# A MICROPROCESSOR APPLICATIOXN TO A STRAPDOWN LASER GYRO NAVIGATOR <br> C. Giardina and E. Luxford <br> The Singer Company-Kearfott Division <br> Litțle Falls, New Jersey 

This paper is concerned with replacing analog circuit control loops for laser gyros (path length control, cross axis temperature compensation loops, dither servo and current regulators), with digital filters residing in microcomputers. The object of using this type of design is to improve on system reliability (through part count reduction), reduce size and power requirements, and therefore, improve on system performance. Consistent replication in the design is a further benefit derived by replacing analog components with digital software.

In addition to the control loops, a discussion will be given on applying the microprocessor hardware to compensation for coning and skulling motion where simple algorithms are processed at high speeds to compensate component output data (digital pulses) for linear and angular vibration motions.

Highlights are given on the methodology and system approaches used in replacing differential equations describing the analog system in terms of the mechanized difference equations of the microprocessor. Here standard one for one frequency domain techniques are employed in replacing analog transfer functions by their transform counterparts. Direct digital design techniques are also discussed along with their associated benefits. Time and memory loading analyses are also summarized, as well as signal and microprocessor architecture utilized to do the "best job".

Trade offs in algorithm, mechanization, time/memory loading, accuracy and microprocessor architecture are also given.

RLG CONTROL LOOPS - PERFORMANCE INFORMATION

| Loop | Purpose of Loop | Method of Improving Performance | Required Control Loop Bandwidth |
| :---: | :---: | :---: | :---: |
| Dither | Eliminate damping in dither spring mechanism | Overcome backscattered light between two beams due to mirror (reflector) imperfections and thereby circumvent lock-in | Moderate when compared to microcomputer speeds |
| Current Regulator | Balance anode currents | Minimize drift due to gas flow in laser cavity | Long when compared to microcomputer speeds |
| Path Length Control | Maintain path length in cavity at an integral number of wave lengths | Minimize drift due to temperature variation of block | Long when compared to microcomputer speeds |
| Cross Axis Temperature Compensator | Center beam in cavity | Minimize drift due to temperature variation of block | Long when compared to microcomputer speeds |
| Variable Beam Intensity Corrector | Locate mirrors to minimize total backscatter "vector" from the three mirrors (thereby reducing effective lock-in level) | Minimize output random noise resulting from dither | Long when compared to microcomputer speeds |

RLG CONTROL LOOPS - OBSERVABLES AND METHOD OF CONTROL COMPARISON

| Loop | Observed Signal | Control Signal | Method of Obse Analog | ing Signal Digital |
| :---: | :---: | :---: | :---: | :---: |
| Dither | Dither Amplitude | Force applied to gyro dither spring through voltage applied to PZT device | Full wave rectified dither amplitude | Measurement of peak dither amplitude through successive measurement of amplitude |
| Current Regulator | Difference in anode currents | Base voltage applied to control transistor | Output voltage from difference amplifier representing difference current | Same as analog |
| Path Length Control | Beam Intensity | Force applied to movable mirror through voltage applied to PZT device. | Rectification of a carrier signal modulating beam intensity | Measurement of beam intensity variation with path length variation through successive iterations of path length |
| Cross Axis Temperature Compensator | Beam Intensity | Force applied to gyro block through voltage applied to PZT device | Rectification of a carrier signal modulating beam intensity | Measurement of beam intensity variation with force applied to the block through successive iterations of. that applied force |
| Variable <br> Beam Itensity Corrector | Variation in beam intensity (distortion) as gyro periodically locks in during dither reversals. Variation usually occurs only with a given gyro turn-on. | Force applied to a set of two movable mirrors through voltages applied to PZT devices | Rectification of a carrier signal modulating "winking" amplitude | Measurement of "winking" signal through successive iterations of position of two movable mirrors. The signal amplitude will be determined through direct integration. |




Dither Codrol Loup ( $\mu$ procesoor section)


Digital Dither Lomp


REDUCTION IN SYSTEM COMPLEXITY AND COST SAVINGS

| Electronics Circuit Board Area <br> Required for this Function | Analog | Microprocessor (Digital) |
| :---: | :---: | :---: |
|  | $* 250$ in $^{2}$ | 50 in $^{2}$ |
| Number of parts | 1400 discrete parts | 10 chips |
| Cost | $\$ 4000$ | $\$ 1000$ |
| Reliability <br> (Predicted) <br> failure rate $\lambda \Rightarrow$ <br> failures per 106 hrs | 200 | 30 |

* With hybricization approximately same board area could be achieved but.cost factor then becomes about 8:1.
devices being considered for loop implementation

| DF:VICC | ON <br> CIIIP | A/D ON CHIP | D/A ON CHIP SAMPLE 6 HOLD ETC. | OTHER EQUIPMENT REQUIRED | SCRATCH PAD MEMORY | pririanent MEMORY | LOAD <br> STORE <br> adDition <br> time. | $\begin{aligned} & \text { MULTIPLY } \\ & \text { TI!:E } \end{aligned}$ | 1/0 <br> int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IUTEL 2920 25 git AICHOCOMPUTER | YES | YES 9 8ITS A/D analog input only | yes 9 bit d/a atialog 6 digital output | $\pm 5 \mathrm{P}$ POWER $\begin{aligned} & \text { SUPPLY } \\ & \text { CLOCK }\end{aligned}$ | $\begin{aligned} & \text { RAM } \\ & 25 \text { BIT DATA } \\ & \text { vORD BY } 40 \\ & \text { WORDS } \end{aligned}$ | EPROM 24 BIT INSTRIICTION WORD BY 192 worge | $\begin{aligned} & \text { ALL } \\ & \text { INSTRUC~ } \\ & \text { TIONS } \\ & 400 \text { SEC } \end{aligned}$ | MUST BE DONE IN software 34 SEC | 4 InPut Channel S 8 outry: chanmizs |
| IHTEL 8022 \& hit hicro-8048 FiNlity | yes | yes 8 bit A/D analor, or digital inputs ALLOWY:D | No | +5V power supply - $\bar{n} / \mathrm{A}$ - SAMPLE: $\delta$ HOLID етс. | RAM <br> 8 hit data WORD 64 words | ROM <br> H bIT <br> ADDRESS <br> WORD <br> 2K WORDS | AILL IN-strucTIONS 8.5 USEC OR 17 USEC | MHST BE DONE IN SOFTWIARE 90 USEC | $\left\lvert\, \begin{aligned} & 2 \text { INPUT } \\ & \text { CHANHELS } \end{aligned}\right.$ |
| $\begin{aligned} & \text { INTLLL } 8751 \\ & 8 \text { HIT } \\ & \text { MICROCOMPUTER } \end{aligned}$ | yes | No | NO | $\begin{aligned} & + \text { +5V POWER SUPPLY } \\ & \text { AA/D } 8 \text { D/A } \\ & \text { ETC } \end{aligned}$ | RAM B BIT DATA 128 D WORDS. 128 . | EPROM <br> 8 bit WORD 4 K WORDS | $\begin{aligned} & \text { ALL } \\ & \text { INSTRUC- } \\ & \text { TIONS } \\ & 1 \text { USEC OH } \\ & Z \text { USEC } \end{aligned}$ | 4 USEC mult 6 DIV | $\begin{aligned} & 4 \text { I/O } \\ & \text { PORTS } \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \text { MYI } 2400 \\ & 4 \text { DIT } \\ & \text { MICROCOMPUTER }\end{aligned}\right.$ | YES | yES 8 BIT A/D ANALOG 6 digital input | YES 8 BIT D/A ANALOG 6 digital output | +5V POWER SUPPLY | RA:4 <br> 4 BIT DATA WORD <br> 128 WORDS <br> 16 BIT WORDS |  | almost <br> all 53 instricTIONS <br> 4.5 USEC $(4 \mathrm{BIT})$ | NO MUST DE DOUBLE PRECISION at least | 8 BIT |
| $\left\lvert\, \begin{aligned} & 2-8000 \\ & 16 B 1 T \end{aligned}\right.$ | $\left\{\begin{array}{l} \mathrm{NO} \\ \text { ON } \\ \text { BOARD } \end{array}\right.$ | No | No | $\begin{aligned} & A / D-D / A \\ & \text { ROARD } \end{aligned}$ | 16 BIT WORDS | 16 BIT WORDS | 1-2 USEC | 12 USEC |  |
|  | (80 | No | Ho | A+5V POWER SUPPL $\mathrm{A} ; \mathrm{C}-\mathrm{D} / \mathrm{A}$ <br> BC:RD | $\begin{aligned} & \left\lvert\, \begin{array}{l} 32-64 \mathrm{~K} \text { OF } \\ \text { B BIT WORD } \end{array}\right. \end{aligned}$ | $\begin{aligned} & 16-32 \mathrm{~K} \\ & 16 \mathrm{BIT} \\ & 16 \mathrm{BP} \mathrm{~S}^{2} \\ & \hline \end{aligned}$ | 1-2 USEC | 12 USEC | 24 LINES |

