
23

APPLICATION OF SOFTWARE TECHNOLOGY TO A FUTURE
SPACECRAFT COMPUTER DESIGN

Robert J. LaBaugh
Martin Marietta Corporation

Denver, Colorado

An Independent Research and Development task* at Martin Marietta

has been investigating advanced spacecraft computer systems for the past

couple of years. The task objectives are to demonstrate how major im-

provements in spacecraft computer systems can be obtained from recent

advances in hardware** and software technology. This presentation

covers the major software topics which have been addressed during the

task.

Investigations into integrated circuit technology performed at the

beginning of the task indicated that the CMOS/SOS chip set being develop-

ed for the Air Force Avionics Laboratory at Wright Patterson had the best

potential for improving the performance of spaceborne computer systems.

An integral part of the chip set is the bit slice arithmetic and logic

unit (ALU). The flexibility allowed by microprogramming, combined with

the software investigations described below, led to the specification of

a baseline architecture and instruction set.

*This work was conducted by the Denver Division of Martin Marietta Cor-

poration under Independent Research and Development Project Authorization

D-80D.

**Related paper, "Application of Advanced Electronics to a Future Space-

craft Computer Design", in Microprocessor Hardware Technology Session.

167

One of the goals was to design an instruction set similar to modern

minicomputer instruction sets, with multiple user registers. Another goal

was to provide the throughput and precision required for flight applications,

and at the same time provide an instruction set which would ease the pro-

gramming of such applications. Several assembly language application pro-

grams, along with the necessary microcode, were written to help define the

features to be included in the processor design. One of the areas this

was used for was determining the number of registers in the system. An

increase in the number of floating point registers from four to eight pro-

vided around a 10% improvement in execution time for one of the application

programs. The number of registers was limited, however, by a desire to

store them in the 16 physical registers internal to the ALUs. This would

avoid delays in accessing the registers and help keep the parts count down.

The need for scratch registers by some of the microprograms was another

limiting factor-. As a compromise between having as many registers as

possible and the limits imposed by the ALUs, it was decided there should

be seven floating point registers and eight general purpose registers.

Partly to accommodate all the user registers desired, the system was designed

to have two arithmetic processing units: one to handle floating point oper-

ations and store the floating point registers; and the other to handle general

purpose registers, and system registers such as stack pointers and the pro-

gram counter. Only one of the two processors is active at any given time.

Which processor is active during a cycle is determined by means of a bit

in the microword. This was done so that the processors could share the 26

bits in the microword needed for ALU control.

The precision and format of floating point operands was derived in
. - • c

part from the results of a study on high precision attitude computations.

The main goal of the study was to characterize the drift rate of the in-

tegrator as a function of operand precision and rate sampling interval.

One of the conclusions was that 32 bit-floating point operands, with 24

bit mantissas, were adequate for currently envisioned projects. The study

was based on data using operands with binary normalization. To remain con-

sistent with this, we decided to use binary rather than hex normalization

which can result in only 21 bits of significance in a 24 bit mantissa.

168

Because of the characteristics of the chip set and a desire for fairly

high performance, a horizontal, rather than vertical, microword was used.

There are 34 fields in the microword, which is 80 bits wide. As wide as

the microword is, a fair number of fields still have to be decoded. En-

coded fields are primarily used for things like selection of operand source

and destination, the source for register specifications, and condition code

selection. A wide microword, however, puts constraints on the number of

words of control store because of the high non-recurring cost of ROMs. In

an effort to keep the size of the control store within limits, and to assure

adequate system performance, the microcode was .developed concurrently with

the circuit design. This allowed us to make various hardware versus soft-

ware trades at a time when changes to the hardware design could be accomp-

lished without too much difficulty.

Fairly early in the task an absolute assembler and an instruction set

simulator were developed. These allowed the software development to pro-

ceed while the hardware design was being completed, and the hardware was

being built. Langley Research Center has recently provided Pascal and HAL

compiler frontends. The Pascal system includes a compiler which produces

P-code, and a P-code interpreter. The HAL system consists of a compiler

which produces HALMAT, a program which translates HALMAT into H-code, and

an H-code interpreter. H-code is P-code with a few extra instructions and

an expanded run time library. A.program to translate from P-code/H-code to

assembly language has been developed and Pascal and HAL routines have been

.executed on the instruction set simulator. The translator has undergone

several refinements to improve the code generated. The initial version

mimicked P-code fairly closely by keeping the expression evaluation stack

in memory. By redefining register usage so that the top of the stack was

kept in registers wherever possible, a 50% improvement in memory usage and

execution time was achieved. Floating point push and pop instructions were

also added. An investigation of a one instruction lookahead in the trans-

lation process indicated a further 12 to 14 percent improvement in memory

usage and 7 to 30 percent improvement in execution time was possible.

Future plans include continued investigation of P-code instruction look-

ahead in the translation process and further examination of the impact of

high order languages on the instruction set.

169

BACKGROUND

OBJECTIVES:*

QUANTITATIVELY DETERMINE HOW RECENT ADVANCEMENTS IN HARDWARE** AND

SOFTWARE TECHNOLOGY CAN.BE USED TO OBTAIN IMPROVEMENTS IN SPACECRAFT
COMPUTER CAPABILITIES,

CMOS/SOS INTEGRATED CIRCUITS

SEMI-CUSTOM LSI DEVICES

LEADLESS CARRIER PACKAGING

MICROPROGRAMMING

PASCAL, HAL, ADA, HIGHER ORDER LANGUAGE

*THIS WORK WAS CONDUCTED BY THE DENVER DIVISION UNDER INDEPENDENT

RESEARCH AND DEVELOPMENT PROJECT AUTHORIZATION D-80D

**RELATED PRESENTATION, "APPLICATION OF ADVANCED ELECTRONICS TO A FUTURE

SPACECRAFT COMPUTER DESIGN", IN SESSION IV: MICROPROCESSOR HARDWARE

TECHNOLOGY

APPROACH

PRELIMINARY REQUIREMENTS AND IMPACT

S/W TO ASSIST IN ARCHITECTURE DESIGN
0 ABSOLUTE ASSEMBLER
• INSTRUCTION SET SIMULATOR

MICROPROGRAM DESIGN

S/W DEVELOPMENT TOOLS

170

FEATURES-REQUIRED IN PROCESSOR

MINICOMPUTER LIKE INSTRUCTION SET

MULTIPLE FLOATING POINT AND GENERAL
PURPOSE REGISTERS

FLIGHT APPLICATIONS
• SUFFICIENT THROUGHPUT
• SUFFICIENT PRECISION
• EASE OF PROGRAMMING

REGISTER CONSIDERAIONS

TYPES:
• GENERAL FOR USER
• FLOATING POINT FOR USER
t SYSTEM FOR USER
• SYSTEM FOR MICROPROGRAMS

CONSTRAINTS:

t 16 PHYSICAL REGISTERS INTERNAL TO ARITHMETIC
AND LOGIC UNIT DEVICES

• SEPERATE ALU DEVICES FOR FLOATING POINT

TRADES:
• PERFORMANCE SENSITIVITY TO SIZE OF REGISTER FILE
0 EXTERNAL REGISTER FILE - DEGRADES PERFORMANCE

171

REGISTER CONSIDERATIONS

OPERAND PRECISION:
LARGER OPERANDS REQUIRE MORE PARTS,
LONGER CYCLE TIMES

MICROCODE VS HARDWARE - SLOWER,
LARGER CONTROL STORE NEEDED
FLOATING POINT PRECISION - 32 BITS WITH
BINARY NORMALIZATION SUPPORTED BY SPECIALIZED

HARDWARE
INTEGER PRECISION - 16 BIT WITH 32 BIT
PERFORMED BY MICROCODE

FUNCTIONAL REGISTER UTILIZATION

16 BITS 32 BITS

PROGRAM COUNTER

USER STACK POINTER

PRIV STACK POINTER

GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

REG

REG

REG

REG

REG

REG

REG

REG

0

1

2

3

4

5

6

7

NOTES;
. •

FLOATING

FLOATING

FLOATING

FLOATING

FLOATING

FLOATING

FLOATING

POINT

POINT

POINT

POINT

POINT

POINT

POINT

REG!

REG I

REG I

STER

STER

STER

REGISTER

REG I

REG I

REG I

STER

STER

STER

1

2

3

4

5

6

7

FLOATING POINT SIGN BIT KEPT IN UNIQUE

REGISTER FILE

5 OTHER 16-BIT REGISTERS RESERVED FOR

MICROPROGRAMMER

1 OTHER 32-BIT REGISTER RESERVED FOR

MICROPROGRAMMER

GENERAL REGISTERS 1-7 CAN BE USED AS

INDEX REGISTERS

172

EXAMPLE OF PHYSICAL REGISTER UTILIZATION

o
i
2

3

4

5

6

7

8

9

A

B

C

D

E

F

FLOATING POINT PROCESSOR

SCRATCH

FIT

FLT

FLT

FLT

FLT

FLT

FLT

FLT

FLT

"FLT"
FLT

FLT

FTf

FLT

PT

PT

PT

PT

PT

PT

PT

PT

PT

PT

PT

PT

PT

PT

REG

REG

REG

REG

REG

REG

1

2

3

4

5

6

MANTISSA

MANTISSA

MANTISSA

MANTISSA

MANTISSA

MANTISSA

REG 7 MANTISSA

SCRATCH

REG

REG

REG

REG

REG

REG

REG

1

2

3

4

5

6

7

EXPONENT

EXPONENT

EXPONENT

EXPONENT

EXPONENT

EXPONENT

EXPONENT

THE FLOATING POINT SIGN BIT FILE IS

EMBEDDED IN CUSTOMIZED LOGIC

24 BITS

MACRO LEVEL INSTRUCTION SET

106 INSTRUCTIONS

8 CATAGORIES

FIXED POINT

INDEX/COUNTER REGISTER

FLOATING POINT

LOGICAL

BRANCH

STACK AND REGISTER SAVE AND RESTORE

EXECUTIVE FUNCTIONS

MISCELLANEOUS

10 FORMATS

REGISTER-REGISTER

REGISTER

REGISTER-ADDRESS

REGISTER-IMMEDIATE

INDEX-REGISTER

INDEX EXTENDED

ADDRESS

INDEX-ADDRESS

SPECIAL

SPECIAL EXTENDED

173

MICROPROGRAM DESIGN

HORIZONTAL RATHER THAN VERTICAL

• DECODING FIELDS DEGRADES PERFORMANCE
• FORCE LOGIC TO QUIESCENT STATE WHEN

NOT BEING USED

• BECAUSE OF WIDE MICROWORD, NEED TO KEEP
NUMBER OF WORDS OF CONTROL STORE AS SMALL
AS POSSIBLE

MICROPROGRAMS DEVELOPED CONCURRENTLY WITH HARDWARE DESIGN
• ASSURE ADEQUATE PERFORMANCE

• CONTROL STORE LIMITED BECAUSE OF HIGH NON-

RECURRING COST

PRIMARY SOFTWARE MODULES & STATUS REQMTS DESIGN IMPLEMENTATION

ASMA-D32:

ASMR-D32:

LNK-D32:

SIM-D32:

PAS- LCI:

HAL-LCI:

RTEX:

SSP-D32:

STD-2:

ABSOLUTE ASSEMBLER

RELOCATABLE ASSEMBLER

LINK EDITOR

INSTRUCTION SET SIMULATOR

PASCAL COMPILER

HAL COMPILER

REAL TIME EXECUTIVE

SCIENTIFIC SUBROUTINE PACKAGE

SELF TEST/DIAGNOSTIC ROUTINES

COMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

IN PROGRESS

IN PROGRESS

IN PROGRESS

COMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

1981

IN PROGRESS

IN PROGRESS

COMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

COMPLETE

1981

IN PROGRESS

1981

174

COMPUTER DEMONSTRATION UNIT SET UP

dZl-1

P1C-16

1J

MMU-A

RAM- 8

DDflM OrnUI]-o

CCDI A|
otK IHL

I/O

HIGH ORDER LANGUAGE CAPABILITIES

PASCAL AND HAL COMPILERS

• FROM LANGLEY RESEARCH CENTER

• WRITTEN IN PASCAL

PATH PASCAL COMPILATION PROCESS

• PRODUCES P-CODE

• INTERPRETER FOR P-CODE

HAL COMPILATION PROCESS

• PHASE 1 PRODUCES HALMAT

• HALMAT TO H-CODE

• INTERPRETER FOR H-CODE

TRANSLATOR FROM P-CODE/H-CODE TO ASSEMBLY LANGUAGE

175

SOFTWARE PRODUCTS

HAL
Compiler

1
HALMA! HAL
translator * inter

1
H-Code
Translator

[

Abso
Assei

1

Instruction Set
Simulator

\ PASCAL \
} Source 1

PASCAL PASCAL

1
P-Cote
Translator

1
1

ute Relocatable
nbter Assembler

1
Link
Editor < —

1

Engineering
Development
Computer

\ Assembly \
JUnguage I
/ Source /

^ System^
-1 library 1

1

Flight
Computer

TRANSLATOR REFINEMENTS

SAMPLE PROGRAMS

• CALCULATE PI TO SIX DIGITS

t BINARY SEARCH

PRELIMINARY DESIGN:

• STACK IN MEMORY

FIRST REVISION:

• TOP OF STACK KEPT IN REGISTERS

• FLOATING POINT PUSH AND POP ADDED

SECOND REVISION:

• LOOK AT TWO P-CODE INSTRUCTIONS

BEFORE GENERATING CODE

176

PROCESSOR SOFTWARE COMPARISON

NUMERIC TEST PROGRAM - PI APPROXIMATION

MAC-16

ASSEMBLY LANGUAGE
LINES OF CODE
WORDS OF MEMORY
EXECUTION TIME

PASCAL LANGUAGE
LINES OF CODE
WORDS OF MEMORY
EXECUTION TIME

HAL LANGUAGE
LINES OF CODE
WORDS OF MEMORY
EXECUTION TIME

74
11969

28
243

16691

28
254

.16885

POP 11/34M

37
68

14909

28
347

ATAC-16

50
79

12412

28
157

13722

PROCESSOR SOFTWARE COMPARISON

NON-NUMERIC TEST PROGRAM - BINARY SEARCH

MAC-16

ASSEMBLY LANGUAGE
LINES OF CODE
WORDS OF MEMORY
EXECUTION TIME

PASCAL LANGUAGE
LINES OF CODE
WORDS OF MEMORY
EXECUTION TIME

HAL LANGUAGE
LINES OF CODE
WORDS OF MEMORY
EXECUTION TIME

25
31
143

17
138
886

17
142
937

PDP 11/34M

26
31
170

17
107

ATAC-16

24
24
127

17
65
665

177

CODE GENERATOR IMPROVEMENT HISTORY

3
—-u_UJ LJ_

Ctl LU

WORDS OF
MEMORY

M

n
11
it
i-

LULL

EXECUTION
TIME

OPTIMIZATION CHANGE

o BINARY SEARCH
A PI APPROXIMATION

I J-

OPTIMIZATION CHANGE

FUTURE PLANS

TRANSLATOR:
• MULTI P-CODE INSTRUCTION LOOKAHEAD

• MULTI PASS - OPTIMIZE REGISTER USAGE

DIRECT HALMAT TO ASSEMBLY LANGUAGE CONVERSION
BASED ON HALMAT TO H-CODE PROGRAM

CONTINUE EXAMINING HOL IMPACT ON INSTRUCTION SET

178

