NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DEVELOPMENT OF boolean calculus

 ANDITS APPLICATIONS

FINAL REPORT \quad AUGUST 15, 1977
NASA GRANT NO. NEG 1436
DECEMBER 31, 1980

BY
MOIEZ A. TAFIA
PREPARED FOR
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA 23665

ATTENTION:
DR. JERRY H. TUCKER, NASA TECHNICAL MONITOR
MR. C.L. CROWDER, GRANT OFFICER

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF MIAMI
CORAL GABLES, FLORIDA 33124

1. INTRODUCTION
2. FORNALIZATJON OF BOOLEAN CALCULUS
3. NEW SYNTHESIS TECHNIQUES
4. DEFINITIONS
5. SYNTHESIS USING SP COUNTER
6. NONCOMBINATIONAL BOOLEAN CALCULUS
7. CONCLUSION
8. PUBLICATIONS GENERATED BY THE GRANT
9. REFERENCES

APPENDIX I
APPENDIX II
APPENDIX III

DEVELOPMENT OF BOOLEAN CALCULUS

AND
ITS APPLICATIONS
(NASA GRANT NSG 1436 1977-1980)
FINAL REPORT

MOIEZ A. TAPIA
DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF MIAMI
CORAL GABLES, FLORIDA 33124

1. INTRODUCTION

The report describes the significant results obtained during the NASA GRANT NSG No 1436 period from August 1977 through December 31, 1980. The primary objective of the grant has been to develop Boolean Calculus so that it can be advantageously applied to developing new digital system design methodologies that would be desirable additions to existent methodologies in terms of reducing system complexity, size, cost, speed, power requirements, etc. New synthesis procedures were developed during the tenure of the grant with the above mentioned objectives in mind. These will be described in the following sections. Several publications that resulted from research efforts will be shown in a later section.

2. FORMALIZATION OF BOOLEAN CALCULUS:

Formalization of the existent and new concepts and relationships in the area of the Boolean Integral Calculus are given in Appendix I.

3. NEW SYNTHESIS TECHNIQUES:

Boolean Calculus has made it possible to synthesize funda-mental-mode asynchronous sequential system using clock-triggered flipflops. It has been shown that synthesis techniques that utilize edge-sensitiveness property of flipflops require fewer flipflops and logic gates than conventional techniques do for many systems [11]. In order to describe the new synthesis technique, we need the following definitions:

Definition 2.1: Given a Fundamental Mode Asynchronous(FMA) system, FMAS $=(I, S, O, f, g)$ where
$I=$ set of p distinct input conditions $=\left\{I_{j}\right\}$
$S=$ set of q states of the system $=\left\{S_{j}\right\}$
$0=$ set of outputs $=\left\{0_{j}\right\}$
$f=$ output function
$=f\left(S_{k}, I_{j}\right), \forall_{j}$ and k
$g=g\left(S_{k}, I_{j}\right), \Psi j$ and k
$=$ next state function,
we will need to tranform it to a Differential Mode System, DM S as defined below:

DIS $=\left(I^{\prime}, I^{\prime}, S^{\prime}, O^{\prime}, f^{\prime}, G^{\prime}\right)$
where $I^{\prime}=I, \quad S^{\prime}=S$
$I^{*}=\left\{\left(I_{j}, I_{k}\right) \mid \psi_{j, k}\right\}$
$O^{\prime}=0$
$f^{\prime}=$ output function of DMS
$g^{\prime}=$ next state function of DMS
$=g^{\prime}\left(S_{h}, I_{j}, I_{k}\right)$
S_{i}, if $g\left(S_{h}, I_{j}\right)=S_{h}, g\left(S_{h}, I_{k}\right)=S_{i}$
and $g\left(S_{i}, I_{k}\right)=S_{i}$
S_{i}, if $g\left(S_{h}, I_{j}\right)=S_{h}$ and there exist $S_{i 1}, S_{i 2},--, S_{\text {in }} \& S_{i}$ such that $g\left(S_{h}, I_{k}\right)=S_{i 1}$,
$g\left(S_{i 1}, I_{k}\right)=S_{i 2},---g\left(S_{i n}, I_{k}\right)=S_{i}$
$=$
and $g\left(S_{i}, I_{k}\right)=S_{i}$.
—, if $g\left(S_{h}, I_{j}\right)=S_{h} \& g\left(S_{h}, I_{k}\right)=\square$
—, if $g\left(S_{h}, I_{j}\right)=S_{h}$ and there exist
$s_{11}, s_{i 2},--, s_{\text {in }}$ such that
$g\left(S_{h}, I_{k}\right)=S_{i 1}, g\left(S_{i 1}, I_{k}\right)=S_{i 2}$,
$g\left(S_{i 2}, I_{k}\right)=S_{i 3},--, g\left(S_{i n}, I_{n}\right)=$
\longrightarrow if $g\left(S_{h}, I_{j}\right) \neq S_{h}$
$f^{\prime}\left(S_{h}, I_{j}, I_{k}\right)$
$=f\left(S_{i}, I_{k}\right)$ if $g^{\prime}\left(S_{h}, I_{j}, I_{k}\right)=S_{i}$
—, if $g^{\prime}\left(S_{h}, I_{J}, I_{k}\right)$ is unspecified

It will be assumed that only one input variable can change at a time.

In order to facilitate understanding of DMS construction, an example will be presented.

\% 00		01	11	10
A	(A) 1	C, -	(4), 0	C,
B	(B), 0	D, -	(B), 1	D, -
C	B, -	C, 1	B, -	(C) 0
D	A, -	(D) 0	A, -	(D) 1

Figure 1 (FMA System)
Figure 1 describes an FMA system.

	$\begin{gathered} x_{1} x_{2} \\ 00 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & 01 \\ & 11 \end{aligned}$	01 00	10 00	10	11 01	11 10
A	C, 0	C, 1	---	---	---	---	C, 1	C, 0
B	D, 1	D, 0	---	---	---	---	D, 0	D, 1
C	---	---	B, 1	B, 0	B, 0	B, 1	---	---
D	---	---	A, 0	A, 1	A, 1	A, 0	---	---

Figure 2 (DM System)
Figure 2 describes a DMS system that has been transformed from the FMA system in Figure 1.

Observe that the FMA system table in Figure 1 is in its reduced form.

It can be shown that the method of state reduction formally used for reducing an FMA table can be applied to the next-state and output table for a DMS system. If such a reduction is carried out in
case of Figure 2, one gets the reduced DM system in Figure 3.

	$\begin{gathered} x_{1} x_{2} \\ 00 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	101	01 00	10 00	10 11	11 01	11 10
($A, C) A$	A, 0	A, 1	B, 1	B, 0	B, 0	B, 1	A, 1	A, 0
(B, D) B	B, 1	E, 0	A, 0	A, 1	A, 1	A, 0	B, 0	B, 1

Figure 3 (Reduced DM table)

The next step in the synthesis procedure is to assign state assignments to the states in the system. While doing so, we must ensure that the assignment is such that it allows only one state variable to change during state transition. If the state diagram corresponding to the DM table is not amenable to single-variablechange assignment, we will need to increase the number of states by adding equivalent states in order to accomplish single-variablechange assignment. This problem will be referred to again in the report later Of course, even in the case of traditional techniques for synthesizing FMA systems, the same technique must be resorted to in order to achieve single-variable-change state assignment.

In order to get a feeling for the problems associated with synthesizing an asynchronous sequential system using clock-triggered flipflops, we will present a complete synthesis example given below:

	$\begin{array}{r} \mathbf{x}_{1} \mathbf{x}_{2} \\ 00 \end{array}$	01	11.	10
A	A, 1	B,	D,	B,
B	A, 1	B, 1	C,	B, 1
C	C, 0	B,	C, 1	D,
D	C.	A, -	D, 0	D, O

Figure 4

Figure 5
The system in Figure 4 is an FMA system which is to be synthesized using clock-triggered flipflops. The transformation of the system into DM system is given in Figure 5.

When the table in Figure 5 is reduced, we get the reduced $D M$ system in Figure 6. Observe that the FMA system in Figure 5 is in its reduced form.

Figure 6

Let $y=0$ represent A and $y=1$ represent C. The excitation table for the $D M$ system is given in Figure 7.

$\mathrm{x}_{1} \mathrm{x}_{2}$								
0	00	00	01	01	11	11	$\begin{aligned} & 10 \\ & 00 \end{aligned}$	10
	10	01	11	00	01	10		
	0	0	1	0	-	-	0	1
1	1	0	-	-	0	1	1	1

Figure 7

Observe that in the first row y changes when x_{1} changes to 1 with $x_{2}=1$ and when x_{2} changes to 1 with $x_{1}=1$. In the second row y changes when x_{2} changes to 1 with $x_{1}=0$ and when x_{1} changes to 0 with $x_{2}=1$. Hence the clock function should go through positive changes when any of these changes occur. Hence we can write down the differential expression for the clock function as follows:
$d c=\bar{y}\left(x_{2} d x_{1}+x_{1} d x_{2}\right)+y\left(\bar{x}_{1} d x_{2}+x_{2} d \bar{x}_{1}\right)$
Observe that

$$
\begin{aligned}
& f_{1} d c=\bar{y}\left(x_{1} x_{2}\right)+y\left(\bar{x}_{1} x_{2}\right) \\
& \int_{0} d c=\bar{y}\left(\bar{x}_{1} x_{2}+x_{1} \bar{x}_{2}\right)+y\left(\bar{x}_{1} \bar{x}_{2}+x_{1} x_{2}\right)
\end{aligned}
$$

Hence $\int_{1} d c \cdot \int_{0} d c=0$ and $d c$ is compatibly integrable.
$f_{1} \mathrm{dc}-\bar{y}\left(x_{1} x_{2}\right)+y\left(\bar{x}_{1} x_{2}\right)$ is a possible soulution. Let us, therefore try,

$$
\begin{aligned}
& C=\bar{y}\left(x_{1} x_{2}\right)+y\left(\bar{x}_{1} x_{2}\right) \\
& \frac{\partial C}{\partial x_{1}}=\bar{y} x_{2}, \frac{\partial C}{\partial \bar{x}_{1}}=y x_{2} \\
& \frac{\partial C}{\partial x_{2}}=\bar{y}\left(x_{1}\right)+y\left(\bar{x}_{1}\right), \frac{\partial C}{\partial \bar{x}_{2}}=0 \\
& \frac{\partial C}{\partial y}=\left(\bar{x}_{1} x_{2}\right), \frac{\partial C}{\partial \bar{y}}=x_{1} x_{2}
\end{aligned}
$$

Observe that as far as x_{1} and x_{2} are concerned, no undesired transitions are caused by them. Since $\frac{\partial C}{\partial y}$ and $\frac{\partial C}{\partial \overline{\bar{y}}}$ are non-zero, we must make sure that when y changes, it doesy not cause undesired transitions. $\frac{\partial C}{\partial y}=x_{1} x_{2}$. Hence when $x_{1} x_{2}=1$ and y changes from 1 to 0 , it will cause a positive change in the value of c . Looking at the excitation table in Figure 7, we see that when input $x_{1} x_{2}$ changes to 11 (from 01 or 10), y changes from 0 to 1 rather than from 1 to 0 . Hence this undesired transition cannot occur.

Consider next $\frac{\partial C}{\partial y}=\bar{x}_{1} x_{2}$. When $x_{1} x_{2}=1$ and y changes from 0 to 1 , C will go through a positive transition, when $x_{1} x_{2}$ changes from 00 or 11 to $01, y$ changes from 1 to 0 , rather than from 1 to 0 . Hence, no undesired transition is caused by change in y when $x_{1} x_{2}$ changes from 00 or 11 to 01.

Hence we have no ripple and $C=\bar{y}\left(x_{1} x_{2}\right)+y\left(\bar{x}_{1} x_{2}\right)$ realizes the system. It can be shown that $z=\bar{y}+x_{2}$.

Figure 8
A toggle flipflop is used, since y changes whenever clock transition occurs.

Observe that $\bar{x}_{1} x_{2} \Delta y$ and $x_{1} x_{2}$ Dyare transitions that cannot occur.
4. DEFINITIONS

The following definttions will be needed to describe the results of the resegtoh:

Definition 4.1: $m_{j}\left(x-x_{1}\right)$ denotes the product term obtained by deleting the variable x_{1} from the j th minterm of variables $x_{1}, x_{2}, \ldots, x_{n}$.

Definition 4.2; $m_{j}\left(x-x_{1}\right) \Delta x_{1}$ denotes the positive transition when $m_{j}\left(\underline{x}-x_{i}\right)=1$ and x_{1} changes from 0 to 1 .

Definition 4.3: $m_{j}\left(x-x_{1}\right) \nabla x_{1}$ denotes the negative transition when $m_{j}\left(x-x_{i}\right)=1$ and x changes from 1 to 0,

Definition 4.4: $T P\left(C_{j}\right)$ denotes set of all possible positive transitions of C_{j} where C_{j} is a function of x and y.

The meanings of notations such as $m_{j}\left(\underline{x}, \underline{y}-y_{i}\right)$, $m_{j}\left(\underline{x}, \underline{y}-y_{i}\right) \nabla y_{1}$, etc., easily follow from the above definitions and will, therefore, not be defined.

Definition 4.5: A differential expression of the form

$$
\begin{aligned}
& d F=m_{0}(y) \sum_{i=1}^{n}\left(\alpha_{01} d x_{1}+\beta_{01} d \bar{x}_{1}\right) \\
& +m_{1}(y) \sum_{i=1}^{n}\left(\alpha_{1 i} d x_{1}+\beta_{1 i} d \bar{x}_{1}\right) \\
& +\ldots+\quad m_{p}(y) \sum_{i=1}^{n}\left(\alpha_{p i} d x_{1}+\beta_{p 1} d \bar{x}_{1}\right) \\
& \text { where } p=2^{m}-1
\end{aligned}
$$

is said to be exactly integrable with respect to variables $x_{1}, x_{2}, \ldots, x_{n}$ if there exists a function $G(\underline{x}, y)$, such that
$\frac{\partial G}{\partial x_{1}}=m_{0}(y) \alpha_{01}+m_{1}(y) \alpha_{11}+\ldots+m_{p}(\underline{y}) \alpha_{p i} \quad \&$
$\frac{\partial G}{\partial \overline{x_{i}}}=m_{0}(\underline{y}) \beta_{01}+m_{1}(\underline{y}) \beta_{11}+\ldots,+m_{p}(\underline{y}) \beta_{p i}, \psi_{1}$.
If a function G satisfying the above equations does exist, then G is called the exact integral of dF with respect to $x_{1} x_{2}, \ldots, x_{n}$.

Defintion 4.6: I_{k} represents the binary vector ($b_{1}, b_{2}, \ldots, b_{n}$) such that $b_{1} ' s$ are $0^{\prime} s$ or $1^{\prime} s$ and k is the numerical value of $\left(b_{1} b_{2} \ldots b_{n}\right)$, when the latter is interpreted as a binary number.

Observe that $m_{k}(\underline{x}) \left\lvert\, \begin{aligned} & =1 \\ & x=I_{k}\end{aligned}\right.$

Definition 4.7: S_{k} represents the binary vector $\left(b_{1}, b_{2}, \ldots, \ldots, b_{m}\right)$ such that $b_{i}^{\prime} s$ are $0^{\prime} s$ or $1^{\prime} s$ and k is the numerical value of $\left(b_{1}, b_{2} \ldots . b_{m}\right)$, when the latter is interpreted as a binary number.

$$
\text { Observe that } m_{k}(y) \mid=1
$$

Definition 4.8: S_{11} and $S_{j 2}$ are said to be y_{j}-adjacent to each other, if their representations as defined in vefinition 4,7 agree in every bit except the $f \frac{\text { th }}{, 1}$ one.

Definition 4.9: TP (dF) denotes the set of transitions specified by the differential expression dF which can cause F to change from 0 to 1 , if $d F$ is compatibly integrable. If dF is not integrable, $T P(d F)$ is not defined.

Definitiot 4.10: If a change in the value of state variable y_{j} resulting from a change in input causes another state variable y_{i}, for some i \mathcal{j}, to change its value, then a secondary transition or ripple is said to occur in flipflop that is associated with the state variable y_{i}. If in a DM system a ripple cannot occur, the system is called ripple-free.

Definition 4.11: $m_{j}\left(\underline{x}-x_{i}\right) \Delta x_{i}$ and $m_{j}\left(\underline{x}-x_{i}\right) \nabla x_{i}$ defined earlier will also, be denoted by $m_{j}\left(\underline{x}-x_{i}\right) d x_{i}$ and $m_{j}\left(\underline{x}-x_{i}\right) d \bar{x}_{i}$, respectively.

Definition 4.12: $\quad \partial m_{j}\left(\underline{x}-x_{i}\right)$ denotes transitions defined in Definitions 4,2 and 4.3 as follows:
$\partial\left(m_{j}\left(\underline{x}-x_{1}\right)\right.$
$=-\sqrt{m_{j}\left(\underline{x}-x_{i}\right) \Delta x_{i}, \text { if } x_{i} \text { is in true form in } m_{j}(\underline{x})} \begin{aligned} & m_{j}\left(\underline{x}-x_{i}\right) \nabla x_{i}, \text { if } x_{i} \text { is in complemented form in } m_{j}(x)\end{aligned}$

Definition 4.13: $m_{j}\left(\underline{x}-x_{1}\right)$ d x_{i} denotes a pair of transitions defined by $m_{j}\left(\underline{x}-x_{i}\right) \Delta x_{j}$ and $m_{j}\left(\underline{x}-x_{i}\right) \nabla x_{i}$.

Definition 4.14: A DMS system table is said to be level-wise output-unambiguous, if there exist no input conditions I_{1}, I_{j}, I_{k} and states S_{a} and S_{b}, I_{i} and I_{k} being adjacent, $I_{j} \neq I_{k}$ S_{a} and S_{b} not necessarily distinct, such that $g^{\prime}\left(S_{a}, I_{j}, I_{1}\right)$, $g^{\prime}\left(S_{b} I_{k}, I_{i}\right), f^{\prime}\left(S_{a} I_{j}, I_{i}\right)$ and $f^{\prime}\left(S_{b}, I_{k}, I_{i}\right)$ are defined and $g^{\prime}\left(S_{a}, I_{j}, I_{i}\right) \rightarrow g^{\prime}\left(S_{b}, I_{k}, I_{i}\right)=S_{c}$ (say) $f^{\prime}\left(S_{a}, I_{j}, I_{i}\right)=O_{j c} \neq O_{k c}=f^{\prime}\left(S_{b}, I_{k}, I_{i}\right)$.

A DMS system table which is not level-wise output-unambiguous will be called level-wise-ambiguous.

4.2 BASIC ASSUMPTIONS

All the theorems that follow are pertaining to realization of a DM system table using clock-triggered flipflops. Unless otherwise stated, the following assumptions will be applicable to all our discussion:

1. only one input variable can change at a time
2. only one state variable is allowed to change during a state transition. This is equivalent to assuming that the specified
table (after state addition if necessary) lends itself to single-variable-change state assignment. This restriction will be removed later.
3. all flipflops respond to a positive transition in clock input
4. $C_{i}\left(=C_{i}(\underline{x}, y)\right)$ denotes the function defining the input to the clock pin of the flipflop i, i.e., the flipflop associated with variable y_{i}, for $V_{i}, 1 \leq i \leq m$.
5. an input (condition) I_{k} corresponds to value of \underline{x} such that

$$
\left.m_{k}(x)\right|_{\underline{x}=1} ^{=I_{k}} .
$$

6. a state (assignment) S_{k} represents value of Z such that

$$
m_{k}(y) \left\lvert\, \begin{gathered}
=1 \\
y=S_{k}
\end{gathered} .\right.
$$

7. The number of states in the table is already reduced to minimum possible.

The following theorems establish conditions for realizing a DMS table using clock-triggered flipflops:

Theorem 4.1: Consider a DM system table whose realization exists. Then corresponding to every row (or state) $S_{i 1}$ and input change from $I_{j 1}$ to $I_{j 2}, 0 \leq i \leq q-1,0 \leq j 1 \leq p-1,0 \leq j 2 \leq p-1, I_{j 1}$ and $I_{j 2}$ being x_{i}-adjacent, if the next state function $g^{\prime}\left(S_{i 1}, I_{j 1}, I_{j 2}\right)$ is defined and
(4.1.1) $\quad g^{\prime}\left(S_{i 1}, I_{j 1}, I_{j 2}\right)=S_{i 2}$ where
(4.1.2) $\quad S_{i 1}$ and $S_{i 2}$ are y_{k}-adjacent, then
(4.1.3) $\quad d C_{R} m_{i 1}(y) \cdot \partial\left(m_{j 2}\left(\underline{x}-x_{i}\right)\right), 1 \leq k \leq m$

The proof is given in reference 14 .

Theorem 4.2: Any finite-state asynchronous sequential system can be realized using clock-triggered flipflops and logic gates and employing Boolean calculus method.

The proof is given in Semi-Annual Status Report \#2 [15].

Theorem 4. 3: The complexity of network realization of a finitestate asynchronous sequential system, consisting of clocktriggered flipflops and logic gates obtained by employing Boolean calculus method is no higher than that of a network realization of the same system, consisting of S-R filpflops (without clock inputs) and logic gates obtained by conventional method for synthesis of an FMA system.

When the DMS table admits of a unit-distance state assignment, the realization of the system is possible using any commercially available flipflops. When the DMS table is such that unit-distance state assignment is not possible, then certain relationships among the tune response characteristics of the flipflops must be satisfied so that the different time responses of flipflops do not cause undesired transitions and hazards. These need to be obtained.

Synthesis procedures are illustrated in conference papers given in Appendices II \& III.

5. SYNTHESIS USING SP COUNTER

Efforts to explore the possibility of using an SP (synchronous presettable) counter to realize an FMA system were successful. Such an approach significantly reduces the number of IC packages required for the system to be realized, thus reducing network complexity, size and cost.

5.1 SP COUNTER

An SP counter (such as 74LS160) has the following input and output pins of interest to us:
(1) count-enable inputs $P \& T$, both of which must be high for the counter to count.
(2) Load input L which, on low level, causes the data on the data input pins to be transferred synchronously to the count output pins when a positive transition of clock pulse occurs.
(3) Clock input pin CK. Loading or counting occurs synchronously on the positive transition of clock pulse.
(4) Data input pins $D_{1}, D_{2}, \ldots, D_{n}$. The data on these pins are transferred to count output pins $Y_{1}, Y_{2}, \ldots, Y_{n}$ respectively on the positive transition of clock pulse when $L=0$.
(5) Output pins $Y_{1}, Y_{2}, \ldots, Y_{n}$ give the count output of the counter.

5.2 EXAMPLE

Before presenting a formal theory and procedure for synthesis, we will illustrate the procedure with the following example:

Consider the FMA system given in Figure 5.2.1.

Figure 5.2.1

Observe that the system is already minimized. Moreover it does not admit of a unit-distance state assignment using only two state variables. Hence three state variables are needed to realize the system, if conventional synthesis procedure is employed.

Using the transformation equations in Definition 2.1 we get the Differential Mode System (DMS) given in Figure 5.2.2 which is equivalent to the system under consideration.

$x_{1} x_{2}$								
$Y_{1} Y_{2}$	00 10	00	01	01	11	11	10	10
00 a	a, 0	a, 0	b, 1	a, 0	-	-	a, 0	b, 1
01 b	-	-	-	-	d, 1	b, 1	a, 0	b, 1
$11 . c$	-	-	-	-	a, 1	c, 0	a, 0	c, 0
10 d	-	-	c, 0	a, 0	-	-	-	-

Figure 5.2.2

Let dc denote the differential expression for the clock function. dc is given by
(E5.2.1) $\quad d C=\bar{Y}_{1} \bar{Y} 2\left(x_{2} d x_{1}+x_{1} d x_{2}\right)+\bar{Y}_{1} Y_{2}\left(x_{2} d \bar{x}_{1}+\bar{x}_{2} d \bar{x}_{1}\right)+$ $+Y_{1} Y_{2}\left(x_{2} d \bar{x}_{1}+\bar{x}_{2} d \bar{x}_{1}\right)+Y_{1} \bar{Y}_{2}\left(x_{2} d x_{1}+\bar{x}_{1} d \bar{x}_{2}\right)$

Let C_{1} be a compatible integral of dc. Then
(E5.2.2) $\quad C_{1}=\bar{Y}_{1} \bar{Y}_{2} x_{1} x_{2}+\bar{Y}_{1} Y_{2} \bar{x}_{1}+Y_{1} \bar{Y}_{2} \cdot\left(x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}\right)+Y_{1} Y_{2}\left(\bar{x}_{1}\right)$
$=\bar{Y}_{2} x_{1} x_{2}+Y_{2} \bar{x}_{1}+Y_{1} \bar{x}_{1} \bar{x}_{2}$
Observe that
(E5.2.3)

$$
\frac{\partial c_{1}}{\partial x_{1}}=\bar{Y}_{2} x_{2}
$$

(E5.2.4)

$$
\frac{\partial c_{1}}{\partial \bar{x}_{1}}=Y_{2}+Y_{1} \bar{x}_{2}
$$

(E5.2.5)

$$
\frac{\partial c_{1}}{\partial x_{2}}=\bar{Y}_{2} x_{1}
$$

and
(E5.2.6)

$$
\frac{\partial c_{1}}{\partial \bar{x}_{2}}=\mathrm{Y}_{1} \bar{x}_{1}
$$

For the positive transitions that occur as shown in equations (E5.2.3) through (E5.2.6), we need to provide the appropriate values to data input pins D_{1} and D_{2} as shown in Figure 5.2.3.

	$\mathrm{x}_{1} \mathrm{x}^{2}$					${ }_{1}{ }^{\text {x }}$			
$Y_{1} Y_{2}$	00	01	11	10	$\mathrm{X}_{1} \mathrm{X}_{2}$	00	01	11	10
00	-	-	01	-	00	0	0	-	0
01	00	10	-	-	01	-	1	1	1
11	00	00	-	-	11	-	-	0	0
10	00	-	11	-	10	-	1	-	-
$\begin{array}{lc}\mathrm{D}_{1} \mathrm{D}_{2} & 2 \text { (Output) } \\ \text { ure } & \text { (2.3 }\end{array}$						2 (Output)			

From Figures 5.2.3 and 5.2.4 we get
(E5.2.7)

$$
\mathrm{D}_{1}=\bar{x}_{1} x_{2} \bar{Y}_{1}+x_{1} y_{1}
$$

(E5.2.8)

$$
D_{2}=x_{1}
$$

and
(E5.2.9) $z=Y_{1} \oplus Y_{2}$.

Equations (E5.2.2), (E5.2.7), (E5.2.8) and (E5.2.9) give the system realization with
(E5.2.10)

$$
L=O=P=T .
$$

5.3 SYNTHESIS PROCEDURE

Given an FMA system that is already reduced, the first thing to do is to find an equivalent DMS table using the equations in Definition 2.1. . If the table thus obtained is reduced, if it is reducible, then the system may or may not be realizable. The procedure that follows applies to DMS table as obtained after transforming the FMA system. Later we will present the procedure for synthesizing DMS table that is reducible.

1. Consider next state for every present state and every input change. If the next state is different than the present state for a given present state and input change, form a differential term that reflects the input change and the present state in which the change is occurring, Taking Boolean sum of all such differential terms, form the differential expression for the clock function.
2. Find a compatible integral, say C_{1}, of the differential expression obtained above.
3. Find the Boolean differential dC_{1}, of the function C_{1} obtained so as to determine all possible positive transitions that can occur in the elock function.
4. Determine the value of next state and hence yaiues of next state variables $D_{1}, D_{2}, \ldots D_{n}$ corresponding to every differential term in dC_{1}. On the Karnaugh map for D_{i}, $1 \leq i \leq n$ place the value of D_{i} in the cell corresponding to the present state and the value of input that prevails after the input change described in the differential term occurs. The remaining cells are left unspecified. Realize functions $D_{1}, D_{2} \ldots D_{n}$ from the Karnaugh maps.
5. Obtain the output function z in terms of input variables and state variables as is usually done.
6. The LOAD pin and count enable inputs P and T are grounded. The functions $C_{1}, D_{1}, D_{2}, \ldots, D_{n}$ and z along with an SP counter give the desired network realization.

If the DMS table is reduced, then the conditions in Theorem 5,4,2 must be satisfied for it to be realized as a network with an SP counter in it. If the conditions are satisfied, the procedure mentioned above can be followed for synthesizing the table.

5.4 REALIZABILITY

Next we will consider some theorems pertaining to realizability of a given FMA system using an SP counter,

Theorem 5.4.1: Given a DMS table obtained from an FMA system that has the same number of states as the former, it is realizable using an $S P$ counter. The proof is outlined in reference [18].

Theorem 5.4.2: If the DMS table derived from an FMA system is reduced, then it is realizable using an $S P$ counter if the following conditions are satisfied:
(1) The differential expression for the clock function for the table is compatibily integrable.
(2) The table is level-wise next-state- and outputunambiguous.

6. NONCOMBINATIONAL BOOLEAN CALCULUS

In Boolean calculus studied so far it was assumed that a function being studied is the output of a combinational system whose inputs are the arguments of the function. Also, while integrability of a differential expression was studied, it was tacitly assumed that an integral, if it exists, would be realized with a combinational system.

An attempt was made to generalize the Boolean calculus that was developed with the limitations shown above. Such calculus, to be referred to, henceforth, as noncombinational Boolean calculus, will help us describe the output, after an input change, of a noncombinational system in terms of changes in the inputs to th system. Also, if the output, after an input change, is specified in terms of changes in inputs, realizability of such a specification using a noncombinational system will be studied. Some results obtained in this direction will be described in what follows. It will be assumed that only one variable can change at a time.

Definition 6.1: $\Delta x_{i}, 1 \leq i \leq n$, denotes a change in x_{i} from 0 to 1.

$$
\text { (D6.1.1) } \Delta x_{i}=\left\{\begin{array}{l}
1 \text { when } x_{i} \text { changes from } 0 \text { to } 1 \\
0 \text { otherwise }
\end{array}\right.
$$

$$
\nabla x_{i}, \quad 1 \leq i \leq n, \text { denotes a change in } x_{i} \text { from } 1 \text { to } 0
$$

(D6.1.2) $\nabla x_{i}=\left\{\begin{array}{l}1, \text { when } x_{i} \text { changes from } 1 \text { to } 0 \\ 0, \text { otherwise }\end{array}\right.$

Definition 6.2; The terms $x_{i} \Delta x_{i}, \bar{x}_{i} \Delta x_{i}, x_{i} \nabla_{x_{i}}$ and $\bar{x}_{i} \nabla x_{i}$ will be defined as follows:
(D6.2.1)

$$
x_{i} \Delta x_{i}=\Delta x_{i}
$$

(D6.2.2)

$$
\overline{x_{i}} \Delta_{x_{i}}=0
$$

(D6.2.3)

$$
x_{i} \nabla x_{i}=0
$$

(D6.2.4) $\quad \overline{x_{i}} \nabla x_{i}=\nabla x_{i}$

Consider a D-flipflop shown below:

Since the relationship between Q and x_{1}, x_{2} and x_{3} is not combinational, we cannot express Q in terms of a Boolean function of variables x_{1}, x_{2} and x_{3}. However we could express the value of Q immediately following any transition of the clock.

Observe that
(D6.1.1)

$$
c=x_{1} x_{2}
$$

so that
(D6.1.2)
$d C=x_{1} d x_{2}+x_{2} d x_{1}$
Since only the positive transitions of clock are of interest, we may describe the positive transitions of clock in terms of changes in x_{1} and x_{2}
(D6.1.3) $\Delta c=x_{1} \Delta x_{2}+x_{2} \Delta x_{1}$
Let $Q(T+)$ denote the value of Q immediately following any transition of clock. Then by definition
(D6.1.4) $\quad Q(T+)=D . \Delta C$
or
(D6.1.5) $Q(T+)=D x_{2} \Delta x_{1}+D x_{1} \Delta x_{2}$
If we let
(D6.1.6) $D=x_{3} \quad$ then
(D6.1.7) $Q(T+)=x_{2} x_{3} \Delta x_{1}+x_{1} x_{13} \Delta x_{2}$
Equation (D6.1.7) points out that Q is 1 after the following transitions:
(1) $x_{2}=x_{3}=1$ and x_{1} changes from 0 to 1 .
(2) $x_{1}=x_{3}=1$ and x_{2} changes from 0 to 1 .

Observe that if $x_{3}=0$ and $x_{1}=1$ while x_{2} changes from 0 to 1 , then a transition does occur making Q to remin at or go to 0 . This is not to be seen from equation(D6.1.7) if the function D (i,e, x_{3} in this case) is not kept separate from the transition terms. Hence a more desirable form for $Q(T+)$ than that shown in
equation (6.1.7) would be
(D6, 1,8) $Q(1+)=D \cdot\left[x_{2} \Delta x_{1}+x_{1} \Delta x_{2}\right]$.
Definition 6.3: The function $Q(T+)$ as shown in equation (D6.3.1) below will be called next-value function.
(D0.3.1) $\quad Q(T+)=\mathrm{D} \cdot\left[\sum_{i=1}^{n}\left(\alpha_{1} \Delta x_{i}+\beta_{i} \nabla x_{i}\right)\right]$ where D is a function of \underline{x} and \underline{y}.

Obviously the function D outside the square bracket refers to the value that Q would assume if and when one of the transition terms inside the square brackets assumes value of 1 .

Addressing ourselves to the reverse problem of synthesizing a network that would reailze a next-value function $Q(T+)$ of the form
(D6.1.9)

$$
\left.Q(T+)=D \cdot\left[\sum_{i=1}^{n} \alpha_{i} \Delta x_{i}+\beta_{i} \nabla x_{i}\right)\right]
$$

where α_{i} and β_{i} are assumed to be independent of x_{i}, for all i, withrut loss of generality (in view of Definition 6.2), all that we need to do is to find the Exark integral, if it exists, of the differential expression (D6.1.10) $\quad \mathrm{d} \xi=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} \mathrm{~d} \bar{x}_{i}\right)$.

Of course, if the differential expression is not exactly
integrable but compatibly integrable and if
$\int_{C l} d \xi$ is a compatible integral of the differential expression, then
a realization of the form

will provide not only the transitions that are specified in equation (D6.1.9) but, also, some additional transitions.

Theorem 6.1: If the next-value function of a system is given by
(T6.1.1)

$$
Q(T+)=D \cdot\left[\sum_{i=1}^{n}\left(\alpha_{i} \Delta x_{i}+\beta_{i} \nabla x_{i}\right)\right]
$$

where
(46.1.2)

$$
\mathrm{D}=\mathrm{D}_{1} \cdot \mathrm{x}_{i 1} \mathrm{x}_{12} \cdots \ldots \mathrm{x}_{i k}, \quad 1 \leq k \leq n
$$

(T 6.1.3)

$$
F(\underline{x})=\int_{E}\left(\sum_{i=1}^{n} \alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \text { and }
$$

(T6.1.4)

$$
F(\underline{x})=x_{i 1} \cdot x_{i 2} \cdot \ldots \ldots x_{i k} \cdot F(\underline{x}),
$$

then $Q_{1}(T+)$ described as
(T6.1.5)

$$
Q_{1}(T+)=D_{1} \cdot\left[\sum_{i=1}^{n}\left(\alpha_{i} \Delta x_{i}+\beta_{i} \nabla x_{i}\right)\right]
$$

realizes the same next-valic function as $Q(T+)$ in equation (T6.1.1) does.

Proof: Suppose due to a transition described by $\partial m_{p}\left(\underline{x}-x_{q}\right), Q(T+)=1$ if $\chi=S_{0}$ This implies that $D=1$ when $\underline{x}=b_{p} x=S_{0}$
Hence when $y=S_{0}$ and $\underline{x}=b_{p}$

$$
1=D=D_{1} \cdot x_{i 1} \cdots x_{i k}
$$

so that $D_{1}=1$ for $x=b_{p}^{\&} q=S_{0}$

Definition 5.3: F is said to be a compatible integral of dH, denoted by $\int_{C} d H$, and $d H$ is sain to be compatibly integrable if

$$
\begin{align*}
& \frac{\partial F}{\partial x_{i}}=\alpha_{i} \quad \text { and } \quad \frac{\partial F}{\partial \bar{x}_{i}}=\beta_{i} \tag{D5.3.1}\\
& 11 \quad{ }_{1}, i \leq n .
\end{align*}
$$

Observe that by the definitions given above if dH is exactly integrable, then $F=\int_{E} d H$ goes through exactly the changes which are described in dH.
In what follows we will obtain ways of finding all possible. compatible integrals of dH , if dH is compatibly integrable. To accomplish this we need the following integral operators:

Definition 5.4: The zeroth order integral of dH, denoted by $\int_{0} d H$, is defined as

$$
\begin{equation*}
\int_{0} \mathrm{dH}=\sum_{i=1}^{n}\left(\alpha_{i} \bar{x}_{i}+\beta_{i} x_{i}\right) \tag{D5.4.1}
\end{equation*}
$$

where $\quad d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} \overline{\mathrm{u}}{ }_{i}\right)$.
Also, the first order integral of dH, denoted by $\int_{1} d H$, is defined as

$$
\begin{equation*}
\int_{1}^{a s} d H=\sum_{i=1}^{n}\left(\alpha_{i} x_{i}+\beta_{i} \bar{x}_{i}\right) \tag{D5.4.3}
\end{equation*}
$$

Definition 5.5: A binary point $b_{0} \in B(n)$ is said to be one" (or "zero") of a function $F(x)$ if

$$
\begin{equation*}
F\left(b_{O}\right)=1(\text { or } 0) \tag{D5.5.1}
\end{equation*}
$$

Lemma 5.1: If the differential expression

$$
\begin{equation*}
d H=\sum_{i=1}^{n} \quad\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{L5.1.1}
\end{equation*}
$$

is compatibly integrable and F_{1} is a compatible integrul of dH , then every "one" of $\int_{1} \mathrm{dH}$ is also a "one" of F_{1}.

Proof: Since F_{1} is a compatible integral, by Definition 5.3

$$
\begin{equation*}
\frac{\partial F_{1}}{\partial x_{i}} \geq \alpha_{i} \tag{L5.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial F_{1}}{\partial \bar{x}_{i}} \geq \beta_{i} . \tag{L5,1,3}
\end{equation*}
$$

Also

$$
\begin{equation*}
d F_{1}={ }_{i \sum_{1}}^{n}\left(\frac{\partial F_{1}}{\partial x_{i}} d x_{i}+\frac{\partial F_{1}}{\partial \bar{x}_{i}} d \bar{x}_{i}\right) \tag{L5.1,4}
\end{equation*}
$$

so that the "ones" of $\frac{\partial F_{1}}{\partial \bar{x}_{i}} \cdot x_{i}$ (or $\frac{\partial F 1}{\partial \bar{x}_{i}} \cdot \bar{x}_{i}$), $1 \leq i \leq n$, are also the "ones" of F_{1}
From equation (L5.1.2) (or (L5.1.3)) the "ones" of $\alpha_{i} x_{i}$ (or $\beta_{i} \bar{x}_{i}$), $1 \leq i \leq n$, are the "ones" of $\frac{\partial F_{1}}{\partial x_{i}}$. x_{i} (or $\frac{\partial F_{1}}{\partial \bar{x}_{i}} \cdot \bar{x}_{i}$) for all $1 \leq i \leq n$.

Hence the "ones" of $\left(\alpha_{i} x_{i}+\beta_{i} \bar{x}_{i}\right), 1 \leq i \leq n$, are also the "ones" of F_{1}. Hence the "ones" of $\int_{1} d H$ are the "ones" of F_{1}.
Q.E.D.

Arguing on a similar basis, we can establish the following lemma.

Lemma 5.2: If the differential expression

$$
\begin{equation*}
\mathrm{dH}=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{L5.2.1}
\end{equation*}
$$

is compatibly integrable and $F_{1}(\underline{x})$ is a compatible integral of $d H$, then the "ones" of \int_{0} dH are "zeroes" of F_{1}.
Proof: The proof is similar to that of Lemma 5.1.

Theorem 5.1: A necessary condition for compatible integrability of the differential expression

$$
\begin{equation*}
d H=i_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{T5.1.1}
\end{equation*}
$$

is that

$$
\begin{equation*}
\left(\int_{0} \mathrm{dH}\right) \quad\left(\int_{1} \mathrm{dH}\right)=0 \tag{T5.1.2}
\end{equation*}
$$

for all $x \in B(n)$.
Proof: Suppose $d H$ is compatibly integrable 30 that there exists $F_{1}(x)$ such that

$$
\begin{equation*}
F_{1}=\int_{c} d H \tag{T5.1.3}
\end{equation*}
$$

Also, suppose that there exists b_{o} such that

$$
\left[\left(\int_{0} \mathrm{dH}\right) \cdot\left(\int_{1} \mathrm{dH}\right)\right] \mid=1
$$

which implies that $x=b_{0}$

$$
\begin{align*}
&\left(\int_{0} d H\right)=1 \tag{T5.1.5}\\
& x=b_{0}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\int_{1} \mathrm{dH}\right) \mid=1 \tag{T5.1.6}\\
& \underline{x}=b_{C}
\end{align*}
$$

From Lemma 5.1 and equation (T5.1.6),
b_{0} is a "one" of F_{1}.
From Lemma 5.2 and equation (T5.1.5),
b_{0} is a "zero" of F_{1}
Statements (T5.1.7) and (T5.1.8) contradict each other.
Hence there exists no $b_{0} \in B(n)$ that satisfies equation (T5.1.4). Hence equation (T5.1.2) is a necessary condition for dH to be compatibly integrable.
Q.E.D.

Lenma 5.3: If the differential expression

$$
\begin{equation*}
d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{L5.3.1}
\end{equation*}
$$

satis fies the equation

$$
\begin{align*}
& \text { (} \left.\mathcal{S}_{0} d H\right) \cdot\left(\int_{1}(H)=0 \text { for all } \underline{x} \times B(n),\right. \tag{L5.3.2}\\
& \text { (a) } \alpha_{i} \int_{1} d H=\alpha_{i} x_{i} \text {, } \\
& \text { (b) } \alpha_{i} \int_{0} d H=\alpha_{i} \bar{x}_{i} \tag{L5,3.3}\\
& \text { and } \overline{\int_{0} d H}=\alpha_{i} x_{i} . \tag{L5.3.4}
\end{align*}
$$

Proof: From Definition 5. 4 and equation (L5.3.2) we have

$$
\begin{gather*}
0=\left(\sum_{j}^{n}\left(\alpha_{j} x_{j}+\beta_{j} \bar{x}_{j}\right)\right) \cdot\left(\sum_{i=1}^{n}\left(\alpha_{i} \bar{x}_{i}+\beta_{i} x_{i}\right)\right) \\
\quad=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i} \alpha_{j} \bar{x}_{i} x_{j}+\beta_{i} \alpha_{j} x_{i} x_{j}+\alpha_{i} \beta_{j} \bar{x}_{i} \bar{x}_{j}\right. \\
\left.\quad+\beta_{i} \beta_{j} x_{i} \bar{x}_{j}\right) . \tag{L5.3.6}
\end{gather*}
$$

Hence for all $i, j, 1 \leq i \leq n, \quad l \leq j \leq n$

$$
\begin{equation*}
\alpha_{i}{ }_{j} \bar{x}_{i} x_{j}+\beta_{i}^{\alpha}{ }_{j} x_{i} x_{j}+\alpha_{i} \beta_{j} \bar{x}_{i} \bar{x}_{j}+\beta_{i}{ }_{j} j^{x} \bar{x}_{j}=0 \tag{L5.3.7}
\end{equation*}
$$

so that $\alpha_{i} \alpha_{j} \bar{x}_{i} x_{j}=\beta_{i} \alpha_{j} x_{i}{ }_{j}=\alpha_{i} \beta_{j} \bar{x}_{i} \bar{x}_{j}=\beta_{i} \beta_{j} x_{i} \bar{x}_{j}=0$.
Now $\quad \alpha_{i} \int_{1} d H=\alpha_{i}\left(\sum_{j=1}^{n} \alpha_{j} x_{j}+\beta_{j} \bar{x}_{j}\right)$

$$
\begin{equation*}
=\alpha_{i} x_{i}+\alpha_{i} \beta_{i} \bar{x}_{i}+\sum_{j=1}^{n}\left(\alpha_{i} \alpha_{j} x_{j}+\alpha_{i} \beta_{j} \bar{x}_{j}\right) \tag{L5.3.9}
\end{equation*}
$$

$$
\begin{aligned}
& =\alpha_{i} x_{i}+\alpha_{i} \beta_{i} \bar{x}_{i} \\
& +\sum_{j=1}^{n}\left(\alpha_{i \neq i}^{\alpha} \alpha_{j} x_{i} x_{j}+\alpha_{i} \alpha_{j} \bar{x}_{i} x_{j}+\alpha_{i} \beta_{j} x_{i} \bar{x}_{j}+\alpha_{i} \beta_{j} \bar{x}_{i} \bar{x}_{j}\right) .
\end{aligned}
$$

In equation ($L 5.3 .8$), setting $i=j$ yields

$$
\begin{equation*}
\alpha_{i} \beta_{i}=0 \tag{L5.3.10}
\end{equation*}
$$

for all i, $1 \leq i \leq n$.

Hence using equations (L5.3.8)-(L5.3.10), ve set

$$
\begin{equation*}
a_{i} \int_{1} d H=a_{i} x_{i}+a_{i} x_{i}\left(\sum_{j=1}^{n}\left(\alpha_{j \neq i} x_{j}+\beta_{j} \bar{x}_{j}\right)\right)=a_{i} x_{i} . \tag{L5.3,3}
\end{equation*}
$$

By interchanging i and j in equation (L5.3.9), we get

$$
\begin{equation*}
\alpha_{i} \int_{0} \mathrm{dH}=\alpha_{i} \bar{x}_{i} . \tag{L5.3.4}
\end{equation*}
$$

Now

$$
\begin{align*}
& \alpha_{i} \int_{0}^{\mathrm{dH}} \\
& =\alpha_{i}\left(1 \oplus \int_{0} d H\right) \\
& =\alpha_{i} \oplus \alpha_{i} \int_{0} d H \\
& =\alpha_{i} \oplus \alpha_{i} \bar{x}_{i} \text { (from equation (L5, 3.4)) } \\
& =\alpha_{i} x_{i} . \tag{L5.3.5}
\end{align*}
$$

Q.E.D.

Theoren 5.2: If the differential expression

$$
\begin{equation*}
d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{T5.2.1}
\end{equation*}
$$

satisfjes equation

$$
\begin{equation*}
\left(\int_{0} \mathrm{dH}\right) \cdot\left(\int_{1} \mathrm{dH}\right)=0 \tag{T5.2.2}
\end{equation*}
$$

for all $x \in B(n)$ then F given by

$$
\begin{equation*}
F=\int_{1} d H+\psi\left(\int_{0} d H\right) \tag{T5.2.3}
\end{equation*}
$$

is a compatible integral of dH , where ψ is an arbitrary function ofx.

Proof: ANDing both the sides of equation (T5.2.3) by α_{i}, we have

$$
\begin{align*}
& \alpha_{i} F=\alpha_{i} \int_{1} d H+\psi \alpha_{i} \cdot \overline{\left(\int_{0} d H\right)} \\
& =\alpha_{i} x_{i}+\Psi \alpha_{i} x_{i} \quad \text { (fran Lemma 5.3) } \\
& =\alpha_{i} x_{i}(1+\psi) \\
& =\alpha_{1} x_{i} \tag{T5.2.4}\\
& \alpha_{i} \frac{\partial F}{\partial x_{i}}=\frac{\partial\left(^{\alpha_{i}}\right)}{\partial x_{i}} \\
& =\frac{\partial\left(^{\alpha} i_{1}\right)}{\partial x_{i}} \text { (from equation (T5.2.4) } \\
& =\alpha_{i} \frac{\partial x_{i}}{\partial x_{i}} \tag{T5.2.5}\\
& =\alpha_{i} \\
& \therefore \quad \frac{\partial E}{\partial x_{i}} \geq \alpha_{i} . \tag{T5.2.6}\\
& \frac{\partial F}{\partial \bar{x}_{i}} \supseteq{ }_{i} . \tag{T5.2.6}
\end{align*}
$$

Similarly

Hence by Definition $5.2, F$ is a compatible integral of dH .
Q.E.D.

Theorem 5. 3: A.differential expression

$$
\begin{equation*}
\mathrm{dH}=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{T5.3.1}
\end{equation*}
$$

is compatibly integrable if and only if

$$
\begin{equation*}
\left(\int_{0} \mathrm{dH}\right) \cdot\left(\int_{1} \mathrm{aH}\right)=0 \tag{T5.3.2}
\end{equation*}
$$

for all $x \in B(n)$.

Proof: The proof follows from Theorems 5.1 and 5.2.

A word regarding the arbitrary function $\psi(\underline{x})$ in equation (T5.2.3) is in order. If sets D_{0} and $D_{i}, \phi \subseteq D_{i} \subseteq B(n), i=0$ and 1, are bases (Definition 2.2) of functions $\int_{0} d H$ and $\int_{4} d$, then every distinct- ψ would give rise to a distinct compatible integral provided ψ is based on a subset (not necessarily proper) of $D=\overline{D_{0} V_{1}}$ In fact if ψ is based on a subset of D, then the factor $\left(\int_{0} \mathrm{dH}\right.$) that is ANDed with ψ in equation (T5.2.3) may be dropped since $\bar{D}_{0} \supset \overline{D_{0} U D_{1}}=D$. Hence we can modify Theorem 5.2 as shown in the next theorem.

Theorem 5.4: Let $d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right)$
be a differential expression,
If (a) $\int_{0} d H$. $\int_{1} d H=0$ for all $x \in B(n)$,
(b) D_{0} and D_{1} are bases of $\int_{0} d H$ and $\int_{1} d H$ respectively,
(c) the number of distinct points in the set $D=\overline{\left(D_{0} U D_{1}\right)}$ is m,
(d) $\theta_{i}(\underline{x}), \quad 1 \leqslant i \leqslant 2^{m}$ is a function based on a subset of D, $\theta_{i}(x) \neq \theta_{j}(\underline{x})$ for all $i, j, i \neq j, 1 \leqslant j \leqslant z^{m}$ and
(e) $F_{i}=\int_{1} d H+\theta_{i}$,
then F_{i} is a compatible integral of $d H$.
Proof: The essence of the proof is outlined in the discussion preceding the theorem. A formal proof can be given using the Tapia-Tucker method $[36,37]$ for obtaining the complete solution for Boolean equations.

We will, now, show an application of the results established in this section, to synthesis of a clock functicn illustrated in the next example.

Example 5.1

A clock function $C\left(x_{1}, x_{2}, x_{3}\right)$ is to be realized which goes through, at least, the transitions specified in the differential expression

$$
\begin{align*}
d c= & \left(x_{2} \bar{x}_{3}+\bar{x}_{2} x_{3}\right) d x_{1}+\left(x_{1} \bar{n}_{3}\right) d x_{2} \\
& +\left(x_{1} x_{3}\right) d \bar{x}_{2}+\left(x_{1} \bar{x}_{2}\right) d x_{3}+\left(x_{1} x_{2}\right) d \bar{x}_{3} \tag{E5.1.1}
\end{align*}
$$

Find C, if it exists.
We have

$$
\begin{align*}
\int_{0} d c= & \left(\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{2} x_{3}\right)+x_{1} \bar{x}_{2} \bar{x}_{3} \\
& +x_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3} \tag{E5.1.2}\\
& =\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3} \\
\int_{1} d C= & x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} x_{3} \\
& +x_{1} x_{2} \bar{x}_{3} \\
& =x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3} . \tag{E5.1.3}
\end{align*}
$$

and

Obviously

$$
\begin{equation*}
\left(\int_{0} d() \cdot\left(\int_{1} d c\right)=0 .\right. \tag{E5.1.4}
\end{equation*}
$$

Hence by Theorem 5.3, a campatible integral does exist.
Also, the term D referred to in equation (T5.4.3) is

$$
\begin{aligned}
D & =\left\{\bar{O}_{0} U D_{1}\right\} \\
& =\{(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}
\end{aligned}
$$

$$
=\{(0,0,0),(0,1,1)\}
$$

Thus ${ }_{i}(\underline{x}) \cdot \begin{gathered}1 \leqslant i \leqslant n, \text { can be constructed as follows } \\ \theta_{1}(\underline{x})=0\end{gathered}$

$$
\begin{equation*}
1= \tag{E5.1.6}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{2}(\underline{x})=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \tag{E5.1.7}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{3}(\underline{x})=\bar{x}_{1} x_{2} x_{3} \tag{E5.1.8}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{4}(\underline{x})=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3} \tag{E5.1.9}
\end{equation*}
$$

Also note that there are four solutions by Theorem 5.4:

$$
\begin{align*}
& c_{1}=\int_{1} d c+\theta_{1}=x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3} \tag{E5.1.10}\\
& c_{2}=x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \tag{E5.1.11}\\
& c_{3}=x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} x_{3} \tag{E5.1.12}
\end{align*}
$$

and

$$
\begin{align*}
c_{4}= & x_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \\
& +\bar{x}_{1} x_{2} x_{3} . \tag{E5.1.13}
\end{align*}
$$

Observe that

$$
\begin{align*}
d c_{1}= & \left(x_{2} \oplus x_{3}\right) d x_{1}+\left(x_{1} \bar{x}_{3}\right) d x_{2}+\left(x_{1} x_{3}\right) d \bar{x}_{2} \\
& +\left(x_{1} \bar{x}_{2}\right) d x_{3}+\left(x_{1} x_{2}\right) d \bar{x}_{3} \tag{E5.1.14}\\
& =d C \tag{E5.1.15}
\end{align*}
$$

Hence C_{1} realizes all the transitions specified in dc and no transitions which are not specified in dc. In fact by Definition $5.2, C_{1}$ is also the exact integral of $d C$ in equation (E5.1.1). Let us now examine C_{2}.

$$
\begin{align*}
& d c_{2}=\left(x_{2} \oplus x_{3}\right) d x_{1}+\frac{\left(\bar{x}_{2} \bar{x}_{3}\right) d \bar{x}_{1}+\left(x_{1} \bar{x}_{3}\right) d x_{2}}{} \\
&+\left(x_{1} x_{3}+\bar{x}_{1} \bar{x}_{3}\right) d \bar{x}_{2}+\left(x_{1} \bar{x}_{2}\right) d x_{3} \\
&+\left(x_{1} x_{1} p \bar{x}_{1} \bar{x}_{2}\right) d \bar{x}_{3} \tag{E5.1,16}
\end{align*}
$$

Observe that C_{2} realizes the transitions represented by differential terms $\bar{x}_{2} \bar{x}_{3} \bar{x}_{1}, \bar{x}_{1} \bar{x}_{3}{ }_{3} \bar{x}_{2} \& \bar{x}_{1} \bar{x}_{2} d \bar{x}_{3}$ which are not specified in dC in equation (E5.1.1). However it does realize all the transitions specified in dC.

As shown above, a differential expression that is exactly integrable is, also, compatibly integrable. Hence the necessary condition that

$$
\left(\int_{0} d H\right) \cdot\left(\int_{1} d H\right)=0
$$

for all $x \in B(n)$

$$
\text { for } \quad d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d x_{i}\right)
$$

to be compatibly integrable is also necessary for dH to be exactly integrable. It can be shown that the condition is not sufficient for the differential expression to be exactly integrable.

Preliminary results pertaining to necessary and sufficient conditions for a differential expression to be exactly integrable aregiven in a recent publication [3]. Additional results on Boolean integrals have been developed and will be published in the near fut ure.

Given a differential expression

$$
d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right),
$$

if ($\int_{0} d H O$, $\left(\int_{1} d H\right) \neq 0$ for same $b \in B(n)$, then the expression cannot be integrated exactly nor compatibly. However it could be decomposed as sum of several differential expzessions, each one of whilch may be integrable separately as defined below.

Definition 5.5 : $\operatorname{Let}\left\{\mathrm{dH}_{j}, 1 \leq j \leq k\right\}$ be a set of Boolean differential expressions given by

$$
\begin{equation*}
d H_{j}=\sum_{i=1}^{n}\left(\left(\alpha_{j i}\right) d x_{i}+\left(\beta_{j i}\right) d \bar{x}_{i}\right) . \tag{D5,5.1}
\end{equation*}
$$

Then dH , the Boolean sun of all the differential expressions $d H_{j}, 1 \leq j \leq k$ is defined as

$$
\begin{align*}
d H & =\sum_{i=1}^{k} d H_{j} \tag{D5.5.2}\\
& =\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{k} \alpha_{j i}\right) d x_{i}+\left(\sum_{j=1}^{k} \beta_{j i}\right) d \bar{x}_{i}\right] . \tag{D5.5.3}
\end{align*}
$$

Definition 5.6: A differential expression $d H$ is said to be integrable by parts if dH can be written as a sum of Boolean $d i f f e r e n t i a l$ expressions $d H_{j}, 1 \leq j \leq k$ as defined in equations (D5.5.1) and (D5.5.3) such that dH_{j} is compatibly integrable for all $j, 1 \leq j \leq k$. Any compatible integral of $\mathrm{dH}_{j}, 1 \leq j \leq k$, will be, called a partial integral of dH . A complete set of partial integrals of Boolean differential expression dH is a set of functions, $\left\{F_{1}, F_{2}, \cdots, F_{k}\right\}$ where for all $j, 1 \leq j \leq k$,

$$
\begin{equation*}
d F_{j} \geq d H_{j} \tag{D5.6.1}
\end{equation*}
$$

Observe that k may assume one or more values between 1 and 2 n . It will now be shown that any Boolean differential expression is integrable by parts.
Theorem 5.5: Any differential expression

$$
\begin{equation*}
d H=\sum_{i=i}^{n}\left(\alpha_{i} \alpha x_{i}+\beta_{i} \alpha \bar{x}_{i}\right) \tag{T5.5.1}
\end{equation*}
$$

is integrable by parts.

Pronf: Observe that for any $1,1 \leq i \leq n$,

$$
\begin{align*}
& \left(\int_{1} a_{i} d x_{i}\right) \cdot\left(\int_{0} a_{i} d x_{i}\right) \\
= & \left(a_{i} x_{i}\right) \cdot\left(a_{i} \bar{x}_{i}\right) \\
= & 0 \tag{T5,5,2}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\int_{1} \beta_{i} d \bar{x}_{i}\right) \cdot\left(\int_{0} \beta_{i} d \bar{x}_{i}\right) \tag{75,5.2}\\
= & 0 \tag{75.5.3}
\end{align*}
$$

so that $\mathrm{dH}_{1, i}$ and $\mathrm{dH}_{2, i}$ given by

$$
\begin{equation*}
d H_{2, i}=\alpha_{i} d x_{i} \text { and } d H_{2, i}=s_{i} d \bar{x}_{i} \tag{T5.5.4}
\end{equation*}
$$

are compatibly integrable by Theoren 5.3 for all $1,1 \leq i \leq n$.
In view of the fact that we can write dH as

$$
\begin{equation*}
d H=\sum_{i=1}^{n}\left(\mathrm{dH}_{1, i}+\mathrm{dH}_{2, i}\right) . \tag{T5.5.5}
\end{equation*}
$$

dH.is campatibly integrable by Definition 5.6.
Q.E.D.
6. APPLICATION TO SYNTHESIS

As shown by smith and Roth [34], technioves for synthesizing fundamental-mode asynchronous systems utilizing edge-sensitiveness property of clock-triggered flipflops often require fewer flipflops and gates than conventional techniques do.

The Smith and Roth technique [34, 35] requires a generalized edge-sensitive flipflop (as defined in (35]) in their design. We will present a procedure for synthesis of a fundamental-mode asynchronous system that uses a commercially available clocktriggered Alpflop.

EXAMPLE 6.1

A sequential system with two inputs, X_{1} and X_{2} and one output, 2 is to be designed such that whenever X_{1} changes from 0 to 1 the output changes to 1 if the output is 0 . The output remains at 1 regardiess of the values of X_{1} till X_{2} changes fram 0 to 1 . When X_{2} changes fom 0 to 1,2 goes to 0 . After that $2=0$, regardiess of the value of X_{1}, till, of course, a positive change in X_{1} changes the value of z to 1 . Assume that $X_{1}=X_{2}=2=0$ initially. Taking the conventional approach, we obtain the following reduced flow table for the system.

Figure 6.1

Since the minimal system shown in Fig ure 6.1 has 4 states, 2 Hipflops will be required to realize the system.

Now it will be shown that if edge-sensitive flipflops are used, one flipflop will be adequate to realize the systen. The system under consideration can be described in tems of the state diagram $9 i$ ven in Figure 6.2. The symbol $\Delta x_{i}, i=1$ or 2 , implies a change in x_{i} from 0 to 1. $\Delta X_{i}=1$ if and only if X_{1} changes from 0 to 1 . $\Delta x_{1}=0$ otherwise. The transition along a directed branch occurs if and only if the variable associated with it assumes the value $0 f 1$.

Figure 6.2
Observe that the system m ust change its state whenever
(a) $y=0$ and x_{1} changes from 0 to 1
or (b) $y=1$ and x_{2} changes from 0 to 1 .
Hence the clock input function, C, must go through a positive transition when any of the changes stated above occurs. These transitions in terms of changes in X_{1} and X_{2} are described by the differential expression

$$
\begin{align*}
& d c=\bar{y} d x_{1}+y d x_{2} . \tag{86.1.1}\\
& \text { Note that } \int_{0} d c \cdot \int_{1} d c=\left(\bar{y}_{1}+y \bar{x}_{2}\right) \cdot\left(\bar{y} x_{1}+y x_{2}\right)=0 \tag{E6.1.2}
\end{align*}
$$

so that by Theorem 5.3, dc is compatibly integrable and a compatible integral, say C_{1}, of dc is

$$
\begin{equation*}
c_{1}=\bar{y} x_{1}+y x_{2} \tag{E6.1.3}
\end{equation*}
$$

In fact since ${\overline{D_{0}}{ }^{U D}}_{1} \varnothing$ (empty set)
($D_{0} \& D_{1}$ defined in Theorem 5.4),
by Theorem 5.4 no other compatible integral of dC exists.
Let $C=r_{1} \bar{y} x_{1}+y x_{2}$
so that $Q_{1}(T+)=1$. On the other hand if $Q_{1}(T+)=1$ due to a transition $m_{u}\left(\underline{x}-x_{v}\right)$ when $\underline{y}=s_{1}$, then $D_{1}=1$ and $F(\underline{x})=1$ for $\underline{x}=b_{u}$ and equation ($T 6.1 .6$) implies that $F(\underline{x})=1=F(\underline{x}) \cdot x_{i 1} \quad x_{i k}$ when $\underline{x}=b_{u}$,
which implies that $\left(x_{i 1},-\infty-x_{i k}\right)=1$ when $x=b_{u}$. Hence when $x=b_{u k} y=s_{1}, D=D_{1},\left(x_{i 1}, \ldots \ldots x_{i k}\right)$
$11 .(1)$
$=1$
Hence $Q(\pi)$ and $Q_{1}(T+)$ have identical values immediately after any transition.
Q.E.D.

Theorem 6.2: Theorem 6.1 is valid if equations (TG.1.2)\& (T6.1.4) are replaced by equations (T6.2.2) and (TO.2.4) respectively as given below:
(T6.2.2)

$$
\mathrm{D}=\mathrm{D}_{1} \cdot \overline{x_{i 1}} \cdot \overline{x_{i 2}} \cdot \cdots \cdot \overline{x_{i k}}
$$

(T6.2.4)

$$
F(\underline{x})=\bar{x}_{i 1} \cdot \bar{x}_{i 2} \cdot \cdots \bar{x}_{i k} F(\underline{x}) .
$$

The next-value functions for different types of flipflops (other than D-type) are currently under study. The results will be reported when the study is completed.

7. CONCLUSION

Boolean calculus was developed and formalized with the specific purpose of applying it to digital system synthesis. A procedure was developed to synthesize fundamental mode asynchronous systems using commercially available clock-triggered flipflops and Boolean calculus. It has been shown that synthesis techniques which utilize edge-sensitive property of flipflops Judiciously lead to realizations which often require fewer flipflops and logic gates than those obtained by conventional techniques, thus reducing network complexity, size, the number of IC packages, power requirement, cost eṭc.

It has been established that any fundamental-mode asynchronous (FMA) system can be realized employing the new synthesis procedure proposed here. The procedure is applicable even when unit-distance state assignment is not used. However, in such a case certain relationships among the time response characteristics of the flipflops must be satisfied, which need to be obtained.

It has been shown that the procedure can be extended to synthesis of FMA system using a synchronous presettable counter. Again unit-distance state assignment is not required in this case.

The possibility of using the "dc" inputs of the flipflops in the synthesis procedure has been shown in the Semi-Annual Status Report \#3 [14].

The concept of noncombinational Boolean calculus has been introduced. The next-value functions for flipflops are defined in terms of changes in the inputs. The reverse problem of
synthesis is also considered. Considerable work remains to be done in this area.

Establishment of conditions for exact integrability, composition of differential functions, multi-variable-change calculus, methods of augmenting non-realizable DM tables so as to make them realizatle, application to fault location and detection, etc. are amons the many problems that remain to be sol ved.

The new results in Boolean calculus as well as the synthesis techniques developed here has opened an avenue for a large class of synthesis problems in which the components used are edgesensitive and therefore present the potential of various economies If the edge-sensitiveness property is Judiciously taken advantage of.

The publications that resulted from the research grant are listed next.
8. PUBLICATIONS GENERATED BY THE GRANT
(1) "Boolean Integral Calculus for Digital Systems", revised and submitted to IEEE Computer Transactions.
(2) "Development of Boolean Calculus and Its Applications", NASA Langley Basic Research Review Conference, Hampton, Va. April 1978.
(3) "Application of Boolean Calculus to Digital System Design", IEEE Southeastcon, Nashville, Tenn. April 14-16, 1980.
(4) Invited to present "Design of Asynchronous System Using a Synchronous presettime Counter", Southeastern Symposium on System Theory, Virginia Beach May 19-20, 1980.
(5) "Synthesis of Asynchronous Sequential Systems Using Edgesensitive Flipflops", under preparation.

REFERENCES

1. J.H. Tucker, "A Transition Calculus for Boolean Functions", Ph.D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, May 1974.
2. J.H. Tucker and A.W. Bennett, "A Transition Calculus for Boolean Functions", Proceedings of IEEE Southeast-Conf., Orlando, Florida; pp. 296-299, April 1974.
3. J.H. Tucker, M.A. Tapia and A.W. Bennett, "Boolean Integration", Proceedings of IEEE Southeast-Conf., Clemson, South Carolina, April 1976.
4. S.B. Akers, "On a Theory of Boolean Functions", J. Soc. Ind. Appl. Math., Vol. 7, pp. 487-498, Dec. 1959.
5. F. F. Sellers, M.Y. Hsiao and L.W. Bernson, "Analyzing Errors with the Boolean Difference", IEEE Trans. Computer, Vol. C-17, pp. 676-683, July 1968.
6. P.N. Marionos, "Derivation of Minimal Compete Sets of TestInput Sequences Using Boolean Differences", IEEE Trans. Computer, Vol. C-20, pp. 25-32, Jan. 1971.
7. L.W. Bernson and C.C. Carroll, "On the Design of Minimal Length Fault Tests for Combinational Circuits", IEEE Trans. Computer, Vol. C-21, pp. 189-195, February 1972.
8. A. Thayse and M. Davio, "Boolean Differential Calculus and Its Application to Switching Theory", IEEE Trans. Computer, Vol. C-22, pp. 409-420, April 1973.
9. A.D. Talantsev, "On the Analysis and Synthesis of Certain Electrical Circuits by Means of Special Logical Operators", Automat, Telehekh, Vol. 20, No. 7, pp. 898-907, 1959.
10. A. Brown and H. Young, "Toward an Algebraic Theory of the Analysis and Testing of Digital Networks", Paper No. V11G-4, A AAs and ORS Annual Meeting, June 17-20, 1969, Denver, Colorado.
11. J.R. Smith, Jr. and C.H. Roth, Jr., "Analysis and Synthesis of Asynchronous Sequential Networks Using Edge-Sensitive Flipflops", IEEE Trans. Computer, Vol. V-20, pp. 847-855, August, 1971.
12. Wood, "Switching Theory", McGraw-Hill, 1968.
13. Zi Kohavi, "Introduction to Switching and Finite Automata Theory", 1970.
14. M.A. Tapia, Semi-Annual Report No. 1, "Development of Boolean Calculus and Its Applications", NASA Grant No. 1436, February 1978, University of Miami, Florida.
15. M.A. Tapia, Semi-Annual Report No. 2, "Development of Boolean Calculus and Its Applications", NASA Grant No. 1436, August 1978, University of Miami, Florida.
16. M.A. Tapia, Semi-Annual Report No. 3, "Development of Boolean Calculus and Its Applications", NASA Grant No. 1436, February 1979, U'niversity of Miami, Florida.
17. M.A. Tapia, Semi-Annual Report No. 4, "Development of Boolean Calculus and Its Applications", NASA Grant No. 1436, October 1979, University of Miami, Florida.
18. M.A. Tapia, Semi-Annual Report No. 5, "Development of Boolean Calculus and Its Applications", NASA Grant No. 1436, April 1980, University of Miami, Florida.
19. T.R. Blakeslee, "Digital Design with Standard MSI and LSI", John Wiley \& Sons, Inc.

Appendix I
 BOOLEAN INTEGRAL CALCULUS FOR DIGITAL SYSTEMS

ABSTRACT
The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of "integrating" (i.e. realizing) such as a function, if it exists, are presented. Properties of newly defined integral operators are studied. Boolean calculus has applications in design of logic circuits and in fault analysis. In the former case, it often leads to circuits which utilize fewer flipflops and logic gates than conventional methods.

INDEX TERMS: Boolean algebra, Boolean calculus, direct and inverse partial derivatives, Boolean differential, decompostion of function, Boolean differential expression, Boolean integration, compatible integral, exact integral, integration by parts, edge-sensitive Elipflop, asynchronous sequential system synthesis.

1. INTRODUCTION

In recent years concepts of Boolean differentiation, difference, derivatives, differential and other logical operators have been introduced, developed and applied to digital network analysis and testing $[6-27]$. Also there has been a growing interest in Boolean integration and its apulication to synthesis of various types of logic circuits [1-5, 28-35]. The use of Boolean calculus in design of asynchronous sequential Gircuit with edge-sensitive flipflops often leads to simpler gircuits utilizing fewer components than conventional techniques $[5,34,35]$.
2. BOOLEAN FUNCTION AND ITS BASE

Throughout the paper, unless stated otherwise, a Boolean function $F\left(x_{1}, x_{2}, \cdots x_{n}\right)$ of n Boolean variables x_{1}, x_{2}, --, x_{n} will be assumed. Also, it will be assumed that only one variable $x_{i}, 1 \leq i \leq n$, can change at a time. Definition 2.1: The set of 2^{n} binary vectors or points ($x_{1}, x_{2}, \cdots, x_{n}$) where $x_{i}=0$ or $1,1 \leqslant i \leqslant n$, such that x_{i} and x_{j} may or may not be equal if $i \neq j$, will be called the Boolean set of variables $x_{1}, x_{2}, \cdots, x_{n}$, denoted by $B(n)$. The Boolean set of $(n-1)$ variables $x_{1}, x_{2}, \cdots, x_{1-1}, x_{i+1}, \cdots, x_{n}$, written x / x_{i}, will be denoted by $B(n / i)$.

Definition 2.2: Given a set $S, \phi \subseteq S \subseteq B$ (\boldsymbol{n}), a function $F(\underline{x})$
is said to be based on the set S provided
$\left.F(\underline{x})\right|_{\underline{x}=b_{0}}=1$ if and only if $\underline{b}_{0} \in S$.
On the other hand, if a function $F(\underline{x})$ is given, then the set $S=\{\underline{b} \mid \underline{b} \in B(n)$ and $F(\underline{b})=1\}$ is called the base of the function $F(\underline{x})$ and denoted by BASE $\{F(\underline{x})\}$.

3. BOOLEAN DIFFERENTIATION

In order to study the effect of change in a variable x_{i}, on a function $F\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ we introduce the concept of decomposition. $F(\underline{x})$ can be decomposed with respect to x_{i}. $1 \leq 1 \leq n$, as the sum of 3 functions as

$$
\begin{equation*}
F=P_{i} x_{i}+Q_{i} \bar{x}_{i}+R_{i} \tag{3.0.1}
\end{equation*}
$$

such that P_{i}, Q_{i} and R_{i} are independent of x_{i} and

$$
\begin{equation*}
P_{i} Q_{i}=P_{i} R_{i}=\Omega_{i} R_{i}=0 \tag{3.0.2}
\end{equation*}
$$

Definition 3.1: A function F that is decomposed as stated above, is said to be the decomposition of F with respect to $x_{1}, 1 \leq i \leq n$.

It can be shown that the decomposition of F with respect to $x_{i}, 1 \leq i \leq n$, is uninue. For any point x with $x / x_{i} \in \operatorname{BASE}\left\{p_{i}\right\}$ $1 \leq 1 \leq n$,

$$
\begin{equation*}
F(x)=1 . x_{i}+0 . \bar{x}_{i}+0=x_{i} \tag{D3.1.1}
\end{equation*}
$$

so that $F(\underline{x})$ has the same value as x_{i} and therefore changes the same way as x_{i}.

Definition 3.2: The direct (or inverse) partial derivative of $F(\underline{x})$ with respect to $x_{i}, 1 \leq i \leq n$, denoted by $\frac{\partial F}{\partial x_{i}}\left(\right.$ or $\left.\frac{\partial F}{\partial \bar{x}_{i}}\right)$ is
defined as a function of $(n-1)$ variables $x_{1}, x_{2}, \cdots, x_{i-1}$, x_{1+1}, \cdots, x_{n} that is based on the union of all possible points x / x_{i} in the set $2(h / i)$ such that

$$
\begin{equation*}
F(\underline{x})=x_{i}\left(\text { or } \bar{x}_{i}\right) \tag{D3.2.1}
\end{equation*}
$$

The concept of partial derivatives has been reported earlier [33]. We will show some relationships involving the partial derivatives in the following theorem.
Theorem 3.1: The direct and inverse partial derivatives of a function $F(\underline{x})$ with respect to $x_{i}, 1 \leq i \leq n$ satisfy the following relationships:

$$
\begin{align*}
& \begin{array}{l}
\frac{\partial F}{\partial x_{i}}=P_{i}=\left(\left.F(\underline{x})\right|_{x_{i}=1}\right) \cdot \overline{\left(\left.F(\underline{x})\right|_{x_{i}=0}\right)=\frac{\partial \bar{F}}{\partial \bar{x}_{i}} \quad \text { (T3.1.1) }} \begin{array}{l}
\frac{\partial F}{\partial \bar{x}_{i}}=Q_{i}=\left(\left.F(\underline{x})\right|_{x_{i}=0}\right) \cdot \overline{\left(\left.F(\underline{x})\right|_{x_{i}}\right)=1}=\frac{\partial \bar{F}}{\partial x_{i}} \quad \text { (T3.1.2) }
\end{array}, \quad l
\end{array} \\
& \frac{\partial F}{\partial \bar{x}_{i}} \cdot \frac{\partial F}{\partial \bar{x}_{i}}=0 \tag{T3.1.3}\\
& F(\underline{x})=x_{i} \Leftrightarrow \frac{\partial F}{\partial x_{i}}=1 \tag{73.2.4}\\
& F(\underline{x})=\bar{x}_{i} \Longleftrightarrow \partial \frac{\partial F}{\partial \bar{x}_{i}}=1 \tag{T3.1.5}
\end{align*}
$$

4. BOOLEAN DIFFERENTIAL

Boolean differential introduced by Talantsev[28] and further developed by Brown and Young [33], is analogous to the differential of a function in the calculus of real variables and expresses the change in a Boolean function in terms of a change in one of its arguments.

Definition 4.1: aF will denote changes in the value of function F. These changes can be from "O" to "l" or " 1 " to "0". dx_{i} or $d x_{i}$ will denote a change in the variable x_{i}. The expression $d F=d x_{i}$ means that a "positive" (or "negative") change in x_{i} causes a "positive" (or "negative") chançe in F. The expression $d F=d \bar{x}_{i}$ means that a "positive" (or "negative") change in x_{i} causes a "negative" (or "positive") change in F. In order to relate $d F, d X_{i}, d \bar{x}_{i}$ and F, we will need to define $d F, d x_{i}$ and $d \bar{x}_{i}$, For all i, as entities in a Boolean algebraic system (ie. as Boolean variables), Wien $d F, d x_{i}$ and $d \bar{x}_{i}$ are treated as such they have Boolean values es de:inec below:

$$
d v=\left\{\begin{array}{l}
0, \text { implies no chance scouring ir value } 0 \& V \\
1, \text { implies a change in value of } v
\end{array}\right. \text { (D4.1.1) }
$$

where $V=F$ or \bar{F} or x_{i} or \bar{x}_{i} for any $i, 1 \leq i \leq n$.

Note that $d V$ as defined here does not specify the direction of change. $d V=1$ implies merely a change in its value.

If $\operatorname{dF}=f\left(x / x_{i}\right) \cdot d x_{i}\left(0 / f\left(x / x_{i}\right) \cdot d \bar{x}_{i}\right)_{1}$ then by definition $1 t$ implies that F changes the same (or opposite) way as x_{1} changes when $f\left(x / x_{i}\right)=1$.

Consider dF, the change in F, in terme of x_{1}, x_{2} and $d x_{3}$, the change in x_{3} as given below:

$$
\begin{equation*}
d F^{\prime}=x_{1} x_{2} d x_{3} \tag{D4.1.2}
\end{equation*}
$$

when $\quad x_{1}=x_{2}=1$,
then $\quad d F=(1 \cdot 1) \cdot d x_{3}=d x_{3}$.
Equation (D4.1.4) by Dofinition 4.1 can be interpreted to mean that a change in F is the way same as the change in x_{3} when $x_{1} x_{2}-1$.

* On the other hand, when

$$
\begin{align*}
x_{1} x_{2} & =0, \tag{D4.1.5}\\
d F & =0 . d x_{3} \\
& =0, \tag{D4.1.6}
\end{align*}
$$

then
which means that there is no change in F when $x_{1} x_{2}=0$ and x_{3} changes.
Definition 4.2: The Boolean differential of F with respect to x_{i}, $1 \leq i \leq n$, denoted by $d_{i} F$, is defined as

$$
\begin{equation*}
d_{i} F=\frac{\partial F}{\partial x_{i}} \cdot d x_{i}+\frac{\partial F}{\partial \bar{x}_{i}} \cdot d \bar{x}_{i} \tag{D4.2.1}
\end{equation*}
$$

Definition 4.3: The Boolean differential of F with respect to all variables $\underline{x}_{1}, x_{2}, \cdots x_{n}$ or simply Boolean differential of E, denoted by $d F$, is defined as

$$
\begin{equation*}
d F=\sum_{i=1}^{n} \quad d_{i} F=\sum_{i=1}^{n}\left(\frac{\partial F}{\partial x_{i}} d x_{i}+\frac{\partial F}{\partial \bar{x}_{i}} d \bar{x}_{i}\right) \tag{D4.3.1}
\end{equation*}
$$

The Boolean differential of F is useful in analysis as it shows how F is affected by changes in $x_{1}, 1 \leqq i \leq n$. In synthesis, it is of interest to address ourselves to the question: "Is it poscible to find a function that undergoes changes as a consequence of changes in its arguments in accordance with a given specification?" The answer to this question will be pursued in the next section.

5. BOOLEAN INTEGRATION

While designing systems, at times we come across situations whan we want the output of a system to change the same way as some of its inputs under certain conditions and the output to change the opposite way as some inputs under other conditions, when the inputs change. In order to specify this desired relationship between the changes in the output in terms of the changes in the inputs, we introduce differential expression defined next.

Definition 5.1: A differential expression, denoted by dH, is a Boolean expression of the form

$$
\begin{equation*}
d H=\sum_{i=1}^{n}\left(a_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{D5.1.1}
\end{equation*}
$$

where in general α_{i} and β_{i} are functions of the $(n-1)$ variables $x_{1}, x_{2}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}$ and α_{i} and β_{1} are independent of x_{i} for all $1,1 \leq i \leq n$.

Observe that nince by Theorem 3.1, $\frac{\partial F}{\partial \bar{x}_{i}}$ and $\frac{\partial F}{\partial \bar{x}_{i}}$ are indepsendent of $x_{i}, 1 \leq 1 \leq n$, the Boolean differential of a function $F(\underline{x})$. ${ }^{2}$ given in equation (D4.3.1) is a differential expression; however the converse is not true. For a differential expression to be a differential, there must exist a function such that its differential is the same as the given differential expression. For the expression $d H$ in equation (D5.1.1) to be a differential, there must exist a function $H(x)$ such that

$$
\begin{equation*}
a_{i}=\frac{\partial H}{\partial x_{1}} \tag{05.1.2}
\end{equation*}
$$

and $\quad \beta_{i}=\frac{\partial H}{\partial \bar{x}_{i}}$
for all $1,1 \leq i \leq n$.
Given differential expression dH as described in (D5.1.1), in order to determine whether a function F exists that changes due to changes in its arguments as specified in the differential expression dH , we need the following definitions.
Definition 5.2: F is said to be the exact integral of dH, denoted by $\int_{E} d H$, and $d H$ is said to be exactly integrable if

$$
\begin{equation*}
d H=\sum_{i=1}^{n}\left(\alpha_{i} d x_{i}+\beta_{i} d \bar{x}_{i}\right) \tag{D5.2.1}
\end{equation*}
$$

and for all $1,1 \leq i \leq n \frac{\partial F}{\partial \bar{x}_{i}}=\alpha_{i}$ and $\frac{\partial F}{\partial \bar{x}_{i}}=\beta_{1}$.

Let us now determine the changes in C in terms of changes in x_{1} and x_{2}.
$\frac{\partial c}{\partial x_{1}}=\bar{y} \quad$ and $\quad \frac{\partial c}{\partial \bar{x}_{1}}=0$.
$\frac{\partial c}{\partial x_{2}}=y \quad$ and $\quad \frac{\partial c}{\partial \bar{x}_{2}}=0$.
$\frac{\partial c}{\partial y}=\bar{x}_{1} \cdot x_{2}$ and $\frac{\partial c}{\partial \bar{y}}=x_{1} \cdot \bar{x}_{2}$.
Observe that the clock transitions described by equations (E6.1.6) and (E6.1.7) are the desired transitions whereas those described by equation (E6.1.8) are the ones not specified in the differential expression (E.G.1.1). However these transitions cannot oceir as can be seen from what follows. Consider the first of the equations in (E6.1.8). When $\bar{x}_{1} x_{2}=1$ and y changes fran 0 to 1 , the clock will go through a positive transition. However y changes from 0 to 1 only if it is preceded by a change in x_{1} from 0 to 1 so that when y changes from 0 to $1, x_{1}$ cannot be 0 . Hence the change in y cannot trigger the flipflop. Similarly the transition described by the second equation in (E6,1.8) cannot cause a clock transition.

Observe that every time a positive transition in the clock occurs, the state changes. Hence the input D_{i} of the D-flipflop to be used is given by

$$
\begin{equation*}
D_{1}=\bar{y} \tag{E6.1.9}
\end{equation*}
$$

Equations (E6.1.5) and (E6.1,9) lead to the network realization in Figure 6.3

Figure 6.3

A possible hazard can be prevented by adding the term ($x_{1} x_{2}$) to the OR-gate in Figure 6.3. It can be shown that this does not cause any undesired clock transitions.

It should be noted here that if a compatible integral of a clock differential expression has transitions which are not specified in the differential expression and which can occur, it poses no problem, since corresponding to those transitions we can provide the appropriate value(s) of the next state variable(s) to the input (s) D_{i} of the D flip flop(s).

7. POTENTIAL FOR FURTHER APPLICATIONS

The traditional methods of the anlaysis and the synthesis of logic circuits are based on Boolean algebra and utilize the functional relationships between the output and input values (or levels). Analysis and design by Boolean calculus focuses on the changes in the output function in terms of changes in input arguments. The new concepts of integration, the ways of integrating a Boolean differential and the necessary and sufficient condition for its compatible integrability open an avenue to new areas of applications. Because of the nature of these applications, the specification in terms of the changes in the output of a system or a subsystem as a consequence of the changes in the inputs of the system or the subsystem, is more significant and desirable than that in tems of the functional relationship between output and input values. It should be noted here that clock-triggered flipflops, synchronous counters and many other MSI and LSI circuits are sensitive tc input transitions. It is premature to predict long term utility of Boolean calculus, but the potential benefits dictate a need for further investigation $[5,38-40]$.

8. CONCLUSION

Boolean calculus is a powerful tool for analysis as well as synthesis of logic circuits. The use of Boolean integration in synthesis of asynchronous circuits using clock-triggered flipflops has led to circuits which require fewer flipflops and logic gates than circuits synthesized using conventional methods [5, 38-40], th us reducing complexity, cost and size and improving reliability.

Earlier methods to realize a function from the speci fied changes in its value in tems of changes in its arguments do not possess the simplicity and ease that the integration method presented here does. We concept of a compatible integral was introduced in order to generalize the concept of the exact integral and recognizing the fact that we do have don't-care conditions and/or transitions in real-life situations. Moreover, if the exact integral does not exist for a specified differential but a compatible integral does, then the undesired transitions (changes) in the integral may be inhibited using a simple logic circuit. Integration by parts is a further generalization of compatible integration, which has possible applications in logic circuits.

9. ACKNOWLEDGEMENTS

The authors are pleased to acknowledge gratefully the helpful suggestions offered by Dr. B.G. Batte, Professor F.G. Gray and Mr. R.D. Ho fler for the research reported here.

REFERENCES

(1) J.H. Tucker, "A Traneltion Calculus for Boolean Functions," Pf.D. Dissertation, Dept. of Electrical Engineering, Virginia Polytechnic Institute and state University, Blacksburgh, Virginia, May, 1974.
(2) J.H. Tucker and A.W. Bennett, "A Transition Calculus for Boolean Functions," Proceedings of IEEE Southeast-Con., Orlando Florida, April 29-May 1, 1974.
(3) J.H. Tucker, M.A. Tapia, and A.W. Bennett, "Boolean Integration," Proceedings of IEEE SOutheast-Conference, Clemson, S.C., April 5-7, 1976
(4) J.H. Tucker, M.A. Tapia and A.W. Bennett, "Boolean Differentiation and Integration Using Karnaugh Maps," Proceedings of IEEE Southeast-Conference Williamsburg, Va., April 1977
(5) M.A. Tapia, "Development of Boolean Calculus and Its Applications," NASA Langley Basic Research Review, Hampton Va., April 1978.
(6) I.S. Reed, "A Class of Multiple-Error-Correcting Codes and the Decoding, Scheme," Trans. Inst. Radio Engrs., IT-4, 1954, pp.38-49.
S.B. Akers, "On a Theory of Boolean Functions," J. Soc. Ind. Appl. Math., Vol. 7, Dec. 1959, pp. 487-498.
(8) P. Calingaert, "Switching Function Canonical Forms Based on Commutative and Associative Binary Operations," AIEE Trans. Communication and Electronics, Vol. 79, January 1961, pp. 808-814.
(9) F.B. Hartman, "Boolean Differential Calculus," IBM TR 22.526, Dec.20, 1967.
(10) V. Amar and N. Condulmari, "Diagnosis of Large Conbinational Networks," IEEE Trans. Electronic Computers (Corresponderice), Vol. EC-16, October 1967, pp 675-680.
(11) F.F. Sellers, M.Y. Hsiao, and L.W. Bearnson, "Analyzing Errors With The Boolean Difference," First Annual IEEE Computer Conf., September 6-8, 1967, Chicago, Ill.
F.F. Sellers, M.Y. Hsiao, and L.W. Bearnson, "Analyzing Errors With the Boolean Difference," IEEE Trans. Computers, Vol. C-17, July 1968, pp. 676-683.
(13) F.F. Sellers, M.Y. Hsiao, and L.W. Bearnson, "Error Detecting Looic for Digital Computers" New York: McGraw-Hill, 1968.
(14) M. Davio and P. Piret, "Les Derivees Booleennes et Leur Application au Diagnostic," Rev. MBLE, Vo1. 12, July 1969, pp. 63-76.
P.M. Marinos, "Boolean Differences as a Means for Deriving Complete Sets of Input Test Sequences for Fault Diagnosis in Switehing Systems," Bell Telephone Laboratories, Greensboro, N.C. Tech. Memo MM-69-6313-1, August 1969.
(26) P.N. Marinos, "Derivation of Minimal Complete Sets of Test-Input Sequences Using Boolean Differences," IEEE Trans. Computers, Vol. C-20, Jan. 1971, pp. 25-32.
P.N. Marinos, "Fault Diagnosis in Acyclic Switching Networks Using Partial Boolean Differences, " Proc, 9th Annual IEEE Region 3 Convention, April 1971, pp, 61-67.
G.E. Whitney, "Algebraic Fault Analysis for Constrained Combinational Networks, "IEEE Trans. Computers, Vol. C-20, Feb. 1971, pp. 141-148.
L.W. Bearnson and C.C. Carroll, "On the Design of Minimal Length Fault Test for Combinational Circuits," IEEE Trans. Computers, Vol. C-20, Nov. 1971, pp. 1353-1356.
A.D. Friedman and P.R. Menon, "Fault Detection in Digital Circuits," " Prentice-Hall, New Jersey, 1971.
A. Thayse, "Transient Analysis of Logical Networks Applied to Hazard Detection," Prillips Res. Rep., Vol. 25, October 1970, pp. 261-336.
M.Y. Hsiao, D.K. Chia, "Boolean Difference for Fault-Detection in Asynchronous Sequential Machines," IEEE Trans. Computers, Vol. C-20, Nov. 1971, pp. 1356-1361.
A. Thayse, "Boolean Differential Calculus," Ehillips Res. Rep., Vol. 26 June 1971, pp. 229-246.
G. Bioul and M. Davio, "Taylor Expansions of Boolean Functions and of Their Derivatives," Phillips Res. Rep., Vol. 27, Feb. 1972, pp. 1-7.
A. Thayse, "Testing of Asynchronous Sequential Switching Circuits," Phillips Res. Rep., Vol. 27, Feb. 1972, pp. 99-107.
A. Thayse, "On Some Iteration Properties of Boolean Functions," Philips Res. Rep., Vol. 28, Jan. 1973, pp. 107-119.
A. Thayse and M. Davio, "Boolean Differential Calculus and Its Application to Switching Theory," IEEE Trans. Computers, Vo. C-22, April 1973, pp. 409-420.
A.D. Talantsev, "On the Analysis and Synthesis of Certain Electrical Circuits by Means of Special Logical Operators," Avt. i Telem., Vol.20, No. 7, 1959 pp.898-907.
V.G. Lazarev and E.I. Piil, "Synthesis Method for Finite Automata," Avt. i Telem., Vol. 22, No. 9, September 1961, pp. 1194-1201.
V.G. Lazarev and E.I. Piil, "A Method for Synthesizing Finite Automata with Voltage-Fulse Feedback Elements," Avt. i Telem., Vol. 23. No. 8, August 1962, pp. 1037-1043.
V.G. Lazarev and E.I. Piil, "The Simplification of Eulse-potential Forms," Avt. i Telem., Vo1. 24, No. 2, February 1963, pp. 271-276
(32) V.G. Lazarev and E.I. Piil. "On the Integration of PotentialPulse Forms," Dokl. AN SSSR, Vol. 139, July 1961, pp. 556-559.
(33) A. Brown and H. Young, "Toward an Algebraic Theory of the Analysis and Testing of Digital Networks," AAS \& ORS Annual Meeting, Denver, Colorado, June 17-20, 1969, AAS Paper 69-236.
(34) J.R. Smith, Jr. and C.H. Roth, Jr., "Differential Mode Analyeis and Synthesis of Sequential Switching Networks," Elec. Res. Cen., Univ. of Tex., Austin, Tech. Rep. 63, 1969.
M.A. Tapia and J.H. Tucker, "Complete Solution of Boolean Equations," expected to appear in IEEE Transactions on Computers, July 1980.
M.A. Tapia, "Development of Boolean Calculus and Its Applications", Semi-Annual Status Report \#3, NASA Grant "NSG 1436, Department of Electrical Engineering, University of Miami, Florida, Feb. 1979.
M.A. Tapia "Design of An Asynchronous System Using A Synchronous Presettable Counter," Proc. Twel fth Annual Southeastern Symposium on System Theory, Virginia Beach, Va., May 19-20, 1980.
M.A. Tapia "Application of Boolean Calculus to Digital System Design" proc. IEEE Southeastcon, Nashville Tennessee, April 14-16, 1980.

Appendix II

presented at IEEE Southeastcon, Nashville Tennessee, April 14-16, 1980

SUHTV施O YOOd 16 SI gDVa TVATIM136

APPLICATION OF DOOLEN CALCUSUS TO DIGITAL SYSTEM DESIGN

Molez A. Tapia

$$
\left(x^{x}\right.
$$

OL DUOR QUADHE

riectrieal Englneering Departenent, University of Miami P.0. Box 248294, Coral Gables, rla. 3324

MBSTRACT

Conventional methods for synthesizing asynchronous sequential systems do not use clock-trfggered Elipflops. It has been shown that synthesis techniques for such systems; which utilize edge-sensitive fiipilops lead to networks which require Sewer filpilope and logic gates ehan those obtined by conventional techniques. A Cormal procedure for synthesis of asynchzonous sequential systeme using comarcialiy available edge-sensitive Elipflops, is given.

1. INTRODUCTION

In conventional asynchronous level-mode sequential system design direct emphasis is placed on relationship between outputs and inputs In terms of their levels only, and the possibility of using edge sensitiveness property of logic elements is not utilized, Smith and Roth have shown [6.5] that if edge-sensitive Ilipflops are used in the design of an asynchronous system and the edge-sensitiveness property is judiciously taken advantage of, then in many coses it leads to a realization that requires less Elipflops and logic gates than conventional method does for a given system. Smith and Roth technique $[6,5]$ utilizes a general model ol edge-sensitive Elipflop" in their approach. The method proposed in this paper is applicable to any commercially avaliable clocktriggered Elipflop that zesponds to a clock transition (positive or negative).
2. DIEFERENTIAL MODE MODEL
i
Definition 2.1: A Furdamental Mode
Asynchronous system
(02.1.1) FMAS $\triangle(I, S, 0,1, g)$ where (02.1.2) I Δ set of p distinct input conditions $=\left\{I_{\}}\right)$
(02.1.3), stset of states of the system $=\left(s_{j}\right)$
$(02.1 .4) \quad 0 \Delta$ set of outputs $=\left(0_{j}\right)$

It will further be assumed that only one state variable and only one input variable is allowed to change at atme.

In order to make it convenient to express the next state and output in terms of the change in the inpi- and the present stath, we will tranisform the EMA system to a Differential Mode model defined below. This is comparable to the dM Machine of Smith and Roth $(5,6)$ but realiy different than that.

Definition 2.2: Given a fundamental mode asynchronous system EMAS, a Differential Mode system, DMS will be defined as a 6-tuple aE given below:
(D2.2.1) DMS = (I', I*', s', $\left.0^{\prime}, f^{\prime}, s^{\prime}\right)$ where
(D2.2.2) I'=I,

(D2.2.4) $\quad s$, ${ }^{\frac{1}{3} s}$
(D2.2.5) E'A output function of DMS
(D2.2.6) $\dot{\boldsymbol{g}}$ ' A next state function of
DMS
The function g^{\prime} is related to the sunction of the EMA system as shown below:
$(02.2 .9) \quad g^{\prime}\left(S_{h}, I_{f}, I_{k}\right)$

$$
\begin{aligned}
& \text { s ifg(s r)us } \\
& S_{i}, i E_{g}\left(S_{h}, I_{j}\right)=S_{h \prime} g\left(S_{h}, I_{k}\right)=S_{i} \\
& \text { and } g\left(s_{i}, I_{k}\right)=s_{1} \\
& S_{1}{ }_{s} \text { if }\left(S_{h}, I_{j}\right)=S_{h} \text { and there exist } \\
& \begin{array}{l}
s_{11} s_{12}-5_{i n} s_{1} \\
\text { such that } g\left(s_{n}, I_{k}\right)=s_{1,},
\end{array} \\
& g\left(S_{11} \cdot I_{k}\right)=S_{12},--\quad, \quad\left(F_{1 n}, I_{k}\right)=s_{1} \\
& \text { and } g\left(S_{i}, I_{k}\right)=S_{j} \text {. }
\end{aligned}
$$

The function ${ }^{\prime}\left(S_{h}, I_{j}, I_{k}\right)$ is related to the function $f\left(S_{k}, I, O\right.$, 0 the EMA Eystem

Before we develop procedure for synthesizing the asynchronous sequential system described by the equations ($02,2,1$) through (D2.2.10), we will assume that the EMA system (and hence DM system is amenable to single variable - change state assignment. Let us further assume that the system has n input variables $X_{1}, X_{2}--x_{n} m$ state variables $Y, Y, \cdots-Y_{m}^{2}$ and hence m clocktriggered Etipilops that respond to positive transitions. We will, therefore, , need to realize clock functions, say c 's such that whenever an input change occurs then one (and only one) of the clock functions goes through a positive trans-. ition provicing a proper state transition.
3. A DIFFERENTIAL MCIOE SYSTEM

- Example 3.1. .". ..

Consider' the EMA system described by the reduced elow table given in Figure 3.1 . Which is equivalent to the DM system given in Figure 3.2.

Fig. 3.1

WHNG IAOD , ATW M NT FLLHD

$x_{1} x_{2}$								
	$\begin{aligned} & 00 \\ & 00 \\ & \hline \end{aligned}$	0	01	$\begin{aligned} & 01 \\ & 00 \end{aligned}$	11	110	10 00	10
1	2,1	1,0	3,1	1,0	-	-	-	-
2	2,1	1.0	-	-	-	-	2,1	4.0
3	-	-	3,1	2,1	3.1	2,1	-	-
4	-	-	' -	-	1.0	4.0	1,0	4.0

Figuze 3.2
Uaing the conventional methods to reduce flow tables for EMA systems, the DM tible can reduced as shown in Figure 3.3.

Figure 3.3
The zeduced DM system has only two states.
Let $y=0$ and $y=1$ be the assignments for states A and B respectively.
Observe that if $y=0$, the ilipilop must
change its state, when
(1) $x_{2}=0$ and x_{1} changes from 0 to 1 or
(2) $x_{2}=1$ and x_{1} changes Erom 0 to 1 .

If $y=1$, the Elipflop must change when
(1) $x_{1}=0$ and x_{2} changes from 0 to 1 or
(2) $x_{1}=1$ and x_{2} changes from 0 to 1

This tells us when the clock should go through a positive transition. The desired changes in clock function in terms of changes in X_{1} and X_{2} can be described by the differential expression (E3.1.1) below:
(E3.1.1) de $-\left(\bar{y}_{1} \bar{x}_{2} d x_{1}+x_{2} d x_{2}\right)+y\left(\bar{x}_{1} d x_{2}+x_{1} d x_{2}\right)$

$$
=\bar{y} d x_{1}+y d x_{2}
$$

It can be shown that de is compatibly tntegrable and a compatible integral of de is
(E3.2.2) $\quad \int_{c} d c=\bar{y} x_{1}+y x_{2}($ Sec Des. 4.4)
Let us, then, try
i(E].2.3) $c_{1}=\bar{y} x_{1}+y x_{2}$ as the Input to
the clock pln of alipflop to be used.
Then
(E3.1.4) $d c_{2}-\overline{y d x_{1}}+y d x_{2}+\bar{x}_{1} x_{2} d y+x_{2} \bar{x}_{2} d \bar{y}$
so that transitions ($\bar{x} x_{2} d y$) and ($x_{1} \bar{x}_{2} d \bar{y}$) which are not specifled Ey equation (E3.1.y may be present. However a close examination at Figure 3.3 revesis the fact that when $y=0$ and input changes to $x_{1} x_{2}=02$, than y does not change to 1 so thit ${ }^{2}(\bar{x}, x, d y)$ is a tranaition that cannot occur. Smilarly ($x, \bar{x}, \mathrm{~d} y$) cannot occur either. Hence the clock function C will provide exactiy those transition which are specificed by equation ($23.1,1$). Hence the circuit requires only one (toggle) 2liptlop, with the eunction given by C_{1} an input to its clock pin and output of the lijpflop (y) being identified as the output z of the system. See Figure 3.4 on page 4.

4. REVIEW OF BOOLEAN CNECURUS

The definitions and theorems given here are described in references $1,2,3$ and 7.
Defintition 4.1: th3tnect
Dezintition 4.1:
$(4.1 .1) d x_{1}-1$, when $x_{1}, 1 \leq 1 \leq n$, changes $E x$ on 0 to 1 or fromill to 0
$d x_{i}=0$, when x_{i} does not change at 111.
dr will be detlned similariy
(4.1.2) dF=dX, by dafinition implies that when X changes from ot to 1 (or 1 to 0). so dons E change $\{r o m$ o to 1 (or 1 to 0):
Diffarential expression, denoted by dE, will be defined as
(04.2 .1) $\mathrm{dE}=\sum_{i=1}^{n}\left(\alpha_{1} d x_{1}+B_{1} d \bar{x}_{i}\right)$
 $x_{1}, x_{2},--x_{1} \dot{1}, x_{1+1}, \cdots-x_{n}^{\prime}$ (and independent of X_{i}) and only ane of the varfm ables $x_{1}, x_{2},--x_{n}$ is allowed to change at a time.
Definition 4.3: The integral of zeroth $\frac{\text { order, written as }}{\text { expression }}$ dod, of the boolean
(D4.3.1)
$d \xi={ }_{l=2}^{n}\left(\alpha_{i} \mathrm{dx} x_{i}+\beta_{i} \mathrm{~d} \bar{x}_{1}\right)$
is given by
(D4, 3, 2)
$\int_{0} d s=\sum_{i=1}^{\infty}\left(x_{i}+8 x_{i}\right)$
and the integral of tiest order, written as $\int_{3} d \xi$ of the expression dE in equation (D4-3-1) is given by
(D4.3.3)

$$
\left.\int_{1} \mathrm{dt}=\sum_{i=2}^{n} \operatorname{lo}_{1}+\mathrm{B}_{1} \bar{x}_{i}\right) .
$$

Definiticn 4.4: A Siven differential expression d given $1 n(04.3 .1)$ is said to bs comeatibly intearable if there exists a Eunction F such that

1sisn. 72 satistying equation ($04.1,1$)
dön uxist then r is called a compatible 'Integral of dr. (see Appondix).

Theorom 4. 1 : The necessary and sufcicient condition for compatible inteqrability of given diezerential expresion

$$
\begin{aligned}
& d t \cdot \frac{z^{n}\left(\alpha_{1} d x+\beta_{1} d \bar{X}_{1}\right) \text { in that }}{\left(\int_{0} d \xi\right)^{1-2}\left(\int_{1} d r\right)^{-0}} .
\end{aligned}
$$

Theorem 4.2: if a given differential oxpresision d is integrable, then a compatible of de is given by

$$
\begin{gathered}
\int_{e} d k=\int_{1} d x+k \text { where } \alpha L K \leq \int_{0} d K+\int_{1} d k \\
5, \text { SnTHESIS PROCEDURE }
\end{gathered}
$$

Due to space limitation, it la not ponsible to outline here a general procedure, in details, for synthesizing an asynchronous sequential system using clock-tziggered slipelops and soolean calculus only a brief sketch of the procedure le given here in what tollowe.

Givan an funs tatia which ia alraacy reduced, it is ifrst transformed into DMS tabie. It has been shown that the latter can always be reallzed as a network consisting of edge-triggered (elock-triggered) s14pliops and Boolean calculus. Fzom the Doms table, diferential expression ($1,2,3$, .7) Sor each clock function is sietemined taking into account what changes in clock qunctions are necessary in order to bring about changes in the state of the corzesponding filipiop. These differential expressions are guaranteed to be integrable other inputs (such as S-R or J-K. if any) to the Elipclops are determined by looking at the nature of next states in the entries in the table, thus a complete network realization is obtained.

Quite often the DMS table is turther reducible as shown in the previous exampla. If the reduced DMS table is reallzable using clock-triggered Elipilop, a congiderable soving in the number of flipt10ps and lagic gates results, Synthesis procedurefor a Eeduced DMS table is similar to the procedure just outlined, but a number of relationships have to be checked before the precedure can be successfully applied. Due to space limitations, the detailed procedure cannot be deseribed here.
(04.4.1) $\frac{3 F}{x} \geqslant \alpha_{1}$ and $\frac{\partial F}{\partial \bar{x}_{1}} \not 1_{1} 10 \mathrm{r}$ al1 1 .

6. COHCLUSION

Design of naynchronous devel-mode sequentfal systems using clocknd flipclops has been known for a long time. However, such design using aimplex circuita has been assentially linited to those cases where: the logic dosigner pessessos suffieient axporienco and inspiration to intuitively obtain such an implementation. Smith and Roth $(5,6)$ prenented a formal appronch to realize asynchronous level-mode sequential system using "gonaral model of adgesensitive flipfiop" $[5,6]$. Tha formal synthasis procedure proposed here is applicable to aynthesis of such systems using any commerclally available clocktriggered Elipflops.

We have shown that any asynchronous levelmode sequential system could be raalized using the proposed approach. In many cases this approach lends to designs which are lass complex, less costly, more raliable and smaller in size than those obtained using conventional desion techniques. In the worst case the complexity of the design obtained by the proposed approach are comparable to that obtained by conventional technigyea.

REFERENCES

(1) J. H. Tucker, "A ransjifon caleulus for Boolean Functions," Ph.D. Dissertations, Dept, of Electrical Engineering, Virginia Polytechnic Institute and state University, Blacksburgh,Virginia, May, 1974., :....
..........
(2) J.H. Tucker and A.W. Bonnet, MA rransition Calculus for Boolean Functions," Proceedings of TEEE Southeast-Con., orlando, Florida, April 29-May 1, i974,
(3) J.H. Tucker, M, A. Tapia, and A.W. Bennett, "Booiean Integration,: Proceedings of IEEE SoutheastConference, Clemson, S.C., April 5-7, 1976.
(4) M.A. Tapia, "Development of Boolean Calculus and Its Applications, "MASA Langley Basic Research Review, Hampton Va.. April 1978.
(5) J.R. Smith, Jr. and C.H. Roth, Jr.., "Differential Mode Analysis and spathesis for sequential switching Networks, Elec. Res.Cen., Univ, of Texas., Austin. Tech. Rep. 63, 1969.
(G) J.R. Smith, Jr. and C.H. Roth, Jr., "Analysis and Synthesis of Asynchronous Sequentinl Natworks Using Edge-
© Sensitive Flip-Flops," TEEE Trans. Computers, Vol. C-20, Aug. 1971, pp. 647-855.
(7) M.A. Tapla, J.II.Tucker and A, W, Bennett, "Booloan Calculus for Digital syntoms," subinitted to IEEE Computor Transactiona.

ACHMONLEDGEMEHT

The author gratefully acknowladgas the support of the NASA Langley Research Gentar repearch grant NSG 11436 for the research reportod here.

APPENDIX

Dafinftion Al: For a Boolean function $F\left(X_{1}, X_{2},-\cdots, X_{n}\right)$, of n variables $X_{1}, x_{2}, \cdots-x_{n}$ Boolean differential of F, denoted by dF is dotined as
(A1.1) $\quad \mathrm{dF}=\sum_{i=1}^{n}\left(\frac{\partial \mathrm{~F}}{\partial X_{i}} d x_{i}+\frac{\partial F}{\partial X_{i}} d \overline{X_{i}}\right)$
The summation in Equation (AL, 1) is with xespect to the inclusive or, and the partial derivatives are defined by
(A1.2)

$$
\frac{\partial F}{\partial x_{1}}
$$

$$
\left.F(\underline{x})\right|_{X_{d=1}}
$$

$$
\left.\cdot F(\underline{x})\right|_{X_{1}=0}
$$

and
(A1, 2)

$$
\left.\left.\frac{\partial F}{\partial X_{i}} F(\underline{x})\right|_{X_{i}=0} \cdot F(\underline{x})\right|_{X_{1}=1}
$$

Whth the interpretation givenin Definition 4,1 , equation A1. 1 completsly describes changes in F due to changes in X_{1}, $1 \leq 1 \leq n$.

Definition A2: If a function F exists nuch that dFmet, then the differential oxpression in D4,2.1 is exactly integrable.

Figure 3.4

Appendix III

presented at the Fourteanth Asilomar conference on Circuits, Systems \& Computers,

pacific Grove, California

Nov. 17-19, 1980

Morez A. TADYA
ABSOCZATE DMOFLISOA OF ELECTRICAL EWZMEEANG

P.0.7, 240294, Univaraity of MLenl
Coral gablen, Fl, 33224
305-2A4-1251

Abstract

Recently thore has bean conoldorable Intorett in aynthelle of soynchzonou naquantial systeme using clock-\$ziugesed eliptlopi (2-7), zt has been Thow $[2,3]$ that anthenis techniquas for such syatma which utilize edge-sanitive (clocktrigqared) ELipilopm lead to networkn which, in nany cainen, requiro tower 611 p fiops ary logie gates and which are lese expensive and more rallabla than thowe obeained by conventional techniques, The prom foued paper alim at develepping formal procedures for syinthestif of anynchronoul aequancial eyatemin uning commeciaily available edqa-asnaitive flipe 81ops.

L. Introduction

In conveneional asynchzonour lovel-mode sequential symtem design direct emphasia in placed on selationship between outpute and inputs in terms of their lovele only, and the poosibility of using -dge inneltivonere property of logic elementr is not utidisnd. smish and noth have shown (3) that if edge-sansitive Elipilops are uned in the design of an asynchronous systom and the Jdgo-tensitivanmss property in judicioumly taken advantage of, then in many caues it leade to a realization that fecuirat las cilpflop: and logic gates than convantional method doan for a given syatom. The salth and poth technique [3] Leilizes a "goneral model of edqe-sensitive R1ipilop" in thelr appropch. The method proposed in this papar is applicable to any comercially avaliable clock-triggered tliptiop thet responds to a elock transition (positiva or negative).
2. Dleferential Mode Model

Deflnition 2.1, A rundamental stode Aynchronous yrem
C02.1.1) FMAS - ($1,3,0, t, q$) where
(D2.1.2) $I=$ set of p distinct inpue conditions $-\left\{I_{j}\right)$
(D2.1.3) s-iset of q states of the system - $\left(s_{j}\right)$
(02.1.4)

$$
0 \text { - set of outpute }-\left\{O_{j}\right\}
$$

(02.1.5) $\quad-$ output sunction $-\varepsilon\left(s_{k}, z_{j}\right), \forall f$ and
 will be asoumed.

It will, further, benumed that only one Ine put vardable is aldowad to chame at atme and the the mytem has n input variables $x_{1}, X_{,}, \ldots, X_{n}$ and m etate variables $Y_{1}, Y_{2} \ldots \ldots Y_{m}$ in ordar to s'allisate the expreseing of the noxtmatate and outpute In terma of the chanye in thim input and the proment state,
 sode systen defined below!

Oefinleton 2.21 Givon a fundmental mode ayynchronoun gyeen FMAS, offferential aode syoten (DNA) will be defined an a 6-tupie all given below:

($02.2,2$) 1 $\quad 1$,
$(02.2 .2)$
$(02,2,3)$$\quad\left\{\left(I_{j}, z_{k}\right), V_{3}, k, j \neq k\right\}$
($02,2,5$) \&' output tunction of D (1)
($02.2,6$) 9^{\prime} - next state sunction of DMs
The function g^{\prime} is ralated to the function g of the IMA byotem as hown below.

$$
(02,2,9)
$$

$$
\begin{aligned}
& q^{\prime}\left(8_{h}, 8_{j}, \Sigma_{k}\right) \\
& 5_{i}, 12 g\left(s_{h}, x_{j}\right)-s_{h}, g\left(s_{h}, x_{k}\right)-s_{i} \\
& \text { and } g\left(s_{1}, I_{k}\right)=s_{h} \text {; } \\
& s_{1} \text {, i2 } g\left(8_{n}, x_{j}\right)=s_{h} \text { and there exises } \\
& 3_{11} 1^{--}, 3_{1 n}{ }^{6 s_{1}} \text { sueh that } \\
& g\left(s_{h}, 2_{k}\right)-3_{11} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } g\left(d_{1}, I_{k}\right)=s_{1} \text {; } \\
& -12 g\left(s_{h}, y_{y}\right)=s_{h} 6 g\left(8_{h}, \delta_{h}\right)=7 \\
& -12 g\left(s_{h}, x_{j}\right)-s_{h} \text { and thare exiat } \\
& s_{11}, s_{12},--s_{1 n} \text { such that } \\
& g\left(s_{h}, s_{k}\right)=s_{11}, g\left(s_{11}, L_{k}\right)=s_{12} \\
& g\left(s_{12}, I_{k}\right)=s_{i 3},--, g\left(s_{i n}{ }_{-k}\right)=-1 \\
& -12 g\left(s_{n}, x_{y}\right) \neq s_{n} \text {. }
\end{aligned}
$$

 Lunction $f\left(s_{k} z_{j}\right)$ of the ma syatem as shown bolm:

$$
\begin{aligned}
& (08,2,10) \quad E^{\prime}\left(x_{n}, x_{j}, x_{k}\right)
\end{aligned}
$$

Definction 2.31
(02.3.1)

$$
\begin{align*}
& d x_{i}=1 \text { when } x_{1}, 1 \leq 1 \leq n, \text { changer } \\
& \text { trom } 0 \text { to } 1 \text { or } 8 \mathrm{ram} 1 \text { to } 0 \\
& \text { O. When } X_{1} \text { done not change it } 412 \\
& \text { dr will be defined similarly. } \\
& d p=d X_{1} \text { by datinition Lmplies that } \tag{02,3.2}\\
& \text { when } X_{1} \text { changer trom oto } 1 \text { lor } \\
& 1 \text { to } 0 \text {), to does } \mathrm{I} \text { change from } 0 \\
& \text { to } 1 \text { (or } 1 \text { to } 0 \text {). }
\end{align*}
$$

If order to relate changes in r due to changen in x_{1} under dieferment concition wo whil trate dr and $d x_{j}$, $1 \leq 1 \leq i n$ ane oneies in boolean algober having values of 0 or 1 as definad in equation (02.1 .1). conyidor the quetion
(02.3.3)

$$
d r=\left(x_{2} \cdot x_{3}\right) d x_{2}+\left(x_{2} \cdot x_{2}\right) d \bar{x}_{3}
$$

Wien $x_{2}=x_{3}=1$ and x_{1} de changing, then $d \bar{x}_{y}=0$ and $d r a d x_{1}$ on that r changey the name way as X_{1}. ehangan. slallariy wher $X_{2}-x_{2}=1$ and X_{3} changew, then $d r=d \bar{X}_{3}$ and T changen the gaxe way as X_{3} changay

Diefarantial expreneion, denoted by dH, will be desined an
$(D 2,3.4) \quad d H-n_{1}\left(1 x_{1}+B, d \bar{x}_{1}\right)$
where x_{1} and $B_{i}, 1 \leq i \leq n$ ase tunctione of $x_{1}, x_{2},=-m-x_{1-2}, x_{1+2},-m-x_{n}$ (and indopandent of x_{1}) and only one of the variablet $x_{2}, x_{2},-\cdots, x_{n}$ is allowad to change at a tim.

Digzerantial expreasion an given in (02.3.4) wil2 be used to doncribe changes in clock functions in terma of changes in input and state variables.

The pallowing definitione, rolationshlpa and chrorens have been reportad enrlier (1,4,7) and vill be presented here briasiy gor the ruke of completeness and conveniance of reference.
Celinition 2.4i for a moolean zunction $\left[x_{1}, x_{2}!--, x_{n}\right)$, of n variables $x_{2}, x_{2},-\cdots, x_{n}$ soolian diecerential of F, denoted by dr, is dofined as

$$
(n 2,4,1) \quad d r \cos _{1=1}^{n}\left(\frac{\partial r}{\partial x_{1}} d x_{1}+\frac{\partial r}{\partial \bar{x}_{1}} d x_{1}\right)
$$

The umpetion in tquation ($22,4,8$) is whth renpeat to the Inclunive on, and the pertial derivativen are daflnad by

$$
\begin{aligned}
& (02.4 .2) \quad \frac{3 F}{3 X_{1}}-\left.\left.P(x)\right|_{X_{1}-1} \cdot \Gamma(x)\right|_{X_{1}=0} \\
& (02,4.3) \quad \frac{3 F}{\partial X_{1}}-\left.\left.P(x)\right|_{X_{1}=0} ^{\text {and }} P(x)\right|_{X_{1}-1} ^{n}
\end{aligned}
$$

Whth the Ineexprobation qiven in detinition 02.3 , equation ($02,4.1$) completaly describea changes in c due to change in variable $X_{1}, 1 \leq i \leq n$.

Eefindtion 2.51 The intogral of reroth order, uriteon oll $f_{0}{ }^{d H}$, of the moolean expremsion

$$
\begin{aligned}
(02,5,1) \quad & \quad \sum_{\operatorname{Ln} L}^{n}\left(a_{L} d x_{L}+L_{L} d \bar{x}_{L}\right) \\
& \text { is given by }
\end{aligned}
$$

$$
(02.3 .2) \quad \int_{0} d n-\sum_{i=1}^{n}\left(a_{1} \bar{x}_{1}+B_{1} x_{1}\right)
$$

and the integral of eirat order, writeon an $f_{2} d K$, of the expresion dif in equation ($02,3,1$) Is givien by
$(02,5,3) \quad P_{2} d M=\sum_{1=1}^{n}\left(a_{1} x_{2}+s_{1} \bar{X}_{1}\right)$.
Definition 2.6.1 a given difterential expreseion du qiven $t^{r}(0,5,1)$ In ald to be comatibly integrable is ${ }^{\prime}$ gare exieta atunction r such that

$$
\begin{equation*}
\frac{14}{\partial x_{1}} \geq a_{1} \text { and } \frac{3 r}{\sqrt{x_{1}}} \geq B_{1} \tag{02.6,1}
\end{equation*}
$$

for ali 1, l<icn. If F natiatyieg oquation (02.6 .1) doen axist, then F is called a compatible integral of $d H$, The digferential exprangion is fald to be exactiv integrable is there exists function f auch Ehat

$$
(02.6 .2) \quad d r=d H
$$

If F antiatying the above equation does exiat, then r is called the exact integral of $d H$.
meoren 2.1: The necessagy and aufficiane condition lor compatible Integrability of a given difterenti.: al expresalion

$$
\begin{aligned}
& (52.1 .1) \quad d H=\sum_{i=1}^{n}\left(\alpha_{1} d x_{1}+\beta_{1} d \bar{x}_{l}\right) \\
& (72.1 .2) \quad \int_{0}^{d H} \cdot f_{2} d H=0
\end{aligned}
$$

Thnozem 2.2. If a given differential expression dit in intagrable, then a compatible integrable of dH if givon by
(52.2 .1) $\int_{0}^{d H}-f_{1} d H+K$ where
(22.2.2) $k S \frac{f_{0}^{d H}+f_{2}(H)}{}$

1. Examole

mofore going invo a tormal synthesi peocedure, we will outline tha approach with an example. Conm ulder the FMh zyotem described by rigure 3.1.

	$\begin{aligned} & x_{2} X_{2} \\ & 00 \end{aligned}$	01	11	
A	A, 2	\#,	$0 .=$	A, 0
-	E, 0	E, 1	$c_{1}=$	A, -
c	B, -	C,0	c, 1	D.-
0	$\mathrm{A}_{1} \cdot$	c. -	D, 0	0,2

rin. 3.2
Oi Eranatorming the syatem, we get the cMis table in rigure 3.2.

$x_{2} X_{2}$								
	00	00	01	01	11	11	10	10
	10	01	11	00	01	10	00	12
A	2, 0	\$1. 1	-	-	-	-	A, 7	0,0
\cdots	A, 0	8,1	C, 1	B,0	-	-	-	-
己	-	-	6.1	1,0	6,01	D, 1	-	
D	-	-	-	-	6.0	D,1	D, 1	D.0

rig. 3.2

$x_{2} x_{2}$								
	00	00	01	01	11	11	10	10
$x_{2}{ }_{2}$	10	02	12	00	02	10	00	11
(A)00	00,0	01,2	-	-	-	-	00, 1	10,0
(b) 02	00.0	01.1	11,1	02,0	-	-	-	-
(c) 12	-	-	11,1	01.0	12,0	20,1	-	-
(0) 10	-	-	-	-	12.0	10, 1	00,1	10,0

Fig. 3.3
Let us assume that d-EIfpi2ops will be used and that the S14pilopw raspond to the positive edge of the clock pulse.

Cbsarve that in the efrat row, the atate changen when $X_{1} X_{2}$ ehanges Erom 00 to 01 and fron 10 to 11, that is tos any that the atate changes when tranitions denoted by $X_{1} d x_{2}$ and $x_{1} d x_{\text {, occur. }}$. Taking into account all the rows, we heed the elock function to go through poilitive tranmitions whenevar the tranaltions indicated on the elght hand eide of equation (E3.1) occuz.
(E3.1)

$$
\begin{aligned}
& d \bar{y}_{1} \bar{y}_{2}\left(\bar{x}_{2} d x_{2}+x_{1} d x_{2}\right) \\
& +\bar{y}_{2} y_{2}\left(\bar{x}_{2} d x_{2}+x_{2} d x_{2}\right) \\
& +y_{2} y_{2}\left(\bar{x}_{2} d \bar{x}_{2}+x_{1} d \bar{x}_{2}\right) \\
& +y_{2} \bar{y}_{2}\left(x_{2} d \bar{x}_{2}+\bar{x}_{2} d \bar{x}_{2}\right)
\end{aligned}
$$

3y Theoram 2.2 dc is compatibly inteqrable and by Theoram 2.1, a compatible Incegral of dc, say c_{1}, is given by
(E3.2)

$$
\begin{aligned}
c_{1}= & \bar{y}_{1} \bar{y}_{2} x_{2}+\bar{y}_{1} y_{2} x_{1}+y_{1} \bar{y}_{2} \bar{x}_{2} \\
& +y_{2} \dot{y}_{2} x_{2}
\end{aligned}
$$

In fact c, in an oxact integral of de with respect so varidbles x, and $x_{\text {n }}$ so that dc e dc is the tranaltions in $d c_{1}$ due to changen in y_{1} or y_{2} are ignored. Whenever one of the traniltions on the right hand side of equation dc doun occuc, then If or Y, WSLl chanqe. Howevar, it can be whow thint this change in γ_{2} or γ_{2} wali not caune a poiltive trandition in c_{2} :

D_{11} and D_{18} in Elguren 3.4 and 3.3 zeapeceively give ene valutis of the inputi to the d-eliptiops.
obuerge that when $\gamma / 7=00$, then powitive transietion oceuy only whan 8_{2} changat from 0 to 1 regarddens of the valum of ${ }^{2} x_{1}$, Hance when $x_{\text {, }}$ changus from 1 to 0 , regaxdian of the value of X_{1}^{2}, the value of the next atate is lait unapecifisd, sinilarily it can be thown that every row hat two unmpecieted entrife in the K-mape for D_{11} as woll ar 0_{12}, Frem thege mape we have
(E13 1) $0_{12}-x_{1} x_{2}+x_{1} y_{1}+x_{2} y_{1} \quad$ and

The output tunction, 2 , la obtained an
(EJ.5) $\quad z=\overline{\left(X_{2} \Theta X_{2}\right)}+\left(x_{2} \Theta X_{2}\right)$
Equatien (E3.2) dencribes tha expresilon corresponding to the combinational network whone output would be connected to the clock pins of both the D-RiLpilops. D_{11} and D_{13} detinat in equations (EJ.3) and (ES.4) are the expresgion for the comblnational networks whose outputs weuld be connecsed to input plan: D_{11} and 0_{12} of the D-s1ip2Lapa 1 and 2 yespectivi-2. (Sue Xpandix).

4. Renlizabllity

In thia metion we ulil glve remulin, without preot, fortaining to realizabilley of an asynchzonous fundamental-mode (FMA) aystom uleng clockeriggered E11pilops and amploylng Boolean calculus.

Theorem 4. 1 , If a differential mode syarm derived frem an Finh system bin the same number of states as the latier, then the difserential mode speten (DMS) Is realizakle using clock triggered 81 tpilops and other logie gaten.

Theoren 4.2: IE the dis tably obtalnad trom an alrecdy-reduced funs table 15 reduced further 112 It is ruducible), then the raduced table is realizable uning clock-triggered E11pilops, if the table is output- and noxe-meate-unaibiguous. Ithe tarm "output-unmbigous" and "next-ntate-unambigous" are dofined in ceferance 7 and will be deined in xppondix at the and of this paper, if opace permite.!

5. Synthasis procadure

Glven an FMas ceable, the procedure for syntheaizing the syetam uning D-E11pilopy would be as follows:
(1) Transtorm the given EMA syetem table to ams table using rolationships given in dotinition 2,2. Aseign codes to the ztates.
(2) For every entry in the pems table that is specifled and that is digforent than the 'prosent' state corresponding to the row in which it dies, obtain a differential term corresponding to 1 ts column to torm - Boolean differential expresaion, dC, for the cucck qunction.
(3) Find a compatible Integral, say C_{1}, of the differential expression dC obeained in itop (2).
(4) Find poolean differential, d C_{1}, of C_{1},
(5) Corrasponding to avery input change indicated by d C_{1} that causes C_{1} to change from 0 to 1 , and every tpresent' state, deteraine the 'next' state using tha DMS table. For input changes not specified in tho Boolean diffurential dc, , leave the 'next' entry unspacified. sased on this mapping, determine the K maps tor the expressionis sorresponding to the input to o-ELIpflopy denoted by $D_{i n}{ }^{\prime}$'s.
(6) Determine the output function 2 in tersin of $x_{i}^{\prime} s$ and $y_{j}^{\prime \prime s}$ as is usually done.
coserve that the crocx Eunction C_{1} obtained in step (3) is the ciommon Input expression for the clock pina of ald the D-filptiops.

If the oms table derived from an already-recuced rmas table is further reduced (1f it is reducible), then the reduced table is realizable using clock-triggered 11 pilions if the conditions specified in Theorem $\mathbf{4 . 2}$ are satialled. Synthesis procedure zor such a clasis of systm will not be given here due to space inmitations.

6. Conclusion

A method has been presented that uses clocktriggered flipilops in synthesis of fundamentalmode asynchronous systems, The method amploys soolaan calculus. The method leads to a network that requires zewer ic packages than those required by a network arrived at uring conventional methods, thu leading to reduction in cest, com-
plexity of notwork and power connumad by it.

8. Acknowledament:

The author graterully acknowledges the support of the Nask Langloy Renonrch Canter through MAsA Grant to, 2436 ent the research rer sutd kere. The athor would, ada, like to expresk the sincere gretitude to Ms, Berbro Vergara for the wi, jat and precise typing of the papar.

Refarences

(1) J.н. Jucker, "A transition calculu* for moolan functiona," Ph. D, Diseartation. Dopt. of Electrical Engineerimg, Virginia polytechnic znititute and state Univeraity, Black:burgh, Virginiay May 1974.
(2) M.A. Tapla, Hovilopment of Boolean Calcuiuz and its Applleations", WASA Langley Eanle Reavarch peview, Hampton Va., April 1976.
(3) J.R. Smith, Jir. and C.H, poth, Jr., "Differential Mode aralysis and Synthesls for sequentlal Switching Networks", Elec, Pes. Cen., Uniy. of Texas, Austin, Tech. Rap, 63, 1969.
(4) M.A. Tapia, J.H. sucker and A.W. Bennete, "moolean Integral Caleulut for Digttal SyEtum", subirted to IEEE Computer Transactions.
(5) H.Y.H. Chuang and S. Das, "Synthesis of Multiple-Input Change Acynchronous Machines Using Controlied Excitation and Filp\&lops", IEEE Tyansactionit on Computors, Vol. C-22, No. 12. December 1973.
(6) O. Yenersoy, "synthesis of Asynchronous Machiner Uning Mixed-Operationn Mode" IEEE Transactione on computers, Vol. $\mathrm{C}-28$, Ho, 4, Aprill 2979.
(9) M.A. Tapla, "Design of Asynchronoun system Using A Synchronour prasettable Countar", Southeantern Symposium on systam theory, Virginia Beach, May 19 t $20,1980$.

Appendix

Caflaltion A.1 A DM syetem table is sald to be level-wise outout-unambiquous, is there exiata no Input condleione I_{i}, I_{j}, I_{k} and states s_{1} and s_{b}, I_{1} and I_{k} being adjacent, I and $I_{\text {b }}$ being adjacent, I_{j} and Ik not necemsarily diatinet and $S_{\text {a }}$ and 5 not necessarily distince, auch that $g^{\prime}\left(5_{a}, I_{j}, I_{1}^{b}\right)$,
$g^{\prime}\left(S_{b}, x_{k}, I_{1}\right),{ }^{\prime}\left(s_{i} I_{j}, I_{1}\right)$ and $E\left(S_{b}, I_{k}, I_{1}\right)$
are deflined and
(A.1.2) $g^{\prime}\left(s_{a}, I_{j}, I_{1}\right)=g^{\prime}\left(s_{b}, I_{k}, I_{1}\right)=s_{c}$
(say)
$\left(\right.$ A. 2. 2) $L^{\prime}\left(s_{a}, x_{j}, r_{1}\right)=o_{j e} \not o_{k e} \mathcal{L}^{\prime}\left(S_{b}, x_{k}, I_{1}\right)$.

Elgure A. 1
Eefinition A. 2 , A DM syetem table la sald to be ievel-wise nexe-state-ambiquas, if there exist inputs I_{i}, r_{i} and I_{k} and states s_{a}, s_{b} and s_{c} uch

$$
I_{f} \text { and } I_{i} \text { are adjecent and } I_{k} \text { and } I_{i} \text { are adjacent }
$$

($\lambda .2 .1) \quad s_{b} \not S_{c}$,
(A.2.1) $g^{\prime}\left(s_{a}, I_{j}, I_{i}\right)-s_{b}$ and
(A.2.3) $\quad g^{\prime}\left(S_{a}, I_{k}, I_{i}\right)=S_{c}$.

