner product type

27

without the vector processor is more advantageous than the explicit index
type without it. This is attributable to that there is a difference in
optimization level between the operation with the vector processor and
that without it. The subroutine inner product type is advantageous if
the subroutine's overhead time can be overridden due to a long DO loop;
otherwise, it is less advantageous than other types in speed. The result
of the store type operation is also exhibited in this figure; this type
does not enjoy the maximum benefits of optimization.

An observation of figure 15 also shows that the extent of optimiza-
tion in various types of operations depends largely on program coding.
Of course, it is ideal that the maximum optimization is always possible
for any type of operation; however, the extent of optimization varies
depending upon type of FORTRAN. Accordingly, in coding the algorithm for
the Skyline method of matrix decomposition, we adopted the explicit index
type if use of a vector processor was possible; otherwise, we used the
subroutine inner product type. In the future we intend to use the expli-
cit index type as long as the optimization feature of FORTRAN is satis-
factorily refined.

So far, the inner product type has been more advantageous than the
store type in respect to speed thanks to use of registers. However, the
advent of a vector or array processor is changing this situation.
Actually, in case of HITAC M-200H, the latter has displayed almost the
same performance as the former. Further improvements of the parallel
processing systems may reverse the superiority of the inner product type
to the store type. .

As already described, CPU time needed for the store type, inner
product type operations accompanied with or without data transmission
depends largely on how to make a program. Use of a higher speed computer
and parallel processing system is greatly expected to change a current
software environment to a large extent. Technological breakthroughs of
software and of hardware would interact more closely in improving sparse
matrix operations.

CONCLUDING REMARKS

In this paper we discussed about improvements in sparse matrix
operations of NASTRAN. Recent advance of parallel processing systems has
ibeen changing surroundings in software. Especially, a vector processor
'attached to a general-purpose computer is favorable to a long DO loop
operation. For example, the Skyline method which we have developed this
time in the field of matrix triangular decomposition conforms to the
pipeline control feature observed in the vector processor. On the cont-
rary, the~ conventional band matrix method or the wavefront method which." '
adopt store type operations don't adapt themselves to the pipeline _; ^
control system, for they need complicated indices operations and are
difficult to deal with a set of arithmetic data as vectors.

28

What is more, the way of packing/unpacking and the method of forward
elimination and backward substitution were conformed themselves to the
Skyline method, so that the CPU time for solving a problem was reduced by
half. Further, in real .eigenvalue extraction we have improved the CPU

; performance of the Inverse Power method and added the Jennings method to
- NASTRAN. The Jennings method is more effective in many cases than the
' new Inverse Power method. •

REFERENCES

1. McCormick, C. W.: Sparse Matrix Operations in NASTRAN. Proc. of
1973 Tokyo Seminar on FEA, 1973, pp. 611-631.

2. McCormick, C. V.: The NASTRAN Program for Structural Analysis.
; Proc. 2nd U.S.-Japan Seminar, 1972, pp. 551-571.

3. McCormick, C. W.: Application of Partially Banded Matrix Method to
Structural Analysis, Sparse Matrix Proceedings, IBM T. Watson
Research Center, 1968, pp. 155-158.

4. E. L. Wilson and H. H. Dovey: Solution or Reduction of Equilibrium
Equations for Large Complex Structural Systems. Lecture Notes
Part 1, SAP Conference, Tokyo, 1978, pp. 13-24.

• 5. E., L. Wilson: An eigensolution strategy for the Dynamic Analysis of
^Large Structural Systems.-.Lecture Notes Part 2, SAP Conference^

~" Tokyo, 1978, pp. 1-19.

, : 6. NASTRAN User's Manual/ Theoretical Manual.

>: 7. Melosh, R. J. and Bamford, R. M.: Efficient Solution of Load-
; Deflection Equations. Proc. American- Society of Civil Engineers,
,? 95, ST4, 1969, PP. 661-676.

8. Irons, B. M.: A Frontal Solution Program for Finite Element Analysis
Int. J. Num. Meth. Engng., vol 2, 1970, pp. 5-32.

9. K. J. Bathe and E. L. Wilson: Numerical Method in Finite Element
Analysis. Prentice-Hall. Inc., 1976.

> ! 10-. K. J. Bathe: Solution for Eigenvalue Problems in Structural
- ' • ! . Mechanics. Int. J. Num. Meth.;Engng., vol 6, 1973, PP 213-226.

•'. *
' 11. Jennings, A.: A Direct Method for the Solution of Large Sparse

Symmetric Simultaneous Equations. Large Sparse Set of Linear
Equations, REID, Academic Press, 1971, pp. 97-104.

12. H. Rutishauser: Computational Aspects of F. L. Brauer's Simultaneous
Iteration Method. 1969

29

13. Jennings, A. and D. R. L. Orr: Application of the Simultaneous
c Iteration Method to Undamped Vibration Problems. Int. J. Num.
:, Meth. Engng., vol 3, 1971, pp. 13-24.

^ 14. Gupta, K. K.: Recent Advances in Numerical Analysis of Structural
5 Eigenvalue problems. Proc. of;1973 Tokyo Seminar on PEA, Univ.
?; of Tokyo Press, 1973, pp. 249-271.
8f -• !
9;15. Y. Yamamoto and H. Ohtsubo: Subspace Iteration Accelerated by the ;

j; *"?•(•> Use of Chebyshev Polynomials for Eigenvalue Problems with symmetric
U Matrices. Int. J. Num. Meth. Engng., vol 10, 1976, pp. 935-944.

,;;l6, James L. Rogers, Jr.: The Impact of Fourth Generation Computers on
'•'•- NASTRAN. NASTRAN User's Experiences, NASA TM X-3428, 1976,

PP. 431-447.

'."• >17. Control Data Corporation: Study^of the Modification Needed for
.•.•; Efficient Operation of NASTRAN on the Control Data Corporation

•• STAR-100 Computer. NASA CR-132644, 1975

":'. 18. Universal Analytics, Inc.: Feasibility Study for the Implementation
••?; of NASTRAN on the ILLIAC IV Parallel Processor. NASA CR-132702 '

1975.

30

TABLE I.- GROUP CONTROL INFORMATION

Group

Group 1

Group 2

Group 3

Group 4

K(l)

1

2

3

4

K(2)

1

1

2

1

K(3)

1

7

10

12

K(4)

6

9

11

12

M(J) ;
1

4

4

11

3

7

8

6

14

8 12 15
-

K(l) : Current group number

K(2) : Minimum group number needed by calculation

of group K(l)

K(3) s Minimum column number in group K(l)

K(4) : Maximum column number in group K(l)

M(j) : Pointer array of the diagonal term in the

J-th column

31

COo—
co

I-CO_
U
J

OC.
_J

UJ
op

I-
6

0

p
c

<

0
-

cr
.

<

U
J

1

-
1

a:\-MMUJ_lm

xLUU.O

g.
S

1
®

 "g
S

<

f>

3

•oOi£COoXT-,gm

c

8> .c
•§

S

6>

o
1
 J

 *
<n£

O

§

"O

1—

o

£O
T

Q
.

t

3

o

1
co

£
8

|

3
»

1

t—

^4
.

O
O

o

o
to

Q
.

§
3Q

oroCD

l|
-°

8
o

i:
,o

•*-

1—

o

'cO
)

ID0>
•ooZ0>oooQ

CMO^
~

CO00CMtoCO10COtocnto00tomCM<rCOCM
 .

00oCMCMto0̂)_
r
-

0

CMo—COCMj^CMCMK10Nomh-10—CMCM^ĵ-

O
)

COCM

^ <Q

CMO_
_

0CMC7>.̂
totoCOCOCOtoCM0>COCOCMroOmCOCMmto^~CMCOto1—o

CM0^
_

1
.̂

|V
_

^
-

«•00mtoCOmmoCOin—*^>CMO
)

COO
)

CO
N

-

*^_<Q

32

COQOXr-LUcruioa.uiCOa:uiuizo_Jo

QOU
J

toozU
I

QZ

Q
.

OLU_
l

CO

«-̂

Q
)

o

a

c
®

"
5

5

"

£
 1

w
<P

2
F

.S

»
 -c

-E

L
U

«

Q
-

o

_oB

toa>1

?

: B
0

J
^

l_

Q
)

•̂
J

Q
)

C

^
^

z

£
0̂u>(I)oQfc.
ot3a>Extraction methoda>

p
O

>
o

-n

"0
-

1
0

»
"5

»
;

"S

^
r-

B

oos

ro00(O00

o—w=&^a>Bco0•aoiaSo0
-a>in1•aOCMCOOCMO

ro04^>ro :)

O—in<a>-

•o1

New Inverse Power

CMCOoCMDBQ

0
)

^
-

04

O—to<D
>
-

T
3OJennings met

CMCOoCMoB0

CMCOO10O——O—T
3O>

'o
.

°.a'coo•OQ£o>o>tofc1•oO|s
.

CM0404QQ

tOroCOenCOo—oZ11

New Inverse Power.̂0
4

0
4

0
4OOQ

C
OCM

CMrOro0—
-OiNew Inverse Power

n^04CMCMO§

CMroCMU)K04

O—o^|IDc'cc~3(̂CMCM04OOQ

040404(O(OCM

0—0
)

>-

•oo0)E'Ec~
3

N
-

04CMCMO0Q

33

trU
J

S
t

P
L

8Oo£Xo:U
J

orU
J

Q<LUXoo(roo

o

Ix
o

P

r^J ' JL

O
O

O
U

J

COIE<rU
J
i-otrLU0z

QQ_

CO
CE

CO
CM

i-
01(0
U

ly
.

(D
O

O
liJ

(T
-J

ro

o:CO

(Moa: CMCO

oo:LJJNOZCM
CD CD

ZS_̂J
Oou.oU

J

ff)
CD

0CO

34

ONIDVdS•x.
4>

"

^ £Q<QLU0OCVJ
i . i

SECTION OF

":•*-•\

PROCESS ING»
 :

f

^LOGICAL
RECORD

g
^p

tLo

X

0

•31
 Q

1
0

o
 O

HmS
Ptru.u_CD

; PHYSICAL
RECORDf

35

mg1CDo:U
J

CDCDiU
J

U
-

u.

RECTIOi OF
ciet

-J
;:-C

^
<

 u
O

 L
U

O

^
X

O

H
-J

C
D

cn oU
J

PHYSICAL

RECORD

L
U

O
U

.

Q

X
 O

h
-o

Z
^

xI
O

Z
 o

Z
'*

jj'U
JLL.

CD

^
<̂LUtr

\

kQ<LUo
:w

\ '
kQ

\
<

T
U

J
^

tt
i

>v

\' ;\n

D<LUcrJ
L

'!'Q<
i

L
U

v
Q:

36

37

oQ
L

OOU
J

Xct:inU
J

o:S2u.

L
Q

_
j

t

REAL
STORAGE
SPACE |

38

m
 IL

E

U
J

m&u*s.
IICO

i^

39

Q_

ro

,o

g

Z
>

C

D

OcroX
C

L

o
£ <z
^
 C

D
_
_
_
.

V
.—

^

U
J

OCD
ĈM— N

.
—O>10ro-

CMCOOfl̂-
CD

roCD—rO^̂
^

00

ĵ-oCM!t2y

LO

^̂IOro|O

CD—2̂CDsj-

N-LOCMr̂h-

00CDro5£

c
n
O
 —

1̂
-00

ĵ-

CDooU
J

qij»LU00LUo:

oooo

II

IICO

i
v
!
?̂

:

u_

4
1

LUEC

Q
o:0

LUor<CDz>£ct:o

OO

CLIDOCE

-—
.

<Mx

LUOE

CLIDOo:CVJ

x

<LU

-J

5

O

<

CC

-r

*
S

o
 b

O

<

CL
Q:

=>
o

O

LL
tr

crcc
CO

LU

2

H

£t
z

LU

-
H s

^

w

o
 or

CD
<f

o:LU
o: O

:LL
LU

 LU
LL

M
L U

L
ID

LL U
_O

Q

m
^
c

D
x
 x

o
:

o:
o:!l

T
C

Q_I-

•*!*•

±

Q
 Q

o

-

u. U
.LL

CJ
ID

ID

10
-M-

m

m
m

o

o

c
o

 coco
LU

L
U

>
-

»
Z

Z

C

O

C
O

C
O

>K >
! (»

ID
m

ccLUOQ
m

LUm

LUooLUC
L

O

COO

42

ffi

Xo:
CVJ

CM
I

O

8U
J

U
J O

z
 o

IljEU
J

U
J

o.oU
J

fgS2u.

o(ft

Q

O

Q
 1

0

I*5 —
i-«g

o
Q

 1
0

ZCD

O0

QO
 O

X

IO

U
J

5z
 2

>-
.1000>W
)

~o<

"J'ti-
5
t

^
^

M
^M

H

*H
<
-

•
odCVJ

..

IOroro^
M

î
M

f :

Q
<
h
-«

M

£
I—00IO 1

<
0

0
)

±

:
- 1

•̂
•̂
H

! o
<
h
-<

ro

roCM 1b
^
^
^
H

CD0>^

,»

.

IO*
(0•
•
•
M

M

0
<
H

<
5
J
-

roCO 1*̂:
CM^T

i
__l
ui0sorooU

J

^i_is
^*

•

ffffl

oro0U
J

»-o5•̂
•
M

M

?-©sU
J

...orCOCOU
J

oda:o.

oroCOCOU
J
uoorQ_

43

gQLCL

CD

LUli.

£
CVJ

>=•*

>^

?CVI

£•}?

ro(VJ
$J
>
^^^

44

LUyjjfC
LCOQCDU
J

o:0U
-

roCM
%

i
>="CMCM
*

i
>
=
"

5?

ro
%

TCM
% j_

» T

.%
»

>
=
"

»51!

,%. ~
.

i

II

ro
X

*CM

CM

—

CM

—

II
II

-II

CM

-

>. I
v
 i

. —

45

III'H
©

C
O

O

3
t<

i
U

J
Z

111fitS2u.

• f -
1
—

®
C

10

<

o

Z

C
M

0K-UJ>
o

£̂

~
~

oo
o0

ooH

0

w

—

§

o

i

C
M

1
W

"

•
:

i;
m

^H
;

T :"'
ro-

CDZCE
o

b
s

'->—Q
<

COCMm̂
^̂
m

C
H
-̂
~

L_J

CM

10

^̂
•̂̂
^<
C
M

•••''
-.

<

CM

•
M
l̂
^

CH-*0
*

10•

f̂O-:

NCM

U
10

^
i;

X6oCMILUOOCD

CMOct:oU
J

46

0
)O
"

CM

ON SUBSPACE

OK

0XU
J

coorooui>zU
J

e>
*

u
J

itE

•££•
o

U
J

§
o

<|J
C

L
O

o

III

CD

X

CO

—

OF

V*

u
j

^

h
-

¥ i
ou. i s

u
j

O

5
 u

j

t s
*

£ •" <
O

u
j r;

O

I-

t

-J

<

z

z —
5
 u

j
a <

fl
ui

o
—

1

-2
UJ

S

5
o:

N
-JIDo

d:o_U
J

o_iS2U
JU
J

>-JO

C
^U

J
E

g
Q

<

a:°fe
e

>
^

?
o

O
-
l

zLU
U

J
o

x
s-±

0o:
a>u.
U

J
=

 co
^
U

J

I
3

2^~z

31

u.oQ
 C

O
UJ U

J
CO

3
O

 _
l

Q
. <

i§O
 U

J

x
 S

K
 Q

i?2 or<sCD
O

io

_

x
^

°-

oKCOo0
-
sooU

J
QI

ti
'̂

^
>

 _
J

g
^
Q

^

7"̂

.
^

1
^

N

N

_
^
 >

_
_

N

«

n

m
L
iJ

111 <•)
H

Q
1

OCO

OT

-8
 •"

/—
i a.

a. co
»—

TUJQ:
h- o:
U

J O
-J

 O

ito

n

'co*

oU
J

>oCOU
J

zIIIS2U
J

vT^ OUJta:

'

47

u
. to

48

