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ABSTRACT

An analysis was conducted of the possib-le modes of thermal stress

failure of brittle ceramics for potential use in point-focussing solar

receivers. The pertinent material properties which control thermal stress

resistance were identified for conditions of steady-state and transient

heat flow, convective and radiative heat transfer, thermal buckling and

thermal fatigue as well as catastrophic crack propagation. Selection

rules for materials with optimum thermal stress resistance for a parti-

cular thermal environment were identified. Rr=ommendations for materials

for particular components were made. The general requirements far a

thermal shock testing program quantitatively meaningful for point-focus-

sing solar receivers were outlined. Recommendations for follow-on

theoretical analyses were made.
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IDENTIFICATION AND ANALYSIS OF FACTORS AFFECTING

THERMAL SHOCK RESISTANCE OF CERAMIC MATERIALS IN SOLAR RECEIVERS

1. INTRODUCTION

1.1. General

Advances in energy-conversion technology require the improvement in

conversion efficiency of existing systems or the development of technical-

ly and economically viable now systems. For energy conversion systems cur-

rently in use, such as steam-electric power plants, internal combustion and

turbine ongines, the conversion efficiencies, at least in principle, can be

improved simply by increasing their temperature of operation. Unfortunately,

such an approach is not practical at this time. T%ls is because of the lack

of availability of suitable materials of construction which can render

satisfactory service at high temperatures over the time periods required for

economic operation with minimum down-time. The successful development of new

energy conversion systems such as MHD, nuclear fusion, etc., to large extent

if not completely, will depend on whether appropriate materials of construction

for critical components are available or can be develoyed.

Solar energy represents an attractive alternative among the many new

sources for energy cinder consideration at this time, in view of its near

unlimited supply. However, for solar energy systems too, the availability

of suitable materials of construction will be a major factor whicn will de-

cide their technical and economic feasibility. Even for solar receivers

which operate at relatively low temperatures, such as hot water systems, the

durability and reliability of available materials of construction still need

to-be established for reliable estimates of technical and economic feasibility

of such systems.



For solar receivers which ope rite at much higher temperatures, such

as steam-electric or hot air-electric system, potential problems to be en-

countered with materials are expected to be quite severe. For acceptable

conversion efficiencies, such systems may have to operate at temperatures

well in excess of 10000C. At these temperature levels very few, if any,

polymeric or metallic materials will be available to provide satisfactory

trouble-free service without frequent replacement. Ceramics, for this reason,

are the logical (and only) choice of materials of construction.

Ceramic materials have many favorable properties for high-temperature

solar receivers such as high melting point, excellent resistance to creep

deformation and high resistance to corrosion and erosion. Unfortunately,

ceramics, in spite of these favorable properties, also exhibit certain un-

desirable characteristics which dictate extreme care in their use. These

unfavorable properties include a high degree of brittleness, low to moderate

tensile strength and low impact resistance. Due to the brittleness and un-

favorable combination of other physical properties, ceramic materials also are

highly susceptible to fracture when subjected to constrained thermal expansions

due to non-linear temperature distributions or-rapid temperature variations,

commonly referred to as "thermal shock". Such "thermal shock" can result in

thermal stresses of magnitude well in excess of the failure stress of a

ceramic. Under these conditions fracture can occur in a catastrophic manner,

rendering the structure or component completely incapable of providing con-

tinued satisfactory service. This aspect of ceramic materials is particularly

critical for high-temperature sol:• receivers which even under norm&! operating

conditions will be subjected to rapid temperature variations. This, for in-

stance, will occur under weather conditions consisting of intermittent cloud

2
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•	 covers, which can cause rapid heating and cooling due to large variations

in the intensity of the incident radiant heat flux.

It is the view of the writers of this report that the feasibility of

solar receivers made of ceramic materials will critically depend on their

ability to withstand the thermal stresses resulting from rapid temperature

variation. The possibility of catastrophic failurr due to such thermal

stresses should be considered in the very preliminary design stages of

such solar receivers. Furthermore, materials of construction should be

chosen very carefully to reduce the probability of thermal stress failure

to an absolute minimum. In order to do so, it is imperative that the fac-

tors which affect the thermal stress fracture behavior of brittle ceramics

ave well understood.

The objective of the present study is to review the current under-

standing of the factors which govern the failure of brittle ceramics under

conditions which generate thermal stresses of high magnitude. This review

will provide a general framework for the selection of ceramic materials

for solar-energy receivers and associated components with maximum resistance

to thermal stress failure.

1.2. Scope of Study

In order to render the results of this study as generally useful as

possible. the discussion to be presented will not be design -spf. fic. Never-

theless, a few recommendations will be made appropriate to point-

focus solar receivers for which a number of general design features have

been developed and for which a number of specific designs are underway. No

attempt will be made to develop the basis for thermo-elastic theory, the

3



principles of heat transfer or the various aspects of materials science and

engineering. For these, a vast literature is available.

The role of the various material properties and specifically their inter-

action as currently available from the literature, will receive major emphasis.

Recommendations for further analytical work, material development and physical

prcperty measurement appropriate to the thermal stress failure is solar re-

ceivers will be made. A number of general design and operating principles

which will reduce the incidence of thermal stress fracture of individual com-

ponents, will be outlined.

For convenience to the reader, the technical discussion of this report

will be subdivided into individual sections as follows:

a. General discussion of the sequence of events and relevent material

properties associated with thermal stress fracture.

b. Discussion of general approach to analysis of thermal stresses and

development of selection rules for materials with optimum thermal

stress resistance. The general principles of different philosophies

for the selection of material with high thermal stress or shock re-

sistance will be included here.

c. Discussion of role of material properties and other variables for

specific heat transfer conditions including steady-state and tran-

sient heat transfer for structures or components for which thermal

stress failure cannot be allowed.

d. Discussion of general principles of catastrophic crack propagation

in brittle ceramics subjected to severe thermal shock and develop-

ment of selection rules for materials which will undergo a minimum

extent of crack propagation.

4



t	 a. Summary of thermal strass resistance "figures-of-merit"

and comments on individual property data.

f. Discussion of geometric and dimensional variables, including

spatially non-uniform heating or cooling.

g. Discussion and recommendation for specific materials for solar

receivers.

h. Recommendations for thermal shock testing of candidate ceramics

materials for solar receivers.

i. Materials-related comments and recommendations for system

design and operation.

J. Recommendations for further theoretical work to aid material

selection for solar receivers.

For the purpose of efficiency of the reader, the discussion will

emphasize the highlights obtained from the literature and minimize the

theoretical and experimental details. Whenever appropriate, reprints

of the particular literature studies cited, will be included in the

report in the form of appendices.

S
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2. MATERIAL PROPERTIES AND OTHER VARIABLES WHICH AFFECT THE THERMAL

STRESS FAILURE OF BRITTLE CERAMICS: GENERAL OUTLINE.

In order to establish a framework for the selection of ceramic materials

for solar receivers with optimum thermal shock resistance, a general dis-

cussion of the material properties and external variables which affect the

thermal stress failure of such materials will be presented first. Most

conveniently, this can be done by considering thermal stress failure to

be result of four independent successive phenomena or stages as follows:

a. generation of temperature distributions.

b. generation of thermal stresses as the result of temperature dis-

tributions.

c. the onset of failure due to thermal stresses of high magnitude.

d. the formation of cracks as the result of failure and their effect

on subsequent performance.

Each of these stages is controlled by a unique set of material properties

and other variables, to be discussed individually in the following section.

2.1. Variables Which Control Temperature Distributions

Temperature changes in a structure are the result of heat conduction

through its surface (either inward ar outward) or as the result of internal

heat generation. Heat transfer by conduction within the solid is controlled

by thermal conductivity and diffusivity of the material. Such heat transfer

can occur in a steady-state or transient mode. Heat can be transported

to or from the surface by convection or radiation or a combination of both.

A large body of literature is available on convective and radiative

heat transfer. Convective heat transfer generally is a function of the

6



properties of the medium surrounding the structure, the geometry of the

structure as well as the temperature difference between the structure

and the medium. Convective heat transfer, generally, is not a function

of the properties of the material being heated, with the possible excep-

tion of heat transfer involving nucleate boiling which may be a function

of the surface roughness.

Radiative heat transfer on the other nand, in addition to geometric

effects, is a function of the optical properties of the material including

the reflectivity, absorptivity, emissivity and the absorption coefficient

for transmitted radiation. It is important to note that these optical pro-

perties are a function of wave-length, temperature, surface condition

(finish) and angle of incidence for the incident radiation.

2.2. Materials Properties Which Control the Magnitude of Thermal Stress

From a known temperature distribution, the resulting thermal stresses

can be calculated. It is important to point out that such a calculation

requires only the distribution of the temperature, without knowing specifi-

cally how this temperature distribution was achieved.

A distribution of temperature causes an equivalent distribution of

thermal strains directly proportional to the coefficient of thermal ex-

pansion. Thermal stresses arise when the thermal expansions cannot occur

freely as the result of external or internal constraints. For linearly

elastic solids, the thermal stresses are directly proportional to Young's

modulus of elasticity, and frequently are a function of Poisson's ratio

as well.

Plastic deformation such as by dislocation mechanisms in metallic

materials can help reduce the magnitude of the thermal stresses appreciably.

7



However, plasticity is generally very limited in ceramic materials for

_.	 solar receivers at normal operating temperatures. At sufficiently high

temperatures, however, thermal stress relaxation in ceramics can occur

by diffusional creep. For creep rates directly proportional to the

stress (i.e., linear creep), the rate of thermal stress relaxation can

be described by a stress-independent "viscosity" term. It appears ap-

propriate at this time to point out that thermal stress relaxation by

creep or any other type of non-linear deformation may not be desirable.

On bringing the structure to thermal equilibrium at ambient temperature,

such thermal stress relaxation could result in levels of residual stress

of sufficient magnitude that catastrophic failure could occur.

2.3. Materials Properties Which Control Failure Under the Influence

of Thermal Stresses

For an assessment of the properties which affect thermal stresu

failure, three failure modes must be considered.

a. Rapid fracture

b. Fat_ . ,at failure

c. Thermal buckling

Rapid fracture occurs when the thermal stresses exceed the failure

stress of the material. In brittle materials, such failure usually occurs

in tension, because of the high ratio of compressive to tensile strength.

Nevertheless, failure under the influence of compressive stresses cannot

be ruled out, especially those due to external constraints. Brittle

materials generally fail from pre-existing cracks. A knowledge of the

crack size and geometry as well as the appropriate thermal stress intensity

factor, will permit an assessment of rapid failure in terms of the critical

8



stress intensity factors for the materials under consideret{.on. For

tensile or shear failure (or their combinations), this will involve the

critical stress intensity factors, KID, 
KIIC 

and 
KIIIC 

for mode I, mode

II, and mode III of the crack opening displacement, respectively.

Fatigue failure occurs as the result of sub-critical crack growth

at steady-state or cyclic stress levels below those required for fast

fracture. At temperatures near room temperature, such crack growth

fr:quently occurs due to a "stress-corrosion" reaction, or is accelerated

by the presence of surface-active molecules. In particular, water appears

to be very effective in this respect. At high temperatures where the

rate of the surface, grain boundary or bulk diffusion becomes appreciable,

subcritical crack growth can occur by diffusional phenomena.

In principle, as discussed in detail in a subsequent section, the

fatigue-life in terms of time or cycles to failure can be calculated if

data on the kinetics of subcritical crack growth are available. A common

expression (among many others) to describe the rate of crack growth, V

is given by:

V • AKi exp (-Q/RT)
	

(2.3.1)

where A and n are numerical constants, K I is the stress intensity factor and

Q is the activation energy for the process reponsible for the crack growth.

Therefore, calculations of fatigue . life for a given material require values

of A, n and Q.

Thermal buckling, to be described in further detail later, also repre-

sents a failure mechanism which should be considered in the design of

ceramic solar receivers. Thermal buckling occurs as the result of the

mechanical instability of relatively slender structures which are prevented

9
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from expanding against rigid constraints or cooler parts of the structure.

Thermal buckling can result in major bending deformations of the struc-

tures, which depending on the conditions of constraint can serve as a

mechanism of thermal stress relief. On the other hand, the bending

stresses induced by such deformations could result in a tensile fracture.

As will be shown later, thermal buckling and subsequent possiblt. fracture

depends on the coefficient of thermal expansion, Young's modulus, tensile

strength or critical stress intensity factor and in some cases on the

thermal conductivity as well.

2.4. Material Properties Which Control Crack Propagation Following

the Fracture of Brittle Ceramics by Thermal Stresses

Crack propagation following the onset of fracture in brittle ceramics

under the influence of thermal stresses can be quite extensive. For this

reason, materials selection and design for high-temperature structures is

based on promoting rapid crack arrest, rather than avoiding thermal stress

fracture altogether, a goal not easily achieved. A design philosophy based

on crack arrest requires data on the behavior of crack propagation.

The extent of dynamic (unstable) crack propagation, commonly en-

countered in high-strength ceramics is governed by the elastic energy

at fracture, the energy expended in propagating a crack per 'init area of

crack surface, Y f , as well as the total nu°aber of cracks participating

in the fracture process. The elastic energy at fracture is governed

by the Young's modulus, Poisson's ratio, and the failure stress such as

the tensile strength.

Stable crack propagation in thermal stress fields is controlled by

the coefficient of thermal expansion, Young's modulus, Poisson's ratio

10
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as well as the fracture surface energy.

At this point it is important to mention that the fracture surface

energy can also be derived from the critical stress intensity factor, T-1c.

However, it should be noted that the values of Yf or KC 
for the initia-

tion of fracture may not be identical to the corresponding values observed

for the crack propagation or arrest.

Finally, the inertial effects of crack propagation will be assumed

to be small for the thermal stress fracture of solar receivers and hence

the sound velocity will not be considered as a design parameter.

2.5. Summary

For convenience of the reader, the total number of all material pro-

perties referred to in the above discussions are listed in Table 1.

11
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TABLE I. Material Properties which Control Thermal
Stress Resistance of Brittle Ceramics

Symbol Property

a coefficient of linear thermal expansion

A constant in equation for sub-critical
crack growth, V 	 AKi exp(-Q/RT)

C emissivity

E Young's modulus

n viscosity

Yf fracture surface energy

K thermal conductivity

K
tC critical stress intensity factor

K thermal diffusivity

A wave-length above which dielectric
material is opaque

u absorption coefficient

n constant in V - AKi exp(-Q/RT)

.	 v Poisson's ratio

Q activation energy for sub-critical crack
growth

r reflectivity

Sc compressive strength

St tensile strength

12
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3. DISCUSSION OF GENERAL APPROACH TO DEVELOPMENT OF SELECTI01R RULES

FOR CERAMIC MATERIALS WITH OPTIMUM THERMAL. STRESS RESISTANCE

In order to establish the basic framework for the development of

selection rules for ceramics with optimum thermal stress resistance, a

discussion is in order to the basic definition of how such thermal stress

resistance is defined. For this purpose,it is important to recognize that

in the technical community engaged in high-temperature technology, two

radically different philosophies have evolved for the designation of ther-

mal stress (or shock) resistance. As will be demonstrated in subsequent

sections of this report, failure to appreciate the basic difference in

philosophies could lead to major errors in the selection of the appropriate

materials, which in turn could lead to spectacular catastrophic failures.

3.1. Material Selection Based on the Avoidance of Therma? Stress

Fracture.

The first of the two philosophies referred to above is based on the

concept that the thermal stresses be kept sufficiently low that thermal

stress failure is not initiated. In other words, the magnitude of thermal

stress (or stress intensity factor) is always less than the failure stress

(or critical stress intensity factor) of the component or structure. Of

course, this philosophy is not unique to high-temperature technology and

is universally accepted in the fields of mechanical, civil and other engi-

neering involved in structural design.

For brittle ceramics, this design philosophy is appropriate (if not

essential) to structures or components for which the performance would be

adversely effected by the formation of cracks. This would be so particularly

l
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for load-bearing structures subjected to tensile or bending stresses such

as turbine blades. Also, this philosophy would apply to such items required

to maintain atmosphere or pressure control such as automotive spark-plugs,

heat exchangers, seals, etc.

Thermal stress resistance of the materials, from which such components

are made is defined in terms of the maximum temperature difference, the

maximum radiant heat flux, the maximum rate of heating and other similar

criteria such that the maximum thermal stress does not exceed the design

strength of the material at any instant during the time period over which

the material is subjected to thermal stress.

The first step in developing the selection rules for ceramic material

with optimum thermal stress resistance as defined by this philosophy, is

to obtain information on the temperature distribution for a given thermal

environment. This information can be obtained theoretically for the known

heating/cooling conditions or can be obtained experimentally. In this

respect, it should be noted that particularly for complex geometries,

calculations of temperature distributions in a structure from basic prin-

ciples of heat transfer still can be rather uncertain. Spatially non-

uniform heating and cooling and mixed radiative and convective heat trans-

fer introduce further complexities. The reliability of calculated tem-

perature distribution is expected to be no better than the assumptions

made. Also, any uncertainties in the temperature distributions will be

reflected in the calculated thermal stresses. For this reason, it is

strongly recommended that any proto-typs solar receiver be instrumented

as completely as practically possible to obtain experimental data on the

temperature distribution. These data can constitute a more reliable basis

for the evaluation of the thermal stresses than calculated temperature

14



distributions based on simplified assumptions. An additional bene-

fit in obtaining experimental data for the temperature is that a comparison

can be made with the calculated data for the validity of the original assump-

tions on heat transfer conditions. The resulting feed-back will be a major

value in the assessment and interpretation of possible thermal stress

failures in solar receivers.

The next step is to evaluate the thermal stresses from the tempera-

ture distributions. This can be done by analytical or numerical methods.

Analytical methods have the disadvantage that they are limited to relatively

simple geometries, spati-illy uniform heat transfer and material properties

which are independent o: temperature. A major advantage of the analytical

method is that it results in analytical expressions for the thermal stresses

in which the contributory role of the relevant material properties, heat

transfer mechanisms, geometry, etc. are clearly defined.

Numerical methods, such as finite element analysis are more con-

venient to real-life structures of complex geometry, spatial non-uniform

heat transfer and temperature dependent properties. The disadvantage of

the numerical method is that it provides a numerical answer for the stresses

with little or no direct information of the relative role of individual

material properties and other variables which affect the magnitude of the

thermal stresses. For this reason, numerical methods are less convenient

for the derivaticn of general selection rules for materials with high

thermal stress resistance. Of course, finite element anzlysix, for instance,

is a highly valuable tool for the optimization of a given design. Since

the primary purpose of this study is to identify and analyze the individual

fatter: which affect thermal stress resistance, this report will emphasize

selection rules obtained by the analytical approach.

15



The third step in deriving the selection rules is to define a failure

criterion. For instance, the magnitude of thermal stress should not ex-

ceed some specified value of stress, such as the tensile strength. Or

some minimum value of thermal fatigue-life or cycles may be defined. Other

criteria may be appropriate to failure by thermal buckling.

The fourth stop in obtaining selection rules for materials with high

thermal stress resistance is to substitute the failure criterion into the

appropriate equation for the thermal stresses. Rearrangement of this

equation will result in exr-assions for the maximum rate of heating, tem-

perature difference, incident radiant has t flux, thermal fatigue-life, etc.,

to which the structure and component can be subjected without incurring the

risk of thermal stress failure. As will be demonitrated, these expressions

clearly define the individual effects of the relevant material properties,

geometry and dimensions which affect the thermal stress resistance. For a

given thermal environment, geometry and defined failure criterion, these

expressions will yield so-called thermal stress resistance "parameters" or

"figures-of-merit" on the basis of which the optimum material can be

selected. This report will review all such expressions which have appeared

in the technical literature for a wide variety of thermal conditions and

failure criteria. Since a change in geometry involves a change in the

numerical value of the geoms::-ic constant, for rurposes of efficiency,

redundancy can be avoided in presenting the equation for a given thermal

environment for a single geometry only. Further redundancy is avoided

by presenting tae equations, whenever appropriate, in terms of the maximum

thermal stress value (such as the tensile strength) to which the material

can be subjected. For materials with cracks of known size and geometry,

16
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the equations can be expressed in terms of the critical stress intensity

factor by simple substitution of the relationship between this latter

quantity and the fractut. stress.

3.2. Material Selection Based on Limited Crack propagation

Frequently, in high-temperature str•ctures, the magnitude of thar.:r 1

stress can be so high that even in the materials with the highest thermal

stress resistance, as defined in the previous section, failure cannot be

avoided. This situation is common in such structures as various furnaces

and crucibles in the metal working industry, various kilns, thermal stor-

age systems, casting nozzles and similar applications. Under such condi-

tions, material selection based on the avoidance of fracture as discussed

previously, simply is not relevant. Instead, material selection and design

is based on the philosophy that the extent of crack propagation which re-

sults from thermal stress failure is kept to a minimum. In this manner,

the relevant material properties are affected as little as possible. Also,

the material will retain its geometry and will continue to provide satis-

factory service !n spite of being in a partially fractured condition. This

philosophy is applied almost exclusively to materials used in the "re-

fractories" industry. The methods of testing of the thermal stress resistance

of such materials also reflect this philosophy. Instead of measuring the

maximum heat flux, rate of heating, etc., required for failurr:, as would

be done to establish thermal stress resistance based on the avoidance of

thermal fracture. refractories are tested in a different manner. Such

testing consists of subjecting the material to a very severe thermal en-

vironment such as i-ionching with a high heat transfer coefficient followed

by measuring the effect of the resulting failure on the properties or dimen-
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sions of the material. For instance, a measure of thermal stress resistance

may be based on the weight lost by the material per unit area due to the

complete loss of fragments from the surface. Alternatively, the number

of cycles may be measured required for propagation of a crack complete:y

through the material. A favorite method is to measure the tensile (bend)

strength retained by the material following the thermal shock. In terms

of the latter test, the criterion for good thermal stress resistance is

br.eed on the maximum retention of strength.

The development of selection rules for high thermal stress resistance

for limited crack propagation must be based on an analysis of crack pro-

pagation behavior in thermal stress fields. It should be noted that the

theory of crack propagation under thermal stresses is relatively unexplored

and is a fruitful area for future work. Nevertheless, for simple mechani-

cal models, a number of selection rules have been developed to be presented

in further detail later together with experimental evidence in support

of these rules. As will be expected and demonstrated, the selection rules

for the avoidance of thermal fracture differ significantly from those ap-

propriate for material selection based on limited crack propagation.
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4. DEVELOPMENT OF SELECTION RULES FOR BRITTLE CERAMICS WITH OPTIMUM

THERMAL STRESS RESISTANCE

This section will .. , centrate on presenting an overview of the analytical

results for the thermal stresses for a variety of heat transfer conditions

and. modes of failure. Appropriate selection r.les for ceramics with maximum

thermal stress resistance will be developed. Valess stated, the pertinent

material properties will be assumed t: be independent of temperature. Through-

out the discussion, the material will be assumed to behave as a continuum.

For grossly heterogeneous strictures or composite materials, the results ob-

tained may require modification. For instance, caution is advised with

regard to selecting values of the fracture stress. C!nce in composite mate-

rials with thermal and elastic discontinuities, the thermal stress concen-

tration factors are expected to differ from those under conditions of mechani-

cal loading, the thermal stress may not necessarily be equal to the mechanical

failure stress.

4.1. Steady-State Heat Flow or Isothermal Conditions

4.1.1. Flat plate. Absence of external constraints

The flat plate is located in the y,z-plane and - a = x `- a and is sub-

jected to steady-state heat flow in the x-direction. The thermal conducti-

vity is independent of temperature and position. This condition results in

a linear temperature distribution of the form:

T - To +vx
	

(4.1.1.1)

where G is the temperature gradient. The temperature difference, AT, across

the plate in the x-direction becomes AT - 2a0.
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For an unconstrained flat plate,the stresses can be computed from:

ay ^ z a 
LE L

- T + i. ja Tdx + 3x2 f  Txdx^	 (4.1.1.2)
-a	 2a -s

Substitution of eq. 4.1.1.1 into eq. 4.1.1. 2 results in:

a	 a 0	 (4.1.1.3)
y,z

As shown by Boley and Weiner ( 1960) , this result can be shown to be

generally valid for any geometry and temperature distribution which is

linear in a rectangular coordinate system (even in three dimensions) as

long as the body is free from external constaints.

At first sight, the above result may appear trivial. Nevertheless,

it is critical to the understanding of how thermal stresses-arise and how

the magnitude of such stresses for any design configuration can be minimized.

First of all, the result of eq. 4.1.1.3 shows that the existence of a tem-

perature difference within a structure is not a sufficient condition for

the existence of thermal stresses. The key-element for the development of

thermal stresses is the existence of constraints, either external or inter-

nal, which prevent free thermal expansion. The stress-free condition of the

above flat plate with linear temperature distribution results from the ab-

sence of external constraint so that the non-uniform thermal expansion can

be accommodated by bending of the plate. For & linear -temperature gradient,

the distribution of the thermal expansions are exactly equal to the dis-

placements in the plane of the plate due to the bending. Under these con-

ditions , the plate is free to deform to a uniform radius of curvature, R

given by:

R - (7a)-1	
(4.1.1..4)
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if in the above plate under steady-state heat flow, the temperature

distribution were non-linear as the result of a spatially or temperature

dependent thermal conductivity, the stresses no longer will be zero. In

general, in unconstrained materials the magnitude of thermal stress is

a function of the non-linearity of the temperature distribution.

4.1.2. Flat plate. Constrained to prevent bending deformations

This flat plate has the identical boundary conditions as those in

section 4.1.1, but with the additional constraint that bending deformations

are prevented. The linear temperature distribution in this plate will

result in a bending moment of such a magnitude that when applied on a

free plate will result in a radius of curvature of opposite sign of the

curvature of eq. 4.1.1.4. The maximum stress which result from this bend-

ing moment equals:

oy,Z M 0.5 m SOT/(1-v)	 (4.1.2.1)

The result of eq. 4.1.2.1 can be used to develop a selection rule for

materials with optimum thermal stress resistance subjected to steady-

state heat flow and constrained from deformation in bending. Brittle

ceramics generally exhibit values of tensile strength which are some order

of magnitude lower than the compressive strength In the above plate con-

strained from bending, the magnitude of tensile stress equals the magnitide

of compressive stress. For this reason, failure most likely is to occur in

tension. The designer is interested in the maximum temperature difference

(AT max ) or maximum heat flux (gmax) to which the constrained flat plate can

be subjected. An upper limit on AT 
maxor 

q.x can be obtained by setting the

value of the stress in eq. 4.1.2.1 equal to the tensile strength, which
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upon rearrangement yields:

AT max
- 2 St (1-v)/mE	 (4.1.2.2)

Note that ATmax is independent of the thickness of the plate. This

effect arises because a thicker plate would require a smaller value of

temperature gradient 0 (and a corresponding smaller value of induced cur-

vature in the unconstrained form) to achieve a given value of AT.

An expression for the maximum heat flux (per unit area), q =x, can be

obtained by noting that the heat flux can be related to AT by:

q - KAT/2a	 (4.1.2.3)

where K is the thermal conductivity.

Substitution of eq. 4.1.2.3 into eq. 4.1.2.2 yields:

gmax 
M S t (1-v)K/a Ea	 0	 (4.1.2.4)

Note that gmax is inversely proportional to the plate thickness.

It should also be noted that the derivation of the above expressions

for AT max and gmax assumes a safety factor equal to unity. This assumption

will be made throughout the rest of this report. Clearly, because of

statistical reasons and uncertainties in the degree of constraints imposed

and many other design-related reasons, safety factors in excess of unity

may well be preferred in order to insure high reliability.

Examination of eqs. 4.1.2.2 and 4.1.2.4 shows that the expressions

for AT max and gmax include a geometric constant (which depends on the

degree of constraint), a size factor and a number of material properties.

For a given constraint and plate size, the materials engineer or designer

can achieve increases in AT x or gmax only by optimization of the relevant
ma

material properties. Accordingly, AT
max 

can be optimized by maximizing

w	
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the "thermal stress resistance parameter" or "figure-of-merit" given by:

S t (1-v)/a E	 (4.1.2.5)

Similarly, 
gmax 

can be optimized by maximizing the parameter:

S t (1-v)K/a E	 (4.1.2.6)

4.1.3. Flat plate at uniform temperature, constrained from in-plane

expansion

This flat plate located in the y,z-plane is at uniform temperature,

but prevented from thermal expansion by rigid constraints at the edges of

the plate. The plate will be considered to be sufficiently thick so that

failure due to elastic instabil'.ty (i.e. thermal buckling) is avoided. This

mode of failure will be discussed later in this report.

The stresses in the plate due to a uniform temperature rise AT are:

ay1z • - aEOT/(1-v)
	

(4.1.3.1)

For materials with a positive coefficient of thermal expansion, as

is the case with most materials, the stresses in the plate are compressive.

At sufficiently high values of OT, the material in the plate could fail

in a compressive mode.

The maximum value of temperature difference, AT max , by which the plate

can be heated, without incurring compressive failure can be derived by

setting the stress in eq. 4.1.3.1 equal to the compressive strength, Sc,

which yields:

max 
a Sc (1-v)/aE
	

(4.1.3.2)

with a corresponding thermal stress resistance parameter identical to the

above expression.
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4.1.4. Composite structures

High levels of thermal stress even under isothermal conditions can

be generated in composites and structures composed of strongly bonded

dissimilar materia_: with mismatches in their coefficients of thermal

expansion. Such a composite or structure will be stress-free only at

the temperature at which the materials which constitute the composite or

structure were fabricated or joined. A change from this value of temperature

creates thermal stress, as each individual material is prevented from free

expansion by the other material(s). Such stresses usually are undesirable,

with the possible exception of the bi-metallic strip for which the resulting

deformation can be used to advantage to the operation of a thermostat.

A simple expression can be given for the stresses which result from

a mismatch in the coefficients of thermal expansion for a composite struc-

ture consisting of a thin coating on an underlying thick substrate. The

magnitude of the stresses in the coating equals:

o - EAmAT/(1-v)	 (4.1.4.1)

where Am is the difference in the coefficients of thermal expansion of

the substrate and the coating and AT is the difference in temperature at

which the coating was joined to the substrate and the new temperature to

which the composite is heated or cooled. For other composite structures

such as inclusions (Eshelby, 1961; Selsing, 196 1 .;t and concentric rings or

cylinders, the expressions for the stresses which result from a mismatch

in the coefficients of thermal expansion, are more comr-Ilex and involve the

elastic properties of all individual components or materials. Regardless

of the geometry, however, the magnitude of these stresses is proportional
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to the quantities Aa and AT. For this reason, the magnitude of these stress-

as can be kept to a minimum by choosing as and AT as low as possible.

Examination of eq. 4.1.4.1 shows that the stresses can be positive

or negative depending on the sign of Aa and AT. For this reason, these

stresses can be used to advantage by placing the weakest component in a

state of compression by means of a judicious choice of the value (and sign)

Of Aa.

4.1.5. Cencentric hollow cylinder. Radially outward heat flow

The concentric hollow cylinder infinite in extent with inner and outer

radius of a and b, respectively, is subjected to radially outward heat flow.

This results in a radial distribution of temperature with a temperature

difference AT between the inner and outer surfaces. The cylinder is not

constrained externally. Thermal stresses will arise from "'internal"

constrainst because the cooler and hotter sections in the cylinder prevent

one another from free thermal expansion.

The maximum tensile stress in the cylinder occurs at the outside

surface given by (Timoshenko and Goodier, 1951):

2a2 
aEOT 
	

In(b)
a

(1-0	 21n b a

For a cylinder of finite length, the tensile stresses exhibit their

maximum value at the end of the cylinder in the tangential direction and

is given by the above equation 4.1.5.1 multiplied by the factor (Kent,

1931; Coble and Kingery, 1955):

1 + (1-v2	

- 1)]

	 (4.1.5.2)
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By setting the value of the tensile stress in eq. 4.1.5.1, equal

to the tensile strength, an expression can be obtained for the maximum

value of temperature difference, AT maxacross the cylinder wall, which

can be tolerated without tensile failure given by:

-1
St(1-v) [21n(i

b)]	
2a2

ATmax	 aE 
	 1 - b2-a2 lnla

J
	(4.1.5.3)

By noting that the heat flux, q per unit length of the cylinder can

be related to the temperature difference, AT across the wall, by:

q - 2ffK4T/ln(b/a)
	

(4.1.5.4)

Eq. 4.1.5.3 for AT maxcan be rearranged to yield an expression for the

maximum heat flux per unit length, g max , to which the cylinder can be

subjected given by:

4nSt(1-v)K	
2a 2 	 b -1

gmax -	 aE	
1 - b2-a2 In a	 (4.1.5.5)

Expressions for AT max and gmax for a cylinder of finite length can

be obtained by dividing equations 4.1.5.3 and 4.1.5.5 for 
ATmax 

and 
gmax

for the infinitely long cylinder by the factor given by eq. 4.1.3.2.

Examination of eqs. 4.1.5.3 and 4.1.5.5 shows that for a hollow cylinder

of given inner and outer radii, the quantities AT 
ax 

and 
gmex 

can be maxi-

mized by selecting materials with high values for the thermal stress resis-

tance parameters:

S t (1-v)/mE	 and S t (1-v)WcLE	 (4.1.5.6)

identical to these given by eqs. 4.1.2.5 and 4.1.2.6 .

For a hollow concentric cylinder subjected to radially inward heat

flow, equations for the thermal stresses, AT max and gmax equivalent to
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those given by eqs. 4.1.5.1, 4.1.5.3, and 4.1.5.5 can be derived. It is

important to mention that for radially inward heat flow, the magnitude of

the tensile stress exceeds the corresponding value for radially outward

heat flow (Hasselman and Youngblood, 1978). The values for AT maxand gmax

are correspondingly reduced. This indicates that for hollow cylinders,

such as those found in heat exchangers made from brittle ceramics and

prone to failure in tension, radially outward heat flow is preferred

whenever practical.

From a structural point of view, the results of the present section

also indicate that under steady-state heat flow and isothermal conditions,

the magnitude of thermal stresses can be reduced by promoting free thermal

expansion, by avoiding external constraints, whenever practical.

•	 4.1.6 Uniform internal heat generation

Thermal stresses of high magnitude can be caused by the non-uniform

temperature distributions resulting from internal heat generation. This

occurs for instance in such components as nuclear fuel elements, in materials

subjected to micro-wave heating or materials undergoing a chemical decom-

position with a negative heat of reaction. In solar collectors, internal

absorption of incident solar radiation also represents a form of internal

heat generation. This latter topic, in view of its relevance to solar col-

lectors is treated in a separate extensive section of this report.

For steady-state, spatially uniform internal heat generation, the

role of material properties can be obtained from the solutions for a solid

circular cylinder (Thermal Stress Techniques in Nuclear Industry, 1965).

The maximum tensile stress is:

	

o - a EHb 2 /8(1-v)K	 (4.1.6.1)
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where H is the rate of internal heat generation per unit volume and b is the

cylinder radius. Eq. 4.1.6.1 can be rearranged to yield the maximum rate

of internal heat Generation, which can be tolerated without risking tensile

thermal stress fracture:

Hmax - 83 
t 
(1-v)K/mEb 

2
	 (4.1.6.2)

Eq. 4.1.6.2 indicates that materials which can withstand high rates

of internal heat generation should have high values of the thermal stress

resistance parameter:

St(1-v)K/a E
	

(4.1.6.3)

Eq. 4.1.6.2 also suggests that in order to reduce the possibility of

tensile thermal fracture, the cylinder radius should be kept as small as

possible.

4.1.7. Thermal discontinuities

Steady-state heat flow in materials with a linear temperature distri-

bution and absence of external constraints, as related earlier, will result

in zero thermal stress. If, however, such materials contain inclusion with

heat conduction properties different from the matrix materials, the tempera-

ture field near these inclusions will be disturbed to be non-linear. This,

as indicated by Florence and Goodier (1959) for a spherical cavity and by

Tauchert (1968) for a general inclusion, will result in a thermal stress

field in the immediate vicinity around the inclusion.

For the spherical cavity, which represents an extreme case, the magni-

tude of the maximum tensile stress is:

a - O.SaE9b/(1-v)	 (4.1.7.1)

where 9 is the temperature gradient in the absence of the cavity and b is

the cavity radius.
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Eq. 4.1.7.1 can be rearranged to give the maximum temperature gradient,

7max which can be imposed without incurring the risk of tensile failure, which

yields:

Vmax 
a 2St (1-v)/a Eb	 (4.1.7.2)

Eq. 4.1.7.2 can be rewritten to yield the maximum heat flux given

by:

gmax 
• 2S t (1-v)K/aEb	 (4.1.7.3)

Eqs. 4.1.7.2 and 4.1.7.3 show that in order to prevent tensile failure

around cavities, materials should be selected with high values of the ther-

=1 stress resistance parameters:

S t (1••v)!aE	 and	 St(1-v)K/aE	 (4.1.7.4)

which are identical in form to these derived earlier for other conditions of

steady-state heat flow.

Eqs. 4.1.7.2 and 4.1.7.3 also indicate that if such thermal discontinui-

ties are required for functional or other purposes, they be kept as small

as possible.

4.2 Thermal Buckling

4.2.1. General

The thermal expansion of structures or components subjected to an increase

in temperature can be prevented by external constraints. Under these condi-

tions, equi-dimensional structures or components will be placed in a state

of compression. Failure occurs when the compressive stresses exceed the

compressive strength, as discussed earlier in section 4.1 of this report.
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For slender columns or plates with a length such greater than their

thickness, otzdally (in plane) constrained thermal Mansions can be accom-

modated by banding deformations, in a direction perpendicular to the direc-

tion of constraint. This phenomenon is referred to as thermal buckling.

Thermal buckling in straight column (and flat plates) is characterized

by a thereto-elastic instability consisting of a sudden deflection at a critical

temperature difference OTC . It should be noted that bending as the result

of a thereto-elasty.: instability does not necessarily involve fracture.

Fracture in tension may occur during "post-thermal buckling" as the result

of bending moments induced at temperature differances, AT '> QTC.

Thermo-elastic instability does not occur for slender columns and plates

with initial curvature or a curvature due to a transverse temperature gra-

dient. Nevertheless, such columns or plates can exhibit failure if the ten-

sile stresses due to the induced bending momenta exceed the tensile strength.

Thermal buckling can involve significant changes in geometry, which must

be taken into account in the design of any structure or component subject to

this mode of deformation.

The following sections discuss a number of cases of thermal buckling for

which selection rules for materials with high thermal buckling resistance have

been derived.

4.2.2. Boundary conditions

For all thermal buckling cases to be considered, the column will be

assumed to have a large length/thickness (i.e., slenderness) ratio, with a

uniform cross.-section along the total length. Furthermore, the temperatures

are assumed to be independent of time and position along the length of the

colum.

Thermal buckling is strongly affected by the nature of the constraints
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parameter can be defined as:

a
-1 (4.2.3.2)

which ;+ermit or prevent rotation of the ends of the column. These conditions

of constraint will be noted for each case of thermal buckling to be analyzed.

4.2.3. Straight columG - uniform temperature - thermo-elastic instability

For a straight column with ends free to rotate, Fridman (1964), and

nurgemeister and Stoup (1957) showed that the column remains straight upto a

critical temperature difference, AT  at which it exhibits instability which is

given by:

ATc - CimjI/L2aA
	

(4.2.3.1)

where I is the cross-sectional moment of inertia, L is the length of the column,

a is the coefficient of thermal expansion and A is the cross-sectional area.

The value of constant C1 depends on the boundary conditions and is equal

to unity in this case. For a column where the ends are not permitted to rotate

the value of C1 is 4.0 and for a column with one end free and the other end

restrained from rotation its value is 0.25.

Eq. 4.2.3.1 reveals that the critical temperature is an inverse function

of the coefficient of thermal expansion a. So a thermal buckl=r..; resistance

This parameter controls the critical temperature ATc , if the dimensions of

the column are constant. To maximize aTc , one should choose a material with

lowest value of a.

If the cross-section of the column is rectangular of width b and depth d,

eq. 4.2.3.1 can be written as:

AT  - C1 *2 /12n(L/d) 2	(4.2.3.3)
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From eq. (4.2.3.2) it is clear that the slenderness ratio plays an

important role in the buckling phenomenon. The higher the slenderness ratio

is, the lower is the critical temperature. Columns with very low slenderness

ratio (short columns) will normally fail in compression rather than in buckling.

4.2.4. Straight column - uniform temperature - post-buckling behavior

When th- . temperature rise in a straight column with ends free to rotate,

exceeds the zritiL.,1 temperature ATc , it will not fail im6ediately, but ex-

hibits post-thermal buckling analyzed by Boley and Weiner (1960)1 It will

fail only when the maximum bending stresses in the column exceed its tensile

strength. Under this condition, the maximum temperature difference, ATE

over which a column with square cross-section can be heated, is given by

Hasselman, 1979 (appendix 4.2.4.A)

ATE - AT  + St2L2/7r2;mE2d2

where S t is the tensile strength of the colum.

Eq. 4.2.4.1 leads to another thermal buckling resistance parameter which

is given by:

St2/a E2	(4.2.4.2)

Again to maximize 
AT 
max , one should choose a material with high value of

S t2 /a E2 . It is important to note that in the second term of eq. 4.2.4.1,

the slenderness ratio has an opposite effect to that of the first term given

by eq. 4.2.3.3. So high values of ATE can be achieved by choosing either

very high or low values of L/d. Some basic calculations are necessary here

to obtain the right value of L/d.
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4.2.5. Column with slight initial curvature - uniform temperature

A column with initial curvature of the form w a (x2 - Lx)/2R and ends

free to rotate is held at a uniform temperature. The geometry at the ends

of the column are such that on rotation, the column length remains invariant.

Solving the differential equation associated with this situation and applying

the necessary boundary conditions, the total deflection y t , for a AT rise

in temperature can be found to be equal to (Sasselman, 1979):

Y t • - 5k2L4 /384R - L2 /8R	 . (4.2.5.1)

where k2 - a ATA/I and R is the radius of curvature. The maximum tensile

stress, 
amax 

is the algebraic sum of the bending stress caused by the total

deflection and the compressive stress c c W aEGT, caused by the thermal loaf.

Cla 2 (AT) 2EA20 C	
AL2-C

omax -	 RI2	
+ a EQT

{8RI	
1}	 (4.2.5.2)

where C is the neutral axis-to-outer fiber distance. The term linear

in AT corresponds to the bending stress caused by the deflection of the column

due to initial curvature which is independent of AT and is the major contri-

bution to the stress in slender columns. The additional deflections produce

stresses that are quadratic in AT. The compressive stresses are expected to

be minor only.

The maximum temperature difference AT maxto 
which the column can be

heated without fracture is obtained by substituting in eq. 4.2.5.2 S t for

amax and solving the following quadratic equation..

C a 2 (AT) 2	E A2L4C aEAT
max 	 21	 Rmas	 + 

S	 (SRIC-	
11 - 1 - 0	 (4.2.5.3)

	

t	 t
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Because of the relatively complex form of eq. 4.2.5.3 a convenient ex-

pression for ATVARx is not easily derived. Instead, two simple limiting

cases will be discussed:

(i) If the bending stresses linear in AT are equal to the compressive

stresses, then

AT Max a (St/a2E) l/2 (RI2 /C1A20 C)
	

(4,2.5.4)

(ii) If the bending etresses quadratic in AT are equal to the compressive

stresses, thou

AT max
- (St/aE) (8RI/AL2 C)
	

(4.2.5.5)

Based on eqs. 4.2.5.4 and 4.2.53 the following two thermal buckling

resistance parameters are defined.

(St/a2 E) 1/2 and (S t/aE)
	

(4.2.5.6)

These two parameters control.the maximum temperature difference ATmax , over

which an initial curved column can be heated and their relative merit is

decided by the geometry of the column. Again the designer choose a material

with high values of (S t/a2E) 1/2 and (S t/aE) to achieve a maximum AT.

Equation 4.2.5.4 can be rewritten for a rectangular column as:

AT max• (S t/a2E) 1/2 (R/C2 (L/d) '.C)
	

(4.2.5.7)

Again note the influence of the slenderness ratio on the magnitude of AT max .

Whenever possible, the designer snu;:ld always avoid very slender columns.

The same thing can be said about equation 4.2.5.5.

It is mentioned earlier that the value of C 1 depends on the end condi-

tions. For a simply supported column the value of C 1 • 5/384 and for a column

with fixed end C 1 a 1/384.
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4.2.6. Straight column- transverse heat flow

Aa initially straight column with and conditions described in section

4.2.5, when subjected to uniform heat flow perpendicular to its length and paral-

lel to the direction of the shortest dimensions under steady-state conditions.

and temperature independent properties will exhibit a linear temperature

distribution through its thickness. If the constant temperature gradient

is o • dT/dy, then the radius of curvature R, can be expressed as R • W) -1.

This analysis is identical to the one described in section 4.2.5 if R is

replaced by (a4) -1. Then the maximtrz ,:ensile stress can be written as:

Ca3E(AT)20A2L4C
cmax • 

1	
I2	 + aEA7{

a081 2t' - 1}	 (4.2.6.1)

The maximum temperature difference AT maxis obtained by the substitution

of St for omax and solving the quadratic equation:

Ce 3 (AT) 2 EVA20C aEA T
max aDAL2C

I2S	
+	

St	 { 8I
	 Q	 (4.2.6.2)

t

In analogy to eq'. 4.2.5.4 and 4.2.5.5, two limiting conditions are:

(i) If the bending stresses linear in AT are equal to the compressive stresses,

then:

Amax • .( S t/a 3E)
1/2 (I2 /C1A2L4 9C) 1/2 	(4.2.6.3)

For a given AT, the maximum temperature gradient Vmax can be written as:

Vmax • (
S t /a 3E){I 2 /(AT) 2 C1A2L 4 C} 	(4.2.6.4)

Eq. 4.2.6.4 can also be expressed in terms of maximum heat flux g max , knowing

gmax • KVMRx , where K is the thermal conductivity.

gmax • (S J a 3 E){I 2 /C1 (AT) 2A2L4C} 	(4.2.6.5)
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From sq. 4.2.6.3 through 4.2.6.5 the following parameters can be do-

fined.

(St/a 3E)1/2, (S
t/a 3E) and (St K/a 3 E)
	

(4.2.6.6)

These parameters control the maximum difference in temperature, maximum

temperature gradient and maximum heat flux in a straight column subjected

to transverse heat flow. Depending upon the situation one can maximize

AT, V or q by choosing a higher value of the appropriate parameter.

If the bending stresses quadratic in AT are equal to the compressive

stresses, then

AT 
max- (St /a

2E) (8I/AL27C)

Similarly, for a given value of 4T, V
max 

becomes:

Vmax • (S t/a 2E) {81/AL2(AT)C)

which for the maximum transverse heat flux, yields:

gmax 0 (S t K/a 2E) {8I/AL2 (AT)C )

(4.2.6.7)

(4.2.6.8)

(4.2.6.9)

The parameters (S t/a 2E) and (S t K/a 2E) are the governing factors in

eq. 4.2.6.7 thru 4.2.6.9. They should be maximized appropriately to have

maximum AT, V or q.

The constant C1 used in this section depends on the boundary conditions.

Eqs. 4.2.6.3 thru 4.2.6.9 can also be rewritten in terms of the L/d ratio

and its effect can also be studied easily.

4.2.7. Column with slight initial curvature - transverse heat flow

For a column with a slight initial curvature R and subjected to conditions

of heating as explained in section 4.2.6, the effect of heat adds an addi-

tional component Va to the original curvature such that the final radius R 
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can be written as:

R  M R(1 + mVR)
-1	(4.2.7.1)

Depending upon the direction of heat flow (towards the concave or con-

vex side) the value of V will be either positive or negative and so will

cause either an increase or decrease in the maximum stress values. This

analysis is identical to the one done in section 4.2.5 if we replace R by

Rf as expressed in eq. 4.2.7.1.

4.2.8. Poisson's ratio

in the analysis of two dimensional structures the effect of Poisson's

ratio shLuld be taken into consideration. For simple cases it is always

possible to extend the one dimensional solutions to these problems by suit-

able modifications. For example, we have seen for a column in which the ends

are free to rotate and subject to a uniform temperature, the critical tem-

perature AT  is given by:

ATc 
a f2 I/L2mA
	

(4.2.8.1)

For a thin plate of dimensions a x b and thickness h, the above solu-

tion can be extended by replacing the moment of inertia I by the flexural

rigidity D - bh 3 /12(1-v2) and multiply by a factor k. Thus for thin plates,

ATc M ktr2h3 /12(1-v2)L-aA	 (4.2.8.2)

The constant k depends on the aspect ratio a/b of the plate and for a plate

with edges free to rotate it is equal to:

k - (a/b + b/a)2
	

(4.2.8.3)
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For a detailed discussion on this, the reader is referred to Timoshenko

and Gere (1961).

Based on eq. (4.2.8.2) another thermal buckling resistance parameter can

be defined as:

[a (1 - v2) ]-1
	

(4.2.8.4)

This parameter controls the critical temperature in thin plates and should

be maximized to achieve maximum AT c . All the thermal buckling resistance

parameters developed in sections 4.2.3 through 4.2.8 can be applicable for

two-dimensional structures if the modulus of elasticity E is replaced by

E/(1 - v2).

4.2.9. Effect of creep on thermal buckling

Failure by thermal buckling is due to the presence of external constraints

which prevent free thermal expansion. Removal of such constraints will

automatically prevent the possibility of thermal buckling. Such constraints

can be removed by creep deformation in the column (or plate) or in the ex-

ternal constraints. Such creep will cause a permanent change in the geo-

metry and size of the component subject to thermal buckling as well as the

constraints. Once this creep deformation has occurred, the possibility of

thermal buckling is eliminated, unless the operating temperatures, purposely

or by accident are raised significantly.

For these reasons, at least qualitatively it can be concluded that

creep deformation can have a beneficial effect on thermal buckling resis-

tance. No quantitative rules for the selection of materials subject to

creep thermal buckling for brittle materials, as far as these authors are

aware, have appeared in the literature. The analysis of such selection

rules is the subject of a study currently underway under sponsorship by

the Office of Naval Research.
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4.2.10. Effect of geometry on thermal buckling behavior

The discussions presented so far concentrated on columns or plates which

are straight or exhibit slight curvature only. This type of geometry ex-

hibits minimum compliance in the axial and in-plane directions of the

column and plate respectively. This low compliance is directly responsible

for the thermo-elastic instability in straight columns and the high bending

moments in columns with slight curvature.

For this reason, a major increase in thermal buckling resistance can

be achieved by increasing the compliance in the direction of the external

constraints. Support for this conclusion is provided by the results of

Ganeeva (1956) and Shapovalov (1964), which showed that for highly curved

plates the critical temperature for buckling instability increases rapidly

with the degree of curvature.

It appears that from the design point of view, thermal buckling failure

can be avoided by designing components with high curvature rather than

straight or low degree of curvature.

4.2.11. Conclusions

(i) Selection of materials with high thermal buckling resistance can be based

on a number of different thermal buckling resistance parameters. It is im-

portant to note that these parameters presented in this report are appropriate

to a specific geometry, thermal environment and failure mode. For this reason,

it is critical that prior to material selection, a careful analysis is con-

ducted of the mode of buckling failure. Important to note also is that

relevant material properties can exhibit a strong temperature dependence. For

this reason, the buckling failure mode and the relevant "thermal buckling re-

sistance parameter" will also depend on the temperature level of operation.
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(ii) Failure by thermal buckling can be minimized by avoiding external

constraints. For solar receivers this implies that all components subject

to large total thermal expansion, be assembled with sufficient free space

between them, such that differences in thermal expansions can be accommo-

dated easily.

(iii) Thermal buckling failure can be controlled by the careful choice of

geometry. For straight columns, low slenderness ratios are preferred. For

initially straight column subject to large post-thermal buckling deformation

or for columns with initial curvatures high slenderness ratios will permit

excessive bending without risking tensile failure. Conversely, high initial

curvature increases the compliance and thereby increase thermal buckling re-

sistance.

(iv) Creep deformation can be beneficial in improving thermal buckling re-

sistance. For ceramic materials this effect is expected to'be beneficial at

high temperatures near the anticipated upper operating temperatures of solar

receivers.

4.3. Transient Heating and Cooling

4.3.1. Convective heat transfer

In practice structures or components initially at thermal equilibrium

can experience a sudden change in ambient temperature. In an extreme

case, this occurs in a turbine engine experiencing a flame-out condition.

A similar situation is encountered in the physical removal of an object

from a high temperature structure such as a furnace. Changes in the heat

transfer coefficient or heat transfer mechanism in a structure at thermal

equilibrium such as a nuclear reactor also involves a change in level of

operating temperature.
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Regardless of the details, such changes require that the structure

or component must achieve new thermal equilibrium at a higher or lower

temperature. This involves transient temperature changes, inevitably

accompanied by transient thermal stresses. The transfer of heat to or

from the structure or component undergoing a change in ambient temperature

can occur by natural or forced convection. For Newtonian heat transfer,

in which the heat flux at any instant is directly proportional to the

difference in temperature of the surface and the ambient atmosphere,

solutions for the transient thermal stresses for simple geometries can be

derived analytically. The results for the solid circular cylinder (Jaeger,

1945) will be presented in detail, which are qualitatively similar to those

for flat plates (Boley and Weiner, 1960) and spheres (Crandall and Cing, 1955).

Figure 4.3.1.1 shows the magnitude of the transient tensile thermal stresses

encountered in the center of a solid circular cylinder of infinite length

subjected to heating by an instantaneous increase (OT) in ambient tempera-

ture (Jaeger, 1945). It is common practice in thermal stress analysis

to present the results in terms of a non-dimensional stress, c a o(1-v)/

a EAT and non-dimensional time Kt/a2 where t is the real time and a is the

radius of the rod. The stresses go through a transient maximum and are

zero at t - 0 and t -* •. The magnitude of the stresses at any instant of

time is a function of the Biot number ; B•uh/e i where h is the trea t t rw.. -r__.ice\. ♦

coefficient. Note that the magnitude of the maximum stress is not governed

by the thermal diffusivity. Differences in the thermal diffusivity for

different materials only affect the time at which a given stress value is

reached.

For design purposes, the maximum value of the tensile stresses are of

interest. Over the range of 0.1 < B < 20 the stresses to a very good

i
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*-1
amax • 1.451(1 + 3.41/6)
	

(4.3.1.1)

By setting the value of maximum tensile stress.equal to the tensile

strength an expression can be obtained for the maximum change in ambient

temperature 
ATZAx to which the cylinder can be subjected:

1.451 St(l-v)
AT Wax •	

ME	
(1 + 3.41/6)	 (4.3.1.2)

For the higher values of Biot number, eq. 4.3.1.2 can be simplified

to:

AT max
= 1.451 S t (1-v)/a E
	

(4.3.1.3)

Similarly for low values of the Biot number (6 < 1), eq. 4.3.1.2 be-

comes:

AT 
maxa 

4.95 S t (1-v)K/m rbh
	

(4.3.1.4)

The above results indicate that the thermal stress resistance of

brittle materials, as measured by ATWx, strongly depends on the numerical

value of the Biot number. For high values of 6, as indicated by eq. 4.3.1.3

the thermal stress resistance is independent of the thermal conductivity as

well as the heat transfer coefficient and cylinder size. In contrast,

at low values of the Biot number, the thermal stress resistance is strongly

affected by the values for the thermal conductivity, heat transfer coeffi-

cient and radius of the cylinder. In fact, for a cylinder of given thermal

conductivity, subjected to a given convective heat transfer condition, any

desirable value of AT maxcan be achieved simply by decreasing the cylinder size.
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From the point of view of selection of materials, high values of ATE

require high values of the thermal stress resistance parameters, obtained

from Eqs. 4.3.1.3 and 4.3.1.4 given by:

St (1-v)/mE	 (B ), > 1)	 (4.3.1.5)

St (1-v)K/mE	 (9 < 1)
	

(4.3.1.6)

The above parameters are of the same dimensional form as those de-

rived previously for steady-state heat flow, but of course, appropriate

to a completely different &amour* of thermal stress resistance.

It is important to note that due to the role of the 'Riot number, the

relative thermal stress resistance of two different materials depending on

their relative value of thermal conductivity may well be interchanged for

conditions of high or low values of riot number. This latter observation is

critical in assessing the relative thermal stress • resistance of materials by

experimental methods and the use of these results for design purposes. Ex-

perimental comparisons of the relative thermal stress resistance frequently

use relatively small laboratory specimens. For these, the specimens size and

thermal conductivity play an important part in establishing the measured

values of 4T max . However, these experimental results are no longer appro-

priate for larger sized structures scaled-up from laboratory models. Lack of

appreciation of this fact, can (and has) led to major errors in the design_

and selection of materials for high-temperature structures.

Expressions, identical in form, but differing only in their values

of the numerical constants, can be derived for other geometries such as

plates and spheres. For this reason, the above conclusion for the solid

cylinder, should be generally applicable to other geometries as well.
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Predictions of values of AT maxfor thereto-elastic theory have shown reason-

able agreement with experimental data (Clenny and Royston, 1953), (Hasselman

and Crandall, 1963; Hasselman, 1970). Any discrepancies between calculated

and observed values most likely can be attributed to uncertainties in the

values of the heat transfer coefficient and the magnitude of the failure

stress.

It should be noted that the above discussion and results assumed the

existence of Newtonian heat transfer (i.e. a constant heat transfer co-

efficient for the total period over which the material comes to thermal

equilibrium)• Under conditions of natural convection, however, heat trans-

fer coefficients generally decrease as the thermal equilibrium is approached.

Preliminary results obtained by the present writers, by finite element analy-

sis, show that under these conditions the thermal stresses are less than

those given by eq. 4.3.1.1 especially at the higher values of heat transfer

coefficients. For this reason, under ccnditions of natural convection, eqs.

4.3.1.2, 4.3.1.3 and 4.3.1.4 for AT 
Max

re},resent conservative estimates.

4.3.2. Transient heat transfer. Controlled rate of heating

In principle, thermal stress failure can be avoided by controlling the

rate of heating such as placing an upper limit on the rate of change of

surface temperature. In practice, this could be done by careful control

of the heat transfer coefficient in convective heat transfer or controlled

filtering or masking of incident radiant energy. This latter approach

may possibly provide a solution to the severe thermal shock expected for

components of solar collectors under intermittent cloud cover conditions.
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St(1-V)K

aE
(4.3.2.3)

The role of the pertinent material properties which control the .

thermal stress resistance of brittle ceramics is indicated by the solution

for the maximum thermal stress in a flat plate cooled by a constant rate

of change of surface temperature (Buessum, 1960):

_ aEb2 dT
c	

3(1-v)k dt	
(4.3.2.1)

where b is the total thickness of the plate.

By setting the thermal stress equal to the tensile strength, the

maximum permissible rate of cooling becomes:

dT	
3 St(1-V)K

( dt) max s	 aEb2
(4.3.2.2)

Eq. 4.3.2.2 indicates that materials which can be subjected to high

rates of cooling should have high values of the thermal stress resistance

parameter:

Furthermore, for a given material, high cooling rates can be tolerated

by keeping the plate thickness as low as possible.

On dimensional grounds, these conclusions should also be valid for

controlled heating rates.

4.3.3. Radiation heat transfer

Radiation is a principal mode of heat transfer in solar collection

system and an important possible source of thermal stress failure. The

functional response to the incident solar radiation and corresponding thermal
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stress state for any design of solar collection system depends upon the

particular component under consideration. Mirrors, which concentrate the

solar radiation, should absorb little or no part of the incident radiation

and should have high reflectivity. On the other hand, the window, which

permits the concentrated solar flux to be incident on the solar receivers,

should have low reflectivity and should transmit as such radiation as

possible. In contrast, the receiver, which converts the radiation flux into

heat energy, should have high absorptivity. It is expected that these three

components should exhibit different thermal responses to the incident radiation,

with each having different material requirements. As will be shown, the

material requirements for high efficiency in converting solar energy into

another form may not be necessarily compatible with other performance criteria

such as high thermal stress resistance. Therefore, an optimization of material

properties will have to be made in order to achieve high conversion effi-

ciency in addition to high thermal stress resistance.

The assessment of the magnitude of thermal stresses in material sub-

jected to radiation heating or cooling can be quite complex. Heat transfer

in radiation mode is proportional to the fourth power of the absolute tem-

perature. In addition, spectral and temperature dependence of the pertinent

material properties combined with the internal absorption and re-emission

of the incident radiation introduces further complexities. For this

reason, the evaluation of thermal stress in radiation environments, in

general, requires numerical techniques. As stated before, such numerical

techniques are useful and essentie^ in practice for a specific component

design with known spectral and temperature dependence of material pro-

perties and heat transfer environment. However, the analytical solutions
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necessary to indicate the general role of the pertinent material properties

must be based on a number of simplifying assumptions.

A number of such solutions were obtained by the present authors and co-

workers (Hasselman, 1963, 1966; Hasselman et al., 1980; Thomas at al., 1980;

Singh at al., 1980a,b) for materials subjected to incident radiation heating.

These studies included materials which are opaque, semi-transparent and

partially absorbing. The semi-transparent materials were assumed to be

transparent below a given wavelength and opaque above this wavelength. In

partially absorbing materials, the incident radiation gets absorbed, while

being transmitted through them. Depending upon the external cooling con-

ditions, the internal absorption of the incident radiation can result in a

temperature distribution such that the interior of the structure may be at

higher temperature than the surface known as "thermal trapping" effect. A

simplifying assumption common to these solutions was that the temperature

of the material was kept sufficiently low that the effect of any re-emitted

radiation could be neglected. This assumption permitted to regard the

incident radiation, for all practical purposes, to consist of a constant

heat flux. This assumption was found to be valid in all cases because the

thermal stresses reach their maximum value at or near the initial stage

of thermal history before the material becomes hot. It was also assumed

that the optical properties of the material are "grey", i.e., independent

of wavelength. However, the spectral dependence of the material properties

can be easily taken into account by superposition of a number of analytical

solutions for appropriate wavelengths.

The highlights of these analytical and numerical results pertinent to

different components in a solar collecting system and the role of the

material properties will be given below. For convenience, the reprints

or the cipies of the studies cited are presented in appendices 4.3.3(A-F).
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A. Opaque sphere subjected to symmetric radiation heating

This analysis by Hasselman (1963) involved the evaluation of thermal

stresses in a cylinder, sphere and 'let plate subjected to radiation

heating all around without any cooling taking place. Such heat transfer

environment is pertinent to the solar receivers when they are subjected to

radiant heat flux without any circulating fluid around them due to a

malfunction of the circulating pump.

The maximum steady state (t j -) tensile thermal stress in a sphere

occurs in the center of the sphere and is given by:

o	
- 1 a EEgoa	

(4.3.3.1)
max 5 (1-0K

where q  is the intensity of the radiant heat flux, K is the thermal

conductivity, E is the Young's modulus of elasticity, a is the ceeffic.ient

of thermal expansion, E-1-r is the emissivity, r is the reflectivity, v

is the Poisson's ratio and a is the radius of the sphere.

As can be seen in equation 4.3.3.1, the magnitude of the maximum

stress depends upon the intensity of heat flux in addition to many other

physical and optical properties of the material. Therefore the maximum

permissible heat flux should be such that the thermal stresses developed

do not exceed the allowable stress for the material in order to avoid failure.

Thus, to examine the effects of various material and geometric parameters on

the magnitude of the maximum permissible heat flux, the analytical expres-

sion for the maximum permissible heat flux, gmax, was obtained from equation

4.3.3.1 by equating the maximum tensile stress to the strength of the mate-

rial, S t , which resulted in:

5 S (1-v) K
q	 t	 (4.3.3.2)
max	 aEEa
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4

gmax a P Tmax
(4.3.3.4)

The maximum heat flux due to black -body radiation can also be re-

presented by:

qmax M P(T max 4- T14 )
	

(4.3.3.3)

where p is Boltzmann ' s constant, T 1 is the temperature of the sphere and

Tmax is the maximum permissible temperature of the incident radiation.

It is assumed that T14 << T
max

4 . Therefore, equation 4.3.3.3 becomes

From equations 4.3.3.2 and 4.3.3.4, the expression for maximum per-

missible temperature for radiant heat flux without causing any failure can

be given as:

S (1-v) K

Tmax . 
cpa a l/4^ t 

a Ee 11/4
	

(4.3.3.5)

In order to formulate the selection rules for the optimum material,

thermal stress resistance parameters were obtained from equation 4.3.3.2

and 4 . 3.3.5 as follows:

St ( 1-v)K	 St(1-v)K 1/4

aft	
and	

a EE 1	
(4.3.3.6)

Thus, high thermal stress resistance requires high values of tensile

strength and thermal conductivity in combination with low Poisson's ratio,

coefficient of thermal expansion, Young ' s modulus and the emissivity.

B. Semitransparent sphere subjected to symmetric radiation heating

In this study by Hasselman ( 1966), the material was assumed to be

transparent below a given wavelength and opaque above this wavelength.
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5 St(1-v)K

gmax '	 area
(4.3.3.7)

Similar to section 4.3.3.A, the sphere was subjected to radiation heating

all around with no cooling. This analysis is quite pertinent to materials

for wicdows in solar receivers. A typical window material, such as quartz,

has very low absorptance for the radiation in the range of 1-2 . 6u while the

absorptance increases rapidly above this wavelength.

The maximum permissible heat flux, g max , for a sphere is given by:

and the maximum permissible temperature of the radiant heat flux is given

by:

S ( 1 -v) K

Tmax ' ^Pa^ l/4`aEe(1-FAo ) ^1/4
	 (4.3.3.8)

where 
FAo 

is the fraction of total radiant energy at a wavelength shorter

than Ao and Ao is the wavelength below which the material is completely

transparent.

Equations 4.3.3.7 and 4 . 3.3.8 result in the following two thermal

stress resistance parameters:

S t (1-O K	 St(1-v)K,/4

aft and IaEe(1-FAd
1- 	(4.3.3.9)

In addition to the requirements for the opaque material in section 4.3.3.A,

the high thermal stress resistance requires high value of cut off wavelength

FAo for semitransparent materials.

C. Semi-absorbing flat plate subjected to radiation heating at the
front surface and cooled by convection at the rear surface

This kind of thermal environment is very common to the solar receivers

i	 where the radiation is incident on only one side and cooling takes place at

51



the other side by convection. Figure 4.3.3.1 shows the schematic of a plate

(thickness w 2a) assymmetrically heated by radiation and cooled by convection

with heat transfer coefficient, h. The expressions for the maximum tensile

stress are lengthy (appendix 4.3.3.C) due to assymmetric nature of heat

transfer and, therefore, only the numerical results will be presented for

the general case. However, for limiting values of optical thickness, us,

the expressions will be simplified and the results will be presented in an-

alytical form. Results for three cooling conditions are presented below.

Heat transfer coefficient, h - finite

Figure 4.3.3.2 shows the time aapeadence of the maximum tensile thermal

stress for ua - 3 and various values of.heat •transfer coefficient, h. It

can be noted that the value of steady state (t m) stress is independent

of h whereas the maximum transient stress is an inverse function of h. The

steady state stress does not depend on h because the temperature profile in this

case is independent of h even though the magnitude of temperature is an in-

verse function of h. This conclusion can be shown to be true for any value

of ua. The value of the maximum tensile stress as a function of us for

steady state (t + -) condition is shown in figure 4.3.3.3. The plot shows

a peak at an optical thickness (us) of 2.0 with zero values of stress at

Us - 0 and •. The stresses are zero for ua 0 because no heat is absorbed

at all in the material. Although, for ua - •, all the heat is absorbed in

the surface, the distribution of temperature at steady state (* + m) is

linear resulting in zero stress. The peak in the steady state stress is

due to the maximum thermal trapping effect at ua - 2.0.

The analytical expressions for thermal stress for finite h is too complex

(appendix 4.3.3.0 to derive simple expressions for the maximum permissible

hest flux and thermal stress resistance parameter in order to discuss the

role of material properties. Therefore. two separate analyses were per-

t
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formed for h - 0 and - which resulted in simple expressions for the maximum

permissible heat flux and thermal stress resistance parameters for the

limiting values of optical thickness, us as shown below.

Neat transfer coefficient, h - 0

Figure 4.3.3.3 shows the value of the maximum tensile stress at steady

state (t - -) as a function of the optical thickness, us (appendix 4.3.3.0).

The stresses are zero at us - 0, monotonically increases with us and plateau

at high values of us.

Since there is no cooling (h - 0), the temperature of the plate increases

with time. However, as mentioned before, the stresses reach their maximum

value in the initial part of transient state before the plate gets very hot.

This permits the assumption of constant heat flux for stress calculations.

It is interesting to point out that the maximum tensile thermal. stress,

at least for small values of us, occurs in the front face of the plate

which is at the high temperature (appendix 4.3.3.C, figure 6). This

result has significant engineering implication to be discussed later.

The expressions for maximum permissible heat flux were obtained by

simplifying the stress equation for optically thick (us - -) and optically

thin Oa << 1) plates as follows.

For optically thick plate, the maximum steady-state tensile stress

occurs in the center (x - 0) of the plate and is %liven by:

cmax - (0,-) - a Egoca/12(1-v)K	 (ua+-)	 (4.3.3.10)

For optically thin plate, the maximum steady-state tensile stress

occurs in the front fact (x - -a) of the plate and is given by:

ff max (-a,-) - a Egoeus2 /(1 -OK 	(ua<<l)	 (4.3.3.11)
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Equating the maximum stress to the tensile strength S t , the expressions for

the maximum permissible heat flux, guar can be given by:

12 St(1-v)K	
(ua1+)	 (4.3.3.12)

gmax	 DEca

8t(1-v)K

gmax - aEcu^ sl-^	
(ua«1)	 (4.3.3.13)

From the point of view of solar collectors, the expressions will be li-

mited to the maximum stress amax and maximum permissible heat flux q max .

However, the expressions for maximum parmissible temperature for incident

radiation can be obtained simply by substituting P T 
max 

4 for q.x as shown

in equation 4.3.3.5.

Heat transfer coefficient. h - -

The values of the maximum steady state (t-*-) and transient stress are

included in figure 4.3.3.3 as a function of optical thickness, pa. It zan

be seen that the steady state stress for h - - or finite exceeds the transient

stress for 0 < us < 10.7 and the converse is true for 10 . 7 < ua < -.

The value of the maximum permissible heat flux, gm&x , was obtained by

simplifying the expression for thermal stress for the limiting values of us,

viz., us << 1 and us, -. The maximum steady state tensile stress, which

occurs at x - -a, is given by:

ayoz (-a.-) - G	 (ue-►-)

0.2714nEg0cua2
syoz(-a,-)	 (1-0K	

(ua<ci)

and the maximum permissible heat flux can be given by:

gmax I. -	 (us—)

3.677 St(1-v)X
( ya« 1)

gmax	 a Ecua2

(4.3.3.14)

(^. .3.15)

(4.3.3.16)

(4.3.3.17)
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In order to formulate the selection rules for the optimum material,

thermal stress resistance parameters were obtained from the expressions for

qS&Z. 
From equations 4.3.3.12, 4.3.3.13 and 4.3.3.17, thermal stress re-

sistance parameters can be obtained as:

St (1-O K	 St(1-O K

GEC	 aEC"A	 (4.3, 3.18)

Equation 4.3.3.18 indicates that in order to obtain high thermal stress

resistance, high values of tensile strength and thermal conductivity in

combination with low values of coefficient of thermal expansion, Poisson's

ratio, Young's modulus, emissivity and absorption coefficient are required.

Furthermore, equations 4.3.3.12, 4.3.3.13 and 4.3.3.17 clearly indicate that

high thermal stress resistance is always associated with smaller component

size.

At this point, it is important to mention that in this case, the heat

absorbed in the plate has to be conducted through the total plate thickness

before it can be removed at the rear surface. This effect results in a high

temperature difference in the plate especially for high values of the opti:al

thickness, us.

D. Semi-absorbing flat plate subjected to radiation heating and
convection cooling at the front surface

This kind of thermal environment (appendix 4.3.3.D) is another likely

design configuration for solar receivers. A qualitative evaluation of the

two systems, viz., front and rear cooling suggests that the maximum tempera-

ture difference in the plate at steady state in case of front heating with

rear. cooling sill exceed that encountered in the case where heating and cool-

ing both occurs in the front face. This is because, as mentioned before, in

case of heating in the front and cooling in the rear surface, the heat ab-
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sorbed in the plate has to be conducted through the total plate thickness

before it can be removed at the rear surface. However, in case of front

cooling, the heat is immediacaly removed from the surface with little or no

heat ahF,;rbed inside the plate resulting in more uniform temperature in the

plate. For high incident heat flux, this my result in higher front sur-

face temperature in case of rear cooling than the: in case of front cooling

for a given temperature of the cooling environment. The uniformity of

temperature distribution in a plate subjected to heating and cooling in the

front face has important implication for the design of solar receivers to

be discussed later.

The results for the thermal stresses for three cooling conditions Are

discussed below.

Heat transfer coefficient, t - finite

Figures 4.3.3.4 and 4.3.3.5 show the plots for the maximum stress as a

function of time and optical thickness respectively. A comparison of these

results with those for the case of assyrmetric heating with cooling at the

rear surface (figures 4.3.3.2 and 4.3.3.3) indicates that the stress plots

are qualitatively similar in nature in both cases. However, a comparison

of stress profiles indicates that the stress distributions are different.

In addition, the transient stress and the times to reach the transient peak

are different in two cases (See appendices 4.3.3.0 and 4.3.3.D).

Heat transfer coefficient H - 0

For h - 0, the thermal environments for flat plate subjected to radia-

tion heating and convection cooling in front surface is Identical to the

previously discussed case where the cooling takes place at the rear

surface. Consequently, the results will be identical and the reader is

referred to section 4.3.3.C.
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S t (1-0 K

aEeu (4.3.3.23)

4

Heat transfer coefficient h • •

The values of the maximum steady state and transient stress are shown

in figure 4.3.3.5. In this case, there is no transient peak. Since for

h - -, the front face is always at ambient temperature, whereas the inside

temperature increases monotonically with time resulting in a monotonic in-

crease in stress with time and therefore, no transient peak occurs.

The maximum steady state stress occurs in the front face and can be

simplified for the optically thick ( us—) and the optically thin (aa«1)

plates as follows:

Amax (-a,•) - 0

mEepa2q_	 o
Amax( g '-) - 3K(1-v)

(us—)	 (4.3.3.19)

(ua«1)	 (4.3.3.20)

and the maximum permissible heat flux can be given by:

q ax ^+	 (ua )	 (4.3.3.21)

3 St(1-0K

gmax -
(ua<<1)	 (4.3.3.22)

a Eeua2

For selection rule, thermal stress resistance parameters can be obtained

from equation 4.3.3.22 and is given by:

It can be seen that thermal stress resistance parameter given by equation

4.3.3.23 is identical to the one in equation 4.3.3.18 and therefore, the pro-

perty dependence will be similar to those explained before.
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Depending upon the design configuration of the solar receiving system,

solar receivers may be subjected to symmetric heating and cooling. As ex-

plained in section 4.3.3.D, the symmetric cooling is expected to result

in a uniform temperature in the plate. The thermal stresses for three cooling

conditions are discussed below (see appendix 4.3.3.E).

Heat transfer coefficient, h - finite

Figure 4.3.3.6 shows the plot for the stresses in the surface and the

center of the plate as a function of time. Two interesting features can be

noted here. First, similar to assymmzetric heating, the steady-state stress

is independent of h whereas the maximum transient stress is sn inverse function of h.

Second, the maximum stress reverses its sign between the transient and steady-

state conditions. This results from the effect of non-uniform internal heat genera-

tion and associated thermal trapping effect (Singh et al, 1980, appendix 4.3.3.F).

For finite values of heat transfer coefficient, h, the variation of the

maximum transient and steady-state tensile thermal stress as a function of

the optical thickness, us is shown in figure 4.3.3.7. Similar to the assym-

metric heating case, the magnitude of the transient tensile stress increases

with ua and finally approaches an equilibrium value whereas the steady-

state tensile stress shows a peak at an optical thickness of ` 1.3 with

zero values at us - 0 and -.

Heat transfer coefficient, h - 0

In contrast to assymmetric heating case, thermal stresses in this case

monotonically increases with time till the steady state (t-+ •) stress is

reached. The maximum value of steady-state stress occurs in the center of

the plate (x - 0) which is given by:
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The maximum tensile thermal stress as a function of the optical thickness,

va for the heat transfer coefficient, h = 0 is shown in figure 4.3.3.7. Simi-

lar to assymmetric heating ( figure 4 . 3.3.3), the stresses are zero at va-0,

monotonically increases .and plateau at high value of va. Equating amax

in equation 4.3.3.24 with tensile strength S t , the expression for the ma3dmum

permissible heat flux can be given by:

(1-v)R Ste a 2	 a	 2	 1
gmax	 aft 	 + (3 - au2)Sin h(us)}-

(4.3.3.25)

For the two limiting values of the optical thickness us, equation 4.3.3.25

can be simplified to:

6St(1-v)R

gmax	 aEea	 (vas°°)	 (4.3.3.26)

180S t (1-v) R

gmax	 7aEev3a4	 (va«1)	 (4.3.3.27)

Heat transfer coefficient, h =

For this case, the maximum steady state tensile thermal stress occurs

at the surface and is given by:

4aE(va)e a va

	

g	 Go

max

	

o(a'^) = omax(-a,=) _ (1-O W.	
cosh(va) I

n=0

{(142 + an)(aan) }-1
	

(4.3.3.28)

Variation of the maximum steady-state tensile stress as a function of

-he optical thickness is shown in figure 4.3.3.7. It is important to note in

1
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the figure that the values of the maximum steady-state tensil_ stress for

heat transfer coefficient, h m are identical to those for h - finite.

As explained before, this is so because the steady-state temperature

profile within the plate is independent of h eventhough the absolute magni-

tude of temperature is an inverse function of h.

To obtain the expressions for the maximum permissible heat flux, gmax,

two limiting values of the optical thickness were considered namely pa—

and ua«1. The stresses are given as:

a 
max 

(a,•) = 0	 (us-,-)	 (4.3.3.29)

64a EuEa2q

a max ( a,m)
	 (J-v)KR4o	

(ua<<1)	 (4.3.3.30)

From equations 4.3.3.29 and 4.3.3.30, the expressions for the maximum

permissible heat flux, qWx in terms of the tensile strength, S t can be

given as:

gmax • =	 (us—)	 (4.3.3.31)

n4St(1-v)K

gmax + 64aEEUa2	(ua«1)	 (4.3.3.32)

The expressions for gmax (equations 4.3.3.26, 4.3.3.27 and 4.3.3.32)

result in thermal stress resistance parameters as follows:

S t (1-y)K	 St(1-v)g	 St(1-v)K

CL	 '	 a EEU 3	
and	

o EEU	
(4.3.3.33)

It is clear from equation 4.3.3.33 that the analysis of the symmetrically

heated and cooled plate results in a new thermal stress resistance parameter

S ( 1-O K	 S (1-v)K	 S (1-v)K
t	 in addition to two other parameters t	 t

EEU3	 aEE 
and 

aEEU 
obtained

for assymmetric heating.
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F. Summary of the highlights of the results for the thermal stresses
in semi-absorbing plate subjected to radiation heating and convection
cooling

Due to the importance of thermal stresses in semi-absorbing plate and their

relevance to the solar receiving systems, the results for thermal stresses

are summarized for the convenience of reader, as follows:

1. For h - finite or -, the steady state stresses are minimum for

highly transparent (ua-oO) and opaque (ua+-) materials with high values of

thermal stress for intermediate values for us for both symmetric and assymmetric

heating cases. On the other hand, for h - 0, steady state (ti-) stresses in-

crease monotonically with ua so that semi-transparent materials develop higher

values of stress than the transparent (us -) materials.

2. For highly transparent materials (ua-0) with assymmetric heating,

the maximum steady state stress is proportional to u and a 2 for h-finite, 0 and

-, whereas for symmetric heating, the maximum steady state stress is proportional

to u and a2 for h-finite and • and to u 3 and a4 for h-0.

3. For opaque materials (pa—), the maximum steady state stress approaches

zero for h-finite and - for both assymmetric and symmetric heating. In con-

trast, the stress reaches a constant finite value for h - 0.

4. The peak values for steady state stress with h-finite or - occurs at

U • 2 for assymmetric heating, whereas it occurs at ua 2 1.334 for symmetric

heating.

5. Althc:ugh, the magnitude of steady state (t+-) stresses in case of as-

symmetric heating for high values of us are almost identical for both front and

rear cooling, the steady state stresses for lower values of ua as well as the

transient stresses for both cases are different. In addition, time to reach the

maximum transient stress is smaller in case of front cooling than that in case

of rear cooling with a more uniform temperature distribution in case of front

surface cooling than that in case of rear surface cooling.

I
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6. Although, the nature of the maximum steady-state stress plots

are qualitatively very similar for both assymmetric and symmetric heating

cases, the magnitude of the peak stress in assysmietric heating case is smaller

than that in symmetric heating case. This is, at least in part, due to the

fact that in case of assymmetric heating, the differential thermal strain

can be accommodated by bending which is not the case for symmetric heating.

G. General comments

Based on the above mentioned analyses and discussion, the following

general comments are made with regard to material properties, component

size as well as the system design and operation:

(a) For the high collection efficiency, the reflector and the window

should absorb the least amount of radiation whereas the receiver should

absorb most of the radiation. Since, for a given intensity of incident

radiation, the amount of radiation absorbed in the surface and the interior

increases A th idcreasing value of a-1-r and u respectively, high

:ollection efficiency will require:

low c and u for reflectors and windows

and high c and u for receivers

A close look at these results indicates that the requirements of

low a and u for reflectors and windows in order to achieve high col-

lection efficiency is compatible with those for high thermal stress

resistance. In contrast, the high collection efficiency requires

high values for c and u for receivers which is incompatible with the

requirements of low c and u for high thermal stress resistance. How-

ever, as ua­ , the value of steady-state thermal stzess approaches zero.

Therefore, in order to achieve high collection efficiency and low thermal

stresses, the receivers should havk practically higbest p6ssible value of vs.
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(b) Since the peak values of steady state stress with h a finite and

• occurs at uaa2 for assymmetric heating and at ua=1.334 for symmetric

heating, the intermediate values of us should be avoided in order

to minimize thermal stress failure.

(c) For high thermal stress resistance for materials in solar re-

ceivers, the component size should be as small as practically possible.

(d) In case of assymmetric heating with cooling at the rear surface,

the maximum tensile thermal stress, for small values of optical thick-

ness, us, occurs in the front face of the plate which is at the highest

temperature. This could be very critical for environments which promote

fatigue by slow crack growth discussed in a separate section. Slow

crack-growth which could occur by stress corrosion or other mechanism,

is a thermally activated process and is enhanced by high temperature

and stress. Therefore, it is desirable to keep the critical regions

(highly stressed) at low temperature in order to minimize the slow

crack growth.

(e) A close comparison of the results for two cases of assymmetric

heating clearly indicates that the temperature distribution in case of

front cooling is more uniform that that in case of rear cooling. There-

fore, for a given temperature of the cooling environment the temperature

of the front surface will be higher in case of rear cooling than that

in case of front cooling. High temperature may result in deleterious

effects such as thermal fatigue and melting, etc. In addition, a more

uniform temperature distribution in case of front cooling will result

in smaller de g ,)rmation of the plate. Therefore, from design point of

view, system with heating and cooling on the same side may be preferred

over the one where heating and cooling take place on opposite sides of

the plate.
70



M The fact that transient stresses in a partially absorbing plate

due to internal heat generation is inversely proportional to the heat

transfer coefficient, h, suggests that during the transient heating

period of the solar receivers, the working fluid must be circulated at

a faster rate to induce high h value. On the other hand, during a

sudden decrease of radiant heat flux such as during :loud cover, the

value of the heat transfer coefficient, h should be reduced by lower-

ing the circulation rate of working fluid in order to minimize the

severity of thermal shock.

(g) The steady-state stress for high values of us is very small and

approaches zero. However, the transient stresses may be of high magni-

tude even for very high values of us. These stresses are directly

proportional to the radiant heat flux. Therefore, to minimize the

thermal stress failure, the transient stresses can be reduced by

gradually increasing the incident heat flux towards the final steady-

state value rather than subjecting the plate to frill value of heat

flu: at t-0.

(h) Thermal stress resistance parameters for different heat transfer

environments can be summarized as:

St (l-v)K	 St(1-v)K 
1/4	

St(1-v)K 1/4

a Ec	 a Ee —i	 Ia EE (1-F1}'
0

St (1-v)K	 St(1-v)K

aEeu	 aEcu3

H. Recommendations for future theoretical work

(a) An important situation where the solar receivers will be subjected

to thermal shock is the incidence of intermittent cloud cover. The
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intarmittent cloud cover will cause high thermal stresses inside the

structure as a result of thermal shock. These stresses are very

complex to evaluate due to the mixed nature of radiation and convec-

tion cooling. To date, such stress solutions are not available in

the literature. However, it is very important to analyze those

stresses for the selection of suitable material and the optimum

design.

(b) In the above analyses, the optical properties have been assumed

to be independent of temperature and wavelength of t:_e incident radia-

tion. However, it is expected that these properties will vary with

temperature and wavelength of the incident radiation. It is, there-

fore, recommended that the thermal stress analyses should be extended

to include these spectral and temperature dependence of the optical

properties of the material.

4.4. Thermoviscoelastic Stress Relaxation

4.4.1. General

Under conditions of mechanical stress, materials can exhibit slow

deformation by creep. Such creep deformation also is expected to occur

under conditions of thermal stress. Ceramic materials will exhibit creep

by diffusional processes at levels of temperature at which vacancy con-

centration and mobility become appreciable. These temperatures correspond

to about one half to two thirds of the melting point of the material.

Temperature levels in point-focus solar receivers may well reach le-

vels at which creep deformation could be appreciable. For this

reason, creep under conditions of thermal stress should be considered in

the design and selection for materials of construction of solar receivers.

72



Creep deformation under conditions of thermal stress, generally is

favorable as it leads to stress relaxation. For this reason, the occur-

rence of creep reduces the probability of failure by thermal stresses. The

magnitude of thermal stresses due to external constraints will decrease

with increasing time. Therefore, thermal stress relaxation by creep leads

to an increase in the thermal condition (i.e. AT 
max , 

gmax , etc.) to which

a material can be subjected without thermal stress failure, to a value

greater than if no stress relaxation occurred.

In general, the higher the creep rate, the more rapid thermal stress

relaxation will occur, with a corresponding greater thermal stress re-

sistance. The derivation of analytical expressions for the magnitude of

thermal stress affected by creep is highly complex, if possible at all.

In general, the kinetics of creep is a function of the temperature as well

as stress. For this reason, in a body subjected to non-isothermal con-

ditions, thermal stress relaxation can occur by a multitude of mechanisms.

Complex, numerical methods based on finite element principle are required

for such calculations (Poritsky and Fend, 1958). Only for thermal

stresses which occur under isothermal conditions due to external constraints

such as encountered during thermoslastic instability (buckling), analytical

expressions for the stresses and stability condition can be derived

for linear creep behavior, i.e., a creep rate which is directly proportional

to the stress. For these reasons, derivations of expressions for the purposes

of obtaining thermal stress resistance parameters for thermal ;,tress re-

laxation, in general cannot be obtained unless grossly simplifying assump-

tions are introduced.
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4.4.2. Steady-state heat flow

In such an analytical study, reproduced in Appendix 4.4.2.A, one of

the authors of this report (Hasselman, 1967) noted that the rate of creep

in a thermal stressed structure corresponding to the stress at the posi-

tion of lowest temperature, represents a lower bound on the rate of thermal stress

relaxation. This concept was applied to a hollow circular cylinder under-

going steady-state heat flow, treated in section 4.1 of this report. It

was pointed out that as thermal stress relaxation occurred, the values of the

maximum temperature difference or heat flux across the wall could be increased,

at a rate such that the maximum value of tensile thermal stress remained

constant.

On this basis, the maximum rate of rise of the temperature difference

across the cylinder wall for a ceramic material undergoing linear creep

was derived to be:

where

d(OT max)	 S`(1-v)

dt	 Gan

C	 [21n(a )] -1[	
2

1 - b2 .2 In (a)]

(4.4.2.1)

(4.4.2.2)

Similarly, the heat flux per unit length can be increased at a rate

where

d(g
max)	

St(1-v)K

dt	 C 10 n

2

CT	 Cl _ b2-a2 
In al/4n

(4.4.2.3)

(4.4.2.4)

and n is the viscosity relating the creep rate a to the stress by:

E -On
	

(4.4.2.5)
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Eqs. 4.4.2.1 and 4.4.2.3 suggest that materials which exhibit

maximtmi thermal stress relaxation should be selected on the basis of

the thermal stress resistance parameters:

S t (1-v)	 St(1-v)R

a n	
and	 an	 (4.4.2.6)

It is of interest to note that the above parameters do not contain

Young's modulus as a material property. The reason for this is that the

amount of creep strain required for a degree of stress is an inverse func-

tion of Young's modulus of elasticity. Since the magnitude of the thermal

stresses is directly proportional to Young's modulus, the rate of change of

AT max
or gmax are independent of Young's modulus.

Important to rote is that these equations represent lower bounds on

the rate of rise of AT maxor qmax . As time progresses and the changes in

AT and q involves changes in the absolute temperature, these rates can be

modified.

4.4 3. Remarks

Although to first appearance, thermal stress relaxation appears

favorable from the point of view of reducing the magnitide of stress, two

unfavorable effects will occur. First, as pointed out previously, thermal

stress relaxation under non-isothermal condition, can result in un-

acceptably high values of residual stress, whenever the material is brought

to thermal equilibrium at lower temperature. For most engineering structures

or materials, with the exception of tempered glass, the formation of such

residual stresses generally is unfavorable for continued satisfactory per-

formance. In addition, thermal stress relaxation can lead to considerable

deformation of the component or structure, which also cculd have an adverse
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effect on subsequent performance. It is the view of the writers of this

report, that materials for solar receivers should be chosen to keep thermal

stress relaxation to an absolute minimum. ;onversely, operating temperatures

should be kept sufficiently low that creep deformation is prevented.

4.5. Thermsl Fatigue (KI 1 
KIc)

4.5.1. General

Brittle ceramic materials under conditions of static or cyclic stress

can exhibit the growth of cracks at levels of stress intensity factor be-

low the critical stress intensity factor (i.e. for KI < KIc). This

phenomenon is referred to as Sub-critical crack growth. If for a given

stress value or history, the total extent of crack growth is sufficient

for the crack to become critical, failure will ensue. For constant or

cyclic stress, this mode of failure is referred to as static or cyclic

fatigue, respectively.

Subcritical crack growth can also occur under conditions of steady-

state or cyclic thermal stress. The resulting failure is referred to as

"thermal fatigue." Solar receivers, because of wide temperature excur-

sions and/or non-linear steady-state temperature distributions will be sub-

jected to thermal stress and should be susceptible to failure by "thermal

fatigue." In order to take tt..s effect into consideration in the design

and selection of materials for solar receivers, the role of the individual

factors which effect thermal fatigue behavior, as well as their interaction

needs to be well understood.

A framework by which such understanding can be developed is provided

by the methodology for the prediction of fatigue behavior of brittle ceramics
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based on fracture-mechanical principles. Basically, this methodology re-

quires a knowledge of the size and geometry of the propagating crack, the

kinetics of crack growth as well as the stress and temperature history to

which the material is being subjected. In principle, with this information,

the time required for the propagating crack to become critical (i.e. the

time to failure) can be calculated for any stress and temperature history.

For constant and cyclic stresses --nder iso-thermal conditions, expressions

in analytical form are easily derived. For transient temperatures and

thermal stresses, the time or number of cycles to failure are more con-

veniently obtained by numerical methods. The results obtained by these

latter techniques, however, are less useful for the specific identification

of the variables which control thermal fatigue behavior. For this reason,

analytical expressions for the time-to-failure t  for an isothermal steady-

state stress, following the approach of Hasselman and Zdaniewski (1978),

(Appendix 4.5.1.A), will be presented below:

As shown by Evans (1972), the time-to-failure (t f) for a brittle

material subjected to an isothermal constant tensile stress (a) is given

by:

KIc
tf - [2/a2Y2 ] I	 [KIdKI/V]	 (4.5.1.1)

KT.i

where Y is a geometric constant which relates the value of tensile stress

to the mode I stress intensity factor, KI by:

KI - aYa
1/2	

(4.5.1.2)

where a is the crack size. KI - KI (t - 0) and V is the crack velocity

which for many materials can be expressed as:
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V a Ae exp(-Q/RT)

where A and n are constants and Q is the activation energy for the parti-

cular mechanism responsible for the crack growth..

4.5.2. Steady-state heat flow

For steady state-heat flow, substitution of the expression for the max-

imam tensile stress for any configuration due to an imposed temperature dif-

ference, heat flux or other thermal condition in eq. 4.5.1.1, will yield

an expression for the time-to-failure in terms of the variables which affect

the magnitude of thermal stress as well as those which affect the sub-

critical crack growth. One should be careful to note that this approach

is based on the implicit assumption that the thermal stress intensity factor

can be calculated from the value of thermal stress obtained from thermo-

elastic principles for a continuum and the crack size and geometry as

given by eq. 4.5.1.2. This assumptf -Dn is expected to lead to reliable

results as long as the crack size is small (say -̀ 1%) relative to the size

of the component or structure. For crack sizes, however, which are an

appreciable fraction of the body size, the above approach will lead to an

over-estimate of the thermal stress intensity factor, due to the effect of

the crack on the effective compliance. For this case, the dependence of

the thermal stress intensity factor on crack size needs to be established.

For this, analytical or numerical techniques are available such as those

employed by Stahn et al., (1977a,b), Stern (1979) and Emery and co-workers

(1969 a,b). Since the present approach neglects the effect of the crack on

the compliance, the expressions for the time-to-failure, in fact, are

conservative.
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For the derivation of the time-to-failure, Rasselman and Zdaniewski

(1978) used an expression for the thermal stress of the form:

c - CaEAT/(1-v)
	

(4.5.2.1)

where C is a geometric constant, which, for Instance, for a hollow cir-

cular cylinder subjected to steady-state radial heat flow, can be obtained

from eq. 4.1.5.1 presented in an earlier section of this report.

Substitution of eq. 4.5.2.1 into eq. 4.5.1.1, and assuming that

KIi << K c
I , results in:

tf - [2(1-v)2exp(Q/RT)]/[CmFAT)2Y2A(n-2)KIi(n-2)]

(4.5.2.2)

where 
KIi 

can be obtained (equation 4.5.1.2) knowing the initial stress

a, geometric constant Y and the initial crack length a.

Examination of eq. 4.5.2.2, indicates that a calculation for the time-

to-failure for steady-state heat flow, expressed in terms of an imposed

temperature difference, involves a total of twelve different variables, in-

cluding material properties, environmental conditions as well as geometric

and dimensional variables.

Eq. 4.5.2.2 can be rewritten in terms of a given value of heat flux q,

related to AT by q - C'K T where C' is another geometric constant. Sub-

stitution of this relation for AT in eq. 4.5.2.2 results in:

t  - 2(1-v) 2 (KC') 2 exp(Q/RT)/(CbL Eq)2Y2A(n-2)KIi(n-2)

(4.5.2.3)

This equation involves a total of thirteen variables with (C'/C) 2 being

considered as a single geometric constant.
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Additional variables can be introduced by substitution for a the

expression for the maximum tensile thermal stress at steady state (t - -)

for the semi-absorbing flat plate subjected to normally incident radiation.

This specific case introduces the reflectivity, the absorption coefficient

and the plate thickness as additional variables, bringing.the grand total

of sixteen independent variables which must be known before a thermal

fatigue calculation can be made. For the time-to-failure for a semi-

absorbing material subjected to time-dependent incident radiation, the

thermal diffusivity must be taken into account as well, bringing the

total number of independent variables to seventeen.

The designer may be interested In the maximum temperature difference,

heat flux, etc. to which a given component can be subjected to assure

a minimum time-to-failure. Such expressions can be obtained by a simple

rearrangement of eqs. 4.5.2.2 and 4.5.2.3. For instance, eq. 4.5.2.2 for

t  in terms of AT can be rearranged to yield:

1/2
T
	
- [2(1-v)2exp(Q/RT)]1/2[(CaEtf)2Y2A(n-2)Kii(n-2)]

(4.5.2.4)

and a similar expression for the maximum heat flux:

gmax	
[2(1-v)2 (KC•)2exp(Q/RT)]1 /2[(hEq)2Y2A(n-2)KIi(n-2)] 1/2

(4.5.2.5)

The present authors are not aware of experimental data which substan-

tiate the equations for t  or equations for 6TH and gmax'
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4.5.3. Thermal cycling

The validity of the above mentioned general approach is provided by

the results of Badaliance at al., 1974 and Hasselman at al., 1976 (appendices

4.5.3.A and 4.5.3.B) who studied the effect of sub-critical crack growth

on the thermal fatigue behavior of soda-lime-silica glass subjected to a

single or multi-cycle quench from a higher temperature into a water bath

at lower temperature. The number of thermal cycles required for the onset

of fast fracture were obtained by a numerical procedure which takes into

account the continuous variation of stress and temperature. Good agreement

was found between the experimental and calculated data as shown in fig. 4.5.3.1.

It is important to note, however, that the prediction of thermal fatigue

behavior also requires an analysis based on the statistical nature of brittle

fracture. This statistical effect causes a dependence of the fracture on

the magnitude and distribution of the stress leading to differences in

fracture probabilities. For this reason, the fracture stress (or critical

flew size) under conditions of thermal stress can differ appreciably from

the fracture stress (critical flaw size) determined in a tensile or other

type of test. This implies that a statistical analysis of the fracture

behavior of brittle ceramics is essential in order to predict the failure

in thermal fatigue conditions. For isothermal, constant stress conditions,

a number of such statistical studies have appeared in the literature (Fracture

Mechanics of Ceramics, 1974, 1978).

In terms of eqs. 4.5.2.2 and 4.5.2.3 for t  as governed by an imposed

temperature difference or heat flux, the following two parameters can be

defined for the selection of the brittle ceramic with highest thermal

fatigue resistance:

[(1-v) 2exp(Q)]/a1 E2 (n-2)A	 (4.5.3.1)
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Fig. 4.5.3.1. Predicted and experimental cycles-to-
failure of soda-lime-silica glass rods
(initial flaw depth - 8.6 vm) subjected
to thermal fatigue by quenching into water
bath at 330C.
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r-7--_: 7

and
K2 [(1-v) 2ezp(q) ]/a2 E 2(n-2)A	 (4.5.3.2)

Point-focus solar receivers are expected to be susceptible to

thermal fatigue because of the high heat fluxes involved in addition

to the rapid variation in heat flux as the result of variable cloud cover.

It should be evident from the above discussion that for reliable predictions

of the thermal fatigue behavior, a great deal of data need to be generated.

The magnitude of thermal stresses and operating temperatures must be known

quite accurately. In addition, numerous material properties, the size

and geometry of the failure initiating flaws as well as the parameters

which describe the statistical nature of fracture need to be evaluated.

The parameters which control the sub-critical crack growth are a function

of environmental conditions which can be highly variable. Furthermore,

because of the wide temperature ranges at which solar receivers are ex-

pected to operate, it is conceivable chat the crack growth may prr•Red

by a number of different mechanisms simultaneously. This is particularly

true under conditions of rapid heating and cooling. At the present

time, it is quite likely that complete information required for thermal

fatigue calculations is not available for even one brittle ceramic.

Establishing a data base for the prediction of thermal fatigue be-

havior of all possible designs and candidate materials represents a task

of considerable magnitude, not only in terms of technical effort, but also

in terms of time.

For these reasons, it is recommended that thermal fatigue analysis

be limited to final design configurations and only for those materials

which are likely to give satisfactory service.
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4.6. Critical Crack Propagation (RI > KIc)

4.6.1. General

As discussed in an earlier section of this report, thermal environments

can be encountered in practice, for which even in the best materials avail-

able, the onset of thermal stress fracture cannot be avoided. Under these

conditions, thermal stress resistance of brittle ceramics is based on their

ability to undergo minimum crack propagation. In this manner, the ceramic

will undergo a minimum change in its physical char p °teristics, such as

strength and its geometry, so that it still can continue to satisfy the per-

formance criteria of its specific application. As pointed out earlier, this

particular philosophy for material selection is common in the refractories

industries.

It is clear that derivations of selection rules based on a minimum change

in physical characteristics and geometry following thermal stress failure

requires analyzing the variables Which affect the propagation of cracks

in brittle materials for thermal stress conditions such that K I -' RI .
c

Literature studies for crack propagation in thermal stress fields are

far less in number than those concarned u;-1th the analysis of thermal stresses

and the onset of crack propagation. Nevertheless, a small number of such

studies related to the fracture-mechanics of crack propagation have been

published (Hasselman 1969, 1971 a,b; Stahn and co-workers 1977a,b; Bazant and

co-workers 1979; Emery and co-vorkers 1966, 1969b). In general, these studies

indicate that the analysis of crack propagation in thermal stress fields

is relatively complex. One of the reasons for this complexity is that the

propagation of cracks affects the magnitude and distribution nf the

thermal stresses due to the change in compliance of the structure or

material undergoing fracture. Crack interaction introduces a further
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degree of complexity. For these reasons, at present, analysis of crack

propagation in thermal stress ffalds must rely on numerical methods. As

described earlier, such numerical methods are lass convenient for assessing

the individual variables which control crack propagation in thermal stress

fields. However, analytical solutions for the stability and propagation

of cracks in simple mechanical models were obtained in studies by Hasselman

(1969, 1971a)reproduced as appendices (4.6.1A and 4.6.1E) to this report.

These analytical approaches were permitted by the judicious choice of

models consisting of a material tri-axially or uniaxially constrained from

shrinking on cooling. From a continuum point of view, these constraints

assure spatial uniformiLy of the thermal stress field regardless of the

extent of crack propagation. The material was assumed to contain a uniform

density of cracks of equal size. The complexity of the details of the

stress distributions was circumvented by expressing the elastic response

of the material in terms of an effective bulk or Young's modulus, expressed

in terms of Young's modulus of the crack-free material and the density

and size of the cracks. Crack interaction effects were assumed to be

absent. In respect to this latter a:_.umption, it should be noted, as in-

dicated by preliminary results of studies currently underway by the present

writers, that as long as co-planar crack prop^gation is avoided, crack

interaction has a beneficial effect on both the onset as well as the extent

of crack propagation in thermal stress fields.

4.6.2. Analytical results

The analytical studies for the two different mechanical models re-

sulted in the same conclusions with regard to the nature of crack pro-

pagation and the role of the pertinent material properties. For this

reason, the prixcipal results for only one of the models will be presented
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here. Reprints of the two analytical studies (Hasselman, 1969, 1971a)

presented as appendices to this report contain further information on

the assumptions and mathematical details.

For the thin flat plate, with a uniform density N of cracks of

equal length t, uniaxially prevented from shrinkage on cooling by rigid

constraints, the critical temperature difference on cooling, AT., required

for crack instability is (Hasselman, 1971a):

dTc a (2y f /Wa2E0L) 1/2 (1 + 2rNi2 )	 (4.6.2.1)

where E  is Young's modulus of the crack-free plate.

Figure 4.6.2.1 shows the dependence of AT  on A in dimensionless

form for two values of crack density, indicated by two solid lines. These

curves show that high values of AT  can be achieved for either small or

large crack sizes. This latter effect arises because at the large values

of crack size the compliance of the plate is affected significantly. A

minimum in AT  occurs at a crack size, A -Rem.

From the point of view of the relevant material properties, for a

given crack sizes and density. AT  can be increased by selection of a

material with a higher value of the parameter:

(Yf/a2E0)1/2
	

(4.6.2.2)

It is important to cote that this latter conclusion could also be

obtained from the vrovlLia discussion on the criteria for the onset of

tharmal fracture, simply by expressing the fracture stress in terms of

the appropriate fracture-mechanical parameters.

The validity of the fracture-mechanical approach is demonstrated

further by an additional fracture phenomena of major importance to the
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selection or development of materials and the interpretation of fracture

data as follows:

Referring to fig. 4.6.2.1 9 it is important to note a very basic

difference in the propagation behavior of cracks with initial crack size

to > im, at the onset of instability at 4T c . For i > im, at AT ^ 4Tc9 the

relation betwreen crack length and AT is given by eq. 4.6.2.1. This mode

of crack extension is referred to as a "stable" crack propagation. For

1  < Im, however, after the onset of crack propagation at 4Tc , the elastic

energy released exceeds the energy required to create the new crack

surfaces. This excess energy is converted to kinetic energy of the

propagating crack assuming no other losses. This is referred to as

dynamic or unstable crack propagation. 	 The crack will cease propaga-

tion at a final crack length Rf , when all the kinetic energy and additional

released elastic energy is transformed into surface fracture energy.

For to << IM, this value of final crack length can be derived to be

	

if - (4WNRo) -1
	

(4.6.2.3)'

This expression indicates that for a given crack density, the crack

length which results from unstable crack propagation is inversely pro-

portional to the initial crack length and crack density and independent

of other material properties. Low values of if can be achieved only by

increasing the initial crack length and the crack density. The implications of

this conclusion for materials for which the initial crack length, t0 is

not easily ascertained, can be examined by substituting into eq. 4.6.2.3

the Griffith relation between crack size, tensile fracture stress, fracture

surface energy and Young ' s modulus ( for a single crack in a thin flat plate)

which yields:
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if 
M Q2

f
/8Ny fE
	

(4.6.2.4)

This expression indicates that dynamic crack propagation is expected

to be extensive in materials with high initial fracture stress, and low

values of crack density, fracture surface energy and Youngs mdulus.

Material: with least dynamic crack propagation should be selected

on the basis of the high values of the ratio:

Ny fE/Q f 	(4.6.2.5)

This conclusion can be illustrated further by deriving the tensile frac-

ture strength (aa) retained by a material following dynamic crack pro-

pagation. With the aid of the Griffith relation (in terms of surface

fracture energy) this value of strength can be expressed by:

as M (YfE/a f)(16N/n) 1/
^
	(4.6.2.6)

This expression also indicates that high strength retention requires high

values of fracture surface energy, Young ' s modulus and low values of

original fracture stress. Specifically, it indicates that the strength

retained after fracture is inversely proportional to the original strength

of the material before fracture. Similar conclusions can also be derived

for different mechanical models; dimensional analysis can be used to

establish their general validity.

4.6.3. Discussion

From the point of view of the selection of materials with optimum

thermal shock resistance, it is critical to note that the requirement of

low or moderate strength and high values of Young ' s modulus to minimize
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the extent of dynamic crack propagation is exactly opposite to the require-

ment of a high value of fracture stress and low Young 's modulus to prevent

the onset of thermal stress fracture. These opposite requirements have

created considerable confusion in the selection of materials for thermal

a , ress applications and the interpretation of fracture data.

For thermal environments in which the thermal stress fracture for even the

best material is likely to occur, attempts could be made to increase the thermal

stress resistance by increasing strength. This frequently is the only

possible alternative since such properties as coefficient to thermal ex-

pansion, Young ' s modulus, Poisson's ratio, thermal conductivity are not

easily modified. This approach can have two effects. The strength

improvements may be adequate such that the thermal stress failure is avoid-

ed, as desired. However, very severe thermal environments may require
ft

improvements in strength by an order of magnitude or so. Such improvements

are not easily achieved with presently available materials and the current

state of technology. In this case, any improvement in strength which can

be obtained in practice will not be sufficient to prevent the onset of

thermal stress fracture, but will only result in more extensive crack

propagation and a further reduction in retained load-bearing ability. This

latter phenomenon is of vital importance in the selection of materials for

thermal environments in which thermal stress failure is likely to occur.

In the view of the present writers, this may well be the case for the com-

ponents of a solar receiver directly exposed to the incident solar radia-

tion.

h considerable body of experimental evidence for this type of

fracture behavior of brittle ceramics was obtained in a number of laboratory
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studies (Hasselman 1970, Gupta 1972, 1973, Mai and Atkins 1975, 1916). Many

of these studies concentrated on measuring both the severity of thermal

shock required for the onset of fracture and the extent of crack pro-

pagation as it affected the retained tensile load-bearing ability of the

ceramic following fracture. Many of these results are presented in a

number of the appendices to this report. However, the implications of

these results for the selection of brittle ceramics for severely thermal-

ly stressed solar receivers are sufficiently important that a brief

overview and discussion of their significance will be included in the

main body of this report.

For this purpose, fig. 4.6.3.1, indicates schematically the length

of a crack and corresponding retained tensile strength as a function of

severity of thermal shock. This latter quantity could include a tempera-

ture difference, the magnitude of incident heat flux, rate of heating,

etc. Typically, in laboratory studies, the severity of thermal shock

is measured by the temperature difference between the specimen -md the

quenching medium in a thermal quench experiment where the specimens at

higher temperature are quenched in water, oil or similar other fluids at

lower temperature.

For dynamic crack propagation at OT C , the crack length and retained

strength show a discontinuity. In contrast, for stable crack propagation

no such discontinuity occurs, with crack length and retained strength, in-

creasing and decreasing, respectively, in a monotonic manner at AT > 6Tc.

Figure 4.6.3.2 compares the strength behavior of two different alumi-

num oxides subjected to a water quench, described in further detail in

Appandix 4.6.3.A. It should be noted, that the alumina with the initially

higher strength requires a higher quenching temperature difference for the
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onset of thermal stress fracture than the alumina with the lower value

of initial strength. This observation is entirely iu accordance with

the selection rules presentee earlier for avoiding thermal stress frac-

ture altogether. On t:ie other hand, if the relative thermal stress re-

sistance is compared on the basis of tensile strength retained, the

alumina with the initially lower strength has the greater thermal stress

resistance. Clearly, for a severity of thermal shock corresponding to

AT $ 3000C the alumina with the initial higher strength is obviously

the material with the higher thermal stress resistance whereas, for

a severity of thafmal quench corresponding to AT >300 0C which will cause

the onset of frw.Are in both aluminas, the material with the lower

initial strength should be the logical choice. These two sets of data

are quite illustrative of the two different philosophies for defining

thermal stress resistance. In general, material selection based on

limited crack propagation is far more common in high-temperature tech-

nology than material selection based on the resistance to the onset of

thermal stress fracture.

The differences in the two different philosophies for defining

thermal stress resistance is illustrated further by the comparative

strength behavior of polycrystalline alumina and beryllia subjected to

a water quench shown in fig. 4.6.3.3 (Rrchn, et al., 1973). From the

point of view of avoiding thermal stress fracture, the beryllium oxide

is the preferred material. However, the strength retention behavior of

the beryllia is inferior to that of the alumina.

Glassy materials generally undergo extensive crack propagation with

little or nc strength retained following fracture as illustrated by the
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data of Badaliance at. al. (1974) for a soda-lime-silica glass, shown

in fig.4.6.3.4. This effect can be attributed to a very small flaw sire

In the glass compared to the flaw size generally found in polycrystal-

line ceramics or in other words, a low fracture toughness and Young's

modulus and comparatively high strength.

As indicated by the observations of Crandall and Ging (1955) for

aluminum oxide and Hasselman and Shaffer for zirconium carbide (1962),

unstable crack propagation can occur in an almost explosive manner

with the resulting cracks extending completely through the sample.

This, in effect, corresponds to zero retained strength. For this reason,

for designs involving thermal shock of such severity that thermal

stress fracture cannot be avoided, high-strength materials which fail

in a highly unstable mode should not be selected. Instead, materials

with only moderate strength (i.e. large flaw size) will be found to be

far more suitable in view of their stable nature of crack propagation.

The advantage of the initially lower strength which results in re-

latively smaller strength loss accompanying stable crack propagation is in-

dicated in fig. 4.6.3.5(x) which shows the retained strength of a high-

alumina refractory subjected to a water quench as measured in a study by

Larson et. al (1975), reproduced in Appendix 4.6.3B. The discontinuity

in strength at 6Tc , typical for unstable crack propagation is absent.

In fact, I eras found that the cracks formed even during the most severe

quench were difficult to detect by optical or other means. This is due

to the coarse and heterogeneous microstructure of these types of materials.

It is evident that this type of crack propagation is preferred, since the

material is still entirely capable of providing adequate service in its

intended applications such as furnace linings, thermal inbulation, etc.
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Similar results for a number of refractories showed that the strength

retainer was rrY;,artional to the value of the parameter (y f/*2E) l/2 as

preiicted by the analysis of the stability and propagation of cracks in

thermal stress field, presented earlier.

It is important to note, however, that whether a brittle ceramic will

fail in a stable or unstable manner depends on the nature of thermal shock,

particularly in regard to the number of cracks which are nucleated during

the thermal fracture. Briefly, as can be ascertained from fig. 4.6.2.1,

a decrease in crack density for a given crack length can change the mode

of fracture from a stable to an unstable one even in the same material.

Evidence for the validity of this conclusion provided in the paper of

Larson and Aasselman (Appendix 4.6.3B) is shown in fig. 4.6.3.5(b), which

shows the strength behavior of the s pace alumina refractory of fig. 4.6.3.5(a),

but subjected to radiation heating. As Indicated by Vat discontinuity in

the strength curve, failure occurred by unstable crack propagation.

This latter observation together with those of Crandall and Cing

(1955) and Basselman and Shaffer (1962) suggests that severe thermal shock

on heating can be more damaging than thermal shock by cooling. This sug-

gestion can he ra*ionalized by noting that on cooling, such as in a quench,

much, if not all, of the surface is placed in tension. This provides an

opportunity for the nucleation of many cracks. On the other hand, in case

of heating of spheres, cylinders or plates, only a point, line or plane

within the material is placed in tension. Therefore, for a given geometry

and volume of material, the number of cracks nucleated per unit volume

is expected to be much less during transient heating than during cooling.

Correspondingly, the extent of crack propagation is expected to be higher

in heating than in cooling.
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For the saes reasons, for a given type of thermal shock (heating or

cooling) a also effect is expected. Large sized bodies are expected to

exhibit more unstable and more extensive crack propagation than specimens

of smaller size. It is anticipated that certain geometries may be less

susceptible to such extensive crack propagation than other geometries.

However, verification of this conclusion will require more experimental

and theoretical work.

In summary, for thermal shock of such severity that the nucleation of

thermal stress fracture cannot be avoided, material selection should be

based on the criterion that the extent of crach propagation be kept to a

minimum. Th.^s requires materials with moderate strength, hie. Young's

modulus of elasticity, high surface fracture energy, low coefficient of

thermal expansion and large nuober of cracks nucleated during fracture.

A small component size is also preferred.

The above recommendations should be relevant to solar receivers. For

these, it is anticipated that during sudden heating or cooling as the re-

sult of the passage of a cloud, the magnitude of the thermal stresses

will approach or exceed the fracture stress. Depending on the material

of construction, this could result in explosive, catastrophic failure. If

so, the designer may be tempted to choose or develop a notarial with increas-

ed strength. As discussed, this attempt if not successful will only result

in increasingly catastrophic crack propagation. The alternative, preferred

approach is to search for a material with lover strength, high fracture tough-

ness, high YonaS 'v modulus and lour coeft .:' :ant of thermal expansion such

that failure will take place by stable crack propagation. For many materials,

this can be achieved simply by incorporatirj a 15-202 pore phase.
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Furthermore, large monolithic components should be avoic 4kd as we'll. In-

stead, an assembly of small, loosely interlocked sub-components also

is recosmeadad, whenever practical.
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SUMMARY AND DISCUSSION OF THERMAL STRESS RESISTANCE PARAMETERS AND

COMMENTS ON INDIVIDUAL PROPERTY DATA

Thermal Stress Resistance Parameters

Table II summarizes the thermal stress resistance parameters pre-

sented in the previous sections of this report. it should be noted that

in presenting these parameters, redundancy has been avoided as much as

For example, the parameters for thermal buckling failure as

listed in Table II are appropriate for slender columns with narrow

Replacing E in these parameters by E/(1-v 2) results in equiva-

lent parameters, appropriate to plates. In many of the other parameters

listed in Table II for steady-state or transient heat transfer, deletion

of the term ( 1-0 converts the parameter appropriate for a multi-axially

stressed • configuration to a corresponding uni-axial one. Furthermore,

the parameters appropriate for radiation heating, by the addition or

deletion of the exponent 1/4 can be converted to radiation temperature

(tmax) ^* radiation heat flux (gmax), respectively. Even with these

simplifications, Table II contains a total of twenty-seven non-redundant

thermal stress resistance parameters. The two parameters, St(1-v)/aE

and S t (1-v)K/aE listed under steady-state and transient heat transfer,

although dimensionally of the same form, nevertheless apply to completely

different measures of thermal stress resistance.

It is critical to note that the role of the individual material

properties which affect thermal stress resistance differs from one

parameter to another. For this very reason no general statement can

be made of the relative thermal stress resistance for a given set of

different materials. Such relative thermal stress resistance can be



TABLE II. Sumary of Thermal Stress Resistance Parameters
for Brittle Ceramics

A. Steady-State Heat Flow or Isothermal Conditions:

S t (1-v)/aE ; S t (1-v)K/aE	 Sc(1-v)/aE

St(1-v)
S t (1-v)/an ; St(1-v)K/an	

EAaAT

B. Transient Heat Transfer:

S t(1-v)ALE ; St (1-v)K/aE ; St(1-v)K /aE

(S t(1-v)K/aEe)lt ; (S t
 (1-v)K/(1- Fxo)aEE}fit

S t (1-v)K	 St(1-v)K

aEtu	 aEeu3

C. Thermal Buckling:

a-1 ; S t/aE ; S t2 /a E2 ; ( S t /a 20 ;

S t /a 2E ; S tK/a2E ; ( S t/a 3E) 4 ; St/a3E;

S tK/a 3F

D. Crack Propagation

(1-V) 2[exp(Q/RT)]/a2E2(n-2)A

(1-v) 2 [exp(Q/RT)]K /a E`(n-2)A

(Y f /a 2E0 ; YfE/St2

102



defined only if the heat transfer environment, failure mode, criterion

of thermal stress resistance have been established.

Furthermore, it should be noted that these parameters consider

ti. coral stress failure only, without considering other performance

criteria, which will add a further complexity in the selection of

materials. In fact, the criterion for high thermal stress resistance

may well be incompatible with material requirement for other functional

purposes. As an example, a material simultaneously may be required to

exhibit high thermal stress resistance and good thermal insulating

property. The first requirement demands a material with high thermal

conductivity, whereas low thermal conductivity is essential to meet

the second requirement. A similar contradiction exists for materials

which may undergo catastrophic thermal stress failure, but which never-

theless may be subjected to mechanical stresses of high magnitude.

The first requirement requires a low to moderate tensile strength in

order to keep the extent of crack propagation to a minimum. In con-

trast, high tensile strength is required to meet the second requirement.

Clearly trade-offs need to be made. Alternatively, major re-designs

could be in order, if the material properties required for high thermal

stress resistance are found to be incompatible with other functional

requirements, to an extent that appropriate trade-offs cannot be made

with the perhaps limited number of potential candidate materials.

5.2. Comments on Design Values aul Selection of Property Data

For purpose of analytical convenience, the thermal stress resistance

parameters presented above, were derived on the assumption that ceramic

materials have well-defined values for their various properties. In

practice, however, this assumption is far from the truth. In fact, for
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a number of reasons, considerable variation in ceramic property i

can be encountered.

A major reason for the variability in property values can bo

bated to the lack of reproducibility of the manufacturing method,

ceramic materials, which generally are based on powder-metallurgical

techniques. Such techniques are highly sensitive to even slight

variation in powder characteristics such as particle size distribution,

particle shape, impurities, pressure used in green-forming or hot-

pressing, firing temperatures and times as well as heating and cooling

rates. An extensive literature for these phenomena is available. Such

lack of reproducibility in the processing variables results in variation

in the microstructural and other variables which critically affect many

of the material properties. Such microstructural variables include poro-

sity (including pore amount, shape and size),grain size distributions,

amount and distribution of second phase impurities and many others.

A second reason for major property variation is their time-depen-

dent behavior resulting from environmental effects encountered during

operation such as corrosion, erosion, sub-critical or catastrophic

crack growth, pore-migration, grain-growth, micro-cracking and other

effects.

A third, and not insignificant reason for the variability in ceramic

property values is the uncertainty in establishing these values due to

systematic, statistical and other effects. Property data frequently

are found to depend on the technique (with inherent assumptions) as well

as the environmental conditions including atmosphere, specimen geometry

and size, and other variables, under which they are measured. Frequently,
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significant variations in property values can be found by different in-

vestigators for the same material, measured by identical testing procedures.

Regardless of the reason for the variability in property data, the

design engineer should be aware that such variability exists. Handbook

values should be treated with a great deal of caution. The reliability

of available property data should be assessed in terms of the sophistica-

tion and the assumptions inherent in the measurement technique, specimen

quality and the statistical significance of the data. Property data ob-

tained from materials made under closely controlled laboratory conditions

can differ significantly from the property data for materials made by mass

production methods. Special caution is advised with data for which the

pertinent test conditions are not supplied. Frequently, such data are

given in qualitative terms such as "excellent, good or poor." This latter

statement applies particularly to data for thermal shock resistance, which

neither provide information on the test method nor by which criterion such

thermal shock resistance is defined.

Of the materia- properties which affect thermal stress resistance.

some are more susceptible to variations than others. Only minor uncer-

tainties are expected with data for the coefficient of thermal expansion.

This property is measured easily with relatively simple, standard equip-

ment. Furthermore, the coefficient of thermal expansion is not affected

by micro-structural variation such as grain size or pore content. Un-

less excessive, impurity content has little or no effect on the value of

coefficient of thermal expansion. Micro-cracking in brittle composites or

polycrystalline materials can alter the values of the coefficient of ther-

mal expansion significantly. But then, micro-cracking generally decreases

the coefficient of thermal expansion, which from the point of view of ther-

mal stress resistance, must be considered favorable.
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Elastic properties, too, can be measured by a number of straight

forward methods. Elastic property data obtained by acoustic methods

should be considered highly reliable. Data obtained by measurements

of strains or deflections, especially at high temperature, should be

treated with somewhat greater caution. Some variation in elastic

properties are expected as the result of variability in porosity or

the presence of second phase. The pore morphology and distribution of

second phases also affects elastic behavior. The relative influence

of these effects will be governed by the :ontrol and the reproducibility

of the manufacturing process. Mirco-cracking can have a profound effect

on elastic behavior, generally favorable to thermal stress resistance.

Such micro-cracking is a function of the grain size of the material

which controls the size of the micro-crack pre-curs-,rs, i.e. the pore

at triple-points and grain boundaries. Growth of such pTe-cursor

micro-cracks could cause time-dependent elastic behavior due to the

gradual growth of aicro-cracks with time. Service conditions such as

corrosive effects could cause considerable decreases in elastic pro-

perty values. The elastic moduli of materials which hrve undergone

thermal stress failure can be significantly below the values for the

unfractured material at the time of installation.

Optical properties pertinent to thermal stress resistance (i.e.,

the reflectivity , emissivity and absorption coefficient] can be measured

by straight-forward methods, although such measurements at high tempera-

tures can bey prone to experimental difficulties. Reflectivity is ex-

pected to be controlled by the nature of the surface roughness and can be

affected considerably by the presence of foreign matter, such as dust

on the surface. In practice, then, reflectivity may exhibit a strongly
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time-dependent behavior, depending on the specific environmental

conditions encountered in practice.

The absorption coefficient is expected to be time-dependant due to

a possible pick-up and/or migration of impurities. Even for materials

with very low absorption coefficient the transmission of radiation throtgh

a material can be strongly effected by scattering at such micro-structural

features as a residual pore phase (with size being very critical) and

grain-boundaries. Even slight differences in such features can create

major differences in the optical transmissivity. Time-dependent pore

migration or pore growth as wall as grain growth would lead to a time-

dependent optical transmission under service conditions.

The thermal conductivity and thermal diffusivity generally exhibit

property value variations well in excess of the relative variations

found in the coefficient of thermal expansion, elastic and optical

behavior. Compilations of data for the thermal conductivity can show

data scatter of an order of magnitude at a given temperature for nominal-

ly Lhe same material. This excessive scatter in data can be attributed

to differences in material quality as well as major experimental diffi-

culty in obtaining reliable data especially at high temperature. Thermal

conductivity as well as thermal diffusivity are very strongly affect-

ed by impurity levels as well as the presence and the morphology of a

pore phase and/or second phase inclusions. The presence of cracks es-

pecially at the lower temperature levels can cause a major decrease in

the ability of a material to conduct heat. Unknown or unaccounted for

heat losses in the experimental measurement of the thermal conductivity

and thermal diffusivity art a as.jor contribution to the scatter in data.
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The uncertainty in the data for the beat conduction properties

introduces a corresponding uncertainty in the estimates of the tempera-

ture and thermal stresses and interpretation of experimental results

for the performance of solar receivers. In fact, significant under.

or overestimates of the efficiency can result from erroneous data for

the thermal conductivity.

It is unfortunate that in spite of their variability and their

absolute necessity, heat conduction data for candidate materials,

especially ceramics, for high—temperature technology is relatively

sparse. Such scarcity in part can be attributed to the relatively

high cost and complexity of such measurements. Nevertheless, it is

urgently recommended that a development and testing program of solar

receivers be assisted by extensive measurements of heat conduction

properties, preferably on the very same materials or components used in

a test structure.

The phenomena related to the mechanical failure of brittle ceramic

materials is expected to introduce major uncertainty in the design of

structures for high-temperature technology in general and solar receivers

in particular. A considerable body of literature (see for instance

Fracture Mechanics of Ceramics, Vols. 1,2,3 and 4, 1974, 1978). in-

dicates that the strength,fatigue and crack propagation behavior of

brittle ceramics is controlled by a wide variety of factors. Ideally,

a material should fail at a given stress level. Unfortunately, for

brittle ceramics this statement is far from the truth.

Experimentally the failure stress of brittle materials has been

found to be a function of the grain size as well as the presence of a
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pore phase. The grain size distribution and orientation s well as the

pore morphology are expected to be significant variables as well.

The method of surface preparation or surface damage occurred

during service can have a profound negative effect on the magnitude of

the failure stress. Environmental effects such as temperature and

level of humidity or other surface-active molecules also can affect

the magnitude of the strength and fatigue -life considerably.

Of significance is that the strength o^ brittle ceramics is a

function of the method by which it is measured. It has been found experi-

mentally that strength is affected by the stressing rate, the size and

geometry of the test specimens, the method of loading as well as the

distribution of stress within the specimen. Even for a given test method,

strength data show a large degree of scatter with coefficients of varia-

tion as high as twenty-five percent for many high-strength brittle cera-

mics. Worse yet, significant difference in strength data have been

found by different investigators for the identical material tested

under presumably identical conditions.

Fatigue-life under steady-state or cyclic load even for a set of

identical specimens may show variations of as much as three orders of

magnitude for a given stress level. Such scatter in strength and fatigue-

life can be attributed to differences in the size, geometry or orientation

of the failure-initiating flaws.

Measurements of property data related to critical crack propagation

such as fracture toughness (RIB) or fracture energy indicate that micro-

structural effects such as grain size and porosity can play a significant

role. Temperature also plays an important role especially at levels
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where inelastic effects become prominent. In service, material degrada-

tion due to corrosion effects also is expected to modify crack propaga-

tion considerably.

Taking into account the collective uncertainties of all material

properties discussed above, indicates that reliable predictions and/or

quantitatively significant interpretation* of experimental data of the

thermal stress behavior of ceramic materials foi solar receivers, is

a relatively complex task. Quantitative data for all these effects

should be established for all candidate materials. With this information,

estimates of strength performance and fatigue behavior can be based on

statistical theories such as those advanced by Weibull and many others

(1951), coupled with failure prediction methodology and proof-testing

based on fracture-mechanics. principles (See Fracture Mechanics of

Ceramics, Vols, 1, 2, 3 anti 4) .

In the absence of complete information, due to budgetary or other

constraints, the design engineer can take a very conservative approach.

This would require assumptions of design stresses of the order of no

more than ten to twenty percent c' the fracture stresses determined on

laboratory specimens made and tested under closely controlled conditions.

The same approach should be taken in the design, relying entirely on

experimental thermal shock data obtained in appropriate test facilities.

It is expected, however, that such a conservative approach may limit

the indicent heat flux, potential efficiencies and power output of

solar receivers to levels which are n:,t economically justified. On

the other hand, operation at higher flux levels may result in replace-

went of component at too frequent intervals.
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For all the above reasons, it is recommended that in the construction

of solar receivers, design configurations be selected with minimum levels

of thermal stress, by careful selection of materials and by following

design recommendations outlined in a subsequent section of this report.

t
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6. EMCT OF DIMENSIONAL AND GEOMETRIC VARIMLES AND NON-UNIFORM

SEATING OR COOLING ON THERMAL STRESS RESISTANCE

A general survey of the results presented in section 4 of this

report, indicates that a number of conclusions can be drawn in regard

to the effect of dimensional and geometric effects on thermal stress

resistance of brittle ceramic materials.

cirstly, for nearly all thermal environment= as indicated, for ersmpis

by representative equations: 4.1.6.1, 4.3.2.1, 4.3.3.1 9 4.3.3.10 etc. and the

numerical results shown i. fig. 4.3.1.1 for convective heat transfer (with

the exception of thermal 1)uckling instability), the magnitide of the

thermal stress increases with increasing component size. The primary

reason for this effect is that in larger structures heat flow occurs over

larger distances.

The above effect is particularly pronounced for non-uniform heatir,.g

(or cooling) of large structures, such as plates partially heated over

much of its surface, as indicated by the recent study of Stahn at al. (1980).

These observations immediately suggest that if high thermal stress

resistance is to be achieved, large monolithic ceramic structures should

be avoided. Whenever possible. Instead, the dimensions of the components

should be kept as small as possible. Large structures, if required to

meet other design objectives should consist of assemblies of smaller

cumponents. In case of non-uniform heating or cooling, the structures

should be segmented, such that the size of each segment is no greater

than the size of the region over which the non-uniform heating or cool-

ing occurs. This will result in a uniform heating over each segment.
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The same conclusion applies to the effect of size on the extent

of crack propagation in severe thermal environments in which thermal

stress fracture cannot be avoided. For a given number of cracks nucleated

during failure, the extent of crack propagation is expected to be pro-

portional to the volume of the component (Hasselman 1970; Gupta, 1972).

Decreasing component size will reduce the extent of crack propagation and

Increase the load-bearing capability following thermal stress fracture.

Secondly, as indicated by the various expressions presented earlier,

the geometry of a structr re and/or component as well as the value of

heat transfer also plays an important role in determining thermal stress

resistance. No general rule can be given for the effect of geometry,

but this effect allows the designer additional freedom in obtaining

the maximum resistance to thermal stress failure. One specific example

can be given. Radially outward heat flow through the walls of a con-

centric hollow cylinder will result in significantly lower values of the

tensile thermal stresses than for radially inward heat flow. This is

especially the case for cylinders, with wall thicknesses which are a

significant fraction of the cylinder radii.

The above conclusions with regard to the ffects of size and geometry,

together with the effect of external constraints discussed previously,

leads to the following design recovmndation:

"Structures operatinji, in thermal environments with a high risk of

thermal stress failure, whenever possible, should be constructed in

•	 the form of assemblies of components (or sub-components) of small

size sad simple geometry, to permit maximum free thermal expansion,

minimum non-uniformity in heat transfer and minimum temperature non-

uniformity within each component."
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designs proposed for point -focussing solar receivers, reviewed recently

by Ewing and Zwissler, 1979. For instance, In the design proposed by

M.I.T., it may be preferable to construct the dome -shaped heat-exchanger

from a number of individual segments. The single monolithic dome of

the current design may exhibit large tangential temperature non-uniformities,

unless by careful design, the air -flow over the dome is distributed

such that only the radial (through-the-thickness) temperature gradient

exists.

The same conclusion applies to the honey-comb heat exchanger

in the design advanced by Sanders Associates. It is recommended that

this heat exchanger be constructed of a number of parallel thin plates,

rather than the monolithic design currently envisioned. For spatially

non-uniform heating, these plates could be further segmented.

Similar consideration may apply to other components and designs

advanced by other organizations.

Clearly, these recommendations are based on considerations which

emphasize thermal stress failure. Final designs should take into

account all performance criteria. Nevertheless, it is important to

note that thermal stress failure cjp^a be minimized by careful design

based on dimensional and geometric factors coupled with the selectl.cn of

materials with optimum thermal stress resistance on the basis of the

parameters presented in earlier sections of this report.
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7. RECOMMENDATIONS FOR MATERIALS FOR POINT-FOCUSSING SOLAR RECEIVERS

7.1. General

The selection of materials of construction for point-focussing solar

receivers should be based on a number of criteria. First of all,

the material properties should be such that all design and performance

standards are met. This applies not only to thermal shock, but also to

other lead-bearing requirements, erosion, corrosion and optical properties.

The relative importance of these criteria is expected to be governed by

the final design.

Secondly, material selection should take into account availability

and price. This criterion is critical to the timely development and

demonstration of the technical and economic feasibility of point-focussing

solar receivers. It is entirely conceivable that on the basis of hand-

book or preliminary laboratory data, a particular material may appear very

attractive indeed. However, usually for newly developed materials in-

sufficient manufacturing experience and facilities exist. Development

programs for new ceramic materials are notorious for falling behind

schedule due to unforeseen difficulties. In addition, development costs

can exceed initial estimates by considerable margins. For this reason,

it is strongly recommended that the construction of a point-focussing

solar receiver not depend on the success or failure of new material de-

ve l opment. Instead, iz is urged that whenever possible, materials of

construction be selected which are currently a •7ailable, even if this

would require receiver operation at less than optimum efficiencies.

Once, feasibility is demonstrated, the performance standards can be

improved further with a parallel or follow-up program of development of

new materials.

1 0
	 115



These recommendations not only apply to the choice of materials, but

also to geometry and dimension. Whenever possible, the final design of a

point-focussing solar receiver should be based on components of a size

and geometry for which or .naive manufacturing experience exists. This

recommendation implies that with few exceptions the component size is

small and that their geometry is relatively simple. It is anticipated

that such components can be manufactured at minimum cost.

7.2. Materials for Individual Components

In view of these authors, the components of point-focussing solar

receivers most susceptible to thermal shock failure are:

a. window

b. heat exchanger

c. thermal insulators

d. down-stream tubing or manifolds

The material requirements for these four components are discussed

below. The requirement of high melting point, oxidation resistance, erosion

and corrosion resistance is common to all these components. The subsequent

discussion will focus on the material requirements for fulfilling the

basic function of the component as far as the operation of the solar

receiver is concerned in combination with the requirements for thermal

shock resistance.

7.2.1. The window

A number of anticipated designs for point focussing receivers rely

on the window in order to transmit the incident solar radiation into the

chamber containing the heat exchanger and working fluid. Since the working
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fluid is under some pressure, the high temperature mechanical properties

of the window material should be such that no creep or fracture will result

under normal operating conditions.

In order to transmit the solar radiation at maximum efficiency, the

window material should have low reflectivity and low absorption coefficient.

High resistance to thermal shock failure requires a window material with

high reflectivity and thermal conductivity in combination with low absorp-

tion coefficient, coefficient of thermal expansion, Young's modulus of

elasticity and Poisson's ratio. It should be noted that high reflectivity

for high thermal stress resistance is incompatible with the low reflectivity

required for maximum transmission of the solar radiation. Also, all the

above requirements may not be met within a single material. Nevertheless,

in spite of these conflicting requirements, fused quartz, in view of its

very low coefficient of thermal expansion should be considered a prime

candidate for the window material. Thermal stress fracture, in view of

these writers, is not likely to occur in this material. Its absorption

coefficient at wavelength greater than 4 um is greater than that for single

crystal materials such as sapphire, rutile, magnesium oxide and other infra-

red transmitting materials developed for aerospace and other purposes.

For this reason, the temperature levels which could be encountered in

windows made of fused quartz could be high which could lead to creep,

dev±trification and corresponding loss of transmissivity. In that case,

other materials such as sapphire or the other aforementioned material may

provide superior service. On the ocher hand, the reflectivity of sapphire

exceeds that of fused quartz, which is undesirable. Also, much higher

value of the coefficient of thermal expansion of sapphire compared to

quartz is not favorable from the point of view of thermal stress resis-
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Lance. However, the higher thermal conductivity of sapphire than for fused

quartz, at lower temperature levels will compensate for this latter deficiency.

Fused quartz, however, is considerably cheaper than any other window

material. Furthermore, excessive window temperatures can be reduced by

flow patterns of the working fluid which will promote window cooling.

External cooling may be used to advantage to reduce or eliminate the accumu-

lation of dust which could adversely affect overall transmission of the

incident radiation.

If fused quartz were fo•.md to be unsuitable for a window material,

other materials should be considered. These could include single or poly-

crystals of alumina,titanium oxide, magnesium oxide, magnesium fluoride,

calcium-alumina-germanate and similar materials currently being used or

under investigation in aerospace industry. Moat of these materials will

ft

transmit radiation over a wider range of wavelength than fused quartz. On

the other hand, their coefficients of thermal expansion exceed the value for

quartz by a considerable margin. For these reasons, it is ecommended that

fused quartz be given high priority even if this would involve design

modification to keep the window temperature within reasonable limits.

Regardless of the choice of material, it is recommended that the

window be supported by sliding seals in order ro minimize in-plane and

bending constraints. Nickel oxide has been used to sliding seals in

turbine regenerators and may prove to be useful in solar receivers as

well.

7.2.2. Heat exchanger and thermal insulator

The purpose of the heat-exchanger in a solar receiver is to absorb

the solar radiation. The absorbed heat is removed from the heat-exchanger

by the working-fluid by forced convection.
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In order to fulfill its basic function, the heat exchanger material

should have low reflectivity (high absorptivity) and high absorption

coefficient. Furthermore, if the absorbed heat is to be conducted

through the heat exchanger wall, high thermal conductivity is required

in order to minimize the non-linearity of the temperature distribution

and to keep the temperature of the irradiated face within reasonable

limits.

For high thermal stress resistance, the material of the heat exchanger

should have high reflectivity, thermal conductivity and tensile strength

in combination with low absorption coefficient, coefficient of thermal

expansion, Young's modulus and Poisson's ratio.

The requirement for low reflectivity and high absorption coefficient

for high heat absorption is incompatible with the requirement for high

reflectivity and low absorption coefficient required for good thermal shock

resistance. Clearly, the requirement for low reflectivity and high absorp-

tion coefficient must be given priority in order to meet the performance

criteria for the heat exchanger. Fortunately, high thermal conductivity

is required for high thermal stress resistance and high heat conduction.

This latter requirement is imperative for the MIT, AL and Black and Veatch

design.

Silicon carbide or silicon nitride probably are the best materials for

consideration for these three designs. The relatively higher coefficient

of thermal expansion and Young's modulus of silicon carbide is offset by

its higher thermal conductivity compared to silicon nitride. The relatively

low value for thermal conductivity for the cordierite ceramic considered

for the exchanger in the NRL design may cause difficulty unless the wall

thickness can be reduced appreciably. This may conflict with other structural
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requirements. Because of the complex configuration of the NRL heat

exchanger, substitution of silicon carbide or silicon nitride for the

cordierite may lead to manufacturing difficulties. The same will be

true for other refractory materials with high thermal conductivity such

as other nitrides, carbides or borides.

As pointed out earlier, the writers of this report prefer a heat-

exchanger design in which the heat is removed by the working fluid at the

same surface on which the radiation is incident. For a given temperature

level of the working fluid, this will involve such lower surface temperature

than that in case where heat is removed on the opposite surface. This

has the advantage that the requirement for melting-point and high tempera-

ture structural integrity are less stringent. Furthermore, heat losses

by re-emitted radiation are also reduced. These advantages are incorporated

in the heat exchanger design advanced by Sanders Associates, in which

the working fluid is pumped through the heat-exchanger in the form of a

honey-comb type structure. This type of configuration also will keep the

reflectivity to a minimum. For this type of heat exchanger, cordierite

of the type, identical or similar to that used for automotive exhaust

catalyst support, appears to be an excellent candidate. Its tempera-

ture characteristics are deemed sufficient to withstand long-term opera-

tion at temperatures approaching 1000 oC. Furthermore, its coefficient of

thermal expansion and effective elastic behavior are such that the problem

of thermal shock failure can be minimized or even eliminated by appropriate

design. Also, because of its extremely low cost and easy availability,

cordierite honey-comb heat exchangers can be readily replaced if some form

of degradation should still occur. It should be noted that thermal shock

failure of cordierite honey-comb structure is still a matter of concern

in the automotive industry. However, in the latter application the thermal
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shock problem is magnified because of uneven heating as the direct result

of the differences in dimansiovs of the exhaust manifold and container

for the catalyst support. In comparison,the radiation heat flux on the

heat exchanger in the Sanders design is expected to be more uniform. Furthermore,

as discussed earlier, by appropriate segmenting of the honey-comb receiver,

the problem of thermal shock failure, if any, can be reduced even further.

If the cordierite would be found unsuitable due to loss of structural

integrity at high temperature, honey-comb structures of reaction-sintered

silicon nitride or silicon carbide should be considered. The technology for

the manufacture of silicon nitride honey-comb material is well established.

However, the thermal shock resistance of reaction sintered silicor nitride

may well be less than for cordierite. If so, a change in geometry of the

heat exchanger may be in order. The configuration of packed spheres,

chosen by General Motors for its automotive catalyst system possibly may

be used to advantage. Such a bed of packed spheres will permit easy

passage of the working fluid. At the same time, thermal shock failure,

due to the absence of mechanical constraints between spheres, will not

be a problem. Thermal stress failure due to non-uniform temperatures

within each sphere can be eliminated by appropriate selection of the

sphere size. One half inch spheres (or less) should eliminate thermal

stress failure in any ceramic which may be chosen. A similar configura-

tion of spheres could be considered for the ceramic heat storage buffer

incorporated in the Sanders design. Also, the use of small interl-3cking

hexagonal ceramic blocks of alumina, magnesia and zirconia used in air•-

preheaters for wind-tunnels and MHD power systems should not be ruled out.

The relative thermal shock resistance of insulating; refractory mate-

rials frequently is designated by the manufacturer so "poor", "good" or

e ili



"excellent". It should be noted that for such material with few exceptions,

thermal shock resistance is based on the "crack arrest" concept, discussed

in detail in an earlier section of this report.

Refractory fibrous silica or alumino-silicate insulating materials

also can be used to advantage in some areas of solar receivers. Such

materials in the form of sheet or rope can be used to reduce heat losses

through gaps or spaces between components required for maximum free thermal

expansion. Such fibrous materials are readily available at low cost from

a number of suppliers.

7.2.3. Down-stream components

Components, down-stream from the heat exchanger, such as manifolds and

piping required to transfer the working fluid to the turbine, will be sub-

jected to transient as well as steady-state non-uniformity in temperature.

Such non-uniform temperature could give rise to thermal stress of high magni-

tude to result in immediate failure or failure by thermal fatigue. Hopefully,

the temperature levels and pressure encountered will permit refractory metals

or alloys for their construction. If not, reaction sintered silicon nitride

or silicon carbide appears to offer a combination of properties suitable

for this purpose. Also, these materials can be manufactured in relatively

complex shapes (manifold& or other) down-stream components are expected to

take. Even then, it is strongly recommended that their geometry be kept

as simple as possible and the size also be kept to a minimum.

7.3. Final Remarks

Much relevant information for the selection of materials can be ob-

tained once a final design or designs are selected and detailed temperature

and stress analyses have been carried out. The finite element modelling
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should be of major benefit for this purpose. Also, rapid feed-back on

material behavior will be provided by the experimental thermal shock test-

ing program outlined later, which should pinpoint unforeseen diffi-

culties and/or particular material requirements. With such data in hand,

assessment can be made for the need for ra-design, material modification or

the development of novel material not available at this time.
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6.1. General

Engineering design and selection of materials for high-temperatures

in general and solar receivers in particular can benefit considerably

from advance information on the performance of the components under con-

ditions of thermal shock. Such information can be established by testing

the thermal shock behavior by experimental techniques.

Many methods for testing the thermal shock response of ceramic

materials have been developed. Thermal stress resistance under conditions

of steady-state heat flow or controlled heating can be established by

the internal heating of hollow cylinders (Coble and Kingery, 1955; Hummel,

1955; Gogotsi and Groushevsky, 1980). Thermal stress failure under condi-

tions of transient convective heat transfer can be established by quenching

specimens in the form of cylinder or other geometry, from higher temperature

into fluid media at lower temperature, such as water, molten salts, liquid

metals, oils or fluidized beds (Crandall and Ging, 1955; Hasselman, 1970;

King and Webb, 1971; Kirchner at al, 1968, 1971, 1973 and Hasselman, at

al., 1975). Rapid convective cooling can also be achieved by air-blasts,

frequently used for studies of thermal fatigue behavior, (AAasaann at al.,

1976, Quinn at al., 1977). Thermal shock response to black-body radiation

can be determined by "up-quenching" appropriate specimens at a low temperature

into a black-body cavity (furnace) at high temperature (Crandall and Ging,

1955; Hasselman and Shaffer, 1962; Hasselman, 1963). Other methods for

inducing thermal shock include plasma-heating, arc-discharge heating, laser-

heating, induction heating and burner-rigs (Starret, 1977; Johnson, 1974;

Sato, et al., 1980; Schwille, at al., 1980; Mecholsky, at al., 1980).
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Numerous other testing methods have been developed for many spacial indus-

trial and consumer products susceptible to thermal stress failure under

the conditions of their intended application.

From the results presented in previous sections of this report, it

should be clear to the reader that the saterial properties and other

variables such as geometry and size, which affect thermal stress failure can

vary significantly from one thermal anvirunment to another. This conclusion

also applies to the various methods for thermal shock testing. Results

obtained under conditions of steady-state heat flow are not appropriate

to transient heating. The results for tests which rely on radiation heat

transfer are not expected to reflect results to be obtained for convective

heat transfer. (In this respect it should be noted that convective heat

transfer coefficients are highly variable, such that results of tests which

rely on this mechanism of heat transfer, are difficult to interpret for

quantitative purposes). Furthermore, results for thermal shock tests in-

volving external constraints will not apply to thermal shock environments

in which such constraints are absent. Even for the same test method re-

sults obtained for one level of average temperature may differ significantly

from the results obtained at some other test temperature. This conclusion

also applies to differences in geometry as well as specimen size. For these

reasons, attempts to "infer" thermal shock behavior for a given thermal

environment from test data obtained for some other environment is not

expected to yield reliable results. In particular, this will be the case

of major differences in mechanisms of heat transfer and complex geometries

for which the magnitude and distribution of the temperatures and thermal

stresses are not readily obtainable.
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The above discussion is critical to the selection of the most ap-

propriate test method for the thermal shock behavior of materials or com-

ponents for solar receivers in order to yield quantitatively meaningful

results for the designer. For this reason, such a test should simulate

as closely as possible the thermal shock environment to be encountered

in solar receivers. This applies not only to the magnitudes of tempera-

tures and stresses but also to the combined radiation heating-convection

cooling conditions and specimen size and geometry as well.

Specific recommendations for a thermal shock testing program for

point-focus solar receivers must await final selection of

the design expected to yield most efficient and reliable operation and

for which estimates or data for the heat transfer characteristics are

available. For these; reasons, a number of general recommendations for

the thermal shock teat facilities and procedures will be made at this

time.

8.2. Thermal Shock Test Facilities and Procedures

The following recommendations are made for the type and scope of

the thermal shock test facilities and testing procedures.

1. The components of the solar receiver directly subjected to the

incident solar radiation probably are soot susceptible to thermal stress

failure. The spectral distribution of solar radiation say be difficult

to duplicate by radiation from lasers, plasma-torches or other intense

light sources. Furthermore, each candidate material has its own unique

spectral dependence of its pertinent material properties. For these

reasons, it is recommended that a thermal shock test facility use solar

radiation itself, concentrated by parabolic mirrors or by other techniques.

126



2. The solar-radiation thermal shock test facility should be designed

to permit control over the intensity of the radiation incident on the

component being tested. By varying the position of the component

to be tested with respect to the focal plane, the radiation intet.: 4 ty is

varied easily even for constant solar flux at the mirror surface. Lateral

movement within the focal plane will permit testing the affect of spatially

non-uniform incident radiation. Both these latter objectives can be

achieved by partial screening, as well.

3. The thermal shock test facility should be designed such as to

include capability for convective cooling in order to simulate the combina-

tion of radiation heating and convective cooling encountered within tha

solar receiver. The geometry of the manifold, air flaw velocities and

distribution should be such that the, spatial variation in heat transfer

coefficient found within the solar receiver are duplicated as closely as

possible.

4. Control over the radiation should be such that variations in

the radiation intensity expected during intermittent cloud cover or other

conditions can be closely duplicated.

S. The convective cooling system shoula permit control over flow speeds

and pressure in order to simulate unusual operating conditions such as loss

of compressor power due to electrical or mechanical breakdown.

5. The thermal shock test facility should be instrumented as com-

pletely as possible to detect and record all pertinent operational variables

such as radiation intensity, air flow speeds and pressures, as well as

temperatures and deformations. Acoustic spectrometers will permit detection

of the fatigue phenomena or the onset of failure.
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?. The fixture which holds the component(s) to be tested, should permit

tasting of components, singly or in combination in order to establish thermal

Interactions and possible effects of mutual constraints. In this ssnner,

a window or a taceiver could be tested individually or in combination.

This permits assessment of the effects of window absorption and reflection

on the thermal shock behavior of the receiver and the effect, of reflection

of the incident radiation as well as thermal emission from the receiver

plate on the thermal shock behavior of the window.

S. The radiation thermal shock test facility should permit thermal shock

testing of down-stream components not directly subjected to the solar radia-

tion, but subjected to thermal stresses during normal or special operat-

ing conditions of the solar receivers. If desired, a complete alternative

test facility could be constructed for testing of down-stream components.

However, the thermal conditions expected in practice, can be duplicated

most easily and closely by the solar radiation thermal shock test facility

itself.

9. All components to be tested should be subjected to a thorough

quality control chuck, in order to detect dsiects or other irregularities

which could affect the test results. Records of all such defects should

be kept carefully in order to facilitate analysis of the -vt results.

10. First stages of the test program should concentrate on thermal

shock tests duplicating conditions to be encountered in practice. Radia-

tion levels required to initiate failure should be measured and compared

to radiation levels to be expected in practice. A comparison of these

values will allow assessing the direction of design modification such as
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modification in radiation intensities and convection cooling rates, com-

ponent geometry and size or selection and development of alternative mate-

rials with improved thermal shock behavior.

Later stages of the testing program should include unusual thermal

shock conditions such as sudden incident radiation in the absence of air-

flow or steady-state radiation with sudden loss of airflow and similar

emergency Condit! .-r s.

11. After testing, each component should be examined as thoroughly

as possible for possible failure. For some materials it is expected that

failure is catastrophic, the component falling apart spontaneously on

removal from the test facility. Cracks in brittle ceramics are not easily

detected with unaided eye. For this reason any tested component should

be examined in detail using dye-penetrant, ultrasonic or other non-des-

tructive test methods for the presence of cracks. Macrophotography and

microfractography of fractured samples will provide permanent records

as well as the vital information on the mode of failure, the site of

fracture initiation and the magnitude of stress at which failure occurred.

This latter information will provide important feed-back informat.ton for

the validity of the assumptions made for the calculations of the thermal

stresses, as well as provide directions for design modification and selec-

tion or development of alternative materials of construction.

12. A final, but critical comment on thermal shock testing is in

order. From the above recommendations, it is clear that the thermal

shock test facility and program should be similar or even duplicate the

design and testing programs for a prototype solar receiver. At first sight,

such a test facility and program may be judged as too complex and uneconomi-

cal. For this reason, it could be tempting to resort to simplified testing
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methods or even to rely on manufacturer's data for thermal shock be-

havior. This approach is not recommended. However, by means of techno-

logy of which these writers may not be aware, other radiation sources

can be found which duplicates the nature and magnitude of the

thermal shock environment encountered in a solar receiver. The design

of such a test using other than solar radiation is expected to be difficult

or impossible. Any other test methods may not yield data which are quan-

titatively meaningful for design purposes, but in fact may provide data

that are erroneous and misleading for solar receivers. 	 For these

reasons, it is suggested that if the recommended test facility is not

feasible on technical, economic or other grounds, the testing should be

avoided altogether. Instead, thermgrl shock behavior should be calculated

from the material property data and best estimates for the heat transfer

environments.

8.3 Theoretical Analysis in Support of Experimental Thermal Shock

Testing Program

As indicated in section 4 of this report, thermal stress failure of

brittle ceramics is controlled by a large number of variables, including

material properties, geometric, size and heat transfer effects. For this

reason, the interpretation of experimental data for thermal shock can be

quite complex. This is especially the case for complex geometries sub-

jected to mixed-mode of heat transfer conditions for which the temperatures

and thermal stresses are not easily established. Without this information,

experimental data for thermal shock behavior may provide little or no

guidance for the direction in which design or material improvements are to

be made. Therefore, it is strongly recommended tnat the experimental

program for the thermal shock behavior, be supported by a theoretical
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effort of calculating magnitudes and distributions of the temperatures and

thermal stresses by computer simulation. These calculations can be based

on analytical methods, whenever practical. Preferably, such calculations

should be based cm finite difference or finite element principles, because

of their much greater flexibility than analytical methods.

A number of benef:.ts can be derived from an experimental and parallel

analytical program on assessing thermal stress resistance. Comparisons

a_° the experimental. and theoretical data for the temperature distribution

will provide valuable feed-back for the validity of the assumptions made

with regard to heat transfer mechanisms and magnitudes of the heat trans-

fer properties of the component being tested. The reliability of the thermal

stress calculations and predicted failure mode will be improved accordingly.

A further major advantage is that computer .simulation can provide rapid

information on the degree of improvement obtained by changing the material,

component size and shape, incident solar radiation intensity as well as

pressure and flow rates of the working-fluid. Costly, and time-consuming

test programs can be avoided or reduced to a minimum. The effects of

unusual operating conditions, not easily duplicated in a test facility, can

also be assessed easily by computer simulation.

In general, such supporting theoretical analyses should reduce the cost

of an experimental thermal shock testing program to a minimum. This should,

consequently, lead to a reduction in the total cost and duration of the

development program of solar receivers.
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9. MATERIALS-RELATED COMMENTS AND RECOMMENDATIONS FOR SYSTEM DESIGN
AND OPERATION

The conclusions obtained in this study have a number of implications

for the design and operation of point-focussing solar receivers. Un-

doubtedly, these already have been considered in design studies carried 	 i

in parallel with the present program. Although clearly beyond the scope

of this report, these implications must be listed as they are related

directly to materials performance.

First of all the design of the receiver and its control equipment

must be such that under no condition the solar Pnergy will be directed

at the heat exchanger without adequate flow of the workcj^ng fluid. If

such flow and corresponding cooling is not provided, the heat exchanger

will reach temperatures well in excess of the melting point of most,

if not all, candidate materials of construction. This recommendation

implies that an external power source be provided (not powered by solar

energy) which can circulate the working fluid prior to the incidence of

the solar radiation. It is anticipated that this may require rapidly

acting sensing and control devices which govern the working-fluid flow

and/or the orientation of the focussing mirror.

Secondly, the theoretical results for the thermal stresses in the

semi-absorbing plates indicate that the transient stresses are an in-

verse function of the heat transfer coefficient. For this reason it is

recommended that on start-up, the rate of circulation of the working-

fluid be greater than required for steady-state operation. For the same

reason it may be desirable to reduce the rate of flow on reduction in solar

intensity in order to reduce the cooling rates and the magnitude of the
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corresponding thermal stress. Here too, automatic sensing and control

devices are expected to be useful.

A further highly speculative recommendation will be made aimed at

elimination or reduction of excessive heating and cooling rates and the

distribution difficulties encountered in the utility industry by rapid

iriations in power-output such as those expected for intermittent

cloud-covers. Such variation may require stand-by power-generating units

such as pumped-storage or other systems in order to assure an uninter-

rupted power supply. It is suggested here that such difficulties can be

overcome by using a hybrid-system such as a combination of a solar re-

ceiver and a gas-turbine generator or other power generating systems.

For instance, the Sanders design could be modified slightly to permit

the introduction of natural gas into the cavity between the window and

the heat exchanger. Combustion could be achieved within the heat ex-

changer with the aid of the appropriate catalyst. This latter techno-

logy is well developed. The amount of gas to be introduced would de-

pend on the intensity of the incident radiation. In this manner, tem-

perature levels could be maintained within prescribed tolerances.

Furthermore variations in power output could be kept to a minimum.

Such a hybrid system could be described as turbine-assisted solar re-

ceiver or a solar-augmented gas-turbine. Undoubtedly other such hy-

brid systems relying on other methods of power generation, depending

on fuel availability and location, can be devised as well.
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10. RECOMIENDATIONS FOR FUTURE ANALYTICAL WORK TO AID MATERIALS SELECTION
FOR SOLAR RECEIVERS

This report has presented criteria for the selection of ceramic

materials, which are currently available in the technical literature.

However, for at least two conditions of possible thermal stress failure

unique to solar receivers, analyses are required for purposes of material

selection, design and possible failure prediction. These studies

recommended for follow-on work are:

1. An extension of the thermal stress analysis of semi—absorbing

ceramics to include the spectral dependence of the relevant optical

properties to correspond to the spectral distribution of solar radia-

tion.

2. Analysis of thermal stresses which occur in semi-absorbing ceramic

materials, initially at thermal equilibrium under conditions of rada-

tion heating and convection cooling, subjected to sudden loss of

radiation, followed by rapid convection cooling. This type of thermal-

shock is expected to occur frequently in solar receivers. It is

essential that the role of the pertinent material properties must

be established in order to properly assess the criteria for materials

selection and interpretation of failure modes.
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SUMMARY

An analysis was conducted of the possiUa modes of thermal stress

failure of brittle ceramics for potential use in point-focussing solar

receivers. The pertinent material properties which control thermal stress

resistance were identified for conditions of steady-state aid transient

heat flow, convective and radiative heat transfer, thermal buckling and

thermal fatigue as well as catastrophic crack propagation. Selection

rules for materials with optimum thermal stress resistance for a parti-

cular thermal environment were identified. Recommendations for materials

for particular components were made. The general requirements for a

thermal shock testing program quantitatively meaningful for point-focus-

sing solar receivers were outlined. Recommendations for follow-on

theoretical analyses were made.
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