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Recently, considerable interest has been shown i n the development of 
tuhnlques for the classiflcatlon of Imagery data such as remote sensing data 
obtained using the mu1 t i  spectral scanner (MSS) on board the Landsat. 
Classification of multichannel imagery data Is typically done by applying a 
decision rule t o  each resolution element or picture element (pixel) and 
classifying i t  based on spectral information. This procedure ignores spati a1 
information. Most of the imagery data contain much spatial info-mation which 
can be used to improve computer-assf sted classification. 

The use of contextual information i n  pattern classification has attracted the 
attention of many researchers, mainly i n  the area of character recognition 
(refs. 1, 2). Generally, one of two basic approaches has been used, the table 
lookup method or the Maricov approach. The table lookup method i s  based on the 
assumption that every word t o  be recognized is  selected from a known f ini te  
table. A word is  classified by comparing i t '  w i t h  every word of the same 
length i n  the table and finding the best match. 

The Markov approach is  based on the asskption that the true iategory of a 
character is  related i n  a probabil is t ic  manner t o  the true categories of a 
small number of surrounding characters. I ts  use requires the estimation of 
the probability of occurrence of all possible pairs, tr iplets of characters, 
etc., from the sample text. Abend (ref. 3)  derived optimal procedures when a 
Markov dependence exi sts between the states of nature of nei ghbori ng 
characters, and Raviv (ref. 4) gives the results of a p p l y i n g  such procedures 
for the recognition of Engl ish text. 

Tne use of contextual information i n  speech recognition is  considered by Alter 
(ref. 5). Chow (ref. 6 ) ,  using a nearest neighbor dependence method, obtained 
the structure and parameters of a recognition network for patterns represented 
by bl nary matrices. 

Several researchers attempted t o  use spatial i n f o m t i o n  i n  the classi f icati  on 
of imagery data. Kettig and Landgrebe (ref. 7) developed a technique called 

.- -. - d' 
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Extraction and Cl ass1 f i ca t lon  of Homogeneous r)bjects (ECHO), whlch s e m n t s  a 
scene In to  homogeneous objects and uses sample c lass l f l ca t ion  t o  assign each 
object as a whole, rather than by I t s  individual pixels.  Haralick e t  a l .  

( re f .  8) used textural  featurns based on gray-tone spat ial  dependence matrlces 
t o  characterize a local scene texture and experimentally showad t h m  t o  be 
itseful f o r  c lass i f i ca t ion  purposes. Swain ( re f .  9) developed a cascade model 

f o r  c ldss i fy lng a pattern based on mul t ip le observations I n  a time-varying 

environment. Welch and Salter (ref, 10) presented a method fo r  the contextual 

c l ass i f i ca t i on  of imagery data. Chlt t lneni ( re f .  11) discusses the use of 
context with 1 lnear c lass l f le rs .  Tous:?int ( re f .  12) glves a b r i e f  review o f  

the use of context I n  pattern ncogni  t i o n  and presents an extensive 1 i s t  o f  
references on the subject. 

A1 1 o f  the approaches proposed i n  the l i t e r a t u r e  e i ther  use a r b i t r a r i l y  

selected t rans i t ion  probabll l t f e s  or estimate them from a sample and t rea t  

than as global . For Imagery data such as those sbtai ned i n remote sensi ng, 
the t rans i t ion  pmbab l l i t i ss  very often not only vary from one Image t o  the 

other but also vary fm one local neighborhood t o  the other I n  the same 

image. It f s  d l f f i e o l t  t o  obtaln global estimates of t rans i t ion  probab i l i t ies  

because o f  the varying nature of imagery and the nonavai labi l i ty  09 t rue 

classes o f  p ixe ls  of Images. 

It 1 s the purpose of t h i s  paper t o  develop methods for l oca l l y  estimating 

t rans l t ion  pmbabll l t i e s  and t o  use these estimates i n  contextual c lass i f i ca-  
t lon.  It I s  assumed that  the classifier i s  trained on representative data 

from the Image and, for every pixel  o f  the image, the a poster ior i  probabi l i -  
t i e s  o f  the classes are estimated from spectral Information. Thus, the incor- 
poratlon o f  contextual information i nto c lass i f icat fon i s  treated as a 

postprocessing operation. 

The nunber o f  t rans i t ion  probabi l i t ies to  be estimated increases as the square 

o f  the number o f  classes. Mathematical expressions for contextual c lass i  f ica- 
t l o n  become complex wfth the Increase i n  the sfze o f  the local neighborhood. 
Thus, maklng the estfmatfon of t rans i t ion  probabi l i t ies i s  computationally 

expensive. I n  t h l s  paper, the t rans i t l on  probabi l i t ies are modeled In t e n s  



o f  a slngle parameter 8 ,  under reasonable assumptions, and methods are 
developed f o r  the estimation of 8 .  The estimated 8 i s  then used for  the 

incorporation o f  spat ial  lnfonnatlon In to  c lass l f i ca t lon .  

Thr paper i s  organized as fol lows. Models f o r  t rans l t ion  probabilities tn  

tams  of a single p a r m t c r  8 are developed In section 2. Techniques for 

l oca l l y  estlmatlng the parameter d o f  t rans i t ion  probabil i t l e s  uslng the 
maximum 1 i k e l  ihood method are developed i n  section 3 .  Sectlon 4 presents 

expressfons for  uslng the contextual I nfonat lon  I n  c l  assi f icat ion. Section 5 

presents the resul t o  of  contextual c l  ass1 f fca t  ion of remotely sensed agri cu l -  
t u ra l  imagery data, using techniques developed I n  the paper. Concluslons are 

presented I n  section 6. Appendix A presents an extenslon o f  spat ia l l y  uni f o n  

context t o  large neighborhoods. I n  appendix B, expressSons are developed fo r  

hstlmating t rans i t ion  probabi l i t ies for a two-class, three-sequential - 
neighborhood case without using models . The results o f  estimating the param- 

eters o f  t rans i t ion  probabi l i t ies under d i f ferent  t rans l t ion  probab i l l t les  

models i n  d i f fe ren t  d l ~ t i o n s  i n  the local neighborhood are presented I n  

a~pendlx C. Appendix 0 presents a mu1 titemporal in terpretat ion of the tech- 

niques developed i n  the paper f o r  appl lcat lons such as fn r m t e  sensing. 
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2. MOOELING TRANSITION PROBABILITIES 

The models fo r  tha transition probabf l l t les of the classes o f  the neighboring 

p i  xal s, I n  t e n s  o f  a single parmetar 6, are developed under raasonabl e 
assumptions. Let 1 and j be the nefghborlng pfxels ds show i n  f lgure 2-1. 

XI x j  
*i Wj 

Figure 2-1.- Nelghborfng pixels f and j. 

Let Xi and X j  be the pattern vectors and u i  and u j  be the ldbels (classes) of 

p ixe ls  I cnd j, respcctlvely. i e t  u l  dnd w j  take values a f  1, 2, - * * ,  M; 

when M I s  the nunber of classes. 

A l inear  model describing the dependency betwen the neighboring p i x e l  s i n  

: e m  o f  a single parameter 0 fo r  di f ferent r and s I s  given i n  equation (1). 

PC1 a rluj = I) (1 -8)P(ui * r) 

P(ui = f lu j  = r )  = (1 - 9)P(uf - r )  + 8 
1 -  
I (1 

O c 9 c l  

For 0 = 0, equation (1) becomes 

P(ui = rJu j  = s) = P(ul * r) 1 
and p(ui = f lu j  = r )  = 2(ui = r )  1 
Equation ( 2 )  I s  the case where the labels of ne!ghbor!ng pixels are  
fndependent. For 8 = 1, equation (1) becomes 

P(ui = r luj s = 0 

and P(ui * r/u: = r! = 1 1 

vc 
f . 

- .  

fndependent. For 8 = 1, equation (1) becomes 



Equatlon (3)  i s  the case where the labels o f  the nelghborlng pihels are 
con~pl etely dependerlt . Notlce that the 11 near t rans i t  1 on probabi 11 t les model 

o f  equation (1) i s  a l l nea r  interpolation I n  t a m  o f  a s ingle parameter 3 

b e t a r  t k r  extremes o f  equatlons (2)  and (3 ) .  It can be easl ly shown that  

the modrl o f  q u a t l o n  (1) sa t ls f les  the postulates o f  probabl l l t les.  That i s ,  

Using a quadratic in tatpolat ion between the extremes of equations ( 2 )  and ( 3 ) ,  
a quadratic model describing the dependenc~es between the labels of  
neighboring p lxe ls  can be wr i t ten i n  terms of a. sinrj le garameter a as 

P(UI = r (u j  = s) = (1 - 9 ) 2 ~ ( ~ 1  = r )  

P(ui * f luj  = r )  = (1 - O)*p(ui = r )  + 9(2 - 0 )  i ( 5 )  

o c e ~ l  

The model of q u a t l o n  ( 5 )  also satisfies the pcstulates of probabi l i  t l a s .  

However, it fs t o  be noted that the dependencies between the neighbor!ng 

p ixe ls  can be modeled through some other parameter. For example, by replacing 

a wlth , the dependencies are described f n  t ~ n s  of  r. 0 < 3 6 ; by 

rep1 aci ng e with e4 
-a * the dependencies are described i n  t e n s  o i  3, 

l + r t  

The t rans l t lon  probabll l  t i e s  betwen the classes o f  the neighborinq 21 val s i 
and j also can be modeled to  sat isfy the follow in^ character ist ics of 
dependencies, resul t ing i n  a nonl inear model. Some of t h t  general 

character ist fcs of dependencf es betuten neighboring ?fxel  s i and i can be 

wr i t ten  as follows. 



a. If the label wl = r o f  pixel i frequently occurs concurrently with the 

label wj = s o f  pixel j, then 

P(wl = rlu s! > P(wf = r) 
j 

(6 

and, if they always occur concurrently, then 

P(u+ = rluj = s) = 1 

b. If the iabel wi = r of pfxel i rarely cccurs concurrently with the label 
wj = s of pixel j, then 

and, if they never cccur concurrently, then 

c. If the label ui = r of pixel i occurs independently of the label w j  = s 
of pixel j, then 

A model satisfyin! characteristics a, b,. and c can be written- in terms of a 
sirlgle parameter 0 for different r and s as 

It can be easily shown that the transition probabiliti~; described by 

equation (11) satisfy the postulates of probabi 1 i ti es. A1 so, notice that 
requirements a, b, and c on the transition probabilities correspond to the 
cares where 0 < 0, 0 > 0, and 0 = 0, respectively. The model of equation (11) 
is referred to in this paper as the nonlinear transition probabilities model. 
Figure 2-2 illustrates the 1 inear, quadratic, and nonl inear transition 

probabi 1 fties models. 

wf- 



P ( u ~  = v i e J  = r) t c Quadratic 

L i  neat' 

Nonl i near 

Fi sure 2-2. - I1 1 us t ra t ion  o f  spa$ial dependency model s. 

I n  the remainder of  the  paper, only the l i n e a r  model o f  equation (1) and the  

non? f near model o f  equation (11) are considered. 



3.  LOCAL NEIGHBORHOOO ESTIMATION OF TRANSIT I O N  PROBABILITIES 

I n  th i s  section, tec'rniques a n  developed f o r  the estSmation o f  t rans i t i on  

probab i l i t ies  i n  the local neighborhood o f  the pfxel under consideration for 

use i n i t s  contextual c lass i f icat ion.  The c r i t e r i on  used fo r  t h e i r  estimation 

i s  the l ike l ihood function. That is ,  the t rans i t ion  probabi l i t ies are es t i -  

mated as those that  maximize the l ike l ihood function o f  observed spectral 

vectors, f f  the i  r spatial relationships are as given i n  the local neighborhood. 

3.1 A GENERAL EXPRESSION FOR THE LIKELIHOOD FUNCTION 

An expressfon f o r  the l ike l ihood function o f  N patterns i n  a general local 

neighborhood i s  developed fn the foliowing. Let X.1, X2, - * * ,  XN be :ire 
patterns i n  the general neighbcrhood. The l ike l ihood function of these 

patterns can be wr i t ten as 

where M i s  the nwn3er of classes. I n  the following, i t  i s  assumed :hat 

( a )  the probabi l i ty  density function of a patrern, given i t s  label, i s  
independent of other patterns and t h e i r  labels and (bj the labels o f  the 

patterns are independent o f  the labels o f  t h e i r  nonneighbors. By repeatedly 

using assumption (a), the fol lowing i s  obtained. Consider 



Using equation (13) I n  equatfon (12) resul ts  i n  

i s  fndependent of the wans i t ion  probabi l i t i e s ,  d iv id ing  

both sides of equation (14) by f t  y ie lds the c r i t e r i o n  L t o  be used for 

estimating the t rans i t ton  probabi l i t ies.  That i s ,  

(15) 

P C l  = iI,- flN = i N )  depends on the par t i cu la r  local neighborhood and w i l l  

be considered i n  de ta i l  i n  the f o l i w i n g .  

The pixel  under consideration, prxel 0, and i t s  four neighbors i n  a two- 

dinmslonal local neighborhood are  show^ . in f igsre 3-1. 

I I I 
I 1 I 

I 
I 

Figure 3-1 .- Four neighbors o f  p i x e l  0. 

By repeatedly using assumption (b), equation (16) i s  obtained. From 
equations (15) and (16), an expression f o r  L for the local neighborhood o f  

f lgure 3-1 i s  obtained, as shown i n  equation (17 ) .  
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3.2.1 AN EXPRESSION FOR L WITH LINEAR TRANSITION PROBABILITIES MODEL 

Since a p r i o r i  probabi 1 i t l e s  are posit ion independent, when a 1 i near model or' 
equation (1)  i s  used f o r  t rans i t ion  probab i l i t i es  i n  equation (17 ) .  L becomes 

where 



3.2.2 AN EXPRESSION FOR L WITH NONLINL4R TRANSITION PROBABILITIES MODEL 

Using the nonlinear transition probabil ities model o f  equation (11) in 
equation (18) gives the following expression for L. 

3 -3 SEQUENTIAL NEIGHBORHOOD - GENERAL CASE 

A general N-pixel sequential neighborhood is shown in figure 3-2. 

Fi gure 3-2 .- A general N-pi xel sequential neighborhood. 



The t ransi t ions for  which the t r ans i t i on  probab i l i t ies  are applied i n  the 

sequential nefghborhood are Indicated i n  f igure 3-2. An expression i s  

developed here for the l l ke l lhocd function L o f  the patterns i n  a general 

sequential neighborhood of N pixels.  Only the pixels imnediately adjacent t o  

each pixel  are treated as i t s  neighbors. Consider 

Assumption (b) i s  used i n  obtaining equation (20). The Bayes rule i s  used t o  
obtain the following. 

P ( 9  = i t ,*-*,q = i,,,) 
P(a3 = f3"( = f4,- ,uN = i,,,lu2 = t,) = 

L P(w2 = '2 )  

Proceeding i n  a manner s imi lar  t o  equation (20), the numerator o f  

equatlon (21) can be wr i t ten  as 

?(u2 i 2 & 3  a i3,*" c, = 1,) 

Continuing i n  a s imi lar  manner obtains the fol lowing resu l t .  

= IN )  * P(~N-l * iN-l)P(uN a iNIuN-l iN-l) (23  1 

The following i s  obtained from the Bayes role. 

Equation (25) i s  obtained from equations (20) through (24). 



Substitution of equation (25) i n to  equation (15) resul ts  i n  an expression for 

the c r i t e r i o n  1 f o r  a general sequential neighborhood. That is,  

3 -3.1 THE LIKELIHOOD FUNCTION L OF PATTERNS I N  A SEWENTIAL NEIGHBORHOOD 
WITH THE LINEAR TRANSITION PROBABILITIES MODEL 

I n  t h i s  sectlon, equation (26) i s  expressed i n  a polynomial form i n  terms of 0 

f o r  a four-pixel sequenti a1 neighborhood, us1 ng the 1 i near t rans i t1  on 

pmbabi! i t i es model o f  equation (1) . The four-'pi xel sequential neighborhood 

considered i s  shown i n  f igure 3-3. 

Figure 3-3 .- A four-pi xel sequenti a1 neighborhood . 
The l ike l ihood function o f  equation (26) f o r  the neighborhood of f igure 3-3 

becomes 



Since the a p r i o r i  p robab i l f t i es  am posft ion independent i n  the local  
neighborhood, the different quant i t ies  fn  equation (27) can be shown t o  be 

f 
p(w3 = f 3 1 X t ) ~ ( ~ 4  f31X4) 

a34 ' i 3 = ~  P ( r  = f 3 )  

P(o = f q )  



Using a l i nea r  model of equatlon (1) f o r  the t rans i t ion  probabi l i t ies and the 

def lnl t ions i n  equation (28) I n  equation ( 26 ) ,  expressions fo r  the 1 i k e l  ihood 

funtt lon for d i f fe ren t  s l  zes of sequenti a1 neighborhoods can be easl 1y wr i t ten  

and are l i s t e d  I n  table 3-1, 

3,3.2 EXPRESSIONS FOR THE LIKELIHOOD FUNCTION L OF A SEQUENTIAL NEIGHBORHOOO 
WITH NONLINEAR TRANSITION PROBABILITIES MODEL 

Using the nonlinear t rans i t ion  probabil l t i e s  model o f  equation (11) I n  

q u a f  ion (26) ,  expressions fo r  the 1 i k t !  i hood function f o r  several sequential 

neighborhoods can be easi ly derived. These are i l l u s t r a t e d  for three-, four-, 

and fi ve-pi xe1 sequenti a1 nei ghborhoods i n  the fo l  1 owl ng express4 ons . I n  
order for the t rans i t ion  probabi l i t ies model t o  hold true, the t ransi t ions i n  

the neighborhood must be as indicated i n  f igures 3-4, 3-5, and 3-6, Define 

.. - 
The l ike l ihood function for the three-pixel sequential neighborhood o f  

f igure 3-4 i s  given by 





?he 1 l ke l  1 hood f u m l o n  fo r  the four-p1 xe1 squent l  a1 nel ghborhood of 
f i g u n  3-5 I s  g l  ven by 

The 1 i ke l f  hood functlon for  the fl  ve-pi x r l  rrat,mtlal  n r i  ghborhood of 
f igure 3-6 I s  g l w n  by 

F { g u n  3-4 .- A thraa-pl xel sequent1 a1 nel ghborhood. 

FIgum 3-5 .- A four-plxel sequentla1 net ghbohood . 

Fi gum 3-6 .- A f f ve-pl xel sequenti a? nai qhbort~ood . 
3.4 C061PUTATION OF 8 BY THE MXIMIZATfON OF LlKELIH000 N N C I I O N  

Uith both 11 near and nonlinear t ransl t lon probablt f t i e s  models, the 1 i k e ?  ihood 
function Is a continuous functlon of the parameter 9 .  The parameter 9 that 

maximizes the 1 l ke l  lhood function wlth the nanl inear t ransl t lon probabll i t  i t s  

model can be obtainad using a ont-dfmnslonal bounded search, si t lc .  +.le 
parameter8 i s  bounded and the l ikel ihood function i s  nonlinear. k:.h the 

l inear t ransi t ion pmbabi l i t les model, the I ikel lhood functlon i t  a polynomlsl 
i n  the parameter 6 .  The f l ow  d l s g r r  ( re fs .  13-16) of f lgute 3-7 can be used 

t o  f ind  the optlma! 9 for the l inear t ransl t lon probabil ftin model 4n 

the range 0 4 9 1, which gives the global maximum for the l ikel ihood 

funct 1 on. 



I COWUTE L(0) AND L(1) I 

COMPUTE 

CHOOSE e o p t  EQUAL 
TO O OR 1, DEPENDING 
ON WHnHER L(O) OR L(1) 

I 
. , 

I S  LARGER 

I VALUE 0. 1. e l ,  * * - ,  o r e k  I 
THAT GIVES THE LARGE ST 

Ffgure 3-7. - Procedure for f indlng i n  the range O G 9 c 1,  

which gives gl o k l  maximum for L : 3 ) .  



Optimal t rans i t ion  pmbabi 1 i t i e r  tha t  maximize the  1 ikel i hocd funct ion for  
some typ ica l  sequenti a1 neighborhoods, w i  t h  bcth 1 i near a m  nonl i near 
trac;i ti on probabi 1 i ti es model s, are given in appendi x C. 



4. UPDATING A POSTER!ORI PROBABILITIES 

Using the t rans i t ion  probabi 1 i t i e s  models o f  section 2, methods are developed 
i n  t h i s  section f o r  Incorporating contextual informat ion i n t o  the class! fi e r  

decision process. 

4.1 UPDATING THE A POSTERIOR; PROBABILITIES OF A PIXEL USING INFORMATI ON 
OM A SINGLE NEiGHBOR 

Expressions are developed fo r  updating the a poster ior i  probabi 1 i t i e s  of the 

labels o f  a pixel  using information from i t s  single neighbor. These are used 

t o  explo i t  contextual information from 1 arge local neighborhoods . Let the 

pixel  undw consideration be X, and i t s  neighbors be X,-l and X W 1  . 
Flgure 4-1 shows the positfons o f  these pixels .: - 

T i  gure 4-1 .- 11 l ustrat ion o f  p ixe l  n' under consideration 
and i t s  nei ghbors . 

The assumptions used for updating the a poster ior i  probabi 1 it'i'es are the same 

as those made i n  section 3. Namely: (a) The probabi l i ty  density function o f  

a pattern, given i t s  label, i s  independent of other patterns and the1 r labels; 

(b) The labels o f  the p ixe ls  are independent of the labels o f  t h e i r  

nonneighbors. These assumptions are used i n  the rest  o f  the section. The 

information contained i n  the pattern Xn_l regarding the label o f  the pattern 

Xn can be wr i t ten i n  t e n s  of t rans i t ion  probabi l i t ies as 

Similarly, the fcl lowing i s  cbtained. 



Now, the a posteriori probabilities of the labels of the pattern Xn are 
updated using the information from the patterns Xn and Xn,l and their spatial 
relationship as follows, using the assumptions (a) and (b) above. 

Using the linear transition probabilities model of equation (I) in 
equation (35) yields .-. 

The information in the pattern X,, in obtaining the label of pattern X,,I, 

can be .-itten as follows. 



Similar ly,  the fol lowing i s  obtaf ned 

M 

Using the patterns Xn and X,l. one has 

Using the 1 inear t rans i t ion  probabi 1 i t i e s  model of equation (1) i n  

equation (39) yie lds the f o l  1 owi ng. 

4 -2 USE OF SINGLE-NEIGHBOR UPDATING EQUATIONS FOR LARGE LOCAL NEIGHBORHOODS 

This section shows how s i  ngl e-neighbor updati ng equations can be used 

repeatedly t o  explo i t  spat ial  i nfonnati on i n  1 arge 1 ocal nei ~hborhoods . 



k i 
I Consider the pixel  under consideration, pixel  0, and i t s  neighbors i n  t h e  

local  neighborhood shown i n  f igure  3-1. I n  t h i s  section, expresc iz;,a are 

E i developed f o r  obtaining the a poster ior i  p robab i l i t ies  of the classes of 
k i 
I i 

p ixe l  0, using information from i t s  local neighborhood. Consider 

equation ((I), where f = p(Xo.XI,-*,X4). Using equations (13), (161, 

I and (17) i n  equation (41) y ie lds equation (42). 
I 
!" 

! From equations (39) and (42), the fol lowing i s  easi ly understood. Updating 
i 
i the a poster ior i  probabil i t i e s  of the classes o f  p ixe l  0, using i n f o n a t i o n  
? 
E. 
E~ 

fm i t s  neighbors as shown i n  f igure  3-1, i s  equivalent t o  using the single- 
r neighbor updatf ng equation (39) repeatedly, taking one neighbor a t  a tfme. 

The sequence i n  which the nei ghbors are used i s " i m t e r i a 1 .  

4.2.2 SEQUENTIAL NEIGHBORHOOD - GENERAL CASE 

This section considers the pmbl  em of updating .the a pos ter io r i  p robab i l i t ies  

o f  the classes of the pixel  under consideration; p ixe l  j, i n  a general 

sequential neighborhood. The locat ion of pixel  j i n  a general sequential 

neighborhood o f  H pixels i s  shown i n  f igure 4-2. .. 
- - 

Figure 4-2.- The pixel  under consideration, p ixe l  j, and i t s  general 
sequential neighborhood . 

The t ransi t ions f o r  which the estimated t rans i t ion  probabi 1 i t i e s  apply i n  

the whole sequentt a1 neighborhood are indicated i n  f igure 4-2. Consider 

equation (43) where NU(ij) i s  the numerator o f  the f i r s t  expression in 

equation (43). Using equations il.3) and (25) i n  the numerator o f  

equation (43) resul ts  i n  equation (44). 

I f  the numerator and denominator o f  equation (43) are divided by 

the numerator of equation (43) can then be wr i t ten as shown i n  equation (45)  . 







The term in the f i r s t  set of brackets of equation (45) i s  the contribution 

from pixels t o  the left  of pixel j (see fig. 4-2) ,  the term in the second set 
of brackets is the contribution f . o m  pixels t o  the right of pixel j, and the 
f i r s t  term is  the contribution from pixel j to t h e  a posteriori probabilities 

of the classes of pixel j . These contr'i butions' appear in mil t i  pl icati ve form 

in equation (45). 
- 

An examination of equations (35), (39), and (45) reveals t h a t  the single- 

neighbor updating equations (35) and (39) can be used repeatedly t o  update the 

a pasteriori pmbab'lities of the classes of pixel j ,  using information from 

i t s  sequential neighborhood as follows. Equation (39) is used t o  update the 

a posteriori probabilities of pixel ( N  - I ) ,  using the a posteriori 

probabtlities of pixels ( N  - 1) and N .  The updated a oosteriori probabilities 

of pixel (N - 1) and the a posteriori probabilities of pixel ( N  - 2)  are used 

t o  update those of pixel ( N  - 2 ) .  Proceeding in a similar rhanner, the updated 

a posteriori probabil i t i  es of pixel ( j  + 1) and the a posteriori probabi 1 i t ies  

of pixel j are used t o  update those of pixel j . Similarly, equation (35) is  

used t o  update the a posteriori probabilities of pixel j ,  using information 

from pixels t o  the 1 eft of pixel j . The a posteriori probabi 1 i t ies  of 

pixels 1 and 2 are used t o  update those of pixel 2. The updated a posteriori 

prbbabiiities of pixel 2 and the a posteriori probabilities of pixel 3 are 
used t o  update the a pcsteriori probabilities of pixel 3. The process i s  



repeated u n t i l  the updated a pos te r i o r i  probabil  i t i e s  o f  p i xe l  ( j  - 1) and the 

previously updated ones of p i xe l  j a n  used t o  update those o f  p i xe l  j . 

4.2.3 APPLI M I O N  O f  SEQUENTIAL CONTEXT TO TWO-OIMENSIONAL NEIGHBORHOOOS 

The expressions f o r  the 1 i ke t  f hood funct ion and updating eouat 1 ons become 

complex wi th  the increase i n  tne  s ize o f  the loca l  neighborhood. Hence, it i s  
proposed t o  use sequent ia l ly  the sequenti a: context f o r  two-dimensi onal 1 ocal 

neighborhoods. It i s  desirable tha t  the updating be independent of the 

sequence o f  the sequential neighborhoods i n  which the updating i s  done. From 

equation (45) it i s  seen that,  w i th  the use o f  sequential neighborhoods 

(center1 ng on the p ixe l  under considerat ion),  the ~ g d a t i  ng i s  independent o f  

the  sequence o f  the sequential neighborhoods in..which the updating i s  done. 

The sequential neighborhoods t o  be used i n  updat'ing, then, are the ones 

center ing on the  p ixe l  under considerat ion i n  four  d i rect ions:  0°, 4S0, 90°, 

and 135'. A few t yp ica l  two-dimensional l oca l  neighborhoods composed o f  these 

sequential nef ghborhoods are i 1 l us t r a ted  i n  f i gu re  4-3. 



( a )  3-by-3 nel ghbotciood. ( h )  4-by4  nel ghborhood. 

(c)  5-by-5 neighborhood. 

Figure 4-3 .- Some typical neighborhoods and updating di recti ons . The p i x e l  
under considerction is marked by X .  



5 , EXPS? i 'ACNTAL RESULTS 

I n  t h i s  section, soma resu l ts  a n  obtalned by applying the theory developad i n  

the previous sections t o  the classification o f  the remotely sensed Landsat %S 
data. Several segments1 m processed i n  the fo l lowing manner. The image 

was over la id  wi th  a rectangular g r i d  o f  209 g r i d  intersect ions, and the labels  

o f  the p ixe ls  o r  dots corresponding t o  each g r i d  in te rsec t ion  were acquired. 
Two classes are i n  the image: Class 1 i s  wheat, and class 2 i s  nonwheat 

designated "othot." A 1 inear c l a s s i f i a r  i s  t ra ined on one-half o f  the labelad 

data. The remaining one-half of the labeled data i s  used as a tlst set. The 

a pos te r io r i  probabit i t i e s  o f  the classes o f  the p ixe ls  are estimated by 

normal i zing the d iscr lmi  nant funct ion values o f  the classes. 

5.1 COMPUTATIONAL RESULTS FOR A TYPI C4L 5-BY-5 NEIGHBORHOOD 

The a pos te r io r i  prababl l i t l e s  o f  the classes of the p ixe ls  f n a typ ica l  
5-by-5 neighborhood from an MSS image o f  segment 1739 are l i s t e d  i n  
tab le  5-1. This segment i s  i n  Teton County, Mgntana. 

' 

TABLE 5-1 .- THE A POSTERIORI PR'OBABILITIES OF THE CLASSES 
... 

I N  A 5-BY-5 NEIGHBORH000 

[The f i r s t  ent ry  i s  p ( o =  1 1 X )  and the second entry i s  p ( w =  21X) j  

'A segment I s  a 9- by 11-kilometer (5- by 5-naut ical-nl le)  area for  which the 
MSS image i s  divided I n t o  a 117-row by 196-column rectangli lar array of 
p ixe l  s . 



The pixel under consfdrratlon i s  the central pfxel of t:li neighbor!tood. The 

a pr ior1 p r o b r b l l l t l r t  a n  estlmatad as &n average of the a poster ior1 
probabl 1 It les  In the re1 ghborhood . Cons lder  :he fo l  1 owi ng . 

where X j  (j 1,2,.*.,A) a n  the pixels i n  tne local neighborhood. The 

a poster ior i  probabilities o f  the classes o f  t h e  p i x e l  under considcratlon are 

updated rs lng sequential context and the procedure described I n  section 4.2.3. 
ThS;s procedure i s  repeated f o r  f ive i terat ions,  and t h e  computational resul ts  
am l l s t e d  I n  table 5-2. 

TARE 5-2.- COMPUTATIONAL RESULTS OF UPDATING THE A POSTERIORI 
PROBABILITIES OF THE CENTRAL PIXEL I N  A 5-BY-5 NEIGHBORHOOD 

(USING THE LINEAR TRANSITI~ PRCBAeILITIES MODEL) 

A po r te r to r i  Estimates of parametor 8 A postet,or, A f o r  d l f f e n n t  sequentla1 
probabil ltier l t e r -  probbl l  ltlrr pmbab4 1 l t l e s  

dt jon W o n  i n  the m! I ghbor)loods af ter  
updating neiChbMood ' 0. 45. 90. 135. updr t l  ng 

1 (0.285,0.715) (0.4087,0.5913) 0.0 0.290) 0.4 0.4 (0.3574,0.6426) 

2 (0.3574,O. 6442) (0.4130,O. 5870) 0.0 0.2656 0.4 0.4 (0.4315,O. 5685) 

3 (0.4315,0.5685) (0.4173,0.5827) 0.0 0.2416 0.4 0.4 (0.5034,0.4966) 

4 (Om 5304,0.4966) (0.4216,O. 5784) 0.0 0.2194 0.4 0.4 (0.5699,0.4301) 
6 

5 (0.5699,0.4301) (0.4255,0.5745) 0.3 1 0.1995 0.5 0.4 (0.6363,0.3637) 



The trua class o f  the central p lxa l  1s h e a t ;  and, without usfng the 
contextual I n f o m t l o n ,  the central p lxe l  w i l l  be mlsc1asslfled In to  class 

"other." Table 5-2 s h m  that, uslng contextual l n f o m t l o n  from the local  

naighborhood, a f te r  the t h i r d  I t e ra t i on  the central plxel  f s  c o r c c t l y  

c lass l f led.  
* 

5.2 COMTUiTUM QASSIFICATIOW RESULTS 

Comparative resul ts  wlth and wfthout uslng contextual I n f o m t l o n  I n  c lass l f l -  
cat ion a n  presented I n  t h l s  s u t l o n .  Class1 f i ca t i on  maps f o r  segment 1739 

a n  sham I n  figures El through 5-3. It I s  observed from the lndepe,ident 

test set that  the c lass l f l ca t l on  accuracy for t h l s  segment incraasad by 5 per- 
cent wl th the use o f  contextual f nformatlon from the 3-by-3 neighborhood and 

by 7 percent with the u w  o f  contextual lnformatlon from the 5-by-5 nelghbor- 
hood (over the accuracies obtai ned i t!  thout using contextual Informat ion) . 
Uhl l e  general 1y prescs;lng the boundaries, ccntrxtual classification cartacted 

the ~ s c l a s s l f l c a t l o n s  o f  many pixels and d id  t h i s  more accurately wlth data 
fnrn the 5-by-5 nelghborhood than w l  th,  data from the 3-by-3 nei ghborhood . 
~ c c u r a d e s  I n  the c lass l f l ca t lon  o f  MSS hagas of a feu segments with and 

wlthout the use o f  contextual informution arc 1 i s t m  I n  table-'5-3. 

I n  general, an examination o f  the c lass l f l ca t lon  maps of f u l l  images and 

c l  a s t i  f l c a t l  on accuracies on the i ndepndent test  set shows consf dtrabl t 
fmprovmnt I n  the c lass i f lcat lons with the use of contextual i nformat!on. 

The improvement i s  greater wlth the increase i n  s l z t  o f  the neighborhood. The 

contextual classification o f  a f u l l  segment with a 5-by-5 neighborhood usjng 

the methods developed h e n  took approximately 12 minutes o f  t o t a l  t f m  on the 

Purdue University Laboratory for Appl icat lons of R m t e  Sensing (LARS) IBM 3031 

computer system. 



TABLE 5-3.- CLASSlFICATlOn ACCURACIES (PERCENTAGES: 
W I T H  AND WITHWT CONTEXTUAL INFORISATION 

W l  t h  srquentl a1 - _ _  context 
Locat 1 on u l  thout (0 U i t F - 1  

(county, state) context 
spat f a 1  1y 

ucl  f om context ( 
N S . 5  N S . 4  N S . 3  I 

b l ~ ~ ~  Cheyenn?,, 85.88 88.45 88.46 90.38 86.54 
Co 1 orado 

I 

%060 Sherman, 80.77 85.58 82.69 81.73 I 81.73 
Texas 

%231 Jackson, 89.42 91.35 91.15 90.38 31.35 
Oklrhow 

r a 

C1520 Blq Stone, 84.62 87 -50 85.58 86.54 84.62 
Nt nnarota 

=1604 Renvllle, 60.58 63.46 60.58 59-62 60.58 
North Dakota 

C1675 McPherson, 68.27 71.15 7z.08 68.27 67.3i  
South Dakota 

I 

C l?39  reton, 68.27 75.00.  72.22 73.08 .. 70.19 
Montana 

i 

a~~ k1ghbor)lood size. 
bk$nents !:: iiiiicn class 1 I s  wlnter h e a t .  
"egments I n  which class 1 1s spring wheat. 









i 
I The variance reductton factors obtained without using contextual information 
j and with the use o f  contextual information from a local neighborhood of size 5 

1 are 1 i t t a d  i n  tab1 5-4. 
! 
i 
i 

i 
TABLE 5 4 . 0  VARIANCE REDUCTION FACTORS WITH AND 

W I WUT C O N X X T W  I t9FrM4ATION 

Vari ance reduct i on fact or  
Location 

(county. state) without wi th sequential 
context context, NS = 5 

1005 Cheyenne, 0.5720 0.5430 
Cot orado 

1060 Shemn, .6227 ' .4717 
Texas * 

-- 
l.231 Jackson, .4407 .4173 

Ok 1 ahoma 

1520 Big  Stone, . .6194 . -  .5216 
M i  nnesota 

1604 Renvi 1 1 e, 9865 .9741 - 
North Dakota 7. 

1675 McPherson, .9985 .9248 
South Dakota 

1739 Teton, .9271 ,8267 
Montana 

Table 5-4 shows tha t  there i s  a consistent improvement i n  the variance 

reductfon factor with the use of contextual information i n  c lass i f icat ion.  



6. CONCLUSIONS 

I n  t h i s  paper, the problem o f  incorporating contextual o r  spat ial  i n f o m t i o n  
i n t o  the c lass i f i ca t ion  o f  imagery data i s  considered. The contextuel :nfor- 

mat ion i s  introduced i n t o  c l  assi f i ca t i on  based on the spat1 a1 dependencies 

between the states o f  nature of neighboring p ixe ls  o r  based on t rans i t i on  

probabi 1 i t i as. The dependencies between neighboring patterns are modeled wi th 

1 inear and nonlinear models through a single parameter 0,  which describes the 
trans1 t i o n  probabi l i t ies of the classes o f  the neighboring patterns. An 

expression i s  developed f o r  the l i ke l ihood function c f  the pattern vectors 

from a general 1 ocal neighborhood under the f o l l  owing reasonable assumptions : 

( d )  The probabi l i ty  density function o f  a pattern, given i t s  label, i s  inde- 

pegdent o f  other patterns and t h e i r  labels; anda(b) the labels of the pattern 

vectors are independent o f  the labels o f  t h e i r  nonnefghbors. Specif ic expres- 

sions f o r  the 1 ikelihood function are derived f o r  d i f ferent  local neighbor- 

hoods and with d i f fe ren t  t rans i t ion  probab i l i t ies  model s. The parameter 0 i s  

estimated as the one that  maximizes the 1 i k e l  ihood function. 

Expre~slons are presented f o r  uodati ng the a poster ior i  probabi 1 i t  l es o f  the 

classes o f  a pixel  using information from a single neighbor. '-.It i s  shown that 

these expressions can be used t o  update the a poster ior i  p robab i l i t ies  o f  a 

pixel  under consideration f o r  spat ia l l y  uniform context and i n  a general 

sequent i a1 neighborhood. The contextual information from two-dimensional 

neighborhoods i s  introduced i n to  the c lass i f icat ion o f  imagery data, also, 

through a s q u t x e  o f  sequenti a1 neighborhoods. 

The techniques presented here are app! fed t o  the c lass i f icat ion of remotely 

sensed MSS imagery data. Computational resul ts  for  a typ ica l  5-by-5 neighbor- 

h o ~ d  are presented. The c lass i f i ca t ion  maps are presented with and without 

context, and c lass i f i ca t ion  accuracies are g i  ven for  different sizes o f  local 

neighborhoods. 



For a two-cl ass, three-squential  -net ghborhood case, express4 ons are devel oped 

for obtaining the t r a n s ~ t i o n  prababil i t i e s  without using models. Instead o f  
using one parameter 8 i n  the local  neighborhood of the pattern under consider- 

ation, as shown i n  appendix C, t rans i t fon  probab i l i t ies  models with d i f fe ren t  

parameters i n  different direct ions can be used. The techniques, as discussed 
i n  appendix 0, can be used for multitemporal or  time-varying si tuat ions such 

as those encountered i n  remote sensing. 
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APPENDIX A 

A GENERAL I U T  I ON OF SPATIALLY UNIFORM CONTEXT 
TO LARGE NEIGHBORHOODS 

In  t h i s  appendix, the contextual re la t ionsh ips developed i n  sect ion 3 . 2  f o r  

spat i  a1 l y  uniform context are extended fo r  1 arger neighborhoods . I n  

par t i cu la r ,  the neighborhood shown i n  f i gu re  A-1 i s  considered. The p i xe l s  

w i t h  the cLnmn sides a n  t reated as neighbors, and the diagonal neighbors o f  

the p ixe ls  are t reated as nonneighbors. 

I l l 1  
I I I I  

Ftgure A-1 .- Neighboring p ixe l  f i n  a 3-by-3 loca l  neighborhood. 

The a pos te r io r i  p robab i l i t i e s  o f  the labels of p i xe l  0, g iven the f n iannat ion 

f rom i t s  loca l  neighborhood, can b e  wr f t ten  as 

where 

and 



The notation o f  equation (A-4)  f s  used i n  the remainder o f  t h i s  appendix. 

Using equations (13)  and (A-4) :n equations (A-2) and (A-3) ,  fl(io) and f can 

be wr i t ten  as 

and 

It was assumed that the labels o f  the p ixe ls  are independent oC the labels o f  
t h e i r  nonneighboring pixels, with the neighboring pixel s defined as i n  

f igure A-1 . Now consider 

The second term i n  the right-hand side of eqcation (A-7)  can be wr i t ten  a s  



S i m i  t a r  t o  equation (A-8). the other terms o f  equation (A-7) can be shown t o  
be the fol lowing. 

Using equations (A-8) and (A-9)  i n  equation (A-7) resu l t s  f n 

(A-10) 

Expressing the t r a n s i t i o n  pmbabi l i t f e s  i n  equation (A -10 )  in- t e n s  o f  the 

parameter 8 [equation (1) o r  equation (ll)], equations (A-1)  , (A -5 )  , and ( A - 6 )  

can be used t o  incorporate the contextual informat ion from the l oca l  
nefghborhood. As i n  sact ion 3, 0 can be obtained by maximizing the l i ke1  ihood 

function o f  the spectral values o f  the p ixe ls  0, 1, 2, 5 .  

Equation (A-10) also can be used t o  estimate the t r a n s i t i o n  p r r b a b i l i t i e s  in 
the  loca l  neighborhood, i f  the labe ls  o f  the p i xe l s  are known. For example: 

In remote sensing, f o r  a selected set o f  images, the labels of the p ixe ls  o r  
ground t r u t h  are known. Often f t  i s  necessary t o  estimate the t r a n s i t i o ~ ;  

probabi I i t i e s .  The f o l  l o w i n j  example f l l us t ra tes ,  fo r  a few t yp i ca l  

nei ghbovhoods, the t r a n s i t i o n  pmbabi I f t i e s  obtaf ned from the maximization o f  
equation (A-10). The a p r i o r1  probad 1 i t i a s  i n  the l o c a l  neighborhood are 

e s t i m d t e d  as an average o f  the a poster ior1  p robab i l i t i e s  of the classes. 



x a l e  Thls example I l l u s t r a t e s  the t rans l t lon  pmbab l l l t l es  obtalned by 

computatl ng 0 ,  nhlch maxlmlzes equation (A-10). These are 1 1  sted for  a few 
typ lca l  neighborhoods i n  table A-1. For nelghborlng p ixe ls  A and 0, the 

notation used f o r  the t rans l t lon  pmbabll l t l e s  1 fsted I n  table A-1  i s  shown I n  

TABLE A-1 .- MAXIMUM LIKELIHOOO ESTIMATES OF TRANSITION PROBABILITIES 

FOR SOME TYPICAL NEIGHBORHOWS 

I 4 

A prlorl Trans!tlon ~ r O b 4 b f l f t f @ ~  
No* N'f ahbo- prnbclbll l t 1 el r 

I 

Linear model Nonlinear model 

1 P ( r  • 1) 0.6667 

P(r  2) = 0.3333 

8 0.4 8 0.55 
I 

2 

P(u 2) 0.5556 

8 0.35 8 0.5 

3 P(u 1) 0.2222 F/ P ( u = 2 ) . 0 . 7 7 7 8  

0 0.25 9 0.35 

Fl gum A-2 .- Notation used f o r  the trans1 t i o n  probabi 1 i t i  es 
l i s t e d  I n  table A-1. 
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APPENDIX B 

OPTIMAL TRANSITION PROBABILITIES FOR A TWO-CLASS, 

3-BY-3 NEIGHBORHOOD CASE 

I n  general, the t r ans i t i on  probabil  i t i e s  tha t  maximize the 1 i k e l  i hood funct ion 

can be obtal ned usi  ng optimi z a t i  on methods such as the Oavi don-F1 etcher-Powel 1 

procedure. This requires searching f o r  M x M parameters, where M i s  the  

number of clashes. Using the t r a n s i t i o n  p robab i l i t i e s  models o f  sect ion 2, 

the l i ke l i hood  fnnct ion i s  expressed as a function o f  a s ing le  parameter 9. 

However, f o r  3 two-cl ass, 3-by-3 neighborhood case, expressions f o r  the 

t r a n s i t i o n  probabi l iti as, which maximize the 1 i k e l  ihood funct ion without using 

models f o r  t r ans i t i on  probabi 1 i t i e s ,  are obtained i n  the fo l lowing mirmer. 

Let  A and B be the neighboring p ixe ls .  Let  there be two classes. Then we 

have tha fo l lowing theorems. 

Theorem 1: For a two-class case, i f  the a p r i o r i  p robab i l i t i e s  are pos i t i on  

Independent i n  the loca l  neighborhood ci .e ., Pjk = i) = P ( 9  = i ) ] ,  then the 

t r a n s i t i o n  p robab i l i t i e s  are symnetrfc. That i s ,  

p(w, = 2)  = P(wg l ( w A  = 2 )  - (8-1 

Proof: Consi der 

P(uA = l /rg = 2) = 1 - P(uA = 21% = 2 )  

Theorem 2: Le t  0 1 = P(wA = l lug = 1) 2nd 82 = P (wA = 2  / wg = 2 )  . Then, the 
t r a n s i t i o n  p robab i l i t i e s  and the a p r i o r i  probabi 1 it ies  are re la ted  as 



where Pf = P(up 8 1 )  P ( U ~  = 1). 

Proof: U ~ f n 9  the Bayes theorem, u, obtafn 

That i s ,  

The0ren.s 1 and 2 are used i n  the following t o  obtain 81  and 32. The 

1 i k e i  fh00d function L(e  ,e2) for the three-pixel sequential neighborhood of 
f igure 3-4 can be expressed i n  terms o f  01 and 92 as 

when a j j k  are given by 

-7 

P ( J I X ~ ) P ( ~ ! X ~ )  
aijC ~ ( ~ 1 ' 3 )  P(@ s j ) P ( @  = 7 03-4) 

a" i s  j, and k take values 1 or 2. From equations (3-2) and (3-3), the 

l i k e l i h o d  fucction can be expressea i n  terns of parzmeter il as 

where 



Let v l  be the value o f  8 1  obtained by d i f fe ren t ia t ing  equatlon (6-5) with 

respect t o  81 and equating the rasul t ing expression t o  zero. That i s .  

The parameters and 02 should l i e  i n  the in terval  0 t o  1. Let y and y be 

the end points of 01.  They are given by 

and 

Nm, the optimal 8 1  and. 02 c m  be obtained as follows. If 0 < u l  < 1, choose 

the 0 p t f ~ i  value o f  0 elopt, that  equals the value v l ,  2 ,  or v3 and gives 

the largest value o f  L(Blopt). I f  v1 l i e s  outside the in terval  0 to  1, choose 

the value f o r  e lOp t  tha t  equals the value v2-.or u3 and give5 the l r rges t  value 

o f  L(elopt) ; 910pt i s  computed from q u a t i  on (8-2) . 
Examph: For a few typ ica l  sequential neighborhoods, t h i s  exam1 - e i l l u s t r a t e s  

the t rans i t ion  probabi 1 i t i e s  computed using the 1 i near and nonlinear models of 

section 2, using the procedure o f  t h i s  appendix and using the Davidon-FletAer- 

Powell optimization technique. The a poster ior i  probabi 1 i t i e s  of the classes 

are o f  the 3-by-3 local neighborhwd o f  dot 89 from segment 1739, Teton County, 

Montana. These are obtained by normal i z ing  the outputs o f  a 1 inear c lass i -  

f i e r .  The four-sequent4 a1 nei ghborhoods are neighborhoods i n  four d i rect  i ons: 

0°, 4S0, 90°, and 135O, centering on the ceotral pixel  . The a p r i o r i  proba- 

b i l i t f  es are computed as the average o f  the a poster ior i  probabi 1 i t i e s  i n  the 

neighborhood. Class 1 i s  wheat and class 2 i s  "other ." The a p r i o r i  

?robabi 1 iti es computed f o r  t h i s  3-by-3 neighborhood are 

P ( w  = 1) a 0.5531 

P ( w  = 2) = 0.4469 

The estinrated t rans i t ion  probabi 1 i t i e s  are 1 is ted i n  table 0-1. 



TABLE U-1 .- COMPARISON OF ESTIMATE0 TRANSITION PROBABIITIES 

A posteriori probabilities 
I n  the neighborhood 

0" direction 

45" direction 

Transit ion probabi 1 i t  ies 

I Direct  optimizatia 
L 1 near model Procedure o f  'T- Nonl i near model F letcher-Powtrl l 

I procedure) 



Table B-1 shows that the estimated transition probabi 1 i t i e s  agree we! 1 w i t h  

different procedures. With 1 inear models, the parameter 8 tends to be zerc 
for mixed neighborhoods, thus ignoring spatial informati on from mixed 
neighborhoods . 
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ESTIMATION OF TRANSITION PROBABILITIES WITH DIFFERENT 
PARAMETERS t N THE LOCAL NE I GHBORH000 

1 I n  t h i s  appendix, some resu l t s  are developed f o r  est imat ing the t r a n s i t i o n  

probabi 1  i t i e s  w i th  d i f f e r e a t  parameters i n  d i f f e r e n t  d i rec t ions  i n  the  1 ocal 
nei ghburhood and wi th  in teract ions i n  the parameters. The 1 ocal neighborhood 

considered i s  shown i n  f i g u r e  3-1. The 1  inear  model o f  equation ( 1 )  i s  used 

f o r  the t r a n s i t i o n  p robab i l i t i es .  Let 0~ and 8~ be the parameters of the 

I - t r a n s i t i o n  probabi 1  i t i e s  model f o r  ho r i  zo t~ ta l  an4 ve r t i ca l  nei ghbors , 
i respectively. For the loca l  neighborhood i 1 l us t r a ted  i n  ffgure 3-1, consider 
i the fo l low ing  equation from sect ion 3.2: 

where 



To determine BV and O H  t h a t  m x i l . i z ~ .  equation (C-11, one takes p a r t i a l  dariva- 

t i v e s  o f  q u s t i o n  (C-1) with  respect t o  BV and 0" and solves the r e s u l t i n g  
equations f o r  e v  and O H .  Taking the  p i r t i a l  de r iva t i ve  o f  eauati  on (C-1) with  

respect t o  By ,  equating the  resu l t ing  expression t o  zero, and solving f o r  9v ,  

one obtains 



where 

dNZ 
2 - hH + an - O V  + OVH - "VH 

a = 1 - av + B v  

S im i la r l y ,  tak ing  the p a r t i a l  de r i va t i ve  o f  equatlon (C-1) w i th  respect t o  OH, 

equating the resu l t i ng  expression t o  zero, and A l v i n g  f o r  OH, one obtains 

where 

Subs t i tu t ing  the expression for 0~ from equation (C-2) i n t o  equation (C-3) 

r esu l t s  i n  a f i f t h -o rde r  algebraic equation, the roots  of which can be 
obtained by numerical wthods ( r e f s .  15, 16) . Let the r esu l t i ng  roots be 

eHr( i ) ;  i = 1, 2, * * * ,  5. F r m  equation (C-Z), corresponding values are 

obtained f o r  eV,(i); i = 1, 2, 5. 



Let 

when T r ( i  ) i s  a vector. Let 

NOW, rOpt for  0 cCH c 1 and 0 < 0" c 1, which maximizes equation 1 )  can 
be obtained using a procedure s imi lar  t o  that given i n  the flow diagram o f  

f igure 3-7. The above analysis can be generalized with different parameters 

f o r  more than two directions and f o r  larger neighborhoods t o  obtain the 

t rans i t ion  probabi l i t ies.  
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APPENOIX 0 

MULT ITEMPORAL INTERPRETAT ION OF CONTEXT 

I n  t h i s  appendix, a mul t i tmporal  in terpretat ion s f  the theory developed i n  

the paper i s  gfven f o r  applications such as those i n  the machine processing of 
remotely sensed Imagery data. I n  m o t e  sensi~g, the sensor system usually 

makes several passes over the sane ground area and a c q ~ i r e s  a set of data fo r  

each pass or acquisition. The data from these passes are registered, and the 
c lass i f i ca t ion  i s  performed an the registered data. Let there be r acquisi- 

tions. For every pixel  i n  acquisi t ion i, a data vector Xi ( 1  = 1, 2, *.., r)  

i t  acquired. Sup~ose that acquisit ions 2, *., r are n s i s t e r e d  with respect 
t o  acquisi t ion 1. There w i l l  be variations i n  the data of each pixel  from 

acquisi t ion t o  acquisition. Also, errors are encounter4ed i n  registrat ion. 

Let the c lass i f i e r  be trained on the data representative of the indiv idual  
acquisitions, obtalr'ng the probabi l i ty  density functions p ( X l w  = 1). 

i = 1, 2, e.. , M, for. each acquisition. This appendix presents the appl ica- 

t i o n  o f  the theory of sequefltial context developed i n  the paper fo r  the c l  as- 

s i f i ca t i on  of the pixel  under consideratlon. Let Xi be the spectral vector of 
the pixel  under cons~derat lon i n  acquisi t ion i ( i  = 1, 2, . * - ,  r )  i n  the clas- 

s i f i ca t ion  of the pixel  under consideration. This approach takes i n to  account 

the rugis t rat fon errors and the variations i n  the data from accuis i t ion t o  
acquisition. The pixel i s  c lass i f ied using the decision rule: Classify i t  t o  

class w = j, i f  

The dependenci es from acqui s i t i on to  acqui s i t  i on can be model ad through the 
models o f  section 2; the t rans i t ion  probabi l i t ies can then be estimated using 

the techniques developed i n  section 3; the a poster ior i  probabi l i t ies of the 
classes of the pixel, usfng data from a' l  the acquisit ions, can be computed 

using the techniques developed i n  section 8 ;  and the pixel  can be c lass i f ied 
using equatlon (0-1). 



If t h e n  are no errors In reglsttrlng the data from acqufsltlon to 
acqulsitlon, the transl~lon probabllltles satlsfy the fol lowing relation. 

w h e n  un Is the class of the pixel under consldcration from the nth acqul- 
sltfon. Uslqg sequential context [equation (45) 1, the a posteriori 
probabllftifts of the classes of the pixel u'ldcf clrncfderation can be written 
111 tam of the plxel spectral vector5 frtr6l each acquisition as follows. 

From equations (D-2) through (0-4), quation (0-5) is obtained. 

Thus, use of squential context with assumptions ( a )  and (b) of section 4 and 
of quation (0-2) in the classification of a pixel i n  a multitemporal situa- 
tion amounts to the class-conditional independence of the pixel  spectral 
vectors of each acqulsitf on. Equation (0-5) can also be wr!tten as follows. 



PIu,.~ f,IX1 ,'",X,.l )P(x, I*, - I,) 
p C J  ~ J ~ x l ~ * * * ~ x j )  

j I l * * * j l J ~ ,  Ill (0-6) 

for  j - 1,2,*..,r 

w i th  

Equatlcns (0-6) and (0-7) can be In terpreted as fol lows: Nhen the f i r s t  

acquls f t fon I s  acqulnd, the  a p r i o r i  knowledge P(wl - il) about the classes 

of the p ixe l  under conslderation I s  modified i n t o  a pos te r i o r i  probabi l  ! t i e s  

accordfng t o  q u a t i o n  (3-7). These w i l l  become the a p r i o r i  k r rwle lge for  the 

next acqutsit ion. Wfth the use of ?he observed spectral vector, the a p r i o r i  

knowledge I s  modf f i e d  i n t c  a pos te r i o r i  probabi 1 i t  ies  acccrdi ng t o  

q u a t i o n  (0-6). When no m g i  s t r a t i on  er rors  are present, equati'on (0-6) can 

be used s q u e n t i a l l y  i n  a mu l t l tmpo ta l  s l t ua t f on  t o  incorporate the 

contextual information i n  the c l a s s i f  i ca t lon  of th? p ixe l  u~ idcr  considerat ton. 

Howaver, uslng the techniques developed i n  the paper, t h i s  mu l t l t em~o ra l  

f n t r r p re ta t i on  can be eas l l y  cou?led with the spat ia l  Information fr:.:! two- 

dimensional neighborhoods. 
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