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ABSTRACT

The navigational requirements of Galileo as it swings by Mars

[flyby distance is 275 km from the Martian surface; 25 km (iO)] are

going to be met with interferometric angular measurements (VLBI) and

range and range-rate measurements. Like VLBI, dual spacecraft differ-

enced range is less sensitive to Mars ephemeris errors and tracking

station location errors than conventional range and Doppler. Similarly,

differenced range provides angular information about the separation

between the Mars Viking Lander land the Galileo spacecraft. In covariance

studies, dual spacecraft range coupled with conventional range and Doppler

is shown to estimate the Galileo-Mars flyby distance to better than i0 km

(io) which is comparable to the VLBI performance. For the Galileo-Mars

flyby, dual spacecraft differenced range promises to be an excellent

backup to VLBI if the Mars Viking Lander remains operational.

This paper presents the results of one phase of research carried out at the

Jet Propulsion Laboratory, California Institute of Technology, under Contract

NAS7-100, sponsored by the National Aeronautics and Space Administration.
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I. INTRODUCTION

Galileo, a NASA spacecraft to be launched in 1984 by the Space Shuttle/IUS

launch vehicle, will travel from earth to a Mars flyby on an ultra fast trajec-

tory: a flight time of less than I00 days. On such a high acceleration tra-

jectory (Fig. i), conventional Galileo radiometric tracking data, 2-way range

and Doppler, can establish the heliocentric position of the probe to a standard

deviation of ll km.

The Mars ephemeris has an additional 40 km 'in-track' position uncertainty

such that the Mars-Galileo relative position uncertainty exceeds 40 km (iS).

It is essential to know the Mars-Galileo relative position to better than 25 km

(i_). The closer Galileo can be flown past Mars, the smaller the Galileo rocket

maneuver that will be required to,send Galileo on to the Jupiter system (Fig. 2).

The AV requirement of Galileo's rockets increases 40 m/s per i00 km increase in

the flyby distance (Fig. 3). The Mars flyby is being used to provide a con-

trolled acceleration to the Galileo spacecraft.

Deep space probes, such as Galileo, are tracked and navigated from earth.

That is, a radio carrier is beamed to a dist_nt space probe. The probe trans-

ponds the radio tone back to earth. The frequency difference between the

earth transmitted and received signal is the Doppler shift - a measure of

the spacecraft radial velocity. Modulation placed on the radio carrier is

used to measure the light time separation between earth transmission to

and reception from the spacecraft. These conventional radio metric data

types, Doppler and range, measure in the radial direction only.
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Because of topocentric parallax, at any instant of time the radial velocity

of a probe is different at each terrestrial tracking station. This uniqueness

of Galileo and Vikln_range and range-rate, that is dependent on topocentric

position, permits the determination of the relative Galileo-Viking angular

separation.

In covariance studies, Galileo conventional range and Doppler could

estimate the Galileo-Mars flyby distance to 40 km (o) while a combination

of doubly differenced range which exploits the relative topocentric parallax

in conventional range and Doppler yields a standard deviation of

less than i0 km and does so 25 days before Mars encounter (Fig. 4).

Galileo Project plans call for the Galileo spacecraft to flyby Mars 275 km

(Od = 25 km) above the planet's surface (Ref. i). To achieve this accurate

flyby two new technological advances must be accomplished: one, the Mnrs

ephemeris must be improved to better than 25 km (o) and this effort is in pro-

gress; two, a wide-band Very Long Base Interferometry technology must be deve-

loped that will permit the Galileo spacecraft and Mars trajectories to be

defined in a quasar inertial reference frame. This latter effort is underway

also and offers not only a means to reduce the Galileo-Mars relative trajectory

errors but VLBI cancels the preponderance of the Deep Space S_ation (DSS)

l_catien effects on orbit determination.

The Viking Mars Lander I softly touched down on the Martian surface on

July 4, 1976, and it still functions. It is expected to be operational
in the Galileo era.

11-3



Jet Propulsion Laboratory

As circumstances are now, the current Mars Ephemeris and DSS locations

uncertainties limit the Galileo-Mars relative navigation such that a O d _ 25 km

is not achievable with Galileo radiometric range and doppler alone. Galileo-

Viking doubly differenced range provides a promising approach to Galileo's

navigation objectives independent of an improved Mars ephemeris or a new VLBI

technology. It does require the survival of the Viking Lander, however, in 1984.

II. DOUBLY DIFFERENCED RANGE DEFINITION

Figure 5 shows two Deep Space Station (DSS) tracking first one space-

craft and then the other. Thus, four range measurements are obtained and

although the order of the range measurements taken in Figure 5 are DSS-I to

Viking, DSS-I to Galileo, DSS-2 to Viking and DSS-2 to Galileo, the order is

arbitrary.

With a restricted view to a single spacecraft, it is easy to show that

the relative topocentrlc range (Fig. 6) involving 2 DSS is

4P = _Z sin 6 + _L cos 6

where

or

AO - P2 - Pl

AZ = north-south projection of the DSS baseline on that plane

possessing the baseline and the spacecraft

AL- east-west projection of the baseline

AL = AI cos (_ - LST)
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with

A% being a linear separation between the DSS in the earth

equatorial plane

LST = local sidereal time at the % of the baseline

I = (IDSSI + IDSS2 )/2

Now if the relative range, Ap, from 2 spacecraft are combined in a second

difference

A2p. Ap G - AO v
[_ signifies Galileo ]signifies Viking

A2D = AZ [cos 6 G AS]

[sin aG-LsT) cos (I)

+ cos (_C - LST) sin 6G AS

A2p is a function of the relative plane-of-sky coordinates of the two

spacecraft and the baseline projection onto the plane-of-sky. It's sensitivity

to the Mars ephemeris is less than that of AO or p.

BA2O BAP G BAp V

ad(state) 8J_'(state) a_:f(sta re)

but

aA2p a_p

a (Galileo State) a(Galileo State)

Specifically, A20 is 20% (2 months before Mars encounter) to 50% (at encounter)

less sensitive to the Mars ephemeris error than Ap G as is shown by the RSS of

Ap and A2p partials with respect to the heliocentric position of Mars (Fig. 7).

In Figure 7 there are three graphs, one for each baseline used in the study.
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DSS43 is located in Woomera, Australia.

and DSSI4 is at Goldstone, California.

dlnates are tabulated in Table I.

DSS63 is located in Madrid, Spain,

The DSS approximate spherical coor-

Since the DSS are separated in longitude, from 94 ° to 154 °, Mars is in

view over each baseline at different times. The Viking Lander can only be

ranged in the cool morning Martian hours and only ranged once per Martian day.

Thus, as indicated in Figure 7, the Viking Lander can be ranged about 50% of

the days that Galileo is in flight. Table II presents the 43 different occa-

sions. Each baseline can range the Lander for 8 to 12 days repetitively.

Each baseline's performance is not only time dependent, but is also

governed by the alignment of the baseline with respect to the Galileo-Mars

angular separation at encounter (Eq I). In essence, the Viking and the

Galileo AO measurements provide information as to the direction of each space-

craft with respect to the baseline but only in the direction of the baseline.

Orthogonal to the baseline there is no information. And, of course, when Ap

measurements are differenced to obtain A20_ A2P defines the earth centered

angular separation be_een the two spacecraft only in the baseline direction.

Figure 8 shows the baseline orientations relative to the Mars-Galileo direction

at encounter. The DSS43 - DSS63 baseline which is approximately 4 ° offset,

yields the strongest information concerning the flyby distance while the DSS63

- DSS14(_12 ° offset) and the DSSI4 - DSS43 (_60 ° offse_baselines provide

progressively less information.

Table I_I itemizes the theoretical error assessments of A2p resulting

from instrumentation and transmission media.* From Table III it is apparent

,
Philip Callahan, Jet Propulsion Laboratory, private communication
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that it is thermal noise [galactic backgroug, d (6°K), receiver front end elec-

tronics (6°-Ii ° K), antenna cable (3 ° K), transmission media (i0 ° K), etc. ]

when subjected to high gain that dominates the A2D error budget. A full 90%

of the A2D RSS noise is from this source. The result is that _2p should

have an RMS error of_2 m and 2m is the a priori standard diviation used in

covariance study. Most of the systematic errors due to solar plasma, tropos-

phere, ionosphere, DSS clock errors, spacecraft and station delays cancel. In

addition, since tracking stations are used redundantly to track both Galileo

and Viking, DSS longitude errors tend to cancel in the formation of 42D (Fig. 9).

DSS uncertainties in the other two coordinates are of little consequence since

their effect upon A2D is from one to two orders of magnitude smaller yet.

III. THE GALILEO-MARS FLYBY DISTANCE COVARIANCE STUDY

The covariance analysis performed in this paper allows a maximum likelihood

estimated with gaussian errors on the observations. The assumed observations

include two-way coherent Doppler data from the Galileo spacecraft using the

three Deep Space Network stations continuously, one Doppler measurement every

one hour, one range measurement from the Goldstone station every day and the

available doubly differenced range measurements as shown in the Table II. Since

the dynamic state parameters are non-linear functions of the measurements, the

observation equations are l_nearlzed and the results obtained are based on a

linear estimator. When a standard maximum likelihood estimator is constructed,

the computed statistics based on data noise errors, do not reflect the effect

of model errors in the solution. Thus the statistics must be adjusted to
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account for these effects.

The measurementequation can be written in the form

where Z is the vector of measurements,_ the vector of estLmated parameters,

the vector of model parameters whose effects on the estimated parameters are

to be investigated and _ the measurementerrors. A weighted least squares

estimator of _ can be obtained by (Bryson and Ho, 1969)

X :(A_-IA )-I ATp_I_

with the assumption that _ is a randomvector of zero meanwith covariance Pc'

^E(_) = o, Coy (_) = P and E = 0 and the covariance of _ is given by

(^) + P ATp-Icp cTp-iApp c =Cov _ = ?x x c x
x

-i
where P - (ATp-IA) is the voir covariance matrix. The matrix P c is known as

x x

the 'consider' covariance matrix and the matrix A and C are the partial deriva-

tives of the measurements with respect to the estimated and the consider para-

meters. Both the Galileo orbital state and Mars ephemeris parameters are trea-

ted as estimated parameters, and the station locations, Viking lander locations

and Mars mass are treated as 'considered' parameters. The apriori uncertainties

of the parameters are given in Table IV.

In the model used to assess A20, the trajectory parameters of the Galileo

probe was estimated in a manner that considered the uncertainties associated

with the Mars Ephemeris, the DSS location set,them ass of Mars, the Viking Lander

positio:_ (Table IV).

With this parameter set and the Galileo data set (Table V), the Galileo
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heliocentzic position can be estimated to 35 km (O), Figure I0, and this

uncertainty stems principally from DSSlocation uncertainties. The Galileo

trajectory does not sense the gravitational effect of Marsuntil the last daybefore

encounter. Galileo travels over a million kilometers on that last day.

Figure i0, the 'Standard Deviation of Galileo Heliocentric Position',

shows O in kilometers as a function of time in days from Mars encounter or
O

wheneach simulated Galileo data arc stops. All estimates of o involve data0
that starts 88 days before Mars encounter. Each estimate, following the E-85d

estimate, has an additional five days of data added to the solution. All of

the standard deviation plots presented have this sameformat.

Galileo, Mars-centered, position estimates have a standard deviation

equal to the RSSof Galileo's heliocentric position sigma and the. Mars ephemeris

position standard deviation (Fig. lla).

Figure II not only exhibits the standard deviation of the Galileo flyby

but shows the componentsof od related to the Mars Ephemeris(o d I Mars Ephemeris)'

the DSS locations (Od I DS S Locations) and data noise(od i data noise)"

Since Galileo is over a million kilometers away from Mars at E-I d, Galileo

does not see Mars gravitationally until E-2 h and any effort to utilize Galileo

tracking data to improve _.he .Mars ephemeris fails. Hence, the ephemeris pro-

vides a near constant 40 plus kilometer component to Od(RSS).

As indicated in Figure ii, Odl DSS Locations increases as the earth-probe

distance increases. That is, DSS angular locat'ion uncertainty in an Euclidian

solar system results in larger and larger spacecraft linear position uncertainty

with increased topocentric range. However, if DSS coordinates were estimated,
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instead of considered, this procedural artifact would disappear as in Fig. 2.

And lastly, in Figure ii, the data noise is shown to fall off with the

square-root of the numberof observations.

Whenthese A2p observations of Table II are added to the conventional

Gelileo data cf Table V, the effects of the Mars ephemeris and the DSS location

uncertainties are reduced. This should be expected since the RSS of the partials

of the Mars position coordinates (Fig. 7) and the DSS coordinates (Fig. 9) with

respect to A20 are 2 to i0 times smaller than those with respect to A0. That is,

each A20 observation is less sensitive to these error sources, but A20 and A0

possess the same sensitivity to the Galileo-Mars relative state. Figure 12

exhibits the ephemeris, DSS, and data noise contributions to od. The data

ensemble of A20, conventional range and Doppler yields a od < I0 km (o) 25 days

before Mars encounter. This is an improvement over conventional data reductions of

four-fold. As can be seen in Figure 12, the correlated ephemeris and DSS loca-

tions uncertainties in each p observation cancel in the formation of A20 . As

modeled, Mars ephemeris and DSS location uncertainties still dominate the stan-

dard deviation of the Galileo-Mars encounter distance estimate, however, their

combined RSS contribution is less than I0 km (O).
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This covariance study shows that Galileo-Mars navigation is improved

four-fold when dual station range from both Galileo and Viking are added

to conventional Galileo tracking data and reduced. In essence, the Mars

ephemeris and the tracking station uncertainties are differenced out of

the new doubly differenced range data type, to a large extent_ while little

Galileo-Mars relative state information is lost. The information content

of doubly differenced range is analogous to that of wideband very long

baseline interferometry and promises to be an efficient backup the Galileo

Project planned VLBI. Doubly differenced range coupled with conventional

tracking data can be used to estimate Galileo-Mars flyby distance to better

than I0 kln (o).

Reference

Project Galileo Navigation Requirements, PD 625-565, JPL 19 April 1979,
JPL Internal Document.
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TABLE I: Tracking Station Spherical Coordinates

DSS Longi tude Lati rude

43

63

14

14970

355.8

243 .I

35?3

-35.3

40.3
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TABLE ili: Doubly Differenced NSR Error Budget

INSTRUMENTATION :

STATION CLOCK STABILITY (15 MIN)

STATION DELAY CALIBRATION

SNR (THERMAL NOISE)

WAVEFORM DISTORTION

SPACECRAFT DELAY

4 CM

200 CM

88 CM

28 CM

MEDIA:

TROPOSPHERE (25 ° ELEVATION)

IONOSPHERE (25" ELEVATION)

SOLAR WIND

20 CM

6 CM

15 CM

RSS 222 CM

ASSUMPTIONS:

V!KIf!G LANDER - GALILEO SEPARATION _ 5:

DATA AT OPPOSITION ~ 0.7 AU

TWOSTATIONS OBSERVE LANDER IN TURN APPROX. 15 MIN EACH

SAME TWO STATIONS OBSERVE GALILEO IN TURN APPROX. 15 MIN EACH
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TABLEIV: Galileo-Viking Parameter Set

PARAMETERS

Galileo State

Mars State

DSSLocations*

Viking Lander
Locations

Mars GM

MODELSTATUS

Estimated

Considered

Considered

A PRIORI

oX = Oy = cz = lO7 kin; o_ = o3 = o_ = lO0 km/s

Oradial = lO km; Oin track

= 70 km
°out-of-pl ane

: 40 km;

Consi dered

Considered

c_,,= 3.0 m; Ors = 1.5 m; °rz = 15.0 m

= = 40.0 m; cz = 300.0 m;ox lO.O m; oy

cx = Oy = oz = lO-3 m/day

o = O.l km3/Sec 2

rs = DSS distance from terrestrial spin-axis

rz = DSS distance from earth equator plane
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TABLEV: Schedule for Conventional Data

DATATYPE (o) RATE DSSACQUIRING

Galileo Doppler

Galileo Range

1 mm/s

1 km

l pt/hr

l pt/pass

14, 43, 63

14

Start: 6 March 1984 (Ec_.- 88 days) Stop: 2 June 1984 (Fc_- 20 min)
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FIGURE.4: Uncertainty of Galileo-Mars Flyby Distance
as a Function of Time-to-GO
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are obtained every 5 d after E-85 d until Encounter.
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FIGURE5: Range Components of Doubly Differenced Range
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FIGURE I0: Standard Deviation of Galileo

Heliocentric Position Estimates, o
P
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