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SUMMARY

An investigation was conducted in the Langley low-turbulence pressure

tunnel to determine the low-speed two-dimensional aerodynamic characteristics

of a ]3-percent-thick medium-speed airfoil designed for general aviation

applications. The results are compared with data for the ]3-percent-thick

low-speed airfoil section. Also, theoretical predictions of the drag-rise

characteristics of the medium-speed airfoil are provided. The tests were

conducted over a Mach number range from 0.]0 to 0.32, a chord Reynolds number

range from 2.0 x ]06 to ]2.0 x ]06, and an angle-of-attack range from about -8 °

to 20 ° .

The results of the investigation indicate that the objective of retaining

good high-lift low-speed characteristics for an airfoil designed to have good

medium-speed cruise performance was achieved. Maximum section lift coefficients

at a Mach number of 0.]5 increased from about ].70 to 2.06 as the Reynolds num-

ber increased from about 2.0 x ]06 to ]2.0 x ]06 . Stall characteristics were

of the trailing-edge type and were docile at the lower Reynolds numbers. The

application of a roughness strip near the leading edge of the airfoil resulted

in only small effects on maximum section lift coefficients. Increasing the Mach

number from 0.]0 to 0.32 at a constant Reynolds number of 6.0 x ]06 decreased

the maximum section lift coefficient about 0.08. The magnitude of the quarter-

chord pitching-moment coefficient was decreased about 25 percent for the medium-

speed airfoil compared with the low-speed airfoil.

INTRODUCT ION

Research on advanced-aerodynamic-technology airfoils for general aviation

applications has been conducted over the last several years at the Langley

Research Center and reported in references ] to 6. This research effort was

initially generated to develop advanced airfoils for low-speed applications.

Emphasis was placed on designing airfoils with largely turbulent boundary lay-

ers that had the following performance requirements: low cruise drag, high

lift-drag ratios during climb, high maximum lift, and docile stall behavior.

More recently the general aviation industry indicated a requirement for air-

foils which provide higher cruise Mach numbers than the low-speed airfoils and

which still retain good high-lift low-speed characteristics. These medium-

speed airfoils have been designed to fill the gap between the low-speed air-

foils and the supercritical airfoils for application on light executive-type

aircraft. The status of NASA low- and medium-speed airfoil research is

reported in reference 7.

The present investigation was conducted to determine the low-speed aerody-

namic characteristics of a ]3-percent-thick medium-speed airfoil designed for

a lift coefficient of 0.30, a Reynolds number of ]4.0 x ]06 , and a Mach number

of 0.72. This new airfoil is designated as MS(])-0313. In addition, the

results are compared with the ]3-percent-thick low-speed airfoil, LS(])-04]3.



Theoretical predictions of the drag-rise characteristics of this medium-speed
airfoil are also provided.

The investigation was performed in the Langley low-turbulence pressure
tunnel over a Machnumberrange from 0.]0 to 0.32. The Reynolds number, based
on the airfoil chord, varied from about 2.0 x ]06 to ]2.0 x ]0 6, and the geo-
metric angle of attack varied from about -8° to 20° .

SYMBOLS

Values are given in both SI and U.S. CustomaryUnits.
and calculations _re madein U.S. CustomaryUnits.

Cp
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c c

Cd

c d '

c Z
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c n
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M
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q

R

x

z

2

The measurements

pressure coefficient,

airfoil chord, cm (in.)

p£- p_

q0o

section chord-force coefficient,

section profile-drag coefficient,

point drag coefficient

section lift coefficient,

SWake cd ' dlhl

c n cos e - c c sin

section pitching-moment coefficient about quarter-chord point,

- Cp - 0.2 d + Cp - d
_f C

section normal-force coefficient, -(_,_, Cp dQ x)

vertical distance in wake profile, cm (in.)

free-stream Mach number

static pressure, Pa (ib/ft 2)

dynamic pressure, Pa (Ib/ft 2)

Reynolds number based on free-stream conditions and airfoil chord

airfoil abscissa, cm (in.)

airfoil ordinate, cm (in.)



zc

zt

meanline ordinate, cm (in.)

mean thickness, cm (in.)

geometric angle of attack, deg

Subscripts:

max

o0

local point on airfoil

maximum

free-stream conditions

AIRFOIL DESIGNATION

Sketches of the low- and medium-speed airfoils are shown in figure I. The

airfoils are designated in the form LS(1)-xxxx or MS(])-xxxx. LS(1) indicates

low speed (first series) and MS(]) indicates medium speed (first series). The

next two digits designate the airfoil-design lift coefficient in tenths, and

the last two digits designate the airfoil thickness in percent chord.

AIRFOIL DEVELOPMENT

The intention of the medium-speed airfoil development was to combine the

best features of low-speed and supercritical airfoil technology. In order to

expedite the airfoil development, the computer program of reference 8 was used

to predict the results of various design modifications. The medium-speed air-

foil is 13 percent thick with a blunt nose and a cusped lower surface near the

trailing edge. The design objective of the airfoil was to increase the cruise

Mach number of the ]3-percent-thick low-speed airfoil but retain good high-lift

low-speed characteristics. This type of airfoil is intended to fill the gap

between the low-speed airfoils and the supercritical airfoils for application

on light executive-type aircraft. The airfoil was designed for a lift coeffi-

cient of 0.30, a Reynolds number of 14.0 x 106 , and a Mach number of 0.72.

The medium-speed airfoil was obtained by reshaping the 13-percent-thick

low-speed airfoil as indicated by figure I. The calculated pressure distribu-

tions (fig. 2(a)) indicate that increasing the Mach number to 0.72 for the low-

speed airfoil at a lift coefficient of 0.30 results in a region of high induced

velocities near the midchord on the upper surface of the airfoil. Note also

that the low-speed airfoil is highly aft loaded and actually carries a small

negative load in the forward region. Further increases in Mach number or lift

coefficient would result in a shock wave developing on the airfoil upper sur-

face near the midchord. This airfoil has been reshaped to decrease the veloci-

ties near the midchord and increase the velocities in the forward region on the

airfoil upper surface. In addition, the camber of the medium-speed airfoil was

decreased about 25 percent compared with the low-speed airfoil. Comparison

of the experimental low-speed (M = 0.15) pressure data for both airfoils at

= 0 ° is shown in figure 2(b). The thickness distributions and camber lines



for both airfoils are comparedin figure 3. Table I presents the design coor-
dinates for the medium-speedairfoil.

MODEL,APPARATUS,ANDPROCEDURE

Model

The airfoil model was constructed with a metal core around which plastic
fill and two thin layers of fiberglass were used to form the contour of the
airfoil. The model had a chord of 61 cm (24 in.) and a span of 91 cm (36 in.).
The model was equipped with both upper- and lower-surface orifices located 5 cm
(2 in.) off the midspan. The airfoil surface was sanded in the chordwise directio
with No. 400 dry silicon carbide paper to provide a smoothaerodynamic finish.
The model contour accuracy was generally within ±0.100 mm(0.004 in.).

Wind Tunnel

The Langley low-turbulence pressure tunnel (ref. 9) is a closed-throat,
single-return tunnel which can be operated at stagnation pressures from 1.0 to

10.0 atm (1 atm = ]0].3 kPa) with tunnel-empty test-section Mach numbers up to

0.42 and 0.22, respectively. The maximum Reynolds number is about 49 x 106 per

meter (15 x 106 per foot) at a Mach number of about 0.22. The tunnel test sec-

tion is 91 cm (3 ft) wide and 229 cm (7.5 ft) high.

Hydraulically actuated circular plates provided positioning and attachment

for the two-dimensional model. The plates are 102 cm (40 in.) in diameter,

rotate with the airfoil, and are flush with the tunnel wall. The airfoil ends

were attached to rectangular model-attachment plates (fig. 4) and the airfoil

was mounted so that the center of rotation of the circular plates was at 0.25c

on the model reference line. The air gaps in the tunnel walls between the rec-

tangular plates and the circular plates were sealed with metal seals.

Wake Survey Rake

A fixed wake survey rake (fig. 5) at the model midspan was mounted from

the tunnel sidewall and located ] chord length behind the trailing edge of the

airfoil. The wake rake utilized 0.]5-cm (0.06-in.) diameter total-pressure

tubes and 0.32-cm (0.125-in.) diameter static-pressure tubes. The total-

pressure tubes were flattened to 0.10 cm (0.04 in.) for 0.61 cm (0.24 in.)

from the tip of the tube. The static-pressure tubes each had four flush

orifices drilled 90 ° apart and located 8 tube diameters from the tip of the

tube and in the plane of measurement of the total-pressure tubes.

Instrumentation

Measurements of the static pressures on the airfoil surfaces and the wake-

rake pressures were made by an automatic pressure-scanning system utilizing



variable-capacitance-type precision transducers• Basic tunnel pressures were
measuredwith precision quartz manometers• Angle of attack was measuredwith
a calibrated digital shaft encoder operated by a pinion gear and rack attached
to the circular model-attachment plates• Data were obtained by a high-speed

acquisition system and recorded on magnetic tape.

TESTS AND METHODS

The airfoil was tested at Mach numbers from 0.10 to 0.32 over an angle-of-

attack range from about -8 ° to 20 ° . Reynolds number based on the airfoil chord

was varied from about 2.0 × 106 to ]2.0 × ]06 . The airfoil was tested both in

the smooth condition (natural transition) and with roughness located on both

upper and lower surfaces at 0.075c. The roughness was sized for each Reynolds

number according to the technique in reference 10. The roughness was sparsely

distributed and consisted of granular-type strips 0.13-cm (0.05-in.) wide which

were attached to the surfaces with clear lacquer•

The static-pressure measurements at the airfoil surface were reduced to

standard pressure coefficients and machine integrated to obtain section normal-

force and section chord-force coefficients as well as section pitching-moment

coefficients about the quarter chord. Section profile-drag coefficients were

computed from the wake-rake total and static pressures by the method reported
in reference 11.

An estimate of the standard low-speed wind-tunnel boundary corrections

(ref. ]2) amounted to a maximum of about 2 percent of the measured coefficients

and these corrections have not been applied to the data. An estimate of the

total-pressure tube displacement effects on the values of c d showed these

effects to be negligible (ref. 1]).

PRESENTATION OF RESULTS

The test conditions are summarized in table II. The results of this

investigation have been reduced to coefficient form and are presented in the

following figures:

Figure

Section characteristics for MS(])-0313 airfoil ............. 6,7

Effect of roughness on section characteristics ............. 8

Effect of Reynolds number on section characteristics. Model smooth;
M = 0.15

• • • • • • • • • • • • • • • • • " • • • • • • • • • • • • • 9

Effect of Reynolds number on section characteristics. Roughness on;

M = 0.15 ............................... 10

Effect of Mach number on section characteristics. Roughness on;

R = 6.0 × ]06 ............................ 11

Comparison of section characteristics for LS(])-0413 and MS(1)-0313

airfoils• Roughness on; M = 0.]5 .................. ]2

Effect of angle of attack and Reynolds number on chordwise pressure

distributions for MS(1)-0313 airfoil• Roughness on; M = 0.]5 .... ]3



Figure

Comparisonof chordwise pressure distributions for LS(])-0413 and
MS(I)-0313 airfoils. Roughnesson; M = 0.]5 ............. ]4

Variation of maximumlift coefficient with Reynolds numberfor
LS(])-04]3 and MS(I)-03]3 airfoils. M = 0.]5 ............. ]5

Variation of maximumlift coefficient with Machnumberfor LS(])-04]3
and MS(])-03]3 airfoils. Roughnesson; R = 6.0 x 106 ........ ]6

Calculated drag-rise characteristics for LS(])-0413 and MS(])-0313
airfoils. R = ]4.0 x ]06 ....................... ]7

DISCUSSIONOFRESULTS

Section Characteristics

Lift.- Figure 9(a) shows that the lift-curve slope for the medium-speed
airfoil in a smoothcondition (natural boundary-layer transition) varied from
about 0.]] to 0.]2 per degree for the Reynolds numbers investigated (M = 0.]5).
The angle of attack for zero lift coefficient was about -3° . Maximumlift
coefficients increased from about ].70 to 2.06 as the Reynolds number was

increased from about 2.0 x ]0 6 to ]2.0 x ]0 6 , with the greatest increase

occurring between Reynolds numbers of 2.0 × 106 and 4.0 x ]06 . The stall

characteristics of the airfoil are of the trailing-edge type, as shown by the

lift data of figure 9(a) and the pressure data of figure ]3. The nature of the

stall is docile at Reynolds numbers of 2.0 x ]06 and 4.0 x ]06 .

The addition of a roughness strip at 0.075c (fig. 8) resulted in the

expected decambering effect because of the increase in boundary-layer thick-

ness. For example, at R = 2.0 x ]06 (fig. 8(a)) the angle of attack for zero

lift coefficient changed from about -3 ° to -2.7 ° . No measurable change in lift-

curve slope was indicated, and the lift coefficient at e = 0 ° decreased from

about 0.35 to 0.31. These effects on the lift characteristics decreased as the

Reynolds number was increased and were essentially eliminated at R = ]2.0 x ]06

(fig. 8(e)). The roughness strip had only minor effects on the C_,ma x per-

formance of the airfoil for the Reynolds number range tested.

The effects of Mach number on the airfoil lift characteristics at a

Reynolds number of 6.0 x ]06 with a roughness strip located at 0.075c are shown

in figure ]I (a). The expected Prandtl-Glauert increase in lift-curve slope is

indicated for increases in Mach number from 0.]0 to 0.32. This same Mach num-

ber increase, however, resulted in a decrease of about 2.5 ° in the angle of

attack for stall and a decrease in C_,max of about 0.08.

Comparisons of the lift data for the ]3-percent-thick low- and medium-

speed airfoils are shown in figure ]2 for Reynolds numbers from 2.0 x ]06 to

9.0 x 106 and summarized in figures ]5 and 16. The design lift coefficients

for the low-speed and medium-speed airfoils were 0.40 and 0.30, respectively.

Figure ]2(a), R = 2.0 x ]06 , shows that the lift characteristics are similar

for both airfoils and that the medium-speed airfoil, with a lower design lift

coefficient, develops the same C_,ma x as the low-speed airfoil. This result

is attributed to reduced upper-surface boundary-layer separation for the medium-

6



speed airfoil, as illustrated by the pressure-data comparison of figure 14(e).
At the higher Reynolds numbers (fig. ]5) a decrease in C_,max of about 0.06

is shown for the medium-speed airfoil compared with the low-speed airfoil.

This decrease in Cz,max is as expected for an airfoil with a decrease in

design lift coefficient of about 0.]0. The effects of Mach number on C[,ma x

for both airfoils are shown in figure ]6 for a Reynolds number of 6.0 x ]06 .

The medium-speed airfoil generally shows smaller decreases in Cz,max above a

Mach number of about 0.28 compared with the low-speed airfoil.

Pitching moment.- The pitching-moment-coefficient data of figures 8, 9,

and ]0 illustrate the expected positive increments in c m due to decreasing

the Reynolds number or the addition of roughness at a constant Reynolds number.

This is typical of the decambering effect associated with boundary-layer thick-

ening for aft-loaded airfoils. At a Reynolds number of 6.0 x 106 , increasing

the Mach number from 0.]0 to 0.32 (fig. ll(c)) showed no effects on the

pitching-moment data up to about e = 8 ° . At the higher angles of attack a

positive increment in c m is shown.

Comparisons of the pitching-moment data for the low- and medium-speed air-

foils are shown in figure 12. A reduction in the magnitude of c m of about

25 percent throughout the c Z range is indicated for the medium-speed airfoil.

This result is important because of the expected reduced trim penalties for the

medium-speed airfoil at cruise conditions.

Drag.- The design pressure distribution for the medium-speed airfoil

(fig. 2(a)) shows that a favorable pressure gradient exists only back to about

0.10c on the upper surface and 0.05c on the lower surface at a Mach number of

0.72. The low-speed (M = 0.]5) pressure data (fig. ]4(a)) show that a pressure

peak develops at about 0.06c on the upper surface of the airfoil. Thus, the

pressure distributions are not conducive to long runs of laminar flow. There-

fore, the discussion of drag is limited to data obtained with fixed transition

at 0.075c to ensure turbulent flow over most of the airfoil chord.

The profile-drag coefficient at design lift (c_ = 0.30) decreased from
about 0.0]02 at R = 2.0 x 106 to about 0.0083 at R = ]2.0 x 106

(fig. 10(b)). This drag reduction is associated with the related decrease

in boundary-layer thickness and accompanying reduction in skin-friction drag.

There are only small effects of Mach number on c d (fig. ll(b)) over a Mach

number range from 0.]0 to 0.32.

Comparisons of the drag data for the low- and medium-speed airfoils are

shown in figure ]2 for Reynolds numbers from 2.0 x 106 to 9.0 x 106 with fixed

transition at 0.075c. At a Reynolds number of 2.0 x ]06 (fig. 12(a)), a

decrease in c d for lift coefficients greater than about ].0 is shown for the

medium-speed airfoil. The drag polars are essentially the same at the higher

Reynolds numbers for the two airfoils.

Drag-rise characteristics calculated by using the theory of reference 8

are shown in figure ]7 for the low- and medium-speed airfoils at

R = ]4.0 × ]06 . Boundary-layer transition was specified at x/c = 0.04 for

the calculations to ensure a turbulent boundary-layer development on the air-



foils. At lift coefficients of 0.30 or 0.40 the theory indicates an increase
in drag-rise Machnumberof about 0.02 for the medium-speedairfoil.

Pressure Distributions

The chordwise pressure data of figure 13 illustrate the effects of an_le
of attack for several Reynolds numbers. For a Reynolds numberof 2.0 × 10°
(fig. ]3(a)), the data at _ = 0° (cZ = 0.31) indicate an upper-surface pres-
sure peak at about x/c = 0.06, followed by approximately constant values of

_ to about x/c = 0.55. On the lower surface, approximately constant values
Cp are shownfrom about x/c = 0.04 to x/c = 0.50. The pressure coeffi-

cient at the airfoil trailing edge is slightly positive. Upper-surface
trailing-edge separation is first indicated at an angle of attack of about 8°
by the constant-pressure region on the airfoil and is also indicated by the
nonlinear lift curves above this angle of attack (fig. 8(a)). Increases in

angle of attack above 8° resulted in this constant-pressure region moving for-

ward along the airfoil, and at maximum lift (e = 16.2 ° ) trailing-edge separa-

tion was present from about x/c = 0.70 to x/c = 1.0. The airfoil stall is

of the trailing-edge type, as indicated by figure 13(a) (_ = 17.]°). The stall

characteristics are more abrupt at the higher Reynolds numbers, as illustrated

by figures 8 and ]3.

Comparisons of the pressure data for the low- and medium-speed airfoils at

several test conditions are illustrated in figure ]4. The reduction in design

lift coefficient of 0.10 for the medium-speed airfoil is illustrated by the

decrease in the magnitude of the pressure differences between the upper and

lower surfaces compared with the low-speed airfoil (fig. ]4(b)). Note also the

increase in suction (-Cp) on the upper surface at about x/c = 0.06 for the

medium-speed airfoil. At typical climb lift coefficients (c Z = 1.0), both air-

foils are separation free, as illustrated by the pressure-data comparisons of

figure 14(c). For a Reynolds number of 2.0 × 106 and at higher lift coeffi-

cients (figs. 14(d) and 14(e)), the medium-speed airfoil exhibits less

trailing-edge separation than the low-speed airfoil. Separation is indicated

by the constant-pressure region on the aft upper surface of the airfoils.

CONCLUDING REMARKS

Wind-tunnel tests have been conducted to determine the low-speed two-

dimensional aerodynamic characteristics of a ]3-percent-thick medium-speed

airfoil designed for general aviation applications. The results were compared

with the ]3-percent-thick low-speed airfoil. Also, theoretical predictions of

the drag-rise characteristics of this airfoil are provided. The tests were

conducted over a Mach number range from 0.]0 to 0.32. The chord Reynolds num-

ber was varied from about 2.0 × 106 to 12.0 × 106 . The following results were

determined from this investigation:

1. The objective of retaining good high-lift low-speed characteristics

for an airfoil designed to have good medium-speed cruise performance has been

achieved.



2. Maximumsection lift coefficients at a Machnumberof 0.]5 increased
from about ].70 to 2.06 as the Reynolds number was increased from about

2.0 × 10 6 to 12.0 x 10 6 .

3. Stall characteristics were of the trailing-edge type and were docile at

the lower Reynolds numbers.

4. The application of a roughness strip near the leading edge of the air-

foil resulted in only small effects on maximum section lift coefficients.

5. Increasing the Mach number from 0.]0 to 0.32 at a constant Reynolds

number of about 6.0 x ]0 6 decreased the maximum section lift coefficient

about 0.08.

6. The magnitude of the quarter-chord pitching-moment coefficient was

decreased about 25 percent for the medium-speed airfoil compared with the

low-speed airfoil.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

June 27, ]979
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TABLEI.- MS(l)-0313 AIRFOIL(30ORDINATES

x/c z/c, upper surface z/c, lower surface

0.000000
.002000
.005000
.012500
.025000
.037500
.050000
•075000
•lO0000
• 125000
.]50000
• ] 75000
.200000
.225000
.250000

.275000

.300000

.325000

.350000

.375000

.400000

.425000

.450000

.475000

.500000

.525000

.550000

.575000

•600000

•625000

•650000

•675000

.700000

•725000

•750000

•775000

•800000

.825000

•850000

.875000

.900000

.925000

.950000

.975000

1.O00000

0.000986

.009475

.0]5120

.024286

.034450

.041872

.047433

.055]69

.060608

.064805

.068]89

.070963

.073274

.075]99

.076777

.078033

.07899]

.079678

.080119

.080324

.080293

.080026

.0795]7

•078763

.077753

.076464

.074868

.072934

.070636

•067958

•064903

•06]488

.057745

.0537]0

.0494]8

.044899

.040]79

.035288

.030259

.025]77

.020079

.0]4950

.009822

.004699

-•00047]

0.000986

-.006272

-.009977

-.015246

-.020594

-.024404

-.02?454

-.032278

-.036076

-.039204

-.041819

-.044001

-.045806

-.047282

-.048471

-.049410

-.050129

-.050645

-.050960

-.051059

-.0509]9

-.0505]2

-.0498]4

-.0488]2

-.0475]]

-.0459]8

-.044024

-.0418]2

-.039274

-.036426

-.033315

-.030007

-.02657]

-.02307]

-.019568

-.016140

-.012881

-.009897

-.007286

-.005135

-.003535

-.002607

-.002523

-.003540

-.006054

l]



TABLEII .- TESTCONDITIONS

M

0.15

.10

.15

•20

.28

.32

m

2 × 10 6

)<

)<
L

4 x 10 6

R

6 x 10 6

×

×

×

),(

X

X

9 x lO 6

i

X

I

12 x lO 6

Configuration

Smooth

Roughness on

Roughness on

Roughness on

Roughness on

Roughness on

12
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Figure 14.- Continued.
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