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ABSTRACT

The Magnetic Field Satellite (Magsat) was launched on Oct. 30, 1979 into a nearly polar, sun-

synchronous orbit, carrying a scalar magnetometer and a vector magnetometer. The satellite re-

entered the earth's atmosphere on Juice 1 I, 1980, having measured and transmitted more than that:

complete sets of giobal magnedc field data. The data obtained from the mission will be used pri-

marily to compute a currently accurate model of the earth's main magnetic field, to update and

ret'me world and regional magnetic charts, and to develop a global scalar and vector crustal m_,.qnetic

anomaly map.

This report describes the in-flight calibration procedure used for 39 vector magnetometer sys-

tent parameters and gives results obtained from some data sets and the numerical studies designed

to evaluate the results.
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MAGSAT VECTOR MAGNETOMETER CALIBRATION USING
MAGSAT GEOMAGNETIC FIELD MEASUREMENTS

INTRODUCTION

The Magnetic Field Satellite (Magsat) was launched from the Western Test Range at Vanden=

berg Air Force Base in California into a hearty polar, sun=synchrono_ orbit on October 30, 1979.

The orbit initially had a perigee of 352 km (219 miles) and an apogee of 578 km (359 miles). The

satellite reentered the earth's atmosphere on June ! 1, ! 980, having measured and transmitted more

than three complete sets of global magnetic field data.

Magsat carried a scalar magnetometer and a vector magnetometer. The scalar magnetometer

was an optically pumped, atomic resonance, dual-cell, self-oscillating cesium vapor magnetometer.

capable of measuring the magnitude of the earth's magnetic field with a resolution of about ±0.6

gamma ( 1 gamma ,, 1 nanoTesla). The vector magnetometer consisted of three fluxpte sensing ele-

ments aligned along nearly ortholgonal axes, capable of measuring each component of the earth's

magnetic field widt a resolution of ±0.S gamma.

The data obtained from the mission will be used primarily to compute a currently accurate

model of the earth's main magnetic field, to update and ref'me world and regional magnetic charts,

and to develop a global scalar and vector crustal magnetic anomaly map. Details concerning the

mission and its objectives have been given by l.angel, Reagan, and Murphy (1).

Prior to the launch ot Magsat, the values ot tt,/r_'-nine parameters a___ociated with the vector

magnetometer were determined in the laboratory at Goddard Space Flight Center. It could not be

assumed, however, that these values would remain unchanged after launch and under space condi-

tions. Because of this a statistical procedure was developed for estimating the system parameters

from the data taken by the scalar and vector magnetometers in space. A computer program was

written and the procedure was tested on measurements made by the magnetometers in the magnetic

test facility at Goddard Space Flight Center. The procedure has been and is continuing to be app)i "d

to the real magnetic field data transmitted from Magsat.



Thisreportdescribesthein-flightvectormagnetometercalibration procedure and gives results

obte-;_ed from some data sets and the numerical studies designed to evaluate the results. A FOR-

TRAN listing of the calibration program can be obtained upon request.

THE MAGSAT VECTOR MAGNETOMETER

The triaxial fluxgate magnetometer flown aboard the Magsat spacecraft was capable of measur-

ing the earth's magnetic field vector components with a resolution of -*0.5 gamma. It was developed

at NASA's Goddard Space Fright Center by M, I-LAcuna and co-workers (2). A bas/c triaxial flux-

gate magnetometer with ".-bit analog-to-digital converter had a dynamic range of ± 2000 gammas.

This range was increased to _:64,000 gammas in steps of approx;anately ± 1000 gammas by using three

7-bit dillitabto-analoll converters as field offset generators, one for each sensor axis. Ground com-

mand could select either of two redundant confqIurations (A or B) for the magnetometer electronics;

an additional gro,.md command could select one of two configurations for analog-to-digital converter,

field offset generators, digital interface, and power converter. A feedback coil hulled the ambient

field independently along each sensor axis. The reader _ referred to a rel:",rt by Acuna et al (2) for

details of the design of the Massat vectoz magnetometer.

The magnetic field values (Yl, Y2, Y3) associated with the three sensor axes are computed from

the equations

6

yj = UjTWj7 - _ UjkWjk +wj8 (64- Kj)3 ÷wj9 (64 - Kj)5 * aj (fj - bj);j = 1.2. 3 (1)

k-I

fj = (integer given by A/D converter) minus (zero level value)

= fine measurement (-2048 • fj • 2047) (zero level value = 2048)

= integer from 7-bit D/A converter

= coarse measurement (0 • Kj • 127)

bj = bias in fj

= scale factor



Wik=valueassociatedwithk_ seepof offsetgenerator

lO00X2k"l;k - I to7

Ujk = 0 or !

uj7 = 0 if the most significant bit of Kj is 1

uj7 = ! if the most significant bit of K_ is 0

Ujk = the kth bit of Kj, Ujo being the least significant.

For a detailed explanation of equation (1), the reader is referred to Acuna (3). Nominal values were

determined for the 33 parameters Wjk, aj, bj (j = 1, 2, 3; k = 1, 2 ..... 9) by various calibration pro-

cedures prior to la,,nch (2, 3). The values for the A-configuration are given in Table I. The cubic

and quintic terms take into account small nonlinearities in the vector magnetometer response

function.

An orthosonal reference frame was defined in the sensor assembly such that the angle between

a mastic sensor axis and the corresponding axis in the orthogonal frame was not more than i min-

ute of arc. let (x I , x2, x3) be the components of the magnetic field vector in the orthogonal frame

and a_ti the cosine of the angle between the ith sensor axis and the jth axis of the orthogonai system

at the common origin of the two systems. The vector component_ (x I , x 2. x 3) in the orthogonal

system and the mag_ti¢ field values (Yl, Y2, Y3 ) computed from (1) for the non-orthogonal axes

of the sensors are related by the equations

Yl =O'llXl ÷Slal2X2 +a13x3

Y2 = s20_21 x I ÷ ¢_22x2 + a23x3

Y3 =a31xl ÷s3a32x2 +a33x3

S1 = sin v l/v l

s2 = sin v2/v 2

S3 = sin v3/v 3

v I = al2x2/r 1

(2)

(3)

(4)

_5)

(6)

(7)

(8)



v2 = a,21xI/r2

v3 = a,32x2/r3

rI =hll +_2h12Xl +h13exp(82h14x I)

r2= h21 + 81h22x2 + h23 exp (8!h24x2)

r3 = h31 + 82h32x 3 +h33 exP(82h34x 3)

61 = i ifx I > 0

m0ifx I n0

=-1 if x! < 0

52 = I if x2 > 0

= 0 if x,, = 0

a-1 if x2 <: 0

(9)

(I0)

(II)

(12)

(13)

(14)

(15)

(16)

(17)

{18)

Nominal values were determined in the laboratory at GSFC prior to launch for the 6 parameters ¢tjk

(j @ k) and for the 12 parameters hjk. ]'he values for the A-configuration are given in Table I. For

further details see Acuna (2,3).

The Sl, s2, and s3 factors in equations (2), (3), and (4) 3rid equations (5) through { 15) by which

they are computed are designed to model nonlinearities in the vector magnetometer.

PARAMETER ESTIMATION PROCEDURE

The parameters to be estimated are Wjk (j = 1, 2, 3: k = 1, 2 ..... 9), aj, bj (j = 1, 2.3), a12,

a13, o,21, ¢1.23, cz31, a32, and xij (i = |, 2 ..... n:j = 1, 2.3) where n = the number of vector-scalar

sets of measurements used in the estimation. If (Xil, Xi2, Xi3) are the true vector components at

time _'i' then the corresponding true magnitude is given by

4



fi4= (X_l4-xt2 + x[-3)V'.. {19)

If(fil'fi2'fi3'f'.¢)isa truesetof valuesattime ri,we let(fil'-fi2'fi3"fi4)be the correspondingset

of fieldmeasurements attime ri. If(Yil'Yi2'Yi3)are the truevaluesof the magnetic fieldalong the

sensoraxes attime *'i,then from equation (I)we have

6

fij = [Yij - Uij7wj7 4- _ UijkWjk - wij8 (64 - Kii) 3
k,'l

-wi,9 (64 - Kii)$]/aj4-bj;i= I ton;j = I,2,3; (20)

where the yki'sare computed from equations(2) through(18). We abbreviateequations [(20),(2)

throuslt(18)] by

and equation (19) by

fij "_(xi, p);j I 1, 2,3: (21)

fi4 = g4(xi ), (22)

where gj (j - 1, 2, 3, 4) are function symbols, x i -" (Xil, xi2, xi3)' , uting' as a symbol for matrix

transpose, and p is a column vector with elements Wjk (j I i, 2,3;k ffi 1 to 9), al, a2, a3, bl, b2, b3,

a12, a13, o.21, a-23, a31, a.32 in the order given. We further abbreviate for i = 1 to n

fi" (fit, % fi3, (,_3)

_i = (fil" fi2, fi3, fi4 )'' (24)

fi -- (fil, fi2, fi3, fi4 )', (25)

A ^ fi ^ ^ •fi = (fil' 2' fi3, fi4 ) ' (26)

_ij --"gj(_i, P),J = 1, 2, 3. (27)

_i4 -- g4(_i ), (28)

fij = gj('Xi' P)' J -- 1, 2, 3, (29)

#. ^

fi4 = g4(xi ), (30)



where xi and _ are guesses and _i and _ are estimates for the true values of the parameters x i and p.

By an estimate of a parameter we mean a value obtained with a statistical estimation procedure.

We assume that all sets of vector-scalar measurements _: have the same error distribution with

0 means, 0 correlations, and standard deviations (o 1 , e 2, 03, o, ), and that the a priori values of Pk

(k = 1 to 39) are samples of size l with error distributions whose means are all 0 and whose standard

deviations are cok (k = 1 to 39).

Suppose the true value associated with the ith measurement is *i' that _ai is given as a function

of the complete set of true parameters 0 ="(81 , #2 .... 8m ) by _i = gi(0)' and that errors in measure-

ments of _ai have mean 0 and standard deviation o i. Then the "weighted sensitivity matrix" 1_ is de-

fined as the matrix whose element in the ith row and jth column is (a Oi/aOj)lo i. Since we will have

only a guess for O, _i = gi(_') and I" is approximated by r. We see that 1_ for our estimation will ,have

4n rows and 3n + 39 columns.

Since many of the partial derivatives for our calibration problem are O, it will be convenient to

partition I'.

r= Is sl, (31)

"Rt O ... O"_

R= O 1_... O

0 0 ... !_n
m

SI_

I

S z S_ I ,

Ls.
and O is a 4 x 3 matrix all of whose elements are 0. R: = [riikl (i -- 1 to n) are 4 x 3 matrices with

rijk (j = 1 to 4, k _" I to 3) as the element in the jth row and kth column with

(32)

rijk = (afij/aXik)/oj.

The O'sare zero submatricesof R because afij/aXhk--0 unlessi= h. Si= [sijk ] (i= I to n)are4x 39

matriceswith sijk (j= I to4,k = I to 39) asthe element inthejth row and kth column with

sijk = (i)fij/i_pk)/a j. t33)

Note that all the elements in the 4th row are 0 for i -= 1 to n.



Let z be a column vector of the true values of the estimated parameters and f_ a diagonal matrix

whose diagonal elements are the variances for the elements of _, the a priori approximation of z. We

defiile

n q D ,-i

dl I ail l

d: ! di2!
d = ".. , d i = di3

dnj di4

Thus d is the weighted vector of ,esiduals. Also

' dtJ = (_ii - fij)/°j (34)

The weighted least squares estimate of z is

2"_ +K -l IF" _+_-I (z'-_-)l,

(35)

K "='_' 'r ÷ [2 °I . (37)

For the Magsat calibration problem, we assume infinite standard deviations for a priori values

of xij. This means the fhst 3n diagonal elements of fl "l are 0 and the remaining 39 are !/COk2

(k " 1 te 39). Thus 12-l ([ - i') is a column vector whose first 3n elements are 0 with the remaining

elements given by

_k = (Pk - Pk)l(ak: k = I to 39. (38)

We note that

tk = (Pk - Pk)/c°2

and def'me a column vector t with 39 elements whose kth element is given by (39). We also define a

39 x 39 diagonal matrix J with kth diagonal element equal to 1/_[¢. Thus

o 1IO,
f1-1 = , (40)

io_
m

where O 1and 02 are 3n X 3n and 3n x 39 zero matrices. For our calibration problem we also have

(36)



x !

Xl

X z o

Xn

• Xi =

xil I

xi: I

xi3l

xi4 I
m

_41)

K can be written in partitioned form as

K= {RSI +
I0

R R' S , _ I_

R S'S+ [ ir ("
.. ,.I

(42)

where A = R' R, B = R' S, and C = S' S + J. Note that A, C, and K are symmetric. We also have

Az

"At O

o A:

6 6

o..

oo.

m

O

O
, B= B2 (43)

Ai=R_R i, Bi=R;s i (i=Iton) (44)

n

c= s; *J
i= 1

(45)

A i is 3 x v, Biis3 x 39, Cis 39 x 39, Ais3n x 3n, BIS 3n x 39, K is (3n +39)x (3n +39).

Since n is typically several thousand, a direct inversion of K is impractical. The inversion problem

is manageable, however, if we take advantage of the structure of A in a partitioned forrr of the

inverse.

We can now write the bracketed part of equation (36) in the form

_'_ + fZ-I (___)= (46)



with the definitions

= P,' d, (47)

v = s' _ * _. (48)

where/3 is a column vector with 3n components, 7 is a column vector with 39 components, and t is

defined by equation (39).

Equation (36) becomes

E;I-[;]-E:.I:l (49_

and we recall that A' = A and C' = C.

If we express the inverse in "he form

I A *1 )
s

IB' C E'
(50)

and recall the weB-known formulas for the inverse of a partitioned matrix, we have

H=-A -t B, (51)

G= (C + B' 14)-1 , (52)

E= PG. (53)

D=A -1 _" EH'. (54)

Partitioning H, E, and D as

S_

m

H,
A

H2

.

Hn
m

E 1

, E =i E2

!:

 Eo.

, D=

D11

D21

Dnl
n

Di2

D22

Dn2

•.. Dln

... D2n
(55)

9



DIj = Djt, i = 1 to n,j = 1 to n, and using (43) we have

H i=-A_ "1 Bi; := I ton. (56t

G= (C+ _: BI Hi)-l.

i-I

157)

Ei=HiG; i=l ton. _581

#

Dii=A_ "I +EiHi; i=l ton, (59)

t •

Dij=EiHi: i=_ ton-l:j=i+l ton. (50",

Equation (49) can be written as two equations

R=_ +D_+E% (61)

_=_+E'J+G_,. (62)

From equation (47) we obtain

(63)

We can now write (61) and (62) in the forms

xi--xi+Ei ?+ _ Dij_J'

j-I

i= 1 ton (64)

il

imI

(65)

We note that E i is 3 x 39, Dii is 3 x 3, G is 39 x 39, G' : G, and recall that D;j : Dij t'or all i's

arid j's.

10



The covariance matrices associated with the estimates _ci (i = I to n) and _ are given by

cov(_i,_j)= Dij, (66)

cov(_cp_)= Ei, (67)

cov(_, _) = G. (68)

Correlation matrices can be obtained from the covariance matrices.

RESULTS OF A CALIBRATION

The calib_tion results given below were obtained by exercising the computer program on a

small subset of the data recorded on Nov. 5, 1979. The number of vector-scalar sets used in the calf

bration was ! 247, approximately equally -.4_aced in _ne. Table 1 gives the ground-based calibration

values for the system parameters along with the stardard deviations used to compute the weight_ for

these a priori values in the least-squares alSoritlun. Except for the a.0 parameters, these standard devi-

ations are larger than the realistic ones for tbe ground-based calibrations. This allows for the fact that

the u'ae values of the panuneters may be significantly different after launch than before launch. The

standard deviations for the a Imoti values of a12, a13,a21, a.23, a.jl, a_2 are held at the ground-based

calibration values because of strong correlations between the errors in the least squares solutions for

these parameters. Table 1 also shows the differences between the Iround-based calibration values

and the values estimated from the Nov. 5th ('79) datL The f'mal colum of Table 1 gives the standard

deviatiovs of the estimated parameters. The three parameters w2s, w26, and w27 enter the least

squares procedure only as the linear cor-bination w27 - w26 - w25, due to the fact that the magnetic

field components along the second ._,msor axis had maximum and minimum values of 10228.5 and

-15246.1. To obtain a solution, w25 and w26 were held fixed by giving them very small a priori

standard deviations.

Table 2 gives 5 examples from the 1247 sets of vector-scalar measurements used in the least-

squares calibration for Nov. 5, 1979. K i and _i (i = 1, 2, 3) are the coarse and fine values recorded

for the three magnetic field components and _4 is the field magnitude measurement. The Ki's are

error-free and are not considered as measurements in the least-squares estimation.procedure.

11



Table I

Parameter

Wll
w12
w13

w14

wl$
w16

w17

wig
w19

w21

w22

w23
w24

w2_
w2s
w27
w28

w29

w$1

w32
w33
w34

W3s
w36
w37
w3s
w39
bt

b2

b3

al
a2
a3
/t'! 2

/£t13

/.-a21
:-a,23
/.._t31

La32

Pre-iaunch

Value

999.7

1998.7
3996.7

7993.3

15986. I
31973.8

63.047.5

.963 E-5
-.603 E-9

1004.3

200_,7

4016.8
8037.6

16069.6

32143.9
64287.9

.436 E4
-.649 E-9

997.3

1995.1
3989.8

7979.6

15958.5

31918.2
63844.2

-..f08 E-5
.167 E-8

4.0

13.0

12.0
.98248

.99226

.98322

-228.5

168.0
-612.3

443.3

483.1
589.9

Standard

Deviation

20

20

20

20

20

20

20

.32 E-5

.32 E-9

20

20

20

20

I E-12

I E-12

20

.32 E4

.32 E-9

2O
2O

2O

2O

2O
2O

2O

.32 E-6

.32 E-9

2O
20

20

1 E4
1 E4

1 E4

6.5
2.1

6.5
2.1

2.1

6.5

Estimated

Correction

-0.5

-0.3

-0.4
-1.1

-1.9

-4.5
-10.2

-0.4 E-6
-0.5 E-I i

0.7

-0.3

-0.5

-2.9
0.0

0.0

0.1

-0.7 E-5

-0.3 E-12
0.5

1.0

1.9
3.0

4.8

8.8

18.5
0.6 E-5

0.3 E-9

6.8
4.6

O.l

0.4 E-4

-2.1 E-4
-1.7 E-4

-16.8

1.0

8.0
2.7

1.O

28.0

Standard

Deviation

.05

.05

.06

.08

.14

.29

.25

.31 E-5

.32 Eo9

.16

.17

.25

.34

I E-12

I E-12

.46

.31 E-4

.32 E-9

.03

.03

.04

.05

.09

.14

.12
.31 E-6

.26 E-9

.24

.48

.19
.5 E4

.9 E4
.4 E-4

4.2

1.5
4.7

2.0

1.5

2.1

12



Table I

(unestimated parameters)

hll

h12

h13

h14

h21

h22

h23

h24

h31

_32

h33

h_

-35.28

1.46 E-,t

-3.78172

-,4.61641E-5

-I16.45

3.35 E-4

-I0.832

-3.33 E-5

-127.1

3.2 E4

-13.3367

-2.9167 E-5

the complement in arc seconds of

the angle associated with the direc-

tion cosine aij

Table 2

x, _ x2 _2 x3 h _,

55

32

74

45

54

-900

-376

855

754

136

62

59

49

61

I 73

-655

-417

812

613

-1012

14

65

99

71

106

- 563

522

-462

719

968

51453.9

3274.0.9

38780.4

19981.9

44726.4

13



In the remainder of this section w- will present some computer results obtained for these 5

vector4calar sets as well as tot all 1247 sets.

Table 3 gives the distribution of the absolute values of 64-K t for the i 247 data set..

Table 3

Number 64-K i 64-K 2 64-K 3
,m.

=0

=I

> I&,3

>3&<7

>7&,_15

>15&<31

>31 &<63

21

40

68

132

367

6O3

16

46

177

287

437

3O0

0

0

11

14

22

65

131

339

665

The values ty I , Y2' Y3 ) of the magnetic field along the three sensor axes are obtained by sub-

stitutin$ the pre4aun_ values of 33 parameters and the data in Table 2 into equation (1). The re-

sults are I=ven in the first 3 columns of Table 4. The fourth column of Table 4 gives _4 - f¢, where

fc is the approximate vector magnitude computed from the components Yl, Y2' Y3, using a non-

Pythqorean formula.

Table 4

Yl Y2 Y3 _4-fc

-9881.2

-32347.4

10828.3

- i 8247.6

-9862.3

- 2671.5

-5447.8

- 14274.7

-2417.6

8027.5

-50437.0

1507.1

34452.8

7685.7

42840.6

15.1

1.5

2.5

4.0

10.0

14



WhenthevaluesofYl, Y2'andY3fromTable4andthe pre-taunch values of a12, a13, o.2.1, a23,

a.31, and a32 are substituted into equations (2) through (18), the vector components ('_1" x2' x3) in

the orthogonal system can be computed. They are given in the first three columns of Table 5. The

fourth column of Table 5 gives _4 -9, where f is the vector magnitude computed from the compo-

nents x I , x2, x3, using the Pythagorean formula (19). Differences between the fourth columns of

Table 4 and Table 5 are due to the fact that s I , s2, _nd s3 differ slig_ tiy from 1.

i •

-9843.0

-32354.8

10784.8

-1,_256.7

-9888.6
| •

22

-2592.!

-5537.8

-14316.9

-2486.7

79062

Table 5

!
t
t -5042].7

1567.1

34387.2

7721.4

42886.6

15.1

3.1

2.0

4.2

10.I

The values of_ 1 , 32, and x3 in Table 5 are used as f'h'st guesses in the least squares estimation

procedure.

Table 6 gfres the values of]l - Xl' x2 "x2, and 33 - x3 in the fast three columns, where

(xl, x2, x3 ) are .-stimated values and (Xl' 32, 33) are the initial guesses in Table 5. Column 4 of

Table 6 gives the values of _4 - _4, where _4 was computed from _1, x2' x3 ) using the Pythagorean

equation. We note _,_ _he estimated field vectors have magnitudes much closer to the measured

magnitudes than the guesses (Xl' 3?, _3) computed from the vector field measurements (fil' fi2, fi3)

and the a priori parameter value. The means and root-mean-squares of the 1247 values of _ I - _ 1"

x2 - x2' x3 - x3' and _,t - f4 are given ;n Table 7.

Let (Xl' x2, x3 ) be the values computed by substituting the estimated 39 parameters in equa-

" "2 ""- l/z
tion (1) through (18) and solving for (x t, x2, x3 ), and let f,t = (x_ + x2 + x_ } . Table 8 shows _he

differences between these estimates for (x I , x2, x 3, f4) and the lea_ squares estimates (_1' _2" _3"
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Ta_e 6

5.1

2.0

8.9

3.7

5.6

5.1

5.6

0.6

5.6

4.1

14.6

2.5

-5.9

-0.7

-11.0

-0.5

0.3

-I.0

-0.2

-1.0

Table 7

MEAN

P.MS

7.0

3.0 1.8

1.7

9.8

-0.001

0.52

Table 8

^ "" v _ ^

x t -x: "2 -_2

0.1

-0.2

-0.2

0.1

0.I

0.0

-0.I

0.3

0.0

-0.I

0.4 -0.4

0.0 0.2

-0.6 -0.7

0.0 -0.1

-0.7 -0.7

The 1247 values of f4 - f4 have a mean of -.002 and an RMS of .90, which compare very well

with the values of -.001 and .52 in Table 7 for _4 "f4" Thus least squares estimation is not needed

for every day's data ifa loss of about 0.5 gamma in accuracy can be accepted. We must consider

tl-,at on the GSFC 360/91, full estimation for 1247 data sets required 8 minutes, while computation

of (x 1, x2, x3 ) from equations ( 1) through (I 8) required 0.4 of a minute, a ratio of 20 to I.

The t-list tl,.tte columm of Table 9 give the residuals fj - fj (j = 1, 2, 3'. where the _'s are the
A

fine measurements given in Table 2 and the fj are obtained by substituting the estimated parameters

in equation (20) and computing (Yl, Y2, Y3) for (20) by substituting (_1, x2' _3), _12, _13, _'_t,

16



_3' a31' and a32 in equations (2) through _18). The fourth column of Table 9 repeats the fourth

column of Table 6. The i 247 valuesetsof the numbersgiven for a sampleof 5 in 1 _ : 9 have

meansand RMS's givenin Table 10. Table I 0 is an indication of the goodness-of-fit of the solution

to the measurements.

Table 9

-0.I

0.2

0.2

-0.I

-0.2

-0.0

0.0

-0.3

0.0

0.1

- i 3

-0.4

0.0

0.6

0.0

0.7

-0.5

0.3

-1.0

°0.2

-I.0

Table 10

-.0009 .0002

0.06 3__2

i

-.001

0.52

FURTHER CALIBRATION RESULTS

Knowing that under space conditions the ca/ibratioc parameters determined pre-launch wou/d

vary, it was necessary to determine criteria for a first in-flight calibration, to be used as a control, to

see any trends and shifts in subsequent calibrations typifying changes in the instrument. November 5th

data was chosen for the control calibration under the criteria taat (1) the instrument should have had

time to shift mechanically, due to stresses in a space vacuum system, into some "permanent" position

after three days in orbit, and (2) data were taken continuously throughout the day. pro0ucing a giob-

ally distributed data set for sampling.

The November 5th calibration (see Table 113 shows changes from pre-launch calibration (espe-

cially in the z-axis), which illustrate the changes in the instrument. Calibrations were then made at

four day intervals beginning November 2. 1979 and ending January 21, 1980 (excluding January 1,

17



Table 11

Pre-Launch November 5th Estimated Standard
Parameter Value Value Correction Deviation

w!!

w12
w13

w14

w15
w16
w17

w18

w19

w21

w22
w23

w24
w25

w26

w2_
w28

w29
w31
1,32
w33
w34

w35

w36
w37

w38
w39
bl

b2

b3

al

a2
a3
/ctl2

/tXl3

/-a2.1
/-a23

La31

/..a32

999.7
1998.7

3996.7

7993.3

15986.1
31973.8

63947.5
.963 E-5

-.603 E-9

999.6

1998.3
3997.0

7993.2
15985.9

31973.4
63940.0

.882 E-5
-.611 E-9

-0.1

0.4
0.3

-0.1
-0.2

-0.4
-7.4

-.803 E-6

-.829 E-I I

1004.3
2008.7

4016.8

8037.6

16069.6
32143.9

64287.9

.436 E-4
-.649 E-9

997.3

1995.1
3989.8

7979.6

15958.5

31918.2

63844.2
-.508 E-5

.167 E-8

4.0

13.0
12.0

.98248

.99226

.98322
-228.5

168.0

-612.3
443.3

483.1
589.9

1005.3

2009.0
4017.4

8036.7

16068.8
32143.2

64288.7
.436 E4

-.649 E-9

997.7

1996.0

3991.6

7982.7
15963.1

31926.7

63862.6

-.217 E-5
.173 E-8

7.8

13.9

12.7
.98248

.99226

.98322
-228.3

168.0
-612.2

443.3

483.1
595.6

1.1
0.4

0.5
-0.9

-0.8

-0.8
0.8

-.910 E-8

-.247 E-13

0.4
1.0

1.8

3.0

4.6
8.5

18.4

0.291 E-5

0.628 E-IO

3.8
0.9

0.7

0.0
0.0

0.0
-0.2

0.01
-0.1

0.01

0.01

5.7

0.14

0.14
0.15

0.16
0.24

0.43

0.39
.98 E-6

.10 E-9

0.42
0.41

0.43
0.43

0.88

0.88

0.88
.I0 E-5

.10 E-9

0.10

0.10

0.11
0.12

0.16

0.22

0.24
.96 E-6

.10 E-9

0.35

0.44

0.31

.50 E-5

.50 E-5

.50 E-5

0.99

0.033

1.0

0.033
0.033

0.95
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1980, at this writing). The first 29 plots followin_ this discussion show graphically the changes from

the November 5th calibrationforthoseparameterswhich changed more thanO.Igamma (orO.I arc-

seconds,accordingtowhich parameterisbeingconsidered).A key tothesymbols usedintheplots

can be locatedon thepagebeforetheplots.Two setsofparameters,w16 -WlT, and w25 -w26 -w27

arcplottedtogethersincecorrelationsbetween theseparametersareso largethattheparametersare

believedtobe mathematicallyinseparable.

Examinationo? thecalibrationparameterplotsshows trend-linechangeswith time,usuallyin

one direction(i.e.,non-oscillating),withtheexcep_on ofseveraldayscalibrations.Upon further

examination,theseca'.ibrationexceptiov¢areusuallyfound common inseveralplots.One reason

forthe offsetvaluesisthestatusof thescalarsensors,A and B. Itisfound thata differentcalibra-

tionwillr,'sultforeach ofthe followingcases:(I)sensorA on only,(2)sensorB on only,or(3)

both sensor A and B on. F_xamination of the plots implies this to be the case in most instances. For

those instances where the sensor status does not apply, other reasons such as diversion in the data

distribution, or temperature variation of the sensors and platform may be part of an explanation,

but no conclusions have been formalized at this time.

The second set of plots describe some statistics about the relationship between the scalar values

and their associated vector magnitudes, for samples of data at four day intervals about the date of

the calibration. The data samples had the calibration in questionapplied to them, and the mean,

standard deviation about the mean, and the maximum of the differences between scalars and vector

magnitudes were determined. Study of these plots shows conclusively the dependence of the calibra-

tion and the calibrated data on the scalar sensor status.

19



Key to Symbols u._dinPlots

A: ScalarSensorA on only

B: ScalarSensorB on only

C: Scalar Sensors A and B both on

M: Mean of difference values between sc_ars and

vector magnitudes

R: Standard deviation about the mean of difference

values between scalars and vector magnitudes
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SUMMARY

In summary, the results we have described indicate first that the calibrat2on parameters of the

MAGSAT vector magnetometer, particularly throe associated with the third (z) axis, changed signifi-

candy between the pre-launch calibration and the first pint-launch calibration. This can pomibly be

attributed to slight mecha,lical shifts due to the difference in stresses between a vacuum and non-

vacuum envieonment. Second, some of the calibration parameters underwent small and slow system-

atic changes during the mimion lifetime; and third, the calibration parameters determined from inter-

compamon with the scalar instrument are sfightly different (~ 1 _amma) between the cases when both

sensor A and semor B of the scalar magnetometer are operating, when only sensor A is operating, and

when only sensor B is operating. There are three possible causes for differences in vector calibration

with respect to the scalar sensor configuration:

1. The chanlle in null-zone conf'gluration of the scalar instrument results in a bias in the distribu-

tion of vector directions vidble in the caI/bration. Tiffs could cause impreci_ determination of

some calibration parameters, particularly those defining crom-coupling between axes of the vec-

tor instrument.

2. With only one sensor operable, headin$ errors on the scalar magnetometer are increased. Such

errors will be leolraphically preferential, which means they will also occur at systematic direc-

tions of the field with respect to the vector magnetometer. That is, for certain field directions

the scalar magnetometer would give an erroneous reading of up to 1.5 gammas, with a corre-

sponding change in the determination of the vector magnetometer calibration parameters.

3. An interference of the scalar magnetometer with the vector magnetometer which changes with

the scalar magnetometer configuration. Such an interference was experienced during pre4aunch

magnetic testing. In that case, the R. F. excitation signal from the scalar instrument caused a

sensitivity shift in the vector instrument. This was most pronounced in the second (y) axis,

still noticeable in the third (z) axis, and least diacernable in the first (x) axis. Subsequent radio

frequency shielding reduced the effect to less than one gamma at full scale.

7O



Inadditionto knowing that the calibration parameters differ with the scalar configuration, we

know that the calibration constants determined under a specific scalar configuration result in a larger

mean difference when applied to data witA_a different scalar configuration. This would seem to rule

out the f'u'st hypothesized cause for the difference. We need, however, to distinguish between causes

7. and 3 because if cause 2 is correct then we should utilize the more accurate calibrations fx _m times

when both sensors A and B were operating. If, on the other hand, radio frequency, interference dif-

ferences are affecting the measurements, then the calibration actually does change and the calibration

parameters should be those derived from the sca!_r data with the same configuration that was in effect

at the time of the data being calibrated.

Examination of the calibration parameter plots indicates that all axes are affected by scalar con-

figuration chanses. This seems to indicate Out cause 2 is operable. However, more analysis is required

before s f'mal verdict is in.
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