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Summary 
Polytetrafluoroethylene  (PTFE) was rubbed 

against nickel in ultrahigh  vacuum  at  loads up  to 3.9 
newton (400 g weight) and speeds up to  94 
millimeters per second. The  transfer film formed  on 
the nickel was analyzed using X-ray  photoelectron 
spectroscopy. 

It was found  that the film was indistinguishable 
from bulk PTFE except for  the possible presence of  a 
small amount (< 1 To) of NiF2.  The  transfer film  was 
found  to be about 1 molecule (0.5 nm) thick under 
all conditions;  but  at speeds above 10 millimeters per 
second,  there was evidence of bulk transfer in the 
form  of  fragments  as  well.  The  thickness 
measurements  required  a choice among conflicting 
published values of the inelastic mean  free  path  for 
electrons in polymers. The values chosen gave 
internally  consistent  results. 

electrons  from  the  substrate, he estimated that the 
film was 2 to 4 molecules thick.  Electron  induced 
desorption  of  the  fluorine  atoms  complicated 
interpretation  of  the  results. 

Cadman, et al.  (refs.  4 to 6 )  have  studied  the PTFE 
transfer film on a  variety of metals using X-ray 
photoelectron  spectroscopy  (XPS). The film is stable 
during  XPS analysis,  and XPS has  surface sensitivity 
similar to AES. The  conditions of  rubbing  are  not 
specified in the  experiments  of Cadman, et al.  and 
were apparently  uncontrolled to some  degree. Both 
thin  layers  and  bulk  transfer were observed. Since the 
intensity  of  electron emission from  the  thin film 
component  of  the  transfer film varied with the  angle 
of  emission, it was concluded that  the thickness of 
this  component was on  the  order of  the inelastic 
mean  free  path (IMFP) of  the  electrons.  In  their 
studies, a weak feature in the XPS spectrum  from 
fluorine was attributed  to metal  fluorides.  This 
feature was found when PTFE was rubbed in air  on 
stainless steel and nickel. When the PTFE  transfer 
film was scraped away with a razor blade,  the  feature 
remained. It was concluded by Cadman, et al.  that 
fluorides exist in the  interfacial region between the 
substrate  and  the  transfer film. 

The  purpose of  the present work was to study  the 
transfer  of  PTFE  to metal  under  controlled sliding 
conditions in ultrahigh  vacuum. Both nickel and 
S-Monel flats were used as  substrate  metals  although 
most of  the  results  reported  here will  be for  nickel. 
Sliding speeds  ranged  from  0.94 to 62.8 millimeters 
per second with normal  loads  from 0.19 to 3.9 
newtons on a PTFE rider with a  4.8-milimeter-radius 
hemispherical  surface. 

Introduction 
There is ample evidence that  the desirable  friction 

properties of polytetrafluoroethylene  (PTFE)  depend 
on  the development of a  transfer film of PTFE  on  the 
material against which it rubs (refs. 1 and 2).  This 
film has been the  subject  of several studies  (refs. 1 to 
7), but fundamental  questions  are still unanswered: 
(1) Is the  transfer film developed by sliding, in fact, 
PTFE? (2) What is the  thickness of  the film? (3) 
What  interaction between film and  substrate is 
relevant to the  adhesion  of  the film to the  substrate? 
The present work was undertaken to answer  these 
questions. 

The work of  Pooley  and Tabor (ref. 2) and 
Makinson  and Tabor  (ref. 1) established  some basic 
features  of  the  transfer process. At  low speed (- 1 
mm/sec)  the  transferred  material  consists initially of 
lumps and  fragments of PTFE.  After sliding for 
some  time,  however,  a  transfer film consisting  of 
sheets or streaks  of  PTFE develops.  From  electron 
microscope  observations,  this film is estimated by 
Pooley  and Tabor  to be less than 10 nanometers 
thick.  At higher sliding speeds (> 100 mm/sec)  the 
transferred  PTFE always contains  fragments.  The 
same  behavior was observed on glass and metal 
provided the  surface was smooth (<0.1 pm mean 
asperity  height). 

Pepper  studied  the  transfer  of PTFE  to S-Monel 
using Auger electron  spectroscopy (AES) (ref. 7). 
From  the  attenuation by the film of  the Auger 

Experimental  Apparatus 
The  XPS system used and  the principles of XPS 

have been described previously (refs. 8 and 9). XPS 
analyzes  the energies of electrons  emitted by a  sample 
when it is irradiated by a beam of X-rays. Since the 
energies of these  electrons are less than  about 1200 
electron  volts,  their IMFP in metals is less than 
2  nanometers  and  depends  on  the  electron  energy. 
The  magnitude  of  the  IMFP in polymers and  its 
energy dependence are  matters of some  importance 
for this  work.  They will be discussed later.  In XPS 
attention is focused on electrons  emitted with 
energies characteristic of  the  atoms  from which they 
come.  These are  photoelectrons  and Auger  electrons. 
In  both  cases,  the  details of the  spectrum will depend 



on the  chemical  state  of the  atoms  producing  it. 
Furthermore,  the  intensity  of  photoelectrons 
detected  from  a  particular  type of  atom  depends  on 
the  concentration  of  that  type  of  atom.  The 
technique  can  thus be made  quantitative.  Finally, in 
extensive studies of PTFE (ref. 10) there  has been no 
evidence that  the polymer is altered in any way by the 
X-ray  flux it  is exposed to. In the present experiment, 
MgK, radiation was used.  A region on  the specimen 
about 2 millimeters in diameter was analyzed. 

The  rubbing  apparatus was a  conventional  pin-on- 
disk device incorporated  into  the vacuum  chamber  of 
the  XPS  instrument.  The  arrangement is shown 
schematically in figure  1. The disk was positioned in 
such  a way that  the  XPS analyzer  accepted  electrons 
from a  spot  about 3 millimeters in diameter  located 
180 degrees from  the  spot  where  the  PTFE  rider 
touched  the  disk.  The disk was rotated by a  variable 
speed drive so that  the relative speed of disk and rider 
ranged  from 0.94 to 62.8 millimeters per second. The 
PTFE rider was a 4.8-millimeter radius  sphere 
mounted on  an arm which entered  the vacuum 
system through  a welded metal bellows and was 
pivoted  outside  the  system. The pivots  allowed  the 
rider to be dead-weight loaded  against the disk. 
Loads  ranged  from 0.19 to 3.9 newtons (19 to 400 g 
weight). 

An ion  gun was directed at the disk in such  a way 
that it  could sputter clean an  area 6 by 6 millimeters 
in front  of  the  analyzer.  Argon ions  of 5 keV energy 
were used for  ion  bombardment.  The  vacuum system 
was at 6 . 7 ~  N/m2 ( 5 . 0 ~  torr)  of  argon 
during  sputtering.  Otherwise,  the  pressure was below 
1.3 x lo-' N/m2 ( 1 . 0 ~  torr). 

Materials 

The rider was fabricated  from  a  rod  of  high-purity, 
high-density,  research-grade PTFE.  The  end was 
machined to a  hemisphere of  radius  4.8 millimeters 
and  abraded with 600-grit S i c  paper.  XPS analysis  of 
PTFE prepared  this way showed the  surface to be 
clean within the limits of detection  of  the  instrument. 

The nickel disk was 63.5 millimeters in diameter 
and was cast from  nominally  high-purity nickel. 
After  sputter  cleaning, XPS analysis showed no 
detectable  contaminants.  The  flat  surface  of  the disk 
was lapped  flat and finished on 600-grit S i c  paper, 
6-and 3-micrometer diamond  paste,  and  finally with 
1-micrometer  aluminum  oxide in distilled water. 

Procedure 

After  the disk and rider were mounted  in  the 
vacuum chamber,  the system was evacuated and 
baked  at 200" to 250" C for 12 hours. All 

Radial 
motion 
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Figure 1. - Schematic  diagram  of  apparatus  for XPS analysis of PTFE 
transfer. 

experiments were performed  after  the disk had 
cooled to between 24" and 27" C  as  indicated by a 
thermocouple  spot welded to  it. 

With the ion gun,  an  area  of  the disk was sputter 
etched  repeatedly  until XPS analysis  showed no 
detectable oxygen or  carbon. If the  rubbing  surface 
was to be native  oxide,  the  vacuum system was back 
filled with dry  air,  then evacuated  again.  Otherwise, 
the disk was  used immediately  after  sputter  etching. 

The disk was rotated 180 degrees and moved 2.5 
millimeters radially (refer to fig. 1). The rider was 
brought  into contact with the disk at  the desired load, 
and the  motor  drive was engaged to  rotate the disk at 
the desired speed until the rider  had moved about 5 
millimeters along  the  disk.  The  rider was then  lifted, 
the  motor drive  disengaged,  the disk rotated back to 
its starting  position and  advanced 0.125 millimeter 
radially.  The sliding procedure was repeated in this 
way until  the disk had been advanced 5 millimeters 
radially. The result was a series of 40 concentric  arc- 
shaped wear tracks  about 5 millimeters long 
separated by 0.125 millimeter. 

The disk was then  rotated 180 degrees again  and 
positioned  for  analysis  of  the wear tracks. It was also 
possible to position the rider tip  for analysis if 
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desired. In  some experiments oxygen was then 
adsorbed  on  the disk by using a leak valve to admit 
oxygen to  the vacuum  system at 1.33 x N/m2 
(1 .O X torr) for 150 seconds (150 Langmuir 
exposure). 

Results and Discussion 

Run-in of Rider 

In  experiments at 2.0-newton (210-g-weight) load 
and 0.94-millimeter-per-second sliding speed,  it was 
found  that  the  XPS spectrum was not  repeatable 
until several sputter  cleaning and  rubbing sequences 
had been performed. Specifically, the F(1s) to C(1s) 
peak  intensity  ratio varied between 10.5 and 12.0. 
After  two  to five cleaning and  rubbing sequences,  the 
F(ls)/C(ls)  ratio became repeatable  at  the higher 
value. No shift in the  binding energy of the F(1s) or 
C(1s) peaks  accompanied  these  variations.  As will  be 
explained next,  the varying ratio is consistent with 
the  transfer  of  random  fragments while the higher 
final  ratio is characteristic  of  a very thin  film.  This 
result agrees with the  observations by Tabor, et al. 
(refs. 1 and 2) that  fragmentary  transfer  occurred 
during  the  initial sliding of PTFE, but that  once  the 
PTFE rider was run-in,  the  transfer film was thin  and 
uniform. This behavior was identical on nickel and 
S-Monel. 

The rider was examined by XPS before and  after 
the  run-in. No changes in the  C or F  spectra were 
detected.  The rider  run-in on nickel showed Ni in the 
XPS  spectrum.  The  transferred Ni fragments  could 
also be observed  optically  after removing the  rider 
from  the  apparatus (fig. 2). The rider  run-in on 
S-Monel showed no  such  transfer of metal. Since all 
other results were the same on  both metals,  the 
transfer  of nickel is not  important  to  the results 
presented  here. All results  presented  hereinafter will 
refer to experiments  performed on the nickel disk 
after  appropriate  run-in. 

Chemistry  of  the Transfer Film and  Interface 

The chemistry of  the  transfer film will be examined 
in three ways: (1) the  binding energies of  the  C(ls), 
F(1s) and F  Auger  peaks will be compared with those 
from bulk PTFE, (2) the  structure of the Auger 
spectrum  from  the film and bulk PTFE will be 
compared,  and (3) structure  in  the  F(1s) 
photoelectron  peak will be identified. 

(1) Because PTFE is an insulator  and charges 
under  the  X-ray  beam,  apparent binding energies are 
not significant.  However,  charging will shift  the 

entire  spectrum so that differences between the 
binding energies of  spectral  features are unchanged. 
Wagner  (ref. 11) has pointed out  that  the difference 
in energy between the  Auger  peaks and  the 
photoelectron  peaks of an element will change if the 
chemical state of  the element is changed.  This 
difference has been tabulated  for  many  fluorine 
compounds including PTFE (ref. 12). 

Table I shows the result of measuring  this 
difference on bulk PTFE  and  on a transfer film 
formed  at a 2.0-newton (212-g-weight) load  and 
0.94-millimeter-per-second  sliding  speed.  The 
literature  values  for  PTFE  and NiF2 are shown for 
comparison.  The  carbon Auger  peak is too  broad  for 

Figure 2 - Wear scar on PTFE rider  rubbed  on  clean 
nickel in vacuum. Load, 2 newtons;  sliding speed, 
0.94 millimeter  per second; temperature, 24O to 
27' C. 75X (Note  nickel  fragments. 1 

TABLE 1.-RELATIVE ENERGIES OF  F(ls), 

F AUGER,  AND  C(ls) ENERGIES IN THE 

XPS SPECTRUM OF PTFE 

F Auger-F(ls), C(ls)-F(ls), 
eV eV 

Bulk PTFE 87.7 +0.2 
PTFE transfer on Ni 87.7 +0.2 

397.6 &0.2 

Bulk PTFE (ref. 12) 87.6+0.1 
397.2 &0.2 

NiF, (ref. 12) 86.9 +O.  1 
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this  type  of  analysis,  but the binding  energy of  the 
carbon  photoelectron  peak  relative to the  fluorine 
photoelectron  peak  can be measured.  Table I also 
shows  this  measurement. 

(2) Weissmann  has  shown that,  for oxygen, the 
structure of the KLL Auger  spectrum  depends on  the 
chemical state  of  the oxygen atom  (ref. 13), because 
the intensity  of  features  involving the  2p  and 1s 
electron shells will depend on the  degree  of  charge 
tranferred to the 2p shell in the  chemical bond.  The 
feature involving only  electrons in the 2s and Is 
levels, however, will have  constant  intensity  since 
both  these levels are filled and  no  charge  transfer 
occurs.  The  same  argument  should hold for  fluorine. 

Figure 3 shows  the  fluorine KLL Auger  spectrum 
observed  for  both  bulk PTFE  and a  transfer  film. 
Feature I involves the 2s and Is electrons, while 
feature 2 involves the 2p and Is electrons  and  would 
be expected to  change size with changes in  chemical 
bond.  Thus a  change in the  ratio  of  feature 2 to 
feature 1 is indicative  of  a  change in the chemical 
state  of  the film.  Although  the  features are not sharp 
and  feature 1 is particularly  difficult to measure, 
there is no difference in the  spectra beyond the 
measurement  uncertainties. 

( 3 )  Both the  foregoing  results are consistent with 
transfer film of  unmodified  PTFE which does  not 
interact  chemically  with the nickel surface.  It is 
possible,  however, that  an  interaction  occurs  at a few 
isolated  sites,  rather  than  generally  over  the 
interface.  This would  be  revealed  by a chemically 
shifted  small  peak in the F(1s) or C(1s)  spectrum. 
Such  a  peak would be  difficult to observe in the 
nickel spectrum  because  the  strong nickel peaks  have 
associated structure which would produce a  masking 
effect.  Just such a weak peak was observed in the 
F(1s) spectrum by Cadman, et al.  (ref. 6). It has  also 
been observed in this  work  (fig. 4). 

In  Figure 4 the  horizontal  scale  has been shifted to 
correct for  sample  charging so that  the  peak  due to 
PTFE falls  at the accepted  value  of 690.2 electron 
volts  (ref. 12). The small peak  at lower binding 
energy is then  consistent with values  in the  literature 
for NiF2  (ref. 12). While an exact  measurement of 
the relative sizes of  these  peaks is futile,  the 684.9  eV 
(NiF2)  peak is clearly less than 1  percent  of  the 690.2 
(PTFE)  peak. As  will be  shown later,  the film is at 
most  a  few  molecules  thick, so that  the relative sizes 
of  these  peaks  imply that  only  an occasional  flourine 
has  reacted chemically  with the nickel  substrate. 
Since  fluorine is monovalent, it seems  unlikely that it 
can  participate  directly  in a strong  bond between the 
metal and  the  PTFE.  Rather its single bond must  be 
formed  either with a metal or with a carbon  atom. 
The presence  of the nickel fluoride  peak  may, 
however, be indirect  evidence of a metal  carbon 
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Figure 3. - Fluorine  auger  electron spectra from PTFE transfer film  (on 
clean  nickel in  vacuum)  and  from  bulk PTFE. Load, 2 newtons; sliding 

per peak is shifted horizontally so that  the spectra coincide. ) 
speed, 0.94 millimeter  per second. (To account  for  charging,  the up- 

696  694 , 692 , 690 , 688 ,v 686 Ni F2 684  682 

Binding  energy, eV 

Figure 4 - His) XPS peak from PTFE transfer  film  applied 
to clean  nickel in vacuum. Load, 2 newtons;  sliding 
speed, 0.94 mill imeter  per second. 

bond. Since,  in the process  of  bonding to  the  metal, a 
carbon  atom would  lose one  fluorine,  that  fluorine 
could  then  bond  to a metal  atom. If there  is,  indeed, 
an occasional  metal carbon  bond, a  small feature 
should  appear in the C(1s)  spectrum  much  like  the 
nickel  fluoride  peak in the  F(1s)  spectrum. 
Unfortunately  the sensitivity of  the  technique  for 
carbon is only  one-tenth  that  for  fluorine.  Therefore 
no  such peak was observable, even  if  it was  present. 



Thickness  of  Transfer Film 
- _* 

The  ratio of  the  intensities  of the F(1s) and C(1s) 
peaks in the  XPS spectrum  from bulk PTFE is 9.8. 
The  same  ratio  from  transfer films (after  running-in 
the  rider) varied from 11.4 to 12.9.The ratio  could be 
different  from  the  bulk  ratio if the film were 
chemically different from  the  bulk,  but  the preceding 
discussion  indicates that it is not  chemically 
different.  The  other  explanation  for  the difference is 
that  the film thickness is comparable to the  IMFP of 
the  photoelectrons. In this  section  the  thickness  of 
the  PTFE  transfer film will be  determined by two 
independent  methods.  First,  the F(ls)/C(ls) intensity 
ratio will be used. Then,  the  attenuation  of  the Ni(2p) 
peak from  the  substrate will be used. Both  techniques 
require knowledge of  the  IMFP of electrons in 
polymers for which conflicting data have been 
published. The present results will be shown to 
permit a  choice to be made between the  two 
conflicting  results. 

F( ls)/C( Is) ratio.-Because the  IMFP  for the 
C(1s)  electrons, hc, is greater  than  that  for  the F(1s) 
electrons, h ~ ,  the  sampling  depth for carbon will be 
greater  than  for  fluorine  on  a thick sample. 
Consequently,  as  the  thickness of the  sample 
decreases the C(1s) intensity will decreases most 
rapidly,  and  the  ratio  of  the F(1s) to C(1s)  intensities 

The intensity from a bulk specimen is obtained by 
letting x- 03; then, 

Thus,  the intensity of emission for  the film relative to 
the bulk is 

-(x/hp2os e) 1 
For  the emission from  the C(1s) level, the  same 
argument gives 

will increase. The exact form  of  this  decrease can be Thus,  the  F(ls)/C(ls) intensity ratio is 
found  as  follows. 

Consider  a layer of  thickness dt at  a  depth  t in a 
film of PTFE of  thickness x. The  F(1s) intensity 
emitted  from  that layer at an angle 0 from  the  normal 
to the  surface  and  detected by the  analyzer is IF - Z: I - e  

- ( X / X ~ C O S  e) 

IC ---[ 15 1-e -(x& cos e )  I 

where KF is a  constant  including  the  concentration  of 
fluorine  atoms,  the photoelectric  cross  section  for  the 
F(1s) level, and  the  transmission  of  the  analyzer at 
the energy of  the F(1s) electron.  The  IMFP of the 
F(1s) electron is AF. The  total intensity  from the film 
is obtained by integrating 

J o  . 

For  the  experiments described here, (@/IF) =9.8. 
The geometry of the  analyzer and  the specimen is 
such that  the average  value of 8 is 42". If the values 
of AF and Xc are  known,  then x can be determined 
from  the  measured values of ZF/IC.  However,  the 
value of the IMFP in polymers is a  subject of  some 
controversy  (refs. 14 and 15). 

Table I1 shows  published  values for Ac and AF. 
The larger  value of AF is calculated  from the 
corresponding  value  of Ac using the  energy 
dependence used by Evans, et al.  (ref. 16). The 
smaller values are  from  Clark, et al.  (ref. 17). Fig- 
ure 5 is a  plot of  equation (6) for  the two choices of 
AF and Ac. The range of IF/ Ic  measured  in  this 
study is also  shown.  The  thickness is shown in 
number  of  molecular layers (ref. 18) as well as in 
nanometers.  The  ratio IF / I c  was measured for 
PTFE  transfer films  applied  at  loads  up  to 



TABLE 11.-PUBLISHED  VALUES OF  THE 

IMFP FOR C(ls)  AND F(1s) ELECTRONS 

IN FLUORO-CARBON  POLYMERS 

Source Material 

Ref. 16 a4.6 PTFE 
Ref. 17 Vinylidene-fluoride 

aDetermined from X, using XocE'.'. 

l5[ 14 

nm nm 
hc. +-. 

- 1. 0 0.7 
6. 0 4.6 "- 

10 I I 
0 1.0 2 0  3.0 4 0  . 5.0 

Film thickness. x. nm 

I I  I I  I I  I I  
0 1 2 3 4 5 6 7 8 9  

Film thickness. x. molecular  layers 

4 newtons. The average film thickness x was then 
determined  from  the  curves of figure 5 .  The solid 
circles are  the result of using the  larger  (Evans) values 
of XF and Xc, that is, the  dashed curve in figure 5 .  
The  one negative value has  no physical significance, 
but  can be attributed to experimental  uncertainty. 
The  open circles are  obtained  from  the smaller 
(Clark)  values, that is,  from  the full curve in figure 5 .  

Attenuation of nickel  spectrum.-The attenuation 
of  the nickel spectrum by the  PTFE film can be used 
as  an  independent  measure of  the film thickness. 
Once  again,  knowledge  of  the  IMFP is required. 
Furthermore,  the possibility of incomplete  coverage 
of  the nickel by the film must be considered.  Letting 
I1 be  the  intensity  of  a  particular nickel peak  from 
the  clean  surface, 12 the intensity after applying the 

PTFE film, and f the  fraction  of  the  surface covered 
by the  film, 

Rearranging and  taking  the logarithm of  both sides 
give 

Once  again 0 is 42". The value  of h is the IMFP in 
PTFE of  electrons with the  energy of the  particular 
nickel peak being considered. 

Since PTFE, cleaned in air, shows  no oxygen upon 
examination with XPS, it is clear that oxygen does 
not absorb  on  PTFE.  On  the  other  hand, a 
reproducible oxygen signal is observed after  exposure 
of clean nickel to 150 Langmuir  of  oxygen.  Thus,  the 
amount of oxygen adsorption by the nickel can be 
used as a  measure  of  the  coverage  of  PTFE, f. If IO is 
the oxygen intensity from cleaned nickel exposed to 
oxygen, and 16 is the oxygen intensity from cleaned 
nickel exposed to oxygen after  the  application  of  a 
PTFE transfer  film,  then 

This  method  of  measurement is inherently less 
precise than  the  method using the IF/ZC ratio, 
because it involves the  measurement  of  both nickel 
peak  ratios and oxygen peak  ratio.  Futhermore,  the 
oxygen peak and  the Ni(3p) peak were weak adding 
to  the  measurement  problem.  Finally,   the 
appropriate  background level above which the nickel 
intensities were measured was ambiguous  because  of 
the  structure in the nickel spectral  features.  On  the 
other  hand,  the  two nickel  peaks  give  two 
independent  measurements  for  a given transfer  film. 
By averaging  these two  measurements, an improved 
estimate  can  be  obtained. 

The  attenuation  of  both  the Ni(2p) and Ni(3p) 
peaks were measured  for PTFE applied at several 
loads.  In  each  case f was measured by oxygen 
exposure. Values of X were obtained  from  refer- 
ence 17 by interpolating between measured values: 
XNi(2p) = 0.7 nanometer, hNi(3p) = 1.8 nanometers. 
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Then, using equations (8) and (9), the  average film 
thickness x was calculated. The results are  plotted  as 
the  open  squares in figure 6. The solid squares in 
figure 6 are  the result of the  same measurement using 
Values Of XNi(2p) and XNi(3p) calculated from h c  in 
the  first  line of  table I1 by assuming X O C E ~ . ~  
according to  Evans,  et  al. 

Discussion of thickness results.-It  is clear from 
figure 6 that these  results are consistent with Pooley 
and  Tabor 's   measurement   of   less   than 
10 nanometers, whichever choice of IMFP is made. 
The largest  measured  value  is,  in fact,  about 4 
nanometers or eight molecular layers. The  actual 
transfer film may not,  of  course,  be of uniform 
thickness.  What is measured  here is an average 
thickness  over the analyzed area (excluding possibly 
uncovered  regions of  zero thickness). 

It is also evident from figure 6 that agreement 
between the  two  methods  of  measurement is much 
better when the  IMFP's  due  to Clark are used (open 
symbols),  than when those  due  to Evans  are used 
(solid symbols). Furthermore, use of Clark's values 
entails no  assumption  about the energy dependence 
of  the  IMFP, since they were measured  over  a wide 
range of energies. Use of the  Evans  values,  on the 
other  hand, requires  calculation  of  IMFP's  from  the 
one measured value of hc and the  assumption  that X 
is proportional to For  both  these  reasons  the 
Clark values seem to be most  probably  correct. 

0 

o lFllc ratio 
0 Attenuation of nickel spectrum 

Open  symbols denote use of IMFP from 
Clark, etal. (ref. 17) 

Solid symbols denote use of IMFP from 
Evans et al. (ref. 16) 

-.. . 
". . - 
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0 1  J 
1 2 3 4 5 

Load. N 

Figure 6. - Average thickness of PTR transfer  film  on nickel  at  vari- 
ous loads in  vacuum. Sliding speed, 0.94 millimeter  per second; 
temperature. 24O to 27O C. 

On  the  assumption  that  Clark's values  of IMFP 
are  correct,  the average  thickness of the  PTFE 
transfer  film is about  one molecular  layer.  There is a 
tendency for  the thickness to increase with load 
which is especially evident in  the ZF/ZC results. 
However, it is just these  results, at the  small  values of 
x, that  are most  influenced  by the energy dependence 
of  the  IMFP. Since the uncertainties in the  IMFP's 
are of the  order of 30 percent  (ref. 17), the  trend with 
load  cannot be taken  too seriously. 

To determine  whether or not  the  transfer film 
thickness  increased in repetitive  passes, the  rubbing 
experiment at 2 newton  load was repeated 10 times. 
The IF/ZC ratio was measured at intervals  during  the 
tests.  It  remained constant  after  the first pass 
indicating  that no  additional  PTFE was deposited 
after  the  initial  transfer. 

0 
0 

0 
0 

0 

0 0 0  

a d  1 I I I l l l l l  O I " 
.1 1 10 1W 

Silding speed, mmlsec 

Figure 1. - Average thickness of PTFE transfer  film on nickel at various sliding 
speeds in vacuum. Load, 2 newtons; temperature. 24O to 27' C. 

Figure 8. = Photomicrograph of clean  nickel surface rubbed with 
PTFE in vacuum. Load,  2 newtons; sliding speed, 94'milli- 
meters per  second; temperature, 24O to 2 7 O  C. 200X. 
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The effect of sliding speed on the thickness of the 
transfer  film was observed  by  measuring I F / I c  for 
films  prepared at 2 newton  load and sliding  speeds 
from 0.94 to 94.0 millimeters per  second. The result 
is shown in figure 7. Above 10 millimeters  per  second 
the average film thickness is increased and is more 
irregular than  at lower speed.  A  photomicrograph 
(fig. 8) of  the  transfer film shows  scattered  small  bits 
of PTFE  on a generally uniform  surface. The erratic 
results of the higher  speed  tests in figure 7 could be 
due to occasional  inclusion of microscopically  thick 
bits of transfer  material in the analyzed area, while a 
molecularly  thin film still covers the  area overall. 
Such a view  is consistent with the  observation by 
Tabor (ref. 1) of  transferred  fragments  during high 
speed  sliding. 

Conclusions 
Transfer films of PTFE have been formed on 

nickel under  controlled  sliding  conditions  and 
analyzed with XPS;  the following  conclusions have 
been made: 

1. The  transfer film is chemically identical to bulk 
PTFE. 

2. The only evidence of chemical interaction with 
the  nickel is an extremely  small XPS peak 
attributable to NiF2. This  may be indirect evidence 
of a  bond between the  substrate  and a very few sites 
on  the  PTFE molecule. 

3. The film is unchanged by repetitive  passes  over 
the  same area. 

The following conclusions  depend on  the values  of 
IMFP chosen  for the calculations.  The values 
obtained by Clark  and  Shuttleworth in the  Journal of 
Polymer Science gave the  most  self-consistent  results, 
and  are  taken  to be correct. If they are  not,  the film 
thicknesses may be as great as eight molecular  layers, 
but  the  conclusions are otherwise  correct. 

4. At  speeds below 10 millimeters per second and 
loads up  to 4 newtons,  the  transfer film is about  one 
molecular layer thick,  on  the average. 

5. Above 10 millimeters  per second,  the 
monomolecular film persists but is accompanied by 
the  random  transfer  of  fragments of bulk  material. 

Lewis Research Center, 
National  Aeronautics and Space  Administration, 

Cleveland,  Ohio,  April 21, 1980, 
506-53. 
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