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ABSTRACT

This document is intended to be used as a guideline for computer programmers F^

who may need to exchange FORTRAN programs between several. computers. The
l

characteristics of the FORTRAN language available on three different types of com-

puters are outlined, and procedures and other considerations for the transfer of pro- _

E	 w
grams from one type of FORTRAN to another are discussed. In addition, the variance '

of these different FORTRAN's from the FORTRAN 77 standard are discussed.
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COMPARISON OF AND CONYEItSION BETWEEN DIFFERENT

IMPLEMENTATIONS OF THE FORTRAN PROGRAMMING LANGUAGE

INTRODUCTION

I

	

	 This document is intended to be used as a guideline for scientific programmers at Goddard

Space Flight Center who may need to exchange FORTRAN programs between several computers.

The characteristics of the FORTRAN language available on three different types of computers 	 1,

are outlined, and procedures and other considerations for the transfer of programs from one type

of FORTRAN to another are discussed. Specifically, :FORTRAN from IBM (e,g., 5ACC System

360191 and 360/75, M&DO 360195 and 360/75), Xerox (e.g., AE Sigma 9) and DEC (e.g., DCAC

f	 PDP 1/70) are examined,

The constructs and syntax acceptable to the FORTRAN's from the three computer manu-

facturers outlined below have many mutual incompatibilities as well as a considerable number of

differences and inadequate capabilities with respect to the FORTRAN 77 standard (ANSI X3.9-

1978, see references I 1 and 12). If FORTRAN programs developed on any one of the afore-

mentioned types of computers are to be at all portable then as many of the "machne—peculiar"

FORTRAN features should be avoided as possible. However, because of the lack of a standard

that encompasses all three types of FORTRAN adequately, no specific guidelines for "machine—

independent" code can be realistically offered.
i
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IBM FORTRAN

IBM has marketed many different versions of (lip FORTRAN programming language, For

example, the SACC IBM 360 's support five different FORTRAN compilers, FORTRAN 's G, GI,

fl, H extended and Code and Go, The G1 and 1 •1 extended compilers represent upward -compatible

supersets of the G and H compilers, respectively. However, the latter two compilers are no longer

supported as "Program Products". from IBM. In any further discussion of IBM FORTRAN, the

GI version will be considered as an "IBM standard." For completeness, the differences between

the five IBM compilers will be noted,
a

The FORTRAN GI compiler is the IBM Program Product designed for the development

phase of FORTRAN programs. It compiles programs relatively fast while producing moderately

inefficient (i.e., unoptimized) code, Since much of the effort in. developing new FORTRAN pro-

grams often occurs in debugging, whose costs tend to be concentrated in the compilation phase

rather than in short test execution of the programs, the r 1 compiler fills this need for both fore'

ground and background applications. The version of FORTRAN acceptable to the GI compiler

also 'p6ssesses a debugging facility that can be invoked through special statements, and the compiler

can produce code that can be executed through the interactive debugger, TESTFORT. It should

be noted that the Code and Go FORTRAN compiler accepts a G1 type of FORTRAN but exe-

cutes the code after compilation instead of producing an object module. It can provide' additional i

savings in program development cost over the GI compiler because it can streamline the-procedure
j

to compile and test execute new code. Of course, once a program is debugged it should be com-

piled using an optimizing compiler for run-time efficiency.

F The G1 compiler, for the most part, represents a small subset of the FORTRAN 77 standard.

The following is a summary of the important GI facilities not found in or different than, the }

standard:

1. The PUNCH statement.

I`	 2. The debugging statements: DEBUG, AT, TRACE ON, TRACE OFF and DISPLAY.
Irx	 a	 x
^j
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r
3. Alternate returns In subroutine calls marked whit an ampersand Ce.g„ CALL X (&10)1.

4, Length specification In `type'sta tome nts. (G I allows INTEGER*2, INTEGER*4, LOGICAL* 1,

LOGICAL*4, REAL*4; REAL*8, COMPLEX*8, and COMPLEX* 16 statement; in addition

to what the standard , allows, INTEGER, REAL, DOUBLE PRECISION, LOGICAL and

COMPLEX statements,)

j 	 5, Direct access I/O specified In a different manner. [e.g., DEFINE FILE and FIND statements,

READ or WRiTE (91PTR)] ,,

6, Use of hexadecimal constants and Z formats.

7. NAMELIST I/O [e.g., NAME-LIST statement, READ or WRITE (device, name(ist)),

8, Some SERVICE rautines.(e,g; .-,.ERRSET, DUMP, SLITE),

9. COMPLEX* 16 intrinsic functions.

10. The following intrinsic functions (slight spelling differences between the sane routines are

not listed);

(a) COTAN/DCOTAN — cotangent

/	 /	 ,nction^.

	

	 (b) ERrjDERF ERFC DEI2FC —error fu	 ^

(c)_ GAMMA/DGAMMA/ALGAMMA/D4, AMMA — gamma function,

fi	i	
The FORTRAN G compiler accepts a larg<subset of the language processed by the G  com-

a

piler, FORTRAN G does not permit list-directed I/O, does not generate code for TESTFORT,

does not round infinite binary expansions (e.g,, :G I rounds 3.9999... to 4.040 and G truncates
i^

	

;i	 3.9999	 , to 3.99999), etc,

1
The FORTRAN H extended compiler is designed to generate optimized object code for

	

J :
	

production—type execution of FORTRAN programs. It is, therefore, expensive to use but the
^k

resultant code is relatively cheap to execute. FORTRAN 11 extended does not provide the de-

bugging facilities of FORTRAN GI but does have several other extensions to the GI language,
of

	

{	 none of which are within the FORTRAN 77 standard;

I, Asynchronous 1/0 [e.g., READ or WRITE (device, ID = identifier) list, and the WAIT

statement]',

f
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2. Extended precision arithmetic (i.e., REAL* 1 G and GOMPT,I X*32) and the intrinsic functions

any subroutine library to support it.

r 3. External statement extension [e.g., EXTERNAL &subprogram-namel

a. Automatic function selection [e,g,, use of the GENERIC statement), -

The FORTRAN H compiler is also designed to generate optimized object code for the

production-type execution of FORTRAN programs. FORTRAN H representr,`a subset of

FORTRAN H extended by providing less powerful optimization, allowing 0i list-directed. 1/0

and permitting none of its language extensions over FORTRAN G 1, Tl e,'11 compiler accepts

and should be consistent with all FOR ` kAN G code except for the latter's debugging :facilities.

However, there is no guarantee, even from IBM, that code written for the G or GI compilers

will execute in the same manner if it is compiled by the H or H extended compiler,

I
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XEROX FORTRAN

Tito Xerox Sigma 1 computer supports three FORTRAN compilers, Xerox Extended

FORTRAN IV  (FORT4) FORTRAN Load and Go (FLAG) and an improved, new FORTRAN.

(ANSF). All three compilers are available on the AE (Atmosphere Explorer) Sigma 9 but at

GSFC only FORT4 is supported and used by the AE community. Thus, FORT4 will be con-

sidered the standard Xerox compiler for this discussion.

ANSF represents a fairly complete subset of the FORTRAN 77 standard. Although the

ANSF compiler is better than the FORT4 compiler, the languages acceptable to cacti compiler

have .limited overlap, and hence, are not very compatible.

vp
3

The FLAG compiler operates in one^pass by compiling and executing FORTRAN code in a
i

single step.	 In many respects FLAG is similar to the IBiv1 Code ant! Go compiler. Hence, FLAG

4 f . eo,npilation	 deve,'lopment	 softwarz.can	 used to reduce the cost o	 during the	 phase of new

However, FLAG accepts only a subset of the FORTRAN allowed by FORT4 and thus, the two

'
compilers are not compatible.

l

a The FORT4 compiler is very incompatible with the FORTRAN 77 standard, It can produce

code to permit program execution through an on-line debugger. The following is a summary of

the important FORT4 facilities not found in or different than the standard.,

I,.	 Conditional compilation [i,e., X in column one]
t

2.	 in-line assembly language.

a 3.	 Compound statements [e.g., B = C; A = B] t

4.	 Hexadecimal constants,

5. DOUBLE COMPLEX data. 'r

6.	 Extended and optional relational ^ixpressions [e.g. A.EOR.B, I < J < 101

7.	 Multiple assignment statembnts [e.g,, A = B	 C1,	 r4

F	 F 8. The END LABELS statement.

°.
15	
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°o.

9, Global statement labels [e Rb,, 10$1,

1.0. The REPEAT statement.

11.	 NAIM1'LIST 110 [ag,, the NAME-LIST statement, READ or WltITE(device, namel st), INPUT
y	

or OUTPUT (device) list, *l

12,	 Direct access and list-directcd 1/0 specified In a different manner.
i

13,	 R, Z, M, backward (i.e., negative) X, widthless and adjustable format specifications,

la,	 Formatted data conversions (i.e., ENCODE/DECODE) specified in a different manner,

15. AsynchronousI/O C . ^, calls to BUFFER IN, BUFFER OUT and 1CHECKJ.

16,	 FORTRAN 11 1/0 (some forms like .READ or WRITE DISK or TAPE, etc.),

17.	 Carriage control with a `*' in column one not supported on the Sigma 9, and 	 in column

one not supported in the standard.

4	 t 8.	 GLOBAL data.
6

f;
19,	 Alternate returns in subroutine calls marked with an ampersand, dollar sign or letter S tog.,

CALL X(&1t?)CAL -'X(lO5), CALL X(lOS)j 

20.	 Some service routines [e.g., EOFSET) , 	
l

21,	 DOUBLE COMPLEX intrinsic functions,

22,	 The following intrinsic functions (slight differences in spelling are not listed):

_	 (a)	 CASIN/CATAN/CACOS/CCOSH/CSINH/CSNCL/CTANH/CTAN/LINT - functions of tt

complex variable.V 

(b)	 ISM,/LAND/IEOR/IF/INOT/IOR/ISA/ISC - boolean functions,

l

a

i
g3g i1
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UFC FORTRAN

The DEC PDP-1 l computer supports two FORTRAN compilers, FORTRAN IV (FOR) and

FORTRAN-IV PLUS (F411), Since the I)CAC (Pioneer Venus/Stratosphcres Data Communication

and Analysis Center) PDP 11/70 only supports the fatter, only 14P will be discussed. 1`4P repre-

sents a small subset of the FORTRAN 77 standard with a Nw incompatibilities. tt conforms to

the standard better than piny of the aforementioned compilers exrtept for the Xerox ANSF com-

plier, F4P can generate code to permit program Wxecutio ►t through the on-lute debugger, ODT.	 {

Tile following is a summary of the important F4P .facilities jt.1t found in or different than the

standard;

L Length specification in `type' statements. (F4P allows INT1 G1 R*2, INTEGER*4 	 l
LOGICAL*2 1 LOGICAL*4, BYTE, AML*4 and REAL*8 statements in_ addition to the
standard, INTEGER, REAL DOUBLE PRECISION, LOGICAL and COMPLEX statements.)

2. Comments after statements,	 i

3. Direct access 110 specified in a different manner [e,g,, DEFINE FI LE and FIND statements,
READ or WRITE (9411TR t )

4. Formatted data convers;on specified in a different manner (, ,e,, ENCODE/DECODE).

S, Somewhat different f
k
^^rmtxt for the OPEN' and CLOSE. statements,

6, The INCLUDE statem^'ryt.

7. Conditional compilation (i.e,, D in column one),	 _ 1

8, Tile ACCEPT/TYPE statements,
9

9, Use of octal constants, 	
1,

10, Tho VIRTUAL statement.
7	

,

I	 11. Octal, Q and adjustable formats,

12. Some service routines (e.g,, ERRSNS, USEREX),

13, The following intrinsic functions (slight differences in spelling are not listed):

(a) IAND/IOR/IEOR/NOT/ISfIFT — boolean functions.
f

(b) RAN — random number generator.

`	
_	 1	 $

y	
'
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CONVERTING IBM FORTRAN TO XEROX FORTRAN

In converting it FORTRAN prograan from the SACC IBM 360 computers for use on the All

$ig ►na 9 one t ►rust remove any of the FORTRAN II extended special language features (possibly

excepting asynchroncils )/0) that ti ►e other IBM FORTRAN's do not allow, and any of the De-
1

bug Facility statements accepted by FORTRAN G, FORTRAN G I or tine Code and Go compilers,

For the most part, Sigma 9 FORT4 represents a superset of IBM FORTRAN 01. In addition,

the following types of statements will require some modificationsa 	 n	 '

1, LOGICAV I chaange to LOGICAL (only the four-L'yto version is allowed).

2, INTEGER*'-) change to INTEGER (only the four byte version is allowed),

3. READ (device, *) list change to INPUT (device) list,

4, WRITE (device, list change to OUTPUT (device) list,
l	

S. References to cotangent, error or ;gamma functions. -
l

6. IBM FORTRAN Ii extended asynchronous 1/0 statements Ie.g,, the WAIT statement, ;READ

or WRITE (device, ID= identifier) list) perhaps can be simulated by Xerox FORT4 asyn-

chronous I/O statements teag,, calls to BUFFER IN, BUFFER OUT and [CHECK] .

Xerox FORT4 is designed to be upward—compatible with the IBM FORTRAN's, The Sigmas

9 is a 32--bit EBCDIC machine using hexadecimal notation like the 364 and data are stored in is

K

	

	 similar manner on both computers, The, use of the VTIO or DAIO packages in programs written

for the SACC 360's can be simulated using the GI:TPUT package on the Sigma 9. The acceptable

argument values for intrinsic mathematical functions may not be compatible between the Sigma 9

and the 360. The lability of many of the character and bit manipulation routines, and service

routines (e.g,, INCORE, ICTIML, LAND, SLITS) on the SACC Computers are available in various

forms on the Sigmaa 9. Sigma 9 FORT4 only has full ward data types so that IBM programs that

use smaller types musk be changed,. The only problem that users of the 360 may encounter in

r
attempting to convert IBM programs to Xerox FORTRAN is with the size of the Sigma 9. A

single user on the AE Sigma 9 can only request 288K bytes of memory. This may prevent the

use of some large IBM FORTRAN programs on the Sigma 9, An overlay structure that is set up

8	
{

L



through linkage editing may help to alleviate: storage difticulties. It should be noted, however,

that it load module generated on tite Sigma 9 for a particular program will, In general, be pouch

smaller than Its equivalent on the 360. hence, it largo IBM program may result, in a smell enough

load module to run on the Sigma 9, lit addition, the speed of the S gtna 9's epu and the capabil=

Ity of its software will constraint the use of 18M programs. The FORT4 compiler Is not particu-

larly fast nor does it optimize Its generated code, it tends to be goIte slow In compiling programs

that make extensive use of non-exectttable statements, espet (ally DATA statetnents. Since the

Sigma 9 is roughly an order of magnitude slower than the SA(C 360/91 and Sigma 9 FORTd's
m

generated code is not optimized, IBM FORTRAN programs may execute too slowly to be practical

on the Sigma 9, it, should be noted that negative real numbers are stored in a different faslilon

on the 360 and the Sigma 9 and that this will cause some difficulties In converting programs that

access real data at the twit level, However, if the aforementioned items are kept in mind, the con-

version of IBM FORTRAN to Xerox Extended FORTRAN should be relatively simple and painless.

f
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CONVERTING .XEROX FORTRAN TO IBM FORTRAN

The conversion of Xerox FORT4 programs to IBM FORTRAN is an extensive and messy a

proposition, The code will have to be rewritten to eliminate many Xerox-acceptable constructs,

including the followings

1. Conditional compilation [i,e,, ``X" in column one]
I.

2, -lineInassembly language,

3. Compound statements [c,g, A=B; C=A],

4, Multiple assignments [e,g,, A=B=C].

5, Global references [e.g., GLO13Ai, data global labels like 10$1,

6. REPEAT loops,

7, R, M, backward (Le,, ,negative) X, widthless and adjustable format specifications,

S, Extended and optional relational expressions [e.g., A.EOR,B, I < J < 101,

9, Complex inverse trigonmetric, hyperbolic and "type" conversion functions.

;
10, Hollerith constants in other than FORMAT, "type" or DATA statements [e.g., A=41 ABCD] ,

11, Expressions in ISO lists [e,g,, WRITE (6, 10) X**SIN(X)+3,0] ,

12. The END LABELS statement,

13. Negative, zero, real or complex DO indices.

i 14. Backward DO loops.
3n it

15. Some Fortran 11 1/0 [e.g., READ TAPE].	

;

The following items in a Xerox FORT4 program are acceptable to the SACC 360's but their

syntax must be modified: x
4

1. DOUBLE COMPLEX change to COMPLEX* 16,

2. NAMELIST I/O (if,;%erox format is used),

3. List directed I/O;

OUTPUT (device) list change to WRITE (device, *) list

INPUT (device) list change to READ (device, *) list,

'
10
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i
4. ENCODE/DECODE statements can be simulated by the INCORE routine,

^J S Asynchronous I/O (calls to BUFFER IN, i3UFFER OUT and [CHECK) may be simulated

by FORTRAN H extended code (READ or WRITE with ID and th{(,. ;NAIT statement).

6. Alternate returns in subroutine calls (if Xerox format is used),

i,	 7. Boolean functions may be simulated by routines , available on the SACC 360'x,
1

8 Variable names shortened to six characters,

9. Some service routines may have similar purposes (e.g., ERRSET).

10. Arguments to mathematical routines may have different acceptable values,

Since Xerox FORT4 represents a superset, for the most part, of IBM FORTRAN and both
.r	 3

the Sigma 9 and the 360 are thirty-two-bit EBCDIC machines using hexadecimal notation, the

Sigma 9 FORT4 and the 360 FORTRAN's are reasonably compatible. However, in practice, the

modifications on a Xerox FORT4 program required to convert it for use on the 360 are so

numerous that a design Consideration of Xerox software should be the question of portability.

If new software is to be possibly copied from the Sigma 9 to another computer then the use of

the "Xerox-peculiar" , constructs should be avoided. It should be noted that negative real num-

bers are stored in different fashions on the 360 and the Sigma 9 and that this will cau , Kome
r

1	 difficulties in converting programs that access real data at the bit level,

I

u	 t"1
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CONVERTING IBM FORTRAN TO DEC FORTRAN

In converting a FORTRAN program from the SACC IBM 360 computers for use on the

DCAC PDP 11/70 one must remove any of the FORTRAN H extended special language features

that the other IBM FORTRAN's do not allov'or any of the Debug Facility statements accepted

by FORTRAN G, FORTRAN GI or the Code and Go compilers, However, the language accept-

able to the IBM FORTRAN's and DEC F4P are reasonably compatible. The following type of

code will have to be removed or champed from IBM FORTRAN;

1.	 Optional returns from subroutines f e,g,, CALL X(&10)1

2,	 Data initialization in "type" statements f e,g,, REAL IX/3,45/1

3,	 COMPLEX* 16 data and their intrinsic functions,

4,	 NAMELIST I/O [e.g,, NAMELIST statement, READ or WRITE (device, namelist)) ,

5. The PUNCH statement,

6,	 References tocotangent, error or gamma function^,

7.	 Type	 specification should be explicit,

j	 8,	 Use of hexadecimal constants and Z formats,

^
The PDP' 11 /70 is a sixteen-bit ASCII machine using octal notation while the 360 is a

I

thirty-two-bit EBCDIC machine using hexadecimal notation. Any explicit references to EBCDIC

characters or hexadecimal constants will have to be translated to ASCII or octal notation, respec-
{

tively. The default size of INTEGER. and LOGICAL, type variables is two bytes on the 11/'70

'. while it is four bytes on the 360.	 The use of explicit type declarations or the /I4 switch when i

DEC F4P is invoked' will solve this problem. Generally, the use of two-byte variables is preferred,

where possible, for the sake of speed of operation on the 11/70.	 Since the 360 and the 11/70
E

do not store their data in, , the same manner, the conversion of some FORTRAN programs may

be severely constrained. 	 Appendices A and B discuss this problem in detail,	 Some of the caps- `

bilities of the FTIO and DAIO packages on the SACC computers can be simulated by the OPEN/

CLOSE statements in F4P. IBM FORTRAN and DEC F4P interpret the ENTRY statement in

f

^^k
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ff

different fashions (see Appendix C for one example) and its use should be avoided. The accept-
i

able argument values for intrinsic mathematical functions may not be compatible between the

	

r	 PDP and the 360, The ability of many of the character and bit manipulation routines, and ser-

vice routines (e.g., INCORE, KTIME, LAND, SLITS) on the SACC computers are available in
;r

various forms on the DCAC 11/70, The only other problem that users of the 360 may encounter in

	

;.	 r

	G	 attempting to convert IBM programs to DEC F4P is with the size of PDP 11/70, .A single user

on the DCAC 11 /70 can only% request 64K bytes of memory, This may prevent the use of some

large IBM FORTRAN programs oil 	 l 1/70. An overlay structure that is set up through task

building or the use of VIRTUAL arrays may help to `alleviate storage difficulties. It should be

noted, however, that a task image generated on the 11/70 for a particular program will, in general,

be much smaller than its equivalent load module on the 360. Hence, a, large IBM program may
^	 x

result in a small enough task image to run oil 	 11/70. In addition, the fact that 11 /70 is much

slower than the 360191, and despite F4P's ability to optimize code, IBM FORTRAN .. programs

may not execute quickly enough to bepractical on the 11/10.

s	 ;
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CONVERTING DECr FORTRAN TO IBM FORTRAN

i

f

The conversion of DEC F4P programs to IBM FORTRAN will require more work than the

-g	 .'converse,	 The following r4P constructs. will have to be removed or Chanbed

1. The PARAMETER statement,,

2, Expand INCLUDE statements.

3. ENCODE/DECODE statements change to use INCORE on the SACC 3601s,

4 Comments after statements.
t

S. OPEN/CLOSE statements may be simulated by FTIO/DAIO.

6. Conditional compilation (i,e,, "D" in column one).

7, ACCEPT/TYPE statements. i

S. Octal constants,

I	 9, The VIRTUAL statement,

10. Boolean fune^4 ns may be substituted with equivalent SACC routines.

11,
r

The BYTE statement change to LOGICAL* 1, ,

12. O, adjustable, $, « and Q format specifications,

13. LOGICAL*2 data.

14. Backward DO loops,

15.
j

Negative, zero, REAL or COMPLEX DO indices.

16. Hollerith constants in other than FORMAT or DATA statements (e.g,, A = "ABCD").

17; Shorten variable names to six characters,

r	
18. Some service routines have similar purposes (e.g., ERRSET).

19, "Type" specifications should be explicit.

20,- Arguments to mathematical routines may have different acceptable values., }

The PDP 11/70 is a sixteen-bit ASCII machine using octal notation, while the 360 is a

r	
thirty—two—bit EBCDIC machine using hexadecimal notation. Any explicit references to ASCII

characters or octal constants' will have to be translated to EBCDIC or hexadecimal notation, ,

14	 r
.
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respectively, The default size of INTEGER and LOGICAL type variables is two bytes oil the

11/70 while it is four bytes on the 360. "Type" statements may have to be incorporated to en-

able the program to run equivalently on the 360's, Since the 360 and the 11/70 do not store {

their data in the same manner, the conversion of some FORTRAN programs may be severely

constrained. Appendices A and B discuss this problem in detail. Some of the capabilities of the

OPEN/CLOSE statements on the 11/70 computer can be simulated by the FTIO and DAIO pock-

ages on the 360, IBM FORTRAN and DEC F4P interpret the ENTRY statement in different

fashions (see Appendix C for one exampled and its use should be avoided, The ability of many
i
1

of the character and bit manipulation routines, and service routines (e,g,., INCORE, KTIME,

LAND, SLITS) on the SAC(,'. computers are available in various forms on the DCAC 11/70.

Since the 360's have so much core storage available, any program overlays and virtual arrays used
l

on the PDP could be eliminated on,,the 360. The use of the VIRTUAL statement in a F4P pro-
t
r'	 gram could be changed to the use of a DIMENSION statement in an IBM program:

1

'	 y
t
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CONVERTING XEROX FORTRAN TO DEC FORTRAN
a
1

To convert a Sigma 9 FORT4 program to PDP F4P the code will have to be rewritten to

eliminate many Xerox-acceptable constructs including (lie following.

1. In-dine assembly language. i
2. Compound statements [e,g, A=B B =Cj ,

If
3. Multipi	 assignments [e.g., A=B=CI ,

S
i

4. Global,'references [e gg., GLOBAL data, global 'labels like 10$1,

5, REPEAT loons.

6,	 ,,R, M, Z, backward (i.e., negative) X, and widthless format specifications.
,

7, Extended and optional relational expressions [e.g., AEOR,B, I < J < 101,

8, Complex inverse trigonometric, hyperbolic and type conversion :functions.

9, DOUBLE COMPLEX data and their intrinsic functions.

10, Asynchronous I/O (calls to BUFFER IN, BUFFER OUT, and ICHECK).

11, NAMELIST 1/0 (in either Xerox or IBM format).

12. Alternate returns in subroutine calls (in either Xerox or IBM format),

13, The END LABELS statement.

14, Hexadecimal constar ^S.

15, Some FORTRAN 111/0 [e.g., READ TAPE). i

The following items in a Xerox FORT4 program are acceptable to the PDP 11/70 but their {

k	 syntax must be modified; r
1

1,

-

Boolean functions are available under different names.{
r

2. The GETPUT package can be partially simulated through the OPEN/CLOSE statements,

3. Variable names of any length are acceptable but the first eight characters are significant to
i

the Sigma 9 while only the first six are significant to the 11/70. '!

4. DEC F4P usesuoted Hollerith strings outside of DATA and FORMAT statements( e.g. ,q	 g f 

`	 ff A=`ABCD' not A=4HABCD). 3`	 j
^I

r	 5. "Type" specifications should be explicit."

;,
(1

1 
r

,r	 16
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6, Conditional compilation in F4P uses a "D" Iii column one Instead of "X"r

7, Adjustable formats have a different syntax (i,e„ use of "<' and ">" instead of "N").

	

j'	

8. Some service routines have similar purposes (e,g,, ERRSET),
S;

	

i'

	 9. Arguments to mathematical routines may have different acceptable values.

	

^	 f=

Tile PDP 11/70  is a sixteen-bit ASCII machine using octal notation while the Sigma 9 is a

v thirty-two-bit EBCDIC machine using hexadecimal notation. Any explicit references to EBCDIC

,` characters or hexadecimal constants will have to be translated to ASCII or octal notation, respec-

tively. The default size of INTEGER and LOGICAL type variables is two bytes on the 11/70

while the only version available on the Sigma 9 is four bytes.	 The use of tine /14 switch when

:. DEC F4A is invoked will solve this problem. Generally, the use of two-byte variables is preferred,

where possible for the sake of speed of operation on the 11/70.	 Since the Sigma 9 and tire 11/70 
zi

`, do not store their data in the same manner, the conversion of some FORTRAN programs may be

} severely constrained, Appendices A and B discuss this problem in detail, Xerox FORT4 and

DEC F4P interpret the ENTRY statement in different fashions (see Appendix C for one example)

i and its use should' be avoided. Large Sigma 9 programs may not fit in the 64K bytes of memory

a single user can request on the DCAC,11/70. 	 However, the use of the optimizing FR compiler,

VIRTUAL arrays or an overlay structure may alleviate this difficulty, i

:I
.:	
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CONVERTING DEC FORTRAN TO XEROX FORTRAN'

To convert a PDP F4P program to Xerox FORT4, the following F4P constructs will have to

be removed or changed to make the code acceptable to FORT4

1. The PARAMETER statement} i
I 2,	 Expand INCLUDE statements.

3.	 Comments after statements.

'- 4. OPEN/CLOSE statements may be simulated by GETPUT,
1

1

r 5.	 Octal constants.

6, The VIRTUAL statement.

7.	 Boolean functions may be substituted with FORT4 equivalents.

8.	 Any "type" specification of .less than four bytes, 1

f 9.	 0, $, ; and Q format specifications,

10,	 FORT4 does not use quoted Hollerith strings outside of DATA and FORMAT statements,

1-1,	 Conditional compilation in FORT4 uses an "X" in column one instead of "D:'.

12,	 Adjustable formats have a different syntax (i,e, use of "N" instead of "G" and

13,	 Some service routines have similar purposes (e,g,, ERRSET), }

14.	 Arguments to mathematical routines may have different acceptable values,

h The PUP: 11/70 is a sixteen-bit ASCII :machine using,octal notation, while tile Sigma 9 is a
r!

thirty-two-bit EBCDIC machine using hexadecimal notation.	 Any explicit references to ASCII f:

r characters or octal constants will have to be translated to EBCDIC or hexadecimal notation, 3z

respectively. The default size of INTEGER and LOGICAL type variables is two bytes on the i
r

11/70 while the only version available on the Sigma 9 is four bytes. 	 "Type" statements may x=

have to be incorporated to enable the program to run equivalently on the Sigma 9. Since theY

Sigma 9and the 11/70 do not stare their data in the same manner, the conversion of some

FORTRAN programs may be severely constrained. Appendices A. and B discuss this problem in de-

tail. Xerox FORT4 and DEC F4P interpret the ENTRY statement in different fashions (see
^

l
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F" "i

Appendix 0 for one example) and Its use should be avoided, Since the Sigma 9 Ims more core

storage available, any program overlays and virtual arrays used on the PDP could be eliminated

on the Sigma 9, The use of the VIRTUAL statement in F4P program could be changed to the

use of a DIMENSION statement in a FORT4 program.

a

' i a

i
Ik

1^'
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APPENDIX A

COMPARISON Or, DATA STRUCTURES ON THREE COMPUTERS

The three computers and their FORTRAN compilers discussed in 
this document implement

various data structures (e.g., INTEGER, REAL) In different fashions, These differences become

Important If FORTRAN programs that are being transferred from one machine to another access

binary data reading a binary tape, manipulating the bits and bytes of a datum), and can In-

fluence the accuracy of calculations (see Appendix D).

Except for negative floating point data the Xerox. Sigma 9 and the IBM 360 store their data

in the same manner, Both computers store their floating point data in the following fashion,,.

L,

IS) (C) W
SIGNSIGN CHARACTERISTIC FRACTION

BIT	 0	 1	 7 B	 31 OR 63
(SINGLE OR DOUBLE PRECISION)

NII) m	 floating point number	 SF-I 6c -64	 where	 :0

_0	 0	 C	 12'1Nj;q	 F-16C-64 >

Note: 16-6	 2-24	 5.96-10-8 	 F

16-14	 2-56 	 1.39-1047 16-6	 (single precision)

16.14 SIF1:!91 (double precision)

F has six hexadecimal (single) or four-

teen hexadecimal (double) digits.

The IBM 360 always stores its fractionj, as a tme fraction. However, this is only the case

for positive floating point numbers on the Signia 9, The Sigma 9 stores a negative floating point

number as the two's complement of Its positive representation.

The storage of data on the PDP 11 computer differs with the 360 and the Sigma 9 by hav-

ing the positions of a datum's bytes reversed with respect to how they would be stored on. the

I



360 or the Sigma 9. if the following represents a full word integer stored on the Sigma J or

the 360:	 I

g

^	 at	 02	 13	 14

f	
0	 71	 1516	 2324	 31

t	 ^

i	 Then It would be stored in the following manner on the PDP 1 I t.

84	 e3	 82	 61

y

24	 3116 	 23 1	 ISO
	 -

which implies a swap of half-words followed by a swap of bytes within each halfword. To 3

<<'	 change a floating point number from the 360 or the Sigma 9 to the PDP 1 I the bytes within

each half word are swapped and then a conversion algorithm mint'b 'appl ied. The conversion is

necessary because the PDP I 1 uses an eight bit characteristic while the Sigma 9 and 360 use a

seven bit characteristic,	 Some of the implications of this are illustrated in Appendix D, 	 The foi-

owing will illustrate the. form in Which floating point iipinbers are stored on the t'UP 11:

Word 1:	 (S )	 (C)	 lFpi
SIGN	 CHARACTERISTIC 	 HIGH-OROER FRACTION

15	 14	 7 6	 0

f

G	 iF11
word 2	 LOW-ORDER FRACTION

i

1¢	 0

Words 3.and 4 for double precision data Would contain, lower order' fractions (1 72 and 17 3

in the same format as word 2,

Thus, NPAP	 SF2C-128 where S = ±1 	 0 ::5 C 'g 255
2-2 4	 1171 < 1	 single precision

F=	 2-5 6:	 IF 1S 1	 double precision
l

22
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a

Fractions are represen ted in "sign-magnitude" notation with (ite binary rndix pointy oil the

loft. Numbers are assumed to be normalized anti, therefore, the most sIgnificant7 fait Is not stored

because It is redundant (Le., "hidden bit normalization"). Tile hit Is assumed to be 1 unless the

exponent is zero tcorresponding to 2~ 120), In wialcl ► case it Is assumed to lac zero As n ra suit of

the different floating, nolnt architectures oil the IBM 300, Xerox Sigma 9 ►and I'DII—i I t (lie con-

version of FORTRAN programs among these computers may be constrained, l3or example:

8.636-10*78 r,,,̂ JN ljrt I * INr g I 'S 7,237;1 07

While

2,939. 10.39 S INrnP 11.701 # 103 s.

Therefore, programs that use numbers with very large or very small maagr► Itudes oil the 360 or

Signor 9 may not be compatible with the PI)l" 11.

I

a

^, r
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APPENDIX B

IBM 3601PDP 11/70 TAPE COMPATIBILITY

The following material Is from Chapter 8 of the Laboratory of iligh Energy Astrophysics

Computer User's Guide (reference 16) and Illustrates tho byte-swapping of the PDP 11. The x

routines described below arc available on the DCAC PDP 11/70 for the conversion of 360 data 	
4

F	 to 11/70 data and vice-versa. The routines could be used for the Silctna 9 with an additional

conversion being required for negative floating point data,

a
IBM 360 PDP-11/70 Tape Compatibility

I. SOURCE Programs
f	

Source tapes generated on IBM machines use the 4xtended Binary Coded Decimal Inter.i
change Code (EBCDIC) for the representation of characters. DEC machines, however, use Anier-

lean Standard Code: for Information Interchange (ASCII) for characters codes. Utility programs
fl	

are available for easy interchange of information of these 8 bit codes on the 11/70.

2. 'Transfer of Data Files

2.1 Introduction

Thera has developed a need for algorithms for converting data on an IBM 360-generated mag-

netic tape to recognizable PDP-I 1 format and algorithms for generating IBM-360 magnetic tapes

on the PDP-I 1, This need originates from the difference in. byte addressing between the twog

r	 computers, The problemapplies to airy INTEGER*2, INTEGER*4, READ*4, REAL*8 or }

COMPLEX*8 variable;. For a detailed description of the differences, refer to AOIPS Technical

Note *75-001, "DEC PDP-11/IBM 360 Magnetic Tape Formats and Information Exchange

Considerations,"

2.2 Subroutines for PDP-11 and IBM-360 Conversion 	 a

(A) TPDPFS - converts an IBM single-precision floating-point quantity to a PDP single-precision

floating-point quantity. TPDPFS requires one or two arguments.

25.	 .^-.,.
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Call TPDPFSONOtourQ1)

(1) INQ - specifies the quantity to be converted,

(2) [,OUTQ) - specifies the destination of the quantity, If omitted, the quantity is re-

r..	 turned as a function value.

(B) TPDPFD - converts an IBM double-precision floating-point quantity to a PDP double-

precision floating-point quantity. TPDPFD requires one or two arg jments:
,r

Call TPDPFD(INQf,OUTQ] )

(1) INQ - specifies the quantity to be converted

(2) [,QT_JQ? specifies the destination of the converted quantity. If omitted, the quantity

L'S returned l as a function value,
x

(C)	 TIBMFS - converts a PDP single-precision floating-point quantity to an IBM single-precision

,

floating;'-point quantity.	 TIBMFS requires two arguments;

Call TIBMFS(INQ1OUT6)

(l)	 INQ - specifies the quantity to be converted,

(2)	 OUTQ - specifies the destination of the converted quantity.

(D) TIBMFD - converts a PDP double-precision floating-point quantity to an IBM double-

precision floating-point quantity. TIBMFD requires two arguments:

Call TIBMFD (INQ,OUTQ) 	 -

(1)	 INQ - specifies the quantity to be converted.

(2)	 OUTQ - specifies the destination of the converted quantity.

Some of the variables used in the examples which follow are;

(A) BUFF	 Address of Data Area

(B)	 LEN - Length of Block to be Read from Tape G

(C) TDAT - Halfword for INTEGER 4 Value

(D) SDAT - REAL*4 Parts of C8DAT

26 f
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2.3	 Algorithms for Conversion w 360 Tape to PD1' Format

(A) INTEGER*2 I
3

rt

0	 .^	 15

i

8	 15 0	 7

THE BYTES ARE SWAPPED

To retrieve the correct INTEGER*2 data value from a 360-generated mag tape, SWABI is

called,

f

is EXAMPLE 1; Assume the first two bytes of BUFF are an IBM 360 INTEGER*2 variable.

We Wish to convert these bytes to a PDP recognizable INTEGER*2 variable. The result

appears in the variable 12DAT as follows;

LOGICAL*I BUFF(100)
INTEGER*2 121
EQUIVALENCE (BUF>~(I),I2DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN) K
CALL FREAD(BUFF,N,LEN,IOST,LR)
CALL SWABI(12DAT,2)

[CONTINUE PROGRAM]

CALL DISMNT(N,IVSN)
STOP r
END

E i

F
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(B) INTEGER*4

0	 718
	

151	 116	 23124	 13-11

HALF WORDS	 ARE SWAPPED

]23	 r8—	 1510	 71

BYTES ARE SWAPPED

To retrieve the correct INTEGER*4 data value from a 360-gene;ated mag tape, halfwords

must be swapped following the call to SWABI.

EXAMPLE 2:	 Assume the first four bytes of BUFF are an IBM 360 1. 11TEGER*4 variable,

Wewish to convert these bytes to a PDP recognizable INTEGER*4 variable, The result

appears in the variable 14DAT as follows:

LOGICAL*1 BUFF(100)
INTEG2 R*2 TDAT(2),K
INTEGER*4 14DAT
EQUIVALENCE (BUFF(,I),14DAT),(TDAT(l),14DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
CALL FREAD(BUFF,N,LEN,IOST,LR)
K=TDAT(l).
TDAT(I)=TDAT(2)
TDAT(2)=K

CALL SWABI(14DAT,4)

[CONTINUE PROGRAM)

CALL DISMNT(N,IVSN)
STOP
END

28
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(C) REAL*4

0

><8 VTES ARE SWAPPE 0><

1 
8	 1510	 7124	 31116

TPOPFS
PERFORMS FLOATING POINT CONVERSION

To retrieve the correct REAL*4 data value from a 360-gencrated mag, tape, SWABI is first

called, followed by the calling of TPDPFS.

EXAMPLE 3 , Assume the first four bytes of,BUFF are an IBM 360 REAL*4 variable. We wisli

to convert these bytes to a PDP recognizable REAL*4 variable. The result appears in the vari-

able ROAT in the following program:

LOGICAL* BUFF(I 00)
REAL*4 MAT
EQUIVALENCE (BUFF(l),R4DAT)
CALL MOUNT(N,IVSN,NF,LABELIDEN)
CALL FREAD(BUFF,N,LEN,IOST,LR)
CALL SWABI(R4DAT,4)
CALL TPDPFS(R4DAT,R4DAT)

[CONTINUE PROGRAM]

CALL DISMNT(N,IVSN)
STOP
END

29
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(D) REAL*8

7 8	 15 16	 23 24	 55 56	 63

--31^YTES ARE SWAPPED

,16

x

I'll	

7124	 /31 16

1

TPOPFD

PERFORMS FLOATING POINT CONVERSION

To retrieve the correct REAL*8 data value from a 360-generatedmag tape, SWABI is first

called, followed by the calling of TPDPFD.

EXAMPLE 4: Assume the first eight bytes of BUFF are an IBM 360 REAL*8 variable, We

wish tQ convert these bytes to a PDP recognizable REAL *8 variable. The result appears in the
j

variable R$DAT in the following g program:	 -

LOGICAL* I BUF(100)	
A

a	 REAL*8 R8DAT
EQUIVALENCE (BUFF(1),R8DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
CALL FREAD(BUFF,N,LEN,IOST,LR)
CALL SWABI(R8DAT,8)
CALL TPDPFD(R8DAT,R8DAT)

i	 '•	

,	 ^^r

j

[CONTINUE PROGRAM]

r

CALL DISMNT(N,IVSN)
STOP
END

zs ^7

iL,

1.;

ski

t

f	 {	 30

i$
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3

4

(E) COMPLEX**

REAL PART	 IMAGINARY PART	
P

Q 7 1 8 	 15 IS	 41 141	 55 1 66	 63,

4

BYTES ARE SWAPPED

f	 15 0	 7 2k:^	 40 36	 63 1 48	 65s	 ,:	 t
u	

,,
{

CALL TPOPFS 1TWICEI	
1

FOR FLOATING POINT CONVERSION

To retrieve the correct COMPLEX*8 data value from a 360-generated mag tape, the whale
i

R

value is treated as two (2) REAL*4 values, Again, SWABI is first called, followed by the calling

of TPDPFS._ .,

EXAMPLE 5: Assume the first eight bytes of BUFF are an IBX1360 COMPLEX*8 variable,
i

We wish to convert these bytes to a PDP recognizable COMPLEX*8 variable. The result appears

{f	 in the variable MAT in the following program:

k	 LOGICAL*l BUFF(100)
REAL*4 SDAT(2)	 i
COMPLEX*8 C8DAT

l!	 EQUIVALENCE (BUFF(l ),C8DAT),(BUFF(1),SDAT(1))
CALL MOUNT(N,IVSN,NF,LABELIDEN)

1 CALL IjREAD(BUFF,N,LEN,IOST,LR)t	
CALL SWABI(SDAT,8)

4	 CALL TPDP.FS(SDAT(.l),SDAT(l))
a CALL TPDPFS(SDAT(2),SDAT(2))

;y	 C

C THE COMPLEX*8 VALUE IS NOW CONVERTED AND
C CAN BE REFERRED TO A C^.	 A	 F	 _S 8DAT

x	 ,

z£	

'

[`CONTINUE PROGRAIM]

CALL DISMNT(N,1VSN)
h	

STOP

4	 END

t 31



2.4 Algorithms for Conversion _ PDP-1 I to IBM Tape

(A) 1NTf GER*2

'T
0	 718	 151

i

t

THE BYTES ARE SWAPPED

To generate the correct INTEGER*2 value onto a 3Wmag tape, SWABI is called,

EXAMPLE 1; Assume the variable I2DAT is a PDP-11 INTEGER*2 variable Which is to be
7

'

	

	 converted to an IBM recognizable INTEGER*2 variable. After converting, the result appears

in the variable I2DAT and is then written to a mag tape,
E	 ;

r	 LOGICAL* I ' BUFF(100)
INTEGER *2 I2DAT
EQUIVALENCE (BUFF(l),I2DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)

r<	 i

y'	 [CONTINUE PROGRAM] j€

.

`	 CALL SWABI(I2DAT,2)
CALL FWRITE(BUFF,N,LEN,IOST)
CALL DISMNT(N,IVSN)
STOP
END

0

i
S

1

'	 4

i

y
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(0) INTEGER*4

24	 31` 16	 23	 1 Isla	 7

HALF WUAD5	 ARE SWAPPED

0	 718	 10	 10 231 24 	31

BYTES ARE SWAPPED j

To generate the correct INTEGER*4 value onto a 360 mag tape, halfwords must be swapped
Y

following the calling of SWABI, j

EXAMPLE 2: Assume the variable 14DAT is a PDP—I I INTEGER*4 variable which is to be

jt F	 converted to an IBM recognizable INTEGER*4 variable, After converting, the result appears

.:	 in the variable 14DAT and is written to a mug tape,
r

LOGICAL*1 BUFF(100)
INTEGER*2 TDAT(2),1C i
INTEGER*4 14DAT I
EQUIVALENCE (BUFF(1),14DAT),(TDAT(l),I4DAT) [CALL MOUNT(N,IVSN,NF,LABEL,`IDEN)

[CONTINUE PROGRAM]

KTTDAT(1)
TDAT(I)=TDAT(2)
TDAT(2)=K
CALLSWABI(I4DAT,4)
CALL FWRITE(BUFF,N,LEN,IOST);
CALL DISMNT(N,IVSN)
STOP

END M

Ia ^	 .: 'r
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(C) RI AL*4

isle	 7 Z+1 	 31116	 Z3

0 - - IYTES ARE SWAPPED

0	

11, 

	 15 1d

	 I"

	 31

i

s

TIBMPS m

PERF ORMS FLOATING POINT CONVERSION

i.

To generate the correct REAL*4 value onto a 360 mag tape, TIBMFS is .:first called, followed

by a call to SWABI,{

r EXAMPLE 3	 Assume the variable 114DAT is a PDP-I l REGAL*4 variable which is to be

converted to an IBM recognizable RCAL*4 variable. After converting, the result appears in

the variable R4DAT and is written to a mag 4e,

'
LOGIiCAL* l BUFF(100)
REAL*4 MAT I
EQUIVALENCE (BUF.F(1),R4DAT) i
CALL MOUNT(N,IVSN,NI",LABEL.,IDEN)

1

[CONTINUE PROGRAM[

CALL TIBMFS(R4DAT,R4DAT)
CA .L SWABI(R4DAT,4)
CALL FWRITE(BUFII,N,LEN,IOST)
CALL D.ISMNT(N,IVSN)
STOP P
END

{

k
F ii

^v

I4r^
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(D) REAL*8

16 0	 7 24	 43	 65

BYTES ARE SWAPPED

0 718	 16116	
_	

23124	 55166	 63

TIBMFD

PEflFORMS FLOATIN G PRINT CONVERSION

To generate the correct REAL*8 value onto it 360 mag tape, TIBMFD is first called, fol•

lowed by a call to SWABG

C	 EXAMPLE 4s Assume the variable R8DAT is a PDP-11 REAL*8 variable which is to be 	 ?
9	 !

converted to an IBM recognizable REAL*8 variable, After converting, the result appears in

the variable R8DAT and is written to a »lag tape,

LOGICAL* I BI UFF(I 00)
."	 REAL*8 R8DAT
i EQUIVALENCE (BUFF(i),R8DAT) 	 l

CALL MOUNT(N,IVSN,NF, LABEL, IDEN)

[CONTINUE PROGRAM],

CALL TIBMFD(R8DAT,R80AT)
CALL SWABI(R8DAT,8)	 -

6 CALL DISMNT(N,IVSN)
STOP
END

k

,

35
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(E) COMPLEX*8

REAL PART

1 
	

150	 714

r [
0	 7 FS 15115

IMAGINARY PART'

BVTES ARE SCI

t l !	 l_	1 1 1 ^ 1
3

CALL TIIIMFS (TWICE)

r FOR FLOATING POINT CONVERSION

To generate (lie correct COMPLI; *8 value onto a 360 mag tape; the whole value is treated as
'i

two (2) REAL*4 values, Again, TIBMFS is first called followed by a call to SWABI.
t

EXAMPLE S; Asscnne the variable C8DAT is a PDP—I I COMPLEX*8 variable which is to be
i
} converted to an IBM recognizable COMPLEX*8 variable. After converting, the result appears

in the variable CSDAT and is written to a mag tape,

LOGICAL*l BUFF(100)

COMPLEX 8 C^8DAT
' EQUIVALENCE (BUFF(I ),C„ 8DAT),(BUF (i),SDAT(l ))

CALL MOUNT(N,IVSN,NF, LAB EL,IDEN)

}

[CONTINUE PROGRAM]

t ^l

CALL SWABI(SDAT,8)
CALL TIBMFS(SDAT(l),SDAT(l))
CALL TIBMFS(SDAT(2),SDAT(2))
CALL FWRITE(BUFF N,LEN,IOST) 3C

C THE CORRECT COMPLEX*8 VALUE IS #;
C NOW WRITTEN ONTO TAPE AS C81)AT
C

CALL DISMNT(N,IVSN)
- STOP

END
^r
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FORTRAN FOR T11G 11/70 AND TI 8 360's

Paragraph IV (page 40) of the document In this appendix illustrates one way in which the
a

implementation of the ENTRY statement by the l'DP 11170 P41' compiler differs from the m-

r'' I plementation by the Xerox Sigma 9 and IBM 360 FORTRAN compilers. Many DGAG users are

w familiar with FORTRAN for the 11(70 and the 360's and it is included here for the sake of

completeness

m
FORTRAN for the 11170 and the 360's

A guide to the writing of FOR T1tAN programs compatible witlr both the 1)CAC I'1)P 11/70

C; and the SACC S/360's

or

^ Ways to save roan-flours in transferring programs between machines
i

Jim Hamill E
r

John Campbell

Laboratory for Planetary Atmospheres 	 ;!

Data Analysis Branch

June 197$
f

These guidelines outline FORTRAN programming practices that provide compatibility be-

tween two particular Goddard computers: the 66AC PDP 11/70 and either of the SACC S1360'sf i

We emphasize that these practices are easy to follow in the generation of new code,

This memorandum mentions, additionally, a few of the peculiar differences between the two

machines,	 Attention is directed, in particular, to Paragraphs 11 and IV,}
j

The two compilers,; ompared and contrasted are;
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• IBM's FORTRAN-IV level itl,ltv

DEC's IiORTR.AN°1VAILUS

1.	 We recommend that most programming be in American National Standard FORTRAN

(X3.9 .1966). There are two important exceptions to this recommendation,

r ). We actively encourage the use, where it is easiest for the Programmer, of certain com

N	 nionplace extensions to "ANSI FORTRAN". Table I lists some non-standard features

that are common to both. vendors' la►nguag s. We feel that these non-standard features
i

are of sufficient usefulness and arc sufficiently widespread among vendors of software 	 l
9

that their use should not be discouraged.

2. In some cases, essential language features are machinc-dependent. (A good exaunple Is}

the means by which a given data set is opened for program use, In IBM programming,f	 avcn 

the Job Control Language (JCL) provides a simple way of doing it, whereas PPP-4 l pro

grammers will want to use the OPEN statement.) In other cases, use of a non-standard

feature can provide one of the following advantages with respect to the best "standard

FORTRAN" alternative;

• appreciable case of coding;	 s

• significant reduction In 110 (for IBM applications, where "time is big money"),

• significant reduction in core requirements (more important on the smaller machine,

4	 the 11/70);
1

• significan1 Ereduction in execution time.

3

If any of these advantages can be realized, or if no sensible alternative is available, we of

course encourage the use of the non-standard features,

II,

	

	 Programmers of the 11 /70 must be aware that the default sizes of INTEGER and LOCI-

CAL type variables have been set to two bytes on the DCAC machine, whereas the default

f
38	 {
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sires tire each four bytes in the IBM FORTRAN languages. We encourage explicit or Im-

plicit type declarations, We recommend the following practices In particular,

1, Declare as INTCGFR*4 those variables that may at soiuc time exceed 32,767 in ab-

.solute value.

2. For character type data, lase the LOGICAL*I declaration wherever possible.

3. Use IMPLICIT statements liberally.

III,	 Structured programs often consist of numerous subprograms tied together with labeled

and/or unlabeled COMMON blocks, It is good practice to use identical COMMON decla-

rations for a given COMMON block wherever it occurs.

This can be a painful d tedious duty for programmers of the IBM atnachines. The prac-ainful an

ticc is facilitated on the UCAC machine, because the PD11 FORTRAN IV—Plus htnguage

supports the INCLUDE statement. In that language, identical common blocks can be

,guaranteed by the following simple device; each subroutine has, near its beginning, a

statement referring to a file that contains .all the relevant COMMON declarations, for

instance,nstanc ,
t

INCLUDE POMO2.ING

The especial advantage of such an approach is that adjustments of COMMON variables

(for example, a change in the dimensions of an array) axe taken care of by modifications

to a single file, in this case the file I CMO2,INC,

If any interest is expressed, we can write a utility program to convert PDP FORTRAN

(provided that it is sufficiently ".standard"!) into a form that should be acceptable to the

IBM compilers. In particular, such a utility can replace INCLUDE statements with the
i

fully expanded FORTRAN code,

{	
39
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IV,.	 The ENTRY statement is supported on troth machines, but it does not work the same

way on each. Example 1 shows the difference, and Example 2 accomplishes the desired

effect on either machine.

Example 1 In order to calculate k j(i), the following subroutine , iai written:

SUBROUTINE SUBI (1)
RETURN
ENTRY SUB2 (J, K)
K J**I
RETURN
END

(The variable "i" initialized with a call to SUB1, and subsequently entry point SUB2 is

used.)

If this subroutine is compiled under the IBM FORTRAN -H compiler and executed, it will

give the expected result! The same code run on the PDP will invariably give the result

k = j(33, Evidently, it is not sufficient to name a variable in the list of pseudo -parameters.
t	 _

Example 2. The following code -will calculate k	 correctly on either machine:

SUBROUTINE SUB] (11)
I^Ii

RETURN
ENTRY SUB2 (J, K)
K J**I
RETURN
END

(There are other ,v aids,)

V.	 The following features are available in IBM FORTRAN —H but not in PDP FORTRAN

IV—plus;

i • optional returns from a subroutine;

• data initialization in type declaration statements (example:
P

INTEGER ZERO / 0 />)	 1

• COMPLEX* 16 type variables.

r^y
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The first and second deficiencies may b e remedied by the programmer. Programs which 	 j

rely on double-precision complex numbers probably should not be considered for the
i

11/70, (If double-precision complex arithmetic is restricted to a small portion of the

code, a fixup is feasible, See all 	 scientific programmer.)

Vl.	 The PDP FORTRAN-plus language supports the following unusual features. We strongly

discourage their use in any CSFC programming)

01
r,

expressions as DO parameter;

• expressions in subroutine DIMENSION statements;

• run-time format specifications.

To replace these handy features during initial coding requires only a little extra thought,

Experienced programmers are aware of how difficult it can be to replace them once they

^ have been incorporated into a program. 	 _	
9

VIh	 Two features available on the 11 J70 are handy and not particularly dangerous in conver-

sion.	 At the worst, a failure to convert them properly will result in a compiler syntax .

error,	 These features are:

'- • the BYTE statement,

• the same-line commenting feature,

W We do not actively encourage the use of these features, but we recognize that they can be
x;

convenient'.

VIII.	 Table 2 lists some hierarchies of [IMPLICIT, explicit, COMMON, DIMENSION, DATA)

declarations that are acceptable to both the IBM: FORTRAN=H and the PDP FORTRAN

IV-plus compilers.
4 ,	 { 	 j

Table 1. The below-listed language features are common to both IBM FORTRAN-IV

level. H and PDP FORTRAN IV-PLUS.
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1

1 Array subscripts may be integer valued expressions. If a floating-point expression has

been coaled, it is implicitly `:fixed".

2, Mixed-mode expressions are fully supported, with implied "floats" as appropriate.

3. The following I/O statements are useful;

DEFINE FILP

o direct access READ (formatted and unformatted)

• direct access WRITE (formatted and unformatted)

• FIND

s

4. The "END _" and "ERR ='' options are permitted in 1/0 statements. t .

5. The LOGICAL* 1 and INTEGER*2 variable types are useful, i

G. The IMPLICIT statement is useful,
rI
J
r
t

7, The lengths of variables and of function values may be easily defined, for instance,

FUNCTION JFUNC*2 (1)
INTEGER*2 IRAY (10)

:>
r

i 8. The ENTRY STATEMENT IS SUPPORTED, Please note the caveat in Paragraph IV,

Table 2. The standard" declaration statements may not be coded in an arbitrary order.,,

Here we list them in an hierarchical order that is acceptable to both compilers of interest, !^ µ

j 1. IMAT TCIT declarations. 	 µ, '
1

s

'2. Any of the following declarations in any order:

^^	 :
• COMMON

I ,. • explicit type declaration

0 DIMENSION

j • EXTERNAL a

42 .:
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a

One may declare the type or the dimension of variables in COMMON, either before or

after the corresponding COMMON statement. -

3. Data statements,
i

fi (Type 1 must precede Type 2 which must precede Type 3.)

r I

1

t

.1

z 1
g--
 f;

e
}

a

1
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i
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i
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APPENDIX 1

EFFECT OF FLOATING POINT ARCHITECTURE ON

' COMPUTATION ACCURACY	 ^1

' This material appeared in the Goddard Weekly Report for May 25, 1 979 to May 31, 1979

i from Code 57. 0

Effect of Floating Point Architecture on Computation Accuracy

Recent experience with scientific computations on several computers raised suspicion as to
l

the accuracy of the floating point arithmetic units in the respective machines.	 Upon investigation
;z l

' it was learned that some of the machines in question truncate the results of a floating point oper-

ation, while the others rbUhd the results. 	 The overall effects of truncation and rounding on a

lengthy computation can have a dramatic impact on the final result. To assess the magnitude of

this effect, an analysis was performed and the results are presented here in the hope that others

A
involved in large scientific computations may gain insight , into the numerical errors which can be

attributed to floating point arithmetic. These results are not to be construed as criticism or

praise of any machine, since many more factors must be considered in fully evaluating the nu-

..,	 s merical a(^6racy of a particular machine, Instead, the results can and should be used in under-
}

:f standing the differences between truncation and round-off with respect to the accuracy of long
Isequences of operations. J1^

4 ` The analysis reported here addresses, in particular, the IBM S/360 and the DEC PDP I I com-

puters, With appropriate care, however, the results can be generalized to other computers.

The DEC VAX 11 /780 and PDP 11 /70 represent double precision floating point numbers in

a binary format.	 Fifty-five bits comprise the fraction, eight bits the exponent, and one bit is

used for the sign.	 Binary normalization is used and arithmetic results are rounded, Numerical

precision to sixteen decimal digits is provided in double precision.	 l
r	 ,

r

f	 .	 r4c	 11 %AtG.E	 .1 ;i 	 b^	 1' rIz,'i31
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The 113M S/360 represents double precision floating point numbers in a hexadecimal format.

Fourteen hexadecimal digits (fifty-six bits) comprise the fraction, seven bits the exponent (base

16), and one bit is used for the :sign, Hexadecimal normalization is used, and arithmetic results

are truncated. Numerical precision to sixteen decimal digits is provided in double precision.

The following graph displays the results of the analysis for these two floating point architec

_lures. On the ordinate is thv number of double precision floating point operations perforated in

sequence on the same set of operands, such that the numerical errors will be compounded. The

abscissa then shows on two scales, binary and decimal, the number of digits which will be accurate

after a number of onerations.
j

Considering the case of truncation first, it is important to understand that truncation will

s

	

	either leave a result unchanged, or make it smaller; hence, 'truncation imposes a bias on the result.

In the ideal case, where all operations result in leaving the result unchanged after truncation, the
=i

1	 accuracy of the result will be the accuracy of the machine (56 bits in the case of the S1360),

i

	

	 This is displayed as the minimum truncated error on the graph, the vertical line next to the

ordinate. The maximum truncation error line assumes every operation results in truncation of the

result, and the mean truncation error is computed assuming a uniform mix of truncation errors

3I	 throughout the sequence of operations. Note that the mean truncation error is half of the maxi-Ij	 '

mum, a point which is easy to miss on a log-log graph such as this.

k	 In the case of round-off, a result can either be left alone, made larger, or made smaller,

There exists no bias as is encountered in truncation. Over a long sequence of operations, some

j	 results will be rounded up, others rounded down, and still others will remain unchanged, The

mean rounding error, therefore, corresponds to the minimum truncation error, as shown on the
`J

'i

	

	 graph. The maxinmrn rounding error theoretically corresponds precisely to the maximum trunca

tion error. The ilifference shown on the graph is a result of the binary fraction on the PDP If 	 _

versus the hexadecimal fraction on the S/360 Perhaps the most significant line on the graph is

i
46
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the one labelled "Reasonable Bound on Rounding Error". This line corresponds to the square 	 1

`	 root of the maximum rounding error and is derived from the Central limit Tlleorc ►at.

i

Most numerical results on a rounding machine will fall within the envelope Geiwecn the

mean rounding error anti the reasonable bound on the rounding error. In eoM7 ,MO a this, most {

results on a truncating machine will tend to lie closely clustered about the mean, introducing 	
3

r	
significant errors after long sequences of operations, For example, it is clear from this graph

that after a million serial operations on a truncating machine, only about nine digits can confl-

dently be expected to be correct, whereby the same sequence of operations on a .rounding ma-

chine can be expected to be correct to fourteen decimal places. The conclusion of this analysis 	 1

is that the numerical architecture of some current computers may limit the achievable accuracy

of lengthy scientific computations; in other words, caveat emptor. 	 lz

For further .information on clarification on this concept, please contact Ron Larsen, :344-
_

7777. Anyone engaged in precision computing tasks on the 360 computers should, be aware of 	 i

this effect,

j

I

Y
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