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Application of a Hierarchical Structure Stochastic Learning Automaton
 

R. G. Neville, M. S. Chrystall, and P. Mars
 

1. 	Introduction.
 

3
One of the principal application areas for stochastic computing research1'2'


is the implementation of adaptive control systems using stochastic learning automata
 

(SLA) 	structures. A learning automaton is ideally suited to the problem of parameter
 

optimisation of a noisy multimodal system (figure 1), 
since the inherent principle of
 

random search avoids the effect of locking-on to local optima unavoidable with normal
 

gradient methods. The automaton, in conjunction with a suitable interface, interacts
 

with its environment in a manner analogous to a conventional feedback control system
 

to evolve a 'suitable' final structure (figure 2).
 

By combining the results of earlier work in hardware stochastic computing systems4'5
 

and extensive simulation studies of learning automaton behaviour,6 7 
, it 	is possible to
 

synthesise practical learning systems capable of on-line operation. Hardware designs
 

for 2-state systems have subsequently been described8 ,9 which verified that suitably
 

fast 	learning behaviour was possible.
 

In order to implement large-scale systems, a hierarchical structure automaton was
 

10
developed, using a 2-state SLA in a time-shared mode . This system has already 	been
 

tested using a simple simulated plant, and the work described here details the appli­

cation to the more practical case of systems with multidimensional, multimodal per­
11,12,13
 

formance criteria
 

2. 	Review of Hierarchical System.
 

The hierarchical SLA evolved as a means of enabling a practical large-scale
 

automaton to be constructed which would be capable of high-speed operation with the
 

minimum of hardware.
 

The approach adopted was 
to time-share a single 2-state SLA in the tree-structure
 

shown in figure 3. 
The random access memory, which stores the intermediate decision
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probabilities, fulfils the requirement for a memory'in the automaton to establish the
 

priority of state order during the learning period. 
Any one state or action probability
 

is given by the product of the decision probabilities along the appropriate path
 

through the tree. This configuration does of necessity involve more serial processing
 

operations, but the savings in hardware are felt to far outweigh the speed penalty.
 

Another advantage is that a modular construction greatly simplifies the design re­

quirements of much larger systems. The algorithm circuit 
can retain the standard
 

4-term format used previously with 2-state systems8 9
 , and is also time-shared at each
 

level.
 

Using these principles, a hardware system with up- to 128 states was constructed,
 

based on the availability of a suitable commercial random access memory (RAM) with
 

128 bytes of storage. The memory requirements are determined by the number of levels
 

in the system. The number of decision probabilities to be remembered at level p-is
 
p-l r2P; therefore, an r-level system (2 states) requires a total RAM allocation of
 

(2 -1) bytes.
 

In the 2-state system (figure 4), 
the ADDIE4 output is sampled by a flip-flop
 

whose state then denotes the output action. In the hierarchical system application
 

(figure 5), the state of this 'system flip-flop' is referred to as the 'decision bit',
 

and the information is stored in a 'state latch' with one location per system level,
 

as indicated in figure 6. The state latch thus acts as a small 'scratch-pad' memory,
 

tracking the path taken through the tree during each cycle of operation by means of
 

the stored decision bits, and also forms the basis of the memory address circuitry.
 

Overall control of the system is effected by means of a multiphase clock, which
 

can be programmed to permit a choice of automaton size (via the number of levels),
 

adjustable learning or ADDIE response time, and externally determined delay in output
 

response time to cater for different plant time constants, thereby preserving fully
 

the flexibility of design referred to above.
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The design of a system with a non-binary multiple of states is more complicated.
 

One possible solution, as yet untried, is to insert a decoder between the existing
 

SLA and the plant. 
The SLA is organised with the next-highest binary number of states,
 

and the decoder arranges for redundant states to be paired-off with 'active' states.
 

This would cause initial bias in the learning behaviour, but the effect may not be
 

too significant when averaged out over the learning period.
 

3. Preliminary Results.
 

The operating principle of the hierarchical system is illustrated by figure 7.
 

This shows the learning characteristic of a 3-level, 8-state system converging to state
 

4. The learning time is typically three times that of 
a 2-state system, as would be
 

expected from the time-shared nature of the learning process. 
The hierarchical SLA
 

1 4
can, it is felt, be considered akin to a system of cooperative games
 between 2-state
 

automata, one at each level. 
Each automaton decides, in turn, which of the two
 

locations below its own current position in the decision tree should be chosen, having
 

been steered to that position by the automaton above it.
 

Initial optimisation experiments, reported previously,I 0 
were carried out using
 

the most elementary of simulated plant circuits, as 
shown in figure 8. One selected
 

action, in this case number 41, carries a low penalty probability, c. = 0.25, and all
 

others a higher one, ch = 0.875. 
Figure 9 shows the resulting learning behaviour,
 

presented in the form of an 
'output map' derived by D/A conversion of the state latch
 

contents. The approximate length of one iteration, using an 8-bit ADDIE and 2.5 MHZ
 

master clock, is 50 Vs, 
so that the indicated learning time of 50 ms corresponds to
 

some 1,000 iterations.
 

Because of variance inherent in the ADDIE, there is always a small probability
 

of incorrect decisions, at any level, beyond the initial learning period. 
This results
 

in the sporadic occurrence of incorrect output actions which can be seen on the output
 

map. 
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4. Application to Multimodal Systems.
 

In order to simulqte a multimodal environment, a rather more sophisticated plant
 

circuit is required. It was decided to use as an example a well-known P.1. function
 

which has a clearly defined global optimum, local optimum and saddle-point.
15
 

In order to match this P.I. surface to the SLA, a program (SLIG) was written
 

which computed the function representing the P.I. surface and provided a choice of
 

output options. In figure 10, the surface is plotted with a fine grid to illustrate
 

its features. Figure 11 presents another view of the surface using a 16 x 8 grid to
 

show how it is partitioned into 128 discrete elements. SLIG also generates a table
 

of penalty probability values ic.} corresponding to each surface element, and writes
1
 

these to a dump file. A third option is to produce a punched tape of binary ci values
 

for use with a custom-built PROM programmer for 2708-type PROMS (1K x 8 bits).
 

A useful feature of the program is the provision for a choice of compression
 

factor applied to the range of c. values derived from-the P.I. function. This enables
 
1
 

the values of the penalty probabilities to be constrained between chosen limits within
 

the full scale range [0,1], to test the discriminatory powers of the SLA. For the
 

learning runs reported here, the compression factor was set at 0.95, giving in this
 

case a minimum c. of 0.025 and a maximum of 0.85.
 1
 

To examine the performance of the SLA under non-stationary conditions, it was
 

arranged that a reflected version of the P.I. be stored in the next 128 bytes of the
 

PROM (i.e. x & y - axes reversed). In this way, simply switching the most significant
 

address line abruptly changes the plant seen by the SLA.
 

The configuration of the simulated plant is shown in figure 12. The PROM is at
 

the centre, storing the c. values as 8-bit numbers, each addressed by the appropriate
1
 

action output from the SLA. The presence of noise on the surface is simply effected
 

by interposing a full adder fed with noise derived from the central PRBS source. The
 

resultant noise-corrupted value is then passed to a standard noise comparator arrange­

ment which produces a stochastic pulse train whose 'value' represents the current
 

http:saddle-point.15
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penalty probability. This is then sampled by the penalty/reward flip-flop to produce
 

the appropriate system response (O:reward, l:penalty) to be fed to the algorithm
 

circuit. The use of computer facilities in the preparations for these SLA experi­

ments is summarised in figure 13.
 

In order to allow maximum flexibility in the presentation of data from SLA
 

learning runs, it was decided to use a computerised data logging system. A program
 

(SLOG) was written which recorded the output action after each iteration and wrote
 

the values to a data file, together with relevant parameters for the particular ex­

periment. A companion program (SLAG) was then written to process the data, together
 

'withthe ci file provided by SLIG, to form the output map (c.f. figure 9), penalty
 

curve (i.e. a plot of actual received penalty against iteration number),and a set of
 

cumulative distribution curves illustrating the evolution of automaton action at
 

various stages during the learning process. Of this family of programs, SLAG and
 

SLIG were written primarily for a main-frame system (DEC 20-40) while SLOG was run
 

on an LST 11/03 system. All three are in FORTRAN, though some MACRO routines are
 

called as appropriate. The use of SLOG and SLAG in data presentation is summarised'
 

in figure 14.
 

The data logging process requires the SLA to interrupt the 11/03 each time an
 

output action is present. The circuit used to accommodate this is shown in figure 15.
 

The clock pulse which activates the system state output latch is differentiated to
 

produce a narrow spike, shorter than the computer's interrupt response time. This
 

sends an interrupt request via the flip-flop, which is subsequently reset by the reply
 

signal from the computer.
 

5. Results and Comments.
 

A total of seven experiments were performed with the hierarchical SLA using
 

the performance index described above with a superimposed noise component of +a
 

distributed uniformly over the surface. Four bits of noise were in fact added,
 

so that 6 represented 8 units or approximately 3% of the full-scale range (0-255)
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of the 8-bit ci values. The results are detailed below with appropriate comments. 

Expt. 1: 128-state, LRP scheme, a = 0.437, $ = 0.992. 

The output map, penalty curve and distribution curves for this experiment are
 

shown in figures 16,17,18 respectively. The form of the output map is essentially
 

similar to figure 9, which was reproduced from an oscilloscope trace, and again
 

convergence is obtained in around 1,000 iterations. This particular learning
 

run gives convergence to the optimum action (100), while the effect of spurious
 

switching to suboptimal actions, commented on earlier, shows up clearly on the
 

penalty curve as transient 'spikes' to a higher level of received penalty.
 

Expt. 2: 128-state, LRP scheme, a = 0.25, S 0.875 (figures 19-21).
 

This experiment was chosen to illustrate the effect of a low ratio of reward
 

to penalty (Y-factor). The output map presents a rather chaotic picture, as does
 

the penalty curve to some extent. However, the distribution curves prove that the
 

SLA is, in fact, selecting actions at or around the optimum, since a set of peaks
 

is evident, spaced at intervals of 8, which accords with the partitioning of the
 

surface into 16 x 8 elements for 128 actions.
 

This result, therefore, bears out the expected performance of an LR P scheme
 

with a small measure of expediency, i.e. rapid, reliable convergence to a condition
 

in which favourable actions are selected, though with probability somewhat short of
 

unity.
 

Expt. 3: 128-state, LR I scheme, a = 0.25 (figures 22-24).
 

This result is a classic example of an LR I automaton locking-on to the wrong
 

action. The learning characteristics are very similar to those of expt. 1, but this
 

time action 91 is selected. This illustrates the basic flaw in the LR-I scheme, in
 

that its high degree of expediency (e-optimality) can result in an inability to
 

escape from the situation where the wrong action is chosen, as may well occur with a
 

non-stationary environment.
 



-7-


Expt. 4: 128-state, LR P scheme, a = 0.5, S = 0.992 (figures 25-27).
 

While the above experiments lasted for 2,000 iterations,with static environment,
 

this experiment was run for 5,000 iterations, with the plant switched after 2,048
 

iterations, as described earlier, under the control of a binary counter fed with stat
 

output latch clock pulses. In this particular case, the set-up was reversed so that
 

the 'reflected' plant was chosen first.
 

The result shows convergence initially to actions 19 and 20, followed by an
 

interim adjustment period, and culminates in convergence to the 'new' optimum of
 

action 100. 
 The first half of the experiment did not exhibit optimal behaviour, since
 

action 28 would be preferred, but the overall result does nonetheless illustrate the
 

ability of the SLA to track a nonstationary environment without excessive delay, pro­

vided an LRP reinforcement scheme is employed.
 

The following three experiments were chosen to illustrate the flexibility of the
 

hierarchical SLA. By altering the programmable system clock referred to earlier, the
 

size of the structure is immediately changed (in binary multiples).
 

Expt. 5: 64-state, LR I scheme, a = 0.125 (figures 28-30).
 

In the case of the 64-state system, only every second grid point on the P.I.
 

surface is addressed (odd numbers). The optimum action is then 101, which becomes
 

51 in the nomenclature of the 64-state system. 
This result demonstrates once again
 

an LRI scheme locking-on to the wrong action, in this 
case 50.
 

Expt. 6: 32-state, LR I scheme, a = 0.125 (figures 31-33).
 

This result for a 32-state system is essentially similar to Expt. 5, showing,
 

in this case, convergence to action 24, while 26 is optimum.
 

Expt. 7: 16-state, LRI scheme, a = 0.125 (figures 34-37).
 

This last experiment is significant, in that by addressing itself to only every
 

eighth element of the P.I. surface, the 16-state SLA effectively sees only the rather
 

shallow front edge (see figure 11). The corresponding penalty probability range here
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is only 0.71 to 0.85, which clearly presents a severe test of discrimination. The
 

result obtained shows convergence to action 15, whereas 13 is-the optimum. 
The
 

penalty curve does, however, show a useful reduction in received penalty as a result
 

of SLA action.
 

As the number of states is reduced, the learning time is clearly reduced also.
 

Therefore, two sets of distribution curves were obtained for this experiment. 
The
 

first set covers 2,000 iterations, as before, and shows that all significant activity
 

is covered by the first 1,000 iterations. 
A second set (figure 37) was, therefore,
 

constructed to 
cover this initial period, and these illustrate more clearly the
 

evolution of the selected action.
 

In all of these experiments, a 12-bit ADDIE was used for greater accuracy and
 

lower variance, at the expense of operating speed. 
Actual learning times for the
 

above results can be estimated in the context of an approximate iteration time of
 

500 ps.
 

6. Conclusions.
 

The results of these experiments clearly indicate the power of the hierarchical
 

SLA as 
a means of achieving rapid optimisation of 
a multimodal system, irrespective
 

of contour, or of the presence of noise in the system. 
Even in cases where non­

optimal convergence occurred, due to 
the use of a reinforcement algorithm where such
 

behaviour is a known hazard, the automaton chose actions adjacent to the optimum and,
 

therefore, performed its allotted task of reducing the average received penalty,
 

thereby achieving a corresponding improvement in system performance approaching the 

optimum value.
 

It must be stressed that at no time did convergence to the local optimum occur,
 

demonstrating that the SLA has purely altitude sensitivity over the P.I. surface,
 

as opposed to the gradient sensitivity of conventional hill-climbing methods.
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The result with a switched environment is particularly significant, since it
 

is likely that many SLA applications will involve non-stationary plant. The presence
 

of noise on the P.I. surface does not seem to impair significantly the performance
 

of the SLA, and indeed it can be argued that its perturbating effect on the valu6
 

of received penalty would help to dislodge a highly expedient learning scheme from
 

an incorrect action to which it might otherwise lock-on. This would permit a slightly
 

higher degree of expediency, which does have desirable features, to be catered for
 

in the reinforcement scheme.
 

Further applications of the SLA will concentrate on two main areas: 
 adaptive
 

control and telephone traffic routing. Both of these topics have received attention
 

in the past at simulation level, but the development of a viable hardware automaton
 

should enable fully operational learning control systems to be denonstrated for these
 

particular applications.
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