
An Analysis of GDOP in Global

Positioning System Navigation

Bertrand T. Fang

Computer Sciences Corporation, Silver Spring, MD

ABSTRACT

The accuracy of user navigation fix based on the NAVSTAR

Global Positioning System is described by a 4x4 position-

time error covariance matrix. The "trace" of this matrix

serves as a convenient navigation performance index and

the square-root of the trace is called Geometric Dilution

of Precision (GDOP). In this paper, certain theoretical

results concerning the general properties of the navigation

performance are derived. An efficient algorithm for the

computation of GDOP is given. Applications of the results

are illustrated by numerical examples.
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INTRODUCTION

The NAVSTARGlobal Positioning System (GPS), when fully op-
erational in the early 1990's, will provide world-wide

navigation through synchronized transmissions from a con-

stellation of eighteen 12-hour period satellites in three
55°-inclination orbital planes. An accurate user navigation

fix (position and time) will be obtainable by receiving

transmissions from four satellites and decoding the signal
transit times.

One may relate the measurements, referred to as the pseudo-

ranges, to the navigation state as follows

(i)

where C = velocity of light

T. = Signal transit time from GPS satellite
J

"j" to user, not corrected for user

clock offset, _t

XI,X2,X3,X 4 = user naviagation state, the first three

represent a set of convenient Carnesian

user coordinates, X 4 = C_t is a range

bias equivalent of user clock offset

Xl,X2,X 3 = corresponding Cartesian coordinates of

GPS satellite "j"

n. = random measurement noise
J
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From a set of four measurements, a user navigation fix may

be determined. The accuracy of the fix is characterized by

the following 4x4 position-time navigation error covariance
matrix

P = (HTwH)-I (2)

where H = measurement parital
derivative matrix

_'I" l, I
I
I s (3)

a, b, c and d = line-of-sight unit vectors from a set

of four GPS satellites to the user, W = 4x4 covariance

matrix of random measurement noise, superscript "T" =

transpose of matrix.

The measurement error covariance matrix W is generally taken

to be diagonal, which is strictly true for uncorrelated

measurements only. In practice, assignments of quantitative

values to the elements of W also takes into consideration

such factors as the elevation and health status of individual

GPS satellites. Thus W may be more appropriately be re-

ferred to as the weighting matrix. For uniform weighting, P

is proportional to (HTH) -I, which depends only on the rela-

tive geometry of the user and the four GPS satellites, as is

evident from Equation (3)- The square-root of the "trace"

of (HTH) -I is referred to as Geometric Dilution of Precision

(GDOP), a self-explanatory name. Whatever the weighting

strategy, the "trace" of the navigation error covariance

matrix serves as a covenient and natural performance index
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characterizing the accuracy of the naviagation fix.

a diagonal weighting matrix W,

For

TRACE "P" = sum of diagonal terms of (HTH)-1 weighted

by the inversesof the corresponding ele-
ments of W

Thus the evaluation of the GPS naviagation performance is

essentially equivalent to the computation of the diagonal
terms of (HTH)-I, which may be called the GDOPmatrix for

convenience.

The navigation performance index, Trace "P", also serves as
a criterion for the selection of a set of four best GPS

satellites among those visible, which may be as many as ten

for users which are satellites themselves. If, for optimum

performance, each of the different combinations of four has

to be evaluated, the computational burden can be considerable.

In the following, certain theoretical results concerning

the general properties of the GDOPmatrix are derived. An

efficient algorithm for the computation of GDOPmatrix and

the navigation performance index is given. Applications of
the results are illustrated by numerical examples.

ANALYTICAL RESULTS

To solve for a navigation fix from four measurements, the
partial derivative matrix H must be non-singular. Since

determinant H =

aT-d T 0

bT-d T 0

cT-d T 0
dT 1

a -d

b -d

c -d
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a navigation fix can be determined from four GPS satellites
with line-of-sight directions a, b, c, d, if and only if

the three vectors (a-d), (B-d), and (c-d) are linearly inde-

pendent, i.e., non-coplanar. This shall be assumed to be
the case in the following development.

Since Trace (HTH)-I = Trace (HHT)-I, by making use of

Equation (3) and the fact that a, b, c, d, are unit vectors,
one obtains,

Trace (HTH)-1

- r ce

= Trace (HHT) -I

bTc*l bT +,

-.r

(4)

The advantages of dealing with HH T instead of HTH will

become obvious below.

The following may be observed from Equation (4):

i. The matrix HH T in Equation (4) is non-negative,

symmetric, and with identical diagonal terms which

are greater than the off-diagonal terms. (Expres-

sions such as aTb are scalar product of unit

vectors and are less than unity). These properties

give rise to good behaviour in numerical operations.
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• Since the Trace of a matrix is equal to the sum

of its eigenvalues and the eigenvalues of the

matrix inverse are inverses of the eigenvalues of

the matrix itself, one has the following results:

a. Trace (HHT) -I = ! + ! + _ + r , where the

_i A2 _3 K4

_'s are eigenvalues of (HH T) with

b. From "a" above and the fact that the _s are

non-negative, one may conclude that

T,.-_c_ ('H Wr ]-'_ z (5)

c. Let us order the eigenvalues of HH T as

One has the obvious inequality

, , J_+!

>X, + N*

or,

(6)
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d.

Thus knowledge of the smallest eigenvalue of

HH T provides another lower bound for the

navigation performence index. Sometimes this

lower bound also serves as a good estimate.

The 2x2 principal submatrix of HH T, e.g.

I T2b+l aT_+ 1 has eigenvalues 3+aTb and

l-aTb. From the Theorem of Root Separation

1
for Symmetric Matrices one obtains the follow-

ing bounds on the eigenvalues of HH T

Ii < l-aTb < I 3 (7)

k2 { 3 + aTb_ A.4 (8)

These inequalities have no preferences for the

labeling of the unit vectors. That is, a, b

may be replaced by c, d, etc., to obtain sharper

bounds. In particular, one must have _! _

and _ > _ Therefore, the eigenvalues of

HH T cannot be all identical and the equality

sign in (5) may be deleted. Physically, this

follow from the fact that the four unit vectors

in three-dimensional space cannot play identical

roles in the four-dimensional position-time

space. Combining inequalities (6) and (7), one

obtains another inequality.

(9)

where _ = smallest angle subtended by two

line-of-sight vectors.
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This inequality, although not sharper than

Inequality (8), is easier to calculate, and

expresses the intuitive rule of thumb that an

accurate navigation should not rely on a GPS

constellation that is clustered together. We

shall see later that with good geometry, navi-

gation performance index of magnitude less than

3 may be obtained. On the other hand, as indi-

cated by Inequality (9), a navigation perform-
ance index in excess of 8.5 would result if any

two line-of-sight vectors to GPS satellites are

separated by 30° or less.

An upper bound for the navigation performance

index may be obtained _$

¢ f

It may also be pointed out that because the determinant of

a matrix product is equal to the product of the individual

determinants, and that the determinant of a matrix is equal

to the product of its eigenvalues, one has the relation

=

C-J
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The maximization of ll__d Ii has been suggested as a

I I
convenient GPS selection criterion 3. It is seen from the

above equation that this criterion is equivalent to a maxi-

mization of the denominator of our performance index,

ALGORITHM

An efficient algorithm for the computation of the GDOP matrix

may be obtained by noting the following decomposition of the

measurement partial derivative matrix:

!

- ! !

bT' I
---- I- - -"

C'r ! I

d T i I
I

,_ 4. _b T

I

bT w
I

"r
C. i

0 1
I

i

-I.-

I

l

0
d r' ]iO

I

From this decomposition, the Sherman-Morrison Formula 2 gives

US

(ii)

Let ( f I _ ! k A [ O, , b , c] (12),
I I _ I t
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Then one has, by straight-forward simple algebra,

I
0 1 0 1 I

and

(13.)

z_ _ +hwhere q = f +

_= 1 - dTq,

When H -I is obtained, one may obtain the GDOP matrix as

(HH T)-I (H -1) _ (H -1) . In particular,

Trace (HHT) -I = sum of the squares of the elements of H H

)

Equations (ii), (13) and (14) constitute the algorithm. It

reduces the inversion of the 4x4 matrix HH T to the inversion

of a 3x3 matrix (al bl c) plus the scalar products of sev-
!

eral 3xl vectors. Notice that Eq. (13) may also be obtained

from inverting H by partitioning 2. But the Sherman-Morrison

Formula provides additional flexibility as will be discussed

below.
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An important advantage of this algorithm is that very little

recomputation is required when the fourth GPS satellite is
switched. In selecting the best set of four GPS satellites

from the many possible combinations, a simple combinatorial

test logic may be advantageous. For this purpose, one may

need the flexibility of changing any one of the rows of H.

Although Eq. (14) remains valid provided one interprets the
vectors f, g, and h accordingly, this does mean these vec-

tors have to be recomputed. In that case it is preferable
to use Eq. (Ii) directly instead of Eq. (14). To illustrate

let us assume that for a particular GPS configuration,
H-I=G is already obtained. If the nth (n = i, 2, 3, 4) GPS

Satellite with line of sight vector r is to be replaced by

another satellite with line-of-sight vector p, the new

measurement partial derivative matrix may be written as

gt_

<p-r :o
!

_n is the Kronecker delta (_in=0 for i¢, _in =i forwhere

i = n).

From the above decomposition the Sherman-Morrison Formula

gives us

t+ [p-rJ

The computational economy provided by this equation is ob-

vious.
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APPLICATIONS

I_itively, orthogonal line-of-sight user-to-GPS satellite

configurations are favorable. In three-dimensional space,

it is, of course, impossible to have a set of four mutually
orthogonal unit vectors. An alternative has three of the

.......... , _, c orthogonal. For this case
the vectors f, g and h become the same orthogonal unit vec-

tors as a, b, c and Eq. (14) simplifies to

2 2 2
where dl,d2,d 3 with di+d2+d 3 = 1 are components of the line-
of-sight unit vector d along the orthogonal a, b, c direc-
tions ..... It is of interest to note that for this case the

Navigation Peformance Index depends only on (dl+d2+d3), the
simplest symmetric function of the components of the vec-

tor d. The best performance index of 2.80 is achieved for
dT= (-i,-i,-i)/_. This is the situation that the line of

sight to GPS satellite "d" shows no preference to, but is

directed away from the other GPS satellites, an artificial
but not improbable configuration for an user satellite.
For dT= (i,i,i)/_, i;e., d having the same general direction

as the other three lines-of-sight, the performance index
degrades to 13.20. This degradation reminds us of the state-

ment made earlier about avoiding closely-grouped GPS satel-
lites. For d = -a, i.e. for an user located between two

GPS satellites, the performance index has the value 4.00.

There is reason to think that a GPS constellation with a-d,

b-d, c-d orthogonal may give good navigation performance.
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This may be realized with the set of line-of-sight vectors
/_ c_- C,,,-')l,CJ"_T= (-,,I,,) V7, bT= (f,-f, ,) , - ,

and d T = (i, i, i)/_. However, for this configuration,

the angle between the vector d and any other vector is

-i
cos (2/3), which is comparatively small, and may be undes-

irable from the consideration of the preceeding section.

In_e_d , it follows immediately from Inequality (i0) that

the navigation performance index must be in excess of

9/8 + i/(I - 2/3) = 4_ , a lower bound which may be com-

pared with the exact index of 5.5 obtainable from straight-

forward simple computation. On the other hand, by reversing

the direction of the vector d given above, one has the com-

pletely s_mmetrical configuration that the line-of-sight
-i

vectors are all separated by the same angle cos (- 1/3).

For this configuration one may compute the eigenvalues of

HH T as _i = _2 = k 3 = 4/3 and_ 4 = 4, giving rise

to a navigation performance index

-f,-_(_,').,_ ÷_ "__ _-_ - ,_.o.

Notice that for this configuration,

i. The upper bound for At given in Inequality (7)

is achieved.

2. Any perturbation of the configuration will result

in a decrease in the minimum angle between two

line-of-sight vectors, and therefore a decrease

in kl.
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Thus this configuration maximizes the smallest eigenvalue

of HHT, or equivalently, minimizes the largest eigenvalue
of (HHT)-I. Whether this also happens to be the best con-

figuration remains to be investigated.
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