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ABSTRACT

A Quadrilateralized Spherical Cube has been constructed to

form the basis for the rapid storage and retrieval of high

resolution data obtained of the earth's surface. The structure

of this data base is derived from a spherical cube, which is

obtained by radially projecting a cube onto its circumscribing

sphere. An appropriate set of curvilinear coordinates is chosen
such that the resolution calls on the spherical cube are of equal

area and are also of essentially the same shape.

The main properties of the earth data base are that the indexing

scheme is binary and telescopic in nature, the resolution cells

are strung together in a two-dimensional manner, the cell addresses

are easily computed, and the conversion from geographic to data

base coordinates is comparatively simple.

Based on numerical results obtained, it is concluded that this

data base structure is perhaps the most viable one for handling

remotely-sensed data obtained by satellites. It can be used

either as a data base for individual satellites or as a composite

one for multiple satellites.

This work was supported by Navy Contract No. N66314-74-C-1340.

The author wishes to acknowledge the programming assistance pro-

vided by Michael O'Neill, presently of Dilks Company.
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SECTION 1 - INTRODUCTION

In the numerous satellites presently orbiting the Earth, enormous amounts of

data are continuously taken of the Earth's surface and atmosphere. These

data are of a varied nature: topography, crop distribution, sea surface tem-

perature, cloud coverage, etc. The measurements are used by research and

applications personnel of diverse scientific disciplines. These users usually

employ and Earth-oriented coordinate system, such as the traditional geo-

graphic frame of reference. Thus, it is not surprising that almost all existing

Earth data bases have been constructed with latitudes and longitudes as grid-

lines, either in a patched-up partial fashion or in the entire outlay.

However, what is convenient to the user is not necessarily also efficient from

the standpoint of data management and data processing by the computer. Effi-

ciency is especially important because of the large amounts of data rapidly

acquired in global coverage, the necessity to update data continually for opera-

tional use, and the desire to access directly relatively small amounts of data

corresponding to selected geographic regions at appropriate times.

The high computer overhead encountered in processing can therefore be mini-

mized by designing an Earth data base structure with constant (but selectable)

geometric resolution cells, which are also locally invariant in shape along a

translation in any direction. This would eliminate the necessity to account

for nonequal-area resolution cells, and also the need to compute the location

of every resolution cell in the data base. Moreover, the design should also

utilize a fairly simple transformation between the user-preferred geographic

coordinates and the internal data base coordinates. This would greatly facili-

tate arithmetic and transfer operations desired by the user in mathematical

computations or in graphic display.
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The Quadrilateralized Spherical Cube _1) or the Chan Projection was especially

constructed to form the basis for an earth data base of remotely-sensed satellite data.

In this model, the sphere is visualized as a spherical cube, as illustrated in Figure 1-1.

This spherical cube is obtained by radially projecting the edges of an inscribed cube, as

shown in Figure 1-2.

From Figmre 1-2, it is obvious that equal-area elements on the plane square

do not radially project as equal-area elements on the spherical square. For

example, those elements near the center of the plane square have larger pro-

jections than those elements near the edges of the plane square. Hence, if a

rectangular grid of equal-area elements is first constructed on the plane

square, it is then necessary to distort this grid into a curvilinear network so

that the elements near the center are smaller than those near the edges. The

distortion is such that when the curvilinear elements are projected radially,

equal-area elements are again obtained on the spherical square. The desired

sequence of transformations is illustrated in Figure 1-3 through 1-5. The

mathematical details of deriving these transformations are discussed in

Section 2.

For the present, it suffices to say that it is possible to obtain a world map

such as Figure 1-6. This map illustrates the continental outlines as they

would appear on the cube with the original undistorted rectangular coordinates.

This is accomplished by reversing the sequence of transformations previously

illustrated by Figures 1-3 through 1-5. Thus, in Figure 1-6, equal-area

regions correspond to equal-area regions on the spherical Earth. An examin-

ation of this planar equal-area world map shows that the distortion of the con-

tinental outlines is not as great as might be expected.
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Figure 1-1. Spherical Cube

Figure 1-2. Construction of the Spherical Cube
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SECTION 2 - MATHEMATICAL FORMULATION OF

DATA BASE STRUCTURE

DERIVATION OF DIRECT MAPPING FUNCTION

First, consider a plane surface subtended by a spherical surface with

radius R. Let } be the vector from the center of the sphere to the giveno

plane. As shown in Figure 2-1, let dA be an area element on this plane,
P

and let "_ be the vector from the center of the sphere to the area element

dA .
P

Figure 2-1.

dr" s

r o

Relation Between Plane and Spherical Area Elements

Let dA be the spherical area element obtained by projecting dA radially
s p

onto the sphere. Then, it can be readily shown that the following relation

between dA and dA holds:
p s

3
R 2 cos _ _o)

dA = dA (2-1)
s 2 p

r
o

where denotes the angle between r and r
0
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Let

that

(_ , T}, r ) denote the components of the vector
O

"_. Then, it Iollow_

r r
--_ .-_ O O

COS (r, ro) =-- =

r (r2 2 2)I/2O+_ +'19

(2-2)

Moreover, for convenience, let the unit of length be chosen such that the

radius, R, of the sphere is equal to unity. Then, Equations (2-1) and (2-2)

yield

r
o

dA = dA (2-3)

s (r2+_2+_2)3/2po

Next, consider a cube together with a circumscribing spherical surface. On

each of the six plane faces of the cube, a rectangular coordinate system (x,y)

may be defined, the domain of definition being -r < x , y < r . It may be
O O

easily verified that

1
r = -- (2-4)
o /5-

Let a new coordinate system ($ , n) be defined by

t" =-_ (x, y)

n = 77(x,y)

(2-5)

where _ (x, y) and r/(x , y) are independent arbitrary functions.
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The new area element d_dr] is related to the original area element dxdy by

\x, y/ "
(2-6 )

/.c 'r?\

where J_" ) is the Jacobian of transformation
\X, 3"/

5x 5y

5x by

(2-7)

If this new area element is projected radially onto the surface of the sphere,

Eauatioas (2-3)and (2-6)yield

r

dA -- o '/dxdy

,x,,,s (r 2 + _2 + 3/2 J (2-8)
O\ ,

which relates the spherical area element dA s

dxdy . For original equal-area p!ane elements

area spherical elements dA , it follows that
S

to the original area element

dxdy to transform into equal-

r
o

3/2 _x-_1
(2-9)
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or

(2-1o)

where )2 is a constant.

It is easy to verify that the value of k 2 is equal to the ratio of the area of the

spherical square to the area of the plane square, i.e.,

12 _ 2_/3 _
2 2 (2-111

4r
0

An alternative form of Equation (2-10) is

_X
_v __X ___=2 ÷ +
3y _y _x 2

r
o

(2-12)

whe re

2 = r 2 >2 =_ (2-13)
o 6

2
From Equations (2-7) and (2-12), it is seen that _ may be interpreted as the

area-scale of transformation at the point (_ = 0 , r_ = 0) .
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Equation (2-12) in itself is quite general. It is now desirable to specify the

following general properties for the transformation from (x , y) to (_ , 77) •

1. To preserve symmetry in the transformation Equation (2-5), it is

required that

= f(x, y)

, = f(y, x)

(2-14)

Equation (2-14) states that _ and _ have exactly the same form of dependence

on x and y, except that the roles of x and y are interchanged. Moreover,

s_nmetry preservation also requires that the function f(x , y) be odd in x

and even in y , i.e.,

f(-x, y)=-f(x, y)

f(x, -y) = f(x, y)

(2-15)

As a consequence of Equations (2-14) and (2-15), it is seen that the origin maps

back into itself, i.e.,

f(0, y) = 0 (2-16)

2. To map points on the sides of the square back into points on the

same sides, it is necessary that

f(ro, y) = ro (2-17)
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As a consequence of aLl the above requirements, it may be shown that b____Eand

b_ bY

are zero at the points (0 O) and (r ° ro) Therefore, from Equa-5x ' ' "

tion (2-12), itfollows that

5_ = y = 0. 72360

_x x=0 _: x=0
y=0 y=u

12545 582 (2-18)

bx bY
x--r

o
y--r

O

x--r
o

y--r
O

= _ =_= 1.6494 54166 187 (2-19)

If f(x , y) can be expanded in a power series in x and y , then Equation (2-16)

requires that

2i 2j
f(x,y)=x_ _a. x y

i=o j=o *j
(2-20)

The condition in Equation (2-18) yields

ao0 = .y (2-21)

The condition in Equation (2-17) may be incorporated into f(x , y) by writing

it in the form

2 ) x2i 2jf(x, y) =_x + (1---_)x32 + r o- x 2 x Z b..ij Y
r (i+j)>l
o

(2-22)
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It may be sho_n that Equation (2-12), together with the conditions given by

Equations (2-16) through (2-18), are not sufficient to determine uniquely the

transformation in Equation (2-14). This nonuniqueness fs manifested by the

fact that there are more unkno_ms (bij) than equations when Equation (2-22)

is substituted into Equation (2-12) and terms of the same degree are equated.

Finally, to incorporate the condition in Equation (2-19), it is most efficient to

express f(x , y) in the following form. The details for arriving at this form

are given in Reference 1.

f(x, y) = _/x + (1-7) x 3
2

r
O

2_ (r__)

x_(_o_ _)[_

+ _ y2 2i
o i_o cij x y2

j_o

(2-23)

where

_m

4r 4
0 (2-24)

=0.79048 64491 208

_(_ o)_¢= - 2_/-D- 2r 45

O
(2-25}

= - 1.2254 41487 984
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An approximate mapping function may be obtained by truncating the series

expansion in Equation (2-23) at some degree, and then obtaining the coefficients

c.. and d. which minimize the following residual function:
Ij 1

@(cij, d i)= / r°
-r

o

ro + +
O

- r

o o ,

q_

x _x _Y-_Y _ - dxdy

(2-26)

This residual function is obtained by considering Equation (2-10) or (2-12).

Then, ¢(cij , d i) is evidently equal to zero for the exact transformation func-

tion f(x , y) . For computational purposes, Equation (2-26)is replaced by

¢(cij' di)= X_k y_l It-2 tl + _22+o ro r_2°)2\-3/2

( )12_y _y _x

(2-27)

where the points (x k , yl) are chosen to form a regular grid over the plane

square. A computer software program for performing this minimization prob-

lem is given in Reference 1. For a second-degree approximation of the series

in Equation (2-23), the following values of cij and d.1 are obtained:

COO =-2.7217 05366 1814

Cl0 =-5.5842 16830 5430
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c01 =2.1711 17480 9423

c20 =-3.4578 62747 3390

c11 =-6.4160 15152 6783

c02 = 1.9736 26575 8872

dO =1.4833 12929 4187

dI = 1.1199 72606 9742

d2 =6.0515 38216 1464

The corresponding mapping function f(x , y) is accurate to about five signifi-

cant figures.

DERIVATION OF INVERSE MAPPING FUNCTION

Corresponding to the symmetrical direct mapping function expressed in Equa-

tion (2-14), it may be verified that the inverse mapping function is also sym-

metrical, i.e.,

(2-28)

As discussed in Reference 1, f* (_ , 17) must be expressed in the form

f* (_, _) = 7"_ + (1 - 7") _32
r

o (2-29)

+ 3 2 + 2_ . _2i 1
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where

1

1

#

_'1" = 1
r 4_'+ 5

0

#'/'1" = 1
# + 2r4 5

0

5
1

5" = ('#1" - #*)

2r 4
0

i (__2_.-_-_2r40.)
2r 4 o

O

--TLo_o_ °

(2-30)

An approximate inverse mapping function may be obtained by truncating the

series expansion in Equation (2-29) at some degree, and then obtaining the

coefficients c..* and d.* which minimize the following residual function:
iJ 1

¢*(cij*, di*)= __rr°/rr°l[x-

0 0

f,If_x.y_._y.x_2

-,211/=
(2-31)
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-in obtaining Lm_ i-=,-_uu,_,-u,_,._v,_,............ _-k---_ .......

sidered, as given by Equation (2-23). Then, ¢* (cij , di* ) is evidently equal

to zero for the exact inverse mapping function f* (_ , 77) * Again, for compu-

tational purposes, Equation (2-31) is replace by

(2-32)

A computer soft_-are program for performing this minimization problem is also

given in Reference 1. For a second-degree approximation of the series in Equa-

tion (2-29), the following values of c.. "_ and d.* were obtained:
1j 1

Co0* = 3. 973 89249

Cl0*= 6.591 19476

c01"= -25.368 92536

c20"= -73.064 97000

Cll* =77.381 61133

c02" = 21.685 89623

d * = 1.811 28250
0

dl* =37.635 47857

d2* = 63.000 23655

The corresponding mapping function f* (_ , _) is accurate to about five signi-

ficant figures.
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SECTION 3 - ORGANIZATION OF DATA BASE

The underlying principle in organizing the data base isspecifically related to the binary

division and the stringingpattern discussed below. In this scheme, the process starts at

the level of the faces in the spherical cube, numbering these faces 1 through 6 as in

Figure 3-1.

5

3 2

6

Figure 3-1. Face Numbering Scheme

Each face isdivided, to the requisiteresolution level, by a two dimensional binary grid,

as shown in Figure 3-2. On each level of division,the areas are divided into quadrants,

which are labeled by a 2-bit binary number. Each level of division,k, is indicated by the

addition of two binary bits to the least significant end of a 2k bit binary number. Figure

3-3 illustratesthe indexing scheme corresponding to the third level of division. Suppose

there are n levelsof divisionaltogether. Then, the binary index defines the serial

location of a point in the 2n array.
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LEVELS OF DIVISION

1 2 3

Figure 3-2. Binary Division Scheme

011 11 11 11

> m m m
< < <

m m m

LEVEL
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00

10 11

10

00 01
I

O0 01

01

Figure 3-3. Illustrative Labeling by Binary Bits

13-19



In comparison to the normal row and column addressingscheme, the present one has the

following advantages:

.

.

Reduction in I/O time through maintenance of near-neighbor rela-

tionships

Compactness of arrays containing addresses

•,,_,,,_,,,_u_c u_ a consistent aduress,ng scheme regardless of reso-

lution level

The serialaddressing scheme reduces I/O time for disk type storage devices because

more near neighbors of a point are within the range which requires no arm motion fo_

accessing. The expression of addresses as a single bit string allows storage of addresses

as single machine words, whereas a two-dimensional addressing scheme would require

two or three words, including one for the face number. Finally, the expandibility and

generality of the serialstringpermit the use at any resolution level without regard to

physical storage considerations, such as record size. Any reasonable matrix type storage

scheme would require a dual (or multiple) level of addresses for record and item within

record location in the serialscheme. This isaccomplished simply by considering the high

order m bitsas the record number, and the low order n-m bits as the address within

record.

Implicit in the manner of binary labeling at each level,itis obvious that one obtains an

ordering pattern whose basic nature isthat of an upside-down Z. Figures 3-4 and 3-5

illustratethe binary indexing and the stringingsequence for the firsttwo levels of

division.
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10 11

O0 01

2 3

0 1

Figure 3-4. FirstLevel of Division

1010 1011 1110 1111

1000 1001 1100 1101

0010 0011 0110 0111

0000 0001 0100 0101

10 - ___15
"X_9 13

0 5
4

Figure 3-5. Second Level of Division
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Next, supposethat a point (or cell) is represented by its rectangular coordinates (x,y).

A little consideration of Figure 3-4 which fiiustrates the basic nature of eachlevel of

division reveals that, in general, the x and y coordinates respectively can only be -

associated with the odd and even bits in the binary index (or serial address)s of the cell,

no matter how many levels of division there are. Furthermore, a more important

property is that the x andy coordinates respectively can be directly obtained by merely

masking out the even and odd bits in the serial address. Conversely, this important

property meansthat if the x andy coordinates are given, then the serial addresss may be

obtained by

1. Representingx andy in binary form of n bits.

2. Expandingthe n-bit format to 2n-bit format by appropriately inserting O in

the even bits for x andin the odd bits for y, as illustrated in Table 3-1.

3. Adding the modified forms for x and y to obtain s.

Table 3-1. Binary Representation of Coordinates

DECIMAL VALUE BINARY

1 1

2 10

3 11

4 100

5 101

6 110

7 .111

X-COOR D I NATE Y-COOR D IN ATE

(ODD) (EVEN)

01

100

101

10000

10001

10100

10101

10

1000

1010

100000

100010

101000

101010
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As an example, consioer the cell (2,3). Thus, from _Iable 3-1, we obtain

x = I0 _ 100

y = 11 _ 1010

s = 100 + 1010 = 1110

which checks with Fi_nJre 3-5.

The calculation of the serial string index may also be accomplished by the con-

struction of a very simple hardware device. This device would consist of

three registers: an x register, a y register, and a s register.

Two register-to-register instructions would provide packing from x , y to

s and unpacking s to x , y. These instructions would initiate parallel trans-

fer from Lhe two n-bit coordinate registers to the 2n-bit serial register and

vice versa. The interconnection is shown in Figure 3-6.

+ BIT 3

T
B,T :3

I B,T_I _,T1 I _,To ix

T T T
_,T :_1 B,T111 _,T I01_

i I ! I 1
_ 141 3 12 IllOlS

Figure 3-6. Transfer Between Registers
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SECTION 4 - CONCLUSIOI_

The main properties of the Quadrilateralized Spherical Cube Earth Data Base are:

,

1

.

,

.

The indexing scheme is binary in nature, and telescopic in the sense

that each additional level of resolution is addressed by appending

additional binary_ bits. Thus, minimal work is needed for indexing

cells of higher resolution.

The resolution cells are strung together in a two-dimensional man-

ner, so as to accomplish area coverage with a serial bit string.

Consequently, a higher degree of proximity is achieved for near-

neighbors in this stringing pattern than in the usual one-dimensional

array of stringing by rows and columns.

The cell addresses are readily computed because of the indexing

scheme which is the same regardless of the resolution level, and

because of the stringing pattern which permits the decomposition

of the cell address into two independent binary indices.

The conversion from geographic coordinates to data base coordin-

ates is comparatively simple because of the simplicity of the data

base structure.

Incoming data can be stored rapidly by interpolation, using bench-

marks only occasionally. This method of fast-fillingis made pos-

sible by the equal-area nature and translational shape invariance

of the data base resolution cells.

Input/output operations with this data base are also simplified

because of the rectangularized nature of the data base records and

the rhombic nature of the interpolation blocks.
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.

6,

The user can rapidly and directly access data corresponding to

specified geographic regions of arbitrary shape and size. This

data-accessing is accomplished bv retrieving the relatively few

bit-strings which lie within the associated data base records. The

rapidity and directness of data access are the result of equal-area

resolution, translational invariance, indexing scheme, stringing

pattern, and relatively simple coordinate transformation.

The primary contemplated uses of the retrieved data are mathe-

matical computations and visual display. For the former, the

equal-area resolution proper_ eliminates the need to distinguish

between density measurements and integrated measurements. For

the latter, the quadrilateralized nature of the resolution cells on

the spherical cube and. the comparative simplicity of coordinate

transformation both simplify and minimize the internal operations.
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