

SECTION A

LANOSAT APPLiECATIONS TO WEPLANDS ©LASSTMICATTON

IN THE UPPRR MLSSISSIPPT RIVJR VALIEY
(Final Report)

Dr. T. M. Lillesard and Lee E. Werth Remote Serising Laboratory Institute of Agriculture University of Minnesota sit. Paul, Minnesuta

0

INDEX
Inerocuction AT
stuat objertives. A3
Landsat Data Anaiysis AG
Analysi.; of Digital photography A9
Concilisions a2t
Ankowledgements. A2:
Literature Cited. 224

SPACE SCIENCE CENTER

University of Minnesota

Minneapolis, Minnesota 55455
 A STUDY OF MINNESOTA LAND AND WATER RESOURCES USING REMOTE SENSING

PROGRESTS REPORT

January 1, 1980

Supported By:

NASA GRANT NGL 24-005-263

Submitted to:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546
Introduction 1
Russell K. HobbieDirector, Space Science CenterUniversity of Minnesota, Minneapolis
LANDSAT Applications to Wetlands Classification in the Upper Mississippi River Valley Section A
T. M. Lillesand and L. F. Werth College of Forestry University of Minnesota, St. Paul.
Development of Alternative Data Analysis Techniques
for Improving the Accuracy and Specificity of Natural
Resource Inventories riade with Digital Remote-Sensing Data Section B
f. M. Lillesand and D. E. Meisner College of Forestry University of Minnesota, St. Paul
Synergistic Relationships Among Remote-Sensing and Geophysical Media: Geological and Hydrological Applications Section C
J. E. Goebel, M. Walton, and L. G. BattenMinnesota Geological SurveySt. Paul, Minnesota
A Project to Evaluate Moisture Stress in Corn and Soybean Areas of Western and Southwestern Minnesota Section D
R. H. Rust and P. RobertDepartment of Soil ScienceUniversity of Minnesota, St. Paul
Measurement of Suspended Solids in Lakes and
Oceans Using Satellite Remote Sensing Data Section E
M. SydorDepartment of PhysicsUniversity of Minnesota, Duluth

January, 1980

This report covers research at the Unjuersity of Minnesota from January l, to December 31, 1979.

Section A. is a final report by T. M. Lillesand and L. F. Werth describing the use of LANDSAT data to classify wetlands in the upper Mississippi River Valley. As the benefits of wetlands are recognized, accurate maps of the wetlands are needed to implement a number of federal, state and local programs. They used both IANDSAT MSS data and digitized infrared aerial photographs to recognize wetlands and to classify them. There were inaccuracies in distinguishing some types of wetland cover from non-wetland areas. However, it is relatively easy to distinguish wetland from non-wetland manually; once that is done, the more tedious task of preparing an inventory of types of wetland cover can be done automatically with 87% accuracy.

Section E reports initial efforts by Dr. Lillesand and Douglas Meisner to develop data analysis techniques which separate those activities requiring extensive computing from those involving a great deal of user interaction. This will allow the latter to be done in the user's office or in the field. So far:, some programs have been written to process images at the University Computer Center. An initial study has been made of user interaction with color prints (instead of expensive graphics terminals). Preliminary analyses of wetlands and forests
have been made, with tha goal of studying the analysis techniques. Some relatively inexpensive digital display equipment has been purchased and is now operating. Several cooperative projects with both state and federal agencies have already grown out of this work.

Section C describes work by Drs. Joseph Goebel and Matt Walton and the staff of the Minnesota Geological Survey. They combine several different kinds of remote sensing data in order to identify bedrock near the surface. While no single set of data nor mathematical combination of the data was able to indicate areas of bedrock within 3-15 meters of the surface, they were able to develop a recommended procedure for locating arcas of near-surface bedrock.

The efforts of Dr. R. H. Rust and D. Robert of the Department of Soil Science to evaluate moisture stress in corn and soybean crops are described in Section D. As in previous years, their efforts were hampered by superb growing conditions during the summer of 1979. A few areas received too much moisture, and these could be identified in LANDSAT pictures.

Laboratory measurements were made of plant leaf reflectance vs. moisture, and of the water content of various soil samples. LANDSAT data from the sumner of 1977 were analyzed. One difficulty with using LANDSAT data for crop management has been the delay of two months or more before the LANDSAT data becone available. A cooperative project with local farmers using color infrared aerial photography was tried. Although hampered by cloud cover, the technique showed enough promise so that the farmers wish to continue the projact. They will, in fact, help to finance it.

In section E, Dr. Michael Sydor and his colleagues at the Univer. sity of Minnesota-Duluth report their success using satellite remote sensing data to measure particle concentrations in Jake Superior. They have been able to measure red clay, taconite tailings and tannin. They also describe checks of the data for internal consistency. These checks can warn of problems with atmospheric turbidity or of light scattering from the water's surface.

I am also happy to report that a technique described in last year's annual report, the work of Professor I. Stefan on using JANDSA! images for recomaissance of ice cover on ladies and reservoirs, has been adopted by the U. S. Army Corps of Engineers (R. K. Hagen, R. E. Dates and R. I Mead, Ice Formation, Thickness and Breakup on Impoundments Within the Contiguous United States. U. S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N. H., Draft, Oct. 1979).

N81-12506

SECTION A

LANDSAT APPLICATIONS TO WETLANDS CLASSIFICATION

IN TiE UPPER MISSISSIPPI RIVER VALLEY
(Final Report)

Dr. 'T. M. Lillesand and Lee P. Werth
Remote Sensing Laboratory
Institute of Agriculture University of Minnesota st. Paul, Minnesota

 0
INDEX
Introduction A)
Study objectives AB
Landsat Data Analysis as
Analysis of Digital Photography Ag
Conclusions AL
sonnowledgements AC:
Literature Cited. 2.24

Even with increased recognition since the 1.960^{\prime} s of wetland importance, growing world population and food demand have rosulted in extensive wetland drainage. Since Wrorld War II nearly 25% of the wetlands in the Prairic Pothole Region of the Dakotas and Minnesota has been drained. Sound federal, state, and local management decisions on acquisition, preservation or drainage of wetlands must be based on sound inventory data. Currently, the U.S. Fish and Wildlife Service is involved in a National, Wetland Inventory to satisfy these data needs at the federal level. Likewise, various state and local agencies are undertaking, or have completed weltand inventorics for a range of purposes. For example, in Minnesota wetland inventories serve as baseline data to evaluate site modification permits, non-point pollution sources, and generally to execute the public water law.

In short, accurate classification and mapping of wetland cover types is considered essential to the implementation of a number of federal, state, and local legislative mardates and resource management programs. At the same tine, the task of mapping wetlands on a statewide basis is challenging in terms of cost, time and manpower. On a national level, the task is monumental.

The general objective of the federal wetland inventory is to classify and locate the nation's wetlands as accurately as possible on 1:1.00,000 (or in sone cases 1:24,000) scale maps (Cowardin et al., 1977). To accomplish this, two possible remote sensing data bases suggest themselves: (a) high altitude, small-scale aerial photography and/or (b) LANDSAI. Of the two, acrial photography appears to be the favored choice from the standjoint of spatial resolution - but photography is not always available and, when available, it not always adecuate for the purpose.

Neither teolmique, LAHDSAI in particular, had been sufficiently tosted in arcas reprosentative of Minnesota prion to thiss study. Thus, this study was proposed to test the applicability of autonated procensing of IANDSATt multispectral seanner (LSS) in the Minnesotis regional context.

STUDY OBJECTIVES

Initially, the sole objective of this study was to test, under local conditions, the capability of Jandsat data analysis techniques 0 position adequately and classify wetlands in support of the Natio: E . Wetlands Inventory. This involved a comparison of single-date vs. double-date sets as well as a comparison of data sets preprocessed with a coarse vs. a precision geonetric correction. The test area chosen for these comparisons consisted of five contiguous 7.5-minute cuedrangles located within the western part of the Twin City 7-County Metropolitan Area (Figure l). The entire Metropoliten Area ha been napped previously through airphoto interpretation by the Remote Sensing Laboratory under contract with a consortium of funding agencies. 1 (In addition, in-house funds had already been used to perform the single-date Iandsat analysis of the study area.)? The large amount of existing data on this area provided a good test base for the study. The test site contains one of the most concentrated areas of wetland diversity in the west half of the metropolitan nroa. It is a

[^0][^1]

Figure 2. Study Site (located in the western part of fonnopin County, Minnosota).
complex, heterogeneous area of undulating glacial topography reprosentatime of a transition zone between tall grass prairie and northern hardwood forest. The landscape is interspersed with small farms, villages, cities, subdivisions, parks and golf courses.

As the tests of tne various LANDSAT data analysis techniques were being applied to the 5 quadrangle test area, a paralled test of digitized color infrared photographic data was undertaken in a limited sub-area (see Figure 1). The digitized photographic data virtually removed the spatial resolution restrictions inherent in the LANDSA'I data. These restrictions were found to be acute due to the spatial complexity of land cover in this area. In this way, the photographic analy:is permitted a more basic test of the spectral characteristics and separability of the wetland types. This was deemed important for judging the potential applicability of Landsat data analysis procedures in areas which are less complex spatially than those in the Metropolitan study area. It also provided some insight into the potential advantages to be realized with the improved spatial resolution of the Thematic Mapper on LANDSAT-D. In addition, the photographic research permitted an initial investigation into the potential utility of using digitized color infrared photography per se as a data source for wetland mapping in spatially complex areas.

The methods and results of the LANDSAI test and the test of the digitized photography comprise, respectively, the next two sections of this report.

As previously indicated, both single-date and double-date LANDSAT data sots were analyzed in this study. Both data sets were processed at the Purdue University Jaboratory for Applications of Remote Sensing (LARS). The sjingle-date analysis was performed on data acquired on July 6, 1976. A coarse geometric correction (i.e., not using ground control points) was applied to this data set. The correction resulted in an average pixel positioning orror of approximately 2 pixels $\mathrm{N}-\mathrm{S}$ and 4.5 pixels E-W when inage data were compared to a 1:24,000 map base. This correction uses a transformation model based on nominal satellite parameters and the geographic position of the test site, to rescale, deskew and rotate the original data. Following the geometric correction, classification was performed using the IAns hybrid multi-block cluster classification procedure (Hoffer and Fleming, 1978). This procedure entails selecting blocks of training areas containing heterogenGous cover types, clustering these blocks individually (unsupervised), identifying the informational identity of cluster classes, pooling training statistics fron similar classes in various blocks, and using these statistics to perform a naximum likelihood classification of the entire area of interest. Following this procedure, thirty-five spectral classes were oxtracted from the single-date data to represent the following infinmation classes: Non-wetland, Forest, Shrub, Emergent, Submergent and Water. Overall classification accuracy as measured from 2555 randomly selected pixels of verjsied identity was 72%. (That is, the total number of pisels classified correctly, $\div 2555=0.72$). However, the individual classes had highly variable classification accuracies. For
example, 96\% of the wator test pixels were classified correctly, whereas only lot of pixels known to be of the Shrub class were classified correctly. The average of all of the class accuracies was 41%, which was deemed inadequate for the application at hand.

The generally poor classification performance and geometric correction results of the single-date analysis vere improved upon in the doubledate analysis process. First, application of the LARS geometric correction, using ground control points, resulted in average additional pixel positional corrections of approximately 0.5 pixels $\mathrm{N}-\mathrm{S}$ and 0.75 pixels E-W. The geometrically corrected data for two dates vere registered and the multi-block cluster technique was used for classification. (In this case the July 5, 1976 data were merged with those of August 7, 1975). The LARSYS feature selection process was employed to judge which of the eight available bands of data was optimum for subsequent classification. Using this process, bands 5 and 6 from both dates were deemed best suited for the classification. Given the poor performance of the shrub class in the single-date analysis, this class was eliminated from the double-date classification. Also, it was hypothesized that separation betweer the Non-wetland class (basically corn) and Emergents (cattail) would improve with the introduction of the August data, since the corn had tasseled by this date.

The test field accuracy of the double-date classification was eval-uated in a manner similar to the single-date effort. This involved evaluation of some 450 randomly selected test fields that varied in size from one to nine honogeneous pixels. The cover type present in each field was verified by ground site visits. Table 1 summarizes the results of comparing the LANDSAT and ground data. As can be seen from Table l, the

Table 1. Test Field Accuracy λ Assessment of Doublc-Date LANDSAT Classification ${ }^{+}$

Known Cover Types
\% Classified As Indicated Cover Type

Overall Classification Accuracy: 77\%
Average Accuracy Per class: 66\%
†A detailed discussion of the classification and mapping accuracy of the single and couble-date LANDSAT analyses is given in Worth (1980).
overall classification accuracy for the double-date analysis was 77%. The accuracy for the various information classes ranged from a low of 35\% for the Fmergent class to 98% for :later. The per class average accuracy was 66\%. The comparative levels of errors of omission and comission for each class are also show in rable 1.

In short, the two-date results indicated an increase in overall classification accuracy of approximately 5% (from 72 to 77%) and an improvement in per class classification accuracy of about 25% (from 41 to 66%). Additional classification accuracy appears to be precluded by the spatial and spectral resolution limits of the IANDSAT MSS relative to the complexity of the study area. This is not to say that IANDSAT has limited application to wetland rapping in general. Rather, we have simply concluded that one should expect poor success in single-date analyses and only moderate success in double-date analyses of wetland areas which are as complex as those in our study area.

ANALYSIS OF DIGIIIZED PHOTOGRAPHY

As mentioned previously, digitized color infrared aerial photography was also analyzed in this study as an extension of the LANDSAll analysis effort. Again, this source of digital data virtually removes the spatial resolution restrictions limiting the iANDSAT automated classjification process, thereby permitting more thorough study of the spectral properties of the wetland cover types under investigation. Constraints of time and funding limited the photographic aralysis to coverage of a single study site located within the fandSin test area (Figure 1). This site
contains a number of small wetland areas which generally characterize those of the surrounding region.

Figure 2 a is a (1.7\%) enlargement of the original 70 rum position transparency used in the photographic analysis. The original image was a 1:50,000 photograph (Kodak type 2443) taken with a Hasselblad 500 EL ($\mathrm{f}=50 \mathrm{rum}$) camera on July 21 , 1977, in support of previous wetland research efforts conducted by the Remote sensing Laboratory. The inage was digitized using a nodified $\mathrm{P}-1700$ Optronics drum scanner made available by the University of Wisconsin Environmental Monitoring and Data Accuisition Group (UW/BMDAG). Density readings from 0-3D were digitized into 256 levels and recorded on computer compatible tape. Broad band separation filters were used to obtain the approximate image density record for cach of the three film layers. A measurement spot size of $50 \mu \mathrm{~m}$ was employed, so that each pixel represented a ground area approximately 2.5 m square. The spectral and spatial quality of the resultinc digital data can be seen in the color rendering of the digitized data shown in Figure 2b. This figure was generated with the University of Minnesota D-47 Dicomed Color Image Recorder. The digital data from each image band were contrast enhanced by a histogram equilization algorithm prior to being recorded. This algorithm alters the distribution of original inage values so that each display level comprises approximately an equal area portion of the display inage in each band of data. Figure $2 b$ represents a digitally generated color composite of the three original bands enhanced in this manner.

The photographic analysis effort took on two forms: 1) a. fullscene classification, the intent of which was to classify all pixels and cover types present in the scene, and 2) a sub-scene classification,

(a)

(b)

ORIGINAL PAGE IS
OFOOR QUALITY

Figure 2. Original color infrared aerial photograph of test area (a) and film recorder output of digital microdensitometer data (b).
to classify wetland areas and cover types only. In both cases, a supervised classification approach was employed using the "Eppier optimization" form of the maximum likelihood classifier that is integrated into the University of Minnesota Image Processing Software (UMIPS) . A description of the two classification procedures follows.

Full-Scene Classification

Training for the photographic classifications was accomplished by photo-interpreting training areas on prints produced from the enhanced Dicomed image. The boundary of each training area was then digitized in terms of x and y image coordinates. In turn, these coordinates were converted to colum and row addresses in the scanning microdensitometer data using a polynonial two-dimensional coordinate transformation. This transformation took the form

$$
\begin{aligned}
& \text { column no. }=a_{1}+a_{2} x+a_{3} y+a_{5} x^{2}+a_{6} y^{2} \\
& \text { row no. }=a_{7}+a_{8} x+a_{9} y+a_{10} x y+a_{11} x^{2}+a_{12} y^{2}
\end{aligned}
$$

A least squares observation equation solution for coefficients a_{1}, $a_{2} \ldots a_{12}$ was performed by measuring both the image and line printer output coordinates of readily identifiable ground control points in the scene. Using 10 points for this purpose, the root mean square error (rms) of the transformation was found to be 0.89 pixels in the x and 0.74 pixels in the y image direction.

Training statistics were developed for the 13 major cover types appearing in the scene: Water, Duckweed (Lemna minor), Water Lily (Nymphaca spp.- Nuphar spp.), Cattail (Typha spp.), Reed Canary Grass (Phalaris arundinacea), Willow (Salix spp.), Forest, Cropland, Pasture, Bare

Soil, Road, Roof, and Shadow. Multiple spectral classes (25) were derived from 35 training areas to adequately train for the 13 cover types.

Table 2 is a confusion matrix indicating the training field classification accuracy obtained in the full-scene analysis. Note that for sone types the accuracy of classificaion in the training areas was excellent (e.g., Pasture $=975$). Other types, most notably Willow, were very poorly classified (25\%). Figure 3 is a color-coded Dicomed image showing the results of applying the full-scene classification. As can be seen from both Table 2 and Figure 3, similar to the case with the IANDSAT data, many of the cover types present in the scene coulc not be spectrally separated. However, of particular note is the fact that virtually all wetland types were mutually separable. That is, errors of onission and comnission in each wetland type were primarily attributable to the spectral confusion between wetland and non-wetland cover types, rather than between wetland cover types themselves.

Sub-Scene Classification

Because of the spectral confusion between the wetland and non-wetland cover types, it was hypothesized that if the training and classification procedures were limited to wetland areas only, the classification accuracy would improve greatly. Hence, the training process was repeated in wetland areas only, using the following classes: Duckweed, Water, Water Lily, Cattail, Reed Canary Grass, and Willow. The boundaries of the wetland areas were delineated again using conventional image interpretation. This process requires much less labor than discriminating all cover type boundarios occurring within the wetlands. The purpose here was simply to separate wetland and non-wetland image areas. Spectral pattern

Table 2. Classification Performance for Training Fields Used in Full-Scene Analysis
Kown Cover Type

No. of
Cover Type Train. Pixels

Duckweed	67	87		2					4		1	6	
Vater	1, 700		81								1		18
Water Lily	240			89					10	1			
Cattail	119				91		9						
Reed Canary	664					74		10	16				
Willow	2.55				17	3	25		55				
Forest	48			2		4		73	17	4			
Croplanc	3,392			4		2	6	1	86		1		
Pasture	815			1					, 2	97			
Bare Soil	232	7							11		81	1	
Road	400	2							1	3	1	93	
Roof	56												
Shadow	86		7										93

Overall Classification Accuracy: 84\%

Average Accuracy Per Class: 82\%

	Color Key
Duckweed - magenta	Forest - black
Water - blue	Cropland - tan
Water Lily - mägenta	Pasture - green
Cattail - orange	Bare Soil - brown
Reed Canary - red	Road/Roof - white
Willow - yellow	Shadow - black

Figuve 3. Full-scene classification of digital photographic data.

Table 3. Classification Performance for Training Fields Used in

| Known Cover Type | s Classified As Indicated Cover Type |
| :--- | :--- | :--- | :--- |

Overall Classification Accuracy: 94%
Average Accuracy Per Class: 85.5\%

Table 4. Classification Powformance in Light Wotianc Tost Areas

Overalil Classification Accuracy: 878
Average Accuracy Per Glass: 87:
recognition was then used to provide the more eublide delineation of wet.Land specios, a moro time consuming process for the photo-interproter. Table 3 indicates the classification ascuracy obtained in the "wetland only" training areas. Noto the improvement in training field classifim cation accuracy whis rosults whon non-wetland classes are dimsatod from the arfalysis. Figure 4 shows tho results of the sub-scone classification. ans can be soen from lable 3 and rigure 4 the willow type introduced the largest crrors in the sul-scene classification.
t a final classification effort, the Willow type was dropped and the resulting statistics were again applied to the "wetlark only" subset (with predominantly willow areas excluded) of the original image. Ihe accuracy of this classjfication was cvaluated in eight tost areas Located in the scone. The result of the classification in these areas is show in Figure 5. The classification accuracy in each of the cight test areas was obtained by comparing the computer-derived classification to that obtained by photointerpretation. This was done for all pixels in the eight areas. (approximately 33,000). In those cases where the photointerprotation was ambiguous, a field visit to the site was made to be certain of the correct identification of the cover type present.

The results of the pixel-by-pixel accuracy assessment are given in Table 4. Errors in the classification of Duchweed and water are believed to be caused by edge effects, in which a given pixcl actually overlays two cover types near a boundary between the two types. To some extent, this effect enters into the accuracy problems for water Lily as well. It lis felt that the classification accuracy of the water Lily and Reed Canary classes could be improved somewhat with additional training. Most: of the Water Lily/Reed Canary confusion occurred in an

Color Key
Duckweed - magenta
Water - blue
Water Lily - magenta

Cattail - orange

Reed Canary - red
Willow - yellow
vigure 4. Sub-scene classification of photgraphic data in wetland areas only.

Color Key
Duckweed - magenta
Water - blue
Water Lily - magenta
Cattail - orange
ped Canary - red

Figure 5. Sub-scene classification excluding the willow cover type.
area of the scene which vas not used for training. The errors in classification of Cattail are believed to be due to the presence of mixed Cattail/Willow in many areas. I. sparse scattering of willow occurred in many areas of both the Cattail and the Reed Canary cover types. . Wherever present, Willow tended to cause misclassification due to the highty variable spectral characteristics of this cover type. These difficulties may be resolvable by the inclusion of a "texture" variable in future analysis procedures.

CONCLUSIONS

Based on the results of this investigation, the following general conclusions have been reached:

1. If, within the accuracy levels it is capable of providing, LANDSAT data are judged to be acceptable for wetlands classification, a precision geonetric correction should be applied and multi-cdate data sets should be used. In this study a 25% improvenent in average classification accuracy was realized by processing double-date vs. single-date data (from 41\% to 66\%). Under the spectrally and spatially complex site conditions characterizing the geographical area used in this study, further improvenent in wetland classification accuracy is apparently precluded by the spectral and spatial resolution restrictions of the LANDSAT MSS.
2. Full-scene analysis of scanninc densitometer data extracted from small scale color infrared photography failed to permit discrimination of many wetland and non-wetland cover types. This was due essentially to the same spectral confusion between cover types that
was realized in the LANDSAT analysis. When classification of photographic dat. was limitea to wetland aras only, much more detailed and accurate clessification could be made. rhe final subset classification made in this study yielded an average classification accuracy of 87% with a 2.5 m spatial resolution.
3. The integration of conventional inage interpretation (to simply delineate wetland boundaries) and machine-assisted classification (to discriminate among cover types present witin the wetland areas) appears to warrant further research. mhough both the delineation of wetland boundaries and the development of valid training area statistics are labor-intensive tasks, the results from the combined approach appear to be much more accurate and economical than those obtained in conventional full-scene digital analysis. Additional research is needed to study the feasibility and cost of extending this methodology over a large area using LANDSAT and/or small scaie photography.

ACKNOWLEDGEMENTIS

The LAFDSAT data analysis performed in this study represents partial fulfillment, by Lee F. Werth, of the requirements for the Ph. D. degree at the University of rinnesota. Nany aspects of this stury were supported directly or indirectly by funding from the University of Minnesota College of Forestry and Agricultural Experiment station (Proj. MTN-42-003 and 037). The cooperation of the purdue University haboratory for Applications of Remote Sensing (LARS) in the IANDSAT analysis is recognized, as is that of the University of wisconsin Environmental

Monitoring and Data ncquisition Group (EMDAG) in the photographic analysis. Douglas E. Meisnor developed the University of Rinnesota Image Processing Software used in the photographic analysis and Mark Columbo, Carl Markon, Joln Minor and Mark λ. Springan assisted in the LANDSAT accuracy assessment. William L. Johnson and Katherine A. Knutson assisted in the production of this report. Finally, the University of Minnesota Space Science Center is acknowledged for administering the NASA Grant funding this research.

LITERATURE CITED

Cowardin, L. M., V. Carter, F. C. Golet, and E. I. LaRoe, 1977. Classification of Wetlands and Deep-Water Habitats of the United states (an operational draft). USDI Fish and Wildife Services. 100pp.

Hoffer, R. M. and M. D. Fleming, 1978. Mapping Vegetation Cover by Computer-Aided Analysis of Satellite Data, LARS Technical Report 011178 . 12pp.

Owens, T. and M. Meyex, 1978. A Wetlands Survey of the Twin Cities 7-County Metropolitan Area -. East Half. IAFHE RSL Res. Report. 78-2, st. Paul, MN. 19pp.

Werth, L. 1980. A Comparison of Renote Sensing rechnique Applications to Wetland Classification in Minnesota's 7-County Metropolitan Area, Ph. D. Dissertation, University of Minnesota, (in preparation).

Werth, L., M. Meyer and K. Brooks, 1977. A Wetlands Survey of the Twin Cities 7-County Netropolitan Area - West Half. IAFHE RSL Res. Report 77-10, st. Paul, MN. 18pp.

SECTION B

DEVELOPMENT OF ALTERNATIVE DATA ANALYSIS TECHNIQUES
FOR IMPROVING THE ACCURACY AND SPECIFICITY
OF NATURAL RESOURCE: INVENTORIES
MADE WITH DIGITAL REMOTE SENSING DATA
(Progress Report)
(July 1, 1979 - December 31, 1979)
Dr. T. M. Litilesand and Douglas E. Meisnec Remote Sensing Laboratory Institute of Agriculture University of Minnesota St. Paul, Minnesota

○

INDEX
Introduction. Bl
Progress to Date BF
Future Activities Bl

DEVELOPMENT OF ALITERNAIIVE DATA ANALYSIS TECHNIQUES
 FOR IMPROVING HE $\triangle C C U R A C Y$ AND SPECIFICITY OF NATURAL RESOURCE INVENTORIES MADE WITH DIGItAL, REMOTE SENSING DATA
 Investigators: Dr. Thomas M. Isillesand Douglas E. Meisner Remote Sensing Laboratory Institute of Agriculture University of Minnesota St. Paul, Minnesota

INTRODUCTION

General application of digital remote sensing technology has gone through considerable change in the recent past. In spite of growing user interest in applications of digital classification for thematic mapping, the private sector hans shifted its focus somewhat away from this activity. Attention is being concentrated more on hardware development and provision of digital image enhancement services, rather than on classification per se. This shift is partly due to the increasing sophistication of end users as the "gee whiz" allure of the technology wears off, a smaller core of more serious users is emerging. This is a healthy development. Another reason for the shift, however, is the difficulty and cost innerent in performing digital classification services in a non-research envoironment. The need for active involvement of field personnel, coupled with the problems of training those personal in the generally complex procedures, has frustrated many analysis efforts. At the same time, as accessible as remote job entry terminals have become, line printer output simply does not afford the graphic interaction required for most
sophisticated classification procedures. In this context, one can understand the shift toward image enhancemont procedures; thesc activities are greatily simplificd by the clear and convenient separation of digital processing efforts from subsequent ficld analysis. Yot, as training courses (e.g. at the three NASA regional centers and at the EROS Data Center) continue to nurture interest in the use of digital classification techniques, the need for serving those users will increase. This is particularly critical as applications spread to the state and regional level, since these users are less able to obtain specialized equipment in-house.

The work begun under this grant is an investigation into the ways to improve the involvement of state and local user personnel in the digital image analysis process. The intent is to isolate those elements of the analysis process which require extensive involvement by field personnel and to provide means for performing those activities apart from a computer facility. In this way, the analysis procedure can be converted from a centralized activity focused on a computer facility to a distributed activity in which users can interact with the data at the field office level (or indeed in the field itself). This concept is illustrated in Figure 1. If successfully implemented, the distributed approach would offer these advantages:

1. Provide more efficient use of computer resources, by reducing the digital image processing effort to a highly standardized procedure which can be run in a batch mode.
2. Provide more economical use of field persomel, by eliminating the expense of transporting them to the analysis facility and lodging them while there. "Day to day" work could then be handled while

A second preliminary analysis involved forest typing with LANDSAT data on a College of Forestry test site for which detailed ground data and high altitude color infrared photography were available. In this case, training sets were delineated on high altitude photography and digitally transformed into JANDSAT scene coordinates. Unfortunately, the second order least squares polynominal fit used in the transformation was inadequate for relating the photographic base to the LAANDSAT data. Due to the spatial complexity of the study area, even the slight displacements resulting from the transformation process affected the training statistics excessively. An interesting sidelight: was the fact that the RMS errors computed in the polynomial fitting process were very low, suggesting a higher accuracy than was actually realized on a training area by area basis.

Subsequently, the training process was performed by visually relating the high altitude images and the hard copy LANDSAT enlargemont in a Zoom Transfer Scope. This approach enabled features in the IANDSAT enlargement to be identified with much more certainty and led to successful training. This process was found to be imposesidle using line printer output.
3. Procurement of digital display equipment. In-house funds have been used to acquire a stand-alone microcompater-based image display systtem which will be used on this project. Installation of this equipment was completed in November. The system consists of a spatial Data Eye-Com video digitizer and display, a DEC LSI-ll microcomputer with Fortran compiler, a Dennza Visacom color display system, color
vs. Dicomed output, log vs. Lineas: decording, various contrast: stroteh techniques, and different film and mrint paper typos.

The use ∂f film recorder images as a base for superviscd training wars tested in several pilot: studies. This began with several student Erojects in which the color data werc used for visual analysis but actual training set delineation was performed on line printer image output. The availability of the color deta for interpretation of spectral characteristics enhanced the analysis process gioatly, but the training set delineation was still a cumbersome task.

Two othor prelimirary analyses have been performed. The first involved clashification of wetland types on a photograph which had been digitized using a scanning densitometer. 1 Training sites veje located on the color image base and digitalily transformed (using a polynomial transformation model) into scenc coorctinates. Because the encoding was done by hand, the process was still cumber iome. However, th.is was seen as a simulation of a coordinate digitizerbased procedure to be developed in the near future.

The polygon processing software was also used in this study to mask the image data set, in order to restrict the classifidation to selected sub-scenes (in this case, wetland areas). This permitted successful classification of within-wetland species, a task which had been previously impossible kecause of spectral confusjon between some wetland and non-wetland classes.

PROGRESS TO DATE

In the past six months of work on this project, the following four general areas of activity have been pursued:

1. Development of general image processing software on the University
of Minnesota computer system (Control Data Cyber models 172 and 74).
This software enables us to read CCI's in several. formats, including the old and new linNDSAT tape Formats, scanning microdensitometer tapes obtained from the University of Wisconsin, and tapes generated by the Data Analysis Laboratory of the EFOS Data Center. Programs to support supervised training and optimized maximum likelihood classification have been written and used in this and other research projects. Interfaces to the U cf M Dicomed color image recorder have been developed, both to display contrast enhanced original image data and to record classification output results.
2. Initial investigation into the use of color hardcopy image data as a primary medium in supervised training procedures. The procedure we employ is to generate digitally enlarged and contrast enhanced hard copy color prints of image data within study areas. These prints are then used to analyze visually (rather than statistically) the spectral properties of the data before supervised training sites are selected on the hard copy print. This technique of supervised training on hard copy images is perceived as a "first look" at a distributed analysis approach.

The investigation began with a basic examination of image recording techniques, including comparisons of video displays
working on the classification project. State employees in Minnem sota have stressed the importance of this point. By making agency involvomert more economioal in various ways, a largor number of personnel may participate for longer periods of time.
3. Reduce the difficulties of working with untrained personnel by eliminating their didect involvement with a computer system and somewhat standardizing the analysis proceduro they employ. This would remove the user's exposure to the computer operating system and the inevitable system downtime, which are generally frustrat. ing to the new user.
4. Reduce the time pressure on the user frequently caused by the need to tightly schedule his or her time and to schedule the expensive interactive analysis equipment. Taking sufficient time to analyze computer output during the classification process is a critical element too frequently missed in digital analyses. In addition, the distributed approach would give the user the option of suspending the analysis if it is deemed necessary to revisit the field or obtain other reference data.
5. Eliminate the need to invest in specialired computer equipment, and to handle the staffing ard maintenance requirements of such equipment.

Thus, our effort is oriented not towards developing new quantitative classification tcchniques, but rather tonard finding ways to implement current techniques in a way better suited to non-research applications.

(a) Conterdized Data Analysis Procoss.

(b) Distributed Data Analyois Process

Figure 1. Comparison Between Contralizod and Distributed Analysis Coneepts.
monitor, and flexible disk drive. The system can comunicate over a high speed phone link to the Universtiy computer system.

In addition to being used as a development tool for the hardcopy based analysis techniques, this equipment will be explored as an additional tool for decentralized data analyses where modest equipment investment is feasible. Microcomputer-based systems like the Visacom have consiccrable potential for enabling equipment to be more widely distributed, particularly as their cost continues to decline. We will evaluate the pros and cons of this approach as the research continues.
4. Procurement of coordinate digitizer. Again using in-house funds, a digitizing tablet has been obtajned which wi.l. be connected to the microcomputer system. Software will be developed to enable supervised training site entry, interactive masking of image data to restrict classification to subscene areas, and test site entry for detailed accuracy assessment. The first and last of these activities are currently being explored using an IDIMS system in a cooperative project with the EROS Data Center. This work is described on page $B 9$ report.

In addition to the progress clescribed above, we have been fortunate in the past six months to have been involved in several FederalState cooperative projects which have had input to this research. Agencies involved include:

1. NASA Eastern Regional Appi.ications Center (ERRSAC). In the past year, ERRSAC began a program of remote sensing technology transfor to state and local governments. Minnesota was one of the first states
selected to be involved, and the Remote Sensing Laboratory has participated in the activities in a technical assistance role. This involvement has included giving a seminar on image processing to state emplovees, participating in a week-long training course at Goddard, and attending a conforence organized by ERRSAC. The ERRSAC training course and conference have provided attitional exposure to the problems involved in training rew users. They have further confirmed the potential utility of a decontralized approach to aigital classif:Lcation.
2. Earth Resources Laboratory, NASA Space Rechnology Laboratory. As an outgrowth of the ERRSAC activity, we have provided consultation to the Iand Management Information Center of the Minnesota State Planning Agency. This group hes oferated a digital geo-based resource information system for the state for ten years. They have recently obtained funds to purchase specialized computer hardware to further support and enhance tnat activity. part of that equipment will be for remote sensing inage processing, on which we have providas technical advice. As part of that activity, a min was arranged for a demonstration of the ELAS image analysis system at ERL in Mississippi. This demonstration provided an interesting comparison to the IDIMS system used at Goadard. In particular, the effective use or an unsupervised classification technique was impressive. Applications staff at ERL reported almost exclusive use of this classification technique. We hope to integrate such an option in our decentralized processing approach.
3. Data Analysis Laboratory, EROS Data Center. We are currently participating in a cooperative project with EROS and uinnesota state
planning. The project is intended to investigate the incorporation of LANDSAT-derived data into the statewide land information system. A wide range of analysis techniques was proposed, and we were able to expand this to include the techniques which we have been exploring under this grant, particularly the use of a coordinate digitizer to enter supervised training set polygons and test areas for accurany assessment. Subsequent computer work will be performed on the IDIMS image processing system at RROS. This should prove very advantagcous to us, since it will permit the various analysis strategies to be tested without the time consuming task of software development. The results of the comparisons will then allow us to concerntrate our future efforts on those techniques which look most promising.

The demonstration project is being performed on a study site located north of the city of st. Paul. The area under analysis covers part of four 7.5 minute quadrangle z containing a range of urban fringe land uses, from medium density suburban residential to large scale agricultural. Image data for the area have been extracted from an April, 1979, Landsat 3 scene. The system corrections to this image by the new NASA Master Data Processing Facility include a geometric resampling to the Hotine Mercator Projection. The data analysis and processing techniques which are being compared in the study are: Training techniques:
a. Supervised training using CRT display and joystick to enter polygons
b. Supervised training using color hard copy and a digitized tablet to enter polygons
c. Unsupervised classification
d. Supervised training using digital land cover data currently in the Minnesota Land Management Information System.

Classification techniques
a. Minimum distance to mean
b. Maximum likelihood with threshold
c. Canonical transformation with minimum distance to mean
d. Post-classification smoothing algorithms

Geometric correction techniques
a. Use of NASA corrected data resampled to Hotine Mercator Projection
b. Resampling to convert from Hotine to UM projection prior to classification
c. Same as (b) but resampled after classification

Data resulting from combinations of the above techniques will be compared to a photo-interpreted reference data set prepared by the Remote Sensing Lab. The reference data consist of six randomly selected photografins covering approximately one quarter of the study area. The interpreted reference data are being geocoded at EROS to enable automatic, full pixel comparisons to the test data sets. Currently, about half of the above work has been completed.

FUTURE ACTIVITIES

Assuming continued funding under this program, the following areas will be pursued in the coming year:

1. Basic software development on the microcomputer/display system. This will involve programs to transfer data from the university Computer Center, provide optimized disk data storage, and display the data. Down-loading of image processing programs will be attempted. Interface software will be developed to operate the digitizer tablet.
2. Completion of the EROS cooperative project. As has been mentioned, these results will be used to define the direction of our developmont efforts. At present, it appears likely that this will involve additional attention to unsupervised analysis.
3. Implementation of software based on the results in (2) but designed for decentralized operation.
4. Sample projects to test the decentralized approach using field personnel with limited digital image analysis background. Several prospects for sample projects are available within Minnesota, but attempts will be made to arrange additional demonstrations through NASA EPRSAC and/or EROS.

We feel that the activities of the past six months have put us in a good position to develop the proposed alternative analysis approach. Our involvement with the technology transfer groups at INASA and EROS have further emphasized the needs which formed the basis for our proposal last year. In addition, these contacts should improve our ability to publicize and acquire feedback on the alternative techniques ne develop. The
exposure to analysis systems at NasA ERRSAC and JiRL and the hands-on experience at EROS have brought us up to date on the state of the art. This is critical to avoic "reinventing the wheel." pinally, the availability of: the niturocompter and color display systen will permit the investigation of a potentially important alternativo approach to decentralized analysis.

In short, we feel we are making substantial progress toward defining the technological components of an alternative approach to digital classification which will improve the accuracy and specificity of natural resource inventories made with digital image data. During the next year we will begin testing this system in the "real world".

Dr. Joseph E. Geber
Dr. Matt. Walton
Mr. Latwoncs G. Batten
Mirmesota Geological Survey

o
Index
Status of Remote Sensing at the Minnesota Geologic Survey, 1979 Cl .
present Study--Synergistic Relationships Between remote- Sensing Media in Identifying Areas of Near-Surfare Bedrock (!3
Conclusions 614
Tables 1-6. Cl 5
Data Sources. 619
References CB
Figures ca.

Investigators: $D r$. Joseph E. Goebel
Dr. Matt Walton
Mr. Lawrence G. Batten Minnesota Geological Survey

StATUS OF REMOTE SENSING AT THE MTNNESOTA GEOLOGICAL SURVEY, 1979

The Minnesota Geological Survey continues to expand the use of remote sensing to understand better and interpret the geology of Minesota. Space imagery was employed in 1979 to identify and locate bedrock outcrops. A low-level, high-resolution aeromagnetic survey of the state, which began in the fall of 1979, will ultimately provide the best coverage of this sort in the country. Gravity mappings was completed in the St. Cloud and New Ulm sheets at a compilation scale of $1: 250,000$.

Geochemical methods of remote sensing employed during the past year entailed the measurement of radon in well water in three areas of the state, as well as measurement of gamma radiation taken manually on the ground.

1. Photo Interpretation of Surficial Quaternary Geology

Mapping the Quaternary geology proceeds in various parts of the state. Dr. Saul Aronow mapped the glacial deposits of Dakota County with the assistance of aerial photographs. Dr. Mary Sabina used aerial photography to identify and delineate glaciofluvial deposits in Dakota County.

2. Statewide Aeromagnetic Survey

A low-altitude, high-density aeromagnetic survey of the entire state is a major new project for the Minnesota Geological Survey. The current stage involves acquisition of data over Cook, Lake, St. Louis, Carlton and Pine Counties with a 400 -meter flight interval at an average terrain clearance of 150 meters. This work is being supervised by Dr. Val Chandler who is interpreting the results as they become available. As will be demonstrated later in this report, aeromagnetic data can be used successfully in combination with other remotely sensed data and traditional geological data sources to make geologic interpretations which none of these sources of data can achieve alone.

3. Radon Survey

In geochemical surveying, given elements may be found to vary in concentration in samples taken systematically over a selected region. When variations in radon activity in ground water are plotted geographically, as contour maps, the resulting image may reveal environmental influences on radon concentration in addition to primary variations in radion emissions from geologic sources. The interpretation of the image depends on considexation of bedrock type and structure, drift thickness, and hydrologic parameters. Richard Lively has demonstrated a relationship between contour maps of radon concentration, kinds of till, and bedrock structure.
4. Ground Survey of Gamma Radiation

A similar imaging technique has been applied to gamma radiation data taken by hand on the ground. This study was initially intended for locating uranium, but the resultant contour map of gamma radiation intensity shows a weak correlation with the distribution of tills and outwash and may separate some till units.

Abstract

PRESENTS STUDY -- SYNERGISTIC RELATIONSHIPS BETWEEN REMOTE-SENGING MEDIA IN IDENTIFYING AREAS OF NEAR-SURFACE BEDROCK

1. Introduction

Although the original intention of this investigation was to locate specific areas in which bedrock is at or very near the surface, bedrock exposures vary too much in character and site, and most are too small to be identified individually by remote sensing, The best example of the problem is the extensive exposures along the Mississippi River which were an important part of this study. Although this bedrock is well exposed in vertical sections, it is covered with about. 100 feet of glacial drift behind the river cut. Because all of the media collect data vertically, the outcrop itself is less than the resolution of most remote-sensing media. This investigation therefore reports the identification of areas where bedrock is near the surface and outcrops are likely to occur.

Synergism, as understood here, is the combination of two or more data sources to recognize a geologic characteristic which is not ident-
ifiable on any single image. This study was directed toward quantitative cvaluation of the usefulness of the data sources and toward developing a procedure to use them for locating bedrock outcrop areas, rather than toward systematic mapping of outcrops.

2. Materials

The following sources of geological data were used in this study:
(1) Topographic maps, for elevation control and geomorphic information.
(2) The aeromagnetic map of Minnesota, at scale 1:1,000,000 as published by the U.S. Geological Survey.
(3) The Bouguer gravity map of Minnesota. Although the primary gravity anomaly sources are within the precambrian bedrock, the gravity field may locally reflect changes in thickness of the surficial deposits.
(4) Skylab photographs. It was expected that the broad coverage would reveal local changes related to near-surface bedrock that would be more difficult to ascertain on aerial photographs. Also the skylab photos were made with different filters which might enhance moisture content variations or other factors in areas of thin surficial cover. Skylab coverage included photographs in visual color, colox infrared, visual black and white in the red and green range, and black and white infrared in the $0.7-0.8$ fim range.
(5) Seven seasons of LANDSAT inages, including all four MSS bands for a dry and a wet sumner-spring-fall and one winter scene.
(6) Aerial photographs, for information on geomorphology.
(7) A contour map of regional thickness of unconsolidated sediments, supplemented by the Minnesota Geological Survey data base of water-well drillers' logs, was used to reduce the search area to the one-third of the state which has less than 100 feet of glacial drift.
(8) The set of maps of lineaments previously prepared for this study (Gnebel and others, 1978). Glacial, fluvial and tectonic processes are responsible for many of the lineaments. We felt that outcrops would occur near these linear features.
(9) A map of glaciofluvial features. Because melt water eroded the soft new glacial drift, outcrops predominantly occur in glaciofluvial deposits.
(10) Side Looking Radar (SLAR) images, reviewed for indications of textural changes of the soils regardless of moisture content.
(11) Blue-line print orthophotos for 7.5-minute topographic quadrangles in Minnesota, at the quadrangle scale. Although the resoIution and gray-scale change in density are not very good on these prints, their registration to the topographic sheets permits comparison of patterns on other imagery with topographic features, and allowed us to assure ourselves of feature locations on all remote-sensing media.
(12) Airborne gamma radiation maps. We expected that the outwash should at least be distinguishable from the till because of the differing minerai content in the two sediment types.
(13) The SMS-GOES imagery was considered because it recorded a different spectrum, but we could not locate cloud-free images of Minnesota without browsing through all of the images. No record is kept, that we could find, of cloud-free periods. Imagery from these satellites seems to be considered temporal and is used only for weather observation.

3. Methors

This study was organized to determine which of the remote-sensing media contributed most to the identification and location of areas with shallow bedrock, and to evaluate them quantitatively.

After all of the remote-sensing or imaging media over Minnesota were located and collected, eight sites were chosen which had all of the kinds of image coverage listed above. USGS 7.5-minute topographic maps were used for locating outcrops in the eight sites and for compiling the results of the study.

Four of the eight sites were designated as training sites. The other four sites (referred to hereafter as test sites) were retained to test the procedure developed in the study of the first four sites. All four training sites were first investigated in the field, and bedrock outcrops, near-surface topographic features and stream conditions were plotted on the USGS topographic majs. Two of the training
sites had no outcrops, but the Irwin Cities and St. Cloud sites had ample outcrops (see site maps in appendix). The rook outcrop locations were then transferred to a 1:250,000 and a 1:1,000,000 scale USGS topographic map to facilitate location of these features on the various remote-sensing imagery.

We then tabulated the responses of each of the romote-sensing media to areas of observed bedrock outcrop (areas where bedrock was within 12 feet of the land surface) to determine which media seemed to distinguish the bedrock areas. Next we determined correlations between media for outcrop areas. This was particularly important in sorting through all of the bands of LANDSAT used in this study.

The Busch \& Lomb Stereo Zoom Transferscope was used to transfer. and locate features from different media and different scales onto the same scale. This transferscope also proved useful in transposing two different images onto each other.

We constructed our own densitometer using a sensitive light meter to register multiseasonal LANDSAT imagery to a base map. We did not have, nor could we find, a densitometer which met our specifications. This densitometer is not an exact instrument. Its only function was to select those images which seem to respond consistently in areas of outcrop.

The test sites were field checked after examination of the foregoing media had indicated specific sites to be checked.

We attempted to confirm near-surface (within 10 to 50 feet) bedrock with a portable power drill, but the drill was not successful, especially in saturated sands. Because no other drill was available, we checked the remaining areas to a depth of 20 feet with a hand auger.

1. Results

Near-surface bedrock areas as identified in this study were areas covered with less than 100 feet o. glacial drift. Areas where the bedrock is less than 12 feet below the surface are defined for this study as outcrops. When appropriate remote-sensing data were used, bedrock was located about half of the time predicted.

The synergistic relationships among LANDSAT imagery, Skylab photographs, and aerial photographs were useful for establishing a as of near-surface bedrock. Lineaments were located on LANDSAT imagery and aerial photographs during 1978, and near-surface water tables will be located during 1980. Both of these subjects can be identified by remote-sensing methods more reliably than individual outcrops, which are small and occur in a wide variety of environments with a wide range of responses. Bedrock outcrops themselves could not be resolved by any of the data sources used, nor did any combination of data sources seecifically identify rock at the ground surface. The data sources could not simply be combined mathemetically to produce a visual image of probable areas of near-surface bedrock. Outcrops and near-surface bedrock had to be verified visually at the site. Despite these drawbacks, the study resulted in a procedure for locating areas of nearsurface bedrock within which actual surface outcrops may occur.

Field Criteria Indicative of Near-surface Bedrock

1. Surface rock rubble on the shoulder of hills can cover either bedrock or till.
2. Bluffs, especially along major streams, are often the result of a bedrock resistant to erosion.
3. Trees are somewhat shorter and sparser, but surprisingly stouter, in areas of near-surface bedrock, and they appear darker on photographs. Juniper was observed in some areas where bedrock is less than 40 feet deep, but we made no attempt to validate this observation statistically.
4. Constrictions in the width of floodplains and steepened stream gradients may be caused by near-surface bedrock.
5. Swamps at elevations well hove local streams or the regional water table may indicate bedrock control of the flow of the ground water. Constriction at swamp outlets and broad backwater flats indicate possible bedrock influence on surficial morphology.

Sequence of Image Examination

Anomalies specifically related to areas of near-surface bedrock could not be identified in any of the data sources. A stepwise method of restricting the evidence of one source by the evidence of the next source was the most useful procedure for determining outcrop areas. The following procedure evolved in this study:

Abstract

Step One: A map of the regional thickness of the unconsolidated surficial sediments was used to reduce the search area to the one-third of the state which is known to have less than 100 feet of cover.

Abstract

Step Two: Broad regional imagery, such as Skylab photographs or leaf-off, early spring LANDSAT images, multispectral bands 4, 5 and 6 was studied to further distinguish candidate sites for near surface bedrock.

Step Three: Potential outcrop areas identified from step two were examined on the aeromagnetic map. We noted a correlation between spec-trally-identified areas of potential outcrop and aeromagnetic anomaly levels (relative to arbitrary datum) of 11,000 to 11,500 gammas, but this relationship requires further study.

Step Four: Some statistical correspondence between gravity values within the range of -30 to +35 milligals and bedrock outcrop areas was observed, but half of the state is within this range. Areas within these limits were considered only if the conditions in the first three stages had been met.

Step Five: After large areas of potential outcrop have been identified, more site-specific methods can be used. Conventional aerial photography is especially useful at this stage. Numerous riteria for outcrop recognition on aerial photographs have been developed over the last 5 years (Cooper, 1978; in press), and these were applied to photographs of the test sites.

Step Six: The areas selected on the basis of the previous steps were located on 7.5-minute topographic maps. Areas less than 50 feet. above the elevation of the nearest stream and within 2,500 feet of it were searched for.

Step Seven: The final step was to verify the outcrop on the land. Comments and Recommendations on Image Types

Of the methods employed in this study, LANDSAT images were analyzed the most thoroughly. We had four MSS bands with seven scenes for each scene center. These seven scenes included a wet and dry spring, a wet and dry summer, a wet and dry fall and a winter image. Of the 28 possible combinations of MSS hands, the bands which had the most uniform intensity of response, as measured on the photographic negatives, and also as deduced from comparing two different scene centers, were:

A dry spring - bands 4, 5 and 6

A wet spring - bands 4 and 5
A dry summer - band 4

Combinations of two or three of the above were best for identifying areas of probable outcrops.

An objective of this study was to establish a method for selecting other bands as possible sources of information about bedrock outcrops. It will require another phase of investigation to acquire these CCT's, develop the training sets, and then predict all of the outcrop areas in each scene.

The areas of shallow bedrock appeared very dark on radar (SLAR) images, as they did on aerial photographs, but because the det.ail and resolution were better on the aerial photographs we did not pursue the radar imagery as an indication of bedrock outcrop. Skylab photos, visual and infrared, color and black and white, also showed shallow bedrock as very dark or intense colors.

The map of natural gamma radiation intensities, which vary according to surficial conditions, indicated the location of sand, gravel and organic material, but the resolution was not sufficient to identify bedrock near the surface. There was radioactivity coverage over only the study training areas so we could not project this information on the test areas. With better resolution, and with actual flight-line data if they were available, natural gamma radiation data possibly would be a useful indicator of surface or near-surface bedrock.

When aeromagnetic data with higher resolution are available, it will be useful to investigate areas characterized by concurrence of magnetic anomalies and topographic: lineaments, and by localized, sharp magnetic anomalies with high gradients and intensity values. This was not practical with the resolution of the available map.

The new, more detailed gravity map now partly completed for Minnesota will be potentially more useful in future studies. The gravity anomaly characteristics at known outcrops for an area would be useful criteria in evaluating gravity data for other areas of possible outcrops.

Relations of Outcrop to Lineaments, Drainage, and Elevation

We looked at lineaments interpreted from many sources (see Goebel and others, 1978) and counted the number of outcrops located within 1 mile and within 2 miles of a lineament. We found that of the lineaments, those interpreted from winter LANDSAT imagery occurred most frequently near outcrops. Although there were many lineaments in the two training areas that had outcrops, there were few in the test areas. Therefore, we could not assess the usefulness of lineaments in predicting outcrops. It would be advisable to review the lineaments in application of this study to other areas.

We tested the hypothesis that bedrock outcrop clevations should be near the base levels of the closest streams, and that they should be fairly close to the nearest stream beds. fopographic maps provided information on elevations above sea level. Two-thirds of the outcrops in the St. Cloud site have elevations less than 50 feet above the elevation of the nearest stream and two-thirds of the outcrops in the Trin Cities site are within 124 feet of nearest-stream elevations.

It was further determined that outcrop 1.5 likely to be higher in elevation the farther it occurs from the stream. Most outcrops located were at distances between 1,400 and 5,000 feet from streams, although we found outcrops in streambeds and as Far as 8,000 feet away. Except where other evidence is available, it would be useful to concentrate the search in areas less than 50 feet higher than a streambed but no farther than 2,500 feet, or at most 5,000 feet from a stream.

Abstract

Outcrops occurred dominantly in or very near glaciofluvial and alluvial areas shown on Quaternary Geologic Map of Minnesota. Glaciofluvial excavation of bedrock is consistent with the relationship between strean erosion and outcrops.

CONCLUSIONS

Systematic application of procedures developed in this study can narrow the search area to reasonable limits, and can help define areas where bedrock is near the surface. Some media should be further investigated to understand their contribution to recognizing outcrop areas. More specific attention could be given to quantifying the usefulness and constraints of the recommended procedure for locating bedrock near the surface.

Table 1. Moan and standard deviation of the response values derived for selected romote-sensing media used in this study.

Remote-sensing Medium

Aeromagnetic map (in ganmas mag. rad.)
Bouguer gravity map (in milligal.s)
Aerial photos (light to dark scal.e 1-5)
Thickness unconsolidated sediments (ft.)
Bedrock outcrop elevation (feet)
Streambed elevation (feet)
Distance from outcrop to streambed (ft.)
SLAR radar (light to dark scale $1-5$)
Natural gamma radiation (counts/second)

I'win Cities		St Cloud	
M	SD	M	SD
11,300	246	11,200	180
3	33	-16	3
4.5	2.1	4.4	.9
94	54	53	36
852	86	1,072	42
759	29	1,038	35
5,180	7,800	1,421	1.484
4.7	. 5	4.6	. 6
2.9	32.8	-15.7	2.5

Twin Cities St. Cloud
Percentage of outcrops occurring in fluvial deposits

79

Table 2. Mean and standard deviation for the density values recorded for outcrops in the training sites on LANDSAT Imagery. (Measured on photographic negatives, low numbers are greater filim densities.)

```
Site and Season
Winter
    Twin Cities
    st. Cloud
Wet Spring
    Twin Cities
    St. Cloud
Dry Spring
    Twin Cities
    st. Cloud
Wet Summer
    Twin Cities
    St. Cloud
Dry Summer
    Twin Cities
    St. Cloud
Wet Fall
    Twin Cities
    St. Cloud
Dry Fall
    Twin Cities
    st. Cloud
```

Barid 4		Band 5		Band 6		Band 7	
\underline{M}	SD	\underline{M}	SD	\underline{M}	SD	M	SD
2.7	1.0	2.1	. 8	2.1	. 9	3.0	1.4
. 8	. 2	. 7	. 1	. 7	. 1	. 9	. 2
3.9	. 6	4.5	1.0	4.4	1.4	4.9	1.8
3.2	. 2	3.8	. 3	3.1	1.4	3.3	. 5
7.0	1.0	5.5	. 1	5.1	. 8	6.2	1.6
6.2	. 6	5.3	. 5	3.6	. 5	4.2	. 7
7.4	1.3	6.8	1.4	3.5	1.3	3.8	2.0
6.9	. 8	5.7	1.1	2.8	. 6	2.8	. 6
4.9	. 8	4.2	1.0	3.2	1.1	4.3	1.7
3.4	. 4	2.7	. 6	1.4	. 3	1.6	. 6
7.3	1.1	6.8	1.3	5.6	1.2	6.2	2.2
	(NO	ERA					
8.0	1.6	7.4	1.5	6.9	1.5	8.0	1.8
6.1	. 5	4.6	. 6	3.8	. 6	4.5	. 8

	m		
	m	\bigcirc	
n \vdots 1			
	N	○サ「	σ
	－m		
\sim	6パ ${ }_{\text {g }}$		\cdots
$\stackrel{\text { N }}{\substack{\text { 2 } \\ \vdots \\ 1}}$			
	そ「スが号の		
	べッザ		
		かん发がN	下－

[^2]| 0 | | 1 | | 2 | | 3 | | 4 | | 5 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-1/2 | 6 | 1-1/2 | 5 | $1-1 / 2$ | 6 | 1-1/2 | 6 | 1-1/2 | 6 | 1-1/2 | 6 |
| 97 | 90 | 3 | 10 | | | | | | | | |
| 100 | 100 | | | | | | | | | | |
| 87 | 0 | 10 | 70 | 3 | 26 | | 3 | | | | |
| 93 | 63 | 6 | 36 | | | | | | | | |
| 97 | 37 | 3 | 63 | | | | | | | | |
| 0 | 60 | | 33 | | 5 | | | | | | |
| 100 | 87 | | 13 | | | | | | | | |
| 100 | 100 | | | | | | | | | | |
| 97 | 97 | 3 | 3 | | | | | | | | |
| 100 | 100 | | | | | | | | | | |
| 100 | 97 | | 3 | | | | | | | | |
| 87 | 6 | 13 | 83 | 3 | 10 | | | | | | |
| 100 | 93 | | 6 | | | | | | | | |
| 90 | 5 | 6 | 45 | 3 | 53 | | | | | | |
| 90 | 0 | 10 | 65 | | 36 | | | | | | |
| 97 | 17 | 10 | 63 | | 3 | | | | | | |
| 90 | 6 | 10 | 10 | | 66 | | | | | | |

[^3]Table 5. Mean and standard deviation of the color density values on Skylab photographs with a scale of 1-5 from light to dark. The Twin Cities site was not included on any of the Skylab photographs and these data apply to the st. Cloud site only.

Table 6. Correlation between the responses of the remote-sensing media used in this study to near surface bedrock.

Aerial Photographs

```
Study Area A - Marshall and Pennington Counties, 1966, U.S. Department
of Agriculture, Agricultural Stabilization and Conservation Service,
Aerial Survey, Inc., Louisville, Ky, 1:20,000.
    BXY - 1GG-(65-76), (142-154), (182.189)
    BXY - 2GG-(107-114), (161-172), (192-203), (267-278)
    BXY - 3GG-(44-48), (68-81), (146-159), (181-194), (264-276)
    BXY - 4GG-(79-84), (167-169)
    BYC - 1GG-(46-55), (88-97), (163-171)
    BYC - 2GG-(56-65), (116-124), (132-141), (206-215)
Study Area B1 - Lake of the Woods County, 1941, Abrams Aerial Survey
Corp. - Mark Hurd Aerial Mapping Corp., 1:20,000.
    c10-1-(38-145)
    C1Q-3-(23-31)
    C10-5-(119-125),(156-162), (165-171)
Study Area B B - Roseau County, 1966, U.S. Dept. of Agriculture,
Agricultural Stabilization and Conservation Service, Park Aerial
Surveys, 1:20,000.
    BYG-2GG-(113-133)
    BYG-3GG-(36-48), (50-55)
    BYG-4GG-(1-13),(120-132)
Study Area C - Beltrami County, 1939, U.S. Dept. of Agriculture, Agricultural Adjustment Administration, Abrams Aerial Survey Corp. -
```

Mark Hurd Aerial Mapping Corp., 1:20,000.

```
C.TN-1-(60-77), (83-91), (102-114), (124-133), (140-159)
CIN-2-(36-45), (65-80)
CIN-4-(182-197), (205-217)
CIN-5-(62-83), (122-128)
CIN-6-(4-21), (88--106),(111-116), (124-128)
CIN-7-(33-35)
CIN-10-(79-82)
```

Study Area D - St. Jouis County, 1953, Arrowhead Aerial Surveys, Hibbing, MN.

```
CIR-1G-(140-156),(163-179),(191-207)
```

Study Ared E - Crow Wing County, 1940, U.S. Department of Agriculture, Agricultural Adjustment Administration, Abrams Aerial Survey Corp. Mark Hurd Aerial Mapping Corp., 1:20,000. BXT-1-(55-60), (94-108), (113-128), (161-175) BXT-4-(106-117), (123-142)

Study Area F - Crow Wing County, 1939, U.S. Dept. of Agriculture, Agricul.tural Adjustment Administration, Abrams Aerial Survey Corp. Mark Hurd Nerial Mapping Corp., 1:20,000.

```
        BXT-2-17-(49-59), 72-79), (101-110), (144-154)
```

 BXT-3-(41-52), (95-104), (122-133), (171-181)
 BXT-5-(2-15), (27-38), (69-86), (101-113)
 Study Area G - Benton, Sherburne, Stearns, and Wright Counties, 1963, U.S. Dept. of Agriculture, Agricultural Stabilization and Conservation

Service, Mark Hurd Aerial Surveys, Inc., 1:20,000.

```
BIN-1DD-(75-32), (92-93), (142-143)
BIN-2DD-(19-20), (58-63), (100-101), (133-134), (171-172), (228-229)
        (266-267)
BJL-1DD-(38-39), (84-91), (143-154), (156-176), (181-201), (204-268)
BJL-2DD-(21-39), (40-57),(101-118), (124-132), (210-227), (267-279)
BJL-3DD-(5-11)
```

Study Area H^{1} - Hennepin County, 1951, Mart Hurd Aerial Surveys, Inc. Wide Angle, 1:9,600.
$\mathrm{BF}-2-(1-8),(76-93)$
$\mathrm{BF}-3-(35-43),(64-70)$
$\mathrm{BF}-6-(60-65)$

Study Area H^{2} - Hennepin and Ramsey Counties, 1957, U.S. Dept. of Agriculture, Commodity Stabilization Service, Mark Hurd Aerial Surveys, Inc., 1:20,000.

BIM -2T-1

WO-2T-(52-72), (128-135). (201-209)

WO-3T-(2-10)
WO-9T-(65-71)

Study Area H^{3} - Dakota and Washington Counties, 1964, U.S. Dept. of Agriculture, Agricultural Stabilization and Conservation Service, Mark Hurd Aerial Surveys, Inc., 1:20,000.

```
CZ-2EE-(22-38), (107-125)
```

$C Z-3 E E-(1-27),(83-107)$
$C Z-4 E E-(53-63),(190-216)$
CZ-5EE-(45-62)

LANDSAT IMAGES

EROS Data Center, LANDSAJ Imagery, U.S. Dept. of the Interior, Geological Survey, EROS Data Center, Sioux F'alls, S.D., 1:1,000,000 Black \& White Negatives: 8-2359-16173-4,5,6,7 8-5353-15515-4,5,6,7 8-2197-16201-4,5,6,7 8-2269-16192-4,5,6,7 8-2791-16043-4,5,6,7 8-2593-16121-4,5,6,7 8-2665-16094-4,5,6,7 8-2018-16236-4,5,6,7 8-5354-15571-4-4a,5,6,7
8-2198-16253-4,5,5,7,
8-2828-16075-4,5,6,7
8-2594-16172-4,5,6,7
8-2648-16154-4,5,6,7

SKYLAB Images

G20A018134000		BW
G20A015142000	IR	Color
G20A025008000		Color
G30A025008000	IR	BW
G30A026008000	IR	BW
G30A029008000		BW
G30A030008000		BW
G30A027008000	IR	Color
G30A028008000		Color

SLAR Images

```
Goodyear Aerospace Corp., Side Looking Airborne Radar Imagery (SLAR):
Goodyear Aerospace Corp., Litchfield Park, Arizona, 1:200,000.
\begin{tabular}{lllll} 
RNI & FN & 1068 X & Poss \(\# 03\) & Pos. Paper and Film \\
RN3792 FN & 129 X & Poss \(\# 07\) & Pos. Paper and Film
\end{tabular}
                Or'thophotographs
```

Blue-line orthophotographs, Mark Hurd Aerial
Surveys, Inc., 345 Pennsylvania Ave. So., Mpls., MN. 55426, 1:24,000.

Sucker Creek	$392-2$	1977
Nebish	$361-2$	1977
Redby N.E.	$361-1$	1977
Borden Lake	$360-2$	1977
O'Brien Lookout Tower	$360-3$	1977

Clear Lake	139-4	1977
Elk River	138-2	1977
Big Lake	138-3	1977
Orrock	138-4	1977
Lake Fremont	138-1	1977
Becker	139-1	1977
Boulder Lk. Reservoir	269-3	1969
Boulder Lk. Reserv. N.E.	269-1	1969
Comstock Lake	269-4	1969
Thompson Lake	269-2	1969
Arnold	246-1	1969
Fredenberg	246-4	1969
Shaw	270-2	1969
Trommald	233-2	1977
Pelican Lake	233-3	1977
Stewart Lake	254-3	1977
Mitchell Lake	254-2	1977
Roosevelt Lake	253-3	1977
Edna Lake	253-2	1977
Twig	247-1	1969
St. Cloud	158-3	1977
Cable	158-2	1977
St. Augusta	140-4	1977
Clearwater	140-1	1977
Minneapolis North	121-2	1977

Minneapolis South	$105-1$	1977
Stillwater	$119-2$	1977

Maps

Aeromagnetic

Zietz, Isidore and Kirby, John R., 1970, Aeronagnetic Map of Minnesota, U.S. Geological Survey, Geophysical Investigations Map Gp-725.

Gravity

CradAock, Campbell, Mooney, H.M. and Kolehmainen, Victoria, 1970, Simple Bouguer Gravity Map of Minnesota and Northwestern Wisconsin, Minnesota Geological Survey, University of Minnesota, Miscellaneous Map Series Map M-10, 1:1,000,000.

Geologic

Goebel, J.E., and Walton, M., 1979, Geologic Map of Minnesota, quaternary Geology: Minnesota Ceological Survey State Map Series Map S-4, $1: 3,168,000$.

Radioactivity

Neuschel, S.K., 1969, Natural Gamna Aeroradioactivity Map of
Minneapolis-St. Paul Area, Minnesota-Wisconsin: U.S. Ceological
Survey, Geophysical Investigations Map GP 653, 1:250,000.

Topographic

U.S. Army Map Service (BEAM), Western United States, 1:250,000

Topoyraphic Map Series, U.S. Army Corps of Engineers, Wash., D.C., for sale by U.S. Dept. of the Interior Geological Survey.

```
Bomi|ji, Minnesota Sheet, 1954 (Limjted Revision 1965)
Brainerd, Minnesota Shect, 1953 (Limited Revision 1965)
Duluth, Minnesota-Wisconsin Sheet, 1953 (Limited Revision 1963)
Hibbing, Minnesota Sheet, 1954 (Limited Revision 1965)
Roseau, Minnesota, U.S.-Ontario, Can. Sheet, 1954 (I,imited Revision 1968)
```

U.S. Dept. of the Interior Geological Survey, 1965, State of Minnesota (Base Map), U.S Dept. of the Interior Geological Survey, 1:1,000,000. U.S. Dept. of the Interior Geological Survey', 'Topographic Quadrangles, U.S. Dept. of the Interior Geological Survey, Wash., D.C.

Arnold MN	7.5^{\prime}	1953
Becker, MN	7.5^{\prime}	1961
Big Lake, MN	7.5^{\prime}	1961
Borden Lake, MN	7.5^{\prime}	1972
BoulderLk. Reservoir, MN	7.5^{\prime}	1953 photorevised 1969
BoulderLk. Reservoir N.E., MN	7.5^{\prime}	1957
Brainerd, MN	7.5^{\prime}	1973
Cable, MN	7.5^{\prime}	1974
Clear Lake, MN	7.5^{\prime}	1961
Clearwater, MN	7.5^{\prime}	1974
Comstock Lake, MN	7.5^{\prime}	1957
Edna Lake, MN	7.5^{\prime}	1970
Elk River, MN	7.5^{\prime}	1961
Fredenberg, MN	7.5^{\prime}	1953 photorevised 1972

Hudson, MN-WI	7.51	1967 photorevised 1972
Inver Grove Heights, MN	7.51	1967 photorevired 1972
Lake Elmo, MN	7.51	1967 photorevised 1972
Lake Freemont, MN	7.51	1961
Merrifield, MN	7.5^{\prime}	1973
Minneapoli.s North, MN	7.5^{\prime}	1967 photorevised 1972
Minneapolis South, MN	7.5^{\prime}	1967 photorevised 1972
Mitchell Lake, MN	7.5'	1970
Monticello, MN	7.51	1961
Mulligan Lake N.E., MN	7.51	1963
Nebish, MN	7.5^{\prime}	1972
NewEolden, MN	15 '	1957
O'Brien Lookout rower, MN	7.5^{\prime}	1972
Orrock, Mn	7.51	1961
Pelican Iake, MN	7.5'	1959
Prescott, MN	7.5'	1967 photorevised 1972
Redby N.E., MN	7.5'	1972
Riverton, MN	7.5'	1973
Roosevelt, MN	7.51	1967
Roosevelt Lake, MN	7.5^{\prime}	1970
Rosewood, MN	7.51	1959
St. Augusta, MN	7.5^{\prime}	1974
st. Cloud, MN	7.5'	1974
St. Paul East, MN	7.5'	1967 photorevised 1972
St. Paul Park, MN	7.51	1967 photorevised 1972

Other

Goebel, J.E., 1980, Isopach map of thickness of unconsol,idated sediments in Minnesota: Minnesota Geological Survey file map, 1:500,000.

Goebel, J.E., in preparation, Areas in Minnesota where the bedrock i.s inferred to be within 50 feet of the present land surface: Minnesota Geological Survey file map, 1:3,168,000.

References

Cooper, R.W., 1978, Lineament and structural analysis of the Duluth Complex, Hoyt Lakes-Kawishiwi area, northeastern Minnesota: unpub. Ph.D. thesis, University of Minnesota, Minneapolis, 180 p.

Cooper, R.W., Morey, G.B., and Weiblen, P.W., in press, Topographic and aeromagnetic lineaments and their relationship to bedrock geology in a glaciated Precambrian terrane, northeastern Minnesota: International Conference on Basement Tectonics, 3rd, Proceedings (May 15-19, 1978).

Goebel, J.E., Walton, M., and Batten, L.G., 1978, Synergistic relationship between lineaments located on LANDSAT imagery and traditional sources of topographic information, in A study of Minnesota land and water resources using remote sensing: University of Minnescta Space Science Center, NASA Grant NGL 24-005-263, v. XII, p. C1-C50.

Sims, P.K., and Morey, G.B., eds., 1972, Geology of Minnesota: a centennial volume: Minnesota Geological Survey, 632 p.

Figure 1. Index map of topographic maps and orthophotos coverage used in this study. For the list of each map or orthom photo see Data Sources.

Figure 2. Bedrock outcrops located in the St. Cloud and Twin Cities training sites.

OMNAL PAGE IS
PuTR QUADTTY

Figure 3. Bedrock outcrops located in the crow Wing training site and the Cass and Duluth test sites.

Figure 4. Bedrock outcrops located in the Red Lakes and Warroad test sites. No outcrops were located in the Pennington training site.

Figure 5. Index map for multiseasonal LANDSAT i:SS imagery scene centers. Each scene center has imagery related to a wet and dry year for spring, summer and fall while winter has single coverage. For the list of all of the images used in this study, see Data Sources.

Figure 6. Index Map of Skylab photograplis.

Figure 7. Index map of SLAR imagery.

Figure 8. Reduced aeromagnetic map of Minnesota.

Figure 9. Reduced map of the thickness unconsolidated sediments in Minnesota.

Figure 10. Reduced map of areas where the bedrock is exposed or thinly covered with unconsolidated deposits.

Figure 11. Reduced simple Bouguer gravity map of Minnesota.

AREAS OF WESTERN AND SCUTENESTERN MINNESOTA.

Dr. R. H. Rust
Pierre Robert.
Department of Soil Science
St. Paul, Minnesota

INDEX
Tritroduction DI
Corn Leaf Reflectance in Greenhouse Experiments D3
Assessing Crop Hail Damage D5
Landsat Digital Data Analysis 125
Analysis of soil Water D7
Attempt io Develop Real Time
Agricultural maigement DI 1
Summary and Conclusions. 127
References. 01.5

A PROJECT TO EVALUATE NOISTURE STRESS IN CORN AND SOYBEAN ARE:AS OF WESTERN AND SOUTHWESTERN MIINEESOTA

Investigators: Dr. R. F. Rust Pierre Robert Department of Soil Science St. Paul, Minnesota

INTRODUCTION

This report sumarizes a continuing effort to assess soil moisture stress through crop signaturas in southwestern Minnesota using remote sensing techniques and particularly LANDSAT data (Rust and Robert, 1977, 78). Related objectives are: localization of droughty, well drained, and poorly drained soils; detection of stress from hail, wind, and disease damage; and the use of remote sensing data for agricultural management.

The 1979 cround data collection network was similar to that used in 1978, but site \#10 in Chippewa County was dropped because the soil survey terminated. Generally similar procedures were used for ground data collection, greenhouse experiments, and remote sensing data types. The 1978 progress report gives the site locations (Figure l: See volume XII, 1978) and sumaarizes equipment characteristics and procedures.

Since the amount and distribution of precipitation were adequate during the 1977 and 1978 growing seasons, no significant stress occurred. Crop conditions were very favorable. As a result, crop signatures were too uniform to reflect soilscape variations and crop condition changes. In 1979 precipitation was again adequate to excess, particularly in June and August (Table 1) In some cases, poorly drained sites especially,

Table 1. 1979 growing season nonthly precipitation and normals for some weather stations of SW Minnesota

Precipitation (inches)

Location		April	May	June	July	August	Sept	Oct	Total
Montevideo	Normal	2.29	3.31	4.72	3.48	3.69	2.92	1.62	22.03
	1979	3.26	3.98	8.32	2.17	6.87	0.40	3.60	28.60
Marshall	Normal	2.46	3.30	4.49	3.95	2.68	2.70	1.61	21.19
	1979	3.90	4.13	7.12	4.13	6.32	0.97	3.27	29.84
Pipestone	Normal	2.22	3.60	4.62	3.35	2.96	3.20	1.73	21.68
	1979	3.13	2.82	3.84	3.44	6.38	2.13	4.31	26.05
dwood Falls	Normal	2.22	3.25	3.92	3.86	3.24	2.42	1.74	20.65
	1979	1.56	5.48	4.71	6.70	8.30	1.44	3.24	31.43
Windom	Normal	2.35	3.61	4.50	3.74	3.30	3.54	1.70	22.74
	1979	1.11	6.02	5.13	3.76	7.82	2.43	4.68	30.95
2.erage	Normal	2.38	3.49	4.42	3.69	2.99	3.07	1.70	21.66
	1979	2.59	4.78	4.98	4.04	7.14	1.47	3.82	$\underline{28.82}$

stress conditions developed as a result of excess of water and could be identified on color infrared photographs.

CORN LEAF REFLECTANCE IN GREENHOUSE EXPERIMENTS

Field reflectance ${ }^{1}$ is the result of interactions hetween a variety of factors such as crop condition, soil type, and farming techniques. The relationship between water availability and plant reflectance can be most adequately isolated in a greenhouse experiment.

Five experiments measuring corn leaf reflectance were conducted from fall 78 to spring 79 using equipment and techniques previously described (1978 progress report). Figure 1 summarizes the main results of one experiment. We observe a general trend toward increased reflectance in response to increased plant water potential ${ }^{2}$, a result also found in 1978 on soybean plants. However, the detailed relationship is much more variable, for example, as in the last measurement. Furthermore, correlations may be smaller in some other experiments, particularly in the near infrared waveband. Additional experiments will be conducted during the $1979 \cdot 80$ fall to spring period.

[^4]

Figure 1. Differential Normalized Reflected Energy (3), Water Potential and Color of Progressively Stressed Corn Plants.

Ground data on hail damage were collected and mapped by the field collaborators using local information.

The main hail damage in 1978 occurred on July 6 in Chippewa, Jackson, Pipestone, and Redwood counties. The July 15 LANDSAT imagery (near infrared $B \& W, 1: 1,000,000$ scale) gives the best signature of the damaged areas. Figure 2 shows the characteristic signature change of the damaged areas. A better identification could result from the ratio of the July 17 to June 23 data. The ratio might reduce background noise. This will be tested on the IMAGE 100 system during our next session at the Eros Data Center.

LANDSAT DIGITAL DATA ANALYSIS

Data from the three related scenes of 1977 (June 23, July 29, and September 9) were analyzed at the EROS Data Center, Sioux Falls, during a chree-day session. Most of the image processing was performed using the IMAGE 100 system (General Electric Co.). One information extraction was done using the more powerful IDIMS (interactive image processing) system (Electromagnetic System Laboratores, Inc.).

From the original computer compatible tape, overviews of the three scenes (3% sampling) were computed by sampling every sixth column and every fifth line. Windows (256 columns by 185 lines) corresponding to six sites were extracted from the three tapes and stored on a "working" tape.

Figure 2．July 15，LANDSAT imagery over southwestern Minnesota（Band 7， 1：1，000，000 scale，path 31，row 24）．Arrows indicate hail damage．

Site number 5 (Tracy) was selected for a detailed study on both image analysis systems.

On the IIIAGE 100 system the following operations were performed: (1) dumping pixel values; (2) establishing video levels between 0 and 255 for each pixel within the cursored area, which are then printed so that a 1:1 map is obtained; (3) alphanumeric plotting of the training sections using 8 different themes corresponding to 8 equal groups of pixel values; (4) clustering the June (Figure 3) scene and displaying the result on the electrostatic plotter using a $1: 1$ and $9: 1$ ratio; (5) temporal overlaying of bands 5 and 7 for the June and July scenes with classification of the resulting image.

On the IDIMS system, alphanumeric maps with 64 classes for the June and July scenes were produced after clustering using the "Isoclass method" (nearest neighbor algorithm) on the 4 channels.

The most significant result came from the temporal signature of the June and July scenes. Corn, soybean, and small grain fields were readily identified. Because of the homogeneity of the signature within crops (the result of favorable weather conditions), it was not possible to make further differentiations, particularly in soil drainage classes.

ANALYSIS OF SOIL WATER

Soil water content is one of the principal parameters correlated to the crop signatures. Its value is monitored throughout the growing season on each site.

Figure 3. Clustering of the June, 1977 Scene (Band 5).

ORIGINAL PAGE IS OF POOR QAALI of POOR QUALITY

Soil water content was previously expressed water per unit mass of soil because most of the soil bulk densities were not available. A perefired expression is water per unit volume of soil. This is a better evaluation of the soil water content since it takes account of soil textore and structure. However its computation requires a correct measure of the soil bulk density, which introduces some error due to soil variability and requires a lengthy laboratory analysis. Table 2 gives the oven dry and 0.3 bar soil bulk densities for most of the ground data soil sites. Values in parenthesis seem questionable.

Another expression of the soil moisture is the available water, which is the moisture retained in the soil between the field capacity (a pressure of 0.3 bar) and the permanent wilting coefficient (15 bars). Values are usually expressed on disturbed (crushed, artificially packed) samples because it is easier and faster to do so. However, such measurements eliminate the soil structure effect and have to be applied with caution to field situations, particularly for low matric potential (wet end of soil moisture range).

A method was developed to measure soil water retention on undisturbed soil cores. Soil cores are sampled using a hydraulic probe, satunrated with water, frozen, installed in a special holder (Figure 4), mounted on a diamond saw, and cut to the thickness of the rubber ring used in the pressure chamber.

If the sawing produces a "polish" on the faces, the sample surface is roughened on a grinder covered with a medium sand paper to reopen all the pores.
Table 2. Oven $\mathfrak{d r y}$ and $1 / 3$ bar soil bulk densities for ground data sites.

Figure 4. Cut soil core in the special petrographic saw holder.

Table 3 gives a summary of differential water content (disturbed less undisturbed samples) at 0.3 and 15 bars for on site soils. The differential values are statistically highly significant ($p<.001$) at 0.3 bar, but they are not significant at the .05 level for the 1.5 bars samples $(.05<p$ value < .10). Therefore, water retention at 0.3 bar should always be measured on undisturbed samples.

ATTEMPT TO DEVELOP REAL TIME AGRICULTURAL MANAGEMENT

The development of timely recommendations for crop and soil managemont was an initial objective of the project. It appears that this objective cannot presently be accomplished using Landsat data. The acquisition of imagery requires a long delay of at least two months. However,
untGINAL PAGE IS
(P Pi MR OHAIITY
Table 3. Difference in water content per unit vol e between disturbed and undisturbed soil

Site			$\begin{gathered} \text { in inct } \\ 0-6 \end{gathered}$	$\begin{array}{r} s \text { for } \\ 6-12 \end{array}$	$\begin{gathered} \text { well-dr } \\ 12-18 \end{gathered}$	$\begin{gathered} \text { cained } \\ 18-24 \end{gathered}$	oils $24-36$	Soil Depth	in in $0-6$	es for 6-12	$\begin{gathered} \text { poorly } \\ 12-18 \end{gathered}$	$\begin{gathered} \text { drained } \\ 18-24 \end{gathered}$	$\begin{aligned} & \text { soils } \\ & 24-36 \end{aligned}$
02	1/3 bar	Ves	1.6	5.9	5.1	-	3.4	Canisteo	3.2	0.8	0	4.2	0.7
	15 bars		-0.9	-2.0	-	-5.0	-						
03	1/3	Seaforth	1.9	0.9	2.8	3.2	3.9						
	15		-0.5	-0.4	0.5	0.6	-						
04	1/3	Clarion	0.5	3.4	2.9	1.9	2.5						
	15		-0.5	0.5	-1.3	-0.1	-						
05	1/3	Everly	3.8	1.9	0.7	5.2	-	Letri	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 1.4 \\ -0.7 \end{array}$	$\begin{array}{r} 0.4 \\ -1.7 \end{array}$	$\begin{array}{r} 4.5 \\ -0.2 \end{array}$	3.6
	15		0.4	-1.1	-0.2	1.1	-						0.8
06	1/3	Ves						Okoboji	8.2	9.5	$\begin{aligned} & 3.3 \\ & 0.4 \end{aligned}$	2.7	$\begin{aligned} & 8.6 \\ & 0.3 \end{aligned}$
	15												
10	1/3	Tara	5.2	4.7	-	3.7	-	Sletten	$\begin{aligned} & 5.0 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.2 \\ -1.7 \end{array}$	$\begin{array}{r} 6.9 \\ -0.8 \end{array}$	$\begin{array}{r} 1.8 \\ -1.0 \end{array}$	3.8
	15		-0.4	-0.8	-3.9	-1.8	-						0.3
11	1/3	Kranzburg						Hidewood	$\begin{array}{r} 6.9 \\ -3.3 \end{array}$	$\begin{array}{r} 4.6 \\ -3.4 \end{array}$	$\begin{array}{r} 5.1 \\ -2.8 \end{array}$	$\begin{array}{r} 4.9 \\ -0.2 \end{array}$	$\begin{array}{r} 4.9 \\ -1.0 \end{array}$
	15												
12	$1 / 3$ 15	Ves	3.0	2.3	3.4	6.9	5.0	Webster	-2.0	1.5	-0.7	-	-0.3

since improvements in processing time and in data resolution arc expected in the near future, a cooperative profect lutween the Naseca and ramberton experimental stations, and twelve farmers located in southcentral and southwestern Minnesota (see Figure) was started in Spring 1979 to tost the practical use of romote sensing techniques for "on time" corn and soybean ficld management.

The objective was to give the cooperators, throughout the growing season, a color infrared print within ten days of flight date at approximately 1:10,000 scale and contain interpretation of soils - and cropconditions on an rerlay (Figure 6). Information which can be extracted from aerial phocograyhs includes germination success (equipment failure, disease, herbicide effectiveness), a check on stand growth and development (plant darnge; misapplication of chemicals) ; drainage effectiveness; soil moisture s'-ess, harvesting problems (lodging, weed infestation, variable ripening), regrowth pattern, and hail, wind and flood domages.

Unfortunately, the cloudy conditions encountered during most of the 1979 growing season allowed only two flights, July 15 and September 16. Table 4 gives the features we were able to distinguish on the September photographs. An important practical result was to show a precise spatial distribution of drainage offectivness.

Interest in continuing the project was expressed at the evaluation meeting held in St. James on November 14 by the farmers, county agents and extension agents.

Figire 5. Locations of Cooperators in the Agricultural Management Project

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6. Color infrared print with interpretation of soils and crop sonditions (at $1: 10,000$ scale).

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6. Color infrared print with interpretation of soils and crop ronditions (at $1: 10,000$ scale).

Table 4. Jnterpretative legend for the September 3.6 photographs.

1 : slight reduction in growth or crop stand by excess of moisture;
2 : significant reduction in growth or crop stand by excess of moisture;
3 : plant loss or damage by high excess of moisture;
5 : retuced growth by soil erosion.
Sl: (greenish color) soybeans, reduced stand, delayed maturity
s2: (brownish color) soybeans, goca stand;
Cl: (darker brown) corn, reduced stand, delayed maturity;
C2: (1ighter brown) corn, good stand;
B1: (darker green) tare field, poorly drained soil type;
B2: (lightex green) bare field, well drained soil type;
Tl: (light tone) thin surface horizon, sandy;
T2: (light tone) thin surface horizon, high lime;
Df: differential maturity related to planting date or seed variety;
h^{7} : (reddish color) significart weed problem;
? : unknown problem.

SUMMARY AND CONCLUSIONS

The 1979 growing season received significantly above average precipitation in the study area. As a result, the poorly drained soils had some moisture excess which probably will be reflected in the LANDSAT data.

As a result of the wet season, the percentage of cloud cover was also higher than usual. This greatly reduced the availability of LANDSAT scenes. There are only 3 scenes available with less than 10% cloud cover for the study area. There is no usable scene available from June 6 to September 20, 1979.

Corn leaf reflectance does not show a strong relationship wits plant stress or plant water potential as measured with the technique used for soybeans in the 1978 greenhouse experiment. Additional measurements will be made in 1980.

Hail-damaged areas show a characteristic signature on the LANDSAT black and white infrared product. Further identification will be tested using the digital data.

Information extraction from the 1977 digital tapes was performed at the Eros Data Center using the IMAGE 100 and the IDIMS systems. The study of one site showed that crop identification is feasible using tempporal signatures. But because of uniformly excellent crop conditions, reflected in nearly homogeneous signatures, it was not possible to make further differentiations, egg., soil drainage classes.

To evaluate more accurately the soil water content of the ground data sites, their soil bulk densities and soil water retentions at 0.3
and 15 bars were measured. A method to prepare undisturbed soil samples was developed. A highly significant difference in water retention was found between disturbed and undisturbed samples at 0.3 bar. Undisturbed samples should be used.

A cooperative project between the Waseca and Lamberton Experiment Stations and 12 farmers tested the feasibility of using remote sensing techniques for real time agricultural management. The objective was to produce, within 10 days of the flight date, color infrared prints and interpretation of soils and crop conditions related to plant growth, equipment failure, chemical efficiency, drainage effectiveness, and stress as a result of moisture extremes, hail, and diseases. Cloud cover and the processing time of color infrared films were the two main problems. Positive results were obtained such as indication of a need of drainage, weed control, and the management of eroded fiel.ds. Interest in continuing the project was expressed by the coope.ators.

PEFERENCES

Rust, R. H. and P. Robert. 1977. Evaluation of soil moisture stress in W. and SW. Minnesota. Section F in NASA Progress Report (NGL 24-005-263, Vol. XI).

Rust, R. H. and P. Robert. 1978. A project to evaluate moisture stress and weather modification procedures in Corn and soybean areas of W. and SW. Minnesota. Section B in NASA Progress Renort (NGL 24--005-263, Vol. XII).

SECTION E

MEASUREMENT OF SUSPENDED SOLIDS IN LAKES AND OCEANS
 USING SATELLITE REMOTE SENSING DATA

Dr. Michael Sydor
Department. of Physics
University of Minnesota, Duluth Duluth, Minnesota

o

INDEX

Abstract. El
Method and Results EP
Procedure for Remote Sensing Data Analysis. ET
Comparison of Calculated and Measured Radiance at Satellite Altitude Ell
Figure Captions E12
Figures El

MEASUREMENT OF SUSPENDED SOLIDS IN LAKES AND OCEANS USING SATELLITE REMOTE SENSING DATA
 Investigator: Dr. Michael Sydor Department of Physics University of Minnesota, Duluth Duluth, Minnesota

ABSTRACT

Using satellite remote sensing data to measure low concentrations of suspended solids in lakes and oceans requires careful evaluation of background signals from the atmosphere and the water surface. We present here typical background corrections for Lake Superior and determine the aspectsal distribution of the residual radiance from three major categories of turbidity in the lake. The results indicate that for large bodies of water, some general information on atmospheric scattering, water clarity, and the optical properties of suspended solids allows estimates of concentrations of suspended solids to within $\pm 0.5 \mathrm{mg} / i$ without using real time ground truth data. Under calibrated conditions the threshold detertion level is $0.3 \mathrm{mg} / \ell$ for the fine particulates dispersed throughout the lake and $1 \mathrm{mg} / \ell$ for the highly light absorbing effluent from rivers. Comparisons of the minimum reflectance over the open lake areas with reflection from the highly absorbing tannin water from rivers, provides a check on the clarity of the atmosphere and the excessive background scatter from the water surface.

METHOD AND RESULTS

The spectral and the angular distributions of radiance from Lake Superior were measured with an optical probe which has a flat response from 400 to 900 nm . The detector had an acceptance cone of 5.65×10^{-2} steradians and an area of $1 \mathrm{~cm}^{2}$. The spectral distributions of radiance were measured using a set of filters spanning the 380 to 1050 nm range. The filters had nominal band pass values of 10 nm . Measurements of the direct solar intensity were made with the probe and with an auxiliary narrow-angle NASA radiometer designed to measure the optical thickness of atmosphere.

The direct solar radiation per unit area normal to the incident solar ray is shown in Figure 1 . The time of the measurements coincided with the LANDSAT 2 overpass. The sun elevation was 57°. The measurements represent average radiation for June $24,26,27$, and 29, 1979. Curve 1 in Figure 1 is based on solar radiation values at the top of the atmosphere. The values are based on measurements by Thekaekara (1971) and are accepted as standard by NASA (Coulson 1975). Curve 2 shows the radiation at lake level.

The angular dependence of the radiation from Lake Superior was measured at several angles in the incidence plane (the plane containing the solar incidence ray and the normal to the water surface). The measurements were made looking towards the sun (forward angles), away from the sun (backscattered), and at right angles to the plane of incidence (sidescattered). Forward scatter is susceptible to glare and is not generally used in remote sensing of suspendec solids. For light emerging at angles
near the Zenith, the baciscattered and sidescattered radiances were similar when the sea conditions were calm. The radiances at the Zenith were devoid of the excessive specular reflection. However, at angles approaching 45° from the Zenith, the specular reflection of sky light overwhelmed the backscattered signal due to volume reflectance, as shown in Figure 2 . The intensity and the spectral distribution of the overhead sky light, measured at 90° to the solar incidence along a line in the rlane of incidence, are shoin in Figure 3. The overhead sky intensity provides a measure of the specular reflection by the water surface. The specular reflection must be subtracted from radiance measurements to determine the residual radiance from the particulates. Figure 4 shows the spectral distribution of radiance for calm water containing less than $0.2 \mathrm{mg} / \mathrm{h}$ of suspended solids. The ritiances are measured near the nadir unless otherwise specified. The radiance in Figure 4 is broken down into the specular component, taken as 6% of the overhead sky intensity, and the remainder of the signal which is attributed to the volume scattering from the $0.2 \mathrm{mg} / \mathrm{l}$ concentration of suspended solids. This remaining signal is assumed to be the volume reflectance by the carrying medium.

In analysis of remote sensing data for turbid water where concentrations exceed $1 \mathrm{mg} / \ell$, the scatter from the carrying medium was diminished exporntially according to the ratio of secchi transparencies. The correction term is small, so the use of secchi transparencies is justified. Although the secchi transparencies are not precisely measureable, the parameter is a convenient and commonly available measure of the transparoncy of lakes and oceans. The decrease in the scatter from the carrying medium is important because it implies that for highly turbid or highly absorbing water, the background is due mainly to atmospheric scattering
and specular reflection by the water surface. qhis provides an important check on the clarity of the atmosphere and the clarity of water in the reference area when real time ground truth data are not available. For instance, when the minimum signal in the image is high because the reference area, assumed to be clear water, actually has turbidity on the order of $1 \mathrm{mg} / \mathrm{h}$, the corresponding residual radiance from the known areas of highly absorbing tannin water will be unusually low or negative in band 4 of the Landsat data. In a known system this will serve as a test of the assumption that the minimum reflectance area coatains clear water. On the other hand, if the subtraction of the minimum radiance in the imace yields residual radiances which are high in band 4 over the normally clear open lake areas and the areas with highly absorbing water, then the excessive background for the day is due to a turbid atmosphere. The dependence of volume reflectance on angle is shown in Figure 5. The scatter is quite flat over the ang.-es encompassing the range of LTNDSAT observation angles and the acceptance angles for the probe, when measurements were made at or near nadir.

To obtain residual radiance due to turbidity, the measurements were corrected for surface and volume scattering according to Figure 4. Is previously stated, the volume reflectance from the carrying medium was reduced exponentially according to the average secchi transparencies. Figures 6, 7 and 8 show the spectral distribution of the residual radiance for red clay, taconite tailings, and tannin. These are the cominani
types of suspended solids in Lake Superior. The fine red clay particubates shown in Figure 6 originate from extensive erosion along the Wisconsin shore of Lake Superior. Banks of clay are also present near Ontoagon, Michigan. Erosion of clay is the dominant natural source of intrganic particulates in the lake. The reflected sunlight peaks at 630 nm for the red clay. Red clay concentrations from $1-15 \mathrm{mg} / \ell$ cover large sections of the lake, especially in extreme western Lake superior.

Taconite tailings give a residual reflectance peak at 560 nm . The tailings are discharged from a point source at Silver Bay, Minnesota. The discharge, in excess of 6×10^{4} tons/day, causes extensive plumes ranging in concentration from 1 to $4 \mathrm{mg} / \mathrm{l}$. Some of the fine tailings and the red clay particulates spread throughout the lake and form the main background of suspended solids in western Lake Superior. Tannin is a term applied to the brown colored river water common around Lake Superior. Tannin is highly organic ($\sim 35 \%$). It has low transparency, with secchi lengths ranging from .5-2 m in comparison with 3 - 5 m for western Lake Superior containing $\sim 1 \mathrm{mg} / \ell$ of red clay or tailings: The background clear water exceeds 10 m sech transparency. Figure 9 shows the spectral distribution of radiance from rough seas. It was obtained from the difference between radiance measured by looking into the wind (corresponding in this case to the sidescatter angles) and the backscattered radiance at right angles to the wind. The spectral distribution of the residual radiances allow us to identify particulates in the lake (Sydor, Stortz, and Swain 1978). Using
the data in Figures 5 and 6 we can estimate the reflectance for each particulate type and concontration. We can also treat mixtures of particulates, since the reflectances are reasonably linear with the concentrations as shown for red clay in Figure 6. However, to be able to use the data in conjunction with the remote sensing information from the satellites, one needs to be able to predict the radiances at the satellite altitude. Furthermore, one needs to account for the seasonal changes in solar radiation at lake level and the attenuation of the residual radiance by the atinosphere. The attenuation by atmosphere can be obtained from Figure l by taking the ratio of the solar radiation at the lake and at the top of the atmosphere. The seasonal variation of the minimum background radiance from clear water and the atmosphere is shown by curve 1 in Figure 10. This variation arises mainly from the effects of solar elevation and changes of atmospheric attenuation at various solar angles (Couison 1975). The broken line in Figure 10 approximates the effect of solar elevation and is given by

$$
R=R_{0}(\cos \beta+\alpha \sec \beta) e^{-\mu \sec \beta}
$$

where R is the radiance for clear water and clear atmosphere, β is the Zenith angle of the sun, α is the scattering coefficient for one atmosphere, and μ is the absorption coefficient for one atmosphere, which can be evaluated from Figure 1. The limits of fluctuation for background radiance are shown by curve 2 in Figure 10. The shape of curve 2 departs from the seasonal behavior during the winter. This departure can be attributed to rescattering. During the summer and fall the albedo over the lake is low. Thus correction for atmospheric rescattering of the light reflected from waters adjacent to the observation area can be
ignored. In the winter a high albedo from snow and ice packs surrounding the observed watur area accounts for a substantial increase in the sky light intensity. In the summer and fall curve 2 also corresponds to the reflectance for $.5 \mathrm{mg} / \mathrm{l}$ of stspended solids and minimum atmospheric and surface background. In a sense curve 2, for Nay - November constitutes the average background radiance for the western Lake Superior. The $.5 \mathrm{mg} / \ell$ concentration is an equilibrium concentration of particulates in extreme western Lake Superior. The open lake waters in western Lake Superior stay within the $.2-.8 \mathrm{mg} / \mathrm{l}$ limits 97% of the time. Curve 2 is the upper linit on the acceptable backgrount signal level for routine analysis of remote sensing data in the absence of the real time ground truth data. The atmospheric effects are most pronounced in band 4. For bands 5 and 6 only the best fit to minimum background values is given in Figure 10. Figure 11 shows the direct and diffuse components of solar radiation. The curves were obtained by fitting equation (1) to the minimum values of background radiation for clear atmosphere in bands 4,5 , and 6. This determined α, μ, and R_{0}. By scaling R_{0} to the value of solar radiation at the fop of the atmosphere, we obtain solar radiation at lake level. The first term gives the direct component, while the second one approximates the diffuse component. The diffuse component is not the same as the total sky light.

PROCEDURE FOR REMOTE SENSING DATA ANAIYSIS

When real time sampling data are available, the background signal can be calculated and subtracted from the image to produce residual radiances for the suspended solids. However in analysing satellite data
without ground truth, we first exomine the image to locate the open lake area with the minimum signal. If the lowest intensity on the image for the open lake areas lies within the $0.2 \mathrm{mg} / \ell-.5 \mathrm{mg} / \ell$ limits shown in Figure 10, an assumption of $.2 \mathrm{mg} / \ell$ suspended solids and clear atmospheric conditions is made. The residual radiance at satellite altitude is then obtained by subtracting from the image intensities the minimum background intensity given by curve 1 in Figure 10. The resulting data can subsequently be used to identify suspended solids to determine their concentrations according to Figures 6,7 , and 8 . However, if the minimum signal in the image is substantially above the $.2-.5 \mathrm{mg} / \ell$ limits shown in Figure 10, a determination must be made of whether the background is high because of high overall turbidity of the water or because of excessive atrospheric scattering. Visual cxamination for extensive plunes, thin clouds or haze can be made. Normally, only tapes with clear images of the lake are purchased. llowever, a test of excessive background signal levels can be made by first subtracting from the inage the minimum background according to curve 1, Figure 10 , and then examining whether the excess in the background has the spectral character attributable to the atmosphere (according to Figure 11), rough seas (Fig. re 9), or suspended solids, (according to Figures 6, 7, and 8). If the spectral dependence of the excess in background indicates that the atmosphere is turbid, the satellite data may still be usable provided the atmospheric turbidity is uniform. However, the resulting error for the estimates of concentration of suspended solids can be as high as $1 \mathrm{mg} / \mathrm{l}$, and the identification of the suspended solids at low concentrations will be hampered because of the unpredictable spectral behavior of the turbid atmosphere.

The unambig .aus identification of the suspended solids relies on identifying the spectral shape of the residual radiance, and it requires a signal at least two or three digital steps above background. This in turn requires that the horizontal concentration gradients in suspended solids be large enough to provide a change of $1 \mathrm{mg} / \ell$ for red clay and tailings and of $3 \mathrm{~g} / \mathrm{l}$ for tannin, over the entire area of the lake covered by the image. Such .radients are readily available for most images containing near shore areas and are usually satisfied in the images of Great Lakes. However, this condition dues impose some bothersome restrictions. In Lake Superior, for example, tannin concentrations in the lake must be usually compared with those in the Duluth harbor, or a comparable tannin area large enough to be well resolved in the image.

Although unambiguous identification of particulates from LANDSAT data cannot be made for concentrations lower than $1 \mathrm{mg} / \mathrm{l}$ in absence of ground truth data, estimates of suspended solids concentration can be made to within $.5 \mathrm{mg} / \mathrm{l}$ above background. Furthermore, some decisions on the identity of particulates can also be made at those concentration levels. When no ground truth is availahle, but the lowest reflectance over the lake is within the clearly acceptable background limits, the assumption of $.2 \mathrm{mg} / \ell$ concentratir" for the lowest intensity area introdaces a probable error of $\pm .3 \mathrm{mg} / \ell$ in the estimates of concentration of red clay and the tailings. The identity of the low concentration of suspended solids can also be deduced from spectral dependence based on rignitude of signals in two bands. For western Lake Superior, for instance, the background is usually red clay or tailings, so the decision on the identity of the low concentration of particulates in the lake can be made by examining the relative magnitude of the signal in bands 4 and
5. For the tanmin water, which usually has higher intensity in band G than band 4, the identity can be based on the relative signal in bands 6 and 4. Unfortunately, concentrations of tannin lower than $1 \mathrm{mg} / \mathrm{l}$ cannot be aetected in LANDSAT data. At high concentrations, various algorithms can be devised to automatically extract from the residual radiances the identity and concentrations of the suspended solids. Figures 12, 13, and 14 show application of previously published algorithms (Sydor, Stortz, and Swain 1978) to the data for June 29, 1979. The identity of suspended solids in the image agrees closely with the sampling data all along the transects of our 1979 cruise of the western Lake Superior.

COMPARISON OF CALCULATED AND MEASURED RADIANCE AT SATELIITE ALTTTUDE

To examine how well the results in the previous sections can be used to analyse remote sensing data, we calculate the radiances at the satellite altitude and compare them with th satellite data for specific sampling sites on Lake Superior. The sampling points are shown in Figure 15. These points correspond to some of the stations for our 1979 experimental cruise of Lake Superior using research vessel Crockett.

The predicted radiance values shown in Table 1 are close to the observed satellite values. The corrections for atmospheric attenuation were taken into consideration according to Figure I. The satellite data were obtained from the Canada Centre for Remote Sensing. The Canadian data for LANDSAT 2 provides a signal resolution level of $1 / 255$.

Some results discussed in previous sections are evident from Figure 15 and Table 1. Notice, for instance, that the signal level in band 4 for the Duluth harbor tamnin water is lower than the signal in the open

Station		Minimum Background at Satellite	Residual Radiance		Expected Radiance at Satellite	Landsat 2 Radiances
			at Ground	at Satellite		
Western Lake Superior	Landsat Bands	$4 \quad 5 \quad 6$	$4 \quad 5 \quad 6$	456	$4 \quad 56$	45 ¢
	Clean Water	. 25.11 .07		. 06.04 . 01		. 32.15 .08
A	$\begin{aligned} & \text { Tailings } \\ & 1.8 \mathrm{mg} / \ell \end{aligned}$. 26.11 .07	. 124.089 .026	. 11.08 .021	. 37.19 .09	. 37.08 .09
B	$\begin{gathered} \text { Red Clay } \\ 8 \mathrm{mg} / \ell \end{gathered}$. 26.11 .07	. 196 . 21.07	. 175 . 19.06	. 44.30 .13	. 45.29 .13
c	Tannin $3 \mathrm{mg} / \ell$. 26.11 . 07	. 093.096 .045	. 083.086 .036	. 34 . 20.11	. 35.21 .11

[^5] Table 1.

Iake areas. This indicates excessive background. Thus in absence of real time ground truth data, a check on the lowest background signal could have been made to ascertain the clarity of the atmosphere or the clarity of the open lake water. In this case it would have shown that the overall turbidity of the lake was high. The spectral character of the residual signal for low intensity open lake areas indicates, according to Table 1 , approximately a $1 \mathrm{mg} / \ell$ background of tailings. Actualiy the open lake was more turbid than normal, having a background suspended solids of level of $.7 \mathrm{mg} / 2$ of tailings. Thus it is realistic to assume that for background conditions falling within the accepted values shown in Figure 10, an estimate of the suspended solids could be made to within $\pm .5 \mathrm{mg} / \ell$ in absence of the ground truth data. Nimbus G data promise to provide an even better sensitivity for Lake Superior work. However, the angular dependence for the volume and surface scattering may be more difficult to handle in the Ifimbus G data. In anticipation of Nimbus G data, it is interesting to compare the spectral shape for the difference in volume reflectances observed at a 40° Zenith angle, for $8 \mathrm{mg} / \ell$ and $14 \mathrm{mg} / \ell$ rea clay concentrations. Jhis difference is shown in Figure 16. We notice that measurements a.t zenith for the $5.6 \mathrm{mg} / \boldsymbol{i}$ concentration yield a similar spectral response. We might thus expect that for Zenith angles smaller than 10° (Figure 2), we might still be able to use remote sensing data from the Nimbus Coastal Zone Scanner to identify the particulates in plumes; without resorting to elaborate models for angular scattering by small particulates.

FIGURE CAPTIONS

Figure 1. Direct solar radiation at lake level. The experimental values represent 4 day averages. Measurements were made in $.01 \mu \mathrm{~m}$ bands spaced at $05-.08 \mu \mathrm{~m}$ intervals. Curve 1 shows the reference radiation at the top of the atmosphere, which is based on standard N.A.S.A. values derived from measurements by Thekaekara (1971).

Figure 2. Angular distribution of 0.4-0.9 $\mu \mathrm{m}$ light backscattered and specularly reflected from clear lake water (. $2-.5 \mathrm{mg} / \ell$ suspended solids). Measurements were made in the plane of incidence with the instrument pointing away from the sun. Specular reflection of sky light becomes dominant at Zenith angles exceeding 40°.

Figure 3. Diffuse overhead solar radiation measured in the plane of incidence, along a line perpendicular to the incident sun ray. The sun was at 23° Zenith angle.

Figure 4. Curve 1 shows the spectral distribution at nadir of the radiance from clearest lake water (less than $.2 \mathrm{mg} / \mathrm{l}$ suspended solids). Curve 2 shows the fraction of this radiance attributable to specular reflection of the overhead sky light by the calm water surface.

Figure 5. Labosatory determination of the angular distribution of . $646 \mu \mathrm{~m}$ light scattered by fine red clay particulates and fine mining waste particulates. These particulates are the prevalent constituent of suspended solids in western Lake Superior.

Figure 6. Spectral distribution at nadir of light reflected from red clay turbidity in Lake Superior. The residual radiance from particulates is linear for concentrations of suspended solids lower than $10 \mathrm{mg} / \mathrm{l}$.

Figure 7. Spectral distribution at nadir of light reflected from mining tailings. Tailings often upwell from a broad deposit of discharge slurry at the bottom of the lake.

Figure 8. Spectral distribution at nadir of light reflected from highly organic, opaque river water commonly referred to as tannin. The above turbidity contained $.5 \mathrm{mg} / \mathrm{l}$ of red clay particulates.

Figure 9. Spectral distrikution at nadir of light scattered from rough seas (white caps). The reflectivity has a flat spectral dependence. Rough seas can be easily identified in remote sensing data because of their high reflectance at long wavelengths (.8-1.1 $\mu \mathrm{m}$) and unstructured geometric patterns.

Figure 10. Seasonal behavior of the background radiance due to light scattered by the atmosphere, the water surface, and the low concentration of particulates in clear water ($.2 \mathrm{mg} / \ell$ suspended solids). The volume scatter by the clear water is taken as the intrinsic scatter by the carrying medium. Curve 1 represents LANDSAT derived measurements of radiance in band 4 (.5-. $6 \mu \mathrm{~m}$) for the clearest atmospheric conditions. Curve 2 corresponds to the maximum value of acceptable radiance from clear water and uniform atmosphere - defining the clear viewing conditions when straightforward analysis for suspended solids may be made in absence of real time ground truth data. The broken line in band 4 corresponds to the seasonal dependence of radiance as a function of sun elevation. The curves for band $5(.6-.7 \mu \mathrm{~m})$ and band $6(.7-.8 \mu \mathrm{~m})$ show average radiance for clear viewing conditions. The minimum cutoff radiance in bands 5 and 6 for LANDSAT 2 and 3 is indicated by the dotted lines.

Figure 11. Curves 1, 2, and 3 show the calculated values of direct solar radiation at lake level for bands 4,5 , and 6 respectively. Curves A, B, and C give the respective total solar radiations in bands 4, 5, and 6, including the diffuse component from the overhead sky. The experimental points represent measurements of the direct solar radiation plus the fraction of forward scattered sunlight included within the acceptance angle of the instrument.

Figure 12. Distribution of red clay particulate (in excess of $.5 \mathrm{~m} / \mathrm{g} / \mathrm{l}$) in western Lake Superior. The identifications for suspended solids are based on the relative magnitudes of the residual LANDSAT intensity readings in bands 4, 5, and 6 and the ratios of the residual intensities.

Figure 13. Distribution of mining waste tailings in the $1-1.5 \mathrm{mg} / \ell$ range.

Figure 14. Distribution of output from the 5 . Louis River (lower left corner) into western Lake Superior. The output from smaller rivers in Wisconsin can also be seen along lower shoreline.

Figure 15. Band 4, LANDSAT 2 digital output averaged over 90 pixels. Note the low readings in the lower left coiner of the image showing the St. Louis River estuary and the Duluth harbor. The overall turbidity in the lake is higher than average, thus opaque river water shows lower apparent background than the open lake areas.

Figure 1

Figure 3

;yy

Figure 5

Fiture 6

Solar radiation on a horizontal surface

Figure 13

Figure 15

[^0]: $l_{\text {The Mimessota Department of Natural Resources, the U.s. Army Corps of }}$ Engineers, the U.S. Fish and Wildijfe Scrvice, the USDA soil Conservation Service, and the Twin Cities Ietropolitan Council. (Werth et al., 1977; Owens and Meyer, 1978).

[^1]: ${ }^{2}$ Hhe University of Minnesota Agricultural Experiment Station and the College of forestry.

[^2]: These results are the percentage of all of the outcrops occuring within the indicated
 distance to the assigned number of nearby lineaments．（For maps of lineaments see Goebel，and others，1978）

[^3]: These results are the percentage of all of the outcrops occuring within the indicated
 distance to the assigned number of nearby lineaments. (For maps of lineaments see Goebel, and others, 1978)

[^4]: ${ }^{1}$ Reflectance is use for "reflected energy intensity". The differential normalized reflected energy (DNRE) is defined as

 DNFE $=\frac{\text { E.I. of stressed le }}{\text { E.I. of standard }}-\frac{\text { E.I. of turgid leaf }}{\text { E.I. of standard }}$
 where
 E.I. = Energy Intensity of the reflected light. The standard is magnesium oxide at 600 nm .
 ${ }^{2}$ Water potential is the energy status of the contained water in leaves (or other plant parts) expressed in units of pressure (bars).

[^5]: Radiances in $\mathrm{mm} /\left(\mathrm{cm}^{2} \mathrm{SR}\right)$
 Overall background turbidity in western Lake Superior shows spectral character most like tailings having concentration $1 \mathrm{mg} / \mathrm{l}$ - actual value $.8 \mathrm{mg} / \mathrm{l}$. Tailings at station A $1 \mathrm{mg} / \mathrm{l}$ above background - just on the verge of positive identification from Landsat data.

