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ABSTRACT ’
We show how relatively simple, non-imaging, microwave radars can be used to measure occan

wave directional spectra from satellites. In the non-imaging radar measurement, the directional dis-
tribution of the ocean waves is obtained by scanning the radar in azimuth; tho resolution of Foudor
component waves in any given azimuth direction is a resulf ofa ang type of wave front niatching
condition. The spectral distribution in wave number can in principle be measured using either short
pulse (SP) or dual frequency (DF) techniques. | | |

In this paper, we analyze the SP and DF techniques in thc frequency domain, in which is evi-
dent a common dependence on a generalized fourth-order statistical moment of the surface scatter
ing transfer function. A solution for the fourth-order moment is obtained using physical optics in
the high frequency limit appropriate to near-vertical, specular backscatter. The solution is expressed
as an asymptotic expansion valid to the second-order in Gaussian wave statistics and the first order
in non-Gaussian wave statistics. The moment solution gives, to the first order in wave steepness, an
intrinsic electromagnetic modulation spectrum that is proportional to the large wave directional
slope spectrum evaluated in the azimuth of radar look. The harmonic distortion inherent to the
specular scatter measurement of the sea slope spectrum is found to be small in the incidence angle
range of 8 to 15 degrees.

Detailed consideration is given to the measurement signal-to-noise problems specific to SP and
DF techniques. It is shown that with suitable pulse integration, typical satellite measurement signal-
to-noise ratios of ca. 0 dB result for the narrowbhand DF technique and +20 dB for the SP technique.
Thus, while satellite measurement feasibility with either technique is indicated, the SP technique
possesses a distinct advantage in terms of measurement signal-to-noise and contrast ratios.
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Traveling by alr over the ocean, have you ever notieed how clearly visiblé were the' pattems of
theoeeanwaveswhendirectsunlightmuminatedthesurfaee? laskﬂiequestionbecanselwantto
make the point that if thése waves are visible to the naked eye, then 'sur'ely they oug!it to be 'meae-
urable by some remote sensing technique; In particular letus inquire if they cannot be measured by
microwave radars which, as remote sensors, possess the distinct advantages of (a) providing their own
source of illumination, (b) seeing through clouds and light rain and (c) being practically insensitive
to the ionosphere. We will show that indeed microwave radars can measure the waves; moreover we
show that the radars do not have to image the sea surface, if only statistical properties of the wave
ﬁeld are desired. The most useful .tatisticai description of a random, homogeneous wave field is
given by the directional wave height spectrum. In terms of the spatial properties of the wave ﬁelti
that are most easily observable from remote platforms, this is the two-dimensional, vector wave num-
ber spectrum of the two-dimensional height field.

Modern, numerical wave forecasting and analysis is based on wave spectral growth and propaga-
tion models that require as inputs initial sea state (i.e., directional wave spectra) and future wind
field specifications. Owing to inevitable model and specification errors, the wave forecasts will be
in error. Presently, there are no viable means, either in-situ or remote, of measuring directional ccean
wave spectra in any kind of routine or global sense. If routine remote observations were to become
available, we should be in a much better position to verify the wave forecasts currently being pro-
duced and to improve upon them, through both model improvement and improvement of the initial
state specification.

We shall be considering observations of the sea surface in the case where the radar is pointing
downward, away from the vertical, but not more than 15 degrees or so from the vertical. As is well
known (Barrick, 1968a, 1974; Valenzuela, 1978), near-vertical microwave backscatter from the sea
occurs by means of quasi-specular retroreflections from surface wave facets that are oriented normal

to the radar linc-of-sight. The backscatter can be described to various levels of approximation by
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Wﬁopﬁu; physlcal optics, or m»opder high-frequency approximations (Jackson, 1974a);
ot aternatively, by composite surfuce theory (Brown, 1978). Basically, though, the stuation i ane

of spocular refleotion, and the radar backscatter problem can ba oompared to that ol'qm,gu?t ob-

semtionintheemwhmthemlamﬁ-pmndtotheobaomr‘slineofdght SRS

lam ooncenmﬁnghero onsmall angle,speculnrbaclmcamrfortwoream Ono isghat l be-
lieve that’ tho plrhsien mechanisms involved in the reflectivity modulation by the large waves are
simpier than in the case of larée-angle Bragg diﬁ‘rdction baclma@. At large angles thoie is, in addd
tion to a purely geometrical tilting effect, a very strong sensitivity of the elecmagneﬁe (em) mcé-
wlation to the dotails of the hydrodymmic modulation of the cemimetric Bragg-diffracting wavelets
by the atmospheric and large ocean wave ﬂow fields, Wlule the hydrodynamic contribution-to the
large-angle reflectivity modulation has been treated theoretically (Alpers angd Hmelmann. 1978
Valenzuela and Wright, 1979), theory is hard pressed to deal with the hydrodynamic complexitiet :
and actual field observations (Valenzuela and Wright, 1979; Wright et al., 1980). In the specular»v
scatter regime, howsver, there is no special sensitivity to a particular small water wavelength. Rather,
the entire ensemble of water waves is contributing to the population of specularly reflecting facets-
(excluding of courss those wavelets smaller than the diffraction limit). For this large ensemble of
waves, an assumption of Gaussian surface statistics seems to be a reasonable one, at least in the first
order of approximation.

The second reason for concentrating on the near-vertical is a more practical one. It is desirable
to make the nadir angle as small as possible in order that the radius of the azimuth scan circle on the
ocean surface not exceed the distance over which the wave field can be expected to be homogeneous
(cf. Fig. 1).

We have said that the radars need dm actually image the surface to measure wave spectra. The
idea behind the non-imaging radar measurement is simple: we let the broad em phase front on the
surface (i.e., broad compared to the correlation scale of the waves) function to isolate or resolve

plane Fourier surface contrast waves travelling in (or contrary to) the direction of radar look. The
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principle is similar to that of Bragg scatter, which holds that backscatter occurs only from those water
waves having wave vectors “matched” to the em propagation vector. Specifically, the water wave .
propagation vector K must lie in the plane of incidence and must have the magnitude

| K| = 2using
whiere k is the em wave number and 0 is the angle of incidence. To illustrate the principle we con-
sider a simple tilting model of reflectivity variation in which the variation is directly propurtional to
the large wave slope component in the plane of incidence. See Fig. 2. Then if V{ is the large wave
slope, the radar modulation spectrum will be proportional to the large wave directional slope spec-
trum evaluated in the azimuth of radar look, i.e.,

27\2 2 |
Paot® = (1) < = |KIF® |

where brackets (. . . ) denote ensemble average, p is the unit horizontal vector, K/K, and F(K) is the
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spectrum of wave height.

The actual detection of the range-travelling surface contrast waves can be accomplished using
either short pulse (SP) or dual frequency (DF) techniques. In the SP technique, very short pulses
are used to resolve the surface wave structure in range. The fast-time or range modulatior. of the
backscattered pulse caused by the spatial reflectivity variation can be detected by spectrum analysis
of the backscattered signal envelope. (See Fig. 3.) The SP approach to possible satellite ocean wave
measurement was apparently first suggested in a note by Tomiyasu (1971). Apart from the work of

Jackson (1974b) and the present work, the SP approach has received no further considcration in the
literature.
The DF approach, first proposed by Ruck ez al. (1972) (and cf. also Ransone and Wright, 1972;

Hasselmann, 1972) has received considerably more attention (Plant, 1977; Alpers and Hasselmann,
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1978; Schuler, 1978; Plant and Schuler, 1980). The DF technique was originally proposed as -

P

and is still generally understood to be — a narrowband technique. Quasi-monochromatic waveforms

that entirely fill the antenna beam spot on the surface are transmitted at two closely separated




microwave frequencies. An harmonic surface contrast modulation is detected through the interaction
of the em “beat wave™ with the surface. Jackson (1974b) showed that the narrowband DF technique
has a poor measurement SNR (signal-to-noise ratio) compared to the SP technique. The reason for
the low SNR is that the contrast modulation spectrum is relatively broadband, having a bandwidth
comparable to the bandwidth of the sea-slope spectrum (a bandwidth of the order of $0-100 percent
of the peak frequency). Since the modulation spectrum Pmod(l_g) is being detected only in a narrow
spectral band of width AK ~ 2#/ Lp where l.‘D is the runge extent of illumination, the detected signal
(the covariance of powers at the two frequencies) will be small compared to the background noise
level (the variance of backscattered power at either frequency), i.e., the SNR = Pmod(l_g) AK <L 1.
Jackson (1974b) showed that this low SNR problem inherent to a narrowband DF measurement cotdd
be solved by using wideband signals - e.g., by using signals with bandwidths comparable to the sea-
spectrum bandwidth. An illustration of a wideband DF radar system is given in Fig. 3. We note that
the receiving system represented in Fig. 3b, consisting of a two channel receiver and cross-correlator,
was described some years ago by Parzen and Shiren (1956). Parzen and Shiren considered both the
SP and DF receiving systems from the viewpoint of detection theory. Independently of any particu-
lar transmitter, the SP and DF receiving systems were regarded simply as alternative systems for de-
tecting a modulation on a noisy carrier signal. In their analysis, Parzen and Shiren assumed that the
input to both detection systems was a weakly modulated Gaussian noise process. This is actually a
realistic model of the sea-return process we are considering, and indeed a performance comparison
of SP and DF systems can be made on the basis ot such a model process (to be more specific, the
surface impulse response can be modelled as a weakly modulated complex Gaussian process).

Alpers and Hasselmann (1978) (hereafter referred to as A-H) performed an extensive analysis
of the DF technique in its original narrowband (continuous wave) context. Their analysis dealt with
large-angle backscatter and included hydrodynamic modulation. Rather than using wideband signals
to improve the DF SNR as suggested by Jackson (1974b), A-H instead introduced the idea of slow-
time filtenng the DF signal D, (1) = E,(t)E;(t) where E; and F2 are the backscattered fields at the

two frequencies. The idea is that the modulatien signal component of D, (1) will appear as a strong
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line in the comparatively broad Doppler spectrum of D, ,(t). A-H showed that by filtering D, ,(t) at
the appropriate platform-motion-induced Doppler frequency, satellite SNRs typically of 0 dB could
be obtained.

In this work, we apply the A-H filtering scheme to the SP technique as well as to the DF tech-
nique. In the SP technique, the slow-time filtering can be realized simply by integrating pulsc re-
turns in range bins (fast-time bins) that are adjusted so as to compensate for the apparent motion of
the target ocean scene due to the motion of the platform. A schematic illustration of this kind of
processing in a SP system is given in Fig. 4. (We remark that the integration, or filtering, is done to
reduce the level of the random signal fluctuation arising from waveform coherency effects (Rayleigh
fading).

Following, we present a frequency-domain analysis of the SP and DF systems illustrated in Fig.
3. This introduces the generalized fourth-orde: moment of the surface scattering transfer function.

.Using the scalar physical optics integral solution for the transfer function, we obtain, first, a time-
independent, far-zone solution for the moment in the high-frequency limit appropriate to near
vertical backscatter (geometrical optics limit). We proceed then from the far-zone soluticn to the
more complicated time-dependent Fresnel zone moment solution that is required for an analysis of
the systems employing the A-H slow-time filtering. We conclude with an SNR analysis of SP and
DF techniques which indicates the feasibility of measuring ocean wave directional spectra from low
carth-orbiting satellites. The analysis shows that the processing gain achicved with the A-H filtering
scheme is approximately the ratio of the microwave carrier frequency to the ocean-wave induced
modulation frequency of interest. For X or Ku band radars, this ratio is on the order of +30 to +40
dB. With this processing gain, we arrive at typical satellite measurements SNRs of ca. -10 dB for the
narrowband DF approach and ca. +20 dB for the SP approach.

2. Short-Pulse (SP) and Dual-Frequency (DF) Techniques

Figure 1 depicts a pencil beam of radiation incident on the sea surface. The antenna beam axis

makes an angle 9 to the vertical (z axis) and lies at an azimuth & relative to some (X}, X4) reference
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axes in the horizontal plane. The unit vector 3 = (cos®, sin®) is defined as pointing along the azimuth
ray, or in the direction of increasing surface range. The slant range from the radar to points on the sur-
facez= {(x),x = (xl . xz), is denoted r, and the range to the center of the beam spot is denoted r,,.
We shall be considering antenna beam widths typically of a few degrees and illuminated areas A,
typically of several km.in lateral and range extents.

We consider the backscatter of any finite duration but otherwise arbitrary transmitted waveform:
f(r). Here we use 7 to denote *‘fast™ signal.time, i.e., that time having a scale commensugate with the:
pulse duration, or reciprocal pulse bandwidth (typical scale of microseconds). Fast time 7 is to be
distinguished from “slow” time t, which scales with the interpulse period or reciprocal Doppler band-
width (typical scale of milliseconds). The incident field at the surface is given by the spherical wave
e™(r, x) = G* (x)f(r-r/c)/r, where G is the antenna power pattern on the surface. The Fourier

transform (FT) of the incident field is
EI"¢(k, x) = G¥% (x) ek E (k) (a)
where E (k) is the waveform FT at the surface,
Eok)= (/20 fe " ft)irg) dr (1b)

where k = p/c is the wave number, v is the frequency and ¢ the speed of light; and where in the de-
nominator we have set r = r, since, for the few degree beamwidths and large ranges we are consider-
ing, r varies only very little over the beam spot. The backscattered field e (r,t) is a duration-limited
random process in fast time r (the duration being determined by the round-trip travel time T, of an
impulse across the beam spot on the surface) and is assumed to be a stationary random process in
slow time t. Stationarity in t follows if weassume that the radar is translating at a uniform velocity
over a homogeneous sea. For simplicity, we will ignore the effect of discrete pulsing and sampling
and treat eg(7,t) as a continuous process in t. Let the FT of e, with respect to 7 be denoted as

Eg(k,t). Then E; is related to the incident wave form FT E (k) as

Eq(K,1) = S(k, ) Eg(K) (0)
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where S(k, t) is the surface scattering transfer function for backscatter at a frequency v = ke. In
principle, S(k,t) is the solution to the complex boundary value problem for a unit amplitude har
monic incident wave in the case where the scattering geometry is frozen at some time t. Note that
we are treating S as a scalar quantity; this is permissible since there is only a very weak polarization
dependence in the specular backscatter regime (cf. Jackson, 1974a). Also note that the look angle
0,9 dependence is implicit in S.

A frequency-domain analysis of the SP and DF systems diagramu::~d in Fig. 3 is given in Appen-
dix A. The SP and DF systems of Fig. 3 will, for convenience of identification, be referred to as
“modulation noncoierent” systems, as they are insensitive to the phase of the signal modulation.
In contradistinction, those systems which are sensitive to the phase of the modulation, such as the
system of Figure 4, will be referred to as “modulation coherent.” Since the idealized SP and DF
systems double detect using square law detectors, their outputs will depend on fourth-order products
of the surface transfer function S(k,t). From Eqs. A2 and A8, it is seen that the ensemble average
outputs of the SP and DF systems can be expressed in terms of different operation: on the same
‘“generalized” fourth-order statistical moment of S(k,t), viz.,

M(k,k’,x) = (S(k)S* (k-x)S*(k")S(k'-x)) QA3)
where (. . . ) denotes ensemble average and * complex conjugation. Note that in (3) we have omitted
the explicit time dependence in S(k,t). If the difference wave number Ak is defined as

Ak=k-k' 3"
then M can also be expressed as a function of Ak, M = M(k, Ak,«). In the following, we will be work-
ing under the assumption that the pulse bandwidths(or discrete difference frequencies) are not exces-
sive; hence we require that

k/k << 1 and Ak/k << ] 3"
In practice (3”) will always be well satisfied; ¢.g., a | percent bandwidth would represent quite a large
bandwidth.
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3. Specular Scatter Solution for the Moment M(k, Ak, k)
The physical optics (PO) integral solution for the transfer function can be written as (cf. Beck-
m.ann and Spizzichino, 1963; Weissman, 1973)

Stk,1) = iksecO

271,

IG(; =Vt) exp [-12ke(x, t)) d3 4)

where G is the illuminatien pattern; V is the platform velocity; x = (x,, X,) is the hotizontal coordi-
nate vector of surface points in a surface-fixed reference frame; dx = dx, dx, is the element of hori-
zontal area; and where the integration extends over the illuminated area. The origin of the coordinate
system x = Qis taken to coincide with the center of the beam spot at t = 0. For small t, the Fresnel.

approximation to the phase is valid,
=2ke(x,t) = -2kr, + 2kcosO3(x) - 2ksind p - (x - Vt)

+(k/ro){| x- Vt|? -5in20(3 - (x- VU1 2 + £2(n)} 5)
where again £ (x) is the random wave height and Bis the unit vector in the horizontal pointing in the
direction of increasing range. In the analysis of the modulation noncoherent systems of Fig. 3, we
find that a far zone approximation to the phase is adequate; the quadratic Fresnel term in (5) can be
dispensed with without sacrificing any of the essential physics of the problem. Thus, neglecting the
Fresnel term (and ignoring the time dependence which is now trivial without the Fresnel term), we

have for the far zone approximation to the PO integral:

- JG(;)cxp{nk[coso{Q) - 5inf p - x]} dx (6)

We calculate the fourth moment, Eq. (3), in the geometricai optics (GO) limit appropriate to near
vertical, specular backscatter. The GO limit of the moment (3) can be calculated in a number of
different ways according to various methods that can be found in the literatﬁrc dealing with the
second moment {|S(k)12) (average backscattered power). Of these methods, Barrick's (1968b) is
the most direct. Other methods that start with the PO integral include those of Beckmann and
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Spizzichino (1963) and Kodis (1966: cf. Weissman, 1973). Of course, it is possible to dispense with
PO altogether and start ab initio with GO, e g., using methods such as Lynch and Wagner's (1970).
But, as we still have to account for phase, there i3 rea’"y no advantage to be gained in using GO. Pro-
ceeding according to Barrick’s (1968b) method, we substitute the PO integral (6) into (3). Writing
the product as a four-fold integral, and interchanging :nsemble average and integration operations,
we have:

M(&Ak.u)-(';'::)‘f-'--IG(;‘)...G@)

. <exp{izkcosolk(;' 3= et + Ak -3h

+x($2 - ;")l]) - exp {-2sinf p * [k(x! - x?

- +x4) + Ak(x? - x) + (32 - 341} ax! . .. dx® M
where we have approximated the product of the wave numbers k(k-«) . . . by k4 (which is permis-
sible in view of (3")), and where we have let {! = $(x!), etc. For large k (i.c., for large 'ms phase

variation 2kcos0<{2>"%), it is apparent that appreciable contributions to the moment are made only

in the neighborhoods of two sets of stationary points, viz.,

Sy x'mxd, x2 =y (8
Except whers x! = x2 = x3 = x4, the sets S, and 5, are distinct and yield distinct contributiuns
to the moment; i.c., M= M, +M,, where M, and M, respectively derive from integrations over the

small volumes surrgunding S; and S,. Consider the integration over the volume containing §y. let

u = 2kcosB(x! - x?)

v = 2kcosB(x3 - x4
wext-x!
x=x (%2)
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Now expand the height differences in the neighborhoods of the stationary points S, in a Taylor
series,

2keosd(§! - §2) = g2y + O(u? k)

Zkeosd(? - $4) = 05% + 00V /K) (9b)

where 7 = (3/x,, a/axz). Then the contribution M, to M for large k becomes
M, ~ (2r°coszo)"f A(w) exp(-i2ksin6 p-w)dw
X ‘(2:)" ” (explilvs2y - vi*y
+ 2ccos8(§2 - £4) + 0((u? +v2)/k) + 0(Akv/K)]} )
~exp {i(tand §-(u - ¥) + 0(Akv/K)]} du d!l (10)
where in (10) we have already taken the large k limit in the products of the gains, i.e., G(x}!)...G(X*"

~ G3(x)G2(x + w), and where we have integrated over the remaining space variable x, letting A(w)

represent the convolved two-way gain pattern,
A(w)= L G2(x)G2(x + w)dx ayn

(Since {(x) is 8 homogeneous random process in X, the average (- < * ) is independent of *4¢ sbsolute
position vector x = x4, so thut the x integration only effects the gain function.)
Now consider the limit of the factor in braces as k > «. Let ¢ denote the random six-vector,
TEICI LR/ o TN o (122
and let t denote the associated six-dimensional characteristic vector,
1= (g -v, 2xcosb, - 2xcosf) (12b)
Then, the chanacteristic function of £ is defined as
Y (tiw) = ittty = _[ e’ p (£:w)dE (13)
where p, is the pdf (probability d.:nsity function) of §. Sincc. $(x) (and herice ) is a stationary proc-
4

s, tie pdf and characteristic function depend only on the separation, or lag vector w = 5’ - x4,
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From the definitions (12, 13) we have for M, in the high-frequency, GO limit, at least formally,

lim M, =M, (x) = (2r,cos8)™ JAA(!) exp(-i2«sind § + w)dw
k=boo
X !(%_n)" II we(g;v_v) exp [-itand é‘ *(u-vy)ldu d!l ' (14)

Since M, in the large k limit is a function of « only and the total moment M = M, + M,, and since
by the definition (3) M is symmetric with respect to a k and Ak interchange, then we must have, in
the limit, |

lim M(k, Ak,k) = M, (k) + M, (Ak) a1s)

k-bw
Note that the limit does not have to be taken in order that (15) hold true, at least approximately.
The decomposition (15) will be valid in all cases provided that k and Ak are small compared to k
(condition (3")).
If we define the surface wave vector

K = 2xsiné p (16)

and the specular slope vector
s=tand p a7

Then (14) can be written somewhat more compactly as

M, (K) = (2r,cos26)™ f A(w)exp (-iK- w)dw

x {@n [ [ v & wexp s @ - 1w o a8)
where now the characteristic vector t has the components
t = (u, -v, Kcoté, -Kcotf) (19)
Let us write the solution (18) as
M, (K) = (2r,cos26)™* f " AW EEK:w)expiK- w)dw (20)

where E represents the factor in braces, viz.,

ittt e B
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(K w) = (2%)4 f f w!(y. =y, Keotd, -Kcotd; w)
* exp-ig*(u-y)] dudy (21)
An alternative form of the solution may be obtained by using eq. (13) for w! and integrating over u

and vi

EKiw = f f ) P& 3 §3. 8% w) expliKeoto (82 - $4)) dp2 ag Q2)

We shall find the form (21) more convenient to deal with,

Except in one particular (to which shortly), the above derivation is essentally identical to Ban
rick's (1968b) second-moment derivation. We have used Barrick’s method because of the several ap-
proaches available it is the most direct and to the point. Yet, the reader may feel that the derivation
lacks rigor: that certain steps require further justification. Rather than attempi this justification here,
we ofler instead in Appendix B an alternative, somewhat more rigorous derivation which sould, by
analogy to the present derivation, justify it.

The peculiar teature of the fourth-moment sotution aliuded to (i.¢., the feature of the fourth-
moment solution that has no analogue in the second-moment problem) is this: the mathematical
object claimed to be the solution does not exist. The joint pdf N is singular at the origin w = 0, and
the integral M, will = generally., it is supposed — be divergent, Consider the second moment ot back-

scattercd monochromatic power, i.c., consider
(SKN4) = M(K, 0, 0) ~ 2M, (0) (23)
Setting K = 0 in (18) and (22), and in (22) integrating over §! and 7, we have

M (0= 2romlor‘ J. A(wW) p (5. 5. Widw (29)

vid, st
where Pop? gt is the joint pdf of slopes alone. For example, consider a one-dimensional scattering
situation, where §(x)is the height profile and {, (x) the stope, 1 §(x) is a stationary Gaussian process,

then the joint pdt has a Grst-onder singularity at the origin, i.¢., as w—=0 the joint pdf,

Ped gt s siw) ~ 2N py G6) - @iwhy! (25

Qo v Sy @eeriosen =8 oo -
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L where g = (¢3.) is the rms curvature. Thus for Gaussian surfaces, the moment M, diverges logarith-
- mically at the origin and consequently the variance of scattered power is infinite.

This singular behavior of the solution is a consequence of the point source approximation that
is implicit in the PO integral formulation (4). The failure of the point source approximation can be
understood in terms of the statistics of surface curvature. In the point source approximation (ry =),
the power backscattered at a specular point is directly proportional to the product of the principal
radii of curvature, or the same, the reciprocal of Gaussian curvature. Longuet-Higgins (1956) has
derived the pdf of reciprocal Gaussian curvature g“' for normally distributed surfaces and shown
that the second moment of the distribution is infinite. We surmise that the unboundedness of the
second moment of g“ is not a property peculiar to Gaussian surfaces. Rather, we suppose that the
variance of g~! will be infinite for a large class of random surfaces. It can be shown that the singu-
larity can be removed by including the finite dimensions of the source. When the finite size of the
source is accounted for, the “singularity™ at the origin is so reduced that its contribution to M, (Q)
actually becomes quite small.

For reference, before concluding here, we write down the result for the second moment
S(kN2). From (4), using the same method we have used for the fourth-moment, we have for the

second-moment in the high-frequency limit

. ( sec‘O)
lim S(k)i=)={ —————]p..(s) (26)
K=o a2 |7

where the illuminated area A, = fG2dx. In terms of the conventional backscatter crosssection,
of 920 (4nrd/A ) SN (27

we have

0% = wsec* 0 py; () (28)

In practice, it is found that the GO limiting form (28) provides a good fit to near-vertical microwave

backscatter ohservations provided that some account is taken of the effects of diffraction for finite
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k (Wentz, 1979). Diffraction can be accounted for by treating Py, 8 though it were the pdf of
slopes in a smoothed sea surface, in which waves smaller than the diffraction limit (e.g., capillary
waves) have been removed by a spatial filter (cf. Brown, 1978). Thus, in (28), it is just as well to
keep the finite frequency tag on ¢°, as in practice, a k-dependent pdf is involved.

Following we will perform some calculations in which we assume a Gaussian pdf of orthogonal
slopes,

Py (® = (217! (detm)™* exp (— —;— m;ls, sa) 29)

where mis the covariance matrix of orthogonal slope components,

at 9
m=(m_ )= —‘.-—E- y a=1.2
= ab ax, 3x,

and m;}, are the elements of the inverse matrix. In (29) the Einstein summation convention is em-
ployed. A crude fitting of (28) with the Gaussian pdf to the 2.15 cm backscatter data of Jones et al.

(1977) gives a 2.15 cm radar-effective total mean-square surface slope mg that is approximately a

linear function of surface wind speed U,

m =~ 0.0025 U (ms~!] +0.01 G0
(Ku-band)

where the slope variance mg =m_,. The eyeball-fitted result (30) is essentially the same as Wentz's
(1979) more thorough analysis of the Jones et al. data. Eq. (30) gives radar-effective slope variances
in the wind speed range 10 to 25 ms™! that are approximately 60 percent of the optical values re-
ported by Cox and Munk (1954). The Ku-band radar-effective slope-variance thus lies between the
“clean™ and *slick” surface observatioasof Cox and Munk (1954). Noteworthy is the agreement of
the 60 pereent figure, here derived from active radar cross-section data, with the percentage slope
variance inferred from passive radiometric measurements using a GO model of emissivity (Wilheit,

1979).
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4. Asymptctic Evaluation of M, K)

We are considering wind-driven seas in which there is a continuous spectrum of roughness (i.e.
wave height) from the scale of the dominant wave (~ 100 m) down to the scale of the diffraction
limit (~0.1 m). If the incidence angle is not too large, there will always be a large population of
scatterers (i.c. specularly reflecting wave facets) existing on scales smaller than the dominant ocean
wavelength. The modulation of the backscatter by the large ocean wave (or spectral ensemble of
large waves) can then be considered to be in the form of a small perturbation, and an asymptotic
expansion of E(K; w) about w = w is appropriate. Let the large-wave steepness, or significant wave
slope, be defined by 8, = K 0 where K is thec wave number of the dominant wave and ¢ is the rms
wave height. Then the expansion should be accurate if §, is small compared to the total rms slope,
m,. This will usually be the case. Thusif 6, = 0.05 (a value characteristic of fully developed seas)
and m,, = 0.19 (wind speed of 10 ms~! by (30)), then §,/m, = 0.26.

M, (K) (2q. 20) is expanded by first expanding Z(K; w) (as given by eq. 21) and then term-by-
term Fourier transforming with respect to w. E is expanded according to Longuet-Higgins® (1963)
method for generating the non-Gaussian pdf’s of variables in a nonlinear Stokesian sea. Indeed, we
have chosen the form (21) for E in order that we could parallel Longuet-Higgins’ ( 1963) development
dnd so lay the foundation for a theoretical model of M, (K) capable of entertaining non-Gaussian
wave statistics in a rational manner.

As can be seen from (13) the coefficients in a Taylor series expansion of the characteristic func-

tion correspond to the moments of the distribution, i.e., if
rmte Lo s B, 3
then the u coefficient of order n is the n-th order moment,

W f & &) P& w & 32

Saraiss ) ot A
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The cumulants of the distribution, by definition, correspond to the c coefficients in the expansion of
C,(tiw) =ty (L W)

i it

2 — ofl —
T Dy + 2 gﬁ‘)t‘tj-r... (33)

Longuet-Higgins (1963) shows how, in general, it is casier to calculate the cumulants (as opposed to
the moments) from the non-linear, Eulerian water wave equations. Further, an advantage in working
with the cumulants is that if § is nearly aormally distributed, then the third and higher-order tesms
in the C series will be small. (This is so since for § exactly normal, C is given exactly by the first two

terms of the expansion (33).) Considerable simplification of the problem is passible if we restrict our

attention to statistics of the third-order or less. Thus, since ¢ (cf. ¢q. 12a) has zero mean, ¢ =y =0,

it follows that the sccond and third order moments and cumulants are identical, as can be varified by
a term-by-term comparison of (31) and the expansion of u’t = exp(Ct ). Thus, if we restrict ourselves

to third-order statistics, ¥ g can be approximated by
1 1
W( = exp((“) ~ exp [— 3 Mg)(\_!)titw .

(34)

i3
— (3
X ll + 57 Hienyey,
All elements of the covariance matrix u{f’i (&, can be expressed in terms of the wave height co-
variance function R(w),
R 2" (210 = Gix + Wit ) 3%

or various derivatives thereof, as can be verified, for example, using methods outlined in Papoulis

(1965, p 314 f1):
mg,, | -R,, | 0 | -R,
S T Lo
o-L - Ir_
: mu : R.ﬂ : 0
) |
g("' s ".L““"““‘.“““:“ - (36)
Ym \ e R
}
c' :,._--IN__,,.“
U .
L ‘ < i [} -
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where we have defined a2 = R(0), R , = 9 R(w)/dw, etc. and m_, =R ,,(Q), and where a and §
range from 1 to 2.

Let ,:(2) = dgﬂ) + °§m where d and o denote the diagonal and off-diagonal blocks of e‘”. Since
"gm = 0(m32) and °gm = 0(52) for w removed from the origin, i.c. on the order of wavelength, we

can then expand (34) for small °£m.

¥y~ exp (- % duﬁ)t‘tj) X [l - % *u® ty,

i 1

where °4(?) and e(” are functions of w, but "E(” is not. Similarly to (36) we expect that the ele-
ments of 4 are all derivable from a knowledge of the third-order mean lagged products of surface
height Q(r,8) = (§(x + 8 (x +9)5(x)). Thus, the FT of u3}(w) should be expressible as various
operations on the bispectrum, the FT of Q(r, s) (Hasselmann etz al, (1963). In principle, the bi-

spectrum (and hence the elements of 4 and the FT of 1) can be derived from the height of

- spectrum F(K) = FT{R(w)) using a second-order Stokes type expansion of the nonlinear equations

for free gravity waves according to the theories of Hasselmann efal (1963) and Longuet-Higgins
(1963).

We are thus proposing here that the appropriate model for the near-vertical wave-spectrum
measurement problem is one that (a) models scattering according to GO and (b) models the sea-
surface accordi.ig to the Longuet-Higgins (1963) and Hasselmann et al. (1963) theories. That this is
a realistic model for near vertical backscatter is indicated, for one, by the success of such a model in
predicting the average impulse response of the sea surface to 3 cm radiation at vertical incidence
(Jackson, 1979). Moreover, regarding the appropriateness of the GO approximation: if there is
reason to suppose that GO is a good approximation in the average impulse response problem, then
there is even more reason to suppose that GO is a good approximation in the present problem, i.e.
that of modelling the spectrum of the impulse response. This is because in the present problem we

are only interested in the variation of the backscatter over the large wave profile, and not in the
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absolute power level. Thus, while the diffraction component may be small compared to the GO com-
ponent (cf. Brown, 1978), the variation of the diffraction component will be smaller still compared
to the GO component. This is because the diffracted fields are very diffuse, and can therefore con-
tribute only negligibly to the modulation via the geometrical tilting mechanism.
We shall be neglecting the non-Gaussian terms in e(”, although there is no reason to suppose
a priori that the u®) terms are negligible compared to the second-order terms in °u?. Thus, for
example, consider small values of tanf/m,. Then the *u(® terms such as R(w)K2cot20 predominate.
Thus the linear term is 0(K202cot26) = 0(52cot36) and the second order °u(? term is 0(54cot?9).
The corresponding e(:” term will be 0(Ao3K3cot8) = 0(A53cot36) where A = (23)/03 is the height
skewness coefficient. In general, A and §, are proportional to each other (Huang, 1980; Jackson,
1979). From Longuet-Higgins' (1963) theory, if one assumes a Phillips spectral form, one gets
A=44,. This relationship follows from Jackson (1979) if an apparent error of a factor of two in
the second-order height profile {, is corrected for; i.c. if §y « {5 + 2(D. E. Barrick, personal com-
munication, 1980). The ratio of #(3) terms to second-order °e ) terms is then of the order of
A/b,cotd = 4tand = 0.71 for 6 = 10°. Hence, a priori, the neglect of the e(” terms is not justified.
Proceeding nevertheless with a Gaussian surface model, using (36) and (19) (for the definition
of t), we have

Ve~ Vop @) Vo (=¥) expl-(Kocot6)?)
X {l +(Kcot8)?R + l(c:owR.“(u‘l -v,)

aglaVs + sccond-order terms in °ym} (38)

~-R
where \b"( u) = exp(-tam g u, ug ). The.second-order terms are carried in Appendix C. Now making
use of the identitics,

Pe;®)= _L- j‘wv:(‘.')‘-i!'! du

Q2n)*

ap ] " ~is.
.a.-.".’- -l J u ¥y e ¥ g (39)
Sa :‘lln)‘
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and so forth, we have for  (eq. 21)

Z ~ p2,(8) exp[-(Kocotd)?] - |1 +
Pa
+(Kcotf)? R + 2iKcotd —~ R ,

p,p
a4 R ,, + second-order terms in °em I (40)
pz '

where for short in the series part of (40) we haveletp=p,, ,(g) and P, = ap/ds,, etc. The second-
order terms are carried in Appendix C. i 1
The moment M, (K) as given by (20) is the FT of E as seen through the lag window A(w). If
A(w) is broad compared to the correlation scale of the waves (as will always be the case in satellite
measurements), then the effect of the finite window on the modulation spectrum can be igonred and

we can write MI as

M, (K)= (17121‘300840)2 p% ‘,(g)exp [-(Kocotd)?]

x [FT{A(w)} + A(0)- FT {linear + higher-order terms in (40)}] 1)

where the two-dimensional Fourier transform, {
def. _1 .

FT{...}" = == |{...) eE24 |

fo (2”)2_[‘ ) o2 dw (42) ‘

Let the reference axes x; and x, be fixed in the antenna beam; that is let x; be the surface range |
coordinate, parallel to é and K, and let x, be the orthogonal azimuthal coordinate. Assume a Gaus- \,

sian gain pattern,
! 2.1 L,)? 43
G(E)'CXP ["5("|/Lp) "'2'("2/ 0) 43)
then (using (11) for A(w)), R
FT {A(w)} = (2m)2 J’j' A(wy,w,)exp(-iKw, )dw, dw,

1

2
- &L, 7] (44)

= (A°/2)cxp[-




2t

Then, making usc of the second-moment result (25), noting that A(Q) = Ay/2 = #L L, /2, we write
(41) in the farm

vir a2 | e -%(KL,)?
M, (K) L 1Sk 1*) 75t o) + P, .4 (K) (45)

where the modulation spectrum, or spectrum of the impulse response, is
Proa(K) = (VIR/L, dexp(~(Kocot)?] « FT|linear + higher-order terms in (40)}  (46)

The directional height spectrum is defined by

FK) *" FT {R(w)) )

Then, since FT {R;n} = iK,F(K)and FT{R.a ‘}-—Ka K, F(K), the expansion for P, , becomes

/3% p. K
Ppnoa(K) = T eKoooto)? . Hooe29 - 2c0t9 20—
L, rp K
PP, K.K,]
PR K2F(|_<)+...‘ 48)
p? K2 |
or
V3 atnp\*
Paog®)= ¥ ¢~(Kocote)? (coto- —5';3) K2F(K) +. . l 49)
(]

where 38np/as = (K / K)-(p.‘l /p) = é * V,p. The second-order term in the expansion of P , is
given in Appendix C.

Some features of the solution are noted. If the exponential factor (the square of W, )is
neglected (which neglect is consistent with the neglect of the second-order terms) then the linear
ized solution (49) yields the same result as the simple tilting model (Fig. 2). The dimensional pro-
portionality factor L} relating P 4(K) 3 m to K2F(K) & m? is the reciprocal of the azimuthal
beam spot dimension. An L;‘ dependence will exist whenever L, exceeds the lateral correlation
length scale (e.g. crest length) of the surface waves. Large L, means small signal. This loss of modu-
lation signal power with increasing L, can be thought of as the price paid :or high directional reso-

lution: of the ensemble of Fouricr conipenent surface waves contributing to a total modulation

R T T o T T R T ARy .
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power, the radar is isolating only a small subset that are travellihg in a small direction band. The L;'
dependence can also be interpreted as follows: in a real short-crested sea, the waves are running out-
ofstep. Hence, modulation signal power adds roncoherently across the beamwidth resulting in an
LY dependence. The total signal power on the other hand adds directly as L,. Hence the relative
modulation power goes as L3, and the spectrum of power as Ll '
To gain some feel for the effect of the second-order terms, sample calculations are carried out

for a simplified two-dimensional scattering situation using eqs. 49 and CS of Appendix C. The results
shown in Fig. § indicate that there is a fairly good measurement fidelity to the wave slope spectrum

in the incidence angle range 8° to 15° for wind speeds > 5 ms™! and significant wave slopes §, < 0.1.

S. SNR Analysis: The Modulation Noncoherent Case

Narrowband Dual-Frequency (DF) Technique
The appropriate signal-to-noise ratio (SNR) in the narrowband DF technique is the DF correla-

tion coefficient (cf. Barrick, 1972; Plant, 1977). Thus, from (3), (15), and (45), we have

SNR def. M(k,x,0) 1

(HOE
=(VZ#/L,) Py oy (K) (“u;
In (50), note that P, , is the onc-sided spectrum, i.e., we have let P, ., « 2P .. Here, and in the
SNR calculations that follow, we use only the linear part of P, 4 with the exponential set equal to
unity. (This assumes that §,cotd << 1, and is consistent with the neglect of the second-order terms.)
Let the one-sided spectrum F(K) be given by the Phillips spectral form with a cos* ® spreading
factor,
K> K, ~g/U?
F(K) = (0.005) (8/3m)cos* @K, { 1®1< %2 snH

0 otherwise

This spectrum defines a sea with : steepness 5, = K0 = K, [fF(K)dK]* = 0.05. For upwind (up-
wave) looks @ = 0, and F(K) = 1,0042K™4. From (28) with s = tan0(1,0), we have 3%np/ds =
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-tanf/m, ; hence,

Proa (K! = (VZ7/L,) (cotd + tanf/m,g)? (0.0042)K"2 (52)

Let K = K, = 2#/200 m, and corresponding to which, U = +/g/K_ = 18 ms~!. If we use the Cox and
Munk (1955) upwind/crosswind slope variance ratio mg; = .66 m,,, thenm,q o m?,/l.66. From
(30), we have m3 & 0.055 and so m,q = 0.033. Let 6 = 12.5° and L, = 2.5 km; then

Prog = (102 m™1) (4.5 +6.72 43 m?)=0.54 m (53)

If L, =5 km, then from (50), the SNR = =36 dB. In addition to the SNR, defined here as the ratio
of the modulation signa’ spectrum to the square of the avcrage power (equals the self-clutter, or ran-
dom power fluctuation '-ariance), we need a figure to express the signal strength relative to the aver-

age backscattered power. Call this figure the contrast ratio,

cr ¢ [Py 04 (K} AK]% = (SNR)# = 1.6% — (54)

where the last follows since AK =/Zx/L .

Short Pulse (SP) Technique

The frequency-domain analysis of the SP system of Fig. 3a is carried out in Appendix A. In the
transformation between frequency and wave number domains, we have the identities ¥ = ke, w = ¢,
and Av = Akc. Since K = 2xsind, etc., the moment result, eqs. (15) a::d (45) becomes in the fro-

quency domain

M@, 4r,w) = M, (v,w) + M, (»,4v) (55)
where
M, = W/ZR/THASENID1 2 {5(w) + P y(w, &)} (56)

and where T, = (ZL’ /c)sin@ and where for large T, we have let

|
5(w) ~ (T,\/21) exp [— = (wT,)z]

where 8(w) is the Dirac delta function.
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The backscatter of a short pulse (i.c. “‘short” compared to the ocean wavelength) consists of a
weak modulation m(r) riding in a broadband, exponential “‘self-clutter™ process w(r) of bandwidth
equal to the puise bandwidth ;. (The exponential statistics of w(r) follow from an assumption of
normal statistics for the unmodulated complex field.) Thus, the backscatter power is of the form
p(r)=pll + m(7)) w(r). Using either this simple time-domain model, or using the moment analysis
results of Appendix A, one finds that the spectrum of p(r) has the form (e,¢., assuming a Gaussian-
shaped pulse):

m(qsmu?n? ehlwiog)? L)+ 75 +P, 4(:,®) (57
P

Aw) = T

4

where the approximation is valid for small modulation, i.e. for [ Prod(89)Ar << 1. Eq.(57)is
sketched in Figure 6. |

Note that, if we let ﬂp = o, then the transmitted pulse becomes an impulse. Thus Py, ., is juat
the normalized spectrum of the surface impulse response. The SNR appropriate to the SP technique
is the ratio of the signal spectrum to the self-clutter noise spectrum, i.e. the SNR = /2¢ ﬁpl’m“.
Now, some or all of §,, may be used for range resolution. A minimum pulse bandwidth is required
to achieve a desired range resolution (e.g. 25 m on the surface). Bandwidth in excess of this mini-
mum serves 10 reduce the level of the self-clutter spectrum. If we define an equivalent range resolu-
tion cell &, such that if all the bandwidth were utilized for range resolution, i.c. 4, = clzﬂpsino. then
we can express the SNR in a form similar to (50). If we take as ar: example Ap = S m, then (again
using (53) for the estimate o ¥ 4)

SNR = (v Z#/8p) P, o4(X) = -6 dB (58)

which is 30 dB above the narrowband DF SNR, i.e. grater by the factor L, /Ap. The contrast ratio
is defined as the ratio of the rms signal level to the dc level; from (52) we have

b %
CR= U rm(s)dl(] =13% (59)
Ko
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As the SNR can always be impro~. by pulse integration (as we shall shortly show), the CR could
turn out to be the more important figure in design considerations. The 13 percent figure is quite
good; what is more, the CR will still be quite good for shorter waves since CR « K3¥%. Thus, e.g.,

k for a fully developed (5, = 0.05) sea wave of S0 m in length, the CR is reduced by only a factor of

, two from the 13 percent CR of the 200 m water wave we have used &s an example.

Widebar:d DF Technigue

The wideband DF technique can emplcy a variety of waveforms including SP waveforms.
(Thus, if we transmit pulses shorter than the doininant waves then, necessarily, all the requured dif-
ference frequencies are carried by the pulse.) If the transmitted waveform FT is, for example, assumced
to be constant over the bandpasses of the filters H; and H; of Figure 3b then, as shown in Appendix A,
the streagth ot the DF signa! at the output of the correlator will be governed by the combined band-
width g, i of the H, and H) analyzing filters in each channel (cf. Figure 3b). Owing to the action of
the dv blocking filters and the fact that the self<clutter fluctuation power is uncorrelated between
frequency bands Av 2 27/T,, the expected value of the cutput of this DF system will contain ncither

dc¢ nor self-clutter components.

So, what is the appropriatc SNR for this system? And how should this system’s performance

¥

be compared to the SP system? Clearly, we have to look at the detection problem more carefully.

Parzen and Shiren (1956) went some distance toward this by establishing a detection criterion for

R R

the SPsystem. Unfortunately, they stopped short of a like analysis of ihe DF system. Lacking a

rigorous analysis by Parzen and Shiren, we will do with some back-of-the-envelope calculations.

- . o — A —————— o -+

Assume that the signal levels are within the dynamic range and resolution capabilities of the instru-
ments. Assume further that we can ignore the sampling variability in the estimate of P, , compared
to the vanability in the self-clutter spectrum. Then, successful measurement depends only on the :
strength of the signal relative to tac self<clutter fluctuation levels about their expected values. Con-

sider the SP system. The signal at a frequency w; appearing through a finite analysis window of

bandwidth g, is ﬂ“l‘mw(w,), The mean noise level is 5‘.-/\/‘3759. The noise standard deviation in
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a measurement of total time-bandwidth product TBP = NPT,ﬂ“/h where Np is the total number of
independent pulses, is (\/T;ﬂp)-l (TBP)™%. Hence, if we define the detectability D* as the ratio of
the signal to the noise standard deviation, then

DSp = (N, 8,,Tp)% B, Pryog(w;®) (60)
In the DF system, the signal out is proportional to ﬂumod(Av“). Assume that the mean square
fluctuation of cross-correlated power as a percentage of the product of mean channel powers is simply
TBP™* where TBP = N, T,/2%. If this assumption is correct then the D* for the DF system is

Dy = (N, TR B3(? Py oq (B9, &) 1
If the DF analysis bandwidth Baﬁ is opened wide (i.e., made comparable to the Avﬁ), then D:)l-‘ is
comparable to the Dgl,. Any further analysis of SP and DF techniques must consider thermal noise,
antenna gain and other tradeoffs. This is beyond the scope of the present work and ic, after all,

academic, considering that the SNR can be improved immediately by making the detection coherent

with respect to the modulation signal.

6. A-H Filtering: The Modulation Coherent Case

Alpers and Hasselmann (1978) showed how by filtering the complex DF signal
D(k,t) = S(k,t)S*(k - «. t) 62)

at the appropriate Doppler frequency §2 =K'V, a dramatic increase in the narrowband DF SNR
could be had. We show how, if the same type of processing is applied to an SP system, the same
dramatic increase in SNR results. As the narrowband DF results follow immediately from the more
general moment results in the analysis of the wideband systems, we proceed directly with the wide-
band analysis problem.

Consider the SP system of Figure 4. The output of the square-law detector is p(7,t) = Ie‘(f,t)lz.

The FT of p with respect to fast time is denoted P(cw,t),

Pw,t) = f i E,(v,)E; (v - w,t)dv (63)
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where by (2) E,(v,1) = S(,)E,(»). The pulse spectrum s defined as P(w) = {IP(w,t){2). The simple
filter in Figure 4 functions to integrate pulse returns in surface-fixed range bins. The output of the

filter after an integration time T, is

~ T .
p(n= -—.I.l j m p(r+rt,t)dt (64)
int Jo

where 7 = 2¢ [c. The spectrum of the filtered pulse return is F(w) = (l?‘(w.t) 12) where T’(w)is the

FT off)'(r). The spectrum of the filtered pulse return can be expressed as

. (-]
P(w)= f W(R-K: V) P(w,R)dQ2 (65) .
-0
where the filter window W(£2)
‘w o sin(QT,,,/2) |2 )
@@/
and P(w, £2) is the post-detection pulse-Doppler spectrum defined by
P(w,Q)= L J P(w,t) P*(w,t +At))eiB At dAL 67)
2% J oo .

- The Dopplvr frequency Q=K+ V = —wt. If ¢ =0 coincides with the velocity vector as in Figure 1,

then
N=KV=KVcos® 68)
If the generalized moment is defined as

M@, v\ w; At) = (S(», 1) S* (¥ = w, ) S* (', t + At) S(V' - w,t + At)) 69)

and the FT of M with respect to At,

NV w;, Q)= -2!1; f My, w: At) ¢4t dat - (70)
-00
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then
P(w,)= Ij N(,v',w; Q) E, () Eg (v~ w) Eg () Ey(v' = w)dv d' m)

Now let us again equate the fast frequencies v, »', and « with the wavenumbers k, k', and «, (by

» = ke, etc.), 50 that in terms of wavenumber M = M(k, k', x) ® M(k, 4k, k). We calculate M with
S(k.t) given by PO integral solution (4) in the Fresnel approximation to the phase (5), where we
neglect the term in height, k{2 [to. Proceeding exactly as we did before in the farzone approxi-
mation, we form the moment as the four-fold integral over the dummy space variables &' ven ;‘ and
interchange expectation and integration operations. Again we recognize that for large k, significant
contributions to the moment are made only in the vicinity of the “stationary” points defined by (8).
The moment M is thus decomposable as M = M, + M; where M, and M, represent the contributions
from S, and §,. Again, we consider the integration over the volume surrounding the §, points.

Transforming to the lag variables u, v, and w as per {(9), and taking the limit, we get for the contribu-

- tion from Sl

kli-t.n“ M, = M, (K: At) = (2rqcos?9)™4 I I G(x +w)G(x -~V aAY

< E(K: w) exp[~iK *(w + VAD) exp]i(x/ry)

+ [eos20(x; + w))2 = (x; =V, A0 +(x, + w,)?

- (x4 =V340°% ]} dx dw 2

where we have taken the coordinates x, and x, of x to be radar-fixed coordinates (x, in the plane of

incidence). Let G be the separable Gaussian pattern given by (43). The integrating over x we get

M, (K: At) = (2r,c0s20)™4 f B(K:w+VAD

* Z(K: W) expl-iK+(w + VAD)] dw (73)

B(K:w)=(A,/2) exp (— 7!,- b3 w3) (74)

AL
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and (. _
b} & b2 = L>2 + (KL, /2r,sin0)3cos*0 |
b3 wb2 w152 + (hiy /20,8000 - ——
- AguwL L,[2 - (149

and w.ere again the swmmation convention is applied to repeated indicés.

Since M= M, +M,, then N as given by (70) is <imilarly composed, i.e., N= N' + Nz where N‘

“and N, are the respective FT of M, and M,. From (70) we have

T

N, (K: ) = (2roc0s20)™ f dw E(K; w) exp(-il_(- w)

X '(z:)-l IdAt B(K: w + VA exp[i(Q - K+ V)At] )

Let W= (b, w), byw,). ¥V = (b, V), b,Vy)and Q =R~ K+ V. Then fntegrating over At we gét

(A, /2)
N (K: Q)= ——
(25,c08 29y

fdw J(K:w)exp(-iK-w)

1
exp [- 3;;/ V)z] exp [_ .%uﬂsinz('_’- W)]

« expliWcos(V. 1Y Q /N (76)

X

From (70) and the inverse FT relationship., it follows that

M, (K:0) = le(g;ﬂ) a0

= (2rpc0s20)~4 l‘ B(K: W) Z(K: w) e KW gw (77

which is the same as the Fraunhofer solution (20), except that the Fresne! lag window B(K; w) re-
places the Fraunhofer lag window A(w). Since B is not significantly sharper than A and the window

can still be considered to be broad compared to the scale of variation in = (i.c., broad compared to
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the dominant wavelength 2:/!(0), then M, (K; 0) can be regarded as idontical to the Fraunhofer
moment M, (K). (Note that B(0; w) = A(w) and B(K; Q)= A(Q) = A,/2.) If the detailed vbehavior
of N, (K; ) near the origin K= 0 is ig;aored, then it is apparent from (76) and (77) that N, is well
: | spproximated by | | | o

oxp [- 2 (@, ]
v,

N(K; @) = M, () *

- where M, is given by (46) e seq., and

B &7 1712 0, V)% = (52 cos@ + b2sin20yh v G

where @ is the radar azimuth relative to the velocity vector V. In A-H, only the line-broadening due
to wave-front curvature was considered; i.c., it was assumed that f,,, = xLV/r,. However, to be ac-

| curate, the broadening due to the finite footprint must be accounted for also. Thus, compare V/L
and xLV/r,, for typical aircraft and satellite geometries and ocean wavelengths: both terms are
comparable.

The moment M(k, Ak, x; At) is not symmetric with respect to a x and Ak interchange, and so
the M, component (dcriving from the S, stationary points) cannot si:ﬁply be equated to M, , as was
possible in the time-independent case. Rather than labor through a solution for M, in these pages,
we merely outline the key steps in the solution and indicate the appropriate assumptions and approx-
imations: lag variables appropriate to the S, integration are defined, and the k—+ limit is taken in
the formation of X on account of the moderate bandwidth assumption (3"), the Fresnel phase terms
in x and Ak are neglected; assuming a large footprint area, we neglact the variation of X near the ori-
gin and let (0, w) = E(0,») = p% ,(§) in the integration over w. Then, on taking the FT of Mz, we
get

N, = [(S(K)i2) 2 exp [— % (qAKL,,)z] :

exp [——;— (ﬂ,/ﬂd)z]

755, + explieR, /) (80)
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where :
q = |sin®!- [(L,/L,)%cos?® +sin2®) ¥ | | i
B = (2KkV/ry)* [L2cos*0cos® + L2sin? ] %
€ = (2kV/r,) AKL2cos20cos® (81) - 2
and where AK = 2Aksind = 2(Av/c)sind, and where again @, = 2 -K+V. As a check on (80) we 3
have ;

o0 .

22 ! 2
NpdQ = (1SG12 2 exp |- — (AKL) 82)
00

which is M, (AK) with the weak modulation contribution neglected.

7. Results: Narrowband DF Technique

The spectrum of the narrowband DF signal, eq. (62), is simply N with AK set equal to zeroin
N,. If a signal of finite record length T, is passed to a spectrum analyzer or, equivalently, if a
Bartlett lag wind.ow is applied to a measured covariance function ﬁ in a Tukey analysis (Blackmann
and Tukey, 1958), then the measured spectrum will be (on the average)

PK)= fwm - K+ V)N(k, K, 0;2)dQ 83)
where the spectral window is given by (66). If T, is chosen such that T, , << 2=, then from
(78), (45), and (80) we have approximately

B(K) =P +P,=W(0) f N, dS2 + N, (0) f wdQ
ot () (7 @

(]

:(l).

For exainple, let us set T; , = B;é. Then the measurement signal-to-noise ratio is

Vvan
L

P

SNR =B, /B, = (2m)32 ({3-) Proa(K) (85)
fes

where we have let P become the one-sided spectrum;i.e., we have let P, . « 2P .. With the

mod

same parameter values used previously in the modulation noncoherent analysis, i.e., 8 = 12.5°,
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L, =5.0km, L, = 2.5 km, KI = 25/200 m, U= 18 ms™!, we have as before (V2#/L )Py, 4(K) =
=36 dB. Now, if k = 2#/2 cm, r, = 700 km and V = 7 kms~!, then e.g. for broadside looks, ®=190°,
we have

= [(V/L,)? + (KL, V/21,5in0)2] %

Bres

= [7.84572 +3.295"2]% = 3.34 5!
By =KL, V/rg =1.57x 104s (86)
The filtering gain is (2#)"3/2(8, /8,,,) = 25 dB. Hence, the final measurement SNR is
SNRpp =-36dB+25dB=-11 dB 87"

Of course, this SNR figure can be improved upon by designing a spectral analysis having a better
“match” to the resonance peak (e.g., by using a matched filter). However, it is apparent that, at

best, given reasonable parameter values, the SNR will not much exceed 0 dB.

8. Results: SP Technique

Making use of the transformations (55) et seq., we cxpress our results (78) and (80) in terms of

frequency. For lw|> 0 (i.c.. 1gnoring the dc), we have N(», 4v, w; )= N, +N,,

i Q \?
N, = [(ASG)R) 2 exp '%(F:) ] : -——"T2" P og(w.®) (88a)
| res r

Q 2
1 1
N, = [AS@) 1212 exp L -;(ﬁ_t) ] exp [- 0 (quT,)zl exp(ieS2, /B4) (88b)
| “\Md
If the pulse bandwidth is large compared to (q’l})" » then N, behaves as a delta function in Av= v-v',
Hence, since (|S(¥)1*) is practically a constant over the 5ulse bandwidth, eq. (71) becomes
P(w, Q)= P, +P,
=N;" IS Eo(v)E;(v- w) dir

HTE2WE - w) vl Ny Ay (89)
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Making use of the definitions (81) and the identity AKL, 8 AvT, we have for the N, integration,
exe [~ @, 1087]
f N,dA» = (VZ7/T) 1SN 2 - N (90)
where (from 81),
aBy = (2kV/rp) L, Isin®| 91)
which is the Doppler spread due to azimuthal aspect variation alone.
Pulse waveforms are often Gaussian in shape: let E,(») at baseband be given by
exp - w7
E,(v) = VI8, ®2)
Then, computing the integrals in (87), we have
— exp [— 1 (w/B )2]
P(w,Q)=P, +P, = \/Th sy in? - 2=,
T 4n ﬁg
1 2 1 2
exp [— 3 (82, /Bres) ] exp [- 0 (R,/984) ]
X v *Proa(@ ®) + Saih, 93)
The post-detection “‘pulse-Doppler” spectrum P(w. §2) is sketched in Figure 7.

Except for looks directly forward (¢ = 0°) or aft (® = 180°), qf; >> 8, Hence, in the
vicinity of the resonance peak at @ =K+ V we canset Q_ = 0in P,. Again, if we assume short in-
tegration times, T, ,, such that the resonance peak is entirely covered by the spectral window W,

L0 i Brag Ting << 2, the filtered pulse gpectrum becomes (Cf. 65),
P(w) =P, +F, = W(0) J P,dS +P, J wdQ (94)

Again, assuming T, . = B‘m',‘ from (93) we have

L~ abyy
SNRSP = Pl I’P2 '(2")_3/2 (r) ' 2"69 Pmod(w‘ ‘p) (95’
fes




oA TR S e e s R anhi- kol S 4 aiaiiniis Aastalbid Shalbindrck b oot dall-sh- Sl st £ Oatiihy i e Mt Y e R S okt il SSeEhant it et ois 2

34

Again, we assume the same familiar parameter values (cf. Table I). Then, as before, we have

VIHB,Ppog(w, ®) B V2r/A,) Py y(K) = -6 dB (96)

Cn "

For broadside looks (® = + 90°), we have Breg = 3.34 s~! (from 86a) and qBy = 1.57 X 10* s~! (from
86 and 91). Hence,

SNRSP =25dB-6dB=+19 dB (97a)
(broadside)

For looks £1° of forward or aft, g, = 2.23 s™! and qf; = 2.74 X 102 571 in this case,

SNRSP =9dB-6dB=+3dB (97b)
(fore/aft)

9. Discussion
| In the foregoing analysis, the backscattered signals were assumed to be continuous functions of
: slow time t. Such an assumption will be valid only if the pulse repetition frequency (PRF) is greater
than or equal to the rate of the fastest signal fluctuation determined by the Doppler spread (i.e., de-
termined by 8, in the narrowband DF measurement (beam-limited illumination), or determined by
QB4 in the SP measurement (pulse-limited illumination)). If the PRF is lower than the Doppler fad-
ing rate, then signal fluctuation power at frequencies greater than one-half the PRF (the Nyquist fre-
quency) must appear in the frequency band 0 - %2 PRF. The pulse Doppler spectrum P(w, £2) at
| multiples of the Nyquist frequency, will be folded over onto the interval 0 - % PRI (Blackman and
Tukey, 1958). This folding over will result in an increased measured signal fading spectrum, the in-
crease being roughly in proportion to the ratio of the Doppler spread to the PRF. Clearly, in the
case of the narrowband DF measurement, where the SNR is already poor in the continuously
sampled case, one cannot very well afford to undersample. In the SP measurement, on the other
hand, one starts with a generous SNR in the continuously sampled case, and one can easily afford to
lower the PRF. Clearly, the designer of an SP instrument will be able to select and trade off pulse
bandwidth, integration time, and PRF parameters with a fair degree of freedom.; he will also have

some flexibility in terms of antenna gain and azimuth scan rate parametcrs.
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We have not undertaken to describe or analyze a possible modulation coherent wide® and DF
system. Our experience with the modulation noncoherent wideband DF system, however, would
indicate that such a system would perform comparably to an SP system.

We have not considered thermal noise in our analysis, mainly for the reason that thermal noise
will not be a limiting factor unless it equals or exceeds the average backscattered power level. Avail-
able transmitters (¢.g., the one in the Seasat-1 altimeter (Townsend, 1980)) have enough power to
deliver a unity-or-better signal-to-thermal noise ratio when modest gain antennas are used and the
nadir angle is about 10°,

We have not given any figures for directional resolution; some actual numbets may be enfight-
ening. These numbers can be derived from the Fresnel lag window B(K; w), eq. (74). If we consider
only the linear term in =2(K; w) (in which the exponential factor is neglected), and if we assume
K>>b_,a=1,2, then it is apparent that the spectral window through which the slope spectrum
KzF(ls) is seen is given approximately by the FT of B(K: w) with respect to w. The one-sigma val-
ues of the Gaussian-shaped window in range (a = 1) and azimuth (a = 2) are respectively given by b_.
Using the familiar parameter values of Table 1, and defining directional resolution as the half-power

window width in azimuth, we have
Ad=2/202b /K
= 2202 [(KL,)"2 + (L, /2r,sin0)2} ¥
=(236) - (16X 10 +1.3x 10-51%
=0.031 rad = 1.8 deg. (98)

For the main reason that the diffraction fields in near-vertical backscatter are both small and
diffuse compared to the GO (geometrical optics) fields, | believe that the GO solution for the modu-
lation spectrum given here (or the same. the non-dc portion of the spectrum of the impulse response)
is an accurate one, at least for incidence angles less than 15°. The expansion of Z(K: w) to the first
order in non-Gaussian statistics (i.c., third order moments) and to the second order in Gaussian

statistics is, | believe, a reasonable and comsistent approach to take. By expanding Z (asymptotically,
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fof large lags) one has immediately a linear term that is directly proportional to_ the d&ectional wave
slope spectrum, with a proportionality factor that agrees with the simplest tilting model of reflectivity
modulation (cf. Fig. 2). Also, by using an expansion.technique, one has a method, in principle at
least, for solving the inverse problem: the raw observations can be used to give a first estimate of

the true directional height or slope spectrum which, in tum, can be used in a forward prediction of
the higher-order terms. Since those terms are small, one iteration would probably suffice. Still, a
means of handling the non-Gaussian terms in a theoretical sense and in a practical sense (i.c., in terms
of developing a viable algorithm) needs to be invented.

While the expansion of E(K; w) is certainly valid for large lags w, it does not follow that the
expansion of M, (K) is similarly valid, as stated in the abstract of this paper. Since X is not accurately
represented for small lags, then M, (K), as the FT of E with respect to w, will be uncertain in terms
of the absolute degree of whitening caused by the fine structure of néar the origin. Until this
representation problem has been solved, or at least until quantitative error bounds have been estab-

lished, the sample calculations given in Fig. 5 must be regarded as semi-quantitative.

10. Conclusion

We have shown, theorencally. how rather stmple. scanning-beam, microwave radars can be used
to measure directional dcean wave spectra from satclhte platforms. The theaory indicates that:
(1) The short-pulse (SP) approach to the measurement is superior to the narrowband dual-frequency
(DF) approach in terms of measurement signal-to-noise ratio (SNR) and contrast ratio (CR), and in
terms of the added flexibility in overall design that the ﬁreater SNR and CR figures of the SP approach
afford. (2) Conceiv 'bly, wideband DF systems may be designed that perform comparably to wide-
band SP systems. (3) The radar-observed surface spectrum bears rather goed fidelity to the direc-
tional slope spectrum in the incidence angle range 8° < 0 < 15” provided that the wind speed is not
to low (U2 $ ms~!) and provided that the large wave steepness is not too great (5,<0.1). In
principle, based on the theoretical model presented here, algorithms can be written to remove the

small amoum of harmonic distortion inherent in the specular scatter measurement of the sea slope
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spectrum. Such algorithms, it is belicved, will have to take accounf of the effects of non-Gaussian i
water wave statistics, as it appears that the eﬂ‘e;m of non-Gaussian wave statistics are wmpmble to
those existing in the second order of s_cattering from a normally distributed sea. A better understand-
ing of the measurement problem — to thi;' level of detiil = will clearly require muth additional analy-
sis work and expesimentation. |

In a companion paper (Jackson et al., l'980,' in this issue), exberimental aircraft data are pre-
sented that support the basic findings of the present theoretical investigation: ﬁamely, that ‘direc-
tional wave siope spectra can be measured with rather good fidelity from nearvertical measurements ’

of microwave backscatter, remotely, Mg a scanning beam, short-pulse radar system.
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APPENDIX A: Analysis of SP and DF Systems
Consider the SP system of Fig. 3a. If the FT of the backscattered field is given by E,(v) =
S(v) Ey(v), then the FT of the square-law detected signal is

Aw)= f S()S*(v - m)Eo(v)E; v-w)dv (Al)

e AR Y e e Vg A 8 e £ oS Y 1 s reateeti e

: The ensemble average output of the spectrum analyzer is the pulse spectrum P(w) = (IP(w)i2) as
scen through the H, bandpass filter; i.e., Py, (w,) = (27)% f |H(w)I2 P(w)dw. If the analysis band-

i width 8,; of the H; filter is small compared to the variation in P(w), then Py, (w;) = 8,,P(wy). From
’ (Al) we have

P(w) = f f M@V, W E;(MES(v - w) E3 (") E (v' - w)duds' (A2)
where
M= (S()S* (v - W)S* (VS (V' - w)) (Ad)
The moment M is given by (55) and (56)

M= (VZ/T,) [ASE)I2N2 + {8(w) +8(AV) + Py q(w) + Py 4 (A0)} (A9) !

where Av= v - ', For weak modulation, SPaoa(AV)dAr << 1, and we can neglect the contribution
of P, ,q(4¥) to P(w); since (IS(¥)12) is practically a constant over the few percent pulse bandwidths 5

we are considering, we then have on substituting (A4) into (A2):

P(w) = (VZH/T,) [1S@)12N 2 {IfE(ES (v - w)dvi? «
i + [8(w) + Py g(w)] + 1 E2)E2(v- w)dv) (AS)
Puise waveforms are often Gaussian in shape; ict the FT of the envelope of the incident waveform

be given by
E = cxp[- -;— (v/8, )‘J //‘)7 By (A6)

b
¥
i

b

o . et stnatie e o o
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Then P(w) has the form
|
2Xp [- 3 (w/ﬁ,)’]
P(w) > (V27/T,) [GS@) 12N 2 - : .
arx Bg
|

. G(W)*m +Poog (w.‘b)l (A7)

Now, consider the DF system diagrammed in Fig. 3b. The H; and H, are non-overlapping bandpass
filters with center frequencies »; and Y respectively; the K| and K, are Jc blocking filters. The out-

put of the correlator can be written as

.
Pou (¥ = %) =27} J Ky(w) K (w) PP*) do

r
(PP = (24)4 J'M(u. v, W) B E ) -

J
cHY (v -w) ES(v ~w) Hj‘(u')'E; " Hl("' ~W)E (V' = w)dvdy' (A8)

where M is given by (A4). Since the K filters block de, K;(0) = K (%) = 0:let K; = K; = (2m)"!, for

w > 0. Then, assuming that the H-filters are non-overl-pping and that the bandwidths g,; and ﬁ.j

are narrow compared to the variation in Pmod. we have using (A4), approximately,

Pow = (28)° Py gty - 0) - f H k! dw (A9)
where Hi(w) = _[Hi(v) E,(» Hi‘ w=-w) E;(v- w)dv (i = j). Two waveforms of interest are SP wave-
forms and DF waveforms that are matched to the H-filters. For SP waveforms, E | is constant over
the bandpasses of the H; filters. If the filter functions are Gaussian with standard deviations 8,; and
[3”. then

Poyt = By Playy) (A10)
where Av“- =y -, and ﬁm = B“ﬂ.j(ms‘ + 26“)""’. A similar analysis may be carried out for the
case where the receiver filters ane matched to the transmitter waveform, ¢.8., if the DF waveform is

B = By + Egjthen H, = ES, ().
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APPENDIX B: Alternative Derivation of PO Limit

The fact that Eq. (7) has the unique stationary points given by (8), of course, has to do with
the sinoothness and extremal properties of the mathematical expectation, i.c., the factor in braces.
The following development may clarify this point. Consider the second moment of S(k) in the case

of backscatter in two dimensions only. Then, we must evaluate the following integral in the limit

koo £
T F

1, = 2kcos f (e-izkeose [(w)=$(0)] ) g-i2ksine w qoy ®1)
=00
Let z = [$(w) - £(0)] /w and let p,(z; w) be the pdf of 2. Then
Ik = 2kcosf II pz(Z; w) el2kcose (z-tand)w 4o 4y (B2)

Since p, is a slowly varying function of z and w, we can apply the method of stationary phase. A

saddle point exists at z = tanf and w = 0. Letting
u = (z - tan@ + 2kcosOw)/\/2
v = (z - tan6 - 2kcosfw)//2

then since limz = ¢ where §, is the surface slope and since lim p, = P, it follows that
w-0 w0

lim 1, = p;_(tand) - I I el -v)2l gy gy
k—»oo X o
=27 pgx(tanO) (B3)

which result agrees with Barrick (1968b).




APPENDIX C: Socond-order Terms in the Expansion of M, (K)

The second-order terms in the expansion owi , 8q. (38), are

1
— l—-— “(2) l -] -§- 0“9) o"%) t‘tjtkt‘
1
-3 [(xcow)‘ RI+R (R u uv,v +

+(Kcotd)? R, R (U, uy = 2u, vy +V, Vo) -

- 2(Kcot)? R R, u, v, + 2(Kcotd)} RR , (u, -v,)=

-2(Kcotd) R’“ R 7 YaVs (u -y )] Cn
Fourier transforming with respect to u and v according to eq. (21) and making use of the identities

(39), we get tor the sccond-order terms in the expansion of E, eq. (40):

1 Pas Pyy
2 B R-“ﬂ R"Vs

‘f;’(KCO(O)4 R? + -2-

. P' Py Pa P‘a
-(Kcot0)2< ; + *i;“) R.., R,a - (Kcot)? -pwz—«- R R'“

(€Y

P Pay Py tPgyP
+ 2Keot0)® = RR, -|l\cot0( SRl L4} '“)R R

pl
From the definition of the height spectrum as the Fourier transform of the covariance function, viz,,
F(K) = FT{R} = — -- I R(w)eK* ¥ gw (C3)
(2m?

it tollows that the FT of the second-orderfterms in E is given by various convolutions involving the

height spectrum; ¢.8.,
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,r FT{RR } = FT{R} * FT{R )}
‘t = F(K) * [iK, F(K))
= f FK") liK, -K,) FK'-K)) dK’ (C4)

If an overbar is used to distinguish a variable wavenumber entering into a convolution, then the

second-order terms in the expansion of P 4, eq. (48), are written as

A

T TR e— W

l l p"‘ po"’
t3 (Kcotd)* F* F + 3 —5— KK F*KKF

P

Pas PoP -
+(Keot9)? [ 2 + 2 ")KQF'K‘,F-O-
P p2

2 pn“ po’ —_— 3 p,ﬂ
+(Keot)? = F* KK, F- 2Keot9)? = F*K.F
p

PoyPgtP g, P
-Kcow( 2 8 - 2 '°) K. KF*KF (C5)
P

Tar KOS g Wk pofee e T~
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FIGURE CAPTIONS
Overall geometry and coordinate definition.
Simple tilt model of reflectivity modulation.
(a) Schematic of modulation noncoherent short pulse system. (b) Diagram of wideband
dual frequency system (after Parzen and Shiren, 1956)
Possible realization of a modulation coherent short pulse system. r denotes fast signal
time and t slow signal time. The slow time filter can be realized by a sample-and-hold
that is triggered at successive delays given by 7t, followed by an accumulator. The spec-
trum analyzer can be realized by digitally fast Fourier transforming the slow time
filtered pulse return, and squaring the magnitude.
Sample calculations of the spectrura P, ,(K) of backscattered impulses from a Gaussian
sea surface in two dimensions in the second order of scattering. (a, b) The surface slope
spectrum K2F(K) is the Phillips spectral form, BK-!, with an abrupt cutoff at K = K,-
The slope spectrum and P4 are both nornalized by their values at K ;. The calculations
are performed for a range of wave steepness 6 = K o = s/-l?/-2, incidence angle 0 and wind
speed U (which determines the total mean square slope according to eq. (30)). In all cal-
culations, the location of the peak at K | is preserved; low frequency whitening - ar inter-
modulation (IM) — is exhibited; and the frequency response (FR) at wavenumbers K> K
is in the form of a droop. Panels (c-¢) show the variation of the IM at K = 0.5 K and the
FRat K = 2K over the range of parameter values indicated.
Spectrum of backscattered power when a short pulse of bandwidth ﬁp is transmitted, and
definition of the SNR.

Post-detcction “‘pulse-Doppler™ spectrum.
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Table 1. Parameter Val:ues Used in Sample Calculations

| Incidence angle 0=125° i
E Slant range I, = 700 km j
? Satellite velocity V=7 kms™} |
Beam spot size* in range Lp = 5.0 km
§ Beam spot size® in azimuth L, =25 km i
‘ EM wavenumber k=2%/2cm |
‘ Water wzvenumber K=2%/200 m

Wind speed U=18ms~!

Pulse bandwidth parameter Bp=14x 10857

Surface range resolution parameter Ap=5m

*One-igma value of Gaussian, one-way power pattern
1'One-ai;ma value of Gaussian envelope of field strength
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> xo (REFERENCE)
x2 (RADAR)

x1 (RADAR)

xq (REFERENCE)




o e g v . A b A B AT Y Tt g

incident ray vector

_surface normal vector
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37
3
///
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¢ (x)
.
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Q surface range

The fractional backscatter cross-section variation is

B0 Bo°AI_ bo°  BA
0 a°A o° A

Assume that 0° = x sec*© p(s) where s = tan8, . and p is the slope pdf.
From the spherical triangle, if ©>> 8, it follows that 8,5, ~ © - § cosa;
or Q5. ~ O - 5+v§. Since A x ¢1/23in©), it follows that

So . ( aan)A
o cot® os Vg

Figure 2
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