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ABSTRACT

The design of a failure Adetection and identification (FDI) system consists
of designing a robust residual-generation process and a high-performance decision-
making process. In this research the design of these two processes were
examined separately.

Residual~generation is based on analytical redundancy. Redundancy relations
that are insensitive to modelling errors and noise effects are important for
designing robust residual-generation processes. The characterization of the
concept of analytical redundancy in terms of a generalized parity space, as
presented in this thesis, provided a framework in which a systematic approach to
the determination of robust redundancy relations was developed.

The Bayesian approach was adopted for the design of high-performance
decision processes. The FDI decision problem was formulated as a Bayes sequential
decision problem. Since the optimal decision rule is incomputable, a methodo-
logy for designing suboptimal ruleswas proposed. A numerical algorithm was developed
to facilitate the design and performance evaluation of suboptimal rules. This
design approach was applied to an example, and the results were compared with

those of Monte Carlo simulations.
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CHAPTER 1
INTRODUCTION

Physical systems are often subjected to unexpected changes, such as
component failures and variations in operating conditions, that tend to
degrade overall system performance. We will refer to such changes as fail-
ures, although there may not be any physical failure present. Maintaining
a certain level of performance under failure is the objective of reliable
system designs. In some cases, it is possible to design a system that is
relatively insensitive to certain failures without explicitly detecting them.
However, the inevitable tradeoff is reduced effectiveness of the system
during normal conditions. Therefore, explicit failure detection and accom-
modation may be more desirable if such degraded overall performance must be
avoided. Another situation where explicit failure detection and identifica-
tion is required is one wnen an appropriate back-up actuator or sensor needs
to be activated to replace the faulty one. Here, one needs to know which
instrument should be used. Although failure detection and accommodation re-
present a single objective, it is often reasonable to assume that the appro-
priate remedy for each possible failure is known. From this perspective,
the detection and identification of failures can be treated as a separate

problem and this is the subject of this thesis research.

1.1 Problem Description

The study of failure detection and identification (FDI) in dynamical
systems is based on the analysis of the structure and behavior of systems,

which are described by mathematical models. In this research, we are
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mainly concerned with the linear, time-invariant stochastic, discrete
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time model:

where x is the n-dimcnsional statc vector, u ,...,uq are the g known

! 1

actuator inputs, and yl,...,ym are the m sensor outputs (measurements);
£ and n are independent zero mean, white Gaussian (noise) sequences with

|
E ' covariance
F
]

E{E(k)E' ()} = QcSk’ﬁ

E{n(kin'(t)} = Rék't

where Gk . is the Kronecker delta. The column vactnr bj corresponds to the

j-th actuator and input u,, and the row vector c¢

3 3
sensor. Equations (1-1) and (1-2) are used to model a dynamical system in

corresponds to the j-th

the normal mode, i.e. in the no-fail situation.

Failures represent abrupt changes. Hence, various failure modes (fail-
ure types) can be modelled as deviations from the normal mode. A faulty
sensor may take the form of a change in cj’ a bias, or increasei measurement
noise in (1-2). A malfunctioning actuator may manifest itself as a shift in

b , and an actuator "stuck" at a cert- 1 position that causes an input bias
‘E P

o TR
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may be described by a bias in (1-]). 1In some applications, the linear
model (1-1)-(1-2) is used to represent the linearized behwior of a nonlinear
system at a particular operating point. A change in the set point can
result in a different set of system matrices, i.e. A, {bjL and (Cj}. Thus,
shifts in all the system matrices are often necessary in order to model such
a change.

Each failure is characterized by three attributes: 1) the failure
mode or failure type (i), e.g. a biased sensor or a "stuck" actuator;
2) the failure time (T)-the time at which the failure occurs, and 3) the
nagrnitude (extent) of the failure (v), e.g. the size of a sensor bias.
By the very nature of a failure, these attributes are not known. Depending
on the situation, not all three attributes are of equal importance. Consider,
for instance, the problem of a failed sensor. With the availability of
back-up sensors, being able to identify the failure mode (failed sensor)
may provide acceptable cverall performance. However, if we want to compen-
sate an estimate of x based on, for example, the Kalman filter (XF) [1l] for
the error due to a failed sensor, wc need to identify the failure time and
the failure magnitude as well as the failure mode. When back-up sengors are
not ava.lable, we have to make use of a degraded sensor. Then, we need to
determine both the failure mode and the failure magnitude (e.g. the size of
the bias that has developed in the sensor). However, it is sometir-s neces-
sary to estimate both T and V in order to do a good job of identifying i,
even when the failure mode is the only important parameter. This is analogous

to the problem of estimating a subset of the state variables of a system.
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' In order to obtain accurate estimates of these variables, it is sometimes
3

E necessary to use a full order filter to estimate the entire state vector.
-

1

In any case, the detection of a failure (i,T,V) requires the examination of

the measurement for the failure's characteristic effects.

In recent years, numerous approaches (e.g. the voting scheme [2][3],

G i 3 AL

the generalized likelihood ratio (GLR) method [4)[5], the multiple model
E method [5][6] and the detection filters of Beard (7] and Jones [8]) have
been developed to perform FDI in dynamical systems with linear stochastic

models. A comprehensive survey that includes a description of the underlying

principles and a discussion of the advantages and shortcomings of the various

methods has been prepared by Willsky [9]. With such a wealth of background

]
3
-
i

information available we shall forgo a detailed review of previous work in
FDI. Instead, we proceed to the basic structure of a FDI system and the
issues that require careful consideration during the design of such a system.

The FDI process can be thought of conceptually as consisting of two
stages: residual-generation and decision-making. For a particular set of
hypothesized failures, a general FDI system has the basic structure shown in
Figure 1-1. Outputs from sensors are initially processed to enhance possible
% hypothesized failure effects so that they can be easily recognized. The
processed measurements are ~alled the residuals, and this enhanced effect of
a failure is called the signature of the failure. Intuitively, the residuals
represent the difference between the observed sensor outputs and the expected
sensor outputs in the normal mode. In the absence of a failure, the

residuals should be unbiased, showing agreement between observed and expected

;E
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normal behavior of sensor outputs, and a failure signature often takes the

form of residual biases that are characteristic of the failure. The residual-

baitans

7eneration process can be of varying degrees of complexity for different types
of FDI systems. For example, in a voting system, the residuals are simply

the differences of the outputs of the various pairs of like sensors, whereas
in the GLR system, the residuals (which are also the filter residuals) are
generated by the more complex KF.

In the decision process the residuals are examined for the presence of
failure signatures. Decision functions or statistics are first calculated
using the residuals. Then, a decision rule is applied to the decision sta-~
tistics to determine if any failure has occurred in the system. A decision
process may consist of a simple threshold test on the instantaneous values
or moving averages of the residuals, or it may be based on more sophisticated
from statistical decision theory e.g. the sequential probability ratio test

(SPRT) [10].

The design of a FDI system requires the consideration of several issues.
The immediate concern is the performance of the detection system, i.e. how
responsive the system is to failures and how accurate the decisions are.
Unfortunately, systems that respond quickly to abrupt changes are necessarily
sensitive to noise effects. Thus, a tradeoff exists between detection speed i
and detection accuracy. In addition, the detection probabilities, i.e. the
probabilities of correct detections and cross-detections {(declaring one type

of failure, when, in fact, another has occurred) cannot be arbitrarily
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specified as parameters of the design. They represent additional tradeoffg
inherent in the FDI design problem. These performance tradeoff issues can
be most directly considered in the design of the decision process of the FDI
system rather than the residual generation process. One of the goals of this
research is to develop an approach for designing decision processes that
systematically examines the tradeoffs among the various performance issues.

A desirable and important quality for a practical FDI system to possess
is robustness, i.e, the relative insensitivit§ of the system's performance
to parameter variations and modelling errors or uncertainties. an ideal ap~
proach to designing a robust system is to include all uncertainties in the
problem specification, and a robust design will result from optimizing (in
some sense) the performance of the system with the uncertainties. However,
this generally leads to a complex mathematical problem that is too difficult
to solve from a practical point of view. At the other extreme, a simpler
alternative approach is to ignore all modelling uncertainties in the perfor-
mance optimization process. The resulting design is then evaluated in the
presence of modelling errors. If the degradation in performance is toler-
able, th= design is accepted, otherwise, it is modified and re-evaluated.
Although this iterative method often yields acceptable designs, it has several
serious drawbacks. Since the effects of the uncertainties are not directly
determined, it is often unclear what parts of the design should be modified
and what form the modifications should take. Furthermore, each iteration
may ba very expensive io carry out since extensive Monte Carlo simulations are

often required for performance evaluation.
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A better approach that considers the possible modelling errors directly
is suggested in the work of Deckert, et.al. on aircraft sensor FDI problems
[11]. The basic idea there is to identify the parts of the system that are
known well and those that may contain substantial uncertainties. Then a FDI
system (i.e. its residual-generation cstage) is designed based primarily on
the well-known parts (and only secondarily on the less well-known parts) of
the system behavior. For example, the velocity and acceleration of an air-
craft are related in two ways. Aerodynamic forces that give rise to the
aircraft's acceleration are functions of the velocity (and other variables).
However, this function relating velocity and acceleration is only known em-

pirically and can be rather inaccurate. On the other hand, the kinematical

relationship between velocity and acceleration is governed by a well-known
physical relationship, v=a. Therefore, the perforrance of a design based on
the kinematical relationuship is insensitive to system parameter variations,
while a design based on the aerodynamics is sensitive to such variations.
Because, modelling errors affect the residual-generation process directly,
the above approach suggests that robustness can effectively be achieved by
designing a robust residual-generation process. We will adopt this approach
to the robustness issue, as it is much simpler than the ideal approach (of
an integrated treatment of robustness in the residual- and decision-making
systems) and more direct than the trial-and-error method. Consequently, it
will yield more insight into the general problem of robust FDI system design.
In addition, this approach will provide the designer with a qualitative
measure of the attainable level of robustness in the early stages of this
design, and this will allow him to assess what be can expect in terms of

overall performance.
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Computational complexity is another important design consideration.
Clearly, a practical system should only require a reasonable amount of
storage and computation. An FDI system that take into account detailed
dynamical behavior of the system is more complex but is likely to be more
effective for a greater variety of failures than a system that does not use
the same information. Furthermore, it may permit a reduction in hardware
redundancy. In this study, the tradeoff effects among complexity, performance,
and possible hardware redundancy are considered in the design of both the
residual-generation and decision processes.

The goal of this research is to develop a nethodology for designing
FDI systems that takes into consideration the issues of performance, robustness,
and computational complexity. Viewing the FDI process as consisting of two
stages allows us to break up the FDI system design problem into two parts.
We will examine the design of robust residual-generation processes and the

design of high-performance decision-making proceeds separately.

1.2 Overview of Thesis

This thesis report basically consists of two parts, each dealing with
one of the two stages of the FDI process. In Chapter 2 and 3 we will con-
sider the design of residual-generation processes. The decision rule
(decision preocess) design problem is the subject of Chapters 4,5, and 6.

All residual-generation processes exploit some form of analytical

redundancy - the relationship among sensor outputs and actuator inputs

specified by the dynamics of the system under the no-fail situation, e.g.
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the kinematic relation v=a. (when such a relation is violated, a failure
among the components, i.e. sensors and actuators, involved in the relation
must have occurred). 1In order to facilitate the design of robust residual-
generation processes, a thorough understanding of the concept of analytical
redundancy and how it can be exploited in deriving residuals is needed. 1In
Chapter 2 we will present a characterization of analytical redundancy (for a
linear time~invariant system in the absence of noise and modelling uncertain-
ties) in terms of the concept of a parity space. We will describe severxal
forms of residual-generation that are based on analytical redundancy, and we
will discuss how such residuals can be used for FDI.

In Chapter 3 we will consider the effect of modelling errors and noise
on redundancy relations, and we will define a simple measure of such effects.
Clearly, a residual~generation process is robust (or as robust as it can be)
if it is based on the redundancy relation that is least wvulnerable to noise
and modelling errors. The choice of such a redundancy relation is formulated
as a minimax optimization problem (aimed at minimizing the worst case effect
of noise and modelling error). Together with the viewing of analytical
redundancy in texrms of a parity space, the minimax design represent a new ap-
proach to the problem of designing robust residual-generation processes.

The design of a decision process involves resolving the tradeoff among
detection performance issues such as expected detection delay, false alarm
rates, and the various detection probabilities. We have chosen to examine

this problem using the Bayesian approach with which the design problem can be




easily conceptualized. 1In Chapter 4, we will describe the Bayes formulation
of the FDI decision problem and the optimal Bayes decision rule. Although the
optimal rule is generally not computable, the structure of the Bayesian ap-
proach can be used to derive practical suboptimal rules. We will consider the
design of suboptimal rules based on the Bayes formulation in Chapter 5.
Numerical algorithms for designing such ruies and evaluating the associated
performance indices (detection probabilities, etc.) will also be presented.
In Chapter 6, we will report on our experience with this approach to designing
decision rules through a numerical example and simulation.

A brief summary of this thesis and a discussion of some future research

directions are included in Chapter 7.

- l“ii_.._.\_d
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CHAPTER 2

ANALYTICAL REDUNDANCY AND RESIDUAL GENERATION

2.1 Introduction

The first stage of the FDI process is the generation of residuals,
and one of the goals of this research is to investigate the problem of
designing simple and robust residual-generation processes. To date, this
problem has not been dealt with directly for the general case, although it
was successfully resolved for a particular application [11 ]. The present
chapter and the next one are devoted to developing one approach to this
general design problem.

The first step towards our goal is to gain a better understanding
of the concept of analytical redundancy - the basis for residual-generation.
There are basically two forms of analytical redundancy: 1) direct redundancy-
the instantaneous relationship among outputs of sensors, and 2) temporal
redundancy ~ the relationship among the histories of sensor outputs and
actuator inputs. Before we proceed to present a mathematical characterization
of redundancy we will describe some examples of the two forms of redundancy.

Direct redundancy exists among sensors whose outputs are algebraically
related, i.e. the sensor outputs are related in such a way that the variable ;
one sensor measures can be determined by the instantaneous outputs of the
other sensors. A simple example is the case of identical sensors, where

we have, i, the absence of sensor noise,

Y=Y, (2-1) i
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The general form of direct redundancy exists among a set of sensors that

are modelled by linearly dependent c¢,'s in equation (1-2), e.g. a set of

)
four accelerometers measuring acceleration in 3-space [12 ]. 1In such a case
some fixed linear combination of the sensecr outputs should always be zero
(or close to zero when noise effects are included) in the normal mode.
Alternatively, the ideal output of one of those sensors can be generated by
a linear combination of the outputs of the remaining sensors, i.e.

m
Y, = Z oy, (2-2)
1 {=2 i‘i

where the ai are constants. It is clear that the identical sensor case (2-1)
is a specialization of (2-2). 1In the absence of a failure, the ideal output
calculated in this way should agree with th~2 observed output of the sensor.

m
That is, the residual yl(k) - Z uiyi(k) should be zero. A deviation from
i=2

this behavior provides the clue to a failure among the set of sensors. We
note that, through direct redundancy, certain dissimilar sensors may, in
effect, be compared.

Direct redundancy has been exploited to generate residuals for the voting
scheme for sensor FDI, where the "majority rule" principle is applied to
detect and identify the failed sensors. (We will discuss voting in Section
2.3). Examples of successful application of the voting method include [ 2 ]

{ 311 12). The residuals of the voting system cimply consist of

weighted sums of sets of linearly dependent (instantaneous) scnuor outputs.

Thus, direct redundancy based residual-generation is simple. However it has
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two major disadvantages. A high degree of hardware redundancy is required
to use the "majority rule" principle. 1In addition, direct redundancy is not
applicable for detecting actuator failures.

In contrast to direct redundancy, temporal redundancy is useful for
both sensor and actuator FDI. Consider, for example, the temporal relation-

ship between velocity (v) and acceleration (a):

vik+l) = v(k) + Ta(k), k=1,2,... (2-3)

where T is the period of discretization. Just as direct redundancy (2-2)
provides the basis for caomparing outputs of linearly dependent sensors,

(2-3) prescribes a way of comparing velocity measurements with accelerometer
outputs, i.e. the residual is r(k+l) = v(k+l) - v(k) - Ta(k). As a result,
outputs from velocity sensors and accelerometers can be compared in a mixed
velocity-acceleration sensor voting system for detecting and identifying
both types of sensor failures.

Temporal redundancy facilitates the comparison of sensor outputs among
which direct redundancy does not exist. Consequently, a reduction in iiardware
redundancy for sensor FDI can be realized. Viewed in a different light, the
use of analytical redundancy implies that additional sensor failures can in
principal be detected with the same level of hardware redundancy.

To see how temporal redundancy can be exploited for detecting actuator

failures, let us consider the first-order model of a vehicle in motion:

v(k+l) = av(k) + Tu(k), k=1,2,... (2-4)
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where v derotes the vehicle's velocity, and o is a scalar constant between
zero and one reflecting the effects of friction and drag. T is the dis-
cretization step, and u is the commanded engine force (actuator input)
divided by the vehicle's mass. Now, the velocity measurements can bea com-
pared to the actuator inputs by means of (2-4), i.e.
r(k+l) = v(k+l) - av(k) = Tu(k). An actuator failure may be inferred, if
the sensor is functioning normally but (2-4) is not satisfied.

! While the additional information supplied by dissimilar sensor outputs

| and actuator inputs at diff. rent times through temporal redundancy facilitates
the detection of a great v.ciety of failures and reduces hardware redundancy,
exploitation of tnhis additional information often results in increased com-
putational complexity, since the dynamics of the system will have to be
accounted for. Depending on the accuracy of the system model, the biggest
drawback, however, could be the increased sensitivity to system parameter
variations due to the dependence on the system dynamics - the robustness
issuye.

From the above discussion, one approach to the design of robust
residual-generation processes in any given application is evident: the various
redundancies that are relevant to the failures under consideration are to be
identified, and residual-generation should be based on the redundancies that
are least sensitive to modelling uncertainties. This is the apprcach we
will examine.

In order to apply this design philosophy, we need: 1) a precise

characterization of analytical redundancy, and 2) a quantitative description

i
|
|
H
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of the effects of noise and modelling uncertainties on the generation of
residuals. We will examine the firxst problem in this chapter and the second
problem in Chapter 3.

In the next section, we will present a general formulation of the
conep: of analytical redundancy in linear time-invariant systems. This
formulation is a generalization of the parity equations studied by various
researchers (e.g. [2),3]) and the parity space discussed by Potter and Suman
{13], and it provides a unified setting for discussing all approaches to FDI.
In Section 2.3 we will discuss a generalized voting scheme for FDI, where
residual-generation is based on the explicit forms of analytical redundancy
described in section 2.2. In section 2.4 we will eximine the effects of
failures on the residuals generated from these explicit forms of analytical
redundancy in order to undergtand how such information is used to detect
failures in FD1 schemes other than the voting method. In FDI systems such as
GLR [4] and the detection filters of Beard (7] and Jones [8], residual-genera-
tinn is accomplished by mcans of filters, which do not utilize analytical
redundancy in as explicit a foxm as in a voting system. Based on the insights
obtained in section 2.4 we will explore the role of analytical redundancy in

the residual-generation process of these systems in section 2.5.

2.2 Analytical Redundancy - : -arity Relation

In this thesis we have focussed our effort on developing an approach

to designing robust residurl-gencration processes for lincar time-invariant

(LT1) systems. In order to focus on the concept of redundancy we will base

our discussions in this chapter primarily on an LTI system that is in a




nolse-free environment and for which we have an exact modei. We will
analyze the effect of noise in subsequent chapters as we consider the use
of redundancy for the design of high-performance FDI schemes.

The system of interest to us here is characterized by the deterministic

model
q
x(k+l) = Ax(k) + z b.,u, (k) (2-5)
=1 373
yj(k) » cjx(k), j=1,...,m (2-~6)

where x is the n-dimensional state vector, A is a constant nxn matrix,
bj ie a constant (column) n-vector, and ¢, is a constant (row) n-vector.

3

The scalar uj is the known input to the j-th actuator, and the scalar yj is
the output of the j-th sensor.
In order to facilitate the following discussion we introduce the

following notation:

8 ]
‘5
n.=0,1,...
¢ tn)) = cyh ] (2-7)
] . j o= 3i,...,m
‘n
c.A 3
- J -

The well-known Caley-Hamilton theorem [ 15 ] implies that there 1s an nj'

1§jin, such that

nj+1 n.<n
rank C.(n,) = (2-8)
J 3 -

o
o
v
S
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The matrix cj(gs-l) characterizes that part of the system that is observable

from the j~th sensor. Specifically, the null space of Cj(as-l), N(Cj

is known as the unobservable subspace of the j-th sensor, because any component

(H'j-n ),

of the state lying in N(Cj(;;l)) will not affect the output of the j-th
sensor [ 15]. The rows of Cj(ﬁg-l) span a subspace of R" that is the
orthogonal complement of the unobservable subspace. Such a subspace is defined

here to be the observable subspace of the j-th sensor, and it has dimension

nj . The system (2-5)-(2-6) is observable (through the m sencors) if the
sum of the m observable subspaces is the whole space Rn. We will assume that
the system is observable.

In Subsection 2.2.1 we will characterize analytical redundancy in terms
of the concept of a parity space and parity relations, and in Subsection 2.2.2

we will discuss residual-generation schemes based on analytical redundancy,

i.e. on parity relations.

2.2.1 The Generalized Parity Space

Let w be a row vector of dimension n =

it ~189

(n.+1) such that
j=1

J

.1 m . . - . .
w= {Ww,,.p ], where ', 3=,...,m, 1is a (nj+1)-d1mens1ona1 row vector.

Consider a non-zero (, satisfying
cl(nl)

(R | . x =0, Vx € R (2-9)

(Note that in the above cquation Cj(;g) has ;j+1 rows while it hae only rank

nj. The reason for this will become clear when we discuss the temporal
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redundancy associated with a single sensor.) Since the system is observable,
there are only n-n linearly independent w's that satisfy (2-9). We let
be an (n-n)x n matrix with a set of such independent w's as its rows. (The
matrix £ is not unique.) Assuming all the uj's are zero for the moment, we

have the n-n linearly r .ependent parity equations or parity relations

that are independent of the state x:

Vl(k.nl)
of : =p (2-10)
Vm(k,nm)
where
yl(k)
Y.(k,n,) = : j=1,...,m (2-11)
J J -
. (k+n.
yj( nj)

The (n~n)-vector P 1s called the parity vector. Under the ideal conditions

set forth in the beginning of this section, p is zero. More generally, in
the presence of noise and failures, p is a non-zero vector representing the
inconsistencies among the sensor outputs. Different failures will produce
different p's. Thus, the parity vector may be used as the signature-~carrying
residual for FDI. We will further discuss residual-generation based on
parity equations in the succeding sections.

The space of all (n-n)-dimensional parity vectors defined by (2-10) is
called a parity space. We note that the parity space discussed above

is an extension of the parity space examined by Potter and Suman [ 13] to
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include sensor outputs at different times, thereby, taking into account

the dynamics of the system. In [13], Potter and Suman exclusively studied
equation (2-10) with ;i=_é= ... =n_=0. We will exploit our generalized

notion of a parity space to characterize analytical redundancy.

When the actuator inputs are not zero, (2-10) must be modified to be

&1(k,n1) Bl(nl)

4 I -1: U(k,EO) =p (2-12)
Y (x,n ) B (n)
m m m m

where _—
0 7]
. o]
_ c.B ‘o
B.(n,) = 3 . (2-13)
it .
fi,-1 -
ch J B .... c.B 0... O
= cee 2~14
B [bl bq] ( )
EO = max[Hl,...,Hm] (2-15)
u(k) = [u (k}...u (k)]' (2-16)
1 q
Uk,ng) = [u'(k)...u' (k+n )] (2-17}
Bj(ES) is an (;5+1)x ;bq matrix (q is the number of actuators). Equation

(2-12) defines the generalized parity vector p,

and the (n-n)-dimensional
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space of all such vectors is called the generalized parity space. Any

linear combination of the rows of the left hand side of (2-12) is called

a parity function. Note that (2-8) implies that we generaily do not need to

consider a higher dimensional parity space that is defined by (2-12) with
;5 replace by nj > ;5, j=1,...,m, although it is possible to do so

It is now clear that (2-12) with p=0 (which is the case under ideal
conditions) characterizes all the analytical redundancies cf the LTI system
(2~5) and (2-6), because it specifies all the essential relationships among
the actuator inputs and sensor outputs. Each parity equation can be regarded
as a redundancy relation, and it can be obtained by taking a linear combination
of the rows of (2-12).

An important notion in describing analytical redundancy ig the ordexr of
a redundancy relation. Let W be the vector of a particular parity relation,

i.e.

m .

§ W Yik,n) - B, (m)Uk,n)] =0 (2-18)
o ] 1] 0

j=1

where {wl...wm]= w. We can define the order p of such a relation as follows.
Since some elements of w may be zero, there is a largest index n such that

the n-th element of w® for some j is non-zero but the (h+l)th through the

.

;%-th elements of each wJ

are zero {(or ﬁjfﬁ.) Then, p is defined to be p=n-1l.
The order § describes the "memory span” of the redundancy relation.
For example, when p=0, instantaneous outputs of sensors are examined. When

p>0, at least some sensor outputs at times up to P steps in the past need to

be considered in the parity equation, e.g. the kinematical equation (2-3)
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is a first order parity relation. Hence, direct redundancy is characterized
by p=0, while a temporal redundancy relation has a p>0.

Based on the properties of observability subspaces we have developed a
general characterization of analytical redundancy in terms of a parity space.
To illustrate the generality of this characteriz:tion we will examine a few

examples of redundancy relations.

Direct Redundancy

Direct redundancy is described by a zeroth order parity relation

v - —

.l(k,nl) Bl(nl)
[wh 0...0}...1a" 0...0] : -1 Utk,i) y =0 (2-19)
0 0 . . "0

Y (k,n ) B (n)
m m m o m

where w? is a scalar denoting the (i+l)-st elements of w?. At least two of

the wJ must be non-zero for (2-19) to be a meaningful parity relationship.

i

Because of the structure of Bj(E;) {see (2-13)}), (2~19) can be written as
J

Yl(k)

(w;. ) : 0 (2-20)

yz(k)

In this case the parity function (left hand side of (2-20)) can be directly

used as the residual.
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A single sensor

Due to (2-8) (Caley-Hamilton) it is always possible to find a non-zero

3

W’ such that under the ideal condition, (2-12) becomés

j - - -
y- vi1, - . . ’ = 2-2
w” [ J(k nJ) BJ(nJ)U(k no)] 0 (2-21)

Expression (2-21) represents a form of temporal redundancy - i.e. it is the
relationship among the histories of the j-th sensor output and the actuator
input, and it is of order ;5. Note that (2-21) is the lowest order parity
relation involving only one (the j-th) sensor, and this is why we have chosen
to consider Cj(ES), as opposed to Cj(as-l), in defining the generalized

parity space. Parity relation (2-21) prescribes a consistency test that

requires comparing to zero a linear combination of a window of sensor j outputs

and the actuator inputs. Such a combination (the left hand side of (2-21))
can be used as the residual r(k). Since this test involves only one sensor,
it may be used as a self-test for sensor j, if Bj(;5)=0 or if the actuators
can be verified (by other means) to be functioning properly. Similarly, it
‘can be used to detect actuator failures when sensor j can be verified to be
normal. The Caley-Hamilton theorem implies that a self-test redundancy such
as (2-21) always exists for sensor j.

Equation (2-21) can be alternatively written as

n, n,

Yj(k) = —(mi )_l % W’ yj(k-t) - % ql u(k-t) (2-22)

n. t=] — t=1 n.,-t
j n.-t j
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where

0...0] = wB, (n.)

3
[0’0 ase -1 j j (2-23)

3 W

3

and Oj, t=0,...,n,~1, i= a g-dimensional row vector; wj, tao,...,;

t 3 t 3
is the (t+l)~th component of wj, and u(k) is the g-dimensional actuator
input vector at time k. Equation (2-22) represents an auto-regrersive
moving-average (ARMA) model_for the j~th sensor output. It is only a
moving average (MA) if chnj=o. Under the ideal condition, the value of
yj at time k can be predicted from the past values of yj and actuator
inputs using (2-22). The residual defined by taking the difference between
the left and right hand sides of (2-22) is indeed the difference between
such a prediction of yj(k) and the observed yj(k). Hence, a non-zero residual

will provide the clue for a (sensor j or an actuator) failure.

Temporal redundancy between two sensors

A temporal redundancy exists between sensor i and sensor j, if there are

i i i

w = [wo...mﬁi_l 0] (2-24a)
J 3 j -

w' = [wg...wz ) 0] (2-24p)

3
satisfying the redundancy relation
Y. (k,n,) B.(n,) _
[wiwj]‘ o U(k.no)‘ =0 (2-25)
l Yy 0,my) B, (m,)
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Equation (2-25) is a special case of the general form of parity equation

(2-18) with m’-o, s¥i, s¥j. The relation (2-25) is of order p< max[n .nj]
Clearly, (2-25) holds if
[ - we 10 R,-1) = “(wd. ) RIS (2-26)
j-jj

Now, the rows of CE(;;-l) and cj(55-1> span the observable subspaces of
sensors i and j, respectively. Hence, (2-26) implies that a redundancy
relation exists between two sensors if their observable subsvaces overlap.
Furthermore, when the overlap subspace is of dimension ﬁ,there are 3
linearly independent [wiwj] pairs that will satisfy (2-26). Therefore,
there are as many independent redundancy relations of the form (2-25) as the
dimension of the ovarlap subspace.

3

Because the order of the redundancy (2-25) is p, either m; or wp must

be non-gexo. Ascuming wg#O, we can write (2-25) in the form of an ARMA

model for yjz

y, (k=t)+ % @)+t utk-t)

31| § 3 §
y, (k) = -(w) y,k-t)+ ] o
P t ptd gy P ot (2-27)

] em1 P =0
where we have used the notation (2-23). (Note that the summation of the i-th
sensor outputs ranges from O to p but those of the j-th sensor outputs and
actuator inputs are from 1 to p.) Note that,viewing (2-27) as an ARMA model

for y,, we see that yi plays the role of ar input, just as do the actuator

j'

inputs u.

R T T T T ST

e
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Similar to the single sensor case, (2-27) indicates that yj(k) can
be predicted from a linear combination of the i=-th sensor outputs
(Yi(k-p),...,yi(k)), the j-th sensor outputs (yj(k-p),...,yj(k-l)). and the
actuator inputs (u(k-p),...,u(k=-1)). The kinematical relation between
velocity and acceleration measurements (2-3) is a parity relation expressed
in the form of (2-27). The parity function (the left hand side of (2-25)),
which represents the difference between the observed and preidicted sensor
outputs, can be directly used as the residual.

In summary, we have conceptualized the notion of analytical redundancy
in terms of a generalized parity space. We have also illustrated how various
redundancy relations can be obtained from this parity space and how these
relatiors may be used in forming residuals. In the next subsection we will

further discuss residual-generation based on parity relations.

2.2.2 Residual Generation Based on Parity Relations

In the preceding discussion we saw that parity functions can be used
as residuals. These residuals may in turn be used in a voting system for
FDI. We will discuss the voting scheme in the next section. In the remainder
of this section we will describe other methods for generating residuals based
on parity relations (temporal redundancies). We will mainly use the kinematical
relation (2-3), which is a first order parity relation involving two sensors,
to illustrate these mechanisms of residual-generation,but the basic concept
can be readily generalized to higher order cases involving more gensors and

actuators.
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For easy reference we re-write (2-3) here

vi(k+l) = v(k) + Ta(k) (2-28)

A direct method for generating a residual rl(kx) is as follows

rl(k) = v(x) - v(k-1) - Ta(k-1) (2-29)

This is an example of the type of residual described in the preceding sec-
tion that involves direct calculation of a parity function as in equation
(2-18). In a neisy environment, rl(x) is a random sequence. In the absence
of a failu;e it is zero mean. When a failure occurs it becomes biased
(possibly for only a short period of time as we shall see below). It is by
detecting the presence of the bias in fkk) that a failure can be inferred.
Now consider a velocity sensor failure that manifests itself as a constant
bias in the v-measurement. Suppose this failure occurs at time T. Then
(k) will contain a bias at time T, but it will become zero mean for k>T.
That is, the failure signature vanishes after one time step. (This is
because the sensor bias effect is cancelled out via the term: v(k) - v(k-1)
in (2-29)). Thus, if this failure is not detected at time T, rl(k) defined by
(2-29) will not provide any clue of this failure after time T.

Fortunately, another way of using the parity relation (2-29) to generate

P —————

useful residuals is available. The ARMA representation (2-29) of the
kinematical relation implies that with an initial observation of the

v-measurement, say v(0), v(k), k=1,2,.. can be predicted using the accelera-

tion measurements only. Such a predicted v(k) can be suktracted from the
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observed v(k) to form the residuals rz(k):

v(k+l) = v(k) + Ta(k) (2-30a)

2 (k) = v(k) - ¥(k) (2-30Db)

where v and v denote the observed and the (open-loop) predicted velocity
measurements, respectively. Since no velocity measurement is used in the
prediction other than during the initialization, the bias effect of the
failure (its signature) will be present in rz(k) for k>T. 1In addition, a
constant accelerometer bias will produce a ramp in rz but only a constant
bias in rl. The possible drawback of this scheme is that noise effects
(due to the accelerometer) are accumulated. Therefore, it is useful for
cases where the noise accumulated over the failure-monitoring period is
small. Alternatively, when the noise level is low, this scheme can be applied
with periodic re-initialization of the velocity prediction process. A
variation of this residual-generation scheme for accelerometer failures was
used with success in the aircraft sensor FDI problem [ 11].

A third residual-generation scheme may be devised using the parity
relation (2-29) in a closed-loop fashion. Based on the ARMA representation

(2-29) a filter for the velocity can be constructed:
V(k+1) = v(k) + Ta(k) + hr3(k) (2-32a)

r3(k) = vik) - 9K (2-32b)

where ; denotes the closed-loop prediction of the velocity measurement, and

h is the filter gain (O<h<l). The filter residuals r3(k) also represent
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the difference between the observed and predicted (or expected) velocity

measurement, and hence, can be used as residuals for FDI. The advantage of

using r3 over rz is that the filter gain can be chosen so that the variance

of v (hence that of rs) will not grow indefinitely with time. As a result,

the periodic re-initialization of the prediction process can be eliminated.

The tradeoff, for example, is that the signature contained in r3 for a velocity

sensor biag failure, will vanish with increasing elapsed time k-T, and that

an accelerometer bias will lead to a steady state bias, not a ramp, in r3.

This residuai-generation scheme is used in FDI schemes such as the GLR [4 ].
In summary, we have described three ways a temporal redundancy or parity

relation may be used to generate residuals for FDI. (Note that for direct

redundancy only the first method i.e. rl, is available since no dynamics

are involved). Generally, rl(k) is the residual of the instantaneous com-

parison of the left hand side and right hand side of the parity equation

(2-27), and it is dependent on yj(k-p),....yj(k). The residual tztk) is the

difference between yj(k) and its predicted value that is computed from

2
yj(O).....yj(D-l). u(t), and yi(t). i¥j, t=1,...,k using (2-27). Thus r
effectively represents a dynamic comparison (since all past u and y; are

used via the dynamics (2-27) in forming rz). In contrast to rl(k). rz(k)

depends ~»n yj(O)....,yj(p-l). and yj(k) but not on yj(k-p),...,yj(k-l). The

|
|
i
3
3

third type of residual ra(k) is the innovations of the filter of yj(k) based
on (2-27). Similar to rz, r3 is based on a dynamic comparison. Moreover,

ra(k) depends on yj(k-p),...,yjtk-l) just as rl(k). albeit in a closed-loop
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manner. Thase residuals can be directly used in a voting scheme, which
will be discussed in the next section. Other methods for exploiting the
failure information contained in the parity space will be explored in

Sections 2.4 and 2.5.

2.3 The Generalized Voting Scheme

In this section we will describe how parity relations can be utilized

in a generalized voting scheme (GVS) for FDI. Other usage of parity

relations for FDI will be diccussed in the next two sections, For sim-
plicity we will assumc in this section that only one failure can occur,
but extension of the following idea to the case of simultaneous failures
is straightforward.

The structure of a generalized voting system based on M parity rela-
tions is shown in Pigure 2-1. This FDI system basically consists of M
tests each of which serves to determine if one of the M parity relations is
violated. Each test has its own residual-generation process that is based
on a single parity relation. If the underlying parity relation is a direct
redundancy, the residuai is simply the parity function. If the parity
relation represents a temporal redundancy, then residual-generation may
take on one of the three forms discussed in Subsection 2.2.2, i.e. the
residual may be simply the parity function, the difference between the
true observation and the open-loop prediction of a sensor output, or the
difference between the true observation and the closed-loop prediction of a

gensor output., A decision rule is applied to the residuals associated with
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each parity relation to determine if the corresponding parity relation is
violated. A different decision rule may be used for each of the M parity
zel;tioﬂs.' Typically, the decision rule employed in a voting system takes
the f-.rm of a threshold tests on a single point of residual or the moving
average cf a window of residuals, However, more sophisticated rules such as
the sequential rules éxamined in Chapter 4,5, and 6 may be applied to make
better use of the failure information contained in the residual for high-
performance. i .he last stage of the GVS, the voting logic (to be degcribed
in the followirg) is applied to the outcome of the M consistency tests to

detect and identify the failed component. Next, we will describe the voting

logic.

In order to apply GVS, we need a set of parity relations with the
property that each component (i.e. a sensor or an actuator} of interest is
included in at least one parity relation and each component is excluded from

at least one of the parity relations. (If there are M components, the

number of parity relations considered is M or more. However, later in this
section vwe will see that with a slight modification of the logic described
below, a2s few as M-l parity relations can be used,) Whern: a component fails,

all the parity relations involving it will be violated, while those excluding

i it will still hold. This mean=z that the components invoived in parity rela-
tions that hoid can immediately be declared as unfailed. Moreover, the one
component that is common to all of the violated parity relations is then
readily identified as failed. This is the basic idea of generalized voting
and is also the logic used by GVS to detect and identify failed components.

It differs from the common notion of voting in the sense that through analytical

S,
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redundancy (parity relations) dissimila; components (including sensor and
. actuators) may vote together. We note that the voting system for linearly
dependent sensor studied by various researchers [ 2 ][ 3 ][ 12] and the
aircraft sensor FDI system [ ll] are special cases of GVS.
In the remainder of this section we will discuss some important consid-
erations involved in designing a generalized voting system. We will do so

by means of a second order (n=2) example:

%1 %12
A = (2-33a)
0 a22
b = [0 1] . (2-33b)
¢, = [1 0] (2-33c)
c, = [0 1] ’ | (2-33Q)

In this case, nl=2, n2=1, n-n=3, and there are {only) three independent

. parity equations:

! yl(k)-(all+a22)yl(k-1) + allazzyl(k~2) - alzu(k-2)=0 (2-34)
: yl(k) - anyl(k—l) - a,,Y,(k-1)=0 (2-35)
% yz(k) - azzyz(k-l) ~ u(k)=0 ' (2-36) -

These parity relations can be applied in a GVS for detecting failures in

the sensors and the actuator, because each of the three terms yl, yz. and u

bl L

E =

B Y
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is included in two parity relations and excluded from one. Since all the
parity relations represent temporal redundancy, any of the three forms of
residual-generation (see Subsection 2.2.2) may be used. Three important

issues concerning the design of a GVS are examined in the following.

1) The output Y, appears in (2-35) and (2-36) with different time
lags (and so does U in (2-34) and (2-36)). Therefore, a sensor 2 failure
will violate the paritv relation (2-35) one time step later than (2-36)

(regardless of the forrm of residual-generation used). A decision process

S St LA

r>sponding quickly to this effect will declare an actuator failure. But this

'5 is erroneous. If one more time step is considered, both parity relations would

be violated, and the correct failed component (sensor 2) can be identified.

Although this type of transient behavior will disappear (for open-loop
residuals, it will disappear in less than n steps, where n is the dimension
of the system), it suggests that temporal behavior of the residuals should
be carefully considered in designing decision processes that can respond

quickly and accurately.

2) Under the assumption that only one failure can occur, only two of
the three parity relations (2-34)-(2-36) are needed for FDI. To see this,

consider only (2-34) and (2-35). BAn actuator failure affects only (2-34)

T T e

-and a sensor 2 failure affects only {2-35), while a sensor 1 failure affects

boath (2-34) and (2-35). Thus, the voting logic can be modified to recognize

DA NRORS

these failure phenomena, and FDI can be accomplished based on two parity

relations. In fact, it is easy to see that any combination of two of the




-dg3=-

above three parity relations may be employed to generate residuals for

use with the modified voting logic for FDI, and we hove a choice among

three combinations.® 1In the deterministic case with an exact model, all

such combinations will serve equally well, and we may use any one of these

combinations of parity relations. However, in the presence of noise and model-

ling uncertainties, all the parity relations are obscured, albeit to different

extents. Thus, residual-generation should be based on parity relations that

are least vulnerable to such adverse effects. This design aprroach is the

focus of this part of our research and it will be fully considered in Chapter 3.
3) while some systems have more paritv relations than needed for voting,

others may have less than the necessary number. For instance, suppose in the

above example we replace the single actuator with two actuators characterized

by b1 = {1 1]' and b, = [-1 1], respectively. This new configuration will

2
not change n since A and cj remain unchanged, and there are three parity

relations:

yl(k)-(a11+a22)y1(k—1)+a11a22y1(Kr2)+(a22-a12)u1(k-l)-ul(k-z)-.
(a22+a12)u2(k-1)+u2(k-2)-0 {2-37)

Yl(k) - allyl(k-l) - alzyz(k-l) - ultk-l) + uz(k-l)-o (2-38)

yz(k) - azzyz(k-l) - ul(k-l) - uz(k-l)-o (2-39)

These three parity relations are inadequate

* A system may inherently have more candidate parity relations than required
for GVS (with or without the modified logic). For example, suppose C2=Il 1}

in (2-33d). Then n2=2. ;;n-4, i.e. there are four independent parity

equations, while only three (two for the modified logic) are needed.
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above three parity relations may be employed to generate residuals for
use with the modified voting logic for FDI, and we have a choice among

. *
three combinations. In the deterministic case serve equally well, with

an exact model all such combinations will and we may use any one of these

‘combinations of parity relations. However, in the presence of noise and model-

ling uncertainties, all the parity relations are obscured, albeit to different
extents. Thus, residual-generation should be based on parity relations that
are least wvulnerable to such adverse effects. This design approach is the
focus of this part of our research and it will be fully considered in Chapter 3.
3) While some systems have more parity relations than needed for voting,
others may have less than the necessary number. For instance, suppose in the
above example we replace the single actuator with two actuators characterized

by b, = [1 1]' and b2 = [-1 1], respectively. This new configuration

1
will not change n since A and C remains unchanged, and there are three parity

relations:

yl(k)-(all+a22)yl(k-l)+a11322y1(k-2)+(a22-a12)u1(k—l)-(a22+a12)u2(k-1)+u2(k—2)

(2-37)
Yl(k) - allyl(k—l) - alzyz(k-l) - ul(k-l) + u2(k-l)=0 (2-38)
Yz(k) - azzyz(k-l) - ul(k-l) - uz(k-1)=0 (2-39)

Note that (2-39) is the same as (2-36). These relations are inadeguate

* A system may inherently have more candidate parity relations than required
for GVS (with or without the modified logic). For example, suppose Cz-tl 1]

in (2-334). Then n,=2, n-a=4, i.e. there are four independent parity

equations, while only three {two for the modified logic) are needed.
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for GVS, which requires four relations for four components. (These relations
are also in-sufficient for use with *the modified logic described earlier,
because a sensor 1 and an actuator 2 failure will both violate all three
parity relations.) Therefore, other FDI schemes that exploit the failure
information carried by the residuals in ways different for GVS will have to be

used. We will examine these methods in the next two sections.

2.4 Failure Characteristics in Parity Space

The generalized voting scheme discussed in the previous section repre-
sents one method for using one form of the failure information contained in
the residuals for FDI. In this section we will examine other methods of
exploiting this information to detect and identify failures, and we will
contrast them with GVS. We will primarily consider (open-loop) residuals
that are generated using parity functions, i.e. the residual vector is simply
a parity vector. 1In Section 2.5 we will discuss the case with (closed-loop)
residuals generated by filters.

First we will consider sensor FDI using direct redundancy. Based on

direct redundancy, the residual vector r(k) has the form (y is m-dimensional)

r(k) = Qy(k) (2-40)
Each row of the right hand side of (2-40) is a parity function. For GVS,
Q is chosen such that for each sensor (j) there is at least une component of
r that is dependent on yj and one component that is independent of yj. When
a sensor j failure occurs, all residual components depending on yj will

become non-zero, while all other components remain zero (assuming no noise).




TR A

-46~

The mechanism of the GVS involves examining each individual component

separately for a bias. Based on the location of the biases in r, a failure
identification is made.

Another way of using the failure information contained in the residuals
is as follows. A faulty sensor, say the j=-th one, contains an error gignal

v{k) in its outputs

yj(k) = cjx(k) + v(k) (2-41)
When this sensor fails, we have (assuming no noise)

r(k) = §jv (k) (2-42)

where ﬁg is the j-th column of Q. That is, no matter what v(k) is, the

effect of a sensor j failure on the residual always lie in the direction

ﬁs. Thus, ﬁj is the failure direction in parity space (FDPS) corresponding

to sensor j. (In [13], ?% is referred to as the j-th measurement axis in
parity space.) If an Q can be chosen such that all its columns represent
distinct directions in the parity spacet then a sensor of failure, j=1,...,m,
can be inferred from the presence of a bias component in the residual along
ﬁs. Clearly an {i suitable for voting satisfies this condition. Generally,
there may exist an Q with as few as two rows and with columns pointing in m

distinct directions in the parity space. This approach to sens~r FDI was

studied by Potter and Suman [13 ] and Daley et al [16].

* The columns of ) are, in fact, linearly dependent (but possible distinct)
because there are at most m-n linearly independent parity functions (rows of

1) while there are m columns in §{}. Here, m is the number of sensors, and no
is the rank of C (C ix a matrix with ¢, as its rows, and n_  is the number of

3 (¢

linearly independent sensors).
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A FDI system based on recognizing FDPS examines all the residual

components together, because the failure signature being looked for is a
particular direction in parity space not restricted to one of the coordinate
axes defined by individual parity relations. This FDI scheme (called the

FDPS method for brevity) is different from the GVS in that the latter examines
each residual component separately. These two schemes actually exploit
different aspects of the failure information carried by the residuals. This
difference can be illustrated by a simple example described below. Suppose
that the residual r(k) is a 3-vector given by (2-40). To provide a basis for
comparing GVS with the FDPS method we assume that Q is chosen such that r is
suitable for use in both FDI methods. Letus further suppose that the second
component r2 of the residual is independent of y2. In order to detect a
sensor 2 failure, GVS will look for a bias in r, and a bias in r, (see Figure
2-2a). To detect the same failure, the FDPS methods will search for a signature %
in the direction ﬁé in the r I, plane (see Figure 2-2b). 1In this case the

1

FDPS is defined by a precise combination of the biases in r1 and r_, and it

3'

represents a more detailed characterization of the failure signature (information)

than the biases considered by GVS. It is by the exploitation of this detailed
information that the FDPS method can, at least in theory, detect and identify
m sensor failures using a 2-dimensional r, i.e. i has two rows but m distinct
columns.

These two forms of failure informatién are also used by GVS and the

FDPS method when temporal redundancy is employed. In such cases GVS still

examines each residual component separately for the presence of a bias.
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FIGURE 2-2a: Failure Infornation psed by GVS.

"

FIGURE 2-2b: Failure Information Used by the FDPS Method.




T AT

-49-

However, the failure effect ‘s not necessarily confined to a fixed direction
in parity space. To illustrate this, consider a residual vector r(k) based

on the parity equations (2-37)-(2-39). We can write r(k) as

P - r -
Y, (k)
1l -(a_.+a..) a, a 0 0 1l
11 722 11722 Yl(k°1)
5 r(k) = |1 -2, 0 0 -a,, yl(k-2)
: Y, (k)
: 0 0 0 1l -a .
% ! 22_ ! yz(k I)J
i ) u (k=1)
i a _-a -l -(ata.)) 1
22 12 22 12 u, (k=2)
; 1 2 0 1 of | u,x-1 (2-43)
i -1 0 -1 0 uz(k-Z)

When sensor 2 fails, its output is described by (2-41) and the residual

becomes
0 0
r(k) = JoO v(k) + -a, v(k=-1) (2-44)
1 -322

Unless v(k) is a constant function of tire, the effect (signature) of a

sensor 2 failure is only confined to a 2-dimensional subspace of the parity

space. It is easy to see that this is also trues for the other three components.
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From the above observation, we can conclude that if a component is
involved in more than one component of the residual (parity) vector and a
window of more than one point in time of the signal associated with this
component is used in generating the residual vector (i.e. if temporal
redundancy is used), then the signature of this component failure is generally
constrained to a multi-dimensional subspace of the residual space. Now each
failure is associated with a subspace in the parity space. These subspacas
in general may overlap with one another, or some may be contained in others.
If no such subspace associated with a failure is contained in another, FDI
can still be performed by determining which subspace the residual lies in.

(We note that the detection filters of Beard [ 7 ) and Jones [ 8 ) effectively
act in a closed-loop fashion to confine the signature of an actuator failure

to a single direction and that of a sensor failure to a 2-dimensional sub-

space in the residual space. We will discuss this in the next section). From
(2-43), it is easy to see that the subspaces associated with the four components
(2 sensors and 2 actuators) are all 2-dimensional but no two of them are the
same. Hence, FDI can be accomplished using the mechanism described above,
vhereas the GVS would not be applicable in thic case (see Section 2.3).

The two forms of failure information discussed above represent time-
independent failure characteristics, i.e. they are not dependent on detailed
models of the (time history of the) failures as we have not assumed anything
about the nature of v(k). The temporal information buried in the residuals
is also useful. It may be used to determine the naturs of the failure or cs
added informaticn to distinguish failures. For example, consider a sensor

failure with signature described by (2-44). Under this failure, r(k) generally

L]
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traverses a 2-~dimensional subspace. If r(k) is cbserved to vary only
along (G -a12 1-22]', we can deduce that a constant bias has developed
in this sensor. Turning this around, if we mcdel the failure that we wish
to look for as a bias, then we can look along the specific direction

(o -84 l-azzl: Also, if we model V(k) in any other parametric form,
e.g., as a ramp, we will specify a specific type of temporal trajectory
for the signature. It is this type information that is used in the GLR
algorithm, and it is this type of failure signature characterization that
will form the starting point of our investigation of decision rules in
Chapters 4,5, and 6.

To see how temporal information can help in distinguishing failures, let
us consider r(k) given by (2-43). The subspaces associated with the two
actuatore are clearly not the same, but they overlap with each other. 1In a
noisy environment it may be difficult to determine which subspace r(k) belongs
to, especially when a major component of r’k) lies in the overlap. Now,
suppose we have models for how the two failed actuatorswould behave over time.
Then, we can determine the (temporal) signature of these fa.lures (i.e. r(k)
under each failure assuming no noise). Since these signatures describe the
temporal behavior of the residual (the direction of r k) for each k) under the
corresponding failures, they represent more detailed characterization of
failure information. As a result, listinguishability of these two failures
can be improved by using a scheme that lcoks fo: these signatures in the
residuals (by means of correlating the residuals with the sigratures). Indeed,

this is the basis for the GLR method.
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From the above discussion we can sce that in ~rder tc exploit temporal
information, failure mcdels are required. Moreover, decision processes making
use of the temporal behavior of the residuals are more complex, because the
failure signatures (now time functions) must be stored or generated on-line.
Correlation of thae residuals with the failure signatures will also add to the
computational complexity.

In summary, we have described several forms of information contained
in residuals generated from parity functions which are exploited for FDI. The
simplest form is that smployed by GVS. Failure directions (and subspaces)
in parity space are time-independent failure characteristics utilized by
several FDI schemes. Temporal information concerning failures, if available,
can provide even more useful information for detecting failures, although

there is a cost in additional system complexity.

2.5 FDI Systems Using Filters

In the previous section we discussed how the information contained in
the residuals generated by parity functions ig utilized for FDI. There is
a large class of FDI systems such as GLR [ 4 ] and the detection filters of
Beard [{ 7 ] and Jones [8] that use filters to generate residuals for FDI. 1In
these residual-generation processes, analytical redundancy is not used in
the same explicit form as in the processes discussed in the last section.
Here we will attempt to determine its relationship with the methods discussed

in Section 2.4.
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The general form of the filter we will consider is given by the

following equations

x(k+1]k) = AX(k|k) + Bu(k) (2-45a)
x(k+l |k+l) = x(k+1|k) + Kr(k+l) (2-45b)
r(k+l) = y(k+l) = Cx(k+l k) (2-45¢)

where ;(klt) is the estimate of x at k given y(1),....y(t), t<k; C is a
matrix whose rows are the cj's; y is the vector of the m sensor outputs;

K is the filter gain that is chosen differently in different FDI schemes, r
is the filter innovations and which are the residuals used for FDI. Since the
prediction §(k+1|k) is based on the system dynamics (2-5) the Iilter has
already made use of temporal redundancy of the cystem. Ncte that CQ(k+1|k)
is the prediction of y(x+l) based on y(l),...,y(k), the residual given by
(2-45¢) is a vector analng of the closed-loop residual (rs) discusead in
Subsection 2.2.2. 1In contrast to an open-loop residual-generation process
(whose main purpose is FDI), & filter actually serves two functicns:

to provide an estimate of the statc in the normal mode (no failure) and to
generate residuals for FDI.

In the absence of a failure, the innovations are given by

e(k+1) = Ae(k) (2-46)
r(k) = Ce(k) (2-47)
where
ek) = x(kx) - x(k|k-1) (2-48)
A = A[I-KC) (2-49)
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A is the closed-loop filter matrix, and € is the error of the state estimate.

Under an actuator failure, the residual is characterized by -

e(k+l) = A€(k) + £z(k) (2-50)

and (2-47), where f is a vector (corresponding to bj associated with the
failed actuator) and z(k) is some scalar time function representing the
temporal characteristics of the failure. When a sensor j failure occurs,

the residual becomes

€(k+1)

Ae(k+1) + (AK) § V() \ (2-51)

x(k) ce(k) + ejvlk) 3 (2-52)

where (AK)j is the j=-th column of the matrix product AK, ej is the
m-dimensional vector with the j-th element being one and all remaining
elements equal to zero, and v(k) is the scalar time function representing
the temporal characteristics ot the failed sensor. Therefore, a coumponent
failure affects the residuals through the matrices A and C.

Note that A depends on the filter gain K (2-49). As a result, the
failure effect on r can be controlled to some externt by a choice éf K. For
different FDI schemes K is chosen to achieve different effects. For example,
in GLR K is chosen so that (2-45) is a Kalman filter, i.e. r(k) is a zero
mear white sequence under the no-fail condition. With this choice of K,
failures generally do not produce special effects such as fixed directions
in the residual space. For hypothesized z(X) or vi{k), the failure signatures,

wnich are time functions, can be calculated. “ae GLR scheme achieves FPDI
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by recognizing such signatures contained in the residuals, and it makes
heavy use of the temporal information.

The detection filter [ 7][ 8 ]* for an actuator failure has a special
filter gain that makes ciif, i=0,1,...,n=1, 1lie in the same direction as
Cf. Thus, this actuator failure produces a directional effect on r, and
the detection of this failure can ke accomplished by checking the residual
for a component in this direction. For a sensor failure, the gain of
the detection filter is chosen such that the failure signature is constrained
to a 2-dimensional subspace of the residual space. {(Because of the term
(AK)j v(k), which actually depends on the gain, and ejv(k) in (2-51) and (2-52),
it is generally only possible to choose a K so that a sensor failﬁre signature
is confined to a 2-dimensional subspace [ 8]). Therefore, the detection fil-
ters produce residuals carrying directional signatures, which are similar to
those of the open-loop residuals discussed in the last section.

In summary, we note that residual-generation using filters is based on
temporal redundancy. However, failure signatures are directly affected by
the choice of the filter gain. In GLR the gain is chosen to whiten the
residual, and the failure signatures are arbitrary time functions. Consequently

the GLR schemes relies on temporal information for FDI. In a detection filter,

directional failure signatures are produced in a closed-loop fashion via a
proper choice of the fiiter gain, and the FDI mechanism is similar to that
used with the open-loop residuals with directional signatures (see Section 2.4).

Therefore, similar types of failure information may be produced via open-1o0p

* The original work of Beard and Jones concerns the continuous time problem,
but the theory readily extends to the discrete time case where the system
matrix ;. is invertible. Also, it is possible to design a single detection
filter for detecting several failures.
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or closed-loop residual-generation process.

The discussion included in this section represents a preliminary )
effort in trying to understand how closed-loop FDI systems use analytical
redundancy. PFurther research in the future is required for a thorough

understanding of this subject.
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CHAPTER 3

DESIGN OF ROBUST RESIDUAL GENERATION PROCESSES

3.1 Introduction

In Chapter 2, we presented a unified view of analytical redundancy in terms
of generalized parity space, and we also discussed how parity functions can be
directly used to generate residuals in the open-loop fashion for FDI. When the
system model is exact and there is no noise disturbance, Chapter 2 provides
the framework for obtaining the exact parity equations relating the various
sensor outputs and actuator inputs. However, modelling uncertainties and noise
effects will corrupt the parity relations. Thus, residual-generation process
based on any nominal deterministic system model will be to some degree sensitive
to modelling errors and noise. In this chapter, we will examine the problem of
designing residual-generation processes that are robust in the presence of model-
ling uncertainties and noise disturbance.

Thoughout this chapter, we will assume that the structure of the system
under consideration is known to have the form (2-5)-(2-6), and we are only
uncertain of the exact values of some of the elements of the system matrices.
That is, we have the following system model that includes both modelling uncer-

tainties and noise disturbances,

x(k+l) = A(Y)x(k) + §bj ('Y)uj (k) + E(k) (3-1)
i=1

Yy (k) = Cj {(yix(k) + nj (x), b L) IS | (3-2)
where Y is the vector of N uncertain parameters of the model, and we assume

n
that YEl where I' is a known range of parameter values (YETCR).
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The dependence of A, Pj and cj on Y indicates that their elements may
be (different) functidns of the parameter vector. This allows the modelling
of elements in the system matrices as uncertain quantities that may be
dependent on ~sne another. The vecﬁors £ and n =[nl...nm] are independent,
zero-mean, vhite Gaussian noisé vectors wiﬁh constant covariance matrices
Q(>0) and R(*0), respectively.

In this chapter we will concentrate on the problem of determining
optimal parity functions, where "optimality" will be defined in terms of
a measure of how large a deviation from zero could occur in a given parity
relation in the presence of model uncertainties. Parity relations deter-
mired in this manner can be directly used in an open-loop FDI system, and
our technique essentially provides the optimum design for this application.
Of course, these parity relations can alsoc be used to define ARMA models
based on which closed-loop filters can be constructed to generate residuals.
Although our design is aimed directly at optimizing the robustness of such a
open-loop algorithm, one would generally expect that a parity relation that

is robust open-loop could also be good for closed-loop residual-generation.

The problem of determining optimal parity relations for closed-loop residual-

generation should be investigated in the future, and our work provides the
framework for such an investigation.

Before we proceed to describe the nature of the design problem at hand,
it is useful to define the structure and the coefficients of a parity function.
Recall that a parity function is a weighted combination of the actuator inputs
and sensor outputs (see (2-18)). The structure of a parity relation refers
to the set of input and output terms and the associated sets of time lags

for each that are included in the parity function. For example, consider the

;
;
:
k
}
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parity relations
yl(k) + 7y1(k-l) + 32y2(k-1) =0 (3-3)
yl(k) - .1y1(k-1) + 5y2(k-1) = 0 (3-4)
yl(k) + 3y1(k-1) + 4y2(k-1) - .Olul(k-l) =0 (3-5)

Relations (3-3) and (3-4) have the same structure, because both parity
functions include yl(k), yl(k-l) and yz(k-l); (3-3) and (3-5) have dif-
feient structures, because (3-5‘ include the additional ul(k-l) term.
The coefficients of a parity function refer to the (non-zero) coefficients
of the sensor output and actuator terms in the parity function. For
example, the parity coefficients of (3-5) are 1,3,4, and -.0l.

A redundancy relation is specified by a parity structure and a set of

parity coefficients. Any parity function (p) can be written in the form

p = ay(k) - BU(Kk) (3-6)

where Q(k) and G(k) are vectors consisting of the sensor outputs and
actuator inputs included in the parity function, respectively; the row
vectors 0 and B represent the coefficients of the sensor output and
actuator input terms in the parity function, respectively. Under the ideal
conditions of a deterministic csystems whose parametérs are known exactly, o

and B contain the non-zero elements of W and wB of (2-12). For example,

we have the following Y(k), U(k), a, and B for (3-5)
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i
Y(k) = '
yl(k)
yz(k-l)
U(k) = tul(k-m
E o = (3 1 4)

g B = .01}

Therefore, in the above notation, the components of Y(k) and U(k) define

the parity structure, and a and B represent the parity coefficients.

We now proceed to describe our approach to the design of robust
residual-generation processes. This approach is best illustrated in terms

of an example. Recall the three parity equations corresponding to the

2-dimensional example (2-30) considered in Section 2.3.

In Section 2.3 we indicated that only two of the above parity relations

Yl(k)-(a11+a22)yl(k-l) + allazzyl(k-Z) - alzu(k—Z) = 0 (3=-7) %
y, (%) - a v (k=) - a,y,(k-1) =0 (3-8) é
y,(k) = a,y,(k-1) - u(k-1) =0 (3-9) j

|

need to be used in a gemeralized voting system to detect and identify a

and a

single component failure. When the elements of A, i.e. a_,,, a
11 12, 22 .

are perfectly known and there is no noise, all combination of two of the «

above parity functions will serve equally well for generating residuals.

T e e
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When the exact values of all' a22, and a are not known, (3-7)=(3-9)

22
only specify the structures of three parity functions whose coefficients
are uncertain quantities. In order to make use of any of these parity struc-
tures, we have to determine an appropriate set of coefficients for it.
Ideally, the value of a parity function is zero in the absence of a failure.
Under noise disturbances and modelling uncertainties, any choice of parity
coefficiecnts will result in a non-zero value for the parity function even
when there is no failure. Hence, a natural design objective is to choose a
set of parity coefficients that will make the patrity function, in some sense,
as close to zero as possible in the absence of a failure. Such a choice of
coefficients effectively minimizes some measures of the effects of noise and
modelling error on the parity functions. We will call this minimized measure
of adverse effects the parity error (and we will define it precisely in
Section 3.3).

When we have chosen the parity coefficients for all three parity struc-
tures, we will have also determired their corresponding parity errors. Then,
it is clear that the residual-generation process should be based on the two
parity functions that provide the largest failure signatnre to parity error
ratios.

From the above discussion, it is evident that our design approach
consists of three steps: 1) identify the useful parity structures,

2) determine the coefficients and the parity errors for these parity
structures, and 3) “ .termine the signature to parity error ratios that are
used in deciding which parity functions are to be used for open-loop
residual-generation. We will examine these three design steps in Sections

3.2, 3.3 and 3.4, respectively.
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The parity ~ocefficient design problem will be formulated as a minimax
optimization (Section 3.3). The solution to such a problem is generally
difficult. In Section 3.5, we will discuss a simple numerical example from
which we can derive same useful insight into the solution procedure of the
general minimax optimization. Finally, a summary of our approach to the

design of robust residual-generation processes is included in Section 3.6.

3.2 Parity Structures Under Modelling Uncertainties

In this section, we will discuss how to obtain parity structures when
there is uncertainty in the system model. First, we will review how a parity
structure is obtained under the ideal condition (exact model and no noise).

A parity function is determined from a set of linearly dependent rows of
C5(55+1), j=1,...m. Let C be the matrix composed of this set of dependent
rows. Corresponding to these rows there are the components of

VB(k,;a), j=1,...,m, which are collected together to form the vector i(k),

and there are the rows of Bj(gﬁ)' j=1,...,m, which are collected into

the matrix B. Thus we can write a parity function as

p= wl&(k)-ﬁum.?on (3-10)

with u(=0. Note that p ig used in this chapter to denote a scalar parity
function. Since not all components of U(k,Eb) are necessarily involved

in a parity relation, we may collect all the non-zero columns of B into a

B and the corresponding components of U(k,ga) into U(k). Then we have

P = WY (k) - wBU(K) (3-11)
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which is in the form of (3-6). The structure of this parity function is
defined by the componernts of §(k) and ﬁ(k). In terms of the notation de-

fined above, we have
Y(k) = Cx(k) +BU(k) (3-12)

In the presence of modelling uncertainties and noise, (3-12) becomes

Y(k) = C(Y)x(k,y) + ®(YEk) + n(k) + BYIUK) (3-13)

where
Ee [EXK) ... E(k+p)] (3-14)

and p is the order of the parity function. 1f the i~-th component of

Y(k) is ys(k+£1),then

ni(k) = ﬂs(k+2l) (3-15)

and the i-th row of ¢, i.e. &(i), is

241
(1) = [e (M)A Y .e no...0] (3-16)
and ® has p columns. It follows from (3-1) and (3~-2) E and ﬁ are

independent, zero-mean Gaussian random vectors with covariances

. Q 0
{€(E (k) = Q = . (3-17)

E(RKF' (K} = R (3-18)
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and the (i,3j)~-th element of R is

R 8

(3-19)

13 = Rge 2L,

where § is the Kronecker delta function, Rst is the (s,t)~th element

21'22

of R, and we have assumed that ij(k) = yt(k+12). Note that x(k,y) is a

random vector that is uncorrelated with E(k) and f(k) and
E{x(k,v)} = X (ks Y) (3-20)

E{ [x(x,y) - xo(k.Y)][x(k.Y) - xo(k.YH'} = ;:(Y) (3=-21)

where zx(Y) is the steady state covariance of x(k,Y), which is dependent
on Y through A(Y) and B(Y). In (3-13) we have also explicitly shown the
dependence of C and B on the parameter Y.

Now we will consider parity structures under modelling uncertainties
and noise effects. When (3-13) holds, the rows of C(Y), which are chosen
based on some nominal value Yo of Y, may not be linearly dependent for some
other vYel. Even if they are linearly dependent for all vyel, for any choice
of the parity coefficients, p (3-11) is generally not zero in the absence
of a\failure. This is because w satisfying wc(yo)-o does uuvt generally
imply wC(y)=0 for all <yel. However, the parity structure of (3-11) is
useful if we can find a set of parity coefficients that will make p close to
zero under the no-fail condition. From this point of view, it is not

necessary for a parity structure to be based on a C that is composed of

linearly dependent rows of Cj(;3+1), j=1,...,m, as long as we can determine




a_set of appropriate coefficients that will result in a p that is close

to zero when there is no failure. Then, the procodurq of obtaining a

parity structure described in the beginning of this section can also be
applied to a C that is composed of some arbitrary set of rows of
Cj(;5+1). j=1,...,m. The usefulness of such a parity structure depends on
the choice of coefficients which will be considered in the next section.
Using the above reasoning, we can obtain many candidate parity struc-
ture for residual-generation. However, not all of these structures are
useful for a particular FDI system. Consider a generalized voting system,
for instance. We need a set of parity functions that satisfy: 1) all
components of interest must be included in at least one parity function,
and 2) all components (possibly except one) must be excluded from at least
one parity function. Requirements such as these help in limiting the number
of candidate structures to be considered. In most applications, special
feature of the system matrices will provide additional insights in the
choice of parity structure. We will not address this problem further, but
will focus on optimizing the set of parity coefficients once we have chosen
a parity structure. Then we can use the results of this optimization to

compare the usefulness of different parity structures.

3.3. Design of Parity Coefficients

Here, we will examine the problem of determining an appropriate uet

of coefficients (a,B) for a given parity structure (3-6)

p = a¥(k) - BU(K) (3-22)




when we have noise and uncertainties in the system modelled by (3-1) (3-2).
I the following, we will describe a formulation of this design task as a
minimax optimization problem.

Consider the parity function (3-22). Under modelling uncertainties
and noise, P is generally not zero for any choice of o and f. It is in

fact a function of u,e,y.x.ﬁ,E,and N. Substituting (3-13) in (3-22) we have

pla,B,Y,x(k,y) ,0(k)) = a[C(Y)x(k.Y)+®(Y)E(k)+ﬁ(k)+8(Y)a(k)]

- BU(K) (3-23)

Ideally, for (3-23) to be n parity function, p must be zero under the
no-fail condition. Therefore, in order for p to be a useful parity function,
we have tho choose 0 and 8 such that p is close to zero in the absence of

a failure.

Due to the noises £, 7, and the random state x(k,Y),p is a random
variable. A convenient quantity indicating the magnitude of p is
E{pz(a,B,Y.x(k.Y),a(k)}, where the expectation is taken with respect to the
joint probability density of x(k.Y).E(k), and T(x) (assuming the parameter

vector has the value Y). Define

- 2 ~
e(a.B,xo(k.Y‘). Ix(Y'),U(k)) = max E{p (a,B,y,x(k,y),U(k)} (3-24)
yer
where Y* is the value of Y that solves the maximization, and xo(k.Y') and

tx(Y') are the mean and covariance of x(k,y") (3-20), (3-21). The quantity
e can be interpreted as the worst affect of the modelling error and noise
on the purity function p. Then, we can attempt to achieve a conservative

design by solving
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min e(x,B8,x,(k,Y"), £ (Y*), U(K)) (3-25)
a,h 0 X

As it stands the minimization probiam (3-25) is not meaningful. Since
p is linear in o and 8, (3-25) has a trivial solution: a=0, f=0. A parity
function primariiy velates the various sensor outputs, i.e. a parity func-
tion always includes senror outputs but does not necessarily include actuator
input (e.g. a direct redundancy relation). Therefore, 0 must not be zero.
Without loss of generali’y, we can restrict a to be unit magnitude. The
ctuator input term in a parity function may be regarded as serving to make
the parity function zero (compare (2-10) and (2-12)). Then, B is essentially
free. However, we will now show that for each value of G(kL 8 actually

only has a single degree of freedom. For a given G(k). any B canbe written as

B = AU'(K) + 2 (3-26)

where A is a scalar, and z' is a vector lying in the subspace orthogonal
to a(k). i.e. zU(K)=0. Hence, the component £ in B will not produce any

effect on p. This implies that we only have to consider B8 of the form

8 = AU’ (k) (3-27)

where A represents the only degree of freedom of 8.
Now we can construct C meaningful, optimization problem:
min max E{pz(e,B,Y,x(k.Y).Z (Y).G(k))} (3-28)
a, B8 ver x

s.t. aa's=]
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Using a 8 of the form (3-27) and (3-17), (3-18), and (3-23), we can write

3 E{pz} as
: B(p” (@, Y,x (K, ), 5GK)) b= T0AS (1,30 (ko) 2 (¥),500) [ (3-29)
E where S is the symmetric, positive-definite matrix for all ¥y
) Sn S

S(pro(k'Y) Iu(k)) = (3'30)
] s S
E 21 22

S, = C(Y){xo(k,Y)xé(k,Y)+£x(Y)]C'(Y) + &(V)Q¥' (y) + R (3-31)

| + BNUT (B (v) + C(Y)xy{k, 1)U (1B (1)

+ B(Y)a(k)X6(k.Y)C'(Y)

] 512 = SZl = -u[B(Y)u(k) + (' (Y)xo(k.Y)] (3-32)
: ,
822 = U {3-33)
W= (U (KUK (3-34)
% ' Note that S is dependent on xo(k.Y) and § (y), the mean and covariance
2 X

of the system state, given Y ic the true parameter vector. In general,
xo(k,Y) and Zx(Y) are very complex functions of Y. As a result, the
maximization of E{pz} over Y is very difficult to perform. However, the

problem may often be simplified by a reasonable approximaticn discussed in

F ; the following.
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The principal feature of a parity function is to relate the outputs
of different sensors and inputs to actuators at different points in time.
The matrices @, 9, and B, which contain the dynamics of the system, repre-
sent the dominant feature of the parity relation. From this vantage point,
the primary effect of the uncertainty in Yy is manifested through C, ¢, and
8. Thus, it seems reasonable to approximate xo(k,y) and Zx(Y)
by xo(k) and Xx corresponding to some nominal value of ¥ since the effect of
Y on e through xo(k,y) and Zx(y) is indirect and only of secondary
importance. With this approximation, the dependence of S on Y is simplified,

and the minimax problem takes the form

min max [GAIS (y,x, k), I ,U(K)) [aA] (3-35)
a,A  yer x
s.t. oa'=1

Despite the fact that the objective function of (3-34) is quadratic
in @ and A, it is generally very difficult to solve, because S may depend
on Y arbitrarily. In Section 3.5, we will discuss a simple example for
which a solution procedure has been developed. There, we will also report
some insights into the solution of the general problem obtained from this
example.

We let a* and A* denote the values of & and A that solve (3-35),

with 8%=XU(k), and

e®(x_(k),r ,U(k)) = ela*,B%x. (k),E ,U(k) (3-36)
0 X 0 X
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We call e* the parity error of the parity function

p* = a*y(k) - B*U(k) (3-37)

Hence, e* is a measure of the (minimizud worst case) effect of modelling
error and noise on (3-36). From the viewpoint of our design objective
(3-28) e* measures the fittness of (3-37) as a parity function.

As an aside, we note that o and 8 are not further constraired such
that aC(¥)=0 and B = aB(y) for some value YeI'. This is because even if
they were, the resulting parity error would not be smaller than that of
(3-36). In additio-n, just as for a* and B*, the @ and B satisfying al(Y)=0

B = aB(Y) do not satisfy aC(Ytrue)=C and B=a B(Y ) in general. We

true

now return to the minimax problem. .

Note that the minimax solution a* and A*(8*) are dependent on xo(k)
and a(k). In general, this means new coefficients would have to be computed
at each time step if we wanted to continually achieve the optimum. This is
clearly an undesirable requizement. Very often a set of coefficients will
work well for a range of conditions, i.e. for x in some region of the state
space. Therefore, a practical approach is tc schedule the coefficients ac-
cording to the operating condition. Each operating condition can be repre~
sented by a set-point, whicn is characterized by some nominal state X, and
50 that are independent of time. Parity coefficients can be pre-computed

{(by solving (3-35) with X, and U_ ir place of xo(k) and a(k)) and stored.

0

Then, the appropriate coefficients can be retrieved for use at the cor-

responding set-point. When the state and the inputs are varying slowly,

—

%
|
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this scheme of scheduling coefficients is especially likely to deliver
performance close to the optimum. In the remainder of this chapter we will
focus on the design of parity coefficients for given set points.

The above formulation of the parity coefficient design problem may be
slightly generalized to account for the fact that the true actuator input
may not be 50 exactly. To accomplish this we will let the actuator input
term U(k) be U + 6U(K) in the minimax problem (3-28). The term U; is the
set-point input (yielding the set-point state xo) and 8U(k) is a random
process that may be used to model two effects. In a true set-point operation,
the set-point is often maintained by means of feedback through a compensator.
Thus, the actuator input contains 60 and §u(k), which represents the
variation in the input due to feedback. Based on the structure of the com-
pensator, an expression for 6U(k) can be derived and subsequently used in
(3-28). We note that 6U(k) in this case will be correlated with the state x.
Using such an input in (3-28) will lead to additional terms in the S matrix
that are the covariance of 06U and cross covariance of 8U and x. Since U(k)
is not a fixed term, B will no longer be of a s}ngle-degree-of freedom but
completely free. As a result we will have to consider the full vector B in
the minimax problem instead 9f the scalar variable X as in (3-29). However, the
basic form of the design problem is not altered.

In the case where the set-point design is used in the parity coefficient

scheduling scheme described earlier, 6U(k) may be used to model deviations

from Uo that are due to time-varying inputs used to change the state, such as

in a manuevering vehicle. This will allow us, to some degree, to account for
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the foot that the input is not necessarily fixed at 50 in the minimax design.

For simplicity, we may model SU(k) here as a white Gaussian process with
covariance Z, that is uncorrelated with the state {(although more complex
models can be used). Again, the inclusion of such a 86U will not change the
structure of the minimax problem, which will be the same as in the previous
case.

In this section, the minimax design method was developed based on the
assumption that Y is unknown. If a probability distribution over I' may be
obtained (or postulated), an alternative design formulation of the parity
coefficient design problem is possible. Namely, instead of minimizing

.. ~r 2 ~ .
max E{pz}, we can consider minimizing E{p"}, where E denote expectation
yer

with respect to the joint distribution of x(k), 0. E. and Y. Then, we are
looking at the averaged effect of ¥ on p. The design problem simply becomes
a constrained quadratic minimization (it is essentially an eigenvalue-

elgenvector problem), and it is simpler to solve. Detailed investigation of

the merits of this approach is left for a future study.

3.4 Choice of Parity Functions for Open-loop Residual-Generation

In the last section we presented a method for determining a set of parity

coefficients for any given parity structure and given nominal set-point x

’

0

Uo that is best in the sense that it minimizes the maximum mean square value

of the parity function under the no-fail condition. After applying this method

to the candidate parity struccures, we have a set of candidate parity functions.
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In this section, we will discuss tue criteria for choosing an appropriate
set among the candidate parity functions for use in open-loop residual-
generation processes.

Associated with each candidate parity function (3-28) is a parity
error e* (3-35), Since p* is linear in a* and B*, the magnitude squared
of the combined vector of parity coefficients [a,8] scales the parity error.
Therefore, the parity errors associated with the candidate parity functions

can be compared if they are normalized. We define the normalized parity

—
error e
e* = e*/||1a*,8"1] (3-41)

where

1/2

I1a*,8*1]] = {1a*,8*11a*,8%1') (3-42)
=1+ B*(B")

and the normalized parity coefficients
a* = a*/| | (a*,8%1]! (3-43)
B = 8*/||1a*,8%11] (3-44)

Then, we can consider normalized parity functions:
p* = @* Y(k) - B* UK (3-45)

. It is now clear that normalized parity functions that have the smallest normalized
parity errors are preferred, because they are close to being ideal parity
Pl functions.

W TG R
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However, this is not the only issue that must be considered in
designing robust FDI systems. Note that the usefulness of a parity function
as a residual depends on how visible failure effects are in comparison to
the inherrent parity error. To illustrate, consider an example in which we
assume an additive failure and we let g denote the additive terms that ap-
pear in the normalized parity function under this failure. (Note that g
is the signature of this failure and it is dependent on a* and B*.) We

define the signature to parity error ratio T as

T - lgI/I?a"’ll/2 (3-46)

Suppose we have to choose between two parity functions for the FDI of
a particular failure. Then, we should choose the one that gives a bigger 7.
Por instance, consider the parity structure (3-8) (3-9) of the example discussed
in Section 3.1. Suppose we have determined the normalized parity coefficient

for these structures, and we have the parity functions

Py = .778 yl(k) + ,545 yl(k-l) + .311 yz(k-l)

P, = .592 yz(k) - .474 yz(k-l) + .652 u(k-1)

If the failure we are interested in detecting is a bias of magnitude Vv in

sensor 2, the signature 9, and 9, corresponding to Py and p, are

g1 = _311v

9, = .118v




1
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and

T, = .311v/[€{f

1

-
", = .11av/[e;]

) )
where e1 and ez

for detecting a bias in sensor 2, we should choose pl(pz) if w1>(<)ﬂ2,

are the normalized parity errors of 1 2 and 1 2% Therefore,

- - > - -
i.e if e, <(>)6.92 e,

In summary, parity functions with small normalized parity errors are
usually preferred. In considering the detection and identification of
particular failures, the signature to parity error ratios should be compared.
The requirement for using 7 is that the nature of the failure will have to
be given. 1In the above example, the failure of interest is simply a bias in

the second sensor.

3.5 A Numerical Example

In this section, we consider the coefficient design problem for a
simple example. We will develop a simple solution procedure for this problem,
and we will also discuss the relation between this solution method and the

solution of more general coefficient design precblems.

The Numerical Example

The system under consideration is a 4-dimensional system operating at

a set-point with two actuators and three sensors, The values of the system

matrices are shown in Table 3-1. Except for two elements of the A matrix,

L Ty T

G L
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S i L

r* b
. ~.7 .7
0 .8 Y
A= 1
| -1 o o0 .
EF
E 0 0 v 4
! 2
0 0
5 B = 1l 0]
0 1
o] 0
c1 = [0 0 1 o)

v,€ [.02, .2] NOMINAL v, = .1

ﬁ yze I-.2, ~.1] NOMINAL 72 = ~,15

TABLE 3-1: System Parameters
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all other parameters of the system are known exactly, These two uncertain
elements are assumed to be two independent parameters denoted by Yl and Yz.
The ranges of these parameters are also shown in Table 3-1. The system is
stable over the specified range of parameter value. In addition, there are
plant and sensors noises, but we will describe them when we discuss the
numerical results later in this section.
Suppose we want to design a generalized voting system for detecting a !

sensor failure. Three candidate parity structures are
)’2(k)
p, = o -)'z(k+1) (3-47)

¥ (k) :

:
]

¥, (k)

P, = 0, % (k) (3-48)
)'l(k+1)

! yl(k+2)_

p

ys(k)

Py =0, ¥y (k+1) (3-49)

L_)'l(k)
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The corresponding § and ( matrices are shown in Table 3-2. Note that each
C(¢) depends linearly on either Y, or Y, and that the rows of CE are not
linearly dependent for any value of YZ' The parity structures under con-

sideration do not include any actuator inpute due to the fact that C.B,

1
cZB, c2AB, and c3B are all zero. This will not cause any severe restriction
in the following discussion, because the absence of the actuator inputs does
not change the structure of the minimax problem (3-35). Assuming only a

single sensor failure may occur, only p, plus either P, or p, need to be used

for residual-generation (because both Py and P, include sensors 1 and 2).

Solution Procedure

Here, we will discuss the procedure for determining the coefficients for
the above parity structure and also discuss several direct extensions sug-
gested by this procedure. We will discuss its relation to the solution of the
more general coefficient problem at tne end of this section.

Since the *hree parity structures are of the same form (i.e. p=a¥(k}),
we can consider one generic problem characterized by C, a, &, etc.

(without the index associated with the particular parity structure)., We
will let y denote the scalar parameter that appearsin C (since C is dependent
on only one parameter in each of the three parity structures). The minimax

problem is of the form

min max a S(y)a’' (3-50)
o Ye [Yl ’ YZ]
s.t aa'=l
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0 1 0 0 -0~
Cl = 10 .8 Y, 0 01 = 0100
0=

0 1 0 oT -0-
0010 0000
c, - o 0 1 0 o, -
-1 0 ° 1 -100.1 0010
L5 -7 ey, 04 i o ]
o 0 o0 1 -0-
0. = 0001
G=lo o y 4 3
2 o
{ 0 1l 0

TABLE 3-2: The { and ¢ Matrices.
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where the dependence of S on the zet-point Xy is suppressed, and Yl and 12
denote the minimum and maximum of the parameter variation. Substitvting C
and ¢ of Table 3-2 into the expression for S in (3-33), we can easily see

that S is quadratic in y (because C and ¢ are linear in y), and § is positiwv.
definite for any value of Y. Then, oS(Y)a' is convex in Y. In order to see
this, we can write as(y)a' = w2?2.+ wl‘Y + wo>0. where WorWyr Wy are

scalars dependent on 0.) It follows that the maximum of asS(y)a' for anv value

of 0 occurs at either yl or 72, and (3-50) becomes

min max [f,(a),£,(0)] V (3-51)
a
s.t. o0'=)
where
£, (@ = asiya’, im1,2 (3-52)

To gain some insights into the solution of (3-51), let us consider s
2-dimensional version of this problem, i.2. suppose that § is 2x2. 1In
Figure 3-1. we have shown the ellipses fi(a) =8 i=1,2 1in the a-plane.
As L increases, the ellipses grow in size. Recall that o is constrained
to be magnitude one, and this conrtraint takes the form of a unit circle in
the a-plane. Along the unit circle we can trace the value of fi(a). and
this is shown in Figure 3-2. There are basically two cases. The first case
is when the minimum of both fl and £2 (along the unit circle) fall below
the other function (see Figure 3-2a). It is easy to see that the solution

of (3-51) has to be at one of the intersection points g} or g?, i.e.

fl(g?) = fz(g;) and fl(g?) = fv(g?). In Figure 3-2a, the minimax solution is
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FIGURE 3-1: Ellipses in a-plane,
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clearly at g}. since fl(g})< fl(g?). The second case is when the minimum
of either fl or fz remain above the other function (see Figure 3-26). Then
it is clear that the minimum a* is the minimax solution.

The above reasoning can be easily extendeu oo higher dimensional
problems, i.e. S is of arbitrary dimension, as long as S(y) is quadratic
in y. In fact, it can be easily shown that the solution of (3-51) can be

obtained by a two-step prccedure (see Appendix A). To simplify the descrip-

tion of this procedure, we need to define al, 62 and A in following manner

fi«'i‘) = min £ (®) i=1,2 (3-53)
s ]

s.t. oaa'=]
A= {a: £ (@) = £ (), an'=1) (3-54)

Since fl(a) = as(yl)a(s is vymmetric and positive-definite), at is simply
the eigenvector of S(Yl) corresponding to the smallest eigenvalue.

The two-step solution procedure for (3-51) is:
1) The first step involves checking the conditions
fl(al)g f?_(&lv (3-55a)

£,@%)> £, (a% (3-55b)

If both G and a° satisfy (3-55), then the a giving a smalldr fi(a") is

‘he solution of (3-51). If only one &1 satisfies (5-55), it is the solution.

e - a3 M
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If neither satisfies (5-55), then we have to perform step 2.
2) Search over the set A (3-54) to find an a that minimizes fl(oo or
fz(a) {since over A, fl(a) = fz(a)). This is equivalent to solving a

quadratic programming problem with quadratic constraints:

min f£_(a) (3-56)
1l
a
s.t. oaa'=1l

als(yh -s(y2) Ja' =0

The solution of (3-56) is the minimax solution to (3-51), if step 1 fails
to produces a solution. The minimization may be solved numerically using
existing optimization techniques [ 141].

The above solution procedure can be readily extended to the case where
S is a quadratic function of an N-vector Y and each element of Y is indepen-
dently bounded by an jinterval (i.e. I is a hyper-rectangle}. Then the

minimax problem (3~51) becomes

min max fi(a) (3-57)
¢ je1,...,2¢
s.t. aa'=1

where fi(a) = uS(Yi)a', and Yi, i=l,....2N denote the 2H corners of T.
The above solution procedure is modified as follows. In Step 1, we have

to consider the minimax of all fi(a). That is, we have to replace (3-55) by

fi(&i) = min fj<&1>. i=1,,..,2% (3-58)
ju1,...,2%
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In step 2, we will have to solve (3-56) for all combinations of fi(c) and
fj(u). i#j. Then the minimum of all the solutions of the quadratic programs
is the minimax solution.

This solution method can be extended to handle parity structureswith
actuator inputs. Of course, the corresponding S matrix has to be quadratic
in v for our approach tc be valid. 1In Appendix A, we will discuss such an
extension to include actuator inputs for the scalar case. The N-parameter
case with input terms can be treated in the same way as the N-parameter

case with no input term was treated in the above discussion.

Numerical Results

The minimax design problem has been solved for a set of six test con-
ditions consisting of different set-points and different plant and sensor
noise intensities. These test conditions are described in Tables 3-3 and
3-4. The two set-points [~-4.16 7.03 4.06 -1.01]1' and [4.06 2.90 5.80

-1.45]' can be obtained by applying ul=1 and u_=1C to the rominal system

2
model. The nominal state covariances Zi and £i due to the two different
hypothesized plant noise intensities Ql and Q2 are listed in Table 3-5.

A computer program based on the penalty-multiplier method [14] for
solving non-linear optimization problems is used when it is necessary to carry
out step two of this solution procedure. In addition to the symmetry (i.e. if
a is a candidate solution of (5-56), so is -~0), there are generally local

minima for (5-56). 1In order to obtain the global minimum, a large number of

initial guesses may have to be used in the minimization program. For our
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.25 0 .25 0 -.325 0
°© o O o .5 0 0
1 0 0 2
Q =  =l.325 0o .625 0
0 0 0 .25
0 0 0 .25
R
1 0
R = R, R, = 1,2, i=1,2,3
0
Ry
TABLE 3-3: HNoise Variances
COND. CODE PARAMETERS
a x,= [0000]
1
Q, DIAGR=[1 1 1]
x = [-4.1€ 7.03 4.06 -1.01)
b 0
Ql, DIAGR = [1 1 1]
X, = (4.06 2.90 5.80 -~1.45)
¢ 1
Q. DIAG k = [1 1 1]
x. = [4.06 2.90 5.80 -1.45]
a ()
o', DIAGR = {1 2 2]
X, = {4.C¢ 2.90 5.80 -1.45]
e
Q1 . DIAGR = {2 1 1)
x. = [4.06 2.90 5.8 -1.45]
p 0
Qz, DIAGR= [1 1 1]
TABLE 3~4: Test Conditions.
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.
[ .5580  .03¢42  -,1508  -.0552
zl - .0342  .0102  -.0129  -.0097
* -.1508 -.0129 .5772 .0117
| -.0552  -.0097 .0117 .3113
- “
1.958  -.843¢  -1.114  -.1049
) -.8434 1.803 7691  -.1996
Eo= -1 7601 2.608  -.1081
| --104 -.1996  -.1081  .3829 |

TABLE 3-5: Nominal I
X
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problems, we always used either 31 or &2 (corresponding to the minima of fl
and f2) as the initial guess for the second step, and the algorithm has always
converged to an e* quite rapidly. Other initial guesses were also tried, but
they either led to the same solution or higher e values. Therefore, we may
conclude that we have determined the global minima for our problems. The
resulting coefficients are tabulated in Table 3-6.

For this example, it is evident that the parity coefficients are
generally strongly dependent on the test condition (the values of x., O, and
R). Although this dependence is very complex, some insights may still be
obtained from the numerical results. Consider, for instance, Py under con-
ditions b and c. From Table 3-6, we have for condition b the parity function

Szb = .6411 )&(k) - .7666 )a(k+1) + .0378 yi(k) (3-59)
and for condition ¢

Py = .8947 YQ(k) - .3667 yé(k+l) - .2551 Yi(k) (3-60)

The only diff::rence between these two test conditions lies in the value of
X, (see Table 3-5). Since the first and fourth column of C1 (Table 3-2)
are zero, only the second and third elements of X (x,,

a role in the coefficient optimization problem. The parity function P, can

(x.., and xo3) will play

be written in the form of (3-26):

Py " B Xgp * 0y (Xt Xg3) + agXg5 + LY, s0) (3-61)
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@
f TEST PAR. — —o
| e a
| COND. FUNC.
1 1.002 .7282 -.6808 .0791
a 2 1.008* .9983 .0223 .0483 .0219
1.118* .6833 -.7208 -.1167
1 1.082 .6411 -.7666 .0378
b 2 1.101* .4462 .5079 -.4356 .5942
3 1.210 .7027 -.7115 -.064
; 1 1.096 .8947 -.3667 -.2551
c 1.055 .9599 -.1484 .1992 .1296
3 1.230 .7592 -.6504 .0249
\ 1 1.908 .7865 .3023 -.5385
: a 1.123 .7345  -.5931 .4697 -.6559
| 3 2.228 .7981 -.6007 .0684
1 1.124 .8058 -.5832 -.1025
e 2 1.122* .9669 -.1204 L1242 .1875
3 1.230 L7441 -.6678 .1692
1.427 .7327 -.6803 -.0166
£ 2 1.31* .5146 .4404 -.3312 .6570
1.254 | 6385 -.7687 .0375
Solution obtained in Step 1 of
solution procedure
TABLE 3-6: Minimax Parity Coefficients and Parity Errors
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where Gy, @y and a, denote the elements of & corresponding to yz(k),
yz(kﬂ), and yl(k) respectively, and ; denotes the remaining noise terms.
It is clear that xo3 and “2 modulates the effect of Yl on p,- Qualitatively,

as |xo3| becomes large relative to lxoal (with all the noise covariances the

same), the optimal a, 1

keep the effect of Y, small. As ]xo3! increases, the signal +n noise ratio

will reduce in size (relative to g, and a3) in order to
of yl(k) also increases. Therefore, we expect |u3| to beccme large so as
to make better use of the information provided by Y (k). Under conditions
b, X0 (=7.03)> x°3(-4.06), and under condition ¢, xoz(-2.9)< x03(=5.8). An
inspection of (3-59) and (3-60) shows that the above reasoning holds.

Note that both 12 and P, relate the first sensor with the second one,
and P, is a higher order relation than p;- Furthermore, the rows of C?.
are not linearly dependent for any value of Yz. However, the parity error
associated with P, is smaller than that of P in all cases except condition
a. This shows that a higher order parity function (which is likely to contain
high order effects of Yl) is not necessarily more vulnerable to modelling
errors and .oise. In addition, a parity function based on a C matrix with
rows that are linearly dependent for all values of Y does not necessarily
produce a smaller parity error than a parity function that is based on a C
with independent zrows.

In Table 3-7 we have tabulated the signature to parity error ratio (vri)
associated with the parity function for sensor bias failures under conditions ¢

and 4. (‘Ni denotes the signature to parity error ratio associated with a
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TABLE 3-7:

T Values for

Selected Test Conditions

TEST PARITY . i .
COND. FUNCTION 1 2 3

Py .243v, .504v, -
c P, 176V, 1934V, -

. P, -022v, - -107v,
; P, 1390V, 788V, -
a P, 733V, .693v, -

P, 046V, - -126v,
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parity function for a sensor i bias failure of magnitude V.) The parity

function P, has a larger ﬂz in condition ¢ and a larger 7T, in condition

1
d; P, has a larger "1 in condition ¢. The parity function Py has very
small ﬂl and ﬂa in both conditions ¢ and 4. Therefore, Py is not very useful

for detecting a small bias in either sensor 1 or sensor 3.

Further Discussion of Minimax Solution

Earlier in this section, we discussed a simple method of solving the
minimax problem when the objective function as(y)a' is quadratic in v.
The simplicity of the solution is a direct consequence of the fact that the
maximization of as(Y)a' with respect to ¥ (3-50) can be replaced by the
maximum among as(yi)a' at the finite number of corners (yi) of T (which is
assumed to be a hyper-rectangle) for all a. Whenever this replacement can
be done, this simple solution method applies. This is possible, for ins-
tance, when aS(y)a' is convex over T for all a (aa'=l), Nonlinear dependence
of the elements of A, B, and C on Y and higher order effects (due to prcaucts
such as CA, CAZ, etc.) in C, ¢, and B will make the objective function of the
minimax problem (as(y)a' or [@A)S(Y)[aA]l' when there are actuator terms)
non-quadratic in Y. 1Ir such cases, the task of checking for convexity is
generally difficult. Moreover, convexity is not a necessary condition for
replacing the maximization of aS(yla' over Y by the maximum of
as(yi)a', i=1,...,M (where M is the number of corners of ['). By examining
the geometry of the problem, some insights have been obtained, and we will

discuss them in the following.
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Suppose there is on..’ a scalar parameter Y and there are only two
elements ol and 02, among all elements of C and ¢, that are dependent on Y.
{Although we will only consider as(y)a' in this discussion, it is clear
that the extension to include actuator terms is immediate.) Then, 01 and a,
are also dependent on each other. Let us write ha(cl'OZ) = asS(y)a';

ha(cl'cz) is a positive quadratic function of O, and o, for any value of a.

1
For each value of @, we can draw the ellipsis ha(cl.ozi-ﬁ for different

values of 6 in the 01-02 plane (Figure 3-3a). Note that the ellipsis increases
in size with increasing 6.

Because 01 and 02 both depend on Y, they can only take on values along
the curve (ol(Y),oz(y)) with ¥ varying over its range I'. The curve is
characterized by a scalar equation, say Gl(ol,02)=0 (see Figure 3-36). By
tracing al ng this curve (called Gl) and noting the values of ha and vy along
it, we can obtain the function Ea(Y) = aS(y)a' for a fixed o0 (see Figure
3-3b). It is evident that the maximum of ﬁa does not occur at either end
of T (in the case shown in Figure 3-36). Now suppose the relationship
between O, and 0_, is characterized by another curve 62(01,02)-0 (Figqure 3-4a’.

1 2

The plot of ﬂa versus ¥ for G, (Figure 3-4.L) shows that the maximum of Ea is

2
2

at y .
Based on the geometry described above, we can re-state the condition

under which max Su(y) = max[ﬁa(yl),ﬁa(Yz)] for a fixed 1 as follows.
Y

(We vill let ¢ = [01,02]' to simplify the notation). For each a, consider
the ellipses ha(o) = EQ(YI) and h“(O) = Bu(wz) that pass through o(rl) and
G(Yz) respectively. Define y* such that

Y' = arg max [ﬁ (Yl).ﬁ (Y2\} (3-67,
1 2 ° a
Y.Y

P T N



-93-

“7?
haloy,)= 8
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G(0y03)=0

N "

FIGURE 3-3a: Contours of h0(°1°2) and Gl for a fixed Q.
F&z()’)

‘ /\
|
|
| I
! |
: '
| |
| i
| i

y! y2 -y

FIGURE 3-3b: Ba(y) along G, .
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FIGURE 3-4a: Contours of hu(cloz) and 62 for 2 fixed a.
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FIGURE 3-4b: ﬁa(‘r) along G,.
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Note that Y" is dejendent on o, and hu(c) = Sa(y') is the bigger of the
two ellipses passing through o(Yl) and u(yz). Then,

max ﬁu(Y) = max[ﬁu(Yl),ﬁu(Yz)] if and only if the curve G (describing the
Y

el I ]
relationship between 9 and 02) lies within the bigger ellipse ha(o) = ha(Y ).

Mathematically, this is equivalent to the condition

k(o) < Ea(y'). oe{o: G(o)=0} (3-63)

It should be noted that a brute-force approach to testing condition (3-63)
will vesult in the evaluation of Ba(Y) for all vel'. A conceptually simpler
approach to testing this condition is described below.

Consider the simuitaneous equations

) - - * -
ha(d) hu(Y ) (3-64a)
G(o) =0 (3-64b)

Assuming 0 is continuous in Y ‘hence the curve G is continuous), we can
deduce that if the set of solutions to (3-64) does not contain any point

0 other than G(Yl) and/or G(Yz), then the curve G is either completely inside
or outside the ellipse hu(o) = Sa(Y') (and touching it only at G(Yl) and/or
U(Yz)). Then, the curve ; lies inside the ellipse if the follol:iing is

true.

h (0)< iaw‘). o elu: G(o)=0} (3-65)

Therefore, the testing of the condition (3-63) requires studying the

solutions of the simultaneous equations (3-64). If the solution set of




(3-64) dues not contain any O other than G(Yl) and U(Yz) and (3-65) holds,

then max ﬁa(Y) = max[ga(Yl),ﬂa(Yz)] for a fixed a.
Y

In order for the simple minimax solution described earlier to apply,
condition (3-63) has to hold for all a such that an'=l. This implies that
we have to examine the solution of (3-64) and condition (3-65) as a function
of a. This is generally a difficult task, because, even for a fixed a, the
solution of (3-64) is difficult to determine for an arbitrary G. Nevertheless,
this approach provides an important perspective on the problem, i.e. the
objective function as(y)a is now separated into ha(d), which is independent
of ¥, and G(0), which contains all the effects of Y. This explicit isolation
of the effects of y will allow us to exploit the structure of G (i.e. the
inter-dependence of 01 and 02 through this mutual dependence on Y) to deter-
mine if (3-63) holds. However, future work is required to develop this
concept into a practical procedure for testing (3-63). 1In closing, we note
that the above discussion for the case of 2 0's and a scalar Y can be readily

generalized to include multiple ¢'s and a vector Y.

3.6 Summary

In this chapter we have developed an approach to the design of robust
residual-generation processes. We have examined in detail the three basic
steps of the design method: i) the cheice of parity structures in the
presence of modelling uncertainties, ii) the design of parity coefficients,
ii{) the choice of parity functions for generating residuals based on

signature to parity error ratios.
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The conceptualization of analytical redundancy as parity relations
together with the design method described in the chapter represent a new
approach to the design of residual-generation processes for FDI. The for-
mulation of the parity coefficient design problem as a minimax optimization
provides a basis for exploitating analytical redundancy in a robust manner.
Although the minimax problem is difficult to solve, a simple solution
procedure has been found for some special cases. The insights provided by
this solution method will aid in the study of the solutinn if more general

minimax problems required to design robust residual-generation schemes.
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CHAPTER 4

OPTIMAL SEQUENTIAL DECISION RULES

4.1 The Sequential Decision Problem-Background

The output of the residual-generation process is the random residual
sequence, r(k). The behav;or of the residual is described by a set of pro~
bability density functions {p(r(1),...,r(k)|(i,7,v)), k=1,2,...,} that is
characteristic of the presence of the failure (i,t,v) (the notation (1,T,V)=
(0,-,-) denotes the absence of any failure), and such probability density
functions represent the signature of the failure. The ¥DI process involves
monitoring the residual for changes from its normal (no-fail) behavior.
Residual samples are observed in sequence. .If a failure is judged to have
occurred and sufficient information (from the residual) has been gathered,
the monitoring process is stopped. Then, based on the past observations of
residual, an identification of the failure is made. If no failure has oc-
curred, or if the information gathered is insufficient, monitoring is not
interrupted so that further residual samples may be observed. The decision
to interrupt the residval-monitoring to make a failure identification is
based on a compromise between the speed and accuracy of the detection, and
the failure identification reflects the design tradeoff among the errors in
failure classification. Such a decision mechanism belongs to the extensively
studied class of sequential tests or sequential decision rules. 1In this
research, we will extend existing concepts and formulations of the sequential
decision problem to the design of decision rules for FDI systems.

The first important piece of work in sequéntial analysis was presented
in 1947 by Wald [10], where the Sequential Probability Ratio Test (SPRT) was

proposed as a procedure for testing a simple hypothesis againsta simple
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alternative. It was shown, a year later, by Wald and Wolfowitz [18] that
the SPRT is oj'timal in the sense that among the class of sequential tests
that have misclassification errors not greater than those of the SPRT, the
SPRT will take the smallest expected number of samples to reach a decision.
The conceptual and structural simplicity of the SPRT has made it the basis of
Amany studies in the design and application of sequential tasts. For example,
the SPRT was employed as a means of identifying aircraft sensor failures
[11], and SPRT- like tests were developed for robust signal detection [19].
In addition, modifications such as thanse investigated by Anderson [ 20] and
Chien and Adams [ 21 ] have been suggested to enable the SPRT to deal with
a wider class of problems in a satisfactory manner. Specifically, Anderson
has modified the decision thresholds of the SPRI so as to maintain a reason-
able expected sample size when the same SPRT is used in testing a simple
hypothesis against a composite alternative, and Chien and Adams have introduced
resets for the SPRT in order to detect a change from one hypothesis to another
at some unknown time. 1In the latter case, the change in the hypothesis at
an unknown time indeed models the occurrence of a (the only possible) failure.
The decision problem to which the SPRT is the solution is a speciai and
very simple case of the general Bayes Sequential Decision Problem (BSDP) first
studied by Arrow, Blackwell and Girshick and later described by Blackwell and
Girshick [22]. The BSDP provides a general formulation that can be adapted
to many meaningful decision problems. In particular, it is suitable for the
FDI decision problem, where the occurrence of a failure may be regarded as a
change from the normal (no-fail) hypothesis to same failure hypothesis at an

unknown time. The optimal Bayes Sequential Decision Rule (BSDR) has a form
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similar to that of the dynamic programming solution to the discrete time
optimal control problems [17]. Even with the aid of modern computers,
the BSDR can rarely be calculated for the general problem, and only in some
limiting cases [23] {24 ] has some feel for the solution been obtained.
For this reason, alternative suboptimal sequential procedures were often
investigated as means of solving sequential decision problems e.g., [35)
[26) [ 27].

The inclusion of changes among hypotheses at unknown times further
complicates the computational aspect of the BSDR. As noted by Chernoff
and Zacks in their study of estimating a parameter which may change in time
[28 ], only suboptimal or ad hoc procedures are practical solutions. However,
for the case where only a charge from a simple hypothesis to a simple al-
ternative is allowed, some useful results are available. As mentioned earlier, - i
Chien and Adams were able to modify the SPRT to accommodate this feature.
In addition, Shiryaev solved the problem in the Bayes formulation [29 ],
where the Bayes objective used was a means of stating the desire to minimize
the expected delay to detecting a change while keeping the probability
of false alarm or the expected number of false alarms before the change to
some fixed value. Such an interpretation of the Bayes formulation suggests
the usefulness of the BSDP for incorporating the numerous tradeoff issues
of the decision process in FDI into a single design objective. In this way,
the BSDP provides a conceptually simple design objective for the FDI problem,
and it has been the basis of our research in the design of sequential de-
cision rules. Although the optimal solution is impossible to calculate, the

structure of the Bayes formulation provides a framework in which simple
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suboptimal rules can be derived. We shall report our work along this direc-~
tion in the remainder of this chapter and the next. In section 4.2, the
Bayes formulation of the FDI problem is discussed. The nature of the optimal
BSDR and the difficulties in its calculation are examinec in Section 4.3 for
ways of obtaining simple suboptimal rules. Chapter 5 contains the resulting

approach to designing suboptimal sequential decision rules.

4.2 The Bayes Approach for FDI

In this section we will present a formulation of the FDI decision pro-
cess as a BSDP, and we will discuss the advantages and limitations of the
Bayes approach as a tool for designing decision rules for FDI.

In a sequential decision problem, the decisiun maker is allowed to
make a sequence of observations. After each cbservation, he will decide
whether to stop sampling and choose a terminal action, or to continue sam-
pling and postpone the terminal decision to a later time. Hence the sequen-
tial decision rule consists of a stopping rule and a terminal decision rule
which, in the FDI problem, are used to determine when to interrupt the
residual-monitoring and what failure declaration to make, respectively. Each
sequential decision rule leads to a particular performance tradeoff determined
by the Bayes formulation. As we develop the Bayesian approach to FDI, we will
see how the inherent tradeoff issues are incorporated into the formulation.

The BSDP formulation of the FDI problem consists of six elements:

1) ©: the set of states of nature or failure hypotheses. An
element 0 of © may denote a single type i failure of size V occurring at time
T (6=(1,T,V)) or the occurrence of a set of failures (possibly simultaneously),

i.e. 0= {(11. T ,Vl),...,(in.Tn,vn)}. Although they do not add to the

1
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structural complexity of the decision problen; multiple failures do »1ncxuu,
the size of O and hence also increase the cbnputatiom!. bu:dcn in the n}utioa
of the problem. In this study we will focus our attention on mlingh failures
for simplicity. Moreover, since failures, occur infrequgntly, it is unlikély
tor failures to occur in rapid succession. f suficient time is generally
available for detecting and identifying a fa.{lure and re-starting the d&ision
process before another failure occurs. From this mugc point, single fail-
ure indeed represent the dominant phenomenon.

In vmany applications it suffices to just identify tl?e failure type
without estimating the failure size. 1hen we may consider composite failure

hypotheses of the form (1,7T) - a type 1 failure of any size occurring at time

T. Moreover, it is often true that a detection system based on (1,‘1’_,3} for

some appropriate V can also detect and identify the type of the failure

(i,t,v) for \333. Thus, we may use (1,‘:,.\7) to represent (4,T). In the air-

craft sensor FDI problem [11]), for insu__nce, excellent results were obtained using
this approach. In situations where it is necessary to estimate V in order

to identify the failure type or choose a post-failure :mdia; action, a

finite grid of failure magnitudes should provide sufficient resolution. 1In

both cases, the failure size can be absorbed in the index 1 so that (1,T) may
represent a composite hypothesis or a failure of a certain magnitude. Now

we have the discrete nature set

0= {(1,1), i=1,...,M, T=1,2,...,} (4-1)

where we assume there are M different failure types of interest and any one

of them may occur at time T=1, or 2, or ... .
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2) u: the prior probability mass function (PMF) over the nature

set ©. This PMF represents the a priori information concerning the failure,
i.e. how likely it is for each type of failure to occur, and when is a fail-
ure likely to occur. Because this information may not be available or ac~-
currate in some cases, the need to specify U is a drawback of the Bayes
approach for such cases. Nevertheless, we will see that it can be regarded
as a parameter in the design of a BSDR.

In general, U may be arbitrary. Here, we will employ a special form of
H. We assume the underlying failure process has two properties: i) the M
failures of O are independent'of one another, and ii) the occurrence of each
failure i is a Bernoulli process with (success) parameter pi. The Bernoulli
process (corresponding to the Poisson process in continuous time) 1s a com-
mon model for failures in physical components [30 ]; the independence
assumption describes a large class of failures (such as sensor failures)
while providing a simple approximation for the others. In this framework,
the set O consisting of single failures only represents a subset, albeit a
dominant one, of the exhaustive events defined over all possible outcomes
including multiple failures. More precisely, O only describes the arrival
of the first failure. Hence the PMF defined over 0O is a conditional PMF-
u(i,T) is the conditional probability that a failure will occur at time T
and that the failure will be of type i, given that this failure is the first
ever to occur. Using the preceding reasoning, it is straightforward to show

that

u(‘r"t) = O(i)p(l-D)T-l 1'1,:,.-,", T-I'Z’Qoo’ (4-2)




where
M
p=1~- 11 (l-oj) (4-3)
=1
-1 M -1.-1
o(1) = ps(1=p) " L ] py(1-p) 7] (4-4)

I=1

The parameter p may k¢ regarded as the parameter of the combined (Bernoulli)
failure process - the occurrence of a (any) failure; 0(i) can be interpreted
as the marginal probability that the first failure is of type i. WNote that

(4-2) indicates the arrival of the first failure is memoryless, i.e.

_ T=T4,°1
u(1,7no failure before To) = o(1)p(1l-p)

(4-5)

= U(i 'T-To) » 1-100000" TZTO

This property will be useful in obtaining time-invariant suboptimal decision
rules (see Chapter 5).

3) D(k): the discrete set of terminal actions (failure identifications)
available to the decision maker when the residual-monitoring is stopped at
time k. An element § of D(k) may denote the pair (j,t), i.e. declaration of a

type j failure to have occurred at time t. Alternatively, 8 may represent an iden-

tification of the j~th failure type without regard for the failure time

(6= U:-l (3,t)), or it may signify the presence of a failure without
specification of its type or time, i.e. simply an alarm (6-U:;:,t.1(j,t)).
3ince the purpose of FDI is to detect and identify failures that have oc-
curred, D(k) should only contain identificatiors that either specify failuze

times at or before k, or do not specify any fallure time. As a result, the
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number of terminal decisions specifying failures times grows with k while
the number of decisions not specifying any time will remain the same.

In addition, D(k) does not include the declaration of no failure, since the
residual-monitoring is stopped only when a failure apdears to have occurred.
By continuing the residual-monitoring, it is understood that no (or insuf-

ficient) evidence has been gathered to declare any failure.

4) L(k;6,6): the terminal decisicn cost (loss) function at time k
defined over O x D(k). L(k;€,8) denotes the penalty for deciding 8eD(x;
at time k when the true state of nature ig 6= ({,7T). It is assumed tz be

bounded and non-negative and have the structure:

(ks (4,7),8) = ) LGT6) 1<k, SeD(k) (4-6)

Ly ™k 8eD (k)

where L(6,8) is the underlying cost function that is independent of k; Le
denotes the penalty for a false alarm, and it may be generalized to be
dependent on §. It is only meaningful for a terminal action
(identification) that indicates the correct failure (and/or time) to receive
a lower decision cost than one that indicates the wrong failure (and/or time).
Wa further assume that the penalty due to an incorrect identification of

the failure time is only dependent on the error of such an identification.

That is for 6= (3,t),

L({i,7),(3,8)) = L(4,3,(¢t-T)) (4-7a)

and for § with no time lpecifiiation

L((i,7),8) = L(1,8) (4,7b)




Clearly L provides the means for psnalizing the various cross-detections
according to how undssirable each of tham is.

5) ri(k): the residual (observation) sequence. (We shall use r(k)
to denote both the random variable and jits value, but the meaning will be
clear from the context.) We shall assume r(k)€ R". The residual samplas
need not be independent and identically distributed in general, but their
joint distribution ie dependent on 0 and is assumed to be kncam. We shall
let p(r(1),...,r(k)|(1,T)) Genote their joint conditional density.
Assuming that the residual is affected by the failure in a causal manner,

its conditional density has the property

plr(l),..0,r (k)] (4,T)) = plx(1),...,x(k)](0,=))

i) ...,M, TK (4-8)

vhere (0,-) is used to denote the no-fail condition. In this research, we
further assume that the residual is an independent Gaussian sequencs with

time-independent covariance function V(som matrix), i.e.

k
per(l), ... x| (4,7) = [1 plx(s)](i,T)) (4-9a)
S=1
ple0) | (1,1)) = 2 axp { - % Lx (k) ~g(ksd, 1)) 'V}
(v e (4-9b)
x{r(k)~g(x,i,1))1}

where g(k;1i,7) is the mean of the residual given that the failure (i,T) has
ocourred. With the covariance assumed to be the same for all failures, the

wean function g(kii,T), characterizes the effect of the failure (i,7), and
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it is henceforth called the signature of (i,7), with g(k;0,-)=0 for the

no-fail condition. Por time-invariant systems g(k:;i,T) becomes

g, (k=1, k>t
gtkii,T) = i (4-10)
0 k<t

We have chosen to study residuals of the form (4-9) and (4-10) because
their special structure facilitates the development of insights into the
design of decision rules. Moreover, the Gaussian assumption is reasonable
in many problems and has met with success in a wide variety of applications,
e.g., [ 5] [11]. It should be noted that the use of more general proba-
bility densities Zor the residual, e.g. time-dependent V and signatures
that depend on both k and T (g(i,k,T}), will not invalidate the liscussions
in Section 4.3. The simple signature (4-9) and (4-10) considered here will

facilitate the design of suboptimal rules (see Chapter 5).

6) WwW(k,(i,T)): the delay cost function naving the properties:

wik,(i,7)) = ’W(i'k-ﬂ 20 <k (4-10a)

0, ™k

wii, k. =1)> w(i, k_~-T) k. > k. >1 (4-10b)
1 2 1 i

After a failure has occurred at T, thers is a penalty for delaying the
é
terminal decision uncil *:me k>T with the penalty an increasing function

of the delay (k-T). In the absence of a failure, no penalty is imposed on
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the sampling. 1In this study we will consider a delay cost function that

iy linear in the delay, i.e.

’ c (1) (k=T) 1<k

c(i,k-T) = (4-11)

o >k
where c(i) is a positive func:ion of the failure type i, and may be used to
provide different delay penalties for different types of failures.

We have described the setting of the BSDP for the ¥DI decision process.
The most important feature pregsented is the tradeoff structure provided by
the terminal decision and delay cost functions. Generally, the more obser-
vations the decision maker has, the more certain he is about the true state
of nature, and this will lead to a lower expected terminal decision cost
which is due to false alarms and incorrect detections. On the other hand,
he is penalized Zor the delav i 4acig.on that results from taking more
observations. Hence, the cost functions L and w together form the ba is fcr
considering the tradeoffs amony the various performance issues (detec+ion
delays, false alarms, etc.) simultaneously when the design objective is to
minimize the total expected cost. Now we proceed to characterize segquentia.
decigion rules for minimizing the total rost, employing the approach of
Ferguson [31]).

A sequential decision rule naturally consists of two ; .ts: a stopping
ruvle (or sampling plan) and a terminal decision rule. The stopping rule,
denoted by ¢ = (6(0),6(1;r(1)),...,.¢(k;¥(1),...,x(k)),...) is a sequence of‘
tunctions of the observed residual samples, with ¢(k;r(l),...,r(k))=1, or O.

When ¢(x;r(l),...,r(k))=1, (0), residual-monitoring or sampling is stopped
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(continued) after the k residual samples, r(l),...,r(k) are observed.
Alternatively, the stopping rule may be defined by another sequence of func-
tions ¥ = (Y(0),P(1;x(1)),...,.piksx(l),...,r(k)),...), where
Pik;r(1),...,r(k))=1 (b) indicates that residual-monitoring has been carried
on up to and including time (k-1) and will (not) be stopped after time k
when residual samples, r(1l),...,r(k) are observed. The functions ¢ and ¥

are related to each other in the following way

k-1
V;r(l),...,x(k)) = ¢p(kir(l),...,x(k)) I [1-¢(s,r(l),...,x(s))]
S=0 (4-12)

with P(0) = ¢(0). The conditional probability of stopping at time k, given

that the true state of nature is (i,T), is

E; YOGr),.e.,xk)) = fYlk,z(l), ..., r)IP(r(),...,rlk) |i,T)dr(2)...dz (k)

m m
R X...xR (4-13)

and the probability, Ps(i,T), of eventually stopping givenf®= (i,T) is

P(i,0 = ] E

Tw(k;r(li,...,r(k)) =1 (4-14)
k=0 '

If Ps(i,T) # 1 for all (i,t)e ©, it is possible for the sampling to go on
indefinitely even in the presence of a failure, and the expected delay cost
will be infinite. Therefore, only stopping rules will Ps(i,r) = 1 are

meaningful.
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The te;minal decision rule is a sequence of functions,
D= (d4(0),d(1;x(1)),...,d(k;r(l),...,r(k)),...), mapping fesidual samples,
r(1),...,r(k) into the terminal action set D(k). The function
d(k;x(1),...,x(k)) represents the decision rule used to arrive at an action
(identification) if sampling is stopped at time k and the residual samples,
r(1),...,r{k) are observed. Actually, D only needs to be defined for those
r(l),...,r(k) for wh;ch w(k;r(l),...,r(k)) = 1. But it will become clear
that it is useful to consider terminal decisin rules independently of the
stopping rule.

The FDI sequehtialrdecision procedure consists of two steps. According
to the sampling plan, the decision maker determines if he is to continue
the residual-monitoring. If he is to stop, he makes a failure identification
according to the terminal decision rule. A$ a result of using the sequential
decision rule ($,D), given (i,T) is the true state of nature, the total ex-
pected cost is:

o0

U,[t, 1), (8,0 = Y E, {¢xir),...,c(kDlclk, (i,7))+
k=0 T

L(k; (i.7),d(k;x(1),...,c(k)M} (4-15)

The BSDP is defined as: determine a sequential decision rule (3*,0*) so tha%

the sequential Bayes risk Uy is minimized, where

I v,y ld,n,9,0] (4-16)

g (. = Eu [(i,T),d,D)] =
s 0 1 1=1

i

o~ X

(Q*,D*) is called the BRayes Sequential Decision Rule (BSDR) with respect to

1, and it is optimal in the sense that it minimizes the sequential Bayes risk.

ORIGINAL PAGE B
OFE POOR QUALITY¥
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“he BSDR can be determined by carrying out the minimization of (4-15) in
two steps: first with respect to D, then with respect to . While we post-~
pone further discussions of the BSDR to the next section, we proceed to
examine the Bayes risk closely for a better understanding of the BSDP.

Using (4-6) and (4-11), we can re-write U, 28

T-1
Ul (1, D) (8,D)] = L kzo Ei'T{W(k;r(l),.--.r(k))]

o«
+c(i) ) [x-DE, {Yk;r(d),...,xk)}
k=T 1.1

00
+1 By Wliril),...,r(k))ILG,D a2 (1), ..., x (k)N
k=t 7 (4-16)

In the following we will describe a special interpretation of the sequential

risk for the FDI problem. Let us define the following notation

T-1
P (D) = B, Ylir(l),...,r(k) (4-17)
k=1
D=y D) (4-18)
k=0

g(k,6)={ [x(1),..,z(k)]:P(k;r(1),...,r(k)=1,d(k,r(1),...,r(k))=6},

se0 (4-19)

Prfg(k,é)li,'l‘}? _[ p(r(l),...,x(k) |i,‘r)dr(1)...dr(k) (4-20)
S.(k,6)
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where PF(T) is the probabilityjof stopping to declare a failure before the
faiiure occurs at T, i.e. the piobability of false alarm when a failure
occurs at time T; D is the set of terminal actions for all times; §(k,6) is
the region in the samplé space of the first k residuals where the sequential
rule (9,D) yieldsthe terminal decision §. Clearly, the S (k,8)'s are

disjoint sets with respect to both k and §, and we note, that

E, blGr(),...,rk) = ) P {§(k,8) [1i1} (4-21)
’ 8eD (k)

Then (4-15) can be expressed as

) v -1
Up[(3,T), (8,0) 1=L P (D) +(1-P (D)) {e(1) | [(k-1) (1P (1)) E; k1), .,r0))

k=1

oo - ) -1
e {8k, ]i,t}-p,) )

+ ) L({i,mn,9)
éeD k=T

(4-22)

By (4-13), (l-PF(T))‘lEi TW(k;r(l),....r(k)) for k>T is the conditional
’ .

probability that residual-sampling will be stopped at time k, given a type i
failure has occurred at time T and the sampling process has not been stopped
before the failure occurred (i.e. no false alarm), and (4-21) then takes the

form

Uo[(i:T):(¢rD)]=LrPF(T)+(1‘PF(T))[c(i)t(irT)+ 1 Lid,n,8rui,n,0

8eD (4-23)
where
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(-]
B0 = ] k-0 Q-p () B, Ykir(D),...,x(k) (4-24)
k=T 1.1
P((1,0,8 = ] P {8k,6&|1,1ra-p)L (4-25)
k=T r P

The expression t{i,T) is the conditional expected delay in decision (i.e.
stopping sampling and making a failure identification), given a type i
failure has occurred at time T and no false alarm has been signalled before
this time. Similarly, P((i,T),8) is the conditional probability of even-
tually declaring 6, given an i-th type failure has occurred at time T and
no false alarm has veen signalled --P((i,T),6) is the generalized cross-

detection probability. Finally, the sequential Bayes risk Us can bhe written

as
M ©
u(®0) = ) ¥ uli,t{L P (T)+(1-P_‘c)) [e(d) T(i, )+ ) LO(,T),8P((L,T),8)]
s . FF F
i=1 =1 €D

(4-26)

Equation (4-26) indicates that the sequential Bayes risk is a
wei. “*=d combination of the conditional false alarm probability, expected
delay to decision and cross-detection probabilities, and the optimal se-
quential rule ($*,D*) minimizes such a combination. From this vantage
point, the cost functions (L andc¢) and the prior distribution (1} provide
for the weighting, hence, a basis for indirectly specifying the tradeoff
relationships among the various performance issues. The advantage of the

indirect approach is that only the total expected cost instead of every
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individual performance igsue needs to be considered explicitly in designing
a sequential rule. The drawback of the approach, however, lies in the
choice of a set of appropriate cost functions (and sometimes the prior
distribution) when the physical problem does not have a natural set, as it
doesn't in general. 1In this case, the Bayes approach is most useful with
the cost functions (and the prior distribution) considered as design para-

meters that may be adjusted to obtain an acceptable design.

4.3 The Bayes Sequential Decision Rule

In this section, we will describe the optimal solution to the BSDP.
Before we do that, it is instructive to examine the (unconditional) ex-
pected delay and terminal decision cost at time k, U(k), for a terminal

action &eD(k)

M o
Y Y Ietk;(4,1)) + Lk (i,7T),8) In(i,T)

Ulk) =

i=1 =1
M k M ol

= 1 lle(iiken » LOG,D,OMGED + L, [ L ul3e)
i=1 1=1 ' j=1 t=k+l
M k

= I 1 telik-m) + L0(,T),8) 0 (yi,T) + Ly’ (ks0,=)
im] 1=l

where the first equality follows from the definitions, the second one is

a direct consequence of (4-6) and (4-10), and the last cne follows from

the notation

u(ilT) ialyoo"H' T-l'-.u,k
u' (kti'T) =
M (4-27)
z z U(jlt) i=0

j=1, t=k+1
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where (0,-), i.e. i=0 is an artificial failure state representing the event
of a failure occurring after the terminal decision time k. Alternatively

(0,~) may be viewed as the no-fail state that ha; a dwindling prior pro-
bability as time progresses. Clearly, 1' is a time-dependent PMF, and it
effectively defines a growing nature set, O(k) = {(i,7), i=0,1,...,¥, T=1,..,k},
that corresponds to the increasing number of possible failuie times. For
failure-monitoring over the interval ll,koltf(koto,-) denotes the probability
of no failure over the interval with (0,-) as the no-fail state. Since

they can be used interchangeably in the calculation of the expected cost,

(O,u) and (O(k),u’(k)) are equivalent for the BSDP. But the latter will

~
be used, due to the resulting simplification in notation. We now proceed to

describe the BSDR.

.It is clear that the expected delay cost is independent of what terminal
decision is made. Thus, once sampling is stopped the optimal terminal
decision rule must be that which minimizes the expected decision cost. This
implies that the Bayes terminal decision rule p* is independent of the
stopping rule and is a sequence of fixed-sample-size (FSS) Bayes rules [32].
Therefore, D* = (d*(0),d*(1;xr(1)),...,d%*(k;x(1),...,x(k)),...) where da*(L)
is the k-sample Bayes rule (with respect to H'(k)) that minimizes the PSS

Bayes risk:

M k
m@ak) =} Y ukei, L, ,dk))plr(),.., 2k |i,T)dr (). . .ar (k)
i=0 T'l (4"28)
RF XeoX RF

Hence, the k-sample Bayes rule d*(k) also minimizes the integrand of (4-28),

By simple manipulations, the Bayes rule can be expressed in terms of the
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likelihood ratios A or the posterior probabilities q of the nature states

given the residual samples, r(l),...,r(k) [32 1:

Mk
a*(x) = argmin ) ) L((i,T),4())n' (ksi, DAKIL,T) (4-29)
da(k) imQ T=]
or
R M k
a*(k) = argmin  § § L((i,T),d(k))q(i,T|k) (4-30)

d(k) im0 1=l

where, assuming p(r(l),...,r(k)lO,—) #¥ 0,

A(k;i,T) = P(r(l),...,r(k)li,"l’) (4_31)

plr(l),...,r(k)|0,-)

and

ali,T|k) = u' (k;i,Dplr),...,xik)]i,r)

(4-32)
M k

I Iukid,)plr),...,r(x)|3,t)

§=0 t=]

The Bayes rule given in (4-29) is in the form of a likelihood ratio test.
In some cases, it is more convenient to work with the log likelihood ratios

Loii, )
Tix;i, 1) = &n Alk;i,T) (4-33)

and (4-29) can be transformed accordingly. 1In general, the FSS decision
rule divides the residual sample space into terminal decision regions
{T(x,8), k=1,2,...} such that d(k;r(l),...,r(k))=8eD(k) if

(xr(l),eec,xkde 7(k,06). Then (4-28) can be re-written as
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M k
m@ak) = § Y utkis, ) eg L4, T),8)Q(ks4,T,8) (4-34)
i=0 =] el (k)
where
Qk;i,T,8) = fp(r(l),...,:(k))dr(l),...,dr(k) (4-35)
T(k, 6)
Note that
I  ox;i,7,8) =1 (4-36)
seD (k)

The quantity Q(k;i,T,8) has the interpretation of a k-sample detection
probability (i.e. probability of deciding 6 based on k observations when
(i,7) is true) of which the probabilities of cross detection, corract
detection, etc. of the k-sample decision problem are special cases. From
(4-34) we see that the Bayes rule d*(k) minimizes a linear combination of
the detection probabilities where the decision cost function and the
prior probability u' play the role of weights.

Now we will turn ocur atterntion to the optimal stopping rule. Pirst we
will consider stopping rules that terminate sampling at or before time k>0,

i.e.

K
I wiks r(l),...,x(k)) =1 (4-37)
k=1

A sequential decision problem using such a rule is said to be truncated at
time K. Then, the optimal stopping rule for the non-truncated problem can
be obtained from the optimal truncated rule by letting K+=, The optimal

truncated rule can be determined via a straightforward application of the
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principle of optimality [33)7 and we will state the result (which is

contained in [22] and [31], for example) in the following.
Let us define J(k) to be the total expected cost of stopping at time k
and applying the optimal terminal decision rule 4*(k), given that

r(l),...,r(k) have been observed:

M k
Jx) = V) atkii,T|x) le(d) (k-T)+L(1,1T),6")])

im] Twl
+ q(kzo,—lk)LF (4-38)
where
6% = a*(k;r(1),...,x(k)) (4-39)
' |
I Iuttsit)pr(),...,x(x)|3,t)
jml tml

The minimum expected cost-to-go at time k, EKm; » for the devision problem

truncated at K is given by

3y (k=1) = m4n[J (k-1) BT () |£(1),.c0rz )}, Kemd,e.o KoL (4-42a)

Sx(x> = J(K) (4-41b)

Note that both J(k) and 5K(k) are functions of r(l),...,r(k).

* The principal of optimality: "An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the
first decision.”
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The optimal stopping rule for the truncated problem is

0 = (0 (Liz(1)),een @8 (uz(l),ee.,x (kD). ..)

where

r 1 if 300< B{3(ke1) £ (1) (0., ))

¢;‘k'r(1)'ooo'r(k)) - l
0 otherwise (4-42a)

SRR

0; (X32(1),...,2(K)) = 1 (4-42b)

That is, sampling is terminated at time k if the total conditiona! expected
1 cost (J(k)) of stopping at k to use the optimum terminal decision rule, given

that £(l),...,r(k) have been observed, is lower than that

IR, (i

(z{.'ikum) |r(1),...,2(k)}) of taking an additional sample and using the optimm
sequential rule from them on. The term 3x(k) is the total expected cost of
using the optimal stopping rule (for the problem truncated at X) and the
optimum terminal decision rule at times k, k+l1,..., and k, given that
r(l),...,x(k) have been observed. Hence, it is called the optimal expected-
cost-to-go at k. The sequential Bayes risk U, (Qi.b') for the truncated

problem is simply
* 5 -
U.(OK'D ) = JK(O)' k 0.1,.., “"3’

and we will let J_(0) denote the (finite) Bayes risk U, (#*,0%) that is
associated with the optimal non-truncated sequential rule (9*,0%), i.a. the

BSDR.
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The set of all stopping rules that terminate sampling at or before
time k contains the set ¢ all stopping rules that terminat: sampling at or

before time k-1. Therefore, we have the sequence of inequalities
5 (o) i sse z_ s (o’?_s (o): LN “-“,

Due to the fact that the terminal aecision cost function L is bounded, it

can be shown that 33._(0) > 3,(0) as X*= (gee Appendix A). Consequently, the
optimal sequential rule (9",D*) for the non-truncated problem is the limit of
(9*,0") as X+*, and the former can be approximated by the latter for a suf-
ficiently large X.

Note that the determination of the optimal truncated stopping rule
requires solving (4-41) backwards in time. In fact, (4-41) and (4-42) des-
cribe a dynamic programming problem for which the solution i3 extremely dif-
ficult to calculate due to the immense storage and computation required (17].
Conseqaently, the optimal stopping rule is generally impossible to compute,
and suboptimal rul-s must be used.

Despite the impractical nature of its solution, the BSDP provides a
useful framework for descigning suboptimal decision rules for the FDI problea
because of its inherent characteristic of explicitly weighing the tradeoffs
between dstection speed and accuracy (in terms of the cost structure). In
the previous section we saw that a sequential decision rule defines a set of

sequential decision regions §(k.6)7 and the decision regions corresponding to

* Since the posterior probabilities q, the likelihood ratios A, and the log
likelihood ratios L are alternative sets of sufficient statistics, it is easy
to see that a sequential rule also defines sequential decision regions in the
space of each of these set of decision statistics.
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the BSDR yield the minimum risk. Prom this vantage point, the design of a
suboptimal rule can be viewed as the problem of choosing a set of decision
regions that would yield a reasonably small risk. This is the esrence of
the approach to suboptimal rule design that we will describe in Chapter 5.
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CHAPTER 5

SUBOPTIMAL SEQUENTIAL DECISION RULES

From the previous chapter we see that the Bayes formulation of the
FDI decision problem is a suitabls one because of its built-in porformance
tradeoff structure. Although the optimal rule (the BSDR) is con;utaticnally
intractable, practical, suboptimal rules with good performance may be de-
termined using the Bayes framawork. This chapter is devotued to the discus-
sion of our approach to the design of such suboptimal rules for FDI., While
it covers a wide range of issues, this discussion, by far, does not exhaust
all possibilities. Rather, it will gserve to demonstrate how this framework
can be useful for the systematic approach to decision rule designs.

In Section 5.1 we will first examine an approximation scheme for the
BSDR that is directed at alleviating its overwielming computational require-
ments. The resulting simplified decision rule will provide the basic form
for a range of suboptima' rules of VAXying degrees of complexity. As we
describe these ruleswe will also examine their computational structure so as
to assess their practicality. In Section 5.2 we will consider the risk
evaluation for some simple suboptimal rules. An algorithm for approximating

the risk will also be described. The choice of design parameters and the

risk-minimization procedure will be discussed in Sectinn 5.3, and a summary of

the design methodology described in Section 5.1 - 5.3 is included in Section
S$.4. Our experience with this decision rule design methodology through the

study of num~vical examples and simulations is reported in the next chapter.

e e S

A




-123-

5.1 Suboptimal Rules Based on the BSDR

5.1.1 The Sliding Window Approximation

The immense computation associated with the BSDR is partly due to
the increasing number of failure hypotheses as time progresses. 1In fact,
this phenomenon (often called the "growing-bank-of-filters") is common to
detection schemes, such as the GLR [5 ], where the failure time is ex-
plicitly taken into account in the failure hypotheses. The remedy for
the problem studied here, as in [ 5 ] for instance, is the use of a

sliding window to limit the number of fairlure hypotheses to be considered

at each time. The application of the sliding window approximation to the
BSDR for the infinite time horizon problem yields a sequential decision rule
that uses only a sliding window of a fixed number of residual samples. This
brings a saving in the storage of residual samples, as the BSDR, in contrast
requires all past samples. Furthermore, such a sequential rule is indepen-
dent of time after a window-full of residual samples has been gathered,
while the BSDR is a time-dependent rule. Because of these desirable simpli-
fications, the sliding window scheme has become the backbone of our study
of the design of suboptimal rules. We now proceed to describe this approxi-
mation scheme.

The only assumption made under the sliding window approximation is
that essentially all failures can be detected within W time steps after they
have occurred, or that if a failure is not detected within this time it will

not be detected in the future. Thus, when we have progressed to time k we
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can be quite confident that nc failure has occurred before time k-W+l,
and we only need to consider the possibility of a failure occurring at
some T>k-W+l. Consequently we have modified the nature set and terminal
decision set at time k to be Gw(k) and Dw(k), respectively:

Gw(k) = {(i,7), i=1l,....,M, 133-W+1}, and Dw(k) contains all the elements
of D(k) that .1 her specify failure times in the interval [k-W+l,k], or
do not specify any time at all. The prior probability mass function

Ew(k;i,T) defined over Gw(k) may be regarded as the conditional probability

that a type i failure will occur at time T>k-W+l, given that no failure has
occurred before k-W+l. Using the memoryless nature of f (see Section 4.2),ﬁp

can be easily shown to be

W ‘ 0 T<k-W+1
T (k:i,T) =

0(1) p(1-p) TRH-1 >k-W+l

For k , k, > W, the triplet {@"(k), U"(k), p'(K)} for kek, is clearly a

1
time-shifted version of that for k=k2. It is convenient to define a new
time variable T that is related to the failure time T by‘? = k-1, T has the
interpretation as the failure time relative to the decision time k, i.e.

a positive (negative) T indicates a failure time that is I?i step befcre
(after) k. Using this notation, at each time k, we have the nature set,

prior probability mass function, and the terminal decision set in the

following forms:
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o = {(i,D), i=1,...,M, T=W-1,W-2,...,} (5-1)
0 —

1.0 = _ = (5-2)
ali)p(1-p) -T2 TN

™ = {dwith time specifications relative to k that

are not earlier than k-W+l} (5-3)

let us recall three useful properties of the BSDP under investigation:

i) the only time dependence of the failure signatures is manifested
through the dependence on the elapsed times since the onset of failures,
ii) the cost of incorrect failure time identification is a function of

the difference between the true and declared times, and iii) the decision
delay cost is proportional to the delay. It is now clear that the terminal
decision problem at different times beyond W are time-shifted versions of
the problem defined by {Gw, ﬁw, Dw, L, g}. Consequently the terminal de-
cision rule dw mapping the sliding window of residuals [r(k-W+l),..,r(k)]
into Dw is a W-sample (Bayes) rule that is the same for all k>W. Similarly,
the stopping problems encountered at different stages of the sequential
decision process are defined by the same six elements: {Gw, uw, Dw, L, W, g},
ond the stopping rule ¢w defined over the sample space of the sliding window

of residuals [r(k-W+l),...,r(k)] is the same for all k>W. Therefore, the

sequential rule (¢w,dw) is much simpler than the BSDR which consists of a
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infinite sequence of time dependent rules. In addition, only a finite
storage is required by (¢w,dw) for the window of data as opposed to the
growing storage needed by the BSDR. Because of these desirable features,
the sliding window approximation will be the basis of our suboptimal rule
designs.

Since the sequential rule (¢w,dw) uses a sliding window of residuals
(hence called a "sliding window sequential decision rule"), it requires
mandatory sampling through the initial W steps in order to £ill up the data
window. One minor drawback of such a feature is increased delays in detec-
ting failures occurring within the first W time steps. Fortunately, all
practical window sizes are reasonably small so that the probability of a failure
occurring within the first W time steps is negligible, and the above mentioned
detection delays will not have any significant impact on the overall perfor-
mance of the sliding window rule.

A more important design aspect introduced by the use of a window rule
is the tradeoff between detection performance and computational complexity.

A window rule with a long window is more likely to deliver good detection
accuracy than one with a short window, because with a long window, more data
is used and more possible failure times can be considered. But on the other
hand, a long window rule requires more computations for both the off-line
performance evaluation during the design process and the on-line processing
of the window of data to generate the decisions. From our vantage point, the
window size W is considered along with the prior probability u and the cost

functions L and w as design parameterc within the Bayes formulation that may
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be adjusted to achieve a satisfactory sliding window decision rule. This
will be discussed further in subsection (5.3.2.) The Bayes design problem
now becomes: for a set of U, W, L and ¢, find a (¢w,dw) that minimizes

the sequential risk Us(@",d”). As it stands, the solution of this problem
still requires a tremendous amount of computation, albeit much less than
that required for the BSDR. In the next subsection we will examine the
computational structure associated with the risk evaluation for sliding
window rules in order to indicate now how further simplifications may be

introduced.

5.1.2 sliding Window Sequential Decision Rules

Similar to the BSDR, the window rule (¢w,dw) divides the sample space
of the sliding window of residuals, or equivalently, the space of vectors
of posterior probabilities (q), likelihood ratios (A) , or log likelihood
ratios (Z) of the sliding window of failure hypotheses into disjoint

sequential decision regions {SO,S ""’SN}' Because the residuals are

1
assumed to be Gaussian variables, the icg likelihood ratios are simpler to
work with than the likelihood ratios or the posterior probabilities. We
will only use the log likelihood ratios as the decision statistics. Now
suppose there are N elements in Dw and these elements are indexed such that
P = {Sl,...,SN}. In terms of the sequential decision regions defined in
the i-space, the sliding window rule states: At each time k>W, we form the
decision statistics Z(k) from the window of residual samples. If E(k)esi.
for i=1,.., or N, we will stop sampling to declare Gi; otherwise, Z(k)esor

and we will proceed to take one more observation of the residual. The




Bayes design problem is to determine a set of regions {SS,SI,...,SG}

that minimizes the sequential risk u':({s Do tee

. W
{S;} = arg min y_({s.}) (5-4)
{s.} 5 *

FS
Expression (5-4) represents a functional minimization problem for which a
solution is generally very difficult to determine. A simpler alternative
to this problem is to constrain the decision regions to take on special
shapes, {Si(f)} , that are parameterized by a fixed dimensional vector, f,
of design variables. Then the resulting design problem invclves the
determination of a set of parameter values £* that minimizes the risk

U:({Si(f)})

£* = arg min u:({si(f)}) (5-5)
£

In this study, we will focus our attention on a special set of para-
metrized sequential decision regions, because they are simple and they
serve well to illustrate that the Bayes formulation can be exploited, in a
systematic fashion, to obtain simple suboptimal rules that are capable of
delivering good performance. Next, we shall describe this set of simple
decision regions.

The window of failure hypotheses consists of
e¥ = ((i,T), i=0,1,...,M, T=#-1,¥-2,...}, where (0,-) denotesthe hypothesis
of no failure in the window. Suppose the terminal decision set is of the

form Dw = {(j,E), j=l,...,M, t=0,...,W-1} with (j,z} corresponding to
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declaring a type j failure occurring at time k-t. The sequential decision

regions we will study are of the form:

$(3,8 = {Lx):
L(x:3,9>2(5,¢)
€ 13,0 (k3,023,015 1(1,D ks 4,0 -2(,7D 7,

(i,D#(3,0)} (5-6a)

S(Op-) = {Z(k): E(i.-'l?)f_f(i,‘-[‘.), iﬂllooo'M, :F=O'oo.,W"1} (S-Gb)

where L(k) = [L(ks1,0),...,0(kiM,W-1)1"; S(§,E) is the stop-to-declare-
(j,zb region, and S(0,-) is the continue region (see Figure 5-1 for an
illustration in two dimensions). Note that this set of decision regions
may be easily modified to accomodate the case where Uw has some of its
elements replaced by a composite decision, e.g., if {(j,0),..,(3,W+1)}

wW-1 —
is replaced by § = U (j,t) (i.e. declaring a type j failure without
t=0

regard of the failure time), we have the stop-to-declare-§ region
w-1

S(é) = U S(j,t). In (5-6) the f's are known as the decision thresholds,
t=0

and the €'s are the normalization constants. (As shown in Figure 5-1 for
the 2-dimensional case, the €'s determine the slope of the boundary between
two stopping regions). Generally, the ¢'s may be regarded as design para-
meters along with the f£'s. 1In this study €(i,7) is simply taken to be the
standard deviation of L(k;i,T).

Recall that the residual samples are Gaussian variables, Then the log

likelihood ratio L(k;i,T) is given by:
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[ i(kdv?)

G(jv?)
slope = P
S(j,t)
f(j.1)
S(i,7)
S(o,-)
*

FIGURE 5-1: Sequential Decision Regions in Two Dimensions.
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-~ - ? ' -1 - 1 ? ' -1
. Lo, = 1 gyl)v r(k-Tes) -5 | g 8)V g, (s) (5-7)

g=0 =0
Since the second term in (5-7) is a function of i and T and is constant
for all L(k;i,;), kaW, W+l,..., it may be absorbed into r(i,?ﬁ in the

definition of the decision regions. As a result, the decision region may

be re-defined in terms of a set of new decision statistics, L(X):

S(§,t) = {L(k):
L(5,8)>2(3,¢)

e 14,0 (Lik; 3,0 -£5,8 1> 11, [Likii, D -2(3,T,

B A

(1, D ¥, )} (5-8a)
- §(0,-) = {L(k): L(k;i,D)<f(i, D, i=l,...,M, T=0,...,W-1} (5-8b)
where
T, -1
L(k;i,7) = ] 9 (8)V "xr(k-T+s) (5-9)
s=0

and f(i,?) has =bsorbed the constant term in (5-7). The decision statis-
tics L(k) can be viewed as the state of a linear time invariant system
driven by the residual. To see this, we will define tiie following

notations:

Ly(k) = (Lik;1,D,.e.,Lk:M,D]" T=0,...,W-1 (5-10a)

L(k) = [Lo(k) goss 0Lw_1(k) ] ' (S‘IOb)

L
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i ‘WWW"" T

v = =1 )
QI(T)V
G = T™=0,...,W-1 (5-1la)
] 'l
_gn(?)v _
0
G = . {5-11b)
LGW-I
= -
0
0
7= | 1. (5-12)
_ 0 I o _J
Then, from the definition of [(k), we have
k=0,1,... (5-13a)
(5~13b)

L(x+1) = JL(k) + Gr(k+l)

L) =0
Note that L(k) is of dimension MW, and it is also a Markov process

under any failure hypothesis.
With the sequential decieion regions defined, we are now ready to
First, it is convenient to define Sb(k)

examine their associated risk.
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to be the event that no failurc declaration has been made up to and

including time k, i.e.

So(k) = {L(x)e s(0,~), L(k-1)€ S(0,~),...,L(We $(0,-)} (5-14)

Since sampling through the first W time steps is mandatory, it is not
necessary for (5-13) to include S(k)€ $(0,-) for k<W. Using the sequential

rule defined by (5-8) in the risk expression (4-26), we get

" M -1 M W-1 _
v =z, I I wim § I T pilmes,B, Syk-10,-;
iml TeW+l k=H j=1 E=0

1]

M ® M W-1 -
+ 3 Twuwen |} I I letd)(k=1) + L(4,3,(k-t-1)]
il =1 k=  j=1 t=0
max[W,‘l'J

x pr{l(x)€ 5(3,t), Sok=1 | 4,7} (5-15)

where we have used U:(t) to denote the sequential rigsk due to a set of
sequential decision regions with window size W and parameterized by f.
Note that the mandatory continuation of the sampling process through the
first W steps is reflected in the lower summation liwmits for T and k.

To evaluate u:(!), we need to determine the set of probabilities,

{pr{lxe s(3,B), S (k) [i,T}, k>W, 3=0,1,...,M, t=0,...,W-1}, which, indeed,
is the goal of many research efforts in the so-called level-crcssing problem
[34]. Unfortunately, useful results (bounds and approximations of such
probabilities) are only available for the scalar case [35]),(36],[37), i.e.

in terms of our problem, L(k) is a scalar and the decision regions become
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intervals on the real line, and thus are not applicable to our problem.

For the general multidimensional problem, we presently have to resort to
numerical methods. AsS it stands, each of the probabilities is an integral
of a kMi-dimensional Gaussian density over the compound region $(0,-)x...
x8(0,-)x5(3,t) , which, for large kMW, becomes extremely unwieldy and dif-
ficult to evaluate. However, the common structure of the probability
events ~-the So(k-l) of the event {L(k)e s(3,t), So(k-l)}. may be exploited
to obtain a more tractable compu“ation structure for the probabilities. To

accomplish this, we can use Bayes rule to arrive at an recursive expression

for the probabilities:

P(L(k+1) |so(x>,1,n - [f

P(L(K) |8, (k-1) .m)aum] -1
S(o")

xf POL(k+1) [L(K) .S (k=1) i, P(L(K) [S_(k=1) ,i,7)dL (k)
$(0,-) 0 °

k>W (5-16)

pr{l(k) e 8(3j,t) 1Sok-1) [1,1)

= PriS, (k-1) [1,7} f P(L(K) S (k-1) .1, AL(K) ,

$(3,0 _
j‘o,l,..-,M' t.o'o-o,u-l (5"17)

with

pril(we s(j,t)li,r)-f _ p(Lw |i,1)dal(w),
s(4.,t)

§=0,1,...,M, t=0,...,W-1 (5-18)

where p(L(k+1)ISo(k),i,T) denotes the conditional probability density of
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L(x+l), given So(k) and that a typc i failure has occurred at time T;

p(l(k+l) lL(k) ' So(k-l) 1,7) is the density for the transition from L(k)
to L{k+l), given S (k-1) and (i,7); p(L(w) |1,7) is the (Gaussian) density
for L(W) under a hypothesis (i,T). Using (5-16)-(5-18), we have to contend
with Mi-dimensional integrals instead of integrals with increasing dinlp_aions
as required by the straightforward evaluation of the probabilities.
Nevertheless, this problem is still difficult, since even for M=2 and W=10
the integrals are 20-dimensional.

In the remainder of this section we will examine the computational
complexity associated with tic evaluation of (5-16)-(5-18). First, we will
consider the transition density in (5-16). Noting that L(k) is a Markov

process we have

p(L(k+1)1L(k).so<k-1>.i,r) = p(L{k+1) |L(K),i,T) (5-19)
From (5-19), we have

L(k+1l) = JL(k) = Gr(k+l) (5~20)

The dimension of L(k), M#, is generally greater the rank of G, which is
assumed to be m>M (m is the dimension of r). The increment L(k+1l) - JL(k) is
due to r(k+l) and can only lie in, at best, m-dimensional subspace of

Rm. That ig, the one-step transition density in (5-19) is degenerate.

Then, using the fact that r(k+l) and L(k) are independent of each other,

it can be easily shown that

p(L(k+D) |L(X) ,i, D)

- uotllu-c(c'c)'lcl(L(ku)-.n(kn!l)lc;-cl'1

1

x pl(r(k+1)=(G'G) G'[L(k+1)=JL(¥}1]i,T) (5-21)
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vhere u, is the impulse function, |G'G| is the determinant of G'G, and
p(r(k+1)li,r) denotes the Gaussian density of r(k-+l) under (i{,1). As
expected, the transition density (5-21) for a given L(kX) is zero for some
L(x+1,, namely those values such that (L(k+1)-JL(k)) cannot be accounted for

o) [L(ka1) =JL (X} J90.

with any r(k+l), i.e. when {I-G(G'G)
Finally, the recursive equation (5-16) for the conditional density of

L can be re-written as:

p(L(k+1) So(k).in) -[f

p(L(x)lsO<k-1),1.r)dzxx)]'1
S(OI")

L6t L0 -JL(K 1] 4,1 p(L(K) S (k=1) 44, TV AL (K)

xf]c'cl'lp(r(ku)-(c'c)'
§(0,=)N F(L(k+1)) KW (5=22)

where

1

F(L(k+1)) = {L(k):[2-G(G'G) ~G')[L(k+1)~JL(k)] = O} (5-23)

The set F(L(k+1l)) is the set of all L(k)'s that together with some

r(k+1) will produce the given L(k+l). 1If rank G, < M (see (5-11)), the

pair (J,g) representing the system (5-13) is uncontrollable, and there are
some values of [ that cannot be generated by (5-13). This corresponds to

the case, for example, when twe failure hypotheses represent different mag-
nitudes of the same failure mode. The set L's satisfying the above condition
can be determined from (J,G), and the prcobability density for such L's will
not have ¢o be calcalated, as it will always be 2ero. More generally,

F(L(k+1)) is a linear variety in RMW and becomes the empty set only for
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certain values of L(k+l). Hence the region of integration needs to be
determined as a function of [(k+l). Although the scalar version of (5-22),
where regions are intervals on the real line and are independent of L(k+l),
has been successfully eveluated using numerical quadrature methods [38],
there is presently no efficient method available for solving the general
-ulti-dimensional problem. The difficulties are due to the large dimension
vf L and the-complex regions of integration, S(0,-)NF(L(k+l)), as indicated
above. However, when the rank of G is the same as the dimension of L, the

rer-cn of integration will simplify to S(0,-). This is because when rank G=Mw,

transiticns from and L(k) to any L(k+l) are possible and F(L(k+1))=R"™.

An algorithm has been developed to perform the integration for this special
case in low dimensions, and it will be described in Section 5.2. The condition
that rank G = MY is not as restrictive as it appears, and we will see that
the algorithm based on this assumption is useful in detexrmining the risks
associated with some simplified decisions rules to be discussed in the next
two subsections.

In this subsection we have examined the problem of designing sliding
window sequential decision rules. Several simplifications directed towards
practical solutions have been discussed. In addition, we have identified
the structure of the cumputations required for evaluating the risk and per-
formance associated with a sliding window rule. Based on these¢ insights we
will propose two simple decision rules (a simplified sliding window rule
and a non-window rule) in Subsections 5.1.3 and 5.1.4 for which thes risks

c:n be evaluated or approximated by existing numerical techniques.
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5.1.3 A Simplified Sliding Window Decision Rule

The multi-dimensional integrals (5-~16)-(5-18) encountered in the
calculation of the risk are due to the MW-dimensional vector of decision
statistics L(k). These statistics correspond to thekuw failure hypotheses.
and they provide the information necessary for fhe simultaneous identifica-
tion of both failure type and failure time. In most applications, such as
the aircraft senscor FDI problem [ 111 and the detection of freeway traffic
incidents {5 1, the failure time need not be explicitly identified. In
such cases, the terminal decision set reduces to Dw = {j: §=1,...,M},
where the index j denotes the declaration of a type j failure. Siunce the
decision does not directly concern the onset of failures, the failure time
resolution power provided by the full window of decision statistics is not
needed. Instead, decision rules that employ a few components of L(k) may
be used. The decision rule of this type considered here consists of se-
quential decision regions that are similar to (5-8) but are only defined in

terms of M components of L(k):

S'j = “’W-l(k) :

L(k;j,W—1)>fj

e 1 (5,W-1) (L(k;3.W-1) —fjl.se’l(i,w-l) (L(k,18-D-€], vikj  (5-2¢a)

Sp = Ly (0 L, jW-D< £ j=1,...,M} (5-24b)

i

L

%
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where Sj is the stop-to-declare-j- region and SO is the continue region.

At each point ‘n time, the set of decision regions specified by (5-24)

may be regarded as a decision rule for determining if a failure has

occurred at the earliest point in the sliding window (i.e. at k-W+l), and

it is similar to a W-sample decision rule for testing M+l hypotheses. This

vantage point readily provides a rough guideline for choosing the window

size W, namely, W should be sufficiently long so that enough residual sam-

ples ~an be used to achieve acceptable detection accuracy in the non-

. sequential testing of M+l hypotheses (M hypotheses indicating the possibility

" of cae of M different failures occurring at k-W+l plus the hypothesis of no
failure at k-W+l). Because the actual decision problem is a sequential
one, rather than a static one this guideline will only serve to provide an
initial choice of W that may be later adjusted to achieve a better perfor-
mance. (We will discuss the choice of W along with other design parameters
of the Bayesian approach in Subsection 5.3.1). It should be noted that the
use of (5-24) is effective if cross~correlations of signatures among hypo-
theses of the same failure type at different times are smaller than those
among hypotheses of different failure types.

Next, we will examine the risk associated with the sequential rule

(5-24) . The following equations for the risk computation are specializations

of those of the previous section to the simplified sliding window rule.

We have
" 13 T3 lo,-)
UT(f) =L (i, p {L_ .(x)es,, S (x-1)|0,-
s i=1 T=W41 k=w j=1 T Wb 300
M © © M
+ ¥ Y wi ) Y [e(i) (k=T)+L(i,3)]
i=1 T=1 k= =1
max [W, T)

x pr{l,_, (kes, Sy k-1 1,1} (5-25)

3
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where

Sotk) = {l_,(xies L,_,Wes

o,-.-’ w 0] (5-26)

The probabilities required for calculating the risk (5-25) are given by

. -1
p(L,_ (k+1) |So(k).1.r) = IL p(L,_, (X ISO(k-l).i.T)de_l(k)]
0

x f PLy_q (41 [ Ly ) (K ,S( (kD) 1,1 (L) () |8 (k=1) i, DAL ()
S

0
k>W (5-27)

Pril, ,(k)es,, S (k-1) ti,t}

= Pr{S,(k-1) ii,‘r}/s. p(Ly_ 00 Sy (k-1) i, mdl, (k) 3=0,1,...,M  (5-28)
3

with

pr{l,_, (W esj]i.r} = f Pl W Ii.r)de_l(w) (5-29)

S,
3

In contrast to the MW-dimensional integrals associated with the sliding
window rule discussed in the previous subsection, the integrals in (5-27)-
(5-29) are M-dimensional. For M small, say less than 4, numerical inte-
gration of (5-27)~(5-29) becomes manageable.

Unfortunately, the transition density, p(Lw_l(k+1)ILw_l(k),So(k-l),i,T),
required in (5-27) is difficult to calculate, because Lw-l(k) is not a

Markov process. As an alternative, the Markov nature of L(k) can be exploited
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once again to determine the required conditional density and probabilities

as follows:

p(L(k+D) [S (K} ,i,T) = [_[p(L(k) ISo(k—l),i,‘r)dL(k)]-l
s
0

xflc'c[’lp(r(k+1)=(c'c) et (Lik+1) =30 (k) 11,0 pCL (k) S, (k-1) , i, )AL (K)

SOF\F(L(k+1)) (5-~30)

pr{l__.(k)es., S, (k-1)|i,T}
-1 3 )

= Pr{So(k-llli.T}.l. p(L(k)lso(k-l),i,T)dL(x) (5-31)
S,
j

where g-j is the extension of Sj in the L(k)-space, i.e. Rm, i.e.

Sj = {L(k):Lw_l(k)eSj}, j=0,1,...,M. The obvious drawback in using (5-30)

and (5-31) is that we have to deal with MW-dimensional integrals again.
Therefore, in order to exploit the low dimensionality of (5-27) and (5-28),
we will have to use an approximation for the transition density in (5-27).
In the remainder of this subsection we will describe a simple approximation
of p(l,  (k+D) |l (k) , S (k-1),i,T).

It is useful to note that in approximating the required transition
density for Lw_l(k) we are, in fact, approximating the behavior of Lw-1'

A simple approximation is a Gauss~Markov process (k) that is defined by

2(k+1) = AR(k) + E(k+1) (5-32)

E{E(X)E'(B) } = BB'U, (k-t) (5-33)
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where A and B are MxM constant matrices and § is a white Gaussian sequence
with covariance equal to the (MxM) matrix BB'. The reason for choosing
the model (5~32) and (5-33) is twofold. Firstly, just as Lw-l(k)' 2(x)
is Gaussian. Secondly, 2(k) is Markov so that its transition density can
be readily determined. In order to have %(k) behave like Lw_l(k), we set
the matrices A and B and the mean of % such that

E; 200} = Ei'T{Lw_l(k)} (5-34)

Ey, {202 () } = Eo’-{Lw_l(k)Lw_l(k)} (5-35)

E, _{2(x)2"(k+1)} = E

0 (L, oL,  (k+D)} (5-36)

01—

oo S AL I e

That is, we have matched the marginal density and the one-step cross-

covariance of 2(k) to those of Lw_ (k). It can be shown that (5-34)-

1
(5-36) uniquely specify

A= g ¢! (5-37)
BB' =3 - ' ¢l g (5-38)

E; (E(k+D) = B, Ly 1)} - A E{L, 00} (5-39)

T L ——
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i
] 3
, |
S where :
v 3
, W-1 -1
- = ' -
Ty Ell, (kL (} tzo GV G (5-40) 3
; . W-2 1 3;
i = = ' -
o L= L, (0L, (k+D)} tZO Gy VG, (5-41)
|
E : k-1 1
= Tt =k -
E, L 0} Lo, v G, k,=k-H+1-T<0
W-1 1
: “ia! =k-W+1-
; \tzo 6,V Gt+k0 k =k-W+1-T>0

Moreover, the matrix A is stable, i.e. the magnitudes of all of the

eigenvalues of A are less than unity, and B is invertible if Go or Gw-l

is of rank M. Because § is an artificial process (i.e. £ is aot c Airect
function of the residuals r), (k) can never be implemented for use in
(5-24).

It should be noted that the model specified by (5-34)-(5-36) does

not provide the only Markov approximation of Lw_l(k). We may, indeed,
choose to match the n-step cross-covariance (l<n<W) instead of matching
the one-step cross-covariance as in (5-36), or we may just approximate
the cross-covariance function. Such a variety of possible models is the
result of the relatively small number of free parameters available in the

Markov model to be adjusted in order to describe the more complex Lw-l(k)

process. The suitability of a criterion for choosing the matrices A and B,
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such as (5-35) and (5-36), depends directly on the failure signatures under

consideration and may be examined as an issue separate from the decision

rule design problem. Since our main goal is to demonstrate how the Bayes

approach can be used in designing sequential decision rules, we will not

pursue this issue further. Rather, we will proceed with the decign problem

assuming an appropriate Markov approximation (5-32) of Lw_l(k) is available.
Now we can approximate the required probabilities in the risk

calculation as

P L, (€8, S (k-1) li,r}wpr{uk)esj. Sy(k-1) 4,1}
§=0,1,...,M KXW (5-43)
and

Pr{l(k)esj. S, (x-1) li,1}

=Pr{so(k-1)|i.r}f p(L(k) lSo(k-l),i,‘T)dl(k) (5-44)
S,
J

where we have applied the same decision rule to (k) as Lw (x). Therefore,

-1

Sj and So(k-l) denote the decision regions and the event of continued

sampling up to time k for both LW._1 and L. Assuming B-l exists, we have

-1
p(R(k+1) |8 (k) 1,0 = [f p(L(K) lso(k-n,i,nduk)]
SO
xf PE(HL) = 20K+ D) -AL(K) 1] 1,0 p(R () |S, (k=1 ,i,7) AR (k) (5-45)
S
¢ koW

where p(E(k)Ii,T) is the Gaussian density of E(k) under the failure (i,T).
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If (k) satisfies (5-34) and (5-35)
pr{z(mesjli,r} = pr{Lw_L(w)esjli.r} (5-46)

In contrast to (5-30) and (5-31), the evaluation of (5-44) and (5-45)
reyquires only M-dimensional integrations over the decision regions. The
complication in the region of integration due to F(L(k+1l)) (in 5-30) is
absent. An algorithm exploiting existing numerical techniques for computing
(5-44) -(5-45) has been developed and it will be discussed in Section 5.2.

In the event that B is not invertible, the region of integration in (5-45)
will take the form similar to that of (5-22) in lower dimension (M instead
of MW). Such an integral is very difficult to evaluate, and it represents
an area for future research. Very often this problem can be circumvented
by batch processing the residuals. That is, we may consider the modified
residual sequence: r(kK) = [r'(vk-v+l),r'(vk-v+2),...,r'(vk)]' for some
batch size v>0 with £=1,2,... as the new time index. In using r(k)
we have to augment the signatures as: (g;(O),..,gi(v-l)]', i=1,..,M.
By a proper choice of v, the rank of Go can be increased to M and B will be in-
vertible. An example of the batch process is included in the next subsection.
Therefore, we direct our attention to cases where B‘-1 exists. Under this
condition, the algorithm in Section 5.2 can be used to obtain approximations
of the sequential risk and the detection performance (i.e, the expected
decision delays, probability of false alarm, etc.) of the simplified sliding
window decision rule. Simulation aimed at assessing the accuracy of the

probability approximations (5-43) resulting from the use of the Markov
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model (k) described by (5-32)~(5-42) are reported in Chapter 6 together
with the actual design of decision regions of the form (5-24) for a two-
failure-mode problem,

In concluding this subsection, we note that increased accuracy may

be obtained by using a higher order approximation, i.e. when L(k) is given
by

L(k) = C £(k) (5-47)

L(k+1) = A R(k) + B E(k+1) (5-48)

where A and B are nxn and C is Mxn with n>M. The increase in accuracy

is achieved at the expense of increased computational complexity, since we
have to contend with n-dimensional probability integrals over regions of
the form in (5-30). When n=M4, (5~47) and (5-48) will prcvide an exact
description of Lw_l(k) and we are, once ag2in, confronted with (5~30) and
{5-31). Due to the lack of an efficient algorithm for calculating the
required integrals, this subject of higher order approximation is not

purcued any further in this thesis.

5.1.4 Non-Window Sequential Decision Rules

In the previous subsection we have discussed the simplified sliding
window rule in which the M decision statistics are formed from a window
of residual samples. Here we will descrihbe another simple decision rule

that has the same decision regions as the simplified sliding window rule
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(5-24), but the vector (z) of M decision statistics ig abtained

differently as follows:

E(k+1) = A 2(k) + B r(k+l) (5-49)

where A is a constant stable MxM matrix, and B is a Mxm constant matrix
of rank M. Unlike the Markov model (k) that approximates Lw_l(k),
z(k) is a realizable Markov process driven by the residual. The obvious
advantages of using & as the decisjion statistic are: 1) less storage is
required, because residual samples need not be stored as necessary in the
sliding window scheme, and 2) since g is Markov, the required probability
integrals are of the form (5-44) and (5-45), and the algorithm to be
described in Section 5.2 can be directly applied to evaluate such integrals.

In order to form the statistics 3, we need to choose the matrices A
and B. When the failure signatures under consideration are constant biases;
ﬁ can simply be set to equal GO' and A can be chosen to be aI. where
0<a<l. Then, the term Br in (5-49) resembles Gr of (5-19), and it provides
the correlation of the residual with the signatures, The time constant
(-1'%3) of g characterizes the memory span of Z just as W characterizes that of
the sliding window rules. When O is close to one, residual samples from
long ago are remembered, and when a is zero, Z(k) is just Br(k). Therefore,
a (or A in general) can be regarded as a design parameter playing a role
similar to that of W in the sliding window scheme,.

More generally, if we consider failure signaturesthat are not constant

biases. fThen the choice of A may still be handled in the same way as in the
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as in the constant-bias case, but the selection of a B matrix is more involved.
Qualitatively, the role of B (just as G in (5-19)) is to bring out the failure
signature contained in the residual. Thorefore the rows of ; should represent
soms characteristic directions of the failure signatures in question, e.g.

in the constant-bias case, the rows of B are simply the signatures of the
failurcs. As the signatures are not constants the choice of such characteris-
tic directions is not straightforward and is very much problem dependent.

With some insights into the nature of the signhatures, a reasonable choice of B
can often be made. To illustrate how this may be accomplished, we will con-
sider an example with two failure modes and an m-dimensional residual vector.

Let

9 (k=T) = ﬂl (5-50)

9, (k-T) = Bz {(k-T+1) {5-51)

That is, 9, is a constant bias, and 9, is a ramp. 1If Bl and 82 are not
multiples of each other a simple choice of B is available:

8

Bel | (5-52)
B
2

¢ 4 Bl-ulﬁ and 82-4:282. wheve a, and a, are scalar constants, the above
choice of B has rank one and is not very useful for identifying either
signature. Suppose we batch process every twoc residual samples together,

i.e we use the residual sequences ¥ (K) = [r'(2k-1),r'(2k))', Kk=1,2,....
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Then we can set B to be

B = (5-53)

Thus, the first and second rows of B capture the constant-bias and ramp
nature of 9, and 9, respectively (and this B has rank two). The use of
the modified residual r (k) in this casy cauies no adverse effect, since it
only lengthens slightly the interval between times when terminal decisions
may b»e made. A big increase in such intervals i.e., the batch processing
of xr(k),...,xr(k+v) simultaneocusly for large v, may however, be undesirable.
The above simple example serves to show that the applicability of the
decision statistic 2z is not as restrictive as it first appears to be. 1In
any event, the matrices ;\ and 5 may be regarded as design parameters just
as the cost functicns and prior probability mass function. The merit of
any choice of A and i may be assessed by determining if the decision rule
based on such choicas yieldsgood performance., The algorithm of Section 5.2
will aid in evaluating the risk associated with using z in the decision rule,
and the risk-minimization algorithm to be discussed in Section 5.3 can be
used in obtaining a decision rule that has as small a risk as is possible for
a particular choice of A and B. The design of a decision rule usingz &s the

decision statistic for a two failure-mode problem is reported in Chapter 6.
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While the statistic = is potentially useful for a wide range of
problems, we expect 1;3 effectiveness to diminish for problems where the
signatures vary drastically as a function of the elapsed time, or the dis-
tinguishability among failures depends eventually on thesa variations, This
is due to the fact that a constant B is not adequate to capture the essence
of rapidly varying signatures. In such cases the sliding window decision
rule should provide better performance because of its inherent nature to look
for a full window's worth of signature. However, this still leaves rany
applications for which £ is a useful statistics.

It is possible to use a higher order z (similar to L of the last
subsection). It is not considered here, because in fact, it is mimicking
the sliding window statistic Lw-l' In addition, the increased order complicates
both implementation and the computation of the required probability integrals,

now having the form (5-30) and (5-31). Such added complexity will negate

the advantages of using z.

5.2 Evaluation of the Risk and Performance Probabilities

In this section we will examine the problem of computing the risk
associated with the decigsion rules discussed in the last two subsections.
An algorithm based on standard numerical quadrative techniques has been de-
veloped for calculating the conditional density (5~45) and probabilities
(5-44) recursively. since the decision statistic Z of subsection 5.1.4 and
the : pproximation (%) of the sliding window statistic Lw_1 of subsection

S5.1.3 are both Markov processes with the required calculations in the forwm
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of (5-44) and (5-45), this algorithm is directly applicable to both cases.
We will only describe the algorithm for the two failure-mode problem,
although it may be easily generalized to an arbitrary number of failure
modes. It will become clear, however, that due to the exponential increase
in computational requirement as a function of the number of failure modes
the algorithm is only practical for decision rules dealing with a few failure
modes. This problem is intzinsiec to the numerical evaluation of multi-
dimensional integrals and, in general, cannot be avoided. The approach to
the design of a robust residual generation process undertaken in Chapters 2
and 3 will aid in limiting the number of failure modes to be considered
simultaneously by a decision rule. Since each residual generation process is
based on a part of the system, namely the most relevant and parameter-insen-
sitive part, it will include only a subset of all the possible failure types
of the whole system. Then, it is likely that a decision rule employing the
residual from such a process will have to deal with only a small mumber of
failure modes.

A brief review of the quadrature technique employed in this study is
included in subsection 5.2.1, while the actual algorithm for calculating
the conditional density and the required probabilities is described in
subsection 5.2.2. 1In subsection 5.2.3, we will discuss the risk evaluation

problem.

5.2.1 Gaussian Quadrature Formulas

Numerical integration generally involves the approximation of a definite

integral by a finite sum. The most widely studied method is of the form
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B

fw(x)F(x)dx

a

1

n
] vPrix®) (5-54) -
s=]l

where s is an index for the points used in the formula, x is a scalar

variable, and w(x) is a functinn for which the integrals
- r

8
/ w(x)xkdx, k=0,1,2,... are defined and finite; vs and xs are known as

o
the weights and nodes, respectively. When w(x) is nonnegative in [a,B), a
set of weights and nodes can be found so that the approximation (5-54)
becomes exact for F when it is a polynomial of degree less than 2n. Such an
approximation is known as a n-point Gaussian quadrature formula, or Gaussian
formula [ 39]. Based on the theory of orthogonal polynomials, efficient
Gaussian formulas have been determined for the l-dimensional integral for a
variety of w and intervals [a,8]. Attempts to develop similar formulas for
several dimensions has met with little success. The most common approach to
M-dimensional integration is to regard the integral as a M-fold iterated
integral and apply a l-dimensional formula to each variable separately. The

resulting formula is called a product formula, e.g. in two dimensions.

8, B,
f f F(xl:xz)dxldxz
%2 %
B 8
2 Ll -1 -1
= f wl(xl)wz(xz)[w:L (xl)w2 (xz)F(xl'xz)]dxldxz
@G
n2 nl st -1,s =~1 ¢t 8 ¢t
) 21 s-zzl iy ¥y (xp)wy (k)F(xpex)) {5-55)
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where we have assumed w;l(x) exists for y=1,2, and vs. x; are the weights
and nodes of the nY-point Gaussian formulas:
By n,
fw (x)F(x)dx = } voF(xS), Y=1,2, (5--56)
a Y gu1 Y Y
Y

This approach is the basis of our algorithm for evaluating the integrals of
(5-44) and (5-45). The two l-dimensional Gaussian quadrature formulas

employed in the algorithm are

-
n
f eFix) = ] T Flx) (5-57)
0 s=1
0
e * Fix)ax =) ¥ Flx) (5-58)
- s=1

Now, 3: and xi are the weights and nodes of the n-point Laguerre-Gauss

formula (5-57), and v

H and x; are the weights and nodes of the n-point

Hermite-Gauss formula. The weights and nodes for both of these formulas are
tabulated for a wide range of n[ 49). (In fact, the nodes x: and x: are the
roots of the n-th order Laguerre and Hermite polynomials, respectively.)

Provided the integrals exist and are finite, we have the following formulas:

00
n
8
f F(x)dx = s§1 v, Flx,) (5-59)
)
[« -] n s
f Flx)dx = szl ve Flx,) (5-60)

-Q0
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where
8
x
5 8 L
VL vL e : {5-61)
2
(x)
S o8 H . -
Vg~V (5-62)

For some finite regions of integration, such as a sphere, a cube,
etc., estimate of the error associated with the product formula (5-55) axe
available [39]. These results are not useful for our problem, becauss
they are dependent on the (higher order) derivative of the integrand function.
The integra.ds of (5-44) and (5-45) involve the conditional density for
which derivative information is very difficult to obtain. The fact that we
are dealing with probability integrals, however, will provide us with some
handle on the error magnitude. We will discuss this when we describe the
algorithm in the next subsection. 1In closing, we note that further references

on numerical integration may be found in the survey paper by Haber [41].

5.2.2 An Algorithm for Calculating the Conditional Density and
Asgociated Probabilities

The computational procedure described here will be applicable to both
%(k) of subsection 5.1.3 and z(k) of subgection 5.1.4, since by setting
Br(k+l) to be E(k+l) we can see that both (5-32) and (5-49) have the same

form. To facilitate discussion, we will use the simplifying notaticns:
By (2(k)) = p(R(K) S, (k-1),1,T) K>W (5-63)

h (L(W) = p(L(W) lo,-) (5-64)

sl v o e 1€t

B s e ot e o st

i et e ki
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Py (L(k+1)=A2(k)) = p(E(k+1l) = (k+1)-Ak(k)) k>W (5-65)
P () = p:{z(x)esjtso(k-n,i,r)} I=0,... .M k>W (5-66)

vwhere p(f(W)) is taken to be the steady no-fail density of &, i.e. we
assume that we begin in the steady state at W. Note that the dependence on
(1,7) is suppressed. It is understood that the above quantities have to be

interpreted in context  with some (i, T) pair.

For M=2, the decision regions have the form (see Figure 5-1):

Sy = {%: 2S£, 8, < £} (5-67a) i
s, = {£: € 2(L-£)> e t(a.-£)) (5-67b)
1 17171 2 72 2
s, = {8: €(.-£)> et -£)) (5-67c)
2 2 ‘"2 72 111
Then the propagation of the conditional density is governed by
£, 05
-1
ey B0 = 21O [ [ B 1A 00y (L0602t A, ()
- -0 (5-68)
Substituting L(k) = f-y, we get
[- -] - -]
N T :
hk+1(£(k+1)) Pk (0) pk(l(k+1) Alf y])hk(f y)dyldy2 (5-69)

Q ¢
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Similarly, we can write

[~

P, (0) =_{ [hk(f-y)dyldyz

o
oo+ |

-] -3 ( 2':L(k)
P (2 '[ / " \|a, 2, x)-y )dyzdy'l(k)
S A 21 2

o0

( al(!L2 (k))-yl )
hy L, (k) dy, 4%, (k)

o3

where
fl lz(k)i f2
a (2,(k)) =
i 2 €
-1 _ L. (k)> £
e (12 f2)+fl 2 2
2
e2 .
EI (ll—fl)+f2 Rl(k)> fl
a (x, (k)) =
271 f2 ll(k)§,f2

(5-70)

(5-71)

(5-72)

(5-73)

(5-74)

The integrals (5-69)-(5-72) are in the forms that are suitable for the

application of the product formula employing Laguerre and Hermite formulas

Using for the integral from 0 to = (5-59) and (5-60) for the integral from

- to <, the above integrals can be approximated as

B

P T

U

e
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[ 8
N nL nL - ( f1 - xL ) ( fl - xn
hyyq 2 0#1))= B, 7 (0) Z=1 sgl v v, P, (2(k+1)-A et h e ot )
2" % 2" %
(5-75)
n n e s
L L £ - x
p© = [ I Svn ( 1L ) (5-76)
t=1 s=1 £ - xt
2 L
n n t
H L a {x) -x
o s 1 H
P (1) = tzl s§1 va;hk ( . ) (5~77)
X
H
n n t
H L X
p(2= § I v ( B ) (5-78)
x t=1 sg=1 L ﬁhk t S
az(xH) - X

where an nL-point Laguerre formula and an nH-point Hermite formula are used.
The above approximations may be set to be equalities while keeping in mind
that the quantities on the left hand sides become approximations of the true
ones. Thus, {(5-75) and (5~76) describe the prupagation of the approximate
conditional density. The probabilities of (5-44) can be approximated by

using (5-76)-(5~78) in

k-1
Pr{l(k)esj. so(k—l)li.r} =P, (1) sgw P_(0) (5~79)

Due to the fact that only approximate values of Pk(j), j=0,1,2 are used in

(5-79), the errors may accumate as k increases. Some feel for this
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cumulative error is obtained by means of comparisons with simulation results,
and it is reported in Chapter 6.
Since the probabilities in (5-76)~(5-78) should sum to one, i.e.
2
I Pk(j) should equal one, hk(l(k)) and Pk(j)' j=0,1,2 are normalized
3=0
for all k>W. This insures that Pk(j) are valid probabilities and hk(t(k))

will always be close to being a density function. The un-normalized sum,

2

Z Pk(j), can serve as a coarse indicator of the accuracy of the approxi-
3=0

mations. That is, if it is not close to one, we know that the approximations
are poor and more points will have to be used in the quadrature. Although
the fact that the sum is close to one does not necessarily imply the quadrative
is indeed accurate, we would be more confident in the approximations if this
is in fact the case.

Upon examining (5-75)-(5-78), we note that for every k, there are only
a fixed number of points in the %£-plane for which hk will have to determined,
namely, ni points in S

and n xnh point in S, and S, each. Moreover, these
L 1

0 2
points do not vary with k. In order to calculate hk+1 for any point 2, all

ni points in S_ will have to be used. An estimite of the computational

0
requirement can be obtained as follows. For simplicity, let us assume
nL=nH=n. Suppose we call the evaluation of each term in the summation in

(5-75) a step. Then we need to perform n2 steps to obtain a new points.

Since there are a total of 3n2 points (due to three decision regicns), 3n‘

steps wil® .ave to be carried out at each iteration. Table 5-1 shows the
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3n4

(steps/iter)

12288
30000
62208
115248
196608
314928
480000
702768
995328
1370928
1843968
2430000

Assuming 5x107° sec/step

TABLE 5-1: Computation Requirements

time/iter

(sec)

1.50
3.11
5.76
9.83
15.74
24.00
35.14
49.77
68.55
92.20
121.50
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total number of steps and the corresponding computation time for iteration

as a function of n. (For this table we have assumed a time of leo-s/lec/stop.
while using an un-optimized code on an IBM 370/168 computer we have nipetienced
roughly 7x10-ssec/step.) For n=16, sav, almost 10 seconds are required per
iteration. Typically, a minimum of 30 iterations are required to calculate
the risk approximately (see Section 5.2.3 for a discussion of risk evaluation).
This gives 5 minutes per risk evaluation. In searching for a set of risk-
minimizing decision regions (see Section 5.3.1), quite a few risk evaluations
are usually needed. Therefore, even for the simple two-failure mode case,

the computational burden is not insignificant. In general, the M-mode problem
will require (M+1)nM steps/iteration. It is obvious that M does not have to
be very large before the amount of computation becomes too much to handle.

In order to construct a Laguerre or Hermite formula that gives good
results we need to choose two design parameters carefully ~ the number of
points to be used in the quadrative and the scale factor of the variable of
integration. Although we will use the Laguerre formula to illustrate the
importance of these two parameters, the following discussion will apply to the
Hermjite case as well as to product formulas composed of Hermite and Laguerre
quadrature rules. Figure 5-2 shows the location of the nodes of a 8-point
and a l6-point Laguerre formula. It i{s evident that for a larger n, the nodes
cover a larger range as well as providing a more dense covering for small
values gf x. Thus, a large n is suitable for integrands that are "spread-out”.

When more points are used, more computation is required. The choice of an

appropriate n is based on the tradeoff between accuracy and computational
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8 - point g +—e + + —
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FIGURE 5~-2: Nodes of Laguerre Formulas.
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PIGURE 5-3: Effects of Different Scale Factors.
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load. The import ‘ce of an appropriate scaling of the integrand can be

illustrated by considerinc a simple l-dimensional integral [ F(x)dx.

With a simple scale change of the variable of integration, we can obtain

] [
f Fix)dx = f é?( c%)dy, where y=ax and o is positive. The situation of
o] 0

applying the same Laguerre formula to the integral with different scale fac-
tors a is shown in Figure 5-3, The dots on the y-axis mark the nodes. A
small a has the effect of compressing the integrand while a large o tends to
spread it out. For an excessively large a, the range of the nodes does not
span the integrand sufficiently. On the other hand, for an excessively small
o, the nodes do not capture sufficient details of F. In both of these cases,
the approximation of the integral is expected to be poor. A good choice of a
can only be made with scme insights int;a the nature of the integrand.

For the prasent problem, these two parameters are chosen heuristically
according to the above guidelines. Important considerations include the
spread of the integrands of (5-75)-(5-78) and the thresholds (f). The spreads
of the integrands of interest are generally difficult to calculate. Consider
the integrand of (5-75). It is the product of Py and hk Therefore, its
spread is roughly the spiead of the minimum of the spreads of pk and hw’

Since the covariance of Py is much smaller than that of hw’ the scaling of the
variable of integration is chosen to minimize the advers: -ffect (of

Figure 5-3) on Py For simplicity, the same scaling is used for all integrals,

although different ones may be applied for more accurate results. Algorithms
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using different scaling for each of the integrands in (5-75)-(5-78) should
be investigated in the future.

Depending on their sizes, the thresholds may also be the source of
error for the quadrative. 170 see this, let us consider the l-dimensional
analog of (5-75), i.e. integrating over the continue region, as pictured
in Figure 5-4. According to the formula (5-75), the nodes of the Loguerra
formula are located relative to the threshold. For the larger threshold
fl,\nnny of the nodes span the ingignificant part of the integrand, while
for !2, the nodes of the laguerre formula (with the same number of points)
cover the integrand well. (Note that scaling will not improve the situation).
Ideally, n, the number of points in the guadrature formula, should be chosen
as large as is practical so that sufficient number of nodes will cover the
significant part of the integrand. In this study n is roughly chosen so that
the span of the nodes (the distance between the minimum and maximum nodes) is
a few times the sum of the magnitude of the maximum threshold and the scaled
spread (the square root of the largast diagonal slement of the covariance
matrix) of hw. As the spread of hw is an approximation of that of hk' this
choice of n will provide sufficient covering for the integrands of {5-76)-
(5-78) as well as that of (5-75). (The spread of the former is larger than
that of the latter).

It is noted that the spsn of the Hermite nodes are very small even for
ny large (see the table of Hermite roots and weights in [40 ]). The Hermite
formula is used in computing the stopping probabilities Pk(l) and pk(z).

In (5-77) and (5-78), the Hermite nodes are centered at the axes. Under the
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FIGURE 5-4: Effect of the Threshold.
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no-fail hypothesis this will provide a sufficient covering of Py in S1 and

82. Under a failure nypothesis, Py will shift into the stopping region.
Thus, the short span of the Hermite roots together with the centering at
the axes may not cover Py in sl and 82 well enough. To compensate for this,

v will shift the Hermite nodes into S, and S This is accomplished by

1 2°
modifying (5-77) and (5-78) as
n n a (xt) - xs
H L st 1H L
-~ - [ ]
P (1) = tzl s£1 vovh . _ (5-77)
n n xt + A (k;i,T)
R ( n " )
P _(2) = A (5-78)'
k t=1 s=1 L Hhk

a (xt) - x
2 H L
where

A Oid, 1) = minlf, S E(y () k.01, 3=1,2

That is, as Py shifts into S1 and s2 (under a failure), the Hermite nodes
are also shifted into 8, and S, by means of Xl and Az. Note that Al and 12
are clipped at the threshold values. This prevents the Hermite nodes to
move too far away from the threszholds into the stopping regions in the events
that the expected value of Z(k) under a failure grows indefinitely. Thus,

we have constructed a moving grid to cover the conditional density Py in

order to obtain better accuracy in the quadrature. (Comparisons among the

results from using (5-77) and (5-78), (5-77)' and (5-78f, and Monte Carlo
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simulations have shown the moving-grid approach to be more accur;te that the
static method). The technique of using a moving grid should be further
studied in future efforts in developing algorithms for computing the detac-
tion probabilities.

In summary, we have described an algorithm for calculating (approximately’
the conditional density and the probabilities required for the risk evaluation;
and we have provided an assessment of its practicality. Effective choice of
design parameters, the scale factor of the variable of integration and the
number of points used in the Laguerre and Hermite formulas, has been discussed.
The performance is assessed via comparisons with Monte Carlo simulations for
various types of signatures and thresholds, and the result is reported in
Chapter 6. 1In addition to aiding the design of decision rules, the present
algorithm provides a simple framework for exploring finer issues of computing
the probabilities so that the design of more effective and efficient algorithms
can be facilitated. Finally, we note that integration algorithms based on
other l-dimensional formulas [ 39] may be constructed for our problem, although

they are not examined in this study.

5.2.3 Risk and Performance Probabilities

In this section we will discuss the computation of the risk and
performance probabilities for a sequential decision rule in the form of
(5-67) for the detection and identification of the various failure modes

{but not fajlure time). Before we prrnceed with the calculation, we will

examine the behavior of the conditional density p(l(k)lso(k-l).i.f) as a
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function of k. Recall that £ is described by
L(k+l) = AR(k) + E(k+l1) (5-32)

where A is a constant stable matrix, and £ is a white Gaussian sequence

with constant covariance BB'. 1In the absence of a failure, £ is zero mean,
and thus, is a stationary process. Based or the fact that A is constant,

£ is stationary and the decision regions (in particular, the continue region)
are time independent, we conjecture that the condition2l density under (0,-)

will approach a limiting density function as time progresses, i.e.

lim p(£(k) |S fk-1),0-) = plR(Kk)) (5-80)
)

Qualitatively, the propagation of the conditional density consists of the
following process. After the density at k cutside the continue region is
set to zero, it is normalized to become the density at k conditioned or
continuing. Then it is compressed (by the effect of A with eigenvalues of
magnitudes smaller than one) and convolved with the density of §. The
convolution has the effect of spreading the density out again over into the
continue region. Since the matrix A, the density of §{, and the continue
region are all time-invariant, a steady state density is most likely to be
reached. In fact, convergence is evident in all propagations of the con-
ditional density, by means of the algorithm described in the last subsection,
for various values of A, BB' and £ (the thresholds defining S,). Following

3
similar reasoning, we also conjecture that the actual conditional density of
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the sliding window rule, i.e. p(lw_l(k)lso(k-l),o-), behaves similarly.
tnfortunately, we have not been able to prove such convergence behavior
using elementary technigues. More advanced function-theoretic methods may
be negessary, but they are beyond the scope of this thesis. Assuming that
this behavior holds, however, we will be able to obtain a simple approximate
expression for the sequential rigk. We will discuss this next.

Assuming no failure has occurred, the conditional density will essen-

tially reach a steady state at some finite time T>W. Then, for k>T we have

Pr{l(k)esj|so(k-1).0-} = by (5-81)

Pr{z(k)esj,z(k-l)eso,...,1(T)esol8(r-1),i.t} = b_(k-t]t) k>0>T

3
(5-82)
That is: once steady state is reached, only the relative time (elapsed time)
is important. Generally, failures occur infrequently, and decision rule
with low false alarm probabilities are employed. Thus, it is reasonable to
assume 1) p<<l ((1-p)T ~1), i.e. the failure rate is low (see Sec. 4.2),
and 2) Pr{SO(T)IO,-}==1, i.e. nearly no false alarm before steady state is
#3 reached. Using (4-3), the seguential risk (5-25) for M=2 can be approximated
F - by
2 © T-1

w T-1
U e =L, ] oli)p@-p

DL Gy
i=1 T=T+1 k=T

2 _ T ’
jzl (BB, Pr( S, (T) lo,~}

o

2 © 2
+ 7 7 awpu-p™t Y I (i) (e-1)4L(1,3) by
i=l T=T+1 k=T j=1

B0 N e o A S, 3

—k-T
(k-T)b, pr{so(r)lo,-}

(1-p)(1~56) 0 2 2 o
| ————— |1, +| — Yo} } [c(i)t+L(i.j)]bj(tli)l
I—Bb(l-p) Llrbo(l~p) i=] j=1 t=0

(5-83)
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Next, we will seek to replace the infinite sum over t in (5-83) by the
finite sum up to t=A plus a term approximating the remainder of the infinite
sum. Suppose we have been sampling for A steps since the failure occurred.

Recall the notation (5-66):
P (3) = Px{f.(t)esjlso(t-l).i,o} 3=0,1,2 (5-84)

If we stop computing the probabilities after A, we may approximate

Pt(:’) = PA(J) j=0,1,2, t>A (5-85)

and consequently
oL t . )
by (£]4) = b (4] Py o) 2, (5) >4 (5-86)

Under the no-fail hypothesis, (5-81) implies that (5-85) is good for A >T.
When the signature of the failure modei is a constant, the same reasoning
behind (5-8l1) may be applied, and we can see that Pt(j) under failure mode i
will reach a steady state valPe as t (the elapsed time) increases. In this
case, (5-85) is also a valid aﬁproximation for a large A. Generally, the
failure signatures of interest are not necessarily constant. However, for
sufficiently large A, the probability of continuing after A tiue steps
(since the failure occurred) may be arbitrarily small. The error introduced
by (5-85) in the risk (and performance probability)} calculation is, conse-

quently, small. Thus, we see that the approximation (5-85) is a reasonable

one for a sufficiently large' A.
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Substituting (5-86) in (5-83), we get

2 2
S = Pply + (1-P.) 1 o) [a(i)'fi + ¥ L(i,j)P(i.j)] (5-87)
s i=1 j=1
where
(l-p)(lJBO)
P= ——— (5-88)
1-56(1~p)
f- 1 1
t, = t b (t]i) + b (A]41) A + ————— (5-89)
i je1 =0 3 0 l-PA(O)
A R NET
P(i,j) = tgo bj(tll) + b, (A]1) T o (5-90)

Pj is the unconditional false alarm probability, i.e. the probability of
one false alarm over all time, E; is the conditional expected delay to
decision, given thatv a type i failure has occurred, and P(i,j) is the
conditional probability of declaring a type j failure, given that failure i
has occurred. From the assumption that Pr{So(T)!O,-}‘¥1 and the steady
condition (5-81), it can be shown that the mean time between false alarms
is simply (1-36)'1. Now all the probabilities in (5-88)-(5-90) can be com-
puted by using the algorithm of Subsection 5.2.2. Note that the risk ex-
pression {(5-87) consists only of finite sums. In contrast to the original

risk expression (5-25) for the simplified sliding window rule, (5-87) can be

evaluated with a reasonable amount of computational effort. With such an
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approximation of the sequential risk, we will be able to consider the

problem of determining the decision regions (the thresholds f) that
minimize the risk. We will discuss the risk-minimization problem in the
next section.

It should be noted that we are not limited to only consider the risk
as the objective function in the decision rule design problem. For example,
we could consider choosing a set of thresholds that minimize a wcighted
combination of certain detection prcbabilities (P(i,j)), the expected detec~
tion delay (E;), and the mean time between false alarms ((1—56)-1).

Although such an objective function will not result in a Bayesian design in

general, it is a valid design criterion that may be useful for some applica-

tion. Since these non-Bayesian objective functions are also functions of

§ the performance indices (expected delay, etc.), they can be evaluated using
the approach described in this subsection and the previous one. Although we
will not directly consider the non-Bayesian design problems, the risk-minization
algorithm and the choice of design parameters discussed in the next subsection

are also applicable for these prohblems.

é 5.3 Design of Decision Rule - Choice of Design Parameters and
] : Minimization of the Risk

For a given set of cost functions, prior PMF, and other design parameters,
such as the window length W, and the matrices A and B used in forming the
decision statistic z, the design of a suboptimal rule essentially amounts to

determining a set of decision regions (characterized by the thresholds f)

A AP bt
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which minimizes the sequential risk. An algorithm, which is especially
suitable for this minimization problem, is describeJ in subsection 5.2,1.
The effectiveness of the resulting decision rule depends heavily on the
choice of the above mentioned design parameters. Por example, an improperly
chosen cost function that overly penalizes false alarms will result in
prolonged decision delays under failures. A window that is too short may
not utilize sufficient data to achieve good detection performance regardless
of any choice of cost functions. This aspect of the decision rule design

problem will be discussed in subsection 5.3.2.

5,3.1 The Sequence-of-Quadratic-Programs (SQP) Algorithm
for Minimizing the Risk

The risk minimization problem has two features that deserve special
attention. Firstly, the sequential risk is not a simple function of the
threshold f, and the derivative with respect to f is not readily available.
Secondly, calculatino the risk is a costly task. Therefore, the minimum-
seeking procedure to be used must require few function (risk) evaluations,
and it must not require derivatives. The sequence-of-quadratic-programs
(SOP) algorithm studied by Winfield [ 42] has been chosen to solve this
problem, because it does not need any derivative information and it appears
to require fewer function evaluations than other well-known algorithms [ 42].
Furthermore, the SOP is simple, and it has guadratic convergence. We will
describe the SOP for the 2-dimensional case, but the generalization to higher

Jimensions is straightforward.




N o

=173~

Applications of the SQP to the risk minimization involves iterating
through the following steps:

1) 1Initially, six different sets of thresholds are picked, and the
corresponding sequential risks are calculated. The threshold set having the
smallest risk is called the base point (denoted by fo). and the remaining

0 1

five sets are indexed according to increasing distance from £, i.e. f

is the closest and fs is the farthest from fo.

2) A quadratic function described by

ulx) = % X'Hx + ¢'x + o (£0) {5-91)
s

where

x=f - £ (5-92)
H is a 2x2 symmetric matrix, and ¢ is a 2-vector, is fitted through the
six threshold-risk pairs (with the base point as the origin). That is, H

and ¢ are determined from the equations

o

e = 0 = 2 (o) %) v o0, gm1,.ls (5-93)

Note that H does not have tc be positive definite. The quadratic function
0 5
u approximates the risk in a region spanned by {f ,...,f }.
3) The constraint region, R, is defined to be the square region centered

at the base point with sides parallel to the axes. It is over R that the

i Gy i e

minimization of u(x) will be performed in Step 4. The length of the sides,

Y, is given by

Y=2x .99 x ;7‘;—: (5-94)
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where € is the distance between to and fs, and Yy is limited by some ap-
propriate Ymax' which has the connotation as the maximum step size; K is a
constraint region reduction factor that is initially set to one but ag we
will see, it may be modified in subsequent steps according to the outcome
of the minimization effort at each step. In other words, R is a square

inscribed in a circle centered at fo with radius .99 € K.

4) The quadratic function u(x) obtained in Step 2 is minimized over the
constraint region ~ this is a quadratic program. The square R, in fact,
has been specified to make the guadratic programming solution procedure simple.
Let tM denote the solution. From (5-92), xM corresponds to a threshold set
fM = xM + fo. Since u(x) is quadratié, a solution lying in the interior of R
has to be a global minimum. Therefore, xM is such a solution if i) x“ is
in the interior of R, ii) H is positive definite, and iii) grad u(xM)-O.
Otherwise, the solution lies on the sides of the square. Along each side of
the square one component of X is fixed and u{x) is a quadratic function of the
remaining fres compenent. Therafore, this is a i-dimensionali analog of the
previous condition, and similar reasoning can be applied to determine if a
minimum of the l-dimensional quadratic lies on the side but not at the corners.
There may be a maximum of four such minima. The smallest of these will be
the solution. If no such minimum exists, the four corners of the square will

be examined. The corner giving the smallest u will be the solution.
W W
5) 1f US(ZM) < Us(fo), £ is used as the new base point (and re-labelled

as fo). Five points that are clesest to the new base point are selected and

Fa L S R E—
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labellad as fl,...,fs according to increasing distance from fo. The cons-
traint region reduction faster K is set to one, and the procedure is

repeated starting at Step 2.
6) 1If Ua( )< Us(f ), the old basc point is kept. Five points closest

to fo are selected and labelled as fl,..,,fs according to increasing distance
from fo. Since R excludes the old fs (see (5-94)), fM will always be closer
to fo than the old f5 is, and fM will be included in the five new point.

This is the mechanism that provides the algorithm with the learning from
mistakes. The reduction factor K is set to be smaller than one (say .95),

so as to limit the searching a little closer to fo. The procedure is repeated
at Step 2.

As convergence is approached, the minimum of the quadratic program will
occur inside the square. The procedure is terminated when it is evident that
a local minimum has been approached. This algorithm prescribes a sequence
of quadratic programs, hence the name SQP. Finally, we note that in theory
all the thresholds and the associated risks may be kept so that they will
be available as candidates for the 5 closest points in Steps 5 or 6. 1In prac-
tice, however, it is sufficient to store only a few more in addition to the

active six.

5.3.2 The Choice of Design Parameters

There are basically two types of design parameters in the present
methodology: those affecting the informztion content of the decision sta-

tistics and those that play the role of weights in the risk expression.
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The former type includes the window length W and the matrices A and B of
subsection 5.1.4. The latter type includes the cost functions and the
prior PMF, We will discuss tham separately.

The window length determines how much data is to ba used in forming
the decision statistics. If the signatures 40 not vanish, an increased
window length will impiove the signal to noise ratio, and hence will also
improve detection parformance. For .ne simplified sliding window rule
(that uses only Lw_l(k)), a long window will cause the decision statistics
to remember the past too well so that thev become sluggish in responding to
failures. However, such an increase in detection delay is absent when a
full window of decision statistics (i.e. the complete L(k)) is used as in
the original sliding window rule (5-8).

Viewing the decision problem as a W-sample, non-sequential problem, as
we have mentioned previously, may cast same light on how to choose W for
the simplified sliding window rule. From this view point, the choice of W
becomes determining how many samples should be used. A more simplified
situation may be obtained by considering each of the M failure modes separately,
i.e. we now have M W-sample binary hypotheses testing problems at hand. ‘Then,
it is clear that W should be chusen such that it is not excessively long but
still give a high signal (signature) to noise ratio for each mode. In addition,
W must be large enough so that all failure signaturcs over the window are
sufficiently different from one another., A reasonable choice for the window
length is sone vallie samewhat greaice than all the W's for the binary hypothases
testing problems. With some assumed value of probabilities of false alarm

and detection for the binary hypothneses test, reasonable choices of thresholds
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can be made. These thresholds may, in turn, bc vsed as initial guesses of
the thresholds required for the SQP algorithm for the risk-minimization.
A refinement of the choice of W can always be made after avaluating the
performance probabilities of the window rule using the initial chice.
Recall that the matrix A used in forming the Markov decision statistics
2 also plays the role of a memory parameter, and it may be chosen with the
same considerations. We will let i be a bit more general here than in
subsection 5.1.4., i.e. A is now a diagonal matrix with elements between O
and 1, and the diagonal elements of i may be different from one ancther. A
diagonal A is used to provide a separate memory for each component of z.

Consider the i-th component of 2

zi(k+1) = uizi(k) + bit(k+1) (5-95)

where “i is the ith diagonal element of ; and b; is the ith row of B.
The signal to noise ratio of z is its mean under the ith failure divided by
its steady statc standard deviation. Since an ai close to one gives Z a

longer memory, a, should b» chosen 30 that it is not extremely close to one
and that the signal t. noise ratio reaches a good level in a reasonable time
i.e. not sluggish (the same issue as using Lw-1" For choosing 5. however,
there is not a simple general guideline as we have pointed out in subsection
5.1.4. Ve may, for example, employ the batch processing techniques and take

the augmented vector [gi(O),...,g'(v)] (where v is the batch size) to be the

i-th row of B as in the example of subsection 5.1.4. Generally, each individual

case will have to be examined separately. Just as in the choice of W, the

e
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values of i and 5 may be adjusted should the detection performance e
not acceptable.

The prior PMF may be chosen according to the reliability of componenis,
for instance. In such cases the inverse of the Bernoulli parameter has the
signiticance as the mean time to failure. 1In cther cases it may be regarded
as a design parameter that is used to aid in speciiying the tradeoff butween
false alarm and other (exvected delay and crcss-detection) costs.

The cost functions are chosen to reflect how undesirable false alarms,
delays in detection, and incorrect detections are relative to one another.
Unlike W, A, and B, which affect the information content of the decision
statistics and the risk in a complex manner, the cost functions enters the
risk linearly. Hence a change in the cost functions can be accommodated
easily without having to re-compute all the performance indices (false alarm
probabilities, conditional expected delays in decision, and conditional
incorrect detection probabilities), provided they have been stored. 1In order
to arrive at an acceptable design, very often a few sets of cost functions

may have to be tried.

5.4 Summary

In this chapter we have described a Bayesian methodology for designing
sequential decision rules for FDI. We have examined in detail the three
step of the design process: 1) the definition of the decision rule structure,
2) the evaluation of the sequential risk and detection per  :rmance, and

3) the choice of design parameters and risk-minimization.




-179-

The suboptimal rules studied are time-invariant rules that partition

the sample space of the decision statistics into decision regions. The two
major types of decision rule examined are the sliding window rule and those
that use the decision statistics z. The computational requirement for deter-
mining different forms of these decision (ules has been assessed. A numerical
algorithm based on l-dimensional quadrature formulas was developed to provide
an approximate evaluation of the risk associated with two simple sequential
decision rules. The SQP algorithm has been chosen to determine the set of
thresholds that minimizes the risk. Finally, the issues involved in choosing
the design parameters such as the cost functions, prior PMF, window size W,

and the matrices A and B used to generate the statistic z, were discussed.
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CHAPTER 6

SEQUENTIAL DECISION RULE DESIGN - A NUMERICAL EXAMPLE

6.1 Introduction

In Chapter 5 we described a methodology for designing sequential
decision rules for FDI. Here, we will appiy this design approach to a
numerical example in order to gain some insights into the nature of this
metnodology.

In the previous chipter we discussed the design of simplified sliding
window rules, i.e. decision rules that use the log likelihood ratios (Lw-l)
corresponding to the earliest point in the window (Section 5.1.3). Because
the computation of probabilities associated with such decision rules jg
very difficult, we proposed tc approximate Lw—l by a Markov process £ for
the purpose of deosign and performance analysis only, as this does not re-
present an implementable algorithm (see Section 5.1.3). A quadrature
algorithm based on Gaussian quadrature formulas was developed for computing
the probabilities associated with decision rules using Markov statisti-zs.
(Section 5.2.2;. Thus, this algorithm can be used to calculate the pro-
babilities, and hence, the risk associated with the statistic . Such a
risk provides ¢n approximation to the risk associated with a sliding
window rule (using Lw-l)' As a practical alternative, we propcsed the use
of animplementable Markov statistic z in place of Lw—l in the decision rule
(Section 5.1.4). The advantages of using such rules are that the statistic
% 1s easler to compute than lw-l and the quadrature algorithm can be applied
directly (since z is Markov). Finally, the design of decision rules was
formulated as the choice of a set ¢f thresholds that minimizes the risk,

and the SQP algorithm (Section 5.3.1) was proposed as a means for performing

the risk minimization.
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Through an exercise of these design ccencepts and simulation studies,
we can 1) assess the accuracy of the quadrature algorithm for computing
(detection) probabilities, 2) determine if the approximation of the sliding

window decision statistic Lw— by the Markov statistic £ is reasonable,

1
3) gain same experience with the SQP algorithm for minimizing the risk func-
tion, and 4) compare the performance of decision rules using the sliding
window statistic Lw—l with that using the simpler Markov statistic z. These are
the goals of studying a numerical example. We will describe the set-up of
the numerical problem in Section 6.2, and we will discuss the results in
Section 6.3.

To facilitate discussions, we will introduce the following terminology.
We will refer to a simulation of the sliding window rule by SW, a simulation
of the rule using the Markov statistic z as Markov implementation (MI), and

a simulation of the nonimplementable decision process using the approximation

£ as Markov approximation (MA).

6.2 The Numerical Example

In the numerical example, we will consider the detecticn and identifi-
cation of two possible failure modes (without identifying the failure times).
We assume that the residual is a 2-dimensional vector, and the vector failure
signatures, gi(t). i=1,2, as functions of the elapsed time t are shown in
Table 6-1. The signature of the first failure mode is simply a constant

vector. Tue first component of gz(t) is a constant, while the second
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component is a ramp. We have chosen to examine these two types of sig-
nature behavior (constant bias and ramp) because they are simple and
describe a large variety of failure signatures that are commonly seen in
practice (see, for example [9]). A constant bias represents a constant
failure effect on the residuals and such a sigrature often occurs in
practice (e.g. in the detection of bhiases in sensors). Also, constant
signatures can be used to approximate a slowly changing signature, while
a ramp can be used to model failure effects that become more noticeable
as time progresses. For simplicity, we have chusen V, the covariance of
r, to be the identity matrix.

We will design both a simplified sliding window rule (that uses Lw_l)a-nd
a rule using the Markov statistic 2. In the remainder of this section we

will discuss the choice of design parameters such as W, L, etc.

1l
5, (&) =] ¢
.5
gz(t) =
.25+ .25t
1 0
Vo=
0 1

TABLE 6-1: Failure signatures.
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Recall in Section 5.3 that the window size W of a sliding window rule
. should be chosen so that a reasonably high signature-to-noise ratio
(denoted by ni) for each failure mode is attained. That is, 0 is the
ratio between the expected value of Lw_l(k), given that a type i failure has
occurred at k-W+l, and the standard deviation of the i-th component of Lw- .

1

From the expressions for Lw-l given in (5-9) (5-10), it is easy to see that

n; = zé’ (i,1) (6-1)

. For our
1 Q!

where Zo(i,i) is the (i,i) element of Zo, the covariance of Lw_
Froblem, an n of better than 3 can be attained for each failure mode by
using a window size of 8, and we will consider simplified sliding window

rules with W=8. The approximation (%) of Lw- is given by (5-32)

1

L(k+l) = A (k) + B E(k)

The values of A, BB', and 20 can be directly determined using (5-33)-
(5-41), and they are shown in Table 6-2.

The Markov statistic 2 is given by (5-49)
Z (k+l) = AZ (k) + B r{k+l)

In order to achieve roughly the same memory span for Lw-l and 2 for this
problem, we have chosen A to be a diagonal matrix with both diagonal
elements equal to .875 (which roughly gives a time constant of 8 steps for

z), The first row of B is set to be [1,.5], i.e. gi. because to detect a
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type 1 failure we have to look for 9, in the residual. The first camponent
of 9, is a constant (=.5). Therefore, the (2,1) element of B is set to be
.5. The second component of g, grows with the elapsed time. 1In order tc
exploit this behavior the (2,2) element of B has to be a relatively large
number. In this example, we choose it ¢o be 2, the value of the second
component of g, at a elapsed time of 7/*. The values of i, 5. and the steady

state covariance (Xz) of Z are summarized in Table 6.3.

Recall from Section 5.1.3, the decision regions we have chosen take

the form (5-24)

L (k;j vw’l) >fj

e7(3,w-1) tL(k;j,w-l)-fjm'l(i.w-n [L(kid, W-1)-£,1,
irj}

Sg = (L, (K): L(k;j,w-l)gfj, j=1,2}

where € (j,W-1) is the standard deviation of the j-th component of the
statistic Lw-l' i.e. €(j,W-1) = Eé (j,j). For the decision rule using
2, we only nead to substitute z for Lw-l and the standard deviation

¥ f (3,4) for € (3,W-1), Using the data contained in Table 6-2 and 6-3,

* By choosing a large value for this camponent we are, in some sense looking
for a large bias. This means that in using the resulting static we will have
difficulty in detecting this failure at nr shortly after the onset, because

the ramp component will be small. A good choice of B will depend on the sig-
natures of all the failure rodes examined as a whole as well as the performance
tradeoff prescribed bLv the use functions. As we have pointed out in Chapter )
the design of A and R represents an interesting open problem.
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.826 .058
A =
.116 .837

ept - [2-32 2.01]

TABLE 6-2: Parameters for L, and 1.

oI
]
.
(%2} [ ad
L[]
[ w
)

5.33 6.40
- |

6.40 18.13
[1.25 1.50]
1.50 4.25

: TABLE 6-3: Parameters for z.

Bvp'

[}
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the decision regions corresponding to rules using L and 8 are depicted

W-1
in Figures 6-1 and 6~2 respectively. The decision rule design problem
consists of choosing a set of thresholds (f1 and f2) that minimizes the
risk.
The cost functions and prior probability mass function used in this
exampl~ are shown in Table 6-~4. All incorrect identification of failures
modes are penalized with 10 units, while correct failure mode identifications
| are not penalized. False alarm cost is 9 units-false alarms and incorrect fail-
ure mode identifications are nearly equally undesiraple. The delay cost for both

failure modes is chosen to be one. Both failure modes are assumed to be

equally likely, and the mean time to failure is 5000 steps. The prior pro-

P ———

bability ¥ is fixed by this a priori information. Althougn it is not
done in this study, we note that if the decision rules resulting from the
present values of the parameters L, C, M, W, i, and E are unsatisfactory,
these parameters may be adjusted to get a new design.

Recall that the risk is an infinite sum over t, the elapsed time
] .5=83). 1In Section 5.2.3 we proposed to approximate it as a finite sum

(i.e, the original infinite sum truncated at t=A) »lus a remainder term.

t For all decision thresholds considered in the present example, the value of
A is chosen to be 8, which is large enough so that the remainder term is

small, but small enough so that the computational load (due to the propa-

SRR St L L ST

gation of the conditional density) remain manageable.
The steady state conditional density, given that no failure has

occurred and no false alarm has been declared, is appromimated by the
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$Ew-12 slope= 1.214
S2
fa
So S
-
f Lw-1,1

FIGURE 6-1: Decision Regions for Sliding Window Rule.

)2,
slope =1.844
Sz
fa
So S
f, zT

FIGURE 6-2: Decision Fegions for a Rule Using z.




-188~

e = 9
L(1,2) = L(2,1) = 10
L(1,1) = L(2,2) =0

C1 = C2 = 1

pli,1) = .5p1-p) 7Y, i=1,2

p = .0002

TABLE 6-4: Cost Punctions and Prior Probability.
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conditional density propagated 8 steps. That is, we assume T=8 (see
Section 5.2.3). Experimentation with larger values of T indicated that
the detection probabilities are nct significantly changed and this ap-
proximation is a reasonable one. To maintain consistency, T is kept at 8
for all thresholds examined.

In oxder to obtain accurate results, we have to use as large an nL
and n, (the number of points in the . juerre and Hermite formulas) as is
practical in the gquadrature algorithm. In designing decision rules for
this example, we will ure n, =n, = 20. Wit!. A=8 and T=8, the evaluation
of the risk for each threshold pair takes approximately 6 minutes of CPU
time on IBM370/168 computer.

Recall (Section 5.3.1) that the six threshold pairs required to start
the SQP algorithm may be chosen arbitrarily. No set rule is the best for
all applications. Here, we will arbitrarily choose these thresholds to
take on values within a range of threshold values. They are limited to be
positive and within 2 to 4 standard deviations of the decision statistics.

Ne 't, we will discuse the results of applying our design method to

this example.

6.3 Results aad Discussion

In this secticn, we will describe our experience with the decision rule
design methodology through its application tu the example introduced in the
preceding section. We indicated that there are four main aspects of the
design approach (see Section 6.1) that need to be examined. We will diecuss

them in the following.
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Accuracy of the quadrature algorithm

The quadraturc algori.hm for computing probabilities is based on
Markov decision statistics. In ordur to determine its accuracy, we have
to compare the probabilities associated with a decision rule using Markov
statistics (e.g. 2 ) as computed by this algorithm to those obtained via
Monte Carlo simulation of the same decision process.

A corvenient set of probabilities to be examined include b, (t|i)

3
(5-82) and Bj(tli) defined by

b, (t|1) = pr{z(t)es

5 ' z(t-l)eso.....z(O)esoli}. i,j=0,1,2 (6-2)

3

b, (s]i), i=0,1,2, 3=1,2, (6-3)
s=0 J

[ B 1sd

Bj(tli) =

That is, bj(tli) is the probability of continuing sampling up to elapsed
time t and choosing decision j at t, given i is the true failure mode,

and Bj(tli) is the probability of stopping to declare a j-th failure at or
before elapsed time t, given i is the true failure mode. Another inZiicator

of the accuracy of the quadrature algorithm as discussed in fection 5.2.2 is

PT:
%
P, = P _(3) (6-4)
T =0 t
where

P (3) = Pr{z(t)esjlz{t—l)eso.....z(O)eso,i} (6~5)
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Pt(j) ig the conditional probability of choosing j at t, given we have
been sampling through elapsed time t-~1 and the true failure mode is {.
Therefore, if the algorithm is valid, PT will be close to 1.

In Figures 6-3 to 6-7 we have shown by (t|0), b (t|1), b (t|2),
Bl(tll). and 82(t|2). respectively Ior a decision rule using the statistic
z (as described in Section 6.2) with thresholds £ = [6.287, 11.867]'.
Plotted against the elapsed time t, bo(tIO) shows the failure characteristics
of the decision rule - a slowly decreasing bo(tlo) indicates that a low
false alarm rate is achieved. The rate of decrease of bo(t!i). i=1,2,
indicates the speed of response of the decision process to failures, and
Bi(tli), i=1,2, shows the ability of the decision rule to identify the
failure correctly.

The results obtained via Monte Carlo simulation using 10,000 trajec-
tories are marked as MI (see terminology defined in Section 6.1). The
qguadrature results using n =n, = 20 are marked as Q20. The guadrature
results using n = nH = 14 is also shown in the above figures and they
are marked as Ql4.

Generally, the quadrature results Q20 are quite close to the simulation
-2 results MI, while the quadrature results (14 are not. This shows that the

quadrature algorithm may be used to provide a reasonable approximation of
the probabilities, and the accuracy of the approximation can be improved

by iancreasing the number of grid points used in the algoiithm. The value
of PT for Q20 ranges from .998 to 1,05, while that for Q14 ranges from

.994 to 1.2. Therefore, the valuc of PT also indicates that Q20 will

provide a close estimate of MI and that Q14 will not.
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-193-

-
p
4
E
-
3
=
, ! -
3
3
=

- /020

i MI
|

BRRLAL S R

OnnlJLlllllLlL,

o) S 10 t

T TR 3 ST e B e T T




[

0




10

~195-

°™o

FIGURE 6-6: Bl(tll) - Using z.
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Now we compare Q20 with MI. From the trend of bo(tlo) shown in
Figure 6~3, it is evident that Q20 will under-estimate the false alarm
rate of the decision rule. Both bo(tll) and bo(t|2) indicate that the
quadrature results under-estimate the speed of detection. Q20 also slightly
under-estimates the correct detection probabilities Bi(tli). On the whole
Q20 has provided a reasonably good estimate of the true probabilities
associated with the decision rule using tihe Markov statistic 2 and threshold
[6.287, l1.867].

Finally we note that if we use the quadrature calculations for
comparisons between different rules (e.g. fcuo optimization purpose, or
just to assess the effect of increasing W, adding a sensor, etc.), then
small quadrature errorswill probably have a small effect on the result.
When the quadrature errors are consistently in the same direction, e.g. if the
quadrature approximation consistently under-estimates false alarm probability
and over-estimates detection delay, the relative performance of two decision
rules (i.e. which is better than the other) will probably be correctly

determined by the approximation method.

The Markov approximation £

Here we will describe a conclusion drawn from a simulation (SW) of
the sliding window rule with £ = [8.849, 12.047]' and a simulation (MA)
of the nonimplementable decision rule based on £ 2nd using the same
thresholds. ¢{Each s:imulation consists of 10,000 trajectories.,) The
resulting probabilities are shown in Figures 6-8 to 6-12, 1In addition,

the probabilities associated with the Markov approximation (%) :re




|

-198-

\‘\
ST MA
N Y
=== -020
S~ sw

.900

FIGURE 6-8:

S 10

bO(t!O) = Sliding Window Rule and Approximation.

t



-199-

10 <,

Q20

- ;\2 _—MaA

X
| "
\\\.\

o) | T Y W S R (NN NN WA NN S NS N

o) S 10 t

FIGURE 6-9: b (t|1) - Sliding Window Rule and Approximation.




~200~

101~

MA

- SW Q20

OLL41|!1|1|\LL1
O 5 10

PIGURE 6-10: bo(tlz) - Sliding Window Ruls and Approximation.




-201-

- Sw 'Y
s
i “a20
SH

PIGURE 6-11: b, (t|1) - Sliding Window Rule and Approximation.




~202-

1.0
i MA
I "sw

12

- Q20

S MA,SW
i Q20

O L___L_.]‘—'l 1 1 L 1 | . § 1 l
10 5 10

PIGURE 6-12: b,(t|2) - Sliding Window Rule and Approximation.




o

-203-

. £

computed via the quadrature method using "L = ., = 20, ard these are in-

H
- cluded in the above figures. (These probabilities are also marked Q20).
SW may be compared with MA to determine the validity of the Markov ap-
proximation £, and MA may be compared with Q20 to further agsess the ac-
curacy of the quadrature algorithm.

From the simulation results (Figure 6-8) it is evident that the Markov
approximation (MA) slightly under-estimatesthe false alarm rate of the
sliding window rule (SW). However, tie response of the Markov approximation
to failures is very close to that of the sliding window rvle (see Figure 6-8

£ to 6-12). In the present example, [ is a 7-th order process, while its

Ww-1
approximation £ is only of first order. In view of this fact, we can con-
clude that £ provides a very reascnable and usefui approximation of LW-I'
The quadrature results Q20 are very close to MA. The value of P,
ranges between .998 and 1.03. This is further evidence that the quadrature
algorithm is useful for obtaining estimates of probabilities. Furthermore,
this indicates that the results of applying quadrature to the Markov ap-
proximation prcvides a good approximution of SW. Thus one overall conclusion
is that the quadrature technique for calculating approximate performance
using the Markov approximation to the sliding window test represents an
useful and accurate method for determining the performance of failure detec-

tion rules and for comparing and optimizing such rules. We now turn to the

last of these pomsidbilities.

The SQOP algorithm

The SQP algorithm is used in conjunction with the quadrature al~ccithm

(nL =n, - 20) to find the risk-minimizing thresl.old for both the sliding
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window rule and the rule using 2. The successive choices of thresholds by
SQP for the two decision rules are plotted in Figures 6-13 and 6-14, The
performance indices, such as the estimated mean time betwecn false alarms
(MTBFA) , the detection delays (Ek), and the correct detection probabilities
(P(1]i)), along with the risks associated with these choiues cof thresholds
for both decision rules are shown in Tables 6-5 and 6-6.

Note that we have not carried the SQP algorithm far enough so that
the succesasive choices of thresholds are, say, within .001 of each other.

In Tables 6-5 and 6-6, it is evident that towards late:r iterations the per-
formance indices become relatively insensitive to small changes of the f£'s.
This together with the fact that we are only computing an app:oximate Bayes
risk (see Subgection 5.2.3) means that fine scale optimization is not
worthwhile. Thercfore, with the approximate risk, the SQP is most egfeciently
used to locate the zone where the minimum lies. That is, the SQP algorithm
is to be terminated when it is evident that it has converged into a reason-
ably small region, such as in the present example (see Figure 6-13 and 6-14).
Then we may choose the thresholds that give the smallest risk as the
approximate golution of the minimization.

In the event that thresholds that yield the smallest risk do not pro-
vide the desired detection performance, the design parameters, L, o, M, and
W may be adjusted and the SQP may be repeated to get a new design. A prac-
tical alternative method is to make use of the list of performance indices

{Tables 6~5 and 6-6), that are the by-product of SQP, and choose a pair of

+oB i
Lol 1 L th

e 2 Bk AR St
0
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ITER

£

L £, RISK MTBFA PO . P@j2 E&

8.0 11.0 8.9029 359 .868 6.29 .821 5.7

9.5 11.5 8.9282 963 .793 8.24 .930 6.10

9.0 11.5 8.8856 976 .917 7.75 .84l 6.43

8.5 13.5 8.5418 744 .973 7.16 .69 6.55

9.75  13.0 8.9742 2014 .909 9.05 .888 6.74

8.75  11.75 8.8818 676 .879 7.28  .858 6.10

1 7.563 12.654  8.9433 330 .971 6.00 .620 €.19

2 8.840 10.729  8.,9091 510 .768 7.14 .914 5.72

3 8.616 12.110  8.8842 671 .912 7.17 .82l 6.2

4 8.748 11.902  8.8809 703 .821 7.30 .849 6.16

5 8.801 11.978  8.8803 743 .893 7.39  .850 6.20

6 8.825 12.028  8.8802 766 .895 7.43  .850 6.22

7 9.180 12.740  8.8871 994 .875 7.93  .882 6.29

8 8.849 12.047  8.8801 783 .895 T.46  .851 6.23
8.867 12.039

TABLE 6~5: Performance of Sliding Window Rule with Thresholds

Chosen by SQP.
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ITER

£

1 ) KISK MTBFA P(1]1) p  P(2]2) t,

6.4 12.5 8.9389 761 .922 7.60 .772 6.41

7.2 13.25 9.1026 1786 .890 9.55 .869 6.82

6.0 11.8 8.9290 443 .914 6.74 .739 6.04

7.0 12.0 8.9947 951 .838 8.74 .883 6.40

5.5 11.0 8.9389 252 .907 5.83 .691 5.61

5.7 12.2 8.9406 384 .947 6.29 .651 6.03

1 5.462 12.940  8.9643 344 .975 5.97 .541 6.09

2 5.975 10.996  8.9311 340 .869 6.56 .78l 5.78

3 5.951 11.528  8.9289 395 .903 6.62 .746 5.94

4 5.776  10.771  8.9337 284 .872 6.21 .759 5.64

5  6.089 11.667  8.9279 454 .901 6.88 .763 6.03

6 6.117 11.545  8.9279 445 .891 6.90 .775 6.04

7 6.287 11.867  8.9289 563 .897 7.27 .787 6.16
6.158 11.635

TABLE 6-6: Performance of Decision Rule Using z with Thresholds

R TR R s B~

Chosen by SQP.

E
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FIGURE 6-13: Thresholds of Sliding Window Rule Chosen by SQP.
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thresholds that yields the desired performance. Usually the list of
performance indices provides sufficient information for deducing such a
pair of thresholds heuristically. This choice of thresholds may be
refined after its performance is determined via the guadrature 2lgorithm.
This approach will save the computations required to apply the SQP the

second time (i,e. after we have adjusted the design parameters L, G, and {).

Sliding window rule vs decision rule using z

Here, we will compare the performance of a sliding window rule with
that of a rule using zZ. We will consider these rules with thresholds de-
f- ! termined with SQP based on the same cost functions and prior probability
as described in Section 6.1. The thresholds for the sliding window rule
are [8.849, 12.047] (the 8-th iteration of SQP, Table 6-5), and the thres~
holds of the other rule are [6.287, 11.687] (the 7-th iteration of SQP,
Table 6-6).

Probabilities for these two decision rules based on simulations of
10,000 trajectories are shown in Figures 6-15 to 6~19. In fact, these are
the same results listed in Figures 6-3 to 6-12. Here, SW and MI are plotted
on the same graph to facilitate the comparison. We note that MI has a
higher false alarm rate than SW. The speed of detection for the two rules
ig similar. While MI has a slightly higher type-l correct detection
probability than SW, SW has a consistently higher B:(tIZ) (type-2 correct
detection probability) than MI. (Also see Tables 6-5 and 6-6).

Based on the results (Table 6-5 and 6-6) we can make the following de-

duction. By raising the thresholds of the rule using 2 appropriately, we
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: bo(tll) ~ SW and MI.
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can decrease the false alarm rate of MI down to that of SW with an increase

in detection delay and slightly improved correct detection probability for
the type~" failure (with ramp signature). Thus, the sliding window rule is
slightly superior to the rule using z in the sense that when both are designed
to yield a comparakle false alarm rate, the latter will have longer detec-
tion delays and slightly lower correct detection probability (for type-2
failure). In view of the fact that a decision rule using 2 is much simpler
to implement, it is worthy of being considered as an alternative to the
sliding window rule.

In summary, the result of applying our decision rule design method to
the present example is very good. The quadrature algorithm has been shown
to be useful, and the Markov ap-roximation of Lw_1 by 2 is a valid one.

The SQP algorithm has demonstrated its simplicity and usefulness through

the numerical example. Finally, the Markov decision statistic £ has been

shown to be a worthy alternative to the sliding winrdow statistic Lw-l'
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CHAPTER 7

SUMMARY AND RECOMMENDATIONS

7.1 Summary

The goal of the research reported in this thesis is to develop a
methodology for designing FDI syrtems that deliver good performance and
are robust in the presence of modelling uncertainties. We have viewed
the FDI process as consisting of two stages: a residual-generation process
followed by a decision process. Since modelling errors affect residual-
generation directly, the robustness issue is most effectively tackled in
the design of this process. Naturally, the issue of detection performance
is the main concern in designing a decision rule. Therefore, the FDI
design problem is decomposed into two tasks: the design of a robust
residual-generation process and the design of a high performance decision
rule.

Analytical redundancy is the basis for residual-generation., 1In
Chapter 2, we presented a general formulation of the concept of anal,-.cal
redundancy for LTI systems in terms cf a parity space. A redundancy relation
is simply a parity ;elation, which has to hold in the absence of a failure
and noise. When such a relation is violated, a failure is evident. The use
of parity functions (or parity vectors) as residuals for FDI was also
extensively discussed.

In the presence of modelling uncertainties and noise, the parity
relationsof the system also become uncertiin. Chapter 3 was devoted to the
development of an approach for determining useful parity relations for FDI.

The crucial probion of determining a set of appropriate cocfficients for a
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parity relation was formulated as a minimax problem, the objective of

which was to minimize the worst case effect of noise and modelling error

on the parity relation. Therefore, residual-generation bas«d on such
parity relations is robust (or as robust as any relation can be for the
particular system under consideration). The notion of signature-to-parity-
error ratio was also introduced to aid in the choice of parity functions
for residual-generation.

The contribution of Chapters 2 and 3 rests on the precise charac-
cerization of analytical redundancy as parity relations and the formulation
of tho parity coefficient design problem as a minimax optimization. These
concepts ha.e formed the basis of a new approach to the design of robust
residual-generation processes. Further development of this design method
is possible, and we will discuss some of the future research directions in
Section 7.2.

The design of a decision rule involves resolving the tradeoff anong
the various detection performance issues, In this research we followed
the Bayesian approach. In Chapter 4, we formulated the FDI decision
process as a Biyes sequential decision problem. The cost functions and the
prior probability mass function of the Bayes method could be regarded as
parameters prescribing the tradeoff among the various performance issues.
Although the optimal Bayes rule cannct be implemented, this formulation
provides a structure from which simple suboptimal rules can be constructed.

In Chapter 5, we discussed some suboptimal decision rules that are

based on the Bayes rule as well as other suboptimal rules. Just as in the
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design of a Bayes rule, the design of a suboptimal rule was also formulateZ
as a risk-minimizing problem. A quadrature algorithm was developei to
conpute the detection probabilities and the risks associated with low dimen-
sional problems. Thus, with a minimization algorithm that does not require
derivative information, such as the SQP, the suboptimal rule design problem
may be solved numerically.

This desiun methodology was applied in a numerical example. The
results {discussed in Chapter 6) indicate that this approach is a valid
and useful one. We also note that the limitations on the dimensionality
imposed by computational considerations need not lead to a corresponding
severe limitation in the applicability of our technique. Specifically,
our work in Chapter 2 and 3 was aimed at hreaking up the dynamics of a
system into low-dimensional pieces in order to isolate robust parity
relations. Thus we see that using low-dimensional decision statistics
serves two purposes: it allows us to address the issue of robustness and

it allows us to apply our decision rule algcrithm.

7.2 Future Research Directions

In the course of this study, a number of open problems have been
encountered, and they were mentioned in the Eext of this thesis. Some
directions for fvture researcl, based on these problems are outlined in
the following:

1) Ir sec.icn 3.5, we described the solution to a special
case of the minimax parity coefficient dcsign problem. A solution

procedure for more general cases is nceded.
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2) In Section 3.3 we indicated that if we postulate a POF
over I', the parity coefficient design problem can be re-formulated
as a minimization problem, which is much simpler to solve. This ap-
proach should be examined in the future.

3) Because a parity relation with a large signature~to-parity-
error ratio (W) is desirable for FDI, we may re-define the opjective

of the parity coefficient design problem so that we consider

max min W(G,B.Y.xo,io.i)
GOB YEI‘

s.t. OoO's]

where i denctes the failure of interest. This problem is generally more
difficult than the minimax problem, because the objective function ¥ is
more complex.

4) The parity coefficient design procedure examined in Chapter 3
yields parity relations tnat are most suitable for robust open-ioop
residuisl-generation. The problem of determining parity coefficients
(relations) for robust closed-loop residual-generution should pe addresser.

5) 1In the present study, we did not consider in detail how to
choose a set of "best" parity functions as measured by T or o' (the parity
error) for the FDI of a given set of failures. A systematic method for
selecting this set of parity relations ig a useful tool to be developed in
the future.

s)  The detection performance indices (such as correct detection

probabilities), associated with the decision rules of Chapter 5 are based
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on exact characterization of failure signatures. The effect of modelling
error is not accounted for. It will be useful to make use of information
such as n to couple the effect of modelling uncertainties into the detec-
tion performance indices. Then we can consider designing decision rules

that minimize the risks based on the modified performance indices.

7) The quadrature algorithm developed in Chapter 5 provides reason-
able estimates of the probabilities. Iowever, it consumes too much com-
putation time. An improvement of this algorithm aimed at reducing
computations is desirable. For example, we may consider a better placement
of the grid points of the quadrature so that fewer points will be needed.
With reduced computational regquirement, the quadrature algorithm ma& be
used for higher dimensional problems. In addition, the utilization of other
l1-dimensional quadrature formulas in place of the Laguerre and Hermite
formulas used in the present guadrature algorithm should be explored in an
effort to arrive at a more efficient integration formula that is applicable
to higher-dimensional problems as well as the 2-dimensional case considered
here.

8) 1In Chapter 6, the (implementable) Markov decision statistic 2
was shown to be simple and useful. In order to generate such a statistic, a
choice of the matrices A and B is needed. A procedure for selecting these
matrices for high d-tection performance is needed.

9) More experimentation is needed to confirm the general conclusions

of our study of the decision rule optimization algorithm.
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APPENDIX A: Solution Procedure for the Minimax Problem (3-51)

! Consider tne optimization problem

4
: min max [£f, (x),f_ (x)] (a-1)
: 1 2
: xex
where ‘3R“. Both f1 and f2 are continous over X which is a connected
subset of Rn. For each fi' there is a subset Ti of X such that for any
i point xOETi and any point x€X, fi(xo)f‘fi(x). That is, Ti contains the
; global minimz of fi over X. We will assume that fi has no other local

minima.
We can shovw that the soiution to (A-1) can be determined as follows:

* 1) By defining
; h(x) = max[fi(x).fz(X)]
. we can re-write (A-l) as

min h(x) (a-2)
xeX

Let § be the set

Q= {x: xeT, and £ _(x)> £_ .(x), i=1,2}
1 1 - -1

3

It is clear that when {I is not empty, it contains the minimum of h over X.
Assuming ) is not empty, the solution of (A-2) is simply the element
x*ef such that

h(x*) = min h(x) _
<6< (A-3)
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Note that X" may not be unique. The solution of (A-3) is easy to compute

if each fi has a single global minimum, because { will contain at most

two points and the search required in (A-3) is extremely simple. When

fl is empty, the minimax solution can be found using the next step.

2) Define

A = {x: x€X and fl(x) = fz(x)}

(a~4)

and let Ac denote the complement of A in X. Consider an element x e Ac.

Because fl and f2 are continuous and X is connected, we can find a neighborhood

N around x in AS such that either fl(x)>f2(x) or fz(x)>fl(x) for all xeN.

Without loss of generality, we can assume fl(x)>f2(x) in N. If a solution

is not found by using step 1, we only need to consider x é Ti' In this case,

there is some other point x° in N(hence in AC) such that fl(x°)<f1(;)

{since fl has no local minima). Therefore, x cannot be a solution of (A-2)

and A does not contain the solution. The solution must lie in A. In this

case, (A-1) becomes

min fl(x)

s.t xeX
fl(x)-fz(x)=0

and we have a constrained minimization problem.

fanction of (A-5) may be replaced by fz(x).

SR I

(A-5)

Note that the objective

su o e s

5
2
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Now we will apply the above result to the minimax problems considered

in Section 3.5. First, consider (3-51), where f_, f2 and X are

1

£ (') = as(yhHa' , i=1,2,

X = {a': aa'=1}

where S(Yi) is an nxn symmetric positive definite matrix and a is a (row)
n-vector. It is well-known that S(Yi) has a complete set of orthonormal
eigenvectors. The minimum value of fi is clearly the smalleg} eigenvalue
of S(Yi). Now we will show that fi has no local miniwum other than the

. , i
global ones. It is clear that the eigenvectors vy ,...,yn of s{Y ) represent

1l
all possible local minima of fi over X. Let yl correspond to the eigenvalue
01 of S(Yl) which is greater than the smallest eigenvalue cmin (which

i i . i ' = + . ith b#0 and
associated eigenvector ymin) By taking o ayl bymln wi # n

+ bzom. < 0.. Thus, yl cannot be a local

2
a +b2=1, we have £ (a') = a20
i in 1l

1
minimum and fl has no local minimum other than Ynin® Consequently, the two-
step solution technique is applicable to (3-51).

When the smallest eigenvalue of s(yi) is not repeated, fi has one global

- . i . nd not - _
minimum at Ymin (Due to symmetry, we can consider Ynin only a ymxn )

If this is true for fl and fz' 0 has at most two points and the solution

1
of (A-3) (i.e. in step 1) can be readily determined. When O in of sS(y")

is repeated, we can also show that we only need to consider at most two points
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of Q@ in step 1. Suppose Umin is of multiplicity m, and we lat Y be the

matrix of the m eigenvectors associated with oﬁin' (Note that Y is not )

unique, but it has rank m.) Then

T, = {a': o' = Yz, where 2R’ and z'z=1}

To determine if we can find an a' € T, such that fl(a')zfz(a'), it is

only necessary to check if f1<5*)3_f2<a“> where o' is the solution of

min aS(Yz)a

Equivalently, a' = Y;, where z solves

min z' [¥'S(Y2) Y]z (A-6) .

Z'z=]

The solution to (aA-6) is, of course, the eigenvector of Y'S(YZ)Y (which is

mxm, symmetric, positive-definite) associated with the smallest eigenvalue.

Note that z may not be unrique (due to repeated eigenvalues of Y'S(Yz)Y),

and hence, Q' may not be unique. Since all such a' are equivalent

(give the same value £(&')), we only have to consider one of them. As a

result, there will be at most two pcints in §) (which may be empty) in step 1.
Next, we will apply the above solution procedure to the case where the

parity structure contains actuator inputs. The minimax problem is of the

form

AT i 5

KT i
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¢ min max fa A} s(y) [a Al

%A very!,v?) a-7)

where S is the symmetric positive definite matrix given by (3-30) and A
is a scalar. Assuming S is quadratic in Yy (a scalar parameter), (a-7)

is equivalent to

min max [0A]S (YY) [aAl*, [aA]s(y2) [aA]” (A-8)
a,A

s.t. o' =1

’ with X = {[aA]': aa'=1}. Therefore, the 2-step solution procedure described
above applies if we can show that [ak}s(yl)[akl' has no local minima other
than the global one over X. According to multiplier theory [14 )}, the

necessary condition for a local minimum of {ak]s(yl)[ak]' to exist over X is

[a A} = 8[a 0] (A-9)

So1 S22

where we have shown S in the partitional form, and 6 is a non-zero scalar.
! Since S is positive-~definite, (A-9) can be re-stated as

-1

- 512 522 s21 (A-10)

N
(<>}
Q

als ]

A stas (A-11)

H
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Therefore, in studying the minima of [GMS(YI) [aA]' we only need to consider

A of the form (A~ll). Using (a-11), we have .
[aAls (v)) [aA]* = als,,-S,.Sois. Ja
11 712722721

Then, we can readily deduce that the global minimum is given by la, A@)),

- . -1 . L. .
where a is the eigenvector of [Sll 5123223211 (symmetric, positive-definite)

corresponding to the minimum eigenvalue and A@) is given by (A-1ll). Moreover,

i , . e ol
[@Als{y") [oA]l*' has no local minima, because a[sll 512322821]“ has no local

minima.
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APPENDIX B: The Convergence of Sk(O) to SN(O)

Let ¢* = (4" (Lix(1)),...,6" (ksx(1),...,r(k)),...) be the optimal stopping

rule for the non-truncated sequential problem. Define

0" X a (0" %1, x)))... 0 Fksr(1),...,2(k)),...) such that

* K *

¢ " T(kix (L), .. (k)= ¢ (kix(l),...,2(k)), k=1,...,k-1
* K

¢ ‘T (Kex(l)ye..,x(k)) =1

* KX *
That is, & ' is the same as ¢ , except the former imposes mandatory stopping

PR

* K * *
at time K, and ¢ ' (k;r(1),...,r(k)), k>K is arbitrary. Since (¢ ,D ) is

;. ' optimal for the non-truncated problem, we have the difference A:

* K »* * &
A=vu (¢ ,D) -U(s,D)>0 (B-1)

L il RN s
-

* Furthermore, from (4-16), we have

B M k o

¢ ol T Iwosim ] B Tw*(k;r(l),.--.t(k))[L((i,T),d'(K:r(l)..-..t(K)))
i=0 T=1 k=X *

: + (i) (k-1)]

11 M LDt %

M ®
+1 Iwei,n [ OE M), ) LE,T),8% kix(1),...,x (k)]
i i=0 1=1 k=K '
é o
\ + U B ¥ kiril),...,rk)cld) (ke1) (B-2)
k=‘ 1,7
mex [T, k]

Note that in order for a sequential risk to be finite (as is true with

Rr~18

Us(¢*'D.)}' Ei TW(k;r(l),...,r(k)) + 0 as K+ and

k=K
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[- -]
Z k Ei T‘Nk:r(l).---,z(k)) must be finite. (Note that in (5-2), ¢(0)=0
k=l '

because there is no delay cost if no failure has occurzed.) Since L amd g(i)
are bounded, the two terms in (B~2) that are due to L and the term due %o

¢(i) (K-T) vanish as B0 Now consider the remaining term in (B-2):

M = %
I I Iw=min § B,V or),rk)e (1) (-0 |
i=Q T=0 ke *
max([T,k]}
» % @
< I Iweei,nedr | E, W00, .x(x))
i=Q T=0 ksx ~'
BN o ® )
+ 7 Tuweesimed kE W KirQ) k) (8-3)
i=0 T=1 k=K ’

From the prior discussion both terms on the right hand side of (A-3) vanish
.

as k»®. Therefore A+0 as k+»®, The fact that ¢ ¥ belongs to the claas of

stopping rules that terminate sampling at or before X implies

K ~
U 0"",D) 2 3, (0). Using (4-44) and (B-1) we can deduce

~ -~ .,K ] ~
T (012 3 (002 u’(o /D) = J (0) +4

As k+®, A0 so that SK(O) + 3 (0.
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