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FOREWORD

The Cogeneration Technology Alternatives Study (CTAS) was performed

by the National Aeronautics and Space Administration, Lewis Research

Center, for the Department of Energy, Division of Fossil Fuel Utili-

zation. CTAS was aimed at pro4lding information which will assist the

Department of Energy in establishing research and development funding

priorities and emphasis in the area of advanced energy conversion system

technology for advanced industrial cogeneration applications. CTAS

included two Department of Energy-sponsored/NASA-contracted studies con-

ducted in parallel by industrial teams along with analyses anus evaluations

by the National Aeronautics and Space Administration's Lewis Research

Center.

This document describes the work conducted by the Energy Technology

Operation of the General Electric Company under National Aeronautics and

Space Administration contract DEN3-31.

The General Electric Company contractor report for the CTAS study is

contained in six volumes:

Cogeneration Technology Alternatives Study (CTAS), General Electric
Company Final Report
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Section

SUMMARY

Cogeneration systems in industry simultaneously generate electric

power and thermal energy. Conventional nocogeneration installations use

separate boilers or furnaces to produce the required thermal energy and

purchase electric power from a utility which rejects heat to the outside

environment., Cogeneration systems offer significant savings in fuel but

their wide spread implementation by industry has been generally limited

by economics and institutional and regulatory factors. Because of po-

tential savings to the nation, the Department of Energy, Office of Energy

Technology sponsored the Cogeneration Technology Alternatives Study (CTAS).

The National Aeronautics & Space Administration, I.ewis Research Center, con-

ducted CTAS for the Department of Energy with the support of Jet propulsion

Laboratory and study contracts with the General Electric Company and the

United Technologies Corporation.

OBJECTIVES
i

The objective of the CTAS is to determine if advanced technology 	 l

cogeneration systems have significant payoff over current cogeneration
A

systems which could result in more widespread implementation in industry

and to determine which advanced cogeneration technologies warrant major

research and development efforts.

Specifically, the objectives of CTAS are: 	 j.

1. Identify and evaluate the most attractive advanced energy`
conversion systems for implementation in industrialcogen-Ai
eration systems for the 1985-2000 time period which permit 1,
use of coal and coal-derived fuels.

2. Quantify and assess the advantages of using advanced technology
systems in industrial cogeneration.

1-1
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N

SCOPE

The following nine energy conversion system (ECS) types were evaluated in

CTAS:

1. Steam turbine

2. Diesel engines

3. Open-cycle gas turbines

4. Combined gas turbine/steam turbine cycles

5. Stirling engines

6, Closed-cycle gas turbines

7. Phosphoric acid fuel cells

S. Molten carbonate fuel cells

9. Thermionics

In the advanced technology systems variations in temperature, pressure

ratio, heat exchanger effectiveness and other changes to a basic cycle

were made to determine desirable parameters for many of the advanced

systems. Since coal and coal-derived fuels were emphasized, atmospheric

and pressurized fluid bed and integrated gasifiers were evaluated.

For comparison, currently available non-condensing steam turbines

with coal-fired boilers and flue gas desulfurization, gas turbines with

heat recovery steam generators burning residual and distillate petroleum

fuel and medium speed diesels burning petroleum distillate fuel were

used as a basis of comparison with the advanced technologies.

In selecting the cogeneration energy conversion system configu-

rations to be evaluated, primary emphasis was placed on system concepts

fired by coal and coal-derived fuels. Economic evaluations were based on

industrial ownership of the cogeneration system. Solutions to institu-

tional and regulatory problems which impact the use of cogeneration were

neat addressed in this study.

Over fifty industrial processes and a similar number of state-of-

the-art and advanced technology cogeneration systems were matched by



General	 Electric to evaluate their comparative performance. 	 The Indus-

trial	 processes were selected as potentially suited to cogeneration pri-

marily from the six largest energy consuming sectors in the nation.	 Ad-

vanced and current technology cogeneration energy conversion systems,

which could be made commercially available in the 1985 to 2000 year time

frame, were defined on a consistent basis. 	 These processes and systems

were matched to determine their effectiveness in reducing fuel 	 require-

ments,	 saving petroleum, cutting the annual 	 costs of supplying energy,

reducing emissions, and improving the industry's return on investment.

Detailed data were gathered on 80 process plants with major emphasis

on the following industry sectors:

} 1.	 SIC20 -	 Food and	 Kindred Products
i

2.	 SIC26 -	 Pulp and Paper Products

3.	 SIC28 -	 Chemicals

4.	 SIC29 - Petroleum Refineries

5.	 SIC32	 -	 Stone,	 Clay and Glass

6.	 SIC33 -	 Primary Metals

In addition, four processes were selected from SIC22 - Textile Mill 	 Pro-

ducts and SIC24 - Lumber and Wood Products. 	 The industry data includes

current fuel	 types,	 peak and average process temperature and heat require-

ments,	 plant operation	 in hours	 per year, waste fuel	 availability,

electric power requirements,	 projected growth rates to the year 2000,

and other factors needed in evaluating cogeneration systems. 	 From this

data approximately fifty plants were selected on the basis of: 	 energy

consumption,	 suitability for cogeneration,	 availability of data, diversity

of types such as temperatures,	 load factors,	 etc., and range of	 ratio of

process power over process heat requirements.

Based on the industrial	 process requirements and the ECS character-

istics, the performance and capital 	 cost of each cogeneration system and

its annual	 cost,	 including fuel	 and operating costs, were compared with

nocogeneration systems as currently used. 	 The ECS was either sized to

1-3



match the process heat requirements (heat match) and electricity either

bought or sold or sized to match the electric power (power match) in

which case 
all
	 boiler is usually required to supply the re-

maining heat needs, Cases where there was excess heat when matching

the power were excluded from the study, With the fuel variations studied

there are 51 ECS/fuel combinations and over 50 processes to be potentially

matched in both heat and power resulting in a total of approximately 5000

matches calculated. Some matches were excluded for various reasons; e.g.,

the ECS out of temperature range or excess heat produced, resulting in

approximately 3100 matches carried through the economic evaluation. Re-

sults from these matches were extrapolated to the national level to pro-

vide additional perspective on the comparison of advanced systems.

RESULTS

A comparison of the results for these specific matches lead to the

following observations oil 	 various conversion technologies;

1. The atmospheric and pressurized fluidized bed steam turbine
systrms give payoff compared to conventional boiler with
flue gas desulfurization-steam turbine systems which already
appear attractive in low and medium power over heat ratio
industrial processes.

2. Open-cycle gas turbine and combined gas turbine/steam turbine
systems are well suited to medium and high power over heat ratio
industrial processes based on the fuel prices used in CTAS.
Regenerativeand steam injected gas turbines do not appear to
have as much potential as the above systems, based on GE results.
Solving low grade coal-derived fuel and NOx emission problems
should be emphasized. There is payoff in these advanced systems
for increasing firing temperature.

3. The closed-cycle gas turbine systems studied by GE have higher
capital cost and poorer performance than the more promising
technologies.

4. Combined-cycle molten carbonate fuel cell and gas turbine/steam
turbine cycles using integrated gasifier, and heat matched to
medium and high power over heat ratio industrialprocesses and
exporting surplus power to the utility give high fuel savings.
Because of their high capital cost, these systems may be more
suited to utility or joint utility-industry ownership,

1-4
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5. Distillate-fired fuel cells did not appear attractive because
of their poor economics due to the low effectiveness of the cycle
configurations studied by GE and the higher price of distillate
fuel.

6. The very high power over heat ratio and moderate fuel effective-
ness characteristics of diesel engines limit their industrial
cogeneration applications. Development of an open cycle heat
pump to increase use of jacket water for additional process heat
would increase their range of potential applications.

x
To determine the effect of the national fuel consumption and growth

rates of the various industrial processes together with their distribution

of power to heat ratios, process steam temperatures and load factors,

each energy conversion system was assumed implemented without competition

and its national fuel, emissions, and cost of energy estimated. In this

calculation it was assumed that the total savings possible were due to

implementing the cogeneration systems in new plants added because of needed

growth in capacity or to replace old, unserviceable process boilers in the

period from 1985 to 1990. Also, only those cogeneration systems giving

an energy cost savings compared with nocogeneration were included in esti-

mating the national savings. Observations on these results are:

1. There are significant fuel, emissions, and energy cost savings
realized by pursuing development of some of the advanced tech-
nologies.

2. The greatest payoff when both fuel energy savings and economics
are considered lies in the steam turbine systems using atmospheric
and pressurized fluidized beds, In a comparison of the national
fuel and energy cost savings for heat matched cases, the atmos-
pheric fluidized bed showed an 110 increase in fuel saved and 605
additional savings in levelized annual energy cost savings over
steam turbine systems using conventional boilers with flue gas
desulfurization whose fuel savings would be, if implemented, 0.84
quads/year and cost savings $1.9 billion%year. The same comparison
for the pressurized fluidized bed showed a 73 increase in fuel
savings and a 290 increase in enerqy cost savings.

3. Open-cycle gas turbines and combined-cycles have less wide appli-
cation but offer significant savings. The advanced residual-
fired open-cycle gas turbine with heat recovery steam generator
and firing temperature of 2200 F were estimated to have a potential
national saving of 390 fuel and 270 energy cost compared to cur-
rently available residual-fired gas turbines whose fuel savings
would be, if implemented, 0.18 quads/year and cost savings $0.33
billions/year.
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4, Fuel and energy cost savings are several times higher when the
cogeneration systems are heat matched and surplus power exported
to the utility than when the systems are power matched.

Other important observations made during the course of performing

CTAS were,

1. Comparison of the cogeneration systems which are heat matched
and usually exporting power to the utility with the power
matched systems shows the systems exporting power have a much
higher energy savings, often reaching two to five times the power
match cases. In the past, with few exceptions, cogeneration sys-
tems have been matched to the industrial process so as not to
export power because of numerous load management, reliability,
regulatory, economic and institutional reasons, A concerted
effort is now underway by a number of government agencies, in-
dustries, and utilities to overcome these impediments and it
should be encouraged if the nation is to receive the full poten-
tial of industrial cogeneration.

2. The economics of industrially owned cogeneration plants are very
sensitive to fuel and electric power costs or revenues. In-
creased price differentials between liquid fuels and coal would
make integrated gasifier fuel cell. or combined-cycle systems
attractive for high power over heat industrial processes.

3. Almost 750 of the fuel consumed by industrial processes studied
in CTAS, which are representative of the national industrial
distribution, have power over heat ratios less than 0.25. As a
result energy conversion systems, such as the steam turbine
using the atmospheric or pressurized fluidized bed, which exhibit
good performance and economics when heat matched in the low power
over heat ratio range, give the largAst national savings.
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Section 2

INTRODUCTION

BACKGROUND

Cogeneration is broadly defined as the simultaneous production of

electricity or shaft power and useful thermal energy. Industrial cogen-

eration in the context of this study refers specifically to the simul-

taneous production of electricity and process steam or hot water at an

individual industrial plant site. A number of studies addressing

various aspects of cogeneration as applied to industry have been made

in the last few years. Most of these focused on the potential benefits

of the cogeneration concept, CTAS, however, was concerned exclusively

with providing technical, cost, and economic comparisons of advanced

technology systems with each other and with currently available tech-

nologies as applied to industrial processes rather than the merits of

the concept of cogeneration.

While recognizing that institutional and regulatory factors strongly

impact the feasibility of widespread implementation of cogeneration, the

CTAS did not attempt to investigate, provide solutions, or limit the tech-

nologies evaluated because of these factors. For example, cogeneration

systems which were matched to provide the required industrial process heat

and export excess power to the utilities were evaluated (although this

has usually not been the practice in the past) as well as systems matched

to provide only the amount of power required by the process. Also, no

attempt was made to modify the industrial processes to make them more

suitable for cogeneration. The processes were defined to be represen-

tative of practices to be employed in the 1985 to 2000 time frame.

7
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The cogeneration concept has been applied in a limited fashion to

power plants since the turn of the century. Their principal advantage

is that they offer a significant saving in fuel over the conventional

method of supplying the energy requirements of an industrial plant by

purchasing power from the utility and obtaining steam from an on-site

process boiler.

The saving in fuel by a cogeneration system can be seen by taking

a simple example of an industrial process requiring 20 units of power and

100 units of process steam energy. A steam turbine cogeneration system

(assuming it is perfectly matched, which is rarely the case) can provide

these energy needs with fuel effectiveness or power plus heat over input

fuel ratio of 0.85 resulting in a fuel input of 141 units. In the con-

ventional nocogeneration system the utility with an efficiency of 3305

requires 60 units of fuel to produce the 20 units of power and the pro-

cess boiler with an efficiency of 855 requires 118 units of fuel to pro-

duce the require) steam making a total fuel required of 178 units. Thus

the cogeneration system has a fuel saved ratio of 37 over 178 or 21%.

In spite of this advantage of saving significant amounts of fuel,

the percentage of industrial power generated by cogeneration, rather

than being purchased from a utility, has steadily dropped until it is now

less than 5 04 of the total industrial power consumed. Why has this hap-

pened? The answer is primarily one of economics. The utilities with their

mix in ages and capital cost of plants, relative low cost of fuel, steadily

improving efficiency and increasing size of power plants all made it pos-

sible to offer industrial power at rates more attractive than industry

could produce it themselves in new cogeneration plants.

Now with long term prospects of fuel prices increasing more rapidly

than capital costs, the increased use of waste fuels by industry and the

need to conserve scarca fuels, the fuel savings advantage of cogenerating

will lead to its wider implementation. The CTAS was sponsored by the US

Department of Energy to obtain the input needed to establish R&D fuming

priorities for advanced energy conversion systems which could be used in

industrial cogeneration applications. Many issues, technical, institutional
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and regulatory, need to be addressed if industrial cogeneration is to

realize its full potential benefits to the nation. However, the CTAS

concentrated on one portion of these issues, namely, to determine from

a technical and economic standpoint the payoff of advanced technologies

compared to currently available equipments in increasing the implemen-

tation of cogeneration by industry.

OBJECTIVE, OVERALL SCOPE, AND METHODOLOGY

The objectives of the CTAS effort were to;

1. Identify and evaluate the most attractive advanced conversion
systems for implementation in industrial cogeneration systems
for, the 1985-2000 time period which permit increased use of
coal or coal-derived fuels,

2. Quantify and assess the advantages of using advanced tech-
nology systems in industrial cogeneration.

To select the most attractive advanced co generation energy con-

version systems incorporating the nine technologies to be studied in the

CTAS, a large number of configurations and cycle variations were identified

and screened for detail study. The systems selected showed desirable

cogeneration characteristics and the capability of being developed

for commercialization in the 1985 to 2000 year time frame. The advanced

energy conversion system-fuel combinations selected for study are shown

in Table 2-1 and the currently available systems used as• a basis of com-

parison are shown in Table 2-2. These energy conversion systems were then

heat matched and power matched to over 50 specific industrial processes

selected primarily from the six major energy consuming industrial sectors

of food; paper and pulp; chemicals; petroleum refineries; stone, clay and

glass; and primary metals. Several processes were also included from wood

products and textiles.

On each of these matches analyses were performed to evaluate and

compare the advanced technology systems on such factors as:

• Fuel Energy Saved

s Flexibility in Fuel Use
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Table 2.1

GE-CTAS ADVANCED TECHNOLOGY COGENERATION ENERGY CONVERSION SYSTEMS MATCHED

TO FUELS

Foal Derived Li	 uids
Coal 1	 I" ud'^ia °` sCITt Q

Steam Turbine AF'd* Yes »-»

Pressurised Fluid Bed Yes •-» --»

Gas Turbine
Open Cycle-HRSG --. Yes Yes

Regenerative --- --- Yes

Steam Injec ted --« Yes ...
Combined Gas Turbine/Steam

Turbine Cycle

Liquid Fired --- Yes ---

Integrated Gasifier
Combined Cycle Yes --- »--

Closed Cycle-Helium Gas Turbine, AFB ... ---

Thermionic
HRSG FGD* Yes ---
Steam Turbine Bottomed FGD Yes ---

Stirling FGD Yes Yes

Diesels
Medium Speed --- Yes Yes

Heat rump --- Yes Yes

Phosphoric Acid Fuel 	 Cell	 Reformer --- --- Yes

Molten Carbonate Fuel	 Cell

Reformer --- --- Yes

Integrated Gasifier
HRSG Yes --- ---

Sham Turbine Bottoming Yes --- --«

" AFB - Atmospheric Fluidized Bed
FGD - Flue Gas Desulfurization

Table 2-2

GE-CTAS STATE OF ART COGENERATION ENERGY CONVERSION MATCHED TO FUELS
e

Petroleum Derived

	

Coal	 Res idual	 Disti ete

s
Steam Turbine	 FGD	 Yes	 --

Gas Turbine	 -»-	 Yes	 Yes

Diesel	 ---	 Yes	 Yes	
F
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r U pital Costs

• Re'curn on Investment and Annual Energy Cost Saved

• Emissions

e Applicability to a Number of Industries.

These matches were evaluated, both on a specific process site basis,

and on a national level where it was assumed that each ECS is applied

without competition nationwide to all new applicable industrial plants.

Because of the man,, different types of conversion systems studied

and myriad of possible combinations of conversion system and process

options, key features of the study were:

• The use of consistent and simplified but realistic characteri•-
zations of cogeneration systems

u Use of the computer to match the systems and evalua^e the
chara c teristics of the matches,

A major effort was made to strive for consistency in the performance,

capital cost, emissions, and installation requirements of the many ad-

vanced cogeneration energy conversion systems. This was accomplished first

by NASA-LeRC establishing a uniform set of study groundrules for selection

and characterization of the ECS's and industrial processes, calculation of

fuel and emissions saved and analysis of economic parameters such as level-

ized annual energy cost and return on investment, These groundrules and as-

sumptions are described in Section 3. Second, in organizing the study,

as shown in Figure 2»1, GE made a small group called Cogeneration Systems

Technology responsible for establishing the Configuration of all

the ECS's and obtaining consistent performance, cost and emission

characteristics for the advanced components from the GE organizations or

subcontractors dveloping these components. This team, using a standard

set of models for the remaining subsystems or components, then prepared

the performance, capital costs, and other characteristics of the overall

ECS's. As a result, any com ponent or :subsystem, such as fuel storage and

handling, heat recovery steam generator or steam turbine, appearing in

W!
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Program^^ PROGRAM ANU TECHNICAL MANAGEMENT

Review Board	 GE Energy Technology Operation

Industrial Applications Tech.
Team Management
GE Thermal Power Systems

Engineering

Cogeneration System Technology
Team Management
GE Corporate Research and

Oevelopmer.•

Cogeneration Systems Criteria
Evaluation

Team Management
GE Energy Technology Operation

Figure 2.'-1. GE-CTAS Project Organization

more than one type ECS is t ,.+sed on the same model. This method reduces

the area of possible inconsistency to the advanced component which, in

many ECS's, is a small fraction of the total system. The characteri-

zation of 'he ECS's is described in Sections 5 and 6. The functions of

obtaining consistent data on industrial processes from the industrial

A&E subcontractors was the responsibility of the Industrial Applications

Technology group and is described in Section 4. Matching of the ECS's

and processes and making the overall performance and economic evaluations

and comparisons was the responsibility of Cogeneration Systems Criteria

and Evaluation. The methodology of matching the cogeneration systems is

detailed in Section 8, the resu is of the performance analysis in Section

9, economic analysis in Section 10, the national savings in Section 11,

and overall results and observations 'in Section 12.
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Section G

ENERGY CONVERSION SYSTEMS

6.1 INTRODUCTION

Cogeneration couples ail 	 conversion system (ECS) to both a

power and a process heat requirement of a particular industrial plant or

process. Most cogeneration evaluations focus oil 	 particular industrial

process, and then seek to find the maximum economic benefit that accrues

to alternative energy conversion systems that are immediate candidates

for that service. In such ail economic selection process, use of a com-

parison to a base case results in the expression of ail 	 of dif-

ference in capital cost and a similar difference in on-site fuel con-

sumption that can be expressed as the Fuel Charged to Power. Wilson

(Ref, 6-1) and others have shown the utility of these means to determine

the discounted rate of return oil 	 investment as a determinant

Of the relative value of cogeneration energy conversion alternatives.

This convenient methodology,	 using fuel	 charged to power, was 	 found

to not suffice when the consideration was advanced energy conversion sys-

tems as a	 general	 class and	 not as candidates	 for a	 specific application,

Ail 	 means of expressing the important performance attributes

of energy conversion systems	 was	 developed.	 Based	 oil 	 therlllo-

dynamic	 relationships, the expressions	 that result are very simple, yet

they can readily be transformed to more customary forms such as fuel

charged to	 power.

The results are succinct expressions	 for power generated per unit of

fuel	 energy and	 heat to process	 per unit of fuel	 energy related to the

process temperature required	 by the	 industrial	 process.	 Fronl these	 two

characteristics	 all other expressions of performance may be derived for

a	 particular application, such as	 fuel	 energy saved or fuel 	 charged	 to

power. The thermodynamic basis for the characterizing relations is so

fundamental that quadratic expressions provide an excellent fit for the

nearly linear results.
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In conjunction with a disciplined expression of energy conversion

system performance, it was an explicit objective of this evaluation to

project performance at levels that could be commercialized by 1995.

More speculative or optimistic performance levels with low probability

of deployment by that time frame would have low probability of signifi-

cant impact on national fuel savings and industrial cogeneration in the

1985 - 2000 time period which was of primary interest in this study. A

common level of expectation for advanced performance was projected by

consideration of the rates of technical advance from 1960 to 1978, a

duration comparable to 1978 to 1995. As an additional discipline to

assure uniformity, common components were always assigned the same par-

ameters for their performance. For example, steam turbine inlet con-

ditions were either 1450 psig, 1000 F or 850 prig, 825 F. No intermediate

conditions were used. Thus steam turbines for use with all types of

boilers, and as bottoming cycles with gas turbines, fuel cells, and

thermionics all exhibit the same performance and the same schedule of

costs wherever they appear in this study.

The final results of this work are performance characterizations

that can be fitted to any industrial process requirement. In conjunction

with a discipline for cost determination of a comparable nature, the

differences between competing advanced energy conversion technologies

may be evaluated with substantial fidelity.

6-2



B

R

i

A

6.2 ENERGY CONVERSION SYSTEM DATA SOURCES

The principal sources of data were General Electric specialists in

particular fields and the General Electric Energy Conversion Alternatives

Study (ECAS) perforated for NASA. Additional expertise was secured in areas

where General Electric experience was not specific to industrial applica-

tions or where a broadened overview was necessary. Table 6.2-1 presents a

tabulation of the major contributing organizations associated with each

major technical aspect of the study.

Tile General Electric ECAS study was used as a data source for specific

advanced components such as atmospheric fluidized bads, pressurized fluidized

beds,, and closed cycle gas turbines. The Industrial Turbine Sales and

Engineering Operation provided detailed performance and costs of state-of-

the-art industrial cogeneration plant equipment that they routinely specify,

All gas turbines were evaluated as heavy duty industrial units by the Gas

Turbine Division. Aircraft derivative gas turbines were not evaluated due

to limitations imposed by use of residual fuels..

The diesel engine evaluations were made by the Engine and Compressor

Division of DeLaval Turbine, Inc. DeLaval has extensive experience and back-

ground in the type of medium speed diesels that serve the industrial sector.

These engines tend to be more rugged and durable than the high speed light-

weight diesels burning distillate that are favored for transportation service.

In addition they have been successful in adapting residual oil firing to the

medium speed diesel, a role more usual for the low speed marine diesel. DeLaval

has made many cogeneration installations over the years, and thus was positioned

to forecast both performance and costs with full knowledge of tine application

requirements.

The pressurized fluidized bed steam cycle evaluations combined two sources.

The General Electric ECAS study results were a primary source. This work was

updated by the Energy Systems Programs Department of General Electric. This

group has had an early and a continuing activity in the coal-fired fluidized

bed cycle, and in all areas of its technology. This awareness of critical

problems in the technology was deemed to be essential to realism for this study.

The thermionic steam plant has the least progress toward commercial

practice of all of the energy conversion systems. General Electric had evalu-

ated a very advanced thermionic steam utility plant for the Electric Power

Research Institute. The thermionic performance was projected by the Thermo

Electron Corporation to two generations beyond current attainments in that

study. The pulverized coal combustion and the heat pipes and steam
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Table 6,2-1

ENERGY CONVERSION SYSTEM DATA SOURCES

System

Steam Turbine & Steam Sources

-Thermionic Steam Plant

Stirling Cycle

Integrated 3asirier Combined Cycle

'!eat Recovery Steal Sere-ator

guar a^;mpq

Sources

Seneral Electric

• ECAS Study

- Industrial Turbine Sales L
Engineering Operation

General Electric

- Gas Turbine Oivisi.on

OeLavai Corporation

Genar•al Electric

- ECAS Study

- Energy Systems Programs Dept,

General Electric

- EPRI Study

- Corporate Research i Development

General Electric

» Space Division

^forth American Philips

General Electric

- ECAS Study

Institute or Gas Technology

General Electric

- Direct Energy Conversion Programs

- Energy Systems Programs Departren„

- Energy Tecnnology Operation

General Electric

- Corporate Research 3 Develooment

- Gas 7urbine Division

- Energy Tear. lo gy Operation

jeneral Electric

^dus tr i al Jra'ne a*a3

':Qn p n^ 1

- Corporate Research & ^evelopirent

Gas Turbine Cycles

Diesel Engines

Pressurized Fluidized Bed
Steam Cycle

Closed Cycle Gas Turbine

Fuel Cells

- Molten Carbonate

Rhosphoric Acid
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boiler were engineered by the Foster Wheeler Corporation, The power

plant costs were the result of projections from these three companies,

The resources for the CTAS program could not support a comparable in-

depth design for a similar industrial design. The General Electric

Corporate Research and Development team transformed the EPRI power

plant performance and costs to accord with an industrial size power

plant. Neither Foster Wheeler nor Thermo Electron participated in

this effort. None of the technical inputs to the EPRI study frum these

companies were modified.

The General Electric Space Division has had a long term stirling

cycle program. Developments include small units for so1;,r space power

and reverse cycles for heat pumping. North American Philips has been

a consultant to the Division on stirling cycles. This group has carried

projects from the conceptual stage through the complete development to

hardware. However, the larger scale of an industrial-size stirling

cycle and the impact on cots due to large volume manufacture were not

part of their expertise. The General Electric Diesel Engine Department

reviewed the full-scale stirling engine design to evaluate the estimated

large-volume manufactured costs. General Electric Corporate Research

and Development produced the cost and performance estimates for the mod-

ification of distillate and residual-fired stirling cycles for the com-

bustion and heat exchange when burning pulverized coal.

The closed cycle gas turbine evaluations were based entirely on the

General Electric ECAS study data. The working medium was helium. The

heat input was from an atmospheric fluidized bed.

The molten carbonate fuel cell performance and costs were evaluated

by the General Electric Energy Systems Programs Department. The Institute

of Gas Technology provided technical data also. The Energy Technology

Operation of General Electric integrated the gasifier and gas cleanup

aspects of the evaluation for the coal-fueled units.
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The phosphoric acid fuel cell was based oil data from the General

Electric Direct Energy Conversion Programs, from the Institute of Gas

Technology, and from the General Electric Energy Technology Operation,

The latter input concerned primarily operating and maintenance aspects

of the technolog;r to remove sulfur from the fuel gas produced by a

reformer down to 20 PPM-

The integrated gasifier combined cycle required significant inputs

from several groups. The earlier General Electric ECAS study results

were out-of-date due to advances that had been made in the gasifiers and

the gas cleanup systems, General Electric Corporate Research and Develop-

ment integrated the system and provided data on the GEGAS gasifier. The

General Electric Gas Turbine Division produced gas turbine and heat re-

covery steam generator performance data. The General Electric Energy

Technology Operation modified all the cost and performance data so as to

put it on the basis of the Texaco entrained gasifier on which the results

of the study are based.

Heat recovery steam generators were based on current practice and

current costs for General Electric units, These data were produced by

the General Electric Industrial Turbine Sales and Engineering Operation.

Heat pumps were evaluated generically and performance estimates

made by General Electric Corporate Research and Development. The CTAS

team from the same organization detailed the performance and costs for

the heat pumps that were integrated with the advanced diesel engines.

The selection of data sources and energy conversion system exper-

tise depicted above was made to favor estimates of performance and costs

that would realistically meet industrial requirements. A balance between

optimism and conservatism was sought from all data sources.
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6.3 FUEL. CONSIDERATIONS

The specifications for fuels as used in this study have been presented

in Vol. II, Section 3.1 Groundrules. Their application to energy con-

version systems are presented in Table 6.3-1. Generally the most crude

form of fuel was favored for the study. Coal and coal derived liquid

fuels received the major emphasis, Residual liquid fuel, either from a

petroleum base or coal derived, was of secondary importance. Distillate

fuels, either petroleum based or coal•derived, were included only for the

few ECS's that could not tolerate low grade fuels. As examples, the

regenerative gas turbine, very small stirling cycles, fuel cells, and

small diesels require distillate. In addition, state-of-the-art gas tur-

bines and diesels burning both distillate and residual grade petroleum

oils were included in the study. An indication (symbol OK) is given in

Table 6.3-1 where a fuel can be used, but it was not evaluated in thi;

study since a lower grade of fuel could be used and should produce a

better economic result. Those indicators show fuel adaptability of the

ECS.

The specific gas turbine systems that burn coal were detailed ex-

plicitly rather than cataloging them simply as coal burning gas turbines.

The integrated gasifier system performs coal gasification at elevated

pressure and temperature, and directly su,pplies the gas used in the gas

turbine. A heat recovery steam generator (HRSG) and steam turbine are

integral parts of that system. The second form of coal burning gas tur-

bine utilizes a pressurized fluidized bed to burn coal directly with

simultaneous sulfur capture by dolomite. Steam produced by heat exchange

from the bed drives a steam turbine. The hot pressurized combustion

products from the bed power a gas turbine. The third coal burning gas

turbine is a closed cycle unit utilizing helium as its working fluid.

Compressed helium would be heated in a coal-fired atmospheric fludized

bed that simultaneously captures sulfur by use of limestone. Process

heat would be derived from part of the necessary cooling before the ex-

panded helium re-enters the closed cycle compressor.

II

HI

fl

il
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Table 6.3-1

COGENERATION ENERGY CONVERSION SYSTEMS FUELS EVALUATED AND FUEL FLEXIBILITY

Coal Residual * Distillate*,

Steam Turbine	 FGD Yes OK

AFB - -

PFB - -

Gas Turbine	 - Yes Yes

Combined-Cycle	 - Yes OK

Combined-Cycle - Integrated
Gasifier	 Yes - -

Helium Gas Turbine	 AFB OK OK

Thermionic Steam	 FGD Yes OK

Stirling Cycle	 FGD Yes Yes

Diesel	 - Yes Yes

Phosphoric Acid Fuel Cell	 - - Yes

Molten Carbonate Fuel Cell	 - a Yes

Molten Carbonate Fuel Cell
Integrated Gasifier	 Yes OK -

FGO - Flue Gas Desulfurization
AFB - Atmospheric Fluidized Bed
PFB - Pressurized Fluidized Bed

OK - Fuel	 Flexibility Indicator
* - Both Petroleum Base and Coal 	 Derived Liquids

o

The steam turbines selected for study cover the economic span for

cogeneration. The boiler for state-of-the-art coal firing would require

flue gas desulfurization (FGD) to meet emission standards. A residual-

fired boiler also represents state-of-the-art. The use of an atmospheric

fluidized bed (AFB) boiler or a pressurized fluidized bed (PFB) system

is advanced art. Another advancement would be the incorporation of

thermionic converters in the construction of a boiler.

'

	

	 The stirling cycle uses external combustion with heat transfer to

its hot upper cylinder regions. Small demonstration units have run on

distillate. Residual firing is an expected evolution. Coal firing would

require use of a heat coupling medium such as a helium loop between the

stirling cylinder heads and the heat source. The heat source temperature

should exceed the limits for an atmospheric fluidized bed (AFB) that are

i
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generally set at 1550 F. The radiant heat transfer and heated gases from

a pulverized coal-fired furnace using flue gas desulfurization of the

cooled flue gas was deemed the more certain means to achieve a coal-fired

stirling cycle that would be developed and deployed in the time frame of

1990 to 1995.

Two types of fuel cells were considered. The phosphoric acid fuel

cell as considered applicable only for use with distillate fuels. The

high temperature molten carbonate type was deemed applicable with distil-

late fuels; in large sizes a coal gasifier with intensive fuel gas clean-

up would permit the use of coal,

The diesel engines considered were of medium speed and size that are

typically applied in industry and in municipal power generation. Residual

oil is their typical fuel. Distillate would become a required fuel only

in small sizes. The burning of coal and of coal-in-oil slurries was con-

sidered but was rejected by us because the prolonged duration of com-

bustion, the wear rate of injection equipment, and the mandatory exhaust

gas scrubbing for sulfur (FGD), particulates, and NOx were deemed to make

both performance and cost of such units non-competitive.

Thermionic converters were considered as units added to the high

temperature furnace section of a boiler. Either pulverized coal or

residual grade liquid fuel would be fired. The steam would be produced

at low pressure as heat to process, or it would be produced at high pres-

sure to flow through a non-condensing steam turbine. In the latter case

the thermionic units serve as topping units relative to the steam turbine.

1
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6+4 ECS PARAMETERS AND CHARACTERIZATION

The convention for describing process heat requirements has been the

expression of the steam flow requirement in pounds per hour and the gage

pressure at which that steam condenses. A steam turbine cogeneration sys-

tem is illustrated in Figure 6.4-1. The boiler feedwater is brought to

228 F by a combination of makeup water at 59 F, process return water and

steam supply to the deaerator heater. For 1004 fuel energy fired, of the

order of 15100 is accounted in stack loss and other system losses. The 854

of useful energy results in 14,110 electric power produced and 71 1,lo heat to

process. The process temperature level is described by its condensing

steam pressure, 135 psi absolute, or conventionally 120 psi gage. Figure

6,4-2 presents steam turbine cycle cogeneration performance characteristics

wherein the abcissa is the gage pressure for the condensing steam that

serves the process heat load. Gage pressure of steam has no thermodynamic

significance, so it is not surprising that the characteristic reveals little

of the underlying character of the energy conversion system.

STACK !L	 1406 PSIA
LOWT	 10000F STEAM

BUILER

F U 0 L._,_—_

	
I	 D A.

!.100%	 HEATER

22BU F l	 I 170°F

14;'L POWER

TURBINE

71%. IIEAT TO PROCESS
AT 360°F, 1135—PSIA

PROCESSRETUI1NS 1

FEEQWATER I... 5:10 P MAKEUP

VARIABLE:	 T PROCESS, EXHAUST PRESSURE

TIIR01'TLE EFFICIENCY	 MW RANGE

1456 PSIA	 1000') F 00%	 7,6 — 100
8651'SIA:	 020F `1096	 6-00 

ADVANCED ART: TURBINE GENERATOR NONE
STEAM BOILER-ATMOSPHERIC FLUIDIZED BEDS

Figure 6,4-1, Steam Turbine Cogenerator

a:
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If the steam turbine inlet conditions 	 (Figure 6,4#1)were held con-

stant at the 1465 psia, 1000 F and the steam was expanded to atmospheric

pressure, then a greater amount of turbine output would be achieved per

pound of steam flow.	 Moreover, the preponderant temperature for the con-

densation of the exhaust steam would be 212 F, 	 Now, if that same steam

were expanded to 15 psi gage, less work would be produced, and the ex-

haust steam would have a predominant temperature of 250 F or thermo-

dynamically 710 R,	 The predominant temperature for heat input to make

steam would be 590 F, not the 228 F feedwater temperature nor the 1000 F

superheat temperature.	 Figure 6.4-3 shows a Carnot cycle and an ideal

Rankine cycle performing to these predominant temperatures. 	 The area

encompassed by the upper region of each diagram is the work or power

produced by the cycle,	 The area encompassed in the lower region is the

heat rejection of the cycle which is the heat to process in a cogeneration

steam cycle.	 The band	 in the middle called 	 "difference" is the change in

both power and heat when the process temperature is raised from 212 F to

250 F.	 Power is reduced and heat to process is increased by the identi-

cal	 amount.	 Moreover, the magnitude of this difference varies directly

with the difference in process temperature. 	 This is an important finding;

when cogeneration power and heat to process are related to the process

steam condensation temperature, the relationships tend to b y linear.

A test of this premise is shown in figure 6.4-4 for , a non-condensing

steam turbine cogeneration system with an 80% efficient steam turbine,

an 85 1110 efficient boiler and 	 boiler- feed at 170 	 F.	 All	 parameters are

expressed as	 fractions of the fuel	 fired higher heating value. 	 The
If

characteristics for power generated and for heat to process are indeed

found to be close to linear as related to process temperature. 	 The sum

of power generated ;.nd heat to process was 0.85 at all 	 process tempera-

tures.	 In this case it accords exactly with the boiler efficiency.

13,	 Had the process heat been produced at 85% boiler efficiency by a

"dedicated" process boiler, and the power produced in another energy con-

version system at an assumed efficiency of 33%, then at each process

temperature one could compute the fuel that would have been consumed if

6-11



".s

K.^H :Cr ^ W"^ 'G atGBi.

,&,I

M`J

.ter «t! C,^	 "
'^yVH ' aav ^'1 ^'>t.4a^'a^

 1 rY

oa rICE.S 5'E :t ^arSw^Er p5'

Figure 6,4-2, 1465 psia, 100U F Steam 'turbine Cogeneration Characteristic

1 GOOF

°!I

CAR;IOT C Y CLE	 RANCIE YCLE °/	 1

	

— 59OF	 -------- J

POWER	 POWER

	

_SOF	 --°

OIFFERE"ICEJIFFERE?IC8

-- 2' "F —

1
'VT	 'SCAT 	 I

	

40F	 I

ENTROPY

Figure 6.4-3r Ideal Cycle Cogeneratoos

u

^I

6-12

1



cogeneration wero not used. These values are all greater than 1.0

showing that more fuel would be required in each case. The difference

then between nocogeneration and a cogeneration situation is found by

subtracting 1,0 from the nocogeneration fuel requirement. These values

are in reality the ratio of fuel saved to the fuel consumed by the

cogeneratiog energy conversion system. Since all components of this

evaluation tend to be linear, the result tends also to be linear with

process steam condensing temperature. These results are readily trans-

formed to the fuel energy saved ratio as defined for this study,

STEAM TURBINE NON CONDENSING 1466 PSIA, 1000°F
STh1141 STM •T UR6. 1466/1000°F 7.$ %1W1100 MW 1979

STEAM SOURCE	 FUEL

CONVENTIONAL 201LER	 COAL WITH FOD, AESIOVAL OIL
ATMOSPHERIC FLUID BEDS	 COAL

1.0..

tPOWER • HEATIiFUEL HHV

0.8 ./

j HEAT/FUEL HHV
J

0
z
a

U
d

u	 0.4

0.2 POWER/FUEL HHV

200	 300	 400	 3GU100

PROCESS TEMPERATURE, OF

600

Figure 6.4-4. Energy Conversion System Characteristic
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The mode of characterization using process temperature as the de

terminant provides the means -to conveniently formulate the power to

fuel energy ratio and the heat to process to fuel energy ratio for a

cogeneration system; all other results such as energy effectively used

and fuel energy saved can be derived from these two characteristics.

The synthesis of these cogeneration characteristics is most readily

understood in the context of the steam turbine cogenerator illustrated

in Figure 6.4-1, In Figure 6.4-5 the turbine and the process are shown

in the context of the effect of one pound of steam upon them. Evalua-

tions start with assignment of the process temperature, TPRO. The

steam tables then provide the saturation pressure for the process; that

Is the back pressure on the steam turbine. The isentropic steam turbine

expansion work can then be found; when multiplied by the steam turbine

efficiency of 80%, the result is the turbine output expressed as Btu

per pound of steam flow. The remainder of the steam energy span of

1 STEAM	 11465 Asia, 1000 r, 1491.15 H)

"Hi
1

	

TURBINE	 4ORK = 'TURSINE + `HS

It	 ........HK	 = H 1 - 'ARK

	

PROC'cSS	 '	 MEAT TO PROCESS	 H X - 138

l^	 1 (170 'WATER, 136 H)

° PROCESS	 >PSIAK10, 
4 S

(	 t+

NORK = 731.55 - O.SES * TPRO - 80 * I 00^

*

Figure 6.4-5. Synthesis of Steam Turbine Cogeneration Characteristic
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1353 Btu per pound (from inlet at 1491 to process return at 138) would

be realized as process heat. The data for a ranee of process tempera-

tures from 212 F to 500 F were calculated. These data were then cor-

related by a quadratic least squares fit to the process temperature:

Btu/lb Turbine Output = 531.85 - 0.856 * TPRO - 80 *
(LO

PCtO

00 

2

Each calculated point was reevaluated as a check oil 	 fidelity

Of the curve fit. The extreme deviations were +0.04 1' and -0.02`x. This

showed remarkably fine fidelity and corroborated the insight that pro-

cess temperature is the fundamental determinant for cogeneration energy

conversion system performance correlation.

The production of one pound of steam would regUire 1592 Btri of fuel

energy for a boiler efficiency of 850. Division of the work equation by

this value PtAOduees the characterizing equatinn for power and then for heat.

,. TPRO	

* I,110-0
PRO 2Power /Fue1 Energy = A 2 " U2	

^1000,^	 C 2 	 0 {

A, = 0.3341, B 2 = -0.5380, C 2 = -0.0500
9.

CTPRQ0 * C
	

(TPP
Meat/	

0^2
reel Energy = 

r̂ l '" B *1	 1000•/	 1	 `1000'

Al = 0.5159, B1 = 0.5380, C 1 = 0.0500

These are 'the six constants that describe the full range of characteristics

for this particular energy conversion SySte ill thr0Mghout this study.
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Each energy conversion system (e.g., Figure 6.4-4) has its own unique

characterizing curves and constants. Each has been given a short name,

STM 141 for example, and a longer more descriptive name, STM-TURB-1465/1000 F

for example. Also the range of power generation for which the characteri-

zation was made would be given, 7.5 MW/100 MW for example. The date given

is the estimated date of earliest commercial service, The fuels that are

evaluated, and the applicable type boilers are also given. These characteri-

zations and system parameters are presented in a series of charts for each

ECS, and then in the computer input data sheet for all ECS's.

t
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6.5 ECS PERFORMANCE AND DESCRIPTIONS

This section presents schematics, performance curves, and trends for

all ECS's considered in this study. The figures of the characteristic

performance curves for each ECS are grouped together at the end of the

discussion of that ECS.

Steam Turbine Generator ECS

Figure 6.5-1 shows a schematic of the steam turbine applied to cogen-

eration. The turbine is non-condensing since the entire exhaust steam flow

is utilized as process steam. The configuration of the process returns,

makeup water, and feedwater system were detailed in Figure 6.4-1. The tur-

bine costs were evaluated for a single automatic extraction non-condensing

steam turbine. Two inlet throttle conditions were considered. The highest

economic pressure level of 1465 psia was designated with the highest normal

superheat of 1000 F. These conditions mandate full demineralization of the

boiler feedwater. The lower throttle condition of 865 psia, 825 F was

selected to avoid a large cost increment for high alloy steel superheaters

and to use the least expensive feedwater treatment. The assigned steam

turbine generator efficiencies are within two points of the range of ef-

ficiencies appropriate to the power range of the units. There is no ad-

vanced art in the steam turbine-generators. There is advanced art in one

of the steam sources, the atmospheric fluid bed steam generator.

Figure 6.5-2 and Figure 6.5-3 present the cogeneration performance

characteristic for the two steam turbine systems. The SUM of the power

plus heat to process divided by fuel higher heating value was 85'0. The

15,01 lost energy derives from latent and sensible stack loss, and the

excess auxiliary power required by coal burning boilers of either the

atmospheric fluid bed type or the pulverized coal with flue gas scrubber

type. Table 6.5-1 shows the steam sources and their basic boiler ef-

ficiency before adjustment for auxiliary power. The heat recovery steam

4T .
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Steam Source	 Fuel

Conventional Boiler	 Coal with FGD
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100	 200	 300	 400	 E00 	 600

PROCESS TEMPERATURE, OF

Figure 6.5-2, Energy Conversion System Characteristics. Steam Turbine
Non-Condensing, 1465 psia, 1000 O F; Applicable Size, 7.5
to 100 MW; Available, 1978
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Figure 6.5-3. Energy Conversion System Characteristics. Steam Turbine,
Non-Condensing; 865 psia; 825 0 F. Applicable Size, 5 to 50
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Table 6.5-1

STEAM SOURCES FOR PROCESS OR STEAM TURBINE

Heat to Steam/Energy Input

88%

Source

Coal-Fired Boiler
Flue Gas Desulfurization

Coal -atmospheric
Fluidized Bed Boiler

Residual Oil Boiler

Distillate Oil Boiler

Heat Recovery Steam Generators

Integrated Sources:

Thermionic Boiler

PFB - Steam Plant

Gasifier - Gas Turbine Plant

Fuel Cells

Diesel Heat Pump

88%

85%

85%

Variable

generator (HRSG) may have a ratio as high as 92% based on the variable

sensible heat in the hot exhaust stream. Its steam production in each

specific case is based on adherence to a minimum stack temperature of

300 F or a pinch temperature difference no lower than 40 F at the evaporator

gas exit, whichever condition is most stringent. Similar restrictions ap-

ply to the steam generators and heat recovery equipment that are integrated

portions of complex thermal systems.
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Gas Turbine ECS's - Open Cycle

The variety of liquid-fired open cycle gas turbines are illustrated

in Figure 6.5-4 along with selected heat balances. In each example the

fuel higher heating value (HHV) is counted as 100 units. The latent heat

loss of 6 units is deducted at the combustor. The heat recovery steam

generator (HRSG) has the constraints enumerated in the preceeding section.

The regenerative cycle would be constrained to burning distillate. Re-

sidual firing tends to accumulate sticky desposits that reduce the heat

exchange effectiveness. The regeneration reduces the process heat availa-

bility as compared to the simple cycle. The steam injection gas turbine

(STIG) increases 'its power and efficiency by the expansion of steam through

the turbine. This use of steam reduces the process heat available. In the

combined cycle the gas turbine HRSG produces steam at a high pressure ap-

propriate for expansion through a steam turbine. The non-condensing steam

turbine would increase power output by 10 units as compared to the simple

cycle, but would reduce the heat to process.

Table 6.5-2 presents the range of gas turbine parameters. The liquid

fuels are either petroleum or coal-based. Pressure ratios of 8, 12 and

16 were evaluated for advanced turbines. A value of 10 was assigned to

state-of-the-art gas turbines. These values are appropriate for heavy

duty industrial gas turbines. The total temperature at the first stage

would be 2200 F for advanced air-cooled units and 2600 F for advanced

water-cooled units. Although greater firing temperatures have been pro-

jected for each type of turbine, these are values that are considered to

be most reasonably attainable considering the pace of advancement, the

time to prove out and debug advancements, and the implications of low NO 

emission constraints. State-of-the-art gas turbines were assigned 1750 F

firing residual oil and 2000 F firing distillate. Regenerators were con-

sidered at 60% and 85/0 effectiveness. STIG units were evaluated using 1500

steam-to-air injection ratio which is at the exhaust visible plume limit,

10 10 with superheated steam and 10% with saturated steam. The latter gives

a greater amount of process steam availability.
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Table 6.5-2

GAS TURBINE COGENERATOR PARAMETERS

1 Fuels:	 Residual, pistillate

1 Variables:	 Process Temperature

Pressure Ratio	 8, (10), 12, 16

Temperature of (1750), (2000), 2200, 2600

Coolant	 Air, Water

Regeneration	 0%, 60%, 85,

Steam Injected	 0%, 10110, 15%

Bottoming Steam 1465 psia, 1000 F

865 pisa, 825 F

1 Range:	 Air Flow, pounds per sec. 100 to 1000

Output	 10 MW to 200 MW

1 Advanced Art: 2200 F	 Air Cooled 'turbine

2600 F	 Water Cooled Turbine

SRC Fuel,	 Water Cooled Turbine

Steam Injection

Where combined cycles were evaluated the steam conditions were matched

to one of the designated steam turbine cycles. The range of gas turbine

compressor inlet airflow was a minimum of 100 pounds per second and a maxi-

mum of 1000 pounds per second. The lower limit was deemed to be marginal

for residual firing due to the propensity for cooling passage plugging and

for accelerated abrasive erosion of turbine buckets. 'The upper limit was

deemed attainable by advances in technology for compressors and turbines.

The turbine outputs relate to the extremes of airflow. All turbine costs

were based on single shaft constant speed units including the 60 cycle

generator.
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9
The advanced gas turbine art would include higher firing temperature,

advanced air and water-cooling, the firing of coal-derived liquid fuels,

and steam injection,

Gas turbine performance is presented in Figure 6.5-5, Starting at

the least value of specific output, kilowatts per pound per second of air-

flow, is the state,-of-the-art simple cycle (SC) air-cooled (AC) unit

firing residual oil at 1750 F, 10 pressure ratio (PR. The 10 PR char-

acteristic continues to state-of-the-art distillate firing at 2000 F and

then to the advanced case of ?200 F. At 2200 F the consequences of varied

pressure ratio are shown with highest efficiency at 16 PR, Had the pres-

sure drop imposed by the HRSG been omitted, then the advanced air-cooled

simple cycle gas turbine at 2200 F would have shown greater specific output

and efficiency as illustrated.

The effect of regeneration (regenerative cycle - RC) at 600 effect-

iveness (e) is found to have a higher efficiency, but at reduced specific

output. With 85% effectiveness oven greater efficiency results with a 3804

maximum at 10 PR. The performance for the 2600 F, 16 PR simple cycle water-

cooled gas turbine is shown within the rectangular box; the specific output

is significantly increased while the efficiency is less than the 16 PR

air-cooled unit due to the heat removed by the water coolant. The regen-

erative water-cooled units reach effic , ancies comparable to the air-cooled

units at appreciably greater specific outputs.

The three STIG cases are located amongst the regenerative water-cooled

characteristics. They exhibit extremely high specific output and efficiency

^rhen compared to any of the air-cooled ur water-cooled alternatives.

The gas turbines for the integrated gasifier combined cycle appear at

the lowest efficiency levels and are designated GCCAC for gasifier combined

cycle air-cooled. Their high specific work as compared to the simple cycle

air-cooled (SCAC) units is due to the addition of steam during the for-

mation of the intermediate-Btu fuel gas that they burn. The lowered ef-

ficiency level is due to the reduction from coal fuel energy to the chemi-

cal and sensible energy available in the intermediate-Btu fuel gas.

i
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The available thermal energy in the exhaust stream of these gas tur-

bines is presented in Figure 6.5-6. The basis is a gas turbine compressor

airflow of 1000 pounds per second, and heat exchange to cool the exhaust to

300 F. In general the units with greater efficiency have a reduced amount

of energy in the exhaust stream.

The cogeneration systems synthesized from these gas turbine units are

characterized in Figures 6.5-7 through 31. The sequence follows a purpose-

ful pattern as follows:

Residual Liquid Fuel Fired Units.

Gas Turbines with HRSG

Combined Cycles

Steam Injected Gas Turbines

Distillate Liquid Fuel Fired Units:

Gas Turbine with HRSG

Regenerative Gas Turbine with HRSG

Except for the combined cycles with steam turbines, the ratio of power

to fuel HHV is independent of the temperature or heat to process and is

constant for each system. Where the exhaust temperature is sufficiently

hot the exhaust can be cooled to 300 F. For those cases the heat to process

is also constant and independent of process temperature. Where exhaust

temperatures are low the process temperature and HRaG pinch temperature dif-

ference fix the heat to process. As process temperature rises, the heat to

process decreases, and the stack temperature would rise.

The great variety of gas turbine parametric cases permits a thorough

search for the best fits to industry ;ogeneration requirements

fli
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Figure 6.5-7. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled, HRSG Steam to Process. Pressure Ratio, 10; Firing
Temperature, 1750 o F; Residual Fuel; Applicable Size, 10 to 60
MW; Available, 1978

6-29

w'



GTAC08 GT-HRSG-08/2200R-AC 14 MW/136 MW 1985
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Figurb 6.5-8. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled, HRSG Stear to Process. Pressure Ratio, 8; Firing
Temperature, 2200 F; Residual Fuel; Applicable Size, 14 to
136 MW; Available, 1985
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GTAC12 GT-HRSG-12/2200R-AC 14 MW/143 MW 1985
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Figure 6.5-9. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled, HRSG Steam to Process. Pressure Ratio, 12; Firing
Temperature, 22000 F: Residual Fusel; Applicable Size, 14 to
143 MW; Available, 1985
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GTAC16 GT-HRSG-16/2200R-AC 14 MW/143 MW 1990
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Figure 6.5-10. Energy Conversion System Characteristics. Gas Turbine, Air-`
Cooled, HRSG Steam to Process. Pressure Ratio, 16; Firing
Temperature, 22000 F; Residual Fuel; Applicable Size, 14 to
143 MW; Available, 1990
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GTWC16 GT-HRSG-l6/2600R-WC 20 HW/200 MW 1990
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Figure 6.5-11. Energy Conversion System Characteristics. Gas Turbine,
Water-Cooled, HRSG Steam to Process. Pressure Ratio, 16;
Firing Temperature, 2600 0 F, Residual Fuel; Applicable Size,
20 to 200 MW; Available, 1990
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CC1626 GTST-16/2600/1465-WC 20 MVJ/197 MW 1990
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Figure 6.5-12. Energy Conversion System Characteristics. Combined Gas
Turbine-Non-Condensing Steam Turbine, Pressure Ratio, 16;
Firing Temperature, 2600°F; Water-Cooled Gas Turbine,
Residual Fuel; 1465 psia, 1000

0
F Steam Turbine; Applicable

Size, 20 to 197 MW; Available, 1990
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Figure 6.5-13. Energy Conversion System Characteristics. Combined Gas 	 17
Turbine-Non-Condensing Steam Turbine; Pressure Ratio, 16; 	 +.`
Firing Temperature, 2200°F; Air-Cooled Gas Turbine; Residual 	 '
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Figure 6,5-14. Energy Conversion System Characteristics. Combined Gas
Turbine-Pion-Condensing Steam Turbine; Pressure Ratio, 12;
Firing Temperature, 2200 o F; Air-Cooled Gas Turbine; Residual
Fuel; 1465 psia, 10000 F Steam Turbine; Applicable Size, 14
to 143 MW; Available, 1985
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Figure 6.5-15. Energy Conversion System Characteristics. Combined Gas
Turbine-Non-Condensing Steam Turbire; Pressure Ratio, 8;
Firing Temperature, 2200o F; Air-Cooled Gas Turbine; Residual
Fuel; 1465 psia, 10000 F Steam Turbine; Applicable size, 14
to 136 MW; Available, 1985
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Figure 6.5-16. Energy Conversion System Characteristics. Gas Turbine
Steam Injected, HRSG Stem to Process. Pressure Ratio, 16;
Firing Temperature, 2200 F; Air-Cooled; Residual Fuel; Steam
to Turbine is 151 of Airflow and Superheated; Applicable Size,
22 to 220 MW; Available, 1990
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Figure 6.5-17, Energy Conversion System Characteristics. Gas Turbine Steam
Injected, HRSG Stsaam to Process. Pressure Ratio, 16; Firing
Temperature, 2200 F; Air-Cooled; Residual Fuel; Steam to
Turbine is 10°s of Airflow and Superheated. Applicable Size,
19 to 190 MW; Available, 1990
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Figure 6,5-15. Energy Conversion System Characteristics, Gas Turbine Steam
Injected, HRSG St deam to Process. Pressure Ratio, 16; Firing
Temperature, 2200 F; Air-Cooled; Residual Fuel; Steam to
Turbine is 10,0 of Airflow and Saturated. Applicable Size,
19 to 190 Mtn; Available, 1990
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Figure 6.5-19. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled, HRSG Steam to Process. Pressure Ratio, 10; Firing
Temperature, 2000o F; Distillate Fuel; Applicable Size, 13 to
72 MW; Available, 1978
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GTRA08 GT-85RE-08/2200D-AC 13 MW/130 MW 1985

Figure 6.5-20. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled; Regenerator Effectiveness, 85%; Pressure Ratio, 8;
Applicable Size, 13 to 130 MVI; Distillate Fuel; Available,
1985 t
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Figure 6.5-21. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled. Regenerator Eff8ctiveness, 851; Pressure Ratio, 12;
Firing Temperature, 2200 F; Distillate Fuel; Applicable Size,
14 to 137 MW; Available, 1985
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Figure 6.5-22. Energy Conversion System Characteristics, Gas Turbine, Air-
Cooled. Regenerator Effsctiveness, 851); Pressure Ratio, 16;
Firing Temperature, 2200 F; Distillate Fuel; Applicable Size,
14 to 138 MW; Available, 1990
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Figure 6.5-23, Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled. Regenerator Effectiveness, 60%; Pressure Ratio, 8;
Firing Temperature, 2200 o F; Distillate Fuel; Applicable Size,
13 to 130 PAW; Available, 1985
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Figure 6.5-24. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled. Regenerator Eff8ctiveness, 60%; Pressure Ratio, 12;
Firing Temperature, 2200 F; Distillate Fuel; Applicable Size,
14 to 138 MW; Available, 1985
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Figure 6.5-25. Energy Conversion System Characteristics. Gas Turbine, Air-
Cooled. Regenerator Effectiveness, 60Z; Pressure Ratio, 16;
Firing Temperature, 22000 F; Distillate Fuel; Applicable Size,
14 to 139 MW; Available, 1990
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GTRW12 GT-85RE-12/26000 .WC 19 M14/188 MW 1990
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Figure 6.5-27. Energy Conversion System Characteristics. Gas Turbine, Water-
Cooled. Regenerator Effectiveness, 850; Pressure Ratio, 12;
Firing Temperature, 2600o F; Distillate Fuel; Applicable Size,
19 to 188 MW; Available, 1990
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Figure 6.5-28. Energy Conversion System Characteristics. Gas Turbine, Water-
Cooled. Regenerator Eff8ctiveness, 8511; Pressure Ratio, 16;
Firing Temperature, 2600 F; Distillate Fuel; Applicable Size,
19 to 190 MW; Available, 1990
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Figure 6.5-29. Energy Conversion System Characteristics. Gas Turbine, Water-
Cooled. Regenerator Effectiveness, 60%; Pressure Ratio, 8;
Firing Temperature, 2600 F; Distillate Fuel; Applicable Size,
17 to 170 MW; Available, 1990
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Figure 6.5-30, Energy Conversion System Characteristics. Gas Turbine, Water-
Cooled. Regenerator Effectiveness, 60%; Pressure Ratio, 12;
Firing Temperature, 2600o F; Distillate Fuel; Applicable Size,
19 to 190 W; Available, 1990
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Integrated Gasifier Combined Cycle SCS

Lurgi coal gasifiers produce a low-btu fuel gas from the interaction

of coal, steam, and air. An intermediate-Btu gas results when oxygen is

used in place of air. The advanced entrained bed Texaco gasifier would

operate at high pressure to produce a fuel gas adaptable to gas turbine

firing after appropriate cleanup to remove particulatE;^, sulfur and other

deleterious components. Figure 6,5-,32 presents a schematic and sample

heat balance for such a gasifier used in conjunction with a gas turbine

and non-condensing steam turbine combined cycle cogeneration power plant.

The gas turbine would be of advanced design and specially adapted to

handle -the high volume of combustion fuel gas. The firing temperature

would be 2100 F, the compressor pressure ratio would be 12, and the first

turbine stage nozzles would be water-cooled. The greater mass flow of

combustion gases as compared to a conventional gas turbine produce greater

generator output and more steam from the HRSG. Th, non-condensina steam

turbine produces about one fifth of the total power output at 350 F pro-

cess temperature. Steam conditions would he 14CS psia, 1000 F. As pro-

cess temperature is varied the steam turbine power would vary, but the

sum of steam turbine power and heat to process would remain constant at

51 units. The gas turbine generator output would be constant at 25 units

and the oxygen plant power and auxiliaries constant at 6 units. The co-

generation characteristics are presented in Figure 6.5-33.

Advanced art for this coal-fueled gas turbine and steam turbine

would be the gasifier, the gas cleanup system, the gas turbine, and the

system integration and control.

q

s
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Figure 6.5-33. Energy Conversion System Characteristics. Integrated Coal
Gasification with Water-Cool 

8 
d Gas Turbine. Pressure Ratio,

12; Firing Temperature, 2100 F- Steam Turbine 1465 psia,
10000 F Non-Condensing; Co p.1 Fuel
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Pressurized Fluidized Bed Steam Cycle ECS

A second means of utilizing coal for a gas turbine system is the

pressurized fluidized bed system illustrated in Figure 6.5-34, The

schematic and example heat balance at 350 F process temperature are de-

rivatives from the electric utility PFB steam system evaluated in detail

in the General Electric ECAS study (Reference 4-2). The gas turbine

functions as a supercharger pressurizing the PFB and supplying all of its

air for coal combustion. The gas turbine expands the combustion gases

from 1700 F to 915 F. The PFB bed temperature is held at 1750 F by the

simultaneous combustion of coal and intensive heat transfer to the imbedded

steam generating tubes. Dolomite fed into the bed captures the sulfur

from the coal. Configurations of the PFB with air-cooled imbedded tubes

were not considered since the poor heat transfer properties of gases inan-

date high alloy tube materials that would ^ reatly increase the cost of -the

PFB per unit of coal burned as compared to steam generation.

The PFB feedwater would be preheated substantially by the economizer

that brings the stack gas to the lowest permitted level in this study of

300 F. The steam conditions were the highest applicable to cogeneration

of 1465 psia, 1000 F throttle conditions. The advanced art includes the

PFB and the gas cleanup or gas turbine erosion protection means. System

integration and control would also require developi-iient. The resulting

cogeneration characteristics are shown in Figure 6.5-35. The power to

fuel HHV ratio is appreciably greater than that for a steam turbine co-

generator alone. The sum of the power plus heat is at the maximum level

permitted by restrictions on stack gas temperature.
U
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Figure 6.5-34. Pressurized Fluidized Bed Cogenerator
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Figure 6.5-35. Energy Conversion System Characteristics. Pressurized Fluidized
Bed with Gas Turbine and Non-Condensing Steam Turbine; 1465 Asia, 	 t
1000o F; Coal Fuel; Dolomite Sulfur Capture Agent. Applicable
Size, 13 to 600 MW; Available, 1990
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Closed Cycle Gas Turbine - AFB ECS

Figure 6.5-36 shows schematically another coal-firfe .a ias turbine sys-

tem.	 the externally-fired closed cycle gas turbine .. 	 helium as its

working fluid. The coal combustion products do not enter the gas turbine

circuit. The atmospheric fluidized bed coal burner and helium heater

differ significantly from the AFB steam generator. A high temperature

bed permits heating the gas to 1500 F. All combustion products and excess

air from that bed then flow into a low temperature bed at 1550 F. In the

second bed all of the sulfur capture occurs using limestone sorbent. High

temperature air preheat is required to bring the stack gas down to 300 F.
9

All of these special features add to the cost of the AFB as compared to

the AFB for steam. This added costliness must be the case wherever the

heated mediim is hotter, 1000 F to 1500 F in this case, or has poorer heat

transfer coefficients than steam. The closed cycle using air as its medium

has lower heat transfer coefficients than helium and would require even

greater cost in its AFB.

The closed cycle heat balance Example achieves high efficiency in

making power through the use of an 85;; effective regenerator. As a re-

sult the helium flow to the HRSG is at 463 F, and relatively little pro-

cess steam is produced. A heat rejection systen is ner,•essary to bring the

helium to the 80 F compressor inlet condition. The heat rejection deprives

the closed cycle of considerable energy. The closed cycle gas turbine is

best adapted to cogeneration where there would be a considerable demand

for heating at low temperature. Water heating service and space heating

in a district heating service would provide the opportunity for greater

fuel energy utilization than that provided by typi ,al industrial processes.

Three regenerator effectivenesses were considered. The basis cycle

performance and costs were determined by extension of the analysis and

design presented in the General Electric ECAS study. The AFB helium

heater represents the principal advanced art.

Figures 6.5-37, ti.5-38, and 6.5-39 present characteristics with

regenerator effectiveness of 85°0, 60%, and O,o respectively. The power

to fuel HHV decreases appreciably with reduced regenerator effectiveness.

At the same time -she sum of power and heat to fuel HHV ratio increases

f
greatly over the range of process temperature.

6-60

f^



LO S ES 12 UNITS

UR CAPTURE
I F AFS

HHV FUEL
1000M TS

H TEMP AFS	 i	 L05SES

^o	 ^1 UNIT1500 F	
II

0 UNITS	 X192 UNITS

32 GENERATORi

UNITS

32 UNITS
	 120 UNITS

GENERATOR	 31 U4VITS

"--	 POWER
72 U^,ITS

104 UNITS	 56 UNITS

463013

HEAT TO PROCESS

80°F

UNITS
PRECOOI,ER. 14ASG	 .----rj UNITS

^^	 3620 F 350OF

42 UNITS

REJECT Ht: AT

FUEL, COAL

VARIABLES; PROCESS TE,NIPERATURE 250 0 F TO 5500F
REGENERATOR 01, 60?b. 35u EFFECTIVENESS

RANGE: 50 .NW • 300 MW

ADVANCED ART: TWO STAGE AFB • HELIUM HEATER
REGENERATOR

AVAILABILITY: 1990

Figure 6.5-36. Helium Closed Cycle Cogenerator - AFB
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Figure 6.5-38. Energy Conversion System Characteristics. Helium Closed Cycle
Gas Turbine; AFB Coul Fuel; Regenerator Effectiveness, 60%;
Applicable Size, 50 to 300 MW; Available, 1990
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Figure 6.5-39. Energy Conversion System Characteristics. Helium Closed Cycle
Gas Turbine; AFB Coal Fuel; Regenerator Effectiveness, 00
Applicable Size, 50 to 300 MW; Available, 1990
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Stirling Cycle 8CS

The stirling cycle uses helium as an eni osed working medium in a

totally different manner than the helium closE tii cycle gas turbine. None-

theless the thermodynamic functions are nearlylidentical. Figure 6,5-40

shows the North American Philips concept of such an oil-fired unit. Atop

each cylinder are burners supplied with highly preheated air. I)ese

deliver 80 percent of tho fuel HHV to the helium heaters. Within the

cylinder the lower piston is the power piston. It drives the crankshaft

as in any reciprocating engine. The upper piston is a displacer of helium

and is moved by the rhombic drive in the crankcase. The power piston, pro-

vides the functions of helium compressor and helium expander, the dis-

placer piston surges the captive helium through an external regenerator

of high effectiveness anj through the helium heater and through the helium

heat rejection heat exchanger. The pressure of the capt$te helium may be

changed with engine load so that temperaturFa throughout the cycle are

nearly unchanged with load.

A schematic of the stirling cycle system and a heat balance for 228 F

process temperature are shown in Figure 6.5-41. The stirling engine at

1800 rpm converts 35 percent of the heat delivered to it into electric

power. The heat to process from cylinder heat rejection would be 39%

of the fuel energy. The other engine losses represent lubricating oil

cooling at  temperature below the process level. Only 80'/01 of the fuel HHV

would be delivered to the stirling cycle at the 1472 F hot temperature.

The resulting electric power would be 28% of the fuel HHV. The combustor

heat balance shows gas leaving at 1500 F and preheated air entering at

1200 F. Without a high temperature air preheater less o. the fuel energy

would be conveyed into the stirling cycle. The hot gas leaving the air

preheater is cooled in the economizer to 300 F while 'seating process feed-

water.

The industrial-size stirling engine for cogeneration is a significant

development beyond current developments. Unit sizes would be in the range

of 500 kW to 2 MW. Combustion of coal would represent a further development
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Fi gure 6.5-41.	 Stirling Cycle Cogenerator

that is considered to be of a similar order of magnitude. The earliest

such system was evaluated as a pulverized coal burner with flue gas de-

sulfurization of the flue gas. Heat conveyance to the stirling engine

woul1i be by a secondary enclosed and pressurized helium circuit. Several

stirling engines could be serviced by a single large off-board coal com-

bustor. The AFB for the helium closed cycle gas turbine was determined

to not be applicable to the stirling cycle because all of the heat must

be conveyed to the stirling engine at temperatures above the highest

temperature of the helium closed cycle gas turbine. There is no efficient

recipi;nt for lower temperature heat below 1500 F.

The cogeneration characteristics of the stirling cycle ECS are pre-

sented in Figure 6.5-42. As compared to other alternatives the decline

of power ^,J th increased process temperature is modest. The sum of power

plus heat represents the fuel energy minus the minimum stack loss at 300 F

and minus the low temperature lube oil and miscellaneous losses.
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Consideration was given to the use of hydrogen as a working fluid.

Improved performance of the order of 3% improvement in effic ► eiicy would

be realized. The hazards due to the presence of hydrogen at high pres-

sure and high temperature were considered to present a total barrier to

the commercialization of such units for industrial use.

Higher hot wall temperature than 1472 r (800 C) would produce higher

Stirling cycle efficiency. Present superalloy technology places this

upper limit on units to be developed and commercialized in the time Mpan

of 1985 to 2000. Above 1472 the superalloy creep rupture properties de-

grade. Substitution of ceramics for engine hot side components is en-

visioned as an avenue to hotter temperatures. Ceramic technology for

stirling e g gtnes is in its earliest development stage. There is no as-

surance of success, and these potential advantages were not considered

appropriate for this study.

The advantages of slower speed engines, of the order of 900 rpm,

were considered. Since both hydraulic parasitic pressure drops and

mechanical friction decrease with speed, the efficiency would improve by
approximately 2%. The increased size and weight would appreciably in-

crease the cost at no increase in power output. As a result the cost

disadvantage of the stirling engine would be further aggravated to achieve

a marginal performance improvement.
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Figure 6.5-42. Energy ConvSrsion System Characteristics. Stirling Engine
Cycle, 1472 F Hot Side; 'Helium Working Fluid; Fuel Energy
into Engine, 80`x; Fuels:	 Distillate, Residual, Coal with FGD;
Applicable Size, 0.5 to 2 MW; Available, 1990
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Fuel	 Cell	 ECS "s

C The molten carbonate fuel cell	 operates at a temperature of 1300 F.

Figure 6.5-43 presents a schematic and heat balance for a coal-fueled

molten carbonate fuel cell	 energy conversion system. 	 The pressurized

w coal gasifier would be the entrained bed type where the effluent gases

'- are at 2475 F.	 These gases are cooled by an HRSG en route to the gas

nlEanup system.	 The fuel	 gas that is not consumed in the anode (A) side

,)f ;J)e fuel	 cell at 1300 F is burned with supplementary air in the

catalytic burner.	 These combustion gases with excess air provide the

j necessary oxygen on the cathode (C) 	 side of the fuel	 cell.	 The recircu-

lation loop has an HRSG, a blower, and a hot gas bleed-off to the ex-

pansion gas turbine.	 The gas turbine exhaust passes through an economizer

to be cooled to the minimum stack temperature of 300 F.	 The aggregate

net ac power produced is 30.4% of the fuel 	 energy of which 6.3% is pro-

duced by the gas turbine generator. 	 The aggregate steam production from

all	 HRSG's sends 47.8% heat to process. 	 Figure 6.5-44 presents the re-

sulting cogeneration characteristic. J

The ability to produce ,high pressure steam can be exploited to in-

crease power production by the addition of a non-condensing steam turbine

with 1465 psis., 1000 F throttle conditions.	 Figure 6.5-45 presents the
resulting ch-racteristics.	 The sensitivity to process temperature derives

entirely from the steam turbine characteristic.

A greatly simplified system would be used for a small	 distillate-

fired molten carbonate _fuel	 cell.	 The basic fuel	 cell would be unchanged.

The distillate would be processed in an autothermal 	 reformer with air and

steam to form the fuel gas.	 That gas stream would be cooled in an HRSG a

and then passed through a zinc oxide reactor to reduce sulfur to below 1

ppm.	 The resulting cogenerationcharacteristic,	 Figure 6.5-46 is similar

to that for the larger coal-fueled system. 	 The reduced power and heat

result from the system simplifications.

n
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The phosphoric acid fuel 	 cell	 operating at 375 F is shown schemati-

cally in Figure 6.5-47  with a rudimentary heat balance. 	 The fuel	 gas at

the anode is hydrogen.	 The distillate fuel	 oil must be processed through	 j

a zinc oxide reactor to 	 remove	 any	 trace of sulfur.	 T h e	 zinc

oxide consumption results in a high operating expense.	 The reformer burns

spent anode fuel	 gas and some distillate oil 	 as its heat source and uses

the bulk of the distillate fuel 	 as a chemical	 feedstock,	 There is exten-

sive heat exchange at the reformer that heats the incoming fluid streams

and cools the effluent gas streams. 	 The shift reactors produce a high

concentration of hydrogen in the fuel	 gas stream.	 A great loss of water

'
I

would occur if a 300 F stack temperature were used. 	 The stack gases are

- cooled to 100 F in order to recover and recycle water in the system.-

I
The cleanliness of the exhaust products permits this unusual 	 practice.	

3

The cogeneration characteristics are shown on Figure 6.5-48.	 Al-

though the fuel	 cell	 operates at a nominal	 325 F to 375 F level_, other

heat exchangers operate at temperatures up to 750 F. 	 Process steam can
i
j be produced at temperature levels from 160 F to 600 F to the extent of 	 —

0.17 of the fuel	 energy.	 If a water heatingload were available in the

range of 50 F to 200 F, then an additional 	 0.3.09 of fuel	 energy would be

available for that service. 	 The low temperature level	 of this additional

heat source precludes its economic use with an open cycle heat pump such

r as that to be described for use with the advanced diesel 	 engine.
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Diesel Engine ECS

Small high ,peed diesels burning distillate are typical of Instal-

lations for hospitals, shopping centers, apartment complexes, and light

industry. Such units are not typical of industrial diesel cogeneration

installations, The DeLaval 17 inch diameter bore by 21 inch stroke 450

rpm sixteen cylinder engine burning residual typifies the later Instal-

lations. The four cycle diesel has had a growth of 80`J' in power output

by increased supercharging over the last twenty-five years. Most current

diesels use the latest techniques in combustion chamber shape and fuel

injection, and metallurgy, lubricatiion, and air treatment. Engine ratings

are achieved with identical cylinders aggregated in four to twenty cylinder

configurations, Diesel advancement has been evolutionary, It is expected

to continue that way, Cylinder coolant temperature level may climb from

the 150 F level to 250 F for advanced diesels, Higher supercharge with

intercooiing and enlarge air cooling will permit a 50 percent increase in

aMEP and power output per cylinder. Truly revolutionary steps, such as

the adiabatic diesel with ceramic parts or the slow speed coal-burning

diesel, will require prolonged development to meet the standards of diesel

reliability and low maintenance expense. These latter are considered by GE

and DeL,aval to be a generation beyond the advanced diesels that will be

ready for cogeneration application over the period 1985 to 2000.

Figure 6,5-49 presents a schematic and heat balance for the advanced

diesel engine, The amount of available heat for process is related to the

temperature at which it is available. For example, the air cooler system

heat at 115 F to 135 F would only be useful if there were a cold water

heating load. The jacket water heat would not be useful for processes

above 250 F. The 25 units of process heat from the exhaust gas cooler

would be reduced as the process temperature rose above 250 F. The advanced

diesel efficiency is one percent greater than state-of-the-art diesels.

Higher values are projected for diesels, but those projections do not debit

the en ggine and electric drive parasitic loads essential to diesel operation.

The residual fuel could be displaced by distillate. However, the smallest

3^
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size engine to burn residual fuel would be 2 MW, whereas industrial dis-

tillate burning diesels could be as small as 300 kW

The cogeneration characteristic for state-of-the-art and the advanced

diesel are presented in Figures 6.6-50 and 6.5-51. The power to fuel

energy ratio is indifferent to process temperature and the degree of

exploitation of the diesel heat resources. Three regimes are identified
for process heat recovery. In Figure 6.5-51 for the advanced diesel below

228 F process temperature in region 1, all heat except the air cooler is

available, In region 2 from 228 F to 250 F the jacket water heat is un-
available with a step decrease in the usable heat. In region 3 (above

250 F) the exhaust gas heat becomes progressively less usable,

Table 6.5-3 presents the distinctions in diesel cogenerator heat
balances between the state -of-the-art and the advanced diesel.

Table 6.5-3

Energy Source

DIESEL HEAT BALANCE

State-of-the-Art
Energy/Fuel Energy

Advanced
Energy/Fuel Energy

Air Cooler 0.0576 115 F to 135 F 0,0576 115 F to 135 F
Lube Oil 0.0481 156 F to 170 F 0.050 228 F to 250 F
Jacket Water 0.1332 160 F to 175 F 0,0874 228 F to 250 F
Exhaust Gas 0.2201 300 F to 820 F 0.254 300 F to 900 F

Subtotal 0.459 0..449

Power Net 0.361 0.371

Total
	

0.820
	

0.820
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Diesel Heat Pump ed ECS

The drastic reduction in available heat to process at temperatures

above 228 F in the advanced diesel is a severe detriment to the diesel

cogenerator. Higher coolant temperatures such as 300 F or 350 F for the

jacket water would require severe reductions in power output to maintain

cylinder wall temperatures that assure lubrication of the upper piston

rings. Also the gross distortion of the cylinders from cold tc operating

temperatures would introduce great design integrity uncertainties.

The open cycle heat pump is a means to prW de high process steam

temperatures from the 250 F jacket water heat. Such a heat pump system

is illustrated in Figure 6.5-52. The diesel jacket coolant water at 250 F

is throttled to 20 psis. It subdivides into water of 228 F and saturated

steam at 228 F. A similar flashing of process condensate produces the same

flow of 228 F water as that of 250 F water. The pump beneath=the flash

chamber pressurizes -the jacket water by 10 psi and circulates it through

the jacket. The power to drive this pump is assessed against the heat pump

system, The steam is compressed from 20 psia to the pressure of the pro-

cess. The compressor is motor driven to provide flexibility, The motor

power as well as the added pump power are debited from the diesel generator

output.

The heat balance for the diesel-heat pump cogenerator serving a 350 F

process is presented in Figure 6.5-53. The heat pump is added to the basic

advanced diesel which is unchanged. The air cooler reject heat is not

usable. The stack gas cooler produces 21 units of heat with a stack tem-

perature of 400 F. The heat pump delivers 18 units of heat from 14 units

of jacket water heat and 4 units of mechanical drive input. The aggregate

is 39 units of heat to process per 100 units of fuel energy, and a reduction

to 33 units of power. Without the heat pump these values would be 20.5

and 37 respectively. The heat to process is nearly doubled by application

of the heat pump.

a

g

1
9
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Tile resulting cogeneration characteristic over the range of process

f

temperatures is shown in Figure 6.5-54.	 The heat to fuel energy ratio is

nearly constant.	 The power to fuel energy ratio drops as the heat pump

4	 uses an increasing amount of power.	 The sum of net power and heat is

high, indicative of a high cogeneration fuel energy utilization.'a

The heat pump system wov I
d 
	 modest development effort,	 The

compressor inlet steam densit,- i4 comparable to atmospheric air. 	 Convent-
f	 9

x^

ional compressor technology is applicable. 	 Primary concerns would be the

influence of the temperature level on the compressor and its seals. 	 As

compared to the advanced diesel 	 alone, the diesel heat pump cogenerator

has a greatly enhanced characteristics,

R

Diesel	 NOX Emissions

j^	 State- of-the-art diesels operating on distillate fuel 	 produce ap-

proximately four pounds of NOx per million Btu of fuel, and units burning

residual	 fuel'produce twice as much NOx.	 There are no evident means to

reduce diesel	 NOx production an order of magnitude to the emission guide-

line values of 0.4 and 0.5, respectively. 	 Exhaust gas treatment by

addition of ammonia and catalytic NOx conversion at a regulated tempera-

ture level	 is the only currently viable means to reach emission guideline
r

levels for NOx.	 Such exhaust gas treatment does not change projected

cogeneration performance.	 Nor would it add appreciably to the fabri-

cation and erection costs if the exhaust gas treatment functions were

incorporated in the heat recovery steam generator design. 	 The diesel

engine representative for this evaluation advised that the cost margins

already applied to the fully erected diesel 	 installations would cover
1

the cost increment for exhaust gas NOx reduction.
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Thermionic ECS

'rhe thermionic steam generator is illustrated in Figure 6.5-55,

Pulverized coal is burned in primary air and 1000 F secondary air. Radiant

and convective heat exchange to the high temperature thermionic emitters
a

at 1600K drive direct current electricity and heat energy to the thermionic
^x

collectors. The thermionic collectors use heat pipes to discharge heat to
	 ,I

the combustion air flow. The combustion gases flow upward out of the radiant

furnace zone toward the steam superheater zone, En route they heat by

convection the low temperature thermionic elements with 1300 K emitter

temperature. At 2310 F the combustion gases begin their heat exchange with

the steam superheater and steam generator surfaces. This furnace concept

has been adapted to cogeneration from the General Electric study for EPRI

by modifications to the thermionic element cooling concepts. Figure 6.5-56

shows a schematic of the thermionic steam cogenerator. The air coolant of

the high temperature elements heats primary air and also produces steam.

The low temperature elements are unchanged. The 1000 F secondary air is

used for staged combustion of the pulverized coal. NOx limitation is

achieved by this means	 The secondary steam generator brings the stack

gas to 300 F. Flue gas desulfurization i s applied to limit sulfur emissions.

Residual oil could be substituted for coal as fuel. This would be particu-

larly suitahle for small ratings. Steam conditions of 1465 psia, 1000 F are

producible i'n this system. Non-condensing steam turbine bottoming may be

used to increase the power output.

Figure 6.5 -57 presents the thermionic unit performance as a function

of collector average temperature. In the EPRI study for electric utility

applications the high temperature collector average 'temperature was 900 F.

The rearrangement for this study permits the lowest operable collector

temperature of 710 F. As a result the efficiency increases from 33% to 38%.

A heat balance, Figure 6.5-58, is shown based on input of 1000 units

of coal higher heating value. The energy flow of 381-.9 units to the high

temperature thermionic elements produces 145.1 units of DC electricity,

120.`1 units of net heat to combustion air, and 116.7 units of heat to steam,
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The 110.5 units of input to the low temperature thermionic elements

create 27.6 units of do electricity and 82.9 units of net heat to com-

bustion air, The flue gas stream delivers 590.6 units of heat to steam.

The conversion of do to ac incurs losses that result in 153.7 units of

ac output. The restricted airflow path through the thermionic col-

lectors requires additional fan power of 13 units. The bottom line

result is that 1000 units of fuel energy produce 140.7 units of net

electric output from the thermionic elements and 707.3 units of heat in

steam.

Figure 6.5-59 presents the cogeneration characteristic for the therm-

ionic topped process boiler. The gradual drop in heat to process is due

to the small effect of blowdown of drum water from the process boiler.

Figure 6.5=40 extends the heat balance of Figure 6.548 for the pro-

duction of st.eanl at 1465 psia, 1000 F throttle condition for expansion

`	 7	 through a non- condensing steam turbine with turbine exhaust steam pro-	
Y

viding heat to process	 For a 350 F process the heat to process would be

0.587 of fuel energy, the steam turbine power would be 0.115 of fuel

r	 energy, and the thermionic net ac output would remain at 0.141 of fuel

energy, The resulting relations for power (PWR) and heat to process (HTP)

as ratios of fuel HHV are expressed in terms of process temperature in

degrees F (TPRO) in Figure 6.5-60. The cogeneration characteristics for

this arrangement are shown in Figure 6.5-61..
4
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Overview

The endeavor of this work was to project each energy conversion sys-

tem at a level of performance that could be commercially available to

industry in the time span of 1985 to 1995 in order to produce fuel savings

of significance before 2000. There is a significant time span between

laboratory demonstration of a concept and a readiness to offer commercial

performance guarantees to a purchaser. The selections made do not deny

any aaditional technical potential; only the timing of realization of the

greatly advanced technology.
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6,6 PERFORMANCE AND DATA SUMMARY

The performance input data file for each energy conversion system

was comprised of the elements shown in Table 6.6-1. That table illus-

trates, for example, the line items of the Thermionic Steam Turbine

energy conversion system. A six character ICS name is followed by a

more extensive name. In this case the name indicates that the steam

turbine has 1465 psia, 1000 F throttle conditions. The size indicates

the applicable range of one unit, Multiple units could, of course, be
combined. The date indicates tha,.aarllest commercial service expecta-

tion. The fuel options in this example are petroleum residual, coal-
derived residual, and coal with flue gas desulfurization. The constants

for the characterizing equations (see Section 04) are given and the

temperatures for which they were derived, Finally the date of last

revision 
of 

-the input data.

The summary of all these data are presented in Table 06-2. The

characteristic for the diesel engines had three discrete line segments

dependent on the process temperature. These have been given as a line

for each line segment over the temperature ranges of 150 to 227 F, 228 F
to 249 F and at 25Q Y to 450 F for the Diesel-Advanced. The general
order of conversion systems in the table proceeds from coal burners to
residual burners to distillate burners,

In the fuel option field the Y indicates options evaluated and N

the options not eviluated. Tice sequence of eight options are presented
in the following order: petroleum distillate (Q), and residual (R);
coal-derived liquid distillate Q and residual (R); coal-fired with
flue gas desulfurization (F), with atmospheric fludized bed (A), with
pressurized fluidized bed (P), and exceptions (X). All coal gasifiers

were treated as exceptions as were the special atmospheric fludized beds

for helium heating, the stirling coal-fired configuration, and the
thermionic coal-fired configuration.
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Table 6.6-1

ENERGY CONVERSION SYSTEM (ECS) INPUT DATA FILE

1
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Table 6.6-3 presents evaluations at 250 F and at 350 F process tem-

peratures for the ratio of power 'to heat (P/H) of the ECS, the ratio of

power to fuel energy (PWR), the ratio of heat to process to fuel energy

(HT), and the fuel energy effectively used (EFEC). These data show the

great variation in ECS power to heat ratio and the great variation in

the amount of fuel energy effectively used. The star values were
exceedingly large. The zero values for the diesels are in inappropriate

temperature ranges.
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6.7 COGENERATION FUEL SAVED WINDOWS

The fuel saving capability of cogeneration systems is of prime

national significance. Although this aspect will be explored in depth
using the EO5 characteristics coupled to explicit industrial plants, it

is worthwhile to secure a graphic insight of the prospect for fuel saving.

These relations)ips have been derived and verified mathematically. Only
the logic foil a few specific situations will be reviewed here. The end

result of this graphical approach is that for any selected process tem-
perature a figure can quickly be constructed so that one can see the

order of fuel savings that can be anticipated and one can see how the
process demand for power and heat effect the fuel energy saved ratio.

Figure 6.7-1 crossplots the data from Table 6.6-2 for coal fueled

energy conversion systems with 350 F process temperature. Lines of con-

stant fuel energy saved ratio (FESR) are downslanting parallel lines.

The "NO HEAT" point or, the l eft ordinate stands for the purchase of elec-
tricity from the utility whirh is no cogeneration. Sin ►ilarly the "NO
POWER" point at 0.55 on the heat axis is the condition for a no cogen-

eration process boiler or for any auxiliary process boiler. The line

connecting the "NO HEAT and "NO POWER" points represents all ratios of
power to heat for non-cogeneration cases. It is obvious that there would

be no fuel saved along that characteristic line. The supcession of in-

creasing FESR characteristics lie above the non- cogeneration line. The

selected definition of FESR produces the unequal spread in those lines.
When the fuel saved is expressed as a ratio to only the cogeneration fuel

energy the spread is constant. The cogeneration fuel energy appears to

be a fundamental entity.

Y

An industrial plant or process has an exact power to process heat

ratio that mus t be satisfied. Such a requirement would show up as a ray

or line emanating from the axis origins of Figure 6.7-1. Such a line

going through tine upper steam turbine point would lie close to the Therm-

t	 ionic-HRSG (TI) point. It would be remote from the molten carbonate fuel

cell with steam turbine (Fuel Cell STM) point. The fuel cell system would

satisfy the power requirement, but it would produce insufficient heat.

"
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Figure 6.7-1. Cogeneration Window for Energy Conversion Systems Using Coal
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An auxiliary boiler would produce the remainder of the heat. The dashed

line from the fuel cell point shows all proportions of added auxiliary

boiler. The FESR drops rapidly along that dashed line. At the indus-

trial requirement example ratio the FESR for the fuel cell is poorer

than the steam turbine, but superior to the thermionic unit (TI), By

similar dashed line connections to both the "NO HEAT" point and the "NO

POWER" point, one can see the range and order of FESR for any specified

industrial power to heat requirement.

The entire characteristic for the Fuel Cell STM as shown by the

dashed lines gives insight as to the industrial process and energy con-

version matches that will produce the greatest fuel energy saved ratio

(FESR). Any deviation from the power to heat ratio of the ECS degrades

the FESR. Hence the optimum is exactly at the ECS power to heat ratio

for each individual ECS. The computer program that evaluates all com-

binations produces two matches, One exactly matches the heat required

by process. The other exactly matches the power required on-site. Of

these two matches, one will generally require either heat makeup with an

auxiliary boiler, or power makeup from the utility. That combination

will be the typical on-site cogeneration system with no power export and

no excess heat. The second combination would export power, and would

exactly match the power to heat ratio of the ECS. On that basis the

hierarchy of FESR for the power export cases can be seen from Figure

6.7-1 and are tabulated in Table 6.7-1.

f

The characteristics for oil-fired energy conversion systems are

shown in Figure 6.7-2. The parametric, variations for gas turbines are

shown as crosshatched ranges. There is an obvious progression from

state-of-the-art (SOA) to advanced gas turbine to regenerative gas turbine

to combined cycles. The steam injected gas turbine (STIG) has a very

high power to heat ratio. The state-of-the-art (SOA) diesel and the

advanced diesel are very Close to one another and to the phosphoric acid

(PA) fuel cell and the molten carbonate (MC) fuel cell. The heat pumped

diesel has a significantly changed characteristic from the other diesels.



Table 6.7-1

HIERARCHY OF FESR FOR COAL-FUELED ENERGY CONVERSION SYSTEMS AT
350 F PROCESS AT OPTIMUM POWER/MEAT RATIO FOR EACH ECS

Energy Conversion System

Molten Carbonate Fuel Cell - Steam Turbine

Molten Carbonate Fuel Cell - HRSG

Thermionic - Steam Turbine

PFB Combined Cycle
Stirling Cycle
Integrated Gasifier Combined Cycle

Steam Turbine

Thermionic HRSG

Closed Cycle Gas Turbine

Fuel Energy
Saved Ratio

0.4

0.3'

0,3

0.25

0.24

0.22

0.2

0.15

0.12

The thermionic (TI) and steam turbine units have the same location as
was the case for coal-fired units, At low power to heat process require-

ments the steam turbine and even the state-of-the-art gas turbine show

very good fuel energy saved ratio. At high power to heat ratio a variety

of energy conversion systems may show to best advantage.

Figures of the form of Figure 6.7-1 and Figure 6.7-2 at the process

temperature required can give vivid insight of the fuel savings potential
of energy conversion system candidates. Placing the process power to

heat line on the chart along with line connectors from each ECS point to
the "NO" points then shows the range of FESR for on-site cogeneration
and the hierarchy amongst the energy conversion systems,
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6,8 ENVIRONMENTAL, NATURAL RESOURCE, AND OPERATIONAL FACTORS

Introduction

A qualitative review of the emission characteristics, resource require-

ments, and system flexibility of the cogeneration energy conversion tech-

nologies was conducted. The purpose of this assessment was to estimate

the range of these factors for the respective technologies, and to identify

areas of potential noncompliance and concern, and hence potential develop-

ment requirements.

The results of this review are enumerated below., The review emphasized

maJor differences between the respective potential cogeneration energy con-

version technologies, both advanced and state-of-art, and the nocogen-

eration case. A`ithough this screening identified some areas requiring

improvement, none of the candidate energy conversion technologies were
found to present insurmountable obstacles to implementation.	

R

Emissions

Emission guidelines for the study were specified by NASA, The limits

for solid and liquid fuels are summarized in Table 6.8-1. Five different

fuels, coal and four liquid fuels, were considered in this study. The coal
specification, the same as that used in the ECAS studies (Reference 6-2), is
given in Table 6.8-2, and the specifications for the liquid fuels are tabu-
lated in Table 6.8-3. Table 6,8-4 presents the estimated emissions of par-
ticulates, SO 2 and NO  for each energy conversion technology and fuel com-

bination. These data were used to estimate the reduction in emissions over

the nocogeneration case.
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Table 6.8-1

EMISSION GUIDELINES

Pollutant	 Units	 Solid Fuel	 Liquid Fuel

Particulates	 (lb/MBtu)	 0,1	 0.1
S02 	(lb/MBtu)	 1.2	 016
N'Ox 	(lb/MBtu)	 07	 0.4-0,5*

0.4 for petroleum distillate

0.5 for petroleum residual and coal derived liquids

Particulates. All coal fired and coal-derived residual fired systems
would exceed the guideline limit without pa'rticu'late removal, In general,

the assumption was made that electrostatic precipitators or baghouses
would be used to meet the specified limit of 0.1 lb /MBtu.

,

If a system designed for use with petroleum residual fuel were to be

fired on coal-derived residual, the resulting exhaust gas particulate
emission would be 0,153 lb/MBtu, 53 0% above the specified limit, Con-

sequently, fuel washing or particulate removal from the exhaust gas would

be required to meet the 0.1 lb/MBtu limit when burning coal-derived re-
sidual,

202 Emission. All liquid fuel fired systems will meet the S02 limit even
if all the sulfur in the fuel were converted to S02. The coal fired

systems, however, would require some form of sulfur removal, either flue
gas desulfurization or fluidized bed combustion. Regardless of the sulfur

capture mechanism, the S02 emission requirement was set at the maximum

allowable limit, This represents the most economical operating condition

for these systems,

F
1
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T ,ibl a 6.6-2

COAL. SPECIFICATION

Proximate Analysis (as received),

Moisture	 13.0
Volatile	 35,7
Fixed Carbon	 40.7

Ash	 9.6

Ultimate Analysis	 (as received), s^

Ash	 9.6'

Sulfur	 3.9

Hydrogen	 5.9

Carbon	 59.6

Nitrogen	 110

Oxygen	 20.0

Higher Heating Value (as received) 10768 Btu/1b

Gross Heating Value (dry) 12600 Btu/lb

Average Softening Temperature 1979OF

Initial Deformation Temperature 1990-2130OF

Fluid Temperature 2090-2440 OF

Grindability	 (HGI) 55

Free-swelling Index 4.5

Selected Trace Elements, ppm in coal

Fl uori ne	 50-167
Lead	 8-14

Vanadium	 9..67

Selected Ash Constituents,

Fe2O3	 20.8

T10 2 	0.8
CaO	 7.7

MgO	 0.9

N20	 0.2

K20	 1.7

t
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Table 6.8-3

LIQUID FUELS SPECIFICATIONS

Petroleum Petroleum Coal-Derived Coal-Derived
#2 Distillate #5 Residual #2 Distillate #5 Residual

Sulfur, % wt. 0.5 0,7 0.5 0.7

Nitrogen, % wt. 0.06 0.25 0.8 nominal	 1.0 nominal

Hydrogen, % wt. 12.7 10.8 9.5 nominal	 8.5 nominal

Ash, % wt. - 0.03 0.06 0.26

Specific Gravity 0.85 0.96 0.95 1.05

Viscosity, Centistokes 	 2.5 40.0 2.5 40.0
at 100 F

Boiling Range, o f 430-675 500-800 430-675 500-800
90% pts.

Cetane No, 45 40 45 40

Trace Elements, ppm wt.	 (order of magnitude)

Vanadium 0.5 30 015 2

Sodium + Potassium 0.5 50 1.0 20

Calcium 1.0 5 2.0 •5

Lead 0.5 5 1.0 5

iron - 30.0 30

Titanium - - 20.0 50

Higher (Gross) Heating
Value,	 Btu/lb 19,350 18,500 17,700 17,000



'Table 6.8-4

SUMMARY OR ENERGY CONVERSION SYSTEM EMISSION CHARACTERISTICS

ra

i

Enorgy Conversion System Fuel Pired Pounds Million Btu >;lrod

V0^ so, PART.

No 	 Cases Coal FGD 0.7 1." 0.1

Coal AFB 0.27 1.2 011

Pat Resid 0.22 0.75 01 016

Pet Dist 0.05 0.52 0.0

Coal Resid 0.7 018 0.1

Coal Dist 0.46 0156 0.034

Stow Turbine 4 ThermioniCs Sang as No-Cogeneration Cases

PFB Coal 0115 1.2 0.03

Stirling Coal FGD 0.7 1.2 0.1

Pet Resid 0.22 0.75 0.016

Pet Dist 0.06 0152 0.0

Coal Resid 015 0.9 0.1

Coal Dist 0.45 0.56 0.034

Helium Closed Cycle Turbine Coal AFB 0„16 1.2 0.1

Integrated Gasitier Combined Cycle Coal 0.7 112 0.1

Air Cooled Gas Turbines 3 Pet Dist 014 0152 0.0

Steam-Injected Gas Turbines Pet Resid 0.5 0.75 0.01.6

Coal Dist 0.8 0.56 0.034

Water Cooled Gas Turbines Pet Dist 0.4 0.52 010

Pet Resid 015 0.75 0.016

Coal Dist 0.8 0.56 0.034

Coal Resid 112 0,8 01153

Diesels

State-or'-the-Art Pet Dist 315 0152 0.0

Pet Resid 811 0.75 0.016

Coal D'st 22.0 0.56 0.034

Coal Resid 218.0 0.8 0.153

- Advanced Pet Resid 1.0 0.75 0.016

Coal Resid 1.9 018 011S3

Molten Carbonate Fuel Cells Pet Dist 0.11 01003 0.0

Coal Dist 1151 01003 0103

Coal 01001 0.001 0.0

Phosphoric Acid Fuel Cells Pet Dist 0.047 0.0 010

Coal Dist 0.39 010 010

1
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An exception to this approach was made for the molten carbonate

fuel cell which is irreversibly deactivated by sulfur compounds. The

low sulfur emissions in these systems are a consequence of the need to

limit the concentration of sulfur passing through the cells to a level

acceptable for cell performance.

NOx Emission. Estimating NOx emissions is difficult because of the two

sources of NOx , fuel bound nitrogen and thermally generated NO x . The

thermally generated NO  can be limited by reduction of combustion tem-

perature through staged combustion or water injection or a dwell period

to equilibrate temperature. These approaches work well in boilers, but

have limited applicability in gas turbines and diesel engines where the

combustion is rapid and is immediately followed by a gasious expansion

that quenches the composition of species as it was at high temperature.

Combustion process modification is one approach to limiting NOx formation

in gas turbines and diesels. Another approach is to flow the exhaust

gases through a catalytic converter, also with the possible addition of

ammonia, -to reduce the NO  concentration. This would be the only means

for the diesel to reach the NOx emission standards. The high level of

fuel bound nitrogen in the coal-derived liquid fuels would require

special measures to limit or reduce NOx in applications where the petrol-

eum based liquid fuels could meet the standards.

Land Requirements

A comparison of land requirements for the candidate energy conversion

technologies was made using as a basis a plant firing fuel at a contin-

uous rate equal to 100 MW of fuel energy release and including facilities

to store on-site a thirty day fuel supply. Table 6.8-5 summarizes the

estimated land requirements. The land requirements ranged from 50,000

to 130,000 square feet exclusive of sludge disposal ponds. Most of the

plants were in the 60,000 to 100,000 square feet range. The land area

required for the fuel supply is not significantly different for storage

of either coal or liquid fuels. This is.primarily due to the requirement

for a diked area surrounding each fuel oil storage tank, which must be

capable of containing the fuel in the event of a tank rupture.

i
t
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Table 6,8-5

ESTIMATES OF LAND USAGE

BASIS: 100 MWt Plant

30 day fuel storage

Sludge disposal area not included in coal fired systems.

Energv Conversion System
	

Coal	 Liquid Fuel

Stirling Engine	 70	 50

Gas Turbine	 NA	 60

Diesel Engine	 NA	 80

Steam Turbine	 100	 60

Integrated Gasification Combined Cycle 	 90	 NA

Phosphoric Acid Fuel Cell	 NA	 80

Molten Carbonate Fuel Cell	 100	 90

Helium Closed Cycle Gas Turbine/AFB 	 130	 NA

NA - Not Applicable

The land requirement for sludge disposal for the coal-fired boiler

with flue gas desulfurization was on the order of ten times the plant area.

The large land requirement could be a significant hurdle for the use of

boilers with FGD at industrial sites.

Water Requirements

Estimates of the water required by each energy conversion system were

made on a gallons per million Btu fuel input basis. The requirements for

each system and fuel combination are summarized in Table 6.8-6. Tfle re-

sults indicated that most systems required between essentially zero and 8

gallons per MBtu. Two major exceptions were the steam injected gas tur-

bine at 25 to 40 gallons per MBtu and the distillate-fired molten carbo-

nate fuel cell at 17 gallons per MBtu. The fuel cell system contains a
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steam reformer which consumes water and loads to the higher than average
requirement. In the steam injected gas turbine cycle water leaves the

system in the turbine exhaust.

Table 6.8-6

ESTIMATES OF 14ATER REQUIREMENTS
(gal/MBtu)

Energy	 Petroleum	 Petroleum Coal-derived Coal -derived
Conversion System	 Coal	 Distillate,	Residual	 Distillate	 Residual

Gasification Com-
bined Cycle 8 NA NA NA NA

Steam Boiler 8 NA 2 NA 2

1 NA 1 NA 1
1 NA 1 NA 1

Air Cooled Gas
Turbine NA 0 1 0 NA

Water Cooled Gas
Turbine NA 4 5 4 5

Steam Injected Gas
Turbine NA NA 25-40 NA NA

Diesel	 Engine NA 1 1 2 2
Stirling Engine 8 0 0 0 0

Molten Carbonate
Fuel	 Cell 1 17 NA 17 NA

Phosphoric Acid Fuel
Cell NA 0 NA 0 NA

Ther mi oni cs 8 NA 2 NA 2

NA - Not Applicable

a
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WasteDisposal

The amount of liquid and solid waste produced by each energy conversion

system was estimated on the basis of pounds per MBtu of fuel fired; the

results are given in Tables 6.8-7 and 6.8-8. The total amount of waste

ranged from several pounds per MBtu for diesels and the phosphoric acid

fuel cell to as much as 80 pounds per MBtu for coal fired boilers with

scrubbers. The liquid fuel fired systems produce less than 2 lb/MBtu of

solid wastes, the coal fired systems produced solid wastes in the range of

10 to 30 lb/MBtu Most of the solids from the scrubber are sludge which

can leach into soil and Cause significant environmental problems. The

liquid wastes are mainly system blowdown which should present little hazard.

Table 6.8-7

SOLID WASTES

Ener y Conversion System	 Solid Waste
all coal Fired)	 0 b/MBtu

Steam/Scrubber	 24
AFB	 30

PFB	 30

Molten Carbonate Fuel Cell 	 13

Gasification Combined Cycle 	 12

The rmionics	 24

Stirling	 24

Liquid fuel fired systems all produce less than 2 lbs/MBtu of solid
waste

r
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Fuel	 Flexibility

The assessment of fuel flexibility required an evaluation of the number

of different fuels a given energy conversion system could potentially utilize.

The results of this assessment are summarized in Table 6.8-9. The stirling

engine has the greatest potential	 flexibility of the advanced systems.	 It

can use coal directly or any of the liquid fuels as a heat source since it

is an externally fired device'* phosphoric acid fuel	 cell which requires

distillate fuel andthe integrated gasifier systems which are designed to

utilize coal only are the most inflexib e systems.

6-117 x
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Table 6.B-9

FUEL FLEXIBILITY

Steam/Boiler	 - Coal and residual

Diesel Engines

•	 State of the Art - Petroleum distillate and residual

•	 Advanced - Coal	 derived liquids

Gas Turbines - Air Cooled - Presen-t: - petroleum distillate 	 (2000 F)

and petroleum residual	 (1750 F)

- Next generation - petroleum distillate

and residual	 (2200 F)

- Third generation - coal 	 derived distillate

Gas Turbines - Water Cooled - First generation - petroleum distillate

- Next generation - petroleum residual 	 and

coal	 derived distillate

- Third generation - coal 	 derived residual

Stirling Engine -	 Petroleum residual and distillate, coal-

derived distillate and residual, 	 coal

AFB and PFB - Coal	 and heavy liquids

Phosphoric Acid Fuel Cells - Petroleum and coal-derived distillate

Molten Carbonate Fuel Cell - Petroleum and coal-derived distillate, 	 coal

Integrated Gasifier
Combined Cycle - Coal

Thermionics - Coal	 and residual

G	
Operational Flexibility_

The ability of an energy conversion system to respond rapidly to

changes in demand for power and process heat is a measure of operational

flexibility. This capability will be qualitatively reviewed for each type

ECS.
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The non-condensing steam turbine output can be varied promptly by

throttle control. The heat to process may be maintained by use of bypass

desuperheaters in parallel with the steam turbine to make up any deficiency

of steam. The steam generator would be fired at a rate to produce the

required steam. This response is adequate for oil-fired and pulverized

coal fired units. The AFB steam generator has a limited turndown ratio.

Two approaches are being pursued to expand the flexibility of AFB"s. The

first is subdivision into numerous AFB cells that may be fired independently,

The second is segmentation of the cell into four sectors where as little as

one sector at half design firing rate may be used, Where HRSG'_s provide

steam, their gas flow or their primary heat input may be varied to match

steam demand.

Gas turbines realize prompt response to power demand from no load to

full load. The availability of steam from the gas turbine HRSG drops as

the gas turbine load is reduced, Excess steam generation can be reduced

by partial bypass of the gas turbine exhaust gas around the HRSG. The

integrated gasifier gas turbine system response is dependent on the manner

in which it would be structured. A constant speed gas turbine compressor

would maintain a constant level of pressurization. Variation of numbers of

gasifiers in operation as well as modulation of their coal, air, and steam

inputs would match variations in power demand. The holdup of fuel gas in

the gas cleanup system would provide a limited store of gas for abrupt

load increases. Transient firing of start-up fuel might also satisfy a

temporary inadequacy of fuel gas. This system is conceptually flexible,

but the rate of acceptable load changes may be less than that for less

complex systems.

The pressurized fluidized bed steam cycle operational flexibility

is difficult to assess until the manner of control has been specified. The

fuel input may be varied to match demand. The bed airflow may either remain

fixed, or be varied to match the demand. The need to hold bed temperature

in a marrow band best suited to sulfur capture indicates that a close match

of fuel energy release to heat transfer to the steam coolant is essential,
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Until the orchestration of these numerous control restraints have been

simulated a cautious viewpoint that the PFB will have limited rates of

response to load demands is appropriate. The flexibility of the range

of power and process heat at steady demand should be excellent.

The helium closed cycle gas turbine and the stirling cycle both have

excellent adaptability and flexibility for changing load demands, For

both of these ECS's the helium charge would be varied to match the partial

load. Temperatures would be held constant as would rotational speed.

The principal limitation would be the rate of maneuver for the heat source.

The response of the coal fired AFB would correspond to that discussed for

AFB steam generators. One special transient response must be addressed

for these highly regenerative thermal cycles. That is the limitation of

overspeed when generator load is abruptly lost. The thermal energy ac-

cumulated in the regenerator is a powerful driving force that must be

either discharged or instantly contained in order to avoid overspeed,

The adaptability of these units to steady loads should be excellent. The

rate of load increase may be slower than other ECS's due to the need to

thermally charge up the cycle regenerators and the high temperature air

preheaters of the furnace.

The thermionic topping unit with a process steam HRSG may have a rapid

reduction in electrical e ,atput resulting from a small decrease in firing	 Tb

rate. The thermionic heat input is primarily due to radiation which varies

as the fourth power of the absolute flame temperature. Some control over

this sensitivity has been achieved in pulverized coal furnaces by tilting

the burners as firing rate was changed. This sensitivity would have less

overall influence when the thermionic units are coupled to an HRSG powering

a steam turbine. The great flexibility of the steam turbine could com-

pensate for the power variability of the thermionic units. Aside from this

expressed reservation, the judgment as to flexibility of thermionic units

for cogeneration service should be held in abeyance until their concepts

are further developed,
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Diesel engines in cogeneration service operate with flexibility in

meeting power and heat requirements. All installations include full heat

rejection systems in order to make power production independent of heat

demand. No changes for the advanced diesels are expected.

In each fuel cell system the temperature of the fuel cell must be

kept nearly constant. As the power demand varies the heat rejected from

the fuel cell and hence the heat available to process must vary in syn-

chronism, This degree of inflexibility in the natural power to heat ratio

of the fuel cell must be overcome to provide a flexible cogeneration power

and heat supply. As a means to permit power to rise higher than heat to

process would permit, a heat rejection to atmosphere system is added. To

overcome any insufficiency of heat to process, a fuE, combustion and low

pressure steam boiler may be added. These additions do not add substan-

tially to the cost of the fuel cell systems, but they do enhance the

overall system flexibility in meeting cogeneration demands,

For state-of-the-art cogeneration installations it has been customary

to provide for wide variations in power and heat demand. Steam boilers are

specified oversize. Steam reducing stations are provided. Steam con-

densers and small steam turbine condensing stages are added to extend the

power range and to provide heat rejection capability. Gas turbine HRSG's

are provided with supplementary firing. The simplified system descriptions

and performance of this study do not include such detail. However, the

cost of these adders as measured by the extended flexibility they secure

is small. This flexibility will certainly be required for advanced ECS's

when applied to specific industrial cogeneration applications.

6.9 SIGNIFICANT DEVELOPMENT REQUIREMENTS

The level of performance estimated for each advanced energy con-

version system was premised on the achievement of specific advanced de-

velopments. These developments are deemed to be necessary to achieve

the advanced performance levels shown. Wherever the developments are

severe, or wherever the organization to undertake the developments is

not yet substantial, a late date of deployment has been assigned. The
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degree of advancement in technology has been purposely limited to tech-

nical achievemencs that can be commercialized in ten to fifteen years,

and to technology that does not require 'large cost increases due to

dependence on expensive materials, The developments required by each

advanced Energy conversion system have been defined to assure a con-

sistent basis for comparing the future attainment of performance targets,

Steam Turbine - AFB ECS

Advanced steam conditions for the cogeneration steam turbine are

known to be uneconomic and have been excluded from this study. The
significant advancement that has been assumed is the development of an

atmospheric fluidized bed (AFB) boiler that meets all environmental and

reliability criteria. Current developoent programs have been in place

over many years and the expectation of success is high.

PFB Steam Cycle ECS

The pressurized fluidized bed coal-burning steam cycle would be

a second and more advanced step in exploitation of the fluidized bed

concept. As compared to heating gases in the tubes immersed in the

fluidized bed, the heating of water to generate steam and the superheating

of steam impose temperatures and heat duty that do not require unproven

materials or technology. In addition, raising steam requires less heat

exchange surface since greater temperature difference for heat exchange

exists as compared to heating gas. Consideration of rel4 Live costs and

of technology readiness resulted in the exclusion of gas-cooled PFB cycles

from this study. Critical technology requiring significant development

for the PFB steam cycle would be hot gas cleanup of particulates and

alkali metals, protective cladding of gas turbine hot path surfaces, and

the overall system integration and control.
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Thermionic ECS

The thermionic topping system has been studied conceptually, but its

evolution into developed hardware has not started. The thermionic element
performance used in this study was based on significant improvement over
current achievements. In addition the assumed costs are deemed to be dif-
ficult to meet. A long and persistent development program would be neces-
sary, The concept of the integration of the boiler combustor with heat
pipes in panels is an element of the thermionic system that is capable of
development and proof of concept separate from the thermionic development.

This development should be proven at an early date since it is crucial to
the economics of the thermionic topping concept, The system integration
and control represents another critical development.

Stirling Cycle ECS

The stirling cycle has been the subject of intensive development for
use in the automobile and as a means of heat pumping. Commercial units
have not been marketed to date. Nonetheless the intensiveness of develop-

ment effort to date would indicate that critical problems are being dis-

covered and addressed, The industrial unit would differ as to its physical
	 ,

size, and perhaps the seals and drive mechanisms selected for that size.

The development of the industrial size unit would be a significant develop-
ment. That effort must entail the use of higher than normal heat rejection

temperatures that would match cogeneration process needs.

The use of coal for the stirling cycle was deemed to represent a

development as great as that for the industrial size stirling cycle alone.

The heat input temperature of 1472 F is a significant challenge. An
atmospheric fluidized bed at 1550 F bed temperature would be exceedingly
costly as a heat source. The heat exchange temperature differences would

be small, and the tube wall temperatures would mandate use of expensive

high alloy metals. Only use of a pulverized coal -fired furnace can assure
adequate heat exchange. A high air preheat of 1200 F would be required.

Such a pulverized coal-fired unit with flue gas desulfurization and high

air preheat would differ considerably from steam boilers, and would require
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significant development effort. The heat conveyance to the stirling

cycle would be by a pressurized helium loop. The additional cost at-
tributed to using coal was evaluated as the full differential between

oil- and coal-fired boilers. This cost goal may be difficult to meet

in view of the expensive high alloy materials that are required for

high temperature heal; exchange.

Helium Closed Cycle Gas Turbine ECS

The helium closed cycle gas turbine unit was not considered to be a

significant development. A 50 MW unit is already operational in Germany,
It and other closed cycle gas turbine units utilize oil, coke oven gas,

and pulverized coal as fuels. The significant advanced art considered

was development of an atmospheric fluidized bed to burn coal and capture

sulfur while heating helium from 1000 F to 1500 F. As detailed in the

ECAS study of advanced coal-fired utility plants, the fluidized bed would

differ significantly from AFB's for steam production. A high temperature

bed would be required and it would have insufficient sulfur capture

ability. Its effluent gases would pass through a low temperature fluidized

bed at 1550 F where sulfur capture would be consummated. Developments

over and above those for the steam producing AFB are needed for the closed

cycle concepts. The projected costs are expected to exceed those of steam

producing AFB's due to the use of more expensive high alloy tube materials.

Fuel Cell - Molten Carbonate ECS

The coal-fueled fuel cell has numerous areas of significant develop-

ment. Paramount is development of the molten carbonate fuel cell to a

state of commercial readiness with regard to performance, reliability

and cost. The coal gasifier requires development, with the Texaco en-

trained bed gasifier being the prototype used for this study. The fuel

gas cleanup system is another significant development. The system inte-

gration and control will require significant development in order to

achieve simultaneOL, ,.iy the requirements of all of the major system elements

during the variety of transients experienced by an industrial cogeneration

system.
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Integratedegrated Gasifier Combined Cycle ECS

There has been sufficient detailed examination of the integrated

gasifier, gas turbine, steam turbine to identify the major development

elements, Pressurized gasification is essential to economic success.

Significant development of advanced gasifiers is necessary. Two types

were considered. The General Electric fixed bed DEGAS gasifier, and

the Texaco entrained bed gasifier. The fuel gas cleanup systems are a

separate but related development. Of critical importance is retention

of both chemical and thermal energy after cleanup. The system inte-

gration and control are significant due to the system complexity and the

sensitive interdependence of its elements.

Advanced Gas Turbine ECS's

Advances in the gas turbine that require significant development are

the achievement of 2200 F in an air-cooled gas turbine and the achieve-

ment of 2600 F in a water-cooled gas turbine. The steam injected gas tur-

bine would require significant additional development of its combustor and

steam injection control. A separate development that must be successful

is the achievement of a NO limiting combustion system. This requirement

appears to be especially severe for burning the coal-derived liquid fuels.

They have a high fuel-bound nitrogen content. The means to meet emission

standards when burning those fuels in gas turbines must be developed.

Advanced Diesel ECS

Both current and advanced diesel engines will have NO  concen-

trations in their ^x.haust that exceed emission standards. Exhaust gas

treatment will be mandatory. An exhaust gas de-NOx system must be

added to the diesel. The costs attributed to the diesel systems were

estimated to full y cover this expense by the diesel energy conversion

representative for this study. The tabulated diesel emissions for this

study were at the diesel exhaust level since authoritative performance

of de-NOx systems were not available. Demonstration of de-NOx systems

that meet emission standards are crucial to the continued and future use

of diesels in cogeneration.
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The jacket water temperature of the medium speed diesel would be
t	 i

brought to 250 F.	 This is deemed to be a significant development for an

industrial	 size diesel.	 Small	 diesels experience only small 	 thermal	 dis-
fi,

tortion due to temperature.	 The means to accommodate higher temperatures 3

are more severely limited as diesel	 size increases.	 Higher temperatures

such as 300 F or 350 F jacket water would be excellent for coupling to

industrial	 processes.	 Rational extrapolation from the evolutionary his-

tory of diesel development show that these temperatures are not to be

expected in the time span of 1935 to 2000.	 The open cycle heat pump using

4

	
250	 jacket water as its heat source was considered as an alternative to_F

reach high process temperatures. 	 Although the evaluation and costing were j

based on conventional components, such a unit would be a signif i cant develop-
i

I	
meat.	 Its system integration and control would also be significant.

I
f	 The development of the diesel	 to the performance levels projected

was deemed to be evolutionary and not subject to expedition.	 Diesel

manufacturers have probed all	 avenues of diesel	 exploitation and are well

aware of the critical	 technical developments that balk revolutionary

breakthroughs.	 Higher supercharge pressures,	 intercooling and aftercooling
charge air, and evolution into compound engines are recognized develop- A

ment routes.	 The use of micronized coal	 in a slurry Of oil	 was considered
l

"	 as a means to burn coal	 the diesel	 For industrial	 size diesels the

wear due to ash content, the slowness of burning, and the abrasion of

injection equipment were found to preclude coal	 burning in diesels as an

economic approach to cogeneration.

Fuel	 Cells-	 Distillate	 Fue l --d ECS's

A molten carhonate fuel	 cell can o perate on reformed gases produced r

from distillate and steam.	 The fuel cell	 itself would be the significant

development.

The low temperature phosphoric acid fuel cell is already developed. z

It is especially vulnerable to poisoning by the cumulative effects of

sulfur; in the fuel gas fed to it.	 The fuel gas cleanup system would be n:

the significant development for this type fuel cell.
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Overview of Si ni fi cane Developments

A number of significant developments have impact on more than one ECS

system.	 Some of these might be undertaken generically rather than solely
as an element of a particular ECS.

NO 	 limitations when burning coal	 derived liquid fuels could	 take the

form of combustion system modification, exhaust gas treatment, or a revision

of the emission standard.
i

h
The atmospheric fluidized bed combustor shows a sequence of evolutionary

development steps.	 First for production of process steam, then next for
F

power steam boilers. 	 Beyond that level are helium heaters for the closed

cycle gas turbine and for the s tirling cycle and for any high temperature

'	 gas heating service

Very high temperature air preheaters are required whenever the final

heat recipient is unusally hot. 	 In this category are the thermionic

units, -the sti rl i ng cycle, 	 and the closed cycle gas	 turbine.

Coal	 gasifiers and fuel 	 gas cleanup are developments significant to

the molten carbonate fuel cell, the integrated gasifier combined cycle,
and the pressurized fluidized bed gas turbine.

The do to ac inverters for thennionics and fuel cells merit strenuous

d

development effort to achieve cost redLICtions.

S
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Section 7

CAPITAL COSTS

71	 CAPITAL COST METHODOLOGY

It is essential	 that there is consistency among the capital	 cost

estimates if economic distinctions are to be made. 	 Three distinct data

sources were used for the basis of costs 	 in this study.	 Considerable
effort was made to assure that the final cost assemblage for each energy

' conversion system represented a complete power plant, 	 including all	 of

t the required elements of an industrialq	 power house, and was consistent

with all the others regardless of the source of data.

A major part of the cost of most systems is in components that are

parts of many other systems. 	 The cost of each component; e.g., a steam

turbine, was based on the same methodology regardless of which ECS it

was a part of.	 This method of costing helped to assure consistency be-
tween ECS`s..	 The cost of a diesel	 engine or a	 small	 gas turbine,	 for

r
example, to be installed	 in a purchaser's building on purchaser provided

foundations and connected at purchaser's expense is just a small 	 part of

a new "green field"	 industrial	 power house with all	 prerequisite services
and amenities.	 For example, a diesel-generator adapted for cogeneration

costs 210 dollars	 per kilowatt;	 however, completely installed the cost is

540dollars	 per kilowatt, and the entire power house installation would

cost 1000 dollars per kilowatt.	 The complete power house installed costs

are reported in this study.

To corroborate the level	 and order of these complete plant costs,

comparisons were made to more detailed evaluations of large installations

such as utility power plants.	 Corroboration was found 	 in every instance.

Explicit cost evaluation requires detailed 	 build-up to provide con-

fidence in the final	 estimates.	 Where only cost estimates are required,
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there are techniques that permit extrapolation from data sources of high

confidence with good assurance that the new data is of a high level of

fidelity. These techniques are used for individual equipment and for

complete power plant systems. The concept is that the cost of an entity

does not increase linearly as its size increases. Instead the cost x
varies as the size to an exponent. For example, the appropriate exponent

has been found to be 0.6 for heat exchangers and 0.8 for steam turbine

generators, At some unit size it may become necessary to add multiple

units rather than continue increased unit sizes 	 Some elements like fuel

cell modules and do to ac inverters and thermionic converters are small	 a

in unit capacity and are always aggregates of numerous modules with little 	 y

cost advantage in the conversion system itself as their numbers increase,'
C

Economics of scale, however, still apply to other components of the power

plant costs.

For the purpose of this study data were secured at two unit ratings

for equipment cost, direct field material to install the equipment, and

direct field labor to install the equipment. These data were input to

the computer. The computer thereafter compares the equipment size re-

quired to the input data and interpolates costs along a power law fit

of the input data. When the equipment size exceeds the limit of the

input data, additional units are added to reduce the required unit size

and the same search made. This procedure continues until sizes within

the span allowed are fiound.
Y

Some of the cogeneration plant data were derived from recent detailed

evaluations of advanced concept utility power plants-. An example is the

thermionic energy conversion system. Table 7.1-1 presents data for the

pulverized coal-fired thermionic boiler and steam generator derived from 	 x

the General Electric EPRI study (Ref. 1)	 The data were converted

to 1978 dollar basis, the air heater was deleted to accord with the cogen-

eration configuration, and the flue gas scrubber costs were replaced with

values used for this cogeneration study. Since the largest thermionic-

boiler module would be one sixth of the 7366 million Btu per hour firing

rate designated in Table 7.1-1, that critical size along with the firing

rate determine the scaling of costs.
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Table 7.1-1

THERMIONIC COST BASIS EXAMPLE
(1978 dollars)

(106 dollars)

FJ

Converters

Panels

Inverters
Furnace, Funs, Mills
Minus Air Preheater

Scrubber

Other Mechanical

Electrical

Civil & Structural

Pipe and Instrumentation

Yardwork

	

Major	 Direct	 Direct
Components	 Material	 Labor

102.3
20.5

	

2119	 1.1

	

55.8	 25.09	 51.4

200.5

Plant fired 7366 million Btu/hr coal
TI boiler was 6 modules

30.5 11.4

19.7 11.7

22.5 18..3

25.3 18.5
12.9 10.8
2.2 2.1

138.3 125.3

From Table 7.1-1 a-number of relationships have been drawn that scale
the costs to smaller firing rates as follows

F = Firing rate in million Btu per hour/7366

PWR = Power to Fuel Energy Ratio for Thermionic- steam cogeneration plant

X	 1.0 if F >1/6

E	 X	 0.7 if F <1/6
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Major Component Cost = 144,7*F*55.8Fx

Direct Material Cost = 138.3*Fo.7

Direct Labor	 = 125,3*F0.7

Steam Turbine MW	 F*7366*(PWR-0,141)/3412

The major components in converters, panels, and inverters are made up of

numerous modules and thus scale linearly. The furnace and heat recovery

part scale as do boilers with a 0.7 power when they are less than maxi-

mum size, but linearly for multiple units. Other direct field costs scale
as the 0,7 power. For computer input the size parameter was the coal

firing rate in million Btu per hour, The fuel handling costs would be an
additional cost related to firing rate. When a steam turbine was added

its power rating determines its cost. For the 1465 psis, 1000 F steam
turbine the MW rating for this combination was determined from the calcu-

lation of power to fuel energy (PWR) for the thermionic plant with steam

turbine bottoming.

Table 7.1-2 presents the elements of computer input data for the

thermionic-steam turbine (TISTMT) energy conversion system. Islands are

identified, 1 being fuel handling and 3 being energy conversion equipment.

The components are explicitly numbered. The size range would be million
Btu per hour for the first two items, but MW for the steam turbine. The

equipment costs are in 1978 million dollar units and apply to the extremes

of the size range stated. The direct material cost is expressed as a ratio

(DM/E) to equipment cost for each extreme of the size range. The direct
labor is expressed as a similar ratio (DL/E). These latter two columns
are zeros for the steam turbine system installation, The cost distribu-

tions for steam turbine systems were proprietary, All costs for proprietary

data items were entered as an adjusted equipment cost so that subsequent ap-

plication of indirect charges would produce the total installation costs

that are appropriate.

The costs developed from Table 7.1-2 only include direct costs.. Cost

adders above these levels are 1 10 for start-up, 21 for spate parts, 90% for

indirect field costs, and an additional 261 made up of 61 engineering, 151
	 IT

contingency, and 5% fee. The resulting multipliers to get total installed

cost are presented in Table 7,1-3 along with a set of multipliers to derive

only the indirect portion of costs,
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Table 7,1-3

CTAS CAPITAL COST STRUCTURE

Total	 Installed Cosa

Equipment * (1	 + 0.01	 + 0.02) * (1.26)

Material * (1	 + 0.01)	 * (1.26)

Direct Labor * (1	 + 0.01	 + 0.90)	 * (1.26)

Indirect Costs

Equipment * 0.2978
Material * 0.2726

Direct Labor * 1.4066 i

J

i
}

Table 7.1-2

CTAS CAPITAL COST OF ECS COMPONENTS EXAMPLE

3/2.9/79

DM DL
Island	 Comp. Name Size Equipment E  E

3	 77 Thermionic- 200/12.28 6.54/33.42 1.69/1.18 1.53/1.07
Coal -Small

INCLUDED ARE;	 FGO scrubber, limestone handling, DC-AC inverters,

electrical controls, structure and enclosure.

1	 10 Coal	 Handling 200/8000 0.16/3.88 0.20/0.20 0.65/0.65

2	 32 Steam Turbine 7.5/100 1.67/9.47 0/0 0/0



An example of the computer printout of costs is presented in Table

7,1- 11. All direct and indirect costs are detailed arriving at the grand

total of 212.9 million dollars for this cogeneration power plant complete

with all structures, facilities and amenities.

Other data sources did not provide for a complete plant facility as
in this example. In those cases the missing elements were identified,

and additional items were added to realize a common level of complete-

ness.

Another aspect of the methodology was the derivation of some costs
where detailed evaluations had not been done. An example would be the

residual oil-fired thermionic plant, It was determined that the dif-

ference in cost from oil-fired to coal-fired steam boilers at the same

firing rate should be appropriate for the thermionic units. These dif-

ferences were derived and were applied to the coal-fired data to derive
the costs for the nil-fired thermionic unit. The coal-fired stirling

cycle represented the reverse transition. Cost of the oil-fired unit

was known. The oil to coal cost difference was added to the oil-base

case to determine the coal-fired-case.

The master list for cost islands used in the entire cost evaluati,

is presented as Table 7.1-5.

s
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Table 7.1-5

GE-CTAS CAPITAL COSTS

COST ISLAND MASTER LIST ,3

MaJor Islands Accounts; 	 Major Comoonent Accounts:

1,0	 Fuel dandling 1 Gas x.4 toring/Scrubber
2 Gas Storage
3 Gas pressure Regulation
4 Fuel Oil Unloading
5 Fuel Oil Storage
5 Fuel Oil Transfer
7 Fuel Oil Pump and Heatar Set
8 Coal Unloading
9 Coal Storage

10 Coat Preparation
11 Coal Transfer
12 Limestone/Dolomite Unloading
13 Limestone/Dolomite Storage
14 Limestone/Dolomite Preparation
15 Limestone/Dolomite Transfer

2,0	 Fuel Utilization and 20 Gas-fired Boiler
Cleanu p 21 oil -fired Bailer

22 Coal-fired Boiler
23 Coal-fired AFB Boiler
24 Coal-fired PFd Boiler
25 Coal Casifier
26 Liquid Waste Boiler
27 Solid Waste Baiter
28 Reformer, Shifter, and Cleanup for Fuel	 Calls
29 Stirling Engine Combustion and Cleanup

3.0	 Energy Conversion 30 Steam Turbine-Generators, "Son-condensing
31 Gas Turbine-Generators
32 Diesel	 Engine-venerators
33 Thermionic Boiler/Generator and Cleanup
34 Stirling Engine-Generators
35 Fuel	 Calls-Molten Carbonate
36 Fuel Cells -Phosphoric Acid
37 PrimQ Conversion Bottoming HRSG and Steam

Turbine-Generator
4,O	 Bottoming Cycle 40 Heat Recovery Steam Generators

41 Steam Turbine-Generator, Condensing
42 Organic Vapor Boiler
43 Expansion Turbine-Generators
44 Regenerators, Vapor

5.0	 Heat Sink 50 Cooling Towers, Wet, Induced-Craft
51 Circulating Pumps
52 Steam Condensers
53 Vapor Condensers

6,0	 Heat/Energy Storage 60 Media
61 Containment
62 Heat Exchangers

7,0	 Process	 Interface 70 Heat Exchangers
71 Heat Recovery/ process Steam Generators

8,0	 Balance of Plant 80 Master Control
81 Electric Switchgear and transformer
82 InterconnectingPiping, Oucting, Wiring
83 Structures and 'iiscellaneous
84 Service Facilities

I
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7,2 DATA SOURCES

Two of the energy conversion s rystem costs were derived from the

General Electric study for ECAS (Ref, 2), These were the pressurized

fluidized bed steam cycle plant and the helium closed cycle gas turbine

plant. As indicated in the previous section, costs for the thermionic

energy conversion systems were derived on a similar basis from the

General Electric EPRI study (Ref. 1),

A number of energy conversion systems costs were synthesized from
the data bank used by General Electric in application engineering for

industrial power generation including cogeneration. These included all
noncogeneration boilers firing all types of fuels, both of the package
and of the field erected type, Also conventional power boilers providing
steam for turbines. New data on atmospheric fludized bed steam boilers

of industrial size were developed to supplement the data base. Cost of
heat recovery steam generators for gas turbines were from the same source
as were steam turbine costs. An additional item, 83 structures miscellaneous,

was added to costs synthesized entirely from this data base.

The bulk of the advanced energy conversion systems  e e	 eva	 gy	 r onwere synthesized

from data on basic equipment costs. The following were added to each sys-
tem to complete the power house assemblage:

Component	 Component Description

80	 Masher control

81	 Electric-Switchgear

82	 Interconnecting Piping

83	 Structures - Miscellaneous

84	 Power Plant structure

The stirling cycle costs were produced by General

with North American Philips. The costs were then

Electric Locomotive Diesel Engine Department. Th

phosphoric acid fuel cell costs were developed by

laboration with the Institute of Gas Technology.

Electric in collaboration

reviewed with the General

a molten carbonate and

General Electric in col-

The integrated gasifier

7-9
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combined cycle costs and performance were developed from EFRI report;

(References 3, 4) on Coal Gasification-Combined Cycle Systems and in.

ternal GE studies, Steam turbine and gas turbine and i nstallation cc

were drawn from the appropriate items of the CTAS cost data base. Al

gas turbine cost estimates were new evaluations in 1978 dollars for

cogeneration applications. The diesel cost estimates were derived b^

the DeLaval Corporation to represent growth versions of current colter

eration diesel systems. The heat pump for the diesel used casts esti-

mates based on one of the more expens i ve air compressors that would

satisfy the performance requirements so that the cost estimates should

cover modifications necessary to handle steam.

7-10
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7.3 CAPITAL COST SUMMARIES

Examples of the three distinct island cost compositions have been
selected from Report 4.1, January 25, 1979 for exposition. The process
requirement was 137 million Btu per hour of process heat at 300 F and 10

megawatts of electric power. The selected cases each produce the process
heat exactly; one produces .a surplus of electrical power, one requires a

partial purchase of electricity to meet the full industry demand, and two

require auxiliary process heat boilers.

Table 7.3-1 presents the cost data for steam turbine cogeneration

plant with an atmospheric fluidized bed boiler (AFB) with steam throttle

conditions of 865 psia, 825 F. Most of the normal balance of plant items

were incorporated in the cost structure for islands, 1, 2, and 3, Only

the cost of auxiliary structures, item 83, was required to ciamplete the

plant. The island subtotals for direct and indirect costs are presented

along with the grand total for the entire plant. The last column served as

a means to check certain items and has no inherent significance. All other

steam turbine cases and nocogeneration cases have a composition of costs

similar to Table 7.3-1.

A second type cost composition is presented in Table 7.3-2 for the

thermionic boiler with steam turbine cogeneration plant.	 In this instance

the energy conversion island encompasses everything except the fuel 	 handling.

Even the limestone handling and flue gas scrubber have been included. 	 As

described earlier, this completeness results from deriving the cost correla-

tion from utility-type installations that were inherently complete stand-

alone power plants.	 Similar cost compositions are found for the pressurized
fluidized bed combined cycle plant and the helium closed cycle coal-fired

AFB plants.	 The item for island 2 was an auxiliary boiler sized to produce

l	 the process heat that was not produced by the cogeneration ECS. 	 Wherever
a

such an auxiliary boiler was required to fulfill 	 the process heat requirement,

its fuel was the same as that of the cogeneration ECS. 	 The fuel	 handling

item was sized to supply the total 	 fuel	 consumption.
5..

z
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The third cost compositon applies to all the remaining energy con-

version systems. The stirling energy conversion system has been chosen

as representative in Table 7.3-3, Only the basic equipment costs were

provided as inputs along with the direct coats for their installation.

The two items that appear as component descriptions 29 are the stirling

engine cogenerator and its combustion system. The necessary balance of

plant to provide a complete power house is seen to be significant, None

of these items can be omitted or neglected, Treated on a comparable basis
a

were the diesel, fuel cells, gas turbine systems, and combined cycles 	 I

including integrated gasifier plant,

The stirling cogenerator in Table 7,3-3 exactly produces the process

heat required; the power produced is in excess of the 10 megawatts the

process requires. Another example of cost composition is presented in

Table 7,3-4 where the 10 megawatt power requirement of the process is

exactly met, but an auxiliary boiler must be added as island 2,'component 	 -r

22 to produce the process heat not supplied by the cogenerator. In each 	 Jti

case the auxiliary boiler fires the same fuel as that supplied for the 	 n

cogenerator, The fuel handling is sized for the total fuel requirement.

F

Similar cost details were produced for every combination of ECS and

process plant in both heat match and power match combinatins required in

this study.

F
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7.4 COST CORROBORATION

Since cost differences are a dominant factor in economic appraisals,
it is essential that costs developed for cogeneration systems have a
high order of fidelity. The smallest plant sizes are subject to the

greatest diversity for relative costs. For an overview of relative costs

a plant size of 10 megawatts power demand and 137 million Btu per hour

process heat at 300 F was selected, The capital cost was evaluated as

dollars per kilowatt of electrical power produced after deletion of the

direct and indirect costs of an auxiliary boiler if one was necessary.
Table 7.4-1 presents the results. The order of listing generally follows
increasing cost. As expected distillate-fired units tend to be leant

expensive followed by residual-fired and then coal-fired units.

Among distillate-fueled units the phosphoric acid fuel cell and

state-of-the-art gas turbine are the least expensive alternatives at 10

MW rating. For residual-fired units several gas turbine alternatives are

least costly. Even the state-of-the-art residual-fired gas turbine is

less costly than the steam turbine, stirling cycle or diesel. For coal-

fired units the steam turbine with atmospheric fludized bed boiler is

the least costly followed by the stirling cycle and then two combined

cycles - one with_a pressurized fluidized bed boiler and the other with

an integrated coal gasifier. The greatly advanced cycles are most costly.

The source of these costs are apparent. The molten carbonate system is

complex because of the rigorous gas cleanup required by the fuel cell.

The helium closed cycle features a furnace that only heats gas over a

high temperature span and is costly. The thermionic units are very cost-

ly notwithstanding the assignment that they would be manufactured into

large panels in the factory in order to reduce field erection costs.

These data at a low power level represent the highest levels of

costs that are expected. The cost data are of a nature that unit costs

decrease as size ar'. Y,atings °increase. The best sources of data for-com-

parison are at powe)° levels between 400 MW and 1000 MW for complete elec-

tric utility plants. Such plants would tend to be more complex than

cogeneration power plants.
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Table 7.4-1

CAPITAL COSTS FOR 10 MW POWER DEMAND AND 137 MILLION BTU PER HOUR AT 300 F
(Auxiliary Boiler Cost Deleted)

CAPITAL COST, S/kW
Energy Conversion System 	 Coal Fired	 Residual	 Distillate

Phosphoric Acid Fuel Cell 	 580
Gas Turbine-State-of-the-Art	 775	 655

-Steam Injected	 665
-Combined Cycle	 680
-Advanced	 695
-Regenerative

Steam Turbine-Adv,	 Boiler 1260-AFB
1540-PFB

-State- of-'t,.; ^ o 1635-FGD

Stirling Cycle 1445-FGD

Diesel	 -Advanced
-Heat Pumped
-State-of-the-Art

Integrated Gasifier Comb. Cycle 1555-G

Molten Carbonate Fuel	 Cell 2200-G
-Steam Turbine 2205-G

Helium Closed-Cycle G,T. 2645-AFB

Thermionic 5660-FGD
-Steam Turbine 3450-FGD

FGD -	 Flue Gas Desulfurization
AFB - Atmospheric Fluidized Bed
PFB - Pressurized Fluidized Bed
G - Gasifier

745

840

	

845
	

845

980
995

	

1040
	

1040

510

4410
2700
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They would incur costs for heat rejection systems and for Tow temperature-

low pressure elements of their energy conversion machinery. At the same

time they tend to be more efficient. Nonetheless, one would expect their

order of costliness to be similar to that for cogeneration plants. Hence

the issue is one of order and relative costs, not of absolute cost level.

Several data sources were available as discussed in Section 7.

These included the General Electric in-depth studies for ECAS and for

EPRI, Values were taken from those studies and adapted to the same basis

as the CTAS costs. First, assumed interest and escalation during con-

struction were deleted, and then the base cost was indexed to be in mid

1978 dollars. Data for state-of-the-art gas turbines in complete cogen-

eration power houses in mid-1978 dollars were developed by the Industrial

Turbine Sales and Engineering Operation of General Electric for comparison

to the costs synthesized by the CTAS computer program.

These data are presented in Figure 7:4-1, The dashed connecting

lines are simply visual identifiers. In general, the spread in data at

10 MW exceeds that at 400 to 1000 MW. That indicates somewhat higher cost

ratios at 10 MW. The order is exactly the same, which is an excellent and

unexpected corroboration of the relative costs at 10 MW. Furthermore,

the slopes of the interconnecting lines, except for the gas turbine case,

have slopes giving cost to size exponents ranging from 0.7 to 0.85. This

is the range that would be chosen for extrapolating the data at 400 to

1000 MW down to 10 MW. The state-of-the-art gas turbine characteristic is

very different. Smaller units cannot be appreciably cost reduced and in

some particulars give up cost advantages that accrue to larger sizes.

As a result gas turbines show a high sensitivity to size. The line shown

for the distillate-fired gas turbine has an exponent of about 0.5.

The corroboration that has been found indicates that a consistency

exists among the costs that are synthesized for each type cogeneration

energy conversion system in this study. The discipline of using common

components as elements for all systems, of applying a consistent basis

for indirect costs, and bringing each system to a common level of complete-

ness assures that no system has been either favored or penalized by arbi-	 2

trary assignment of costs.
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