SOLUTION OF ENFORCED BOUNDARY
MOTION IN DIRECT TRANSIENT AND
HARMONIC PROBLEMS
Prepared By
Gary L. Fox
Director
Engineering Mechanics Division
NKF ENGINEERING ASSOCIATES, INC.
8150 Leesburg Pike
Vienna, Virginia 22180
(703) 442-8900

INTRODUCTION

The current versions of NASTRAN, i.e., NASA, MSC, and MAC support non-zero boundary displacements only in the static analysis. Forcing functions in the dynamic analysis formats allow only forces and pressures to exercise the mathematical model. This limitation can be circumvented by the application of a DMAP alter sequence. For the direct harmonic problem, a simple change to module FRRD can be easily incorporated to effect a more efficient use of the code.

Let the equation of motion be written with the dynamic set of coordinates in partition form with subscript b as the boundary set and subscript c as the complimentary boundary set, i.e.,

$$
\begin{align*}
& =\left[\begin{array}{l}
\bar{P}_{c} \\
P_{b}
\end{array}\right]+\left[\begin{array}{l}
P_{n I} \\
0
\end{array}\right] \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
& m, d, k=\text { mass, damping, and stiffness matrix coefficients } \\
& P, P_{n l}=\text { linear and non-linear load vectors }
\end{aligned}
$$

Equation (1) is not solved by the direct transient or frequency formats when P_{c}, X, and therefore X_{b} and \dot{X}_{b}, are known and P_{b}, X_{c}, and therefore \dot{X}_{c} and \dot{X}_{c} are unknown. However, equation (1) can be rewritten in the form needed for solution by the standard NASTRAN modules. The first of these are:

$$
\begin{equation*}
\left[m_{c c}\right][\ddot{X}\}+\left[d_{c c}\right][\dot{X}\}+\left[k_{c c}\right]\left[X_{c}\right\}=\left[P_{c}\right\}+\left[P_{n 1}\right] \tag{2}
\end{equation*}
$$

where

$$
\left[\dot{P}_{c}\right\}=\left[\bar{P}_{c}\right\}+\left[m_{c b}\right]\left[\ddot{x}_{b}\right\}+\left[\dot{d}_{c b}\right][\dot{X}\}+\left[k_{c b}\right]\left[X_{b}\right\}
$$

By the use of the partitioning modules, the submatrices in Equations (1) or (2) are easily formed. By letting the boundary displacement vector be input through the FORCE or DLOAD cards, the force vector is actually identified as $\left[P_{b}\right\}=\left[X_{b}\right\}$ (or the first or second derivatives).

The formation of the load vector is different for the transient and harmonic cases. These issues will be discussed below. Somewhat independent of the problem is the requirement that the solution vector to be processed by the remaining modules must be of the dimensions of the "d" set. By using once more partitioning vectors and the MERGE module, the solution vector $[X]$, and in the transient case $\left[X_{c}\right\}$ and $\left[\dot{X}_{c}\right\}$, is merged with the boundary vector $\left[X_{b}\right.$ \} to form the dynamic vector [$\left.X_{d}\right\}$. "With the " d " set solution vectors formed, the remaining DMAP sequence cân be execụted without NASTRAN knowing the difference.

In the case of harmonic analysis the non-linear force is zero and equation (2) becomes

$$
\begin{equation*}
\left(w^{2}\left[m_{c c}\right]+i w\left[d_{c c}\right]+\left[k_{c c}\right]\right)\left[x_{c}\right\}=\left[P_{c}\right\} \tag{3}
\end{equation*}
$$

where
$\mathrm{w}=$ circular frequency, $2 \pi \mathrm{f}$.

HARMONIC ANALYSIS

The DMAP alter that was written to partition the matrix equation (1) into the form of equation (2) and then solve the lower order equation (3) is shown in Figure A-1. The following paragraphs discuss the steps involved.

1. FRRS calculates the load vector PDF and exits the module. The parameter ISKP is changed from -1 to a positive number to be transferred to FRRD the second time the module is executed. If the value of ISKP was set to zero, the default value, the module would have been executed normally. A normal
execution would give a solution to equation (1). The FORTRAN listing of module FRRD is shown in Figure A-2. The added code is underlined: Only the subroutines FRRD1A and FRRD1B are executed in this step.
2. The parameter ISKIP is saved for later use.
3. The partition vector DPAR is used to partition the stiffness matrix KDD. The submatrix identification is related to equation (2) by the following:

Figure A-1. DMAP A1ter for Harmonic Response

```
ALTER 159.159
FRRD CASEXX,USETD,DLT,FRL,GMD,GOD,KDD,BDD,MDD,DIT/UDVF,PSF,PDF,PPF/
        C,N,DISP/C,N,DIRECT/V,N,LUSETD/V,N,MPCF1/V,N,SINGLE/V,N,OMIT/
        V,N,NONCUP/V,N,FRQSET/V,N,ISKIP=-1/ $
SAVE ISKIP $
PARTN KDD,DPAR,/KD11,KD21,KD12,KD22/ $
PARTN MDD,DPAR,/MD11,MD21,MD12,MD22/ $
PARTN PDF,,DPAR/PD11,PD21,PD12,PD22/C,N,1 $
MPYAD KD11,PD21,PD11/P1DF/C,N,O/C,N,-1/ $
FRRD CASEXX,USETD,DLT,FRL,GMD,GOD,GOD,KD11, ,MD11,DIT/UIDVF,PSF,P1DF,
    PPF/C,N,DISP/C,N,DIRECT/V,N,LUSETD/V,N,MPCF1/V,N,MPCF1/V,N,SINGLE/
    V,N,OMIT/V,N,NONCUP/V,N, FROSET/V,N,ISKIP/ $
MERGE KD11,KD21,KD12,KD22,DPAR,/KDD/ $
MERGE MD11,MD21,MD12,MD22,DPAR,/MOD/ $
MERGE U1DVF,PD21,PD22,,OPAR/UDVF/C,N,1 $
MERGE U1DVF,PD21,PD22,,OPAR/UDVF/C,N,1 \$
ENDALTER
CEND
```

Figure A-2. Listing of Module FRRD
LEVEL 2.2.1 (DFC 77)

ISN 0002		SUBROUTINE FRRD	00000010
	C		00000020
	C	FREQUENCY AND RANDOM RESPONSE MODULE	00000030
	C		00000040
	C	INPUTS CASECC, USETD, ULT, FRL, GMD, GOD, KDD,	
		BCD, MDD, PHIDH, DIT	00000050
	C		00000060
	C	OUTPUTS UDV,PS,PD,MP	00000070
	C		00000080
	C	8 SCRATCHES	00000090
	C		00000100
ISN 0003		INTEGER SINGLE, ONIT, CASECC, USETD, DLT, FRL,	
		GMD,GOD, BDD, PHIDH,DIT, 1 SCR1,SCR2, SCR3,	
		SCR5, SCR6, UDV , PS , PD, FP , PDD , OPTION	00000120
ISN 0004		INTEGER SCP7,SCRB, NAME $\& 2<, \mathrm{MCB} \& 7>$	00000130

GO TO 50				
ISN	0034		10 IF\&FREQ . EQ . 1 . OR. NLOAD . EQ $1<$ SCR6 \# UDV	00000460
ISN	0036		DO 201 1/, NFPEQ	00000470
ISN	0037		CALL KLOCK\&LOCK\&ITIME1<	00000480
		C		00000490
		C	FORM AND DECOMPOSE MATRICES	00000500
		C		00000510
ISN	0038		CALL FRRD1C\&FRL, FROSET,MDD, RDD,KDD. $1, \mathrm{SCR1}$, SCR2, SCR3, SCR4, SCR8,	
			1 SCP7.1G00D<	00000530
		c		00000540
		C	ULL IS ON SCR1 -- LLL IS IN SCR2	00000550
		C		00000560
		C	SOLVE FOR PD LOADS STACK ON SCR6	00000570
		C		00000580
		C		00000590
ISN	0039 .		CALL FRRD1D\&PDD, SCR1, SCR2, SCR3, SCR4, SCR6,	
			NLOAD, 1G00D, NFREQ<	
ISN	0040		CALL KLOCK\&ITIME2<	00000610
ISN	0041		CALL IMTOGO\&ITLEF1<	00000620
ISN	0042		IF\&2*\&ITIME2-ITIME1<.GT. ITLEFT .AND. I .NE. NFREQ< GO TO 70	00000630
ISN	0044	20	CONTINUE	00000640
ISN	0045		1 \# NFREQ	00000650
ISN	0046	30	CONTINUE	00000660
ISN	0047		IF\&NFREQ .EQ. 1 . OR. NLOAD .EQ $1<\mathrm{GO}^{\text {TO }} 40$	00000670
		C		00000680
		C	Resort solution vectors into same order as loads	00000690
		C		00000700
ISN	0049		CALL FRRDIE\&SCR6,UDV,NLOAD, $1<$	00000710
ISN	0050		40 ISKIP $=$ NFREQ + NLOAD $* 2 * * 16$	00000720
ISN	0051		RETURN	00000725
		C		00000730
		C	UNCOUPLED MODAL	00000740
		C		00000750
ISN	0052		50 CALL FRRD1F\&MDD, HDD, KDD, FRL, FRQSET, NLOAD, NFREO, PDD, UDV<	00000760
ISN	0053		GO TO 40	00000770
ISN	0054		60 PDD \# PP	00000780
ISN	0055		GO TO 10	00000790
		C		00000800
		C	INSUFFICIENT TIME TO COMPLETE ANOTHER LOOP	00000810
ISN	0056		70 CALL MESAGE\&.5.NFREQ-I, NAME<	00000820
ISN	0057		MCA\&1< \# SCR6	00000830
ISN	0058		CALL RDTFL\&MCA*1<<	00000840
ISN	0059		MDONE \# MCD\&2<	00000850
ISN	0060		MCR\&1< \# PP	00000860
ISN	0061		CALL ROTRI\&MCH\&1<<	00000870
ISN	0062		MCR\&2< NOONF	00000880
ISN	0063		CALL WRTIFL\&MCB\&1	00000890

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{dd}}=\mathrm{KD11} \\
& \mathrm{~K}_{\mathrm{cd}}=\mathrm{KD12} \\
& \mathrm{~K}_{\mathrm{bb}}=\mathrm{KD} 21 \\
& \mathrm{~K}_{\mathrm{bb}}=\mathrm{KD} 22
\end{aligned}
$$

4. The partition of the mass matrix, MDD, is similar to the stiffness matrix.
5. Because the load vector is calculated for all frequencies and loading conditions at once, PDF is a load matrix, a load vector in each column. The partition vector DPAR is used again to separate the enforced displacements from the forces. The relationship to equation (2) is

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{c}}=\mathrm{PD} 11 \\
& \mathrm{P}_{\mathrm{b}}^{\mathrm{c}}=\mathrm{PD} 21
\end{aligned}
$$

6. The module MPYAD performs the matrix multiplication and additions required by equation (2). Here

$$
P_{c}=P 1 D F
$$

7. Module FRRD is executed again, but this time the parameter ISKIP is positive. A jump to statement 15, underlined in Figure A-2, causes only the subroutines FRRD1C, FRRD1E and FRRD1F to be executed. The solution to equation (3) is obtained in this step. The code uses the following names related to equation (3).

$$
\begin{aligned}
\mathrm{M}_{\mathrm{cc}} & =\mathrm{MD11} \\
\mathrm{~K}^{\mathrm{c}} & =\mathrm{KD11} \\
\mathrm{P}^{\mathrm{c}} & =\mathrm{P} 1 \mathrm{DF} \\
\mathrm{X}_{\mathrm{c}} & =\mathrm{UlDF}
\end{aligned}
$$

8. The stiffness matrices are merged to form the system stiffness matrix. This is the inverse of operation 3.
9. Similar to the stiffness matrix, this operation is the inverse of operation 4.
10. Merges the solution vector X_{c} of equation (6-7) with X_{b} to form the system solution vector X_{d}.
The three merges, operations 8,9 , and 10 , are made necessary because NASTRAN uses the displacement approach to the problem solution. In order to calculate stress and forces in the members, the solution vector must contain all grid points.

The DMAP Alter required for the Rigid Format 9, Direct Transient Response, is shown in Figure A-3. The discussions below relates to the circled numbers in the DMAP listing.

1. The Stiffness matrix is partitioned in accordance with Equation (2) where

$$
\begin{aligned}
\mathrm{KD11} & =\mathrm{K}_{\mathrm{cc}} \\
\mathrm{KD12} & =\bar{K}_{\mathrm{cb}} \\
\mathrm{KD} 21 & =\mathrm{K}_{\mathrm{bc}} \\
\mathrm{KD} 22 & =\mathrm{K}_{\mathrm{bb}}
\end{aligned}
$$

2. The Mass matrix is partitioned similar to the Stiffness matrix

$$
[\mathrm{MDD}]=\left[\begin{array}{l:r}
\mathrm{MD} 11 & \mathrm{MD} 12 \\
\hdashline \mathrm{MD} 21 & \mathrm{MD} 22
\end{array}\right]
$$

Figure A-3. DMAP Alter to Rigid Format 9

ALTER	163	
PARTN	KDD, OPAR, /KD11,KD21,KD12,KD22 \$	(1)
PARTN	MDD, OPAR,/MDLL,MD21,MD12,MD22/ \$	(2)
PARTN	PD, OPAR/PD11, PA21, PD12, PD22/C,N,1 \$	(3)
MPYAD	PA21, MV1, /PBT21/C, $\mathrm{N}, \mathrm{O} / \mathrm{C}, \mathrm{N}, 1 / \mathrm{C}, \mathrm{N}, \mathrm{O} / \mathrm{C}, \mathrm{N}, 2$ \$.	(4). (5)
ADD	$\mathrm{PBT} 21, \mathrm{PA} 21 / \mathrm{PB} 21 / \mathrm{C}, \mathrm{Y}, \mathrm{ALPHA}=(0.550 \mathrm{E}-2.0) / \mathrm{C}, \mathrm{Y}, \mathrm{BETA}=(0.550 \mathrm{E}-2.0) \$$	(6)
MPYAD	PB21, MAIT, /PV21/C,N,O/C,N,1/C,N.O/C, N, 2	(7)
MPYAD	PV21,MV1,/PCT21/C,N,O/C,N,1/C,N,0/C,N,2 \$	(8)
ADD	PCT21, PV21/PC21/C,Y,ALPHA $=(0.550 \mathrm{E}-2.0) / \mathrm{C}, \mathrm{Y},. \mathrm{BETA}=(0.550 \mathrm{E}-2.0) \$$	(9)
MPYAD	PC21, MAIT, /PU21/C,N, O/C,N,1/C,N,0/C,N,2 \$	(10)
MPYAD	KD12, PU21, PD11/P1D/C,N,0/C,N,1/\$	(11)
ALTER	165,165	
TRD	CASEXX, TRL, NLFT, DIT, KD11,MD11,PID/UIDVT,P1LD/C,N,DIRECT/ V,N,NOUE/V,N,NONCUP/V,N,NCOL \$	(12)
ALTER	166	
MERGE	KD11, KD21,KD12,KD22, OPAR/KDD/ \$	(13)
MERGE	MD11, MD21,MD12,MD22,0PAR,/MDD/ \$	(14)
MERGE	PD11,PILD, PD12,PD22,,OPAR/PNLD/C,N,1 \$	(15)
PARTN	PA21,PVA,/A21,,PDA12,/C,N,1 \$	(16)
PARTN	PV21,PVA,/V21,,PDA12,/C,N,1 \$	(17)
PARTN	PU21, PVA, /U21, , PDA12,/C,N,1 \$	(18)
MERGE	A21, , V21,,PVVA,/PVA21/C,N,1 \$	(19)
MERGE	PVA21, ,U21, ,PVUVA,/PUVA21/C,N,1 \$	(20)
MERGE	UlDVT,PUVA21, ,, DPAR/UDVT/C,N,1 \$	(21)
ENDALT		

3. The load vector, PD, which is output from module TRLG, is partitioned according to Equation (2), where

$$
\begin{aligned}
P D & =\left\{P\left(t_{1}\right)\right\},\left\{P\left(t_{2}\right)\right\}, \cdots \\
\text { PD11 } & =\left\{\bar{P}_{c}\left(t_{1}\right)\right\},\left\{\bar{P}_{c}\left(t_{2}\right)\right\}, \cdots \\
\text { PA21 } & =\left\{P_{b}\left(t_{1}\right)\right\},\left\{P_{b}\left(t_{2}\right)\right\}, \cdots
\end{aligned}
$$

Note that PD is a matrix formed by columns of load vectors, one column for each time step. The matrices PD22 and PD12 are not generated, i.e.

$$
P D=\left[\frac{P D 11}{P} 1\right.
$$

4. Direct input matrices, MV1 and MAlT, are used subsequently to calculate the velocity and displacement matrices from the acceleration matrix. The forms of MV1 AND MAlT are

MV1 =

MA1T $=$

The dimensions of both matrices are $M X N+2$ where M is the number of coordinates in the $b-s e t$ and N is the number of time steps.
5. Produces the matrix product

$$
\begin{aligned}
{[P B T 21] } & =[P A 21] *[M V 1] \\
& =\left[\left\{P_{b}\left(t_{1}\right)\right\},\left\{P_{b} \cdot\left(t_{2}\right)\right\}, \cdots\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & \cdot & \cdot \\
0 & 0 & 1 & 0 & \cdot & \cdot \\
0 & 0 & 0 & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot & \cdot &
\end{array}\right]\right. \\
& =\left[0,\left\{P_{b}\left(t_{1}\right)\right\},\left\{P_{b}\left(t_{2}\right)\right\}, \cdot \cdots\right.
\end{aligned}
$$

It is seen that this operation moves the columns of the acceleration
vectors from time t_{i} to $t_{i}+1$.
6. Produces the matrix sum

$$
[\mathrm{PB} 21]=\alpha[\mathrm{PBT} 21]+\beta[\mathrm{PAZ1}]
$$

The coefficients α and β are set equal to one-half of the integration time step, Δt :

$$
\begin{aligned}
{[P B 21] } & =\frac{\Delta t}{2}\left[\left\{P_{1}+P_{2}\right\},\left\{P_{2}+P_{3}\right\}, \ldots\right] \\
& =\left[\left\{\Delta V_{1}\right\},\left\{\Delta V_{2}\right\}, \ldots\right]
\end{aligned}
$$

where $\left[P_{i}\right\}=\left\{P_{c}\left(t_{i}\right)\right\} ; i=1$ to $N+2$
The matrix PB2l represents the change in velocity, $\Delta \mathrm{V}_{\mathrm{i}}$, between time steps, t_{i} and t_{i+1} The calculation is based on the trapesoidal rule for numerical integration.
7. The final step in producing the matrix of velocity vectors, PV21 from the matrix of acceleration vectors, PA21, this module produces the matrix product

$$
\begin{aligned}
& {[\mathrm{PV} 21]=[\mathrm{PB} 21][\mathrm{MA1T}]} \\
& \left.=\left[\Delta \mathrm{V}_{1}\right\},\left\{\Delta \mathrm{V}_{2}\right\}, \cdots \cdot\right] \\
& =\left[\left\{\Delta \mathrm{V}_{1}\right\},\left\{\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}\right\},\left\{\Delta_{1}+\Delta_{2}+\Delta \mathrm{V}_{3}\right\}, \cdot \cdot \cdot\right]
\end{aligned}
$$

8., 9. A repeat of operations e, f, g. The matrix of displacement and 10. PU21, is calculated from the matrix of velocity vectors, PV21.
11. The load vector is calculated in accordance with Equation (2).

$$
\begin{aligned}
\text { KD12 } & =K_{c b} \\
\text { PU21 } & =\left\{X_{b}\right\} 1,\left\{X_{b}\right\}_{2}, \ldots . \\
\text { PD11 } & =\left\{\bar{P}_{b}\right\} 1,\left\{\bar{P}_{b}\right\}_{2}, \ldots . \\
\text { P1D } & =\left\{P_{c}\right\}_{1},\left\{P_{c}\right\} 2,
\end{aligned}
$$

12. The module :TRD calculates the solution to Equation (2).

$$
\begin{aligned}
& \mathrm{KD11}=[\mathrm{Kcc}] \\
& \mathrm{MD11}=[\mathrm{Mcc}] \\
& \mathrm{P} 1 \mathrm{D}=\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . .
\end{aligned}
$$

```
U1DVT \(=\left[\begin{array}{ccccc}X & \cdot X & & \\ \dot{X} & \dot{X} & & \\ X & X & & \\ \bullet X_{1}, & X_{2}, & & \cdot & \cdot\end{array}\right]\)
\([P 1 L D]=\left\{P_{\eta \ell}\right\}\).
```

The solution vector, U1DVT, is a matrix of displacements, velocity and acceleration vectors for each grid point; a column for each time step.
13. The system stiffness matrix is formed

$$
\left[\begin{array}{lr}
\mathrm{KD} 11 & \mathrm{KD12} \\
\hdashline \mathrm{KD} 21 & \mathrm{KD} 22
\end{array}\right]=[\mathrm{KDD}]
$$

14. The system mass matrix is formed similar to the operation (13.)
15. The system load vector is formed

$$
\left[\begin{array}{c}
\text { PD11 } \\
\hdashline P 1 L D
\end{array}\right]=[P N L D]
$$

16., 17. Partition the acceleration, PA21, velocity, PV21, and disand 18. placement, PU21, matrices to the correct size to be merged with UlDVT.
19., 20. These operations merge the solution matrix, UD1VT, with the and 21. excitation matrix, PUVA21, to form the final system solution matrix, UDVT.

$$
\left[\begin{array}{l}
\text { UD1VT } \\
\hdashline \text { PUVA21 }
\end{array}\right]=\text { [UDVT] }
$$

From this point on, the solution is calculated according to the Standard Rigid Format 9 procedure.

