
-v----I

S/IS-7906) APPLICATION OF A HIERARCHICAL N8O-34151
STRUCTURE STOCHASTIC LEARNING AUTOMATION
(Yale Univ., leu
HC k03/rF A01

m!!
Haven, CourIL.) 49 p

H2/61
Unclas
35234

.

--- NDA PL---INC ----

V S

YALE NIVERIY

APPLICATION OF A HIERARCHICAL STRUCTURE

STOCHASTIC LEARNING AUTOMATON

-R. G. Neville, M. S. Chrystall and P. Mars

S & IS Report No. 7906

September, 1979

LIBRARY C11IYl
OCT 1 2 1979

UANGLEY RESEARCH GETER
LIBRARY, NASA

,. vIRGIN

Application of a Hierarchical Structure Stochastic Learning Automaton

R. G. Neville, M. S. Chrystall, and P. Mars

1. 	Introduction.

3
One of the principal application areas for stochastic computing research1'2'

is the implementation of adaptive control systems using stochastic learning automata

(SLA) 	structures. A learning automaton is ideally suited to the problem of parameter

optimisation of a noisy multimodal system (figure 1),
since the inherent principle of

random search avoids the effect of locking-on to local optima unavoidable with normal

gradient methods. The automaton, in conjunction with a suitable interface, interacts

with its environment in a manner analogous to a conventional feedback control system

to evolve a 'suitable' final structure (figure 2).

By combining the results of earlier work in hardware stochastic computing systems4'5

and extensive simulation studies of learning automaton behaviour,6 7
, it 	is possible to

synthesise practical learning systems capable of on-line operation. Hardware designs

for 2-state systems have subsequently been described8 ,9 which verified that suitably

fast 	learning behaviour was possible.

In order to implement large-scale systems, a hierarchical structure automaton was

10
developed, using a 2-state SLA in a time-shared mode . This system has already 	been

tested using a simple simulated plant, and the work described here details the appli­

cation to the more practical case of systems with multidimensional, multimodal per­
11,12,13

formance criteria

2. 	Review of Hierarchical System.

The hierarchical SLA evolved as a means of enabling a practical large-scale

automaton to be constructed which would be capable of high-speed operation with the

minimum of hardware.

The approach adopted was
to time-share a single 2-state SLA in the tree-structure

shown in figure 3.
The random access memory, which stores the intermediate decision

-2­

probabilities, fulfils the requirement for a memory'in the automaton to establish the

priority of state order during the learning period.
Any one state or action probability

is given by the product of the decision probabilities along the appropriate path

through the tree. This configuration does of necessity involve more serial processing

operations, but the savings in hardware are felt to far outweigh the speed penalty.

Another advantage is that a modular construction greatly simplifies the design re­

quirements of much larger systems. The algorithm circuit
can retain the standard

4-term format used previously with 2-state systems8 9
 , and is also time-shared at each

level.

Using these principles, a hardware system with up- to 128 states was constructed,

based on the availability of a suitable commercial random access memory (RAM) with

128 bytes of storage. The memory requirements are determined by the number of levels

in the system. The number of decision probabilities to be remembered at level p-is

p-l r2P; therefore, an r-level system (2 states) requires a total RAM allocation of

(2 -1) bytes.

In the 2-state system (figure 4),
the ADDIE4 output is sampled by a flip-flop

whose state then denotes the output action. In the hierarchical system application

(figure 5), the state of this 'system flip-flop' is referred to as the 'decision bit',

and the information is stored in a 'state latch' with one location per system level,

as indicated in figure 6. The state latch thus acts as a small 'scratch-pad' memory,

tracking the path taken through the tree during each cycle of operation by means of

the stored decision bits, and also forms the basis of the memory address circuitry.

Overall control of the system is effected by means of a multiphase clock, which

can be programmed to permit a choice of automaton size (via the number of levels),

adjustable learning or ADDIE response time, and externally determined delay in output

response time to cater for different plant time constants, thereby preserving fully

the flexibility of design referred to above.

-3-

The design of a system with a non-binary multiple of states is more complicated.

One possible solution, as yet untried, is to insert a decoder between the existing

SLA and the plant.
The SLA is organised with the next-highest binary number of states,

and the decoder arranges for redundant states to be paired-off with 'active' states.

This would cause initial bias in the learning behaviour, but the effect may not be

too significant when averaged out over the learning period.

3. Preliminary Results.

The operating principle of the hierarchical system is illustrated by figure 7.

This shows the learning characteristic of a 3-level, 8-state system converging to state

4. The learning time is typically three times that of
a 2-state system, as would be

expected from the time-shared nature of the learning process.
The hierarchical SLA

1 4
can, it is felt, be considered akin to a system of cooperative games
 between 2-state

automata, one at each level.
Each automaton decides, in turn, which of the two

locations below its own current position in the decision tree should be chosen, having

been steered to that position by the automaton above it.

Initial optimisation experiments, reported previously,I 0
were carried out using

the most elementary of simulated plant circuits, as
shown in figure 8. One selected

action, in this case number 41, carries a low penalty probability, c. = 0.25, and all

others a higher one, ch = 0.875.
Figure 9 shows the resulting learning behaviour,

presented in the form of an
'output map' derived by D/A conversion of the state latch

contents. The approximate length of one iteration, using an 8-bit ADDIE and 2.5 MHZ

master clock, is 50 Vs,
so that the indicated learning time of 50 ms corresponds to

some 1,000 iterations.

Because of variance inherent in the ADDIE, there is always a small probability

of incorrect decisions, at any level, beyond the initial learning period.
This results

in the sporadic occurrence of incorrect output actions which can be seen on the output

map.

-4­

4. Application to Multimodal Systems.

In order to simulqte a multimodal environment, a rather more sophisticated plant

circuit is required. It was decided to use as an example a well-known P.1. function

which has a clearly defined global optimum, local optimum and saddle-point.
15

In order to match this P.I. surface to the SLA, a program (SLIG) was written

which computed the function representing the P.I. surface and provided a choice of

output options. In figure 10, the surface is plotted with a fine grid to illustrate

its features. Figure 11 presents another view of the surface using a 16 x 8 grid to

show how it is partitioned into 128 discrete elements. SLIG also generates a table

of penalty probability values ic.} corresponding to each surface element, and writes
1

these to a dump file. A third option is to produce a punched tape of binary ci values

for use with a custom-built PROM programmer for 2708-type PROMS (1K x 8 bits).

A useful feature of the program is the provision for a choice of compression

factor applied to the range of c. values derived from-the P.I. function. This enables

1

the values of the penalty probabilities to be constrained between chosen limits within

the full scale range [0,1], to test the discriminatory powers of the SLA. For the

learning runs reported here, the compression factor was set at 0.95, giving in this

case a minimum c. of 0.025 and a maximum of 0.85.
 1

To examine the performance of the SLA under non-stationary conditions, it was

arranged that a reflected version of the P.I. be stored in the next 128 bytes of the

PROM (i.e. x & y - axes reversed). In this way, simply switching the most significant

address line abruptly changes the plant seen by the SLA.

The configuration of the simulated plant is shown in figure 12. The PROM is at

the centre, storing the c. values as 8-bit numbers, each addressed by the appropriate
1

action output from the SLA. The presence of noise on the surface is simply effected

by interposing a full adder fed with noise derived from the central PRBS source. The

resultant noise-corrupted value is then passed to a standard noise comparator arrange­

ment which produces a stochastic pulse train whose 'value' represents the current

http:saddle-point.15

-5­

penalty probability. This is then sampled by the penalty/reward flip-flop to produce

the appropriate system response (O:reward, l:penalty) to be fed to the algorithm

circuit. The use of computer facilities in the preparations for these SLA experi­

ments is summarised in figure 13.

In order to allow maximum flexibility in the presentation of data from SLA

learning runs, it was decided to use a computerised data logging system. A program

(SLOG) was written which recorded the output action after each iteration and wrote

the values to a data file, together with relevant parameters for the particular ex­

periment. A companion program (SLAG) was then written to process the data, together

'withthe ci file provided by SLIG, to form the output map (c.f. figure 9), penalty

curve (i.e. a plot of actual received penalty against iteration number),and a set of

cumulative distribution curves illustrating the evolution of automaton action at

various stages during the learning process. Of this family of programs, SLAG and

SLIG were written primarily for a main-frame system (DEC 20-40) while SLOG was run

on an LST 11/03 system. All three are in FORTRAN, though some MACRO routines are

called as appropriate. The use of SLOG and SLAG in data presentation is summarised'

in figure 14.

The data logging process requires the SLA to interrupt the 11/03 each time an

output action is present. The circuit used to accommodate this is shown in figure 15.

The clock pulse which activates the system state output latch is differentiated to

produce a narrow spike, shorter than the computer's interrupt response time. This

sends an interrupt request via the flip-flop, which is subsequently reset by the reply

signal from the computer.

5. Results and Comments.

A total of seven experiments were performed with the hierarchical SLA using

the performance index described above with a superimposed noise component of +a

distributed uniformly over the surface. Four bits of noise were in fact added,

so that 6 represented 8 units or approximately 3% of the full-scale range (0-255)

-6­

of the 8-bit ci values. The results are detailed below with appropriate comments.

Expt. 1: 128-state, LRP scheme, a = 0.437, $ = 0.992.

The output map, penalty curve and distribution curves for this experiment are

shown in figures 16,17,18 respectively. The form of the output map is essentially

similar to figure 9, which was reproduced from an oscilloscope trace, and again

convergence is obtained in around 1,000 iterations. This particular learning

run gives convergence to the optimum action (100), while the effect of spurious

switching to suboptimal actions, commented on earlier, shows up clearly on the

penalty curve as transient 'spikes' to a higher level of received penalty.

Expt. 2: 128-state, LRP scheme, a = 0.25, S 0.875 (figures 19-21).

This experiment was chosen to illustrate the effect of a low ratio of reward

to penalty (Y-factor). The output map presents a rather chaotic picture, as does

the penalty curve to some extent. However, the distribution curves prove that the

SLA is, in fact, selecting actions at or around the optimum, since a set of peaks

is evident, spaced at intervals of 8, which accords with the partitioning of the

surface into 16 x 8 elements for 128 actions.

This result, therefore, bears out the expected performance of an LR P scheme

with a small measure of expediency, i.e. rapid, reliable convergence to a condition

in which favourable actions are selected, though with probability somewhat short of

unity.

Expt. 3: 128-state, LR I scheme, a = 0.25 (figures 22-24).

This result is a classic example of an LR I automaton locking-on to the wrong

action. The learning characteristics are very similar to those of expt. 1, but this

time action 91 is selected. This illustrates the basic flaw in the LR-I scheme, in

that its high degree of expediency (e-optimality) can result in an inability to

escape from the situation where the wrong action is chosen, as may well occur with a

non-stationary environment.

-7-

Expt. 4: 128-state, LR P scheme, a = 0.5, S = 0.992 (figures 25-27).

While the above experiments lasted for 2,000 iterations,with static environment,

this experiment was run for 5,000 iterations, with the plant switched after 2,048

iterations, as described earlier, under the control of a binary counter fed with stat

output latch clock pulses. In this particular case, the set-up was reversed so that

the 'reflected' plant was chosen first.

The result shows convergence initially to actions 19 and 20, followed by an

interim adjustment period, and culminates in convergence to the 'new' optimum of

action 100.
 The first half of the experiment did not exhibit optimal behaviour, since

action 28 would be preferred, but the overall result does nonetheless illustrate the

ability of the SLA to track a nonstationary environment without excessive delay, pro­

vided an LRP reinforcement scheme is employed.

The following three experiments were chosen to illustrate the flexibility of the

hierarchical SLA. By altering the programmable system clock referred to earlier, the

size of the structure is immediately changed (in binary multiples).

Expt. 5: 64-state, LR I scheme, a = 0.125 (figures 28-30).

In the case of the 64-state system, only every second grid point on the P.I.

surface is addressed (odd numbers). The optimum action is then 101, which becomes

51 in the nomenclature of the 64-state system.
This result demonstrates once again

an LRI scheme locking-on to the wrong action, in this
case 50.

Expt. 6: 32-state, LR I scheme, a = 0.125 (figures 31-33).

This result for a 32-state system is essentially similar to Expt. 5, showing,

in this case, convergence to action 24, while 26 is optimum.

Expt. 7: 16-state, LRI scheme, a = 0.125 (figures 34-37).

This last experiment is significant, in that by addressing itself to only every

eighth element of the P.I. surface, the 16-state SLA effectively sees only the rather

shallow front edge (see figure 11). The corresponding penalty probability range here

-8­

is only 0.71 to 0.85, which clearly presents a severe test of discrimination. The

result obtained shows convergence to action 15, whereas 13 is-the optimum.
The

penalty curve does, however, show a useful reduction in received penalty as a result

of SLA action.

As the number of states is reduced, the learning time is clearly reduced also.

Therefore, two sets of distribution curves were obtained for this experiment.
The

first set covers 2,000 iterations, as before, and shows that all significant activity

is covered by the first 1,000 iterations.
A second set (figure 37) was, therefore,

constructed to
cover this initial period, and these illustrate more clearly the

evolution of the selected action.

In all of these experiments, a 12-bit ADDIE was used for greater accuracy and

lower variance, at the expense of operating speed.
Actual learning times for the

above results can be estimated in the context of an approximate iteration time of

500 ps.

6. Conclusions.

The results of these experiments clearly indicate the power of the hierarchical

SLA as
a means of achieving rapid optimisation of
a multimodal system, irrespective

of contour, or of the presence of noise in the system.
Even in cases where non­

optimal convergence occurred, due to
the use of a reinforcement algorithm where such

behaviour is a known hazard, the automaton chose actions adjacent to the optimum and,

therefore, performed its allotted task of reducing the average received penalty,

thereby achieving a corresponding improvement in system performance approaching the

optimum value.

It must be stressed that at no time did convergence to the local optimum occur,

demonstrating that the SLA has purely altitude sensitivity over the P.I. surface,

as opposed to the gradient sensitivity of conventional hill-climbing methods.

-9-

The result with a switched environment is particularly significant, since it

is likely that many SLA applications will involve non-stationary plant. The presence

of noise on the P.I. surface does not seem to impair significantly the performance

of the SLA, and indeed it can be argued that its perturbating effect on the valu6

of received penalty would help to dislodge a highly expedient learning scheme from

an incorrect action to which it might otherwise lock-on. This would permit a slightly

higher degree of expediency, which does have desirable features, to be catered for

in the reinforcement scheme.

Further applications of the SLA will concentrate on two main areas:
 adaptive

control and telephone traffic routing. Both of these topics have received attention

in the past at simulation level, but the development of a viable hardware automaton

should enable fully operational learning control systems to be denonstrated for these

particular applications.

Acknowledgment

The research reported here was sponsored by the U. X. Science Research Council

and supported in part by the National Science Foundation under Grant No. 03664.

References.

[1] Gaines, B. R., "Stochastic Computing," AFIPS SJCC, 1967, 30, pp. 149-156.

[2] Poppelbaum, W. J., Afuso, C., and Esch, J. W., "Stochastic Computing Elemeits
and Systems," AFIPS FJCC, 1967, 31, pp. 635-644.

[3] Proc. 1st Int. Symp. on Stochastic Computing and its Applications, INPT,
Toulouse, France, 1978.

[41 Miller, A. J. and Mars, P., "Optimal Estimation of Digital Stochastic Sequences,"
Int. J. Syst. Sci., 1977, 8, pp. 683-696.

[5] Miller, A. J. and Mars, P., "Theory and Design of a Digital Stochastic Computer
Random Number Generator," Trans. IMACS, 1977, 19, pp. 198-216.

[6] Narendra, K. S. and Thathachar, M.A.L., "Learning Automata
IEEE Trans., 1974, SMC-4, pp. 323-334.

- A Survey,"

[7] Viswanathan, R. and Narendra, K. S., "Expedient and Optimal Variable Structure
Stochastic Automata," Becton Center, Yale University, 1970 Tech. Report CT-31.

[8] Neville, R. G., Nicol, C. R. and Mars, P., "Synthesis of Stochastic Learning
Automata," Electron, Lett., 1978, 14, pp. 206-208.

[9] Neville, R. G., Nicol, C. R. and Mars, P., "Design of Stochastic Learning
Automata using Adaptive Digital Logic Elements," ibid, 1978, 14, pp. 324-326.

[10] 	Neville, R. G. and Mars, P., "Hardware Design for a Hierarchical Structure

Stochastic Learning Automaton," Journal of Cybernetics and Information Science,

(in press).

[11] 	Shapiro, I.J.,and Narendra, K.S., "Use of Stochastic Automata for Parameter

Self-Optimisation with Multimodal Performance Criteria," IEEE Trans. Syst.

Sci. Cybern., SSC-5, Oct. 1969, pp. 352-360.

[12] 	Viswanathan, R.and Narendra, K;S., "Application of Stochastic Automata Models

to Learning Systems with Multimodal Performance Criteria," Becton Center, Yale

University, Tech. Report CT-40, June 1971.

[13] 	Jarvis, R.A., "Adaptive Global Search by the Process of Competitive Evolution,"

IEEE Trans. Syst. Sci. Cybern., SMC-5, May 1975, pp. 297-311.

[14] 	Viswanathan, R. and Narendra, K. S., "Games of Stochastic Automata," IEEE

Trans. Syst. Man & Cybernetics, SMC-4, 1974, pp. 131-135.

[15] 	Asai, K. and Kitajima, S., 'A Method for Optimizing Control of Multimodal

Systems using Fuzzy Automata," Inf. Sc., 3, 1971, pp. 343-353.

PERFORMANCE-
INDEX I (oc)

lcI(o

U M"[SUPERIMPOSED',
NOISE /

minimum
glo~bal
minimum

_..­
;"- - -

................ _-- -

" - " . '

> 1C

Figurei1milltimodal Performance Index with Superimposed Noise

RANDOM

ENVIRONMENT

INPUTJ
,._learning X evaluation

I

Figure 2c I ntcn of wsection(ATOATN

'
t

output
a

Figure 2

LEARNING

Interaction of SLA

SYSTEM.

with Environment

y
i.e. performance

index

sfue input

2-stae disturbances

leve[1 w memory

level 2 .F1rT! .

reveibFF r"--c --­"T ,kr
q...a..., ... 4..J t...L.. L..... J

levell7 .

P1 "128- io PLANT

Figure 3 Hierarchical Structure SLA

o11.,
clcSnoise

plant response

Figure 4 2 - State ADDIE 'SLA'

input buffer

memory data bus
d .e

ALGOR,.
,, ,"

digital/stochastic
convertor

COMPARATGR

noise]l fl

Q

read/write
control

.

plant response
Ficlock

Figure 5 ADDIE SLA in Hierarchical System

ring counter

SLCK

system

state latch

SFFCK

state
output

Figure 6 State Latch Loading Circuit

'1stle% el

4-

C

c. 0.d le le

-4­

0

0 812 16 2

time(mS)

Figure 7 Learning Characteristic of an 8 - State System

oLSB Ch
r

SLA
state-D /

O/Pk

"MSB>O

ct,

PRFFCK

Figure 8 Simple Plan't Simulator (State 41)

128

'is!

%S
112 _ _

...........

_ _ _ _ _ _

96

80 ,

C- 64-- ----
I

481

-32- ' "

4--t­
16~ Itf$

00 40 80 120 160 200

time(mS)

Figure 9 Output map from "Simple Plant"

X-fJMENSION 4.SCO

Figure 10 Three-Dimensional PI Surface

O 0.90 1.50 Z..O 2.70 3.30 3.30 4.50

X-DI!MENSION NOLE= Z,5

Figure, 11 PI Surface with 128 - Point Grid

SLA

STATE O/P ITERFLG

EPROM [2708]

dafa

NOISE

A B

LULL ADDER

A
COMPARATOR A>B D . P/R

B Ck

NOISE PRFFCK

Figure 12 Plant SimUlafor using E P R 0 M

P I surface
parameters

DEC- 20 PROGRAMMER S LA

"SLIG"

Figure 13 Data Preparation for SLA Experiments

S L A on-tine
OECLABDEC2

11/03DEC-20

off- line

"SLOG SLAG"

graphicat

O/P

Figure 14 Logging and Presentafion of SLA Data

DECLAB 11/ 03

"DATA TR \INT REQ.
data bus

-- 5VSLA
PrCL Q

Figure 15 De6dlab I1/03 Interrupt Circuit

128

64

c

32

5o0o
 1500 2o00

ITERATIONS

Figure 16 Output Map (1)

0.75

-

25z

Ctf

0.00 -1IN

500 ,Q00 1500 2000
ITERATIONS

Figure 17 Penalty Curve (1)

ACTION N=500 ACTION ti=to00
-. ,

U 64 6 Isr 534 as lte
ACT I ON "=1500 ACT I ON NIoou

Figure 18 Distribution Curves (1)

--

9 -. -- : " - -- -.- OP-PT

z,

. ..,- .-

C-)

--64-

Cc

So
 1000

z000
•ITERRT IONS

LS O

Figure 19 OutputMap (2)

zICL

Lij

o .25

1500 2000

ITERRTIONS

Figure 20 Penalty Curve (2)

w0

~Ce
ACT I ON FICsrJATI!ON lo

1, 3254J

ACTI ON ftlaa ACTI]ON -ZOOO

Figure 21 Distribution Curves (2)

i

S<..OPT

z
en

64

L)

-

32

Soo

Figure 22

1000
ITERRTIONS

Output Mvrap (3)

1500 ZOo

1 .00

0.75

-

-Ji

zL0'o.50­ !

LL)u-i

0.00 c5M I N

soo woo1so zono
ITERRTIONS

Figure 23 Penalty Curve (3)

ot

0- 44

6
IL

AC O4 6 3t-.6o--- 19IACTION

Figure 24 Distribution Curves (3)

128

96 96 -- OPT
-°- -4......

z--
Cn

64"

CE -

..,OPT

12!5050 3750 50
ITERATIONS

Figure 25 Odtput Map (4)

1 .00

0.75

-

C

z
Ll-j 0.50.

C-)
o_

a+-M
15O0 MI N IM]N

3750 5000

ITERRTIONS

Figure 26 Penalty Curve (4)

C
35 it

C,
tee

C C

43- 61

ACTI ON,

BE

Figure

f-375

27

tea

Distribution Curves

34

(4)

64

ACTION

as

N,.5030

l

54

43

C

32."

CE)

is

Soo

Figure 28

ooisozb

1000

ITERRTIONS

Output Map (5)

1500 W00O

I .00

0.75

I­
_..

m
LLI 0.50

CE)

LiJ

0 .00

ITERATIONS

Figure 29 Penalty Curve (5) -

C- ACTION o a- A=CTION H=1 o00 4

32 46 45 40
CTION
ACTION A-00 4t10z03 64

Figure 30 Distribution Curves (5)

32

Z4

16

L-)
CE

.OP T

Soo 00 1500 20

ITERRTIONS

Figure 31 Output Map (6)

0.75

I-I-

CE
z
ujI 0.50
L

u

LiJ

o .zI "s

<_M IN

5o
 oo 15bo zobo
ITERATIONS

Figure 32 Penalty Curve (6)

0.00

I

,ACTION "=Sao AC TION 4:1000

' - 4 12 I S ,
zi-

ACTION AtSooACTION

-Figure 33. Distribution Curves (6)

4

_OP T

z

"B

Soooo 1000

ITERPTIONS

Figure 34 OutputMap (7)

1 .00

0 75
<u

CL

LU

0 -
o 25

0-00 oooo so z~
Soo 1000 1500 2000

ITERRT IONS

Figure 35 Penalty'Curve (7)

0-,

J

:TICN Ic I5

RCTION

-

tae

t o

I j

TI N

Figure 3B

=Z0oo
'INItI '

DistributionCurves (7a)

5
CTION

1Z
tI 0

I'

In

CTIONACTION A::
,,­

-,J
t1j

4 ------------- 4 , , 0I- I­1-"-- -

ACTION ACTION

Figure 37 Distribution Curves (7b)

