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DEVELOPMENT OF BOOLEAN CALCULUS

AND

ITS APPLICATIONS

(NASA GRANT NSG 1436 1977-1980) i

FINAL REPORT

MOIEZ A. TAPIA

DEPAR ^MENT OF ELECTRICAL ENGINEERING 	 ('

UNIVERSITY OF MIAMI

'	 ! 33124CORAL GABLES, FLORIDA

1.	 INTRODUCTION'

The .report describes the significant results obtained during

the NASA GRANT NSG ado 1436 period from August 1977 through

December 31	 1980. The primary objective of thegrant has been to

develop Boolean Calculus so that it can be advantageously applied u

y to developing new digital system design methodologies that would

be desirable additions to existent methodologies inj terms -of re-

ducing system complexity	 size, cost, speed, power requirements,

etc. New synthesis procedures were developed during the tenure of

the grant with the above mentioned objectives in mind. These will I

be described in the following sections. Several publications that
5

resulted from research efforts will be shown in a later' section,

a

o
7

1.

•



i

i

(\	 -	 2 -

2.	 FORMALIZATION OF BOOLEAN CALCULUS:

Formalization of the existent and new concepts and re-

lationships in the area of the Boolean Integral Calculus are

given in Appendix I.

i}

3.	 NEW SYNTHESIS TECHNIQUES:

i

Boolean Calculus has made it possible to synthesize funda-

mental -mode- - asynchronous sequential system using clock-triggered

flipflops.	 It has been shown that synthesis techniques that uti-

lize edge-sensitiveness property of flipflops require fewer flip-

flops and logic	 q	 ^	 manyg	 gates than conventional techniques do for

systems ( 11).	 In order to describe the new synthesis technique,

we need the following definitions:

Definition 2.1: 	 Given a Fundamental Mode Asynchronous (FMA) system,

FMAS _ ( I,S,O,f , g) where
j

;

`	 I - set of p distinct input conditions _ {I^}

S = set of q states of the system _ { S}

z	 O	 set of outputs = {0^ }

f; _ output function	
{.

_	 (S	 , I j ),	 Yj and kk;

g = g ( Sk ,	I^ ) , J' and k	 ^ 	 }t-,^^

a` next state function,
s

^ a
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^i	
we will need to tranform it to a Differential Mode System	 DMS

as defined below:

DMS s	 ( I ',I*''S' ► 01)P' ► 6r)

where T' L,	 S'	 _ S

jo 0 1*	 Id

01-0
output function of DMS

g'	 _ next state function of DMS

g 

v (Sh , LJ , Lk,)

Si ,	 if g ( Sh , I	 )	 Sh	 g (Sh ► Ik) 	 Si

4

ii	 1 and g(Si , Ik) 	 Si
L	 1

S ,	 ifi g ( S , I	 ) _ -S	 and there exist S	 -- ' ' Sh	 h	 il'Si2'	 in & Sf

L
, such that g(Sh,Ik)	 Sill

g(Si1 ► Ik) _Si2, --- ,g(S in , Ik ) 	 Si

_ and g ( Si,Ik) 	 Si*

if g ( Sh , I ) = Sh & g(Sh"I	 s
x

if g ( Sh, I
j

) = S 	 and there exist

Sil ,Si2,--- , S in such that

i, hl	 k	 - i1	 it	 x	 12

g(S12'Ik) 	 Si3,---,
	
g(Sin'In)

if g(Sh, 1 3 )	 Sh

f' (S 	 IJ ,Ik)i

f(S i , _Ik ) if g' (Sh	 IP	 Ik ) = Si
' if g l (Sh ;	 Ij,	 Ik ) is unspecified f

i

.r

-e-* ..M+v	 ate... ter.
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It will be assumed that only one input variable can change

at a t ime.

In order to facilitate understanding of DMS construction,; an

example will be presented.

i 00	 01	 11	 10

Q D'— (B),	 1 D,	 .._

B, --- a l B'— (D' 0

A,-- (D)► A A,-- 0,1

Figure 1 (FMA System)

'	 Figure 1 describes an FMA system.
r

X1X2

00	 00	 01	 01	 10	 10	 11	 11
10	 01	 11	 00	 00	 11	 01	 10

c,o
I	
G,1' --- ---

^	
--- --- c,1 e,0

D,1 D10 --- --- --- --- D,0 D,1

--^ --- B,1 $,0 B4O B, l_ --- ---

--- --- A, 0 A,1 A,;1 A,0 --- ---

Figure 2 (DM System)

Figure 2 describes a DMS system that has been transformed from the 	 ;.

FMA system in Figure 1.

Observe that the FMA system table in Figure 1 is in its. .reduced

form.

It can be shown that the method of state reduction normally

used for reducing an FMA table can be applied to the next-state and 4

k

	

	 a,
output table for a DMS system. If such a reduction is carried out in



A ► 0 A  B,1 13,0 D,0 B,1 A,1 A,0

B', 1 B,_0 A, 0 A,1 A,1 A, 0 B,D B11

Figure 3 (Reduced DM gable)

MC) A

(B ► D) ,B

I

iit

5 —

case of Figure 2 one gets the reduced DM system in Figure 3.

xix2
00	 00	 01
	

01	 10	 10	 11	 11
10	 01	 1.1

	
O0	 On	 11	 ni	 in 1

a
a

The next step in the synthesis procedure is to assign state
assignments to the states in the system .. While doing so, we must

'	 ensure that the assignment is such that it allows only one state

variable to change during state transition. If the stake diagram

corresponding to the DM table 
i`ls 

not amenable to single-variable-
h

change,assignment--we will need to increase the number of states by

adding equivalent states in order to accomplish single-variablei	 ;r

F

	

	 change assignment. This problem will be referred to again in the

report later.; Of course, even in the case of traditional techniques
i
k

for synthesizi-ng FMA systems, the same technique must be resorted to	 G

in order to achieve single-variable-change state assignment.

In order to get a feeling for the problems associated with	 {'k	 ,f	 A

synthesizing an asynchronous sequential system using clock-triggered

flipflops,' we will present a complete synthesis example given below;

..	 E

U

a;
r

1



X1.X2
00	 01
	

11
	

in

A ► 1 B, D, B, •----

A j 1 B, X C ► B, 1
C, 0 ' B,--- C, 1 Do

C, A, D, 0 ,D, 0

A

B

C

D

f

le

- B

Figure 4

3.

X02
	 a

00	 00	 01	 01	 11	 11	 10	 10

'	 A
([

9

k

e

D
r

f C

D
A

Figure 5

The system in Figure 4-is an FMA system which is to 'be synthesized
s t

using clock-•tr,^ggered flipilops. The transformation of the system f

into D114 system is given in Figure 5.
Al

When the table in Figure 5 is reduced, we get the reduced Dr4

system in Figure 6. Observe that the FMA system in Figure 5 is in

its redur̂ *ed form.
f '

f ` >a
f

s^ {

4
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i X2
00	 00
in	 ni

7

0i	 11	 11	 10	 10
nn	 ni	 to	 00	 11

4

A,	 I At	 I CO	 I At	 1 --- --- A,	 I CP	 1

C, 0 At	 I Ap— Cp— Co Co

(AoB) A

(C O D) C

Ficure 6

Let y 0 represent A and y a 1 represent C. The excitation table for

the DM system is given in Figure 7.

N" 00	 00	 01	 11	 11	 10	 10
y	 P 10	 01	 11	 00	 01	 10	 00	 11

0 0 0 0 0

0 0

Figure 7

Observe that in the first row y changes when x, changes to 1 with
x	 I and when x changes to I with x	 1. In the second row Y2	 2

changes when x changes to I with x	 0 and when x changes to 02

with x 2 * 1. Hence the clock function should go through positive

changes when any of these changes occur. Hence we can write down the

differential expression for the clock function as follows:

x dx	 dx, de F(x 2 dx, + xldx2 ) + Y( 1	 + x2 1)
Observe that

I de	 F(xlx2 ) +	 2)

I dc	 x0	 1 2 + x 172 ) + Y(3'1^2 + xl;C2)
Hence - I ldc	 I odc	 0 and dcl ,-Is compatibly integrable.



S

t ide Y(xlx2 ) + y(xlx2) is a possible soulution. Lot us, therefore

try,

C - Y(xlx2) + Y(x1x2)

..3Ckinyx2	,	 DC	 1Kkin
ax1 	^xl	 I

s
ac	

y(xl>	
y(x1), _ c

ax	 a'x
2	 /j	 2

a 	 . ( x X) ,	
aC = x x 	 a

ay	 X 2	 ay '	 1 2

Observe that as far as x1 and x^ are concerned, no undesired transi-

tions are caused by them. Since DC and aC are non-zero, we must make

!	 sure that when y changes, it doeA ynot cause undesired„transitions,

ay
= x x2 . Hence when xlx2	1 amid y changes from 1 to 0; it will

cause a positive change in the value of C. Looking at the excitation 	 f

table in Figure 7, 'we see that when input x 1 x2 changes to 11 (.from

01 or 10) y changes from 0 to 1 rather than from 1 to 0. Hence

this undesired transition cannot occur.	 )`	

t

Consider next Z C = x1x2 . When x1x2	 1 and y changes from 0 to 1,
e 	

9

C will go through a positive transition, When x 1 x2 changes from
,F.

00 or 11 to 01, y changes from 1 to 0, rather than from 1 to 0.

Hence no undesired transition is ' caused b change in when x xY	 1 2

changes from 00 or 11 to 01.

Hence we have no ripple and;C=y(x ix2 ) + y(x1x2) realizes the

system. It can be shown that z=y+x2.

{

..	 ...	 W..	 ,,.. n.,.,-•-----r ._..-,- -„prrx.+,_-._.,,._....—...--_.. ..»,^- 	 .._'rs.ae^	 ^•.^c.^.7	 ^-^„.a::^"^+4'3r.m'^vmn -r°'-:^.:.^'==.
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Y I

X;'o --

-..^ C Toggle I

Figure 8

A,toggle flipflop is used, since ychanges whenever clock

transition occurs.

Observe that xlx3 Ay	 and x I x 2 7yAre transitions that cannot occur.

4.	 DEFINITIONS

The following definitions will be needed to describe the

results of the reserv,^'-Oh

Definition 4.11	 mj(x	 xi ) denotes the product term obtained by

deleting the v9,riabAe xi from the Jth minterm of variables

xl1x2P	 x 
n

Definition 4.2;	 mj (A	 xi )Axi denotes the positive transition when
6mj(x	 xi )	 1 and xi changes from 0 to 1.	 A

Definition 4.3:	 m
j 

QE --xi )7,xi denotes the negative transition when

M (;K-X,)- land x changes from I to 0.

Definition 4.4:	 TP(C) denotes set of all possible positive

transitions of Ci where C	 is a function of x and y.

The meanings of notations such as m

mj (x ) Z-y i ) 7y i) etc. j easily follow from `the above definitions

and will, therefore, not be defined.



Definition 4.5	 A differential expression of the form
i

n_
dF	 m0 (y)E	 (40idxi + SOidxi)

i^l

+	 ml(Y)	 X	 (311j dxi + S l idxi )

i

i=1

n
+.. +	 mp(Y)	 E	 (anidxi + A	 dxi)pi

i+^ 1

where p	 2m-1 {
f

is said to be exactly integrable with respect to variables

xl,x2... *.,x  n if there exists a function G(x,y), such that

8G	 m (	 )a	 + m (	 a	 +,..+m (	 aaxi 	0	 Oi	 1 D li	 p ,^' ) pi

aG m0(Y)$0i 
	 l	 li	 p W opi o

^	
axi

I

If a function G satisfying the above equations does exist, then

G is called the exact integral, of dF with respect to xlx2 ,.:...,xn.
E r;

Defintion 4.6	 Ik represents the binary vector (bl,b2, ..... ,bn)

i	 such that b b's are 0's or l's and k is the numerical value of

(bib2...bn), when the latter, 	 is interpreted as a binary number.

f	 Observe that mk (x) ^l
x= Lk

F	 --

'	 Definition 4.7;	 Sk represents the binary vector (bl,b2,.....,,bm) h

such that b i 's are 0's or I's and k is the numerical value of

(b l b2 — * bm )	 when the latter is interpreted as a binary number. }

i

f



.w

Observe that mk (Y)

	

	 ,.,
X"Sk

Definition 4.8: 
Si.i 

and S i t are said to b e yj -adjacent to each

other, it their representations as defined in Definition 4.7

agree in every bit except the jth cane,
I,

Definition 4.9 TP (dF) denotes the set of transitions specified

by the differential expression dF which can cause F to change
from 0 to 1, it dF is compatibly integrable, If dF is not inte-

c^
	 grable, TP(dF) is not defined

Definitio ril, 4.14; If a change in the value of stat e variable y	
N

k,
resulting trom a change in input causes another state variable

yi , for some i 0 J, to change its value, then a secondary trans-

ition or ripple is said to occur in flipflop that is associated
I"

with the state variable y i If in a Dh1 system a ripple cannot

occur, the system is called ripple-free,	 xx

Definition 4.11: mj(x - x i ) Axi and mj (x	 xi ) vxi defined earlier

will also, be denoted by m(x - x i )dx and m^(x - xi )dXi , respec-

t vely.
4

Definition 4.12; amj (x	 xi ) denotes transitions defined in

x	 Definitions 4,2 and 4.3 as follows:

a(m^(x - xi)

mj (x - x i )Gxi , if xi is in true form in m^(x)

m (x - xi )Qxi , if xi is in complemented .form in m^(x)
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Definition 4.13:	 m^(x xi )	 xi denotes a pair of transitions

defined by m^ (x - xi ) bx i,— and mj (x - xi )vxi. ya

Definition 4.14:	 A DMS system table is said to be level-wise

output-unambiguous, if there exist no input conditions Ii ,	 I,
Ik and states Sa and S b I i and Ik being ad4acent, I, # xk
Sa and Sb not necessa , tl y distinct,	 such that g' ( Sa,IJ, Ii),

g'(Sb 	Ik ,	 I i ),	 f'( Sa	 Ij , Ii ) and f' ( Sb ,	 Ik ,	 I i ) are defined and

g ' (S 	 I j P	 I i)	 ^'	 g' ( Sb , I	 ,	 Ii)	 Se	 (say)

fr (sa, I i , I i )	 Ojo	 Oke f'(Sb,Ik' Ii).

G

I	 Ik
I

Ik

	

I^	 Ii I

or S Sc O c	 Sc ^kc	

Sc, 0 c

(	 Sa )	 ^	
Sa

t	 b	 Sb	 S ,0
c _ ke

A DMS system table which is not level-wise output -unambiguous

will be called level-wise-ambiguous.

^	 5

4.2 BASIC ASSUMPTIONS

All the theorems that follow are pertaining to realization 	 ''	 }

of ,.a DM system table using clock-triggered flipflops ' Unless

otherwise stated, the following assumptions will be applicable 	 }

r;. to all our discussion;	 F

1. only one input variable can change at a time

(	 " 2. only one state variable is allowed to change during a state

transition. This is equivalent to assuming that the specified
f

i	 y

[	 In

1t
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table (after state addition if necessary) lends itself to

single-variable-change state assignment. Thisrkestriction

will be removed later,

all it pflops -respond to a positive transition in clock input

C  (=C(A,Y)) denotes the function defining the input to

the clock pin of the flipflop i, i.e., the flipf lop

associated with variable y i , for Vi, ji<m.

an input (condition.) I k corresponds to value of x such that

mk (x)	 =1
x= t .

11'
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Theorem 4.2: Any finite-state asynchronous sequential system	 y

can be realized using clock-triggered flipflops and logic gates

and employing Boolean calculus method.

The proof is given in Semi-Annual Status Report #2 [151

{

Theorem 4.3 The complexity of network realization of a finite-

state asynchronous sequential system, consisting of clock -

triggeredtriggered flipflops and Logic gates obtained by employing
sue.

	

	
Boolean calculus method is no higher than that of a network re-

alization of the same system, epnsisting'of S-R flipflops

(without clock inputs) and logic gates obtained by conventional

method for synthesis of An FMA system.
,.	 a

When the DMS table admits of a unit-distance state assign-

ment, the realization of the system is. possible using any

commercially available flipflops. When the DMS table is such
n

r

	

	 that unite-distance state assignment is not possible, then certain

relationships among the tune res onse characteristics o `p	 K	 p	 f the	 {

flipflops must be satisfied so that the different time re-

sponses of flipflops do not cause undesired transitions and
r

hazards. These need to be obtained.

i
Synthesis procedures are illustrated in conference papers

given in Appendices II & III.

IR

	

I	 ,

f	 i
r ,r

R	 v.
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5. SYNTHESIS USING SP COUNTER-

Efforts to explore the possibility of using an SP (syn-

chronous presettable) counter to realize an FMA system were

successful. Such -an approach significantly reduces the number

of IC packages requiro;d for the system to be realized, thus

reducing network complexity, size and cost.
a

5.1 SP COUNTER

An SP counter (such as 74LS160) has the following input and
output pins of interest to us

(1) count-e ruble inputs P & T, both of which,must

be high ', for the counter to count.
(2) Load input L which, on low level., causes the

data on the data input pins to be transferred
synchronously to the count output pins
when a positive transition of clock pulse
occurs.

(3) Clock input pin CK. 	 Loading or counting occurs

synchronously on the positive , transition of

clock pulse.
(4) Data,"input pins D l ,_ D 21	 ..., Dn .,	 The data on

' these pins are transferred to count output pins p'

Y, Y ,	 ...	 , Y	 respectively on the positive.l	 2	 n ,;	
T

transition of clock pulse when L = 0.

' (5) Output pins Y1 , Y 2 ,	 ...	 , Yn give the count

output of the counter.

,; u

r
}

,



@r 0 (g)r 0 b ,- ®,0

iar- d,l ( r1 ®► 1

a ,- ar- ©r0 1 @,0

a,- ®rl C,-

E
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5,1.2 EXAMPLE

Before presenting a formal theory and procedure for synthesise

i
we will illustrate the procedure with the following examples

Consider the FMA system given in Figure 5.2.1.

; X1X2

00	 01	 11	 10

a
{

b-;^

ct

`
d

Figure 5.2.1

Observe that the system is already minimized. Moreover it

F

	

	 does not admit of a unit-distance state assianment using; 	 ?

only two state variables. Hence three state variables

are needed, to realize the system, if conventional synthesis	 $!

procedure is, employed.

Using the transformation equations in Definition 2.1 we get	 :E

E	 I	 1i	 the Differential Mode System (DMS) given in Figure 5.2,2 w4ich
4= 	 i

is equivalent to -the system under consideration.

X 2

(	 00	 00	 01	 01	 ll	 11	 10	 10
i	 Y1Y2	 10	 01	 11	 00	 01	 10	 00	 11

00 a

01 b

11 c

10 a

a,0 a,0 b,1 a,0 - - a,0 b,1

- - d,l b,1 a,0 b,l

- -` - a,l c0 a,,0 c,0

_ c,0 a,o
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Let dC denote the differential expression for the clock 	 j
function.	 dC is given by	 f	 j

(E5.2.1)	 dC = Y Y2(x dx +x dx ) # Y Y (x dx +x̀ dx ) +	 i1	 2	 1	 l	 2	 1 2	 2	 1	 2	 1
+YY(xdx +xdx ) +YY (xdx+xdx )1 22	 1	 2	 1	 1-2	 2	 1	 1	 2

Let Cl be a compatible integral of dC. 	 Then
r

(E5.2.2)	 C_ Y 	 x x	 + Y	 x	 + Y1720 	 x tx x	 + Y	 (^t1	 172 	 l 2	 Y. Y 2 1	 1X 2	 1 2	 1 2^	 1^2	 1)	 f

Y2xlx2 + X2x1 + Y131x2

3

i
i

Observe thatr	 :

p
(E5.2.3)	 aC

a x	
Y2x2

I	 1

(E5.2.4)	 ,a(CI
!	 Y2 +Y1x2

ĵ 	 a xl
(E5.2.5)	 a C 1	 —	 and

Tx-	 X2xl
2

(E5.2.6)	 a Cl 	 y x1 1
a X2

For the positive transitions that occur as shown in 'equations

(E5.2.3) through ( E5.2.6), we need to provide the appropriate' 	 _r

values to data input pins D l and D2 as shown in Figure 5.2.3.
I	

,,

i{ 

 r

^t 
	

E. 	 7k

1

'Y

t^

t
i



YiY2
j	 00

11

10

X02
00	 01	 11	 1 0

- - 01 -

00 10 -

00 00 - -

00 - 11 -

xlx2

YlY2 00

00

01

11

10

nl	 11	 in

0 0 - 0

- 1 1 1

- 0 0

- 1 - -

18 -

D 1 
D 2	

Z (output)
Figure 5.2.3	 Figure 5.2.4

r From Figures 5.2.2 and 5.2.4 we get

(E5.2.7)	 U1	 x1x2Y1 + xlYl

(E5.2 . 8)	 p	 x	 and

t	 I
(E5.2.9)	 ! Z ' Y1	 Y2' i;

Equations (E5.2.2), Q5.2.7), (E5.2..8) and (E5.2.9) give the

I	 system realization with
i

(E5.2.10)_	 LSO=PT.
1

5.3 SYNTHESIS PROCEDURE

i

Given an FMA system that is already reducedthe first thing

to do is to find an equivalent DMS table using the equations

I in Definition 2.1.. if the table thus obtained is reduced, if

r	 ^ it is reducible, then the system may or may not be realizable. 	 k
G

The procedure that follow:- applies to DMS table as obtained

I
after transforming the'FMA system. Later we will present the

procedure for Synthesizing'DMS table that is reducible.

it

3

f	

v.

t

4
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1. Consider next state for every present state and every
input change. If the next state is different than the
present state for a given present state and input change,
form a differential term that reflects the input change
and the present state in which the change is occurring.
Taking Boolean sum of all such differential terms, form the

differential expression for the clock function.

2. Fund a compatible integral, say C 1 , of the differential
expression obtained above.

t
3. Find the Boolean differential dC l , of the function C1
obtained so as to determine all possible positive trans...,
itions that can occur in the clock function.

4 Determine the value of next' tate and hence values of
next state variables D l ,D Z , ...D corresponding to every
differential term in dC l . On the Karnaugh map for Di,
14i4n place the value of D. in the cell corresponding to the

present state and the value of input that prevails after the .input
change described 

in 
the differential term occurs. The remaining

cells are left unspecified. Realize functions D1D2,..Dn

`	 from the , Karnaugh maps.

5. Obtain the output function z in terms of input variables
and state variables as is usually done.

6. The LOAD pin and count enable inputs P and ''T are

grounded. The functions C l , Dl , D2 0 ... ,Dn and Z along with
!	 an SP counter give the desired network realization.

F

r.

e':
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If the DMS table is reduced, then the conditions in

Theorem 5.4.2 must be satisfied for it to be realized as a

network with an SP counter in it. If the conditions are

satisfied, the procedure mentioned above can be followed

for synthesizing the table.

5.4 REALIZABILITY

Next we will consider some theorems pertaining to realiz-

ability of a given FMA system using an SP counter:.

I

Theorem 5.4.1: Given a DMS table obtained from an FMA system

that has the same number of states as the former, it is re-

=	 alizable using an SP counter. The proof is outlined in reference
t:

i

	
x183.

_	 I	 k

Theorem 5.4.2: If the DMS table derived from an FMA system

is reduced, then it is realizable using an SP counter if the	 .r

F	 following conditions are satisfied:

(1) The differential expression for the clock function

g	 for the table is compatibily integrable.

(2) The table is level-wise next -state and output-

unambiguous.

6 NONCOMBINATIONAL BOOLEAN CALCULUS

In Boolean calculus studied so far it was assumed that a

r	
function being studied is the output of a combinational system r

whose inputs are the arguments of the function. Also, while

integrability of a ;differential expression was studied, it was
n

E

	

	 tacitly assumed that an integral, if it exists would be realized

with a combinational system.

th
',	 ..:w ws..rr : '? y=	 . 	

«'4+L'lbell^^v(AYS-fMlJaeY1GZ9Xtn#r`rsnYh.,,,,..,, 	 ,..	 ..	 -:. .....=mow+:	 °'.^c_^!YV'.°_'_. .. 5, ..
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An attempt was made to;-generalize the Boolean calculus that

was developed with the limitations shown above. such calculus,

to be referred to henceforth, as noncombinational Boolean

calculus, will help us describe the output, after an input

change, of a noncombinational system in terms of changes in	 3

the inputs to th, ',system. Also, if the output, after an input
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z 

..	 2	 -
,

1, when xi changes from
(D6.1.2)	 'Qx'j

[Op

l to Q

otherwise

Def inition 6 .2;	 The terms xiQx , x,4x , x 17	 and

R 7X	 will be defined as follows:
;I

i

I

(D6.2.1)	 x jadxi =Ax j
s

(D6.2.2) 	 p

'	

(D6.2.3)	 x Ox	 0

k-	 (D6 . 2.4) ,
	

xi Qx

i
x	 Consider a D-flipf!lop shown below,: r

xg Qp

xl_ C
r,.	 X 

2 OF

since the relationship between Q and x,'xi	 2 and x	 is nit3
`	 combinational, we cannot express Q in terms of a Boolean

r	 I	 function of variables xl , x 2 and x3. However we could express

^'	 !	 the value of Q immediately following any transition of the clock.

i

^-	 W.k ene^TS'M3	 ut!^.w.•,.4 :yk-F+.x»ri'-,"aB^F3 fiSr ..wt'b :...JIK:`«n+v "n+sw.smr-
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Observe that

(D6.1.1)
	

C = xlx2,

so that

(A6,1.2a	 dC x xdx2 + xxdxl

Since. only the positive transitions of clock are of interests

We may describe the positive transitions of clock in terms

of changes its x and xx

(16. 1. 3) L1► c xx 2 # x2A x1
s

Let Q(T#) denote the value of Q immediately following any

transition of clock. Then by definition

`i
t	

I

(D0.1.4	 Q(T+)	 D A

i	 or

(D6.1.5)	 Q (T+)	 Dx x + Dxll	 -2d t
F	 4	 If we let

G
(D6.1.6)	 D	 x 3 ,	 then

F	 x x 4ax +x x,L1x4 (T+)	 2 3	 1	 1 3	 2

Equation (D6.1-7) pointM out that Q is 1 after the following

r	 transitions:

(1) ^; Z	 x 3 	 1 and x l changeses from 0 to 1;
€ 

(2) x1 = x3	 1 and x2- changes from `0 to 1,.
.;

Observe that if x3 w-- 0 and' xl 1 while x2 changes from 0 to 1,

then a transition does occur making Q ;to rer;^;,In at or go to 0.

This is not to be seen from equa tion (D6 1.7) if the function D

(i,e, x3 in this case) is not kept separate from the transition

terms. Hence a more desirable form for Q(T+) than that shown in
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equation (0.1.7) would be

(D6. 1. 8	
D - IX2'd X1 + X14 X21

Definition 6 .3: , ,.-The function Q(T+) as shown in equation

(D6.3.1) below will be called next-value function.

+(DO.3.1)	 Q (T+) a D.[^	 where D is a

function of x and y,

Obviously the function D outside the square bracket

refers to the value that Q would assume if and When one of

the transition terms inside the square brackets assumes

value of 1.

Addressing ourselves to the reverse problem of synthesizing

a network that would realize a next-value function Q(T+) of

the form

Q(T+)	 D	 W.I AX	 + 0jVxi(D6.1.9)
where 

Q^, 
and 0, are assumed to be independent of xil for all i,

withc:vut loss of generality (in view of Definition 6.2)p all

that we need to do is-to find the 	 integral	 if it exists,

of the differential expression

(D6.1.10)	 d4	 dx 
I 

+aidRj)

Of course # if the differential expression is not exactly

integrable but compatibly integrable and if

cl dg is a compatible integral of the differential

expression, then



I

ta	 i
I
i

- 2 5 -.

A realization of the form
Q

lso i
x

will provide not only the transitions that are specified in

`.	 equation (D6,1.9) but, also, some additional transitions

Theorem 6.1.	 If the next value function of a system is given 	 }

by
I

lei 	 d	 J.

where

(TS.1.2)	 D	 Dl	 xfl x 2 ..-_ x	 hk<k r	 n4 4

(T 6.1.3)	 F (x)	 cox +dx	 and
E =l

(TG.1.4)	 F(x)	 = x31•x,i20--..	 xIk .'F(x) ,	 a

then Qi (T+) described as

(T 6.1.5)	 Qi (T+) - Dl	
rn-1

(d 4x + 3̂0x j
realizes the same next -vali..:y function as Q(T+) in equation,
(T6.1.1)	 does.

Proof. Suppose due to a transitioO described by

49 M (x - )4	 Q (T+) _ -1 if Y=So. This implies that
I
i	 D	 1 when 

S
= b	 Y_

Hence when Y _a and x = by
1	 D _ Di	 .	 x11406.xtk

so that 
Di= 

1 for x =6 & Y =o
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Definition 5.3: F is said to be a compatible integral of

dH, denoted by 1 'dH, and dH is said to be compatibly

integrable if

i

—^ a

1

J

and	 a 1
xi

for all 11,	 l<i<n.

Observe that-by the definitions given above if dH is exactly

integrable, then F =g	 jdH goes through exactly the changes

which are desc4ibed in dH..

In what follows we will obtain ways of finding all possible

compatible integrals of dH, if dH is com patibly integrable.

To accomplish this we need the following integral operators:

Definition 5.4	 The zeroth order integral of dH, denoted by

fa
^dH, is defined as

n

fo
dH	 E	 (a ixi + ixi )	 (D5.4.1) ;(

:

O

n
where	 dH	 E	 (a

i 
dx	 + S

i
 ux.),	 (D5.4.2)

Also, the first order integral of dH, denoted by jdH, is t`

E r' defined as`

dH	 E	 (a.x.	 +	 $.x,)^	 ( D5.4.3)1 i=l	 ^'	 i	 i	
of :^

Definition 5.5: 	 A binary point bo E B (n) is said to be "one'!

(or "zero") of a function F W if r

F (bo) 	 l (or 0)	 (D5.5.1) x
k	

;

:.c

^ Yi

a	
.,

2

I

Y

K
}

1'...'°' i4'.P^'..•-'...,.»...... ..._..."`_'na."`:,`.'Y^	 ..^.+',xr-'m..i.`W	 °r M::L ... Y>.t'^Y.^"'Y;Y,'x^a'. 	 _	 '.sr}.M	_	 tl^0 'r. 	 _	 _

`	
^.

-6
.r,T	 _

r	 .Y.. -	 _	 w<.•74waunai4.^lie-- 	 _	 .rn. a -	...	 1.	 _	 , . _
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Lemma 5.1:	 If the differential expression

n
dH	 £	 ( a idxi + 5 1dxi)	 (L5.1.,l)

is compatibiy integrable and F 1 is a compatible integral

of dH, then every "one' , of f1
dH is also a "one" of Fl.

Proofs Since F1 is a compatible integral, by Definition 5.3

1.5 1 2

i
i

s'

}[	 S

r	 a x^i

and	 a Fi D-0 .
i

(L5.1:.3 ) 'f

4.	 n	 F 1,l"	 Also	 dFl	 ill	 (ate_ dx i +a . dxi ) (,L5.1.4 )
3.	 a xi

F a F1'	 so that the "ones" of ^ xl	 xi (or	 xi ) , 1_i<n,'	 i a
are also the1	

xi
Pones	 ofof Fl

From ,equation	 (L5.1.2)	 (or	 (L5.1-. 3))	 the "ones" of a	 (or 0 i; 
	,ixi {

a 
F	

F21<i<n, are the "ones" of	 _ 1 •x ) for allxl	 xi '(or 1<i<n.. i

G	 Hence the "ones" of (a ixi + si x i ),	 1<i<n, are also the :.

mL	

it	

:

f	 ones"	 "of F	 Hence the	 ones"	 "of	 dH are the	 ones "
1	 1 of F	 .1 t

Q.E.D. ,. f

Arguing on 	 similar basis, we can establish the following

lemma.

Lemma 5.2: If the differential expression
n

a	 ^	 dH	 E	 (aidxi + s idxi ) (L5	 2	 1)
5

x
},	 3

is compatibly integrable and F (x) is a compatible integral of dH, y

then the "ones" ofIdH are "zeroes" of F1.

Proof:	 The proof is similar to that of Lemma 5.1.
i

r	 ;



1

Theorem 5.1	 A necessary condition for compatible integrability

of the differential expression

' n
dH.	 i=1	 (a dxi + S dxi ) (T5.1.1) iL

is that

f-	 (odH)	 (f dH)	 0 (T5.1.2)
t

z for alI x E B (n)

` LL Proof: Suppose dH is compatibly integrable Ao that there exists
t

i

s. F1(LO such that

Fla
 jC dH (TS.1.3)

f
Also, suppose that there exists b 	 such that

c

((dH)	 (dH))fo 1. (T5.1.4)

Y'.
which implies that	 x-

(fodH) , 1 (T5.1. 5)

x _ b

and	 (fdH) 1	 i' (TS.1.6)

x=bQ

P4 From Lemma 5.1 and equation ( T5.1.6) , ^l

d

bo is a "one' of F l . (T5.1.7)
_

From lemma 5 . 2 and equation (T5.1.5) ,

a
t

bo is a, "zero" of 
F1

1.8)
r Statements	 (T5.1.7)	 and	 (T5.1.8)	 contradict each other.

s

'f

Hence there exists no b	 E B(n) that satisfies equation	 (T5.1.4) .{ o
Hence equation (T5.1.2) is a necessary condition for dH to be

compatibly integrable.
r
f Q.E.D. ;{
i

Ft a

k

G .r.,.a'+a#^-:'.nealF,nc'^_x"_,:-^^^^^"'?F'R'.:»`x!'c".^ 	 '^'^ .̂_..r."4.,:.-v:^.:.^....,	 ..-„n;,xrn•v-^.,--: 	 C.''.T; W>"',u	 ^gP.w!s.F T.C9

•

^''S_

,	
_

.1,....2_..taur,	 ./MwW.i.w	 F	 { _	 _	 ."'b.¢ iSYu.. d* YcYtYK .+ ++	 _	 _>	 ., '



Lama 5.3:	 If the di fferential expression
n_

dH - E (a	 dX .	 + 5 , dx .	 ) ( L5. 3.1) !.
satisfies the equation

(dH)	 (	 d pi)	 = 0 for	 all x	 . B( n)0 1 (L5.3.2)

then	 (a)	 aiJ1dH	 aixi, (L5.3.3)

(b)aifodH	 °`ixi (L5. 3.4)

i and	 (c)	 a i 	(	 dH) '' aixi.o (L5.3.5)

f Proo f:	 From De finition S. 4 and equation (LS. 3.2) we haveG^^ n	 n
E	 (a	 x	 + s	 x	 ))	 (	 E	 (a' x	 +	 8	 x	 ))

n	 n
_	 E	 E	 (a ia jx ix j + B ia jx ixj + a 0 xixj^,

i-1	 Jul	
i

s i s jx ix^).	 - (L5.3.6)
^ C

Hence	 for all i,'j, 1<i<n	 1<j<n

I

,w aia xix j + s ia jxix j + a i0 x ixj + 6i 8 jxe j _ '0 (L5.3.7) 'r,x, ,

so that a ia jx x j	 B ia jx ix j - a ia xix j _ a i8 x ix j	 0. (L5. 3.8)
ICI n	 _

Now	 aifldH	 a i 	( j E la jx j + s jx) ( L5.3.9)

n
-	 a.x.	 + a.s	 (	 .	 )x	 +	 E	 a a x	 + a $ xi s	 i i	 i 7 7	 i 7 j =1j #i

- a ixi + a i8ix i .

n
+,	 E	 (aiajxix. + a ia ]x ix ' + a i s jx ix j +- ai8jxixj)1

j#i

In equation	 ( L5. 3,. 8) , setting iaj Yields

aii = 0 (L5.3.10)

for all -i, 	 1<><n.
k

,t

...0

'k`^ ._...t	 .vW..t,.	 wer+lX.r aw."E».Aii dM!YS.	 "b.£.4.. ...:b.t^r 3Mwir4 >u.^ 	 ...,. ^

N

.  f
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Hence using eq uations	 (LS. 3.8 )- (L5. .1. 10) , we

J

r et

r	 n
.a	 JdHsa x	 + ax.	 E	 (a x.	 +	 x.)a ,x. (L5.33)i t	 i 	 3	 j 7

i#i a

By interchanging- i and j in equation (L5. 39) , we get

a ifodH	 a ixi , (L5	 3.4)	
:?

1

Now	
a i

a (1 (@f
o
 dH)

,t
a i Q a i fodH

• a i Q a ix "	 ( from ea cation M5, 3.4 ))

i . M. 3ix	
'.5)

-i Q.E.D.

Theoren 5.2:	 If the differential expression
n

3H _	 (a . dx,	 + S .dx ) ( TS.2..1)
=l	 i	 i	 i	 i_

satis f ;les equation

(JodH)	 .	 (f1aH)	 0 (TS . 2 .-2 )

for all	 x E H(n) j then F given by

F = _JldH + 'Y ( o HJ (T5.2.3)

is a compatible integral of dH, where Y is an arbitrary
t

function of x.
r

:F

X11
rY

Sht`6itL;.:.Yni41L°•i++&i.i%.. . r+.t. ..	 .....,..._.s,...'.



J.	 i

aix i + Ta ix i	 (fran Lemma 5.3)

" lei (1 + ')

a
ix (T5.2.4)

- Since a i is independent of	 xi,	 then

F

i

pia 2 xi
j

c1(	 ^' ^-)X. ( from equation	 ( T5.2.4)

iaiax
x

(T5.2.5 )
i r

r

•	 axF	 a1. E

}
{

Similarly	 F = (T5.2.6)

^	
f

Hence by Definition 5.2, F is a compatible integral of dH._

V
_	

Q.E.D.  '

Theorem 5.3:	 A .differential expression
r
t

n

dH	 E	 _(a idx i + a dIx	 )

" is con patibly integrable if and only if

(JodH)	 (. f dH) _ 0 (T5. 3.2)
Fs

t

l for all x E'B (n)

Proo f 	 The proof follows fran Theorems 5.1 and 5.2.
Y}

y
f x

y
s

t

T	 ..Y'-K+.	 A.SMA^	 a-^	 i	 .. 3 3.i8[n.....:i•"l^{.,+ne.0'Xab+x+v	 r



f 1, are bases (Definition 2.2) of functionsfodH and 	 d.d	 then
every distinct- T would give rise to a distinct compatible
integral provided T is based on a subset (not necessarily proper)

of D-	 DOU D1	 In fact if IF is based on a subset of D, then

M that is AND^ed with IF in equation (T5.2.3) maythe factor So 

be dropped since S ^ DoUD l 	 _ D.	 Hence we can modify Theorem 5.2

rt as shown in the nex t theorem

n
Theorem 5.4: Let dH	 (aidxi + s idxl)	 (T5.4.1)

^
i=1

I
a

be a differential expression.

rY If	 (a)	 J_dH._	 dH = 0	 for all xEB (n) ,	 (T5.4.2)

(b)	 Do	 and Dl are bases of fodH and

51 dH  respectively,

(c)	 the nunber of distinct points in the net

D _	 (D0UD 1 ) , 	is m r	 ( T5. 4. 3)

(d)	 8 ; (x ) ,	 14,i427' is a function based on a subset of

D , 8 i (x )	 # 8 j (x)	 for all i, j r i#j	 1,<j4Zfi and

(e)_	 Fi _	 J1dH + 9 i .	 (T5.4.,4)

then F 	 is a ccmpatible integral o f dH.

Proof:	 The 'essence of the proof ins outlined in the discussion
preceding the theorem.	 A formal proof can be given using the

Tapia-Tucker method L36, 3 	 for obtaining the complete solution

for Boolean equations.
z
f

^i
f

i
t «^

I

rF  ^ti
f

--	 —r..•..-_	 .e-n«a«.«;. «..e..	 ._.t..,ia...+._...—...-,_W.+..n.^...:.v'.a:,...a»w_ ..:t,»,.'..^-^^ .a.v.+.:.m ^ —r^^.n.3 L...«.. 	 ._...«-.r.^._	 ...:.	 ..0	 ..-...x¢..,N. 	 .^ --r.
_ _

^-• W+$,it^kY^G..	 '

;...

tt+	 "'	 .a W.-...rt.+YSe..e,.i.Le..__	 lyri..y-: 	 -T...	 x%..yt:.kae.	 54^YI[.4+.fit:$iG..	

^



We will, now, show an application of the resiAts established.

in this xection,, to synthesis o f a clock functi ,̂,tn illustrated in

the next example.

EXaMple 5.1

A clock function C(x 
Vx 2' x 3 ) 

is to be realized which goes

throughp at least,, the transitions specified in the differential

dC - (x
273	 + 'if 3 ) dx 1	 + (x r^ - 3 ) dX2

+ , (x 1x 3 ) d:7 2 +	 (XI^2 ) dX 3 + (X I^2 )	 d3	
(E5,11.1)

. expression

16.



1, 7 .
1

Thus e can be constructed as follows

e l (x) 0 (ES.1.6)

9 2 (x) *^ xlx2x 3 (ES.1.7)

9 3(x) "'e1 3 (E5.1.8)

d4(x) xlx 2x3 + x lx 2x 3 (E51.9)
f

Also note that there are four solutions by Theorem 5.4

C1 J dC + 9	 x x	 + x	 x1	 1	 l 23	 1x2 3 (E5.1.10)

C2	 ,, xlx2x 3	 +	 xlx2X 3	 +	 ^1 21: 3 (E5.1.11)

C3 x lx 2x 3 	+	 x 1x2x 3 +	 xee 3 (E5.1.12)

and

C4	
=

xlx 2x 
3	 +	 xlX 2x 3	 +

I22'3

+
	 '1' 2x 3. (E5.1.13

Observe that	 t

dCl "' (x2 (+̂ x3) dx 1 +	 (x 1x 3) dx 2 + (x 173)dx2

i + (x x ) dx	 + (x 
1x 2 ) dx1 2	 3	 3 (E5.1.14)

i
dC (E5.1.15)	 r ^^'^

F	 Hence Cl; realizes all the . transitions specified in dC

and no transitions which are not specified in dC.	 In

fact by Definition 5.2, C1 is also the exact integral

o f dC in eq ,%ation (ES.1.1) .	 Let 'us now et an ine C 2 .
i

dC2 (x 2 © x3) dx 1 + (fit 1 ) ( RI + ( Ylx3 `) dx2

+	 (x lx 3 + x lx 3) dx 2 + (x lx 2 ) dx 3 : r

lx.,.	 xlx2)3 ( ES.1.15)

f

^.	 ...	 ra ,.F_...a.,. G.ydY!	 wwLn. 	 tlt'+F
_.
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Observe that C2 realizes the transitions represented by .^

c.r

differential terms 
;2F#10 

x lx 'P 2 ;&	 x lx 2dx	 which are not
T

3

specified in do in equation (E5.1.1).	 However it does realize

all the transitions specified in dC.

As shown above, a differential expression that is exactly

`
integrable is, also, compatibly integrable.	 Hence the necessary

condition that I

rodH}	 ldH) s 0

for all x E B (n)
n

` dH	 E	 (a	 Ojai )for	 idx	 + s ^	 i
i=1

a
to be compatibly integrable is also necessary for dH 'co be exactly-

integrable.	 it can be shown that the condition is not sufficient

for the - differential expression to be exactly integrable.

Preliminary results pertaining to necessary and sufficient

conditions for a differential expression to be exactly integrable

are given in a recent publication [ 3J . 	 Additional results on
N

r,
Boolean integrals have been developed and will be published in the

near fut ure
=E

Given a_ differential ex pression
F

n
dH	 E	 (a idx	 + 0 idxi )

k
.1=1

'	 JodHO	 ( 1 1dH')	 Q	 fryf	 r some b C B (n) , then the expressioni	 (	 # 

cannot be integrated exactly nor ca^npatibly. 	 However it could
a

A be decanposed as sun of se-veral differential expressions, each, one
S

of which may be integrable separately as, defined below.

x;

_ .neemef'&roN^"v#iKNri, 	 `: '". ".*zrs^'	 ^ .»..	 ,
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Definition 5.5 a LegdHjj 11jlk j be a set of Boolean differential
expressions gi ven by

dH	 ^1t (a j i)dxi + Csl dxi).	 tD55.1}

Then dH, the Boolean sun of all the differential expressions
dHj , 1!j <k is defined as

k
 dH	 E	 dH	 ^9	 (D5.5. 2)'

f'1	
j

n
''
 k.^

"i	 ( 	 5
L k (D55.3)

-T :1 "ji ) 	 *	 Julj
i) dxi

Definition 5.6:	 A differential expression dH is said to be

integrable by parts if dH can be written as a stem of Boolean

di fferential expressions dH^ , '14 j <k as de fined in equations

(DS.5.1) 
and' 

(D5.5.3)	 such that dHj is compatibly integrable

X	 for all j, 14j . k.	 Any compatible integral of dH j , 1<j4k, will

C`	 be, called a partial integral of dH-	 A complete set of partial
integrals of Boolean differential eaxoression dH is a set of

functions,	 F1f F20 ---, 
Fk	

where for all j, 14j4k,
F

}

d F j	 dH j .	 (D5.6.1)
r

observe that k may ass une one or more values between 1 and 2n,
r

It will now be shown that any Boolean differential expression is M

integrable by parts.

Theorem 5.5;	 Any differential expression

dH <=	 (a idx i + Sidxi)	 ( TS.S.l)iEI

is integrable by parts.

15	 E
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Pry  observe that for any i,, l4i4n,

( Slm idx i ) . (- Joaidxi)

(°`ixi) . (0+ixi)

p

and

cfl a

^^^>	 (,1o^i^i)
no

2 0,*

(T5'.S.2)

(T5.5.2)

(TS. S 3)
so that dHl 1 and dH2, i g iven by

_	 dHl^^i	 a idxi and dH2 ti = Bicbc i	(T5.5.4)

are compatibly integrable by Theorem S.3 for all i, l ti c n.

In view of the fact that we can write dH as

dH . ;E+ H 1 r i + 'dH2, )f	 (T5.5.5)

dH . is compatibly integrable by Definition 5.6.

Q.E.D.
a	 j

6. APPLICATION TO SYNTHESIS

As shown by Smith and Roth (341 techniques' for synthesizing
I	 fundamental-mode asynchronous systems utilizing edge-sensitiveness

i° I	 property of clock-triggered flip flops often require fewer flip flops

and gates than conventional techniques do.

s

	

	 The Smith and Roth techn,igw [ 34, 35] requires a generalized
edge-sensitive flipflop (as defined in ( 353) in their design. We '
will present a procedure for synthesis of a fundamental-made

„ asynchronous system that -uses a' ccmmercially available clack

triggered flip flop

r	 ,
rc

t,L
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A sequential

Z is to be design

output changes to

regardless o f the

X2 changes from 0

21.

EXAMPLE 61

system with two inputs, X1 and X2 and one output,

ad such that whenever 'X1 changes from 0 to 1 the

1 if the output is 0. The output remains at 1

Val use; of X 1 till X2 changes from 0 to 1. When

to 1 Z goes to 0. After that Z = 0, regardless

of the value of Xv till, of course, a positive change in X l changes

the value of Z to 1. Ass ume that Xl WX —Z•0 initially. Taking the

con-entional approach-, We obtain the following reduced flow table

for the system.

X X2
#	 00	 01	 11	 10
v	 _

(A, B) 1

I (C, F) 2k

(brr) 3

(E, H) 4

4

s Figure 6.1 E

fi

Since the minimal system shown in Figure 6.1 has 4 states, 2 )
flip flops will be required to real__ ize the system.

Now it will be shown that if edge-sensitive flip flops are used

one flip flop will be adequate to realize the system The system
x

under consideration can be described in terms of the state diagram

given in Figure -6.2. The symbolQX i , i-1 or 2, implies a change in

Xi fzan , 0 to 1.	 Xi	 1 if and only if Xi changes from 0 to 1.

AXi = 0 otherwise. The transition along a directed branch occurs

i f and only if the variable associated with it assumes the , value of 1
Y

l
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d Xs

9--0	 y =^ ^..^..

1 1.

Fig ure 6.2

1 Obser ve that the system m ust chang e i ts state whenever
$(	

(a)	 yP0 and X1 changes from 0 to 1

or	 (b)	 y=1 and X2 changes	 from 0 to 1.

Hence the clock input function, Co must go through a positive

transition when any of the changes stated above occurs. 	 These

transitions in terms of changes in 
X 
	 and X 2 are described by the

differential expression

dC 	 ydx l + ydx 20 (f6.1.1)	 z'

Note that	 Jo dC •	 dC	 (yxl + yx-2 ) . (yx l + vx2)=0 06.1.2)

so that by Theorem 5.3, dC is compatibly integrable and a compatible

integral, say Cl, , of dC is

Cl = yx l + yx 2 (E6.1.3)

In fact since D UD 	 (empty set) (E6.1.4)0	 1 l.0

'	 (Do & D1 de fined in Theorem 5.4).. r

by Theorem 5.4 no other compatible integral of dC _exists.

Let C = C- 	 + vx2
(E6.1.5)	 r

-	 +ken	 Y' 	 S	 _.	 _ "
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so that Q,(T+)	 1 On the other hand if Q l (T+)	 1

due to a transition m (x - xy ) when y S1 , then Dl 1	 s

and F (x _ 1 for x = b u and equation (76.1.6) implies that

F (x)	 1	 F (x)	 x	 x^ when x	 b--	 tlk	 —	 u
which implies that (xjl•.--, x# k ) _ 1 when x _ x
Hence when x =bW6 y = S 1 , D Dl -(x, i

	
xik)

Hence Q(Tt)d Q

1 

(T+) have identical values immediately after
^ any transition.

Q. E.D.

Theorem 6.2: Theorem 6.1 is valid 9.f equations (TG.1.2 ) & (T6.1.4)`	 r
it

are by equations (TC.2.2) and (T9.2 . 4) respectively as

	

j	 given below:

	

I	 k

T6.2.2	 D Dl x 1	 i2'---' x k(	 )	 _ 

k (T6.2.4)	 F(x)x 2 ... _..x kNx) .
t	 "

--

3

	

r	
The next-value functions for different types of flipflops

p

(other than D-t ' e) are	 undeyp	 currently	 r study. !The results

	

`	 will be reported when the study is completed.
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7.	 CONCLUSION

Boolean calculus was developed and formalized with the

specific purpose of applying it to digital system synthesis.

j	 A procedure was developed to synthesize fundamental mode asyn-

chronous systems using commercially available clock-triggered

flipflops and Boolean calculus. It has been shown that synthesis

techniques which utilize edge-sensitive property of flipflops

judiciously lead to realizations which often require fewer flip-'

flops and logic gates than those obtained by conventional

techniques, thus reducing network complexity, size, the number

of IC packages, power requirement, cost etc.I	
;

It has been established that any fundamental-mode asyn-

chronous (FMA) system can be realized employing the new synthesis
t	 procedure proposed here. The procedure is applicable even when

unit-distance state assignment is not used. However, in such a

li	 carte certain relationships among the time response characteristics1
14

of the flipflops must be satisfied, which need to be obtained.'

It has been shown that the procedure can be extended to

k	 synthesis of FMA system using asynchronous presettable counter.

Again unit-distance state assignment is not required in this case..
tt

The possibility of using the."dc" inputs of the flipflops

k	 in the synthesis procedure has been shown in the Semi-Annual

Status. Report #3	 [14]

The concept of noncombinational Boolean calculus has been

introduced. The next-value functions for flipflops are defined

in terms of changes in the inputs. The reverse problem ofrj

1,	 , 
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synthesis is also considered. Considerable work remains to be,,i

done in this area.
t

Establishment of conditions for exact integrability,

composition of differential functions, multi-variable-change

calculus, methods of augmenting non-realizable DM tables so as

r' to make them realizable, application to fault location and de- }

^^ - tection	 etc. are ammon6 the many problems that remain to be
f"

I' solved.

r
The new results in Boolean calculus as well as the synthesis

techniques developed here has opened an avenue for a large class

of$, synthesis problems in which the components used ;are edge-:

sensitive and therefore present the potential of various economies

^-	 - if the edge-sensitiveness property isg	 p p	 y	 judiciously taken advantage

of.

j The publications that resulted from the research grant are

listed next.

uI

$'.	 PUBLICATIONS GENERATED BY THE GRANT

(1)	 "Boolean Integral Calculus for Digital Systems", revised

R	 c
and submitted to IEEE Computer Transactions.

(2)	 "Development of Boolean Calculus and Its Applications", NASA

r Langley Basic Research Review Conference, Hampton, Va.

April 1978.

f
(3-)	 "Application of Boolean Calculus to Digital SystemDesign",'

IEEE Southeastcon, Nashville, Tenn. April 14-18, 1980.
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BOOLEAN INTEGRAL CALCULUS FOR DIGITAL SYSTEMS
:

r	 1

rI	 ^

r
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p	 ABSTRACT
C%

The concept of Boolean integration is introduced and 	 #

f	 i	 developed.	 When the changes in a desired function are

specified in terms of changes in its arguments, then ways

of "integrating"	 (i.e. realizing)	 such as a function, if 4

i	 exists, are presented.	 Properties of newl,y•defined 	 hY

integral operators are studied. 	 Boolean calculus has
1

°applications in design` of logic circuits and in fault

analysis.	 in the former case, it often leads tocircu its

which utilize fewer flipflops and logic gates than

conventional methods.

i

INDEX TERMS:	 Boolean algebra, Boolean calculus, direct

and inverse partial derivatives, Boolean differential,

decompostion •of function, Boolean differential expression, 	 x

Boolean integration, compatible integral exact integral,

integration by parts, edge- sensitive:,flipflop, asynchronous 	 4	 µ

sequential system synthesis.

f
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1. INTRODUCTION

2.

,

In recent years concepts of Boolean differentiation,

difference, derivatives, differential and other logical

operators have been introduced, developed and applied to

di gital network analysis and testing C6-27]. Also there has
,

been a growing interest in Boolean integration and its
r

;r1
application to synthesis of various types of logic circuits

11-5, 28-3-	 The use of Boolean calculus in design of

r .'	 gasynchronous sequential circuit with ed e-sensitive flipflops

often leads to simpler circuits utilizing fewer components than

conventional techniques 	 [, 34, 35] .

2.	 BOOLEAN FUNCTION AND ITS BASE

`

Throughout the paper, unless .stated otherwise, a Boolean

y function F(xi , x 2 , --- xn ) of	 n	 Boolean variables x i , x2,

k ---, xn will be assumed.	 Also, it will be assumed that only

one variable xl, 1<i4n, can change at a time. 4

Definition 2.1s	 The set of 2 n binary vectors or points,

(xl, x20	 ---, xn ) where x i -0 or 1, 14i.<,n, such that x i and

';x j !may or may not be equal if i#j, will be called the Boolean
F

sit of variables x i , x2 	xn , denoted by B(n).	 The

? Boolean set of (n-1) variables x1' x2	 ---' xi-l' xi+1 , ---, xn,

written x/xi, will be denoted by B(n/i).

VK

I

`.,..,,.,.e..,,.	 .. _.	 . .. ...,-.^,xc^_^_:<^e:^,--'x	 ., . ,tom--^-	 --..:^.^=w-s:ar.f.,.:..:^`.^r_^,..^..—....	 . , .n;--«. 	 .s %.»;:zee:..;	 e,r:^-r 	 ._ x^:sa•_	
—

_..j



j

i

Definition 2.2: Given a set S,P &.S  Q B (n) # a function F (x)

is said to be based on the set S provided

F (x)`	 M 1	 if and only if 'b s E S.

a
1

1

x=bo 	.,
,r

On the other hand, if a function 	 Frx) is given, then the set

S _^ b 
I 

b E B_(n) and P(b) = 1	 is called

the base of the function F(x)	 and denoted by BASE	 F(x)?.

3.	 BOOLEAN DIFFERENTIATION

In order to study the effect of change in a variable xi,

on a function F(xi, x 2 , ---, xn ),,we introduce the concept of

decomposition.	 F(x) can be decomposed with respect to x i , ^.

l! i < nG as the sum of 3 functions as

F	 P ixi +Qixi + Ri	 (3. 0.1)

such that Pi, Qi and Ri are independent of xi and
fJ	 piQi = piRi 

= QiRi	 0	 (3.0.2)

Definition 3.1:	 A function F that is decomposed as stated`

above, is said to be the decomposition of F with respect to
1

xi,	 14i<n.

It can be shown that the decomposition of F with respect

to xi , 1 < n, is unique.	 For any _point x with x/xi E BASE	 P
it x

1^i<n	 -	 ~

F (x)	 _ l .xi + 0.x1 + 0	 x (D3.1.1)
I

so that F_(x) has the same value as xi and therefore changes
t€

i

the same way as xi.

t`

-A
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4.

y

Definition 3.2:	 The direst (or inverse) partial derivative of

F (x) with respect to x i 	1<i<n,	 denoted by 7_F (0r a	 isaxi
detained as a function of (n-1) variables xl, 

X2 0 ---, x2	 i l

thx	 ---	 * is based on the union of all possible points
i+l	 , xn	 .

x/x	 in the set L,,in/i) such that
I	

F (x)	 _ xi	 (or xi )	 (D3.2.1)

The concept of partial derivatives has been reported earlier,_

[33J.	 We will show some relationships involving the partial
derivatives irr the following theorem.

Theorem 3.1:	 The direct and inverse partial derivatives of a

function F(x) with respect to , xi , 14i<n satisfy the following

relationships:
4

Pi = (F 4)
i

x	 l).	 (F'(X)
i

)	 a.F	 (T3.1.1)--

xix . =q

r

a

i

a F . _ Qi =	 (F (x) ) •	 (F (x) ) =a_F	
(T3.1. 2)

axi xi xi .1	 x

F
`I a

Ix,i	 —F	 0	 (T3.1.3)
axi i

^
F(x)'Xi  	XF 	 l	 (T3.	 .4)

t
}

F'(x)=xi	
a—F = 1	 (T3 1.5)

g
Y

^	
a xi Y

ax

as

,

1,
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4.	 BOOLEAN DIFFERENTIAL

i

Boolean differential introduced by Talantsev^ 28^ and '
^r	 n

further developed by Brown and Young ^33] , is analogous to

the differential of a function in the calculus of real. E	 l

variables and expresses the change in a Boolean function

a in terms of a change in one of its arguments.
i

Definition 4.1:	 dF will denote changes in the value of function

F.;	 These changes can be from 1'0" to "1:" or	 01 1" to 1# 0 10 .	 dxi or

dxi	 will denote a change in the variable x i .	 The expression

dF=dx i means that a "positive"	 (or "negative") change in xi

t causes a "positive"	 or "negative") change in F.P	 (	 g	 )	 g	 The expression k^

wdx i means that a "positive" (or "negative") change in xi

causes a "negative"	 (or "positive ,,) change in F.	 In order to tr

relate dF, dx i , dxi and F, we will need to define dF, dx i and
I tf

dxi, for all it as entities in a Boolean algebraic system (i.e.

as Boolean vàriables).Vien d:F,dxi and dxi are treated as such

` :.	 t"ey have 3oolean values as de..inec' below:

0,	 imp lies no chance occurri ng it value o	 V dV
(04.1.1)

{ 1, implies a change in value o f V

where V=F or F or x i or xl for any i t 14i4n.
}

Note that dV as defined helce does not specify the direction of

change.	 dV-1 implies merely a change in its value.

If dF- f(d/x,) .dx= (otl f (S/Ti)	 dxi ),	 then by definition it

implies that F changes the same (or opposite) way as xi

changes when 'f (&Jx i ) = 1.

X41
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i

1	 i
tJ

Consider dF, the change in F, in terms of xl r x2 and

dx,, the change in x 3 as given belows

dIr' xlx2 dx3	(D4.1.2)

1(	 When	 xl .^ x2 • 1 1 	 (D4.1.3)

a, then	 dF R (1 . 1) • dx	 = dx3	 3'(D4.1.4 )

Equation (D4.1-.4) by Definition 4.1 can be interpxeted'to mean

that a change in F is the way same as the change in x3 when ,

xlxZ

pn,thr other hand, when
{

xlxZ• o_ (D4. ' 1. 5)

then	 dF	 O.dx 3 X

0 1 (D4.1.6)
p

which means that there is no change in F when x 1x 2= 0	 and

x3 changes. 

Definition  4.2 :	 The Boolean differential of F with respect to x i p	 , 'j!

14i_n,	 denoted by d iF, is defined ae

diF	 F	 dxi	 +	 7F'^`, dx i (D4.2.1)i	 axi
Definition 4.3.	 The Boolean differential of F with respect to all )

l variables 24 x2 L --- xn	 or simply Boolean differential of F,
denoted by dF, is defined as

t`

^

n	 FF	 -On	 diF	 (a^—	 dxi ,+ ^— dxl ) (D4.3.1)
i.• l	 i.l	 i	 ax

-

^. l s

 z.,1

,}

x,

E
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f

The Boolean differential of F is useful in analysis as

;
ti

it shows how F is affected by changes in x i , l<i4h.	 In j

synthesis, it is of interest to address ourselves to the
1

question: "Is it possible to find a function that undergoes._ .

changes as a consequence of	 1hanges in its arguments in
1

accordance with a given specificatiort?" 	 The answer to this

question will be pursued in the next section. f

S.	 BOOLEAN INTEGRATION

While design ing ag	 g	 ystems^at times we come across situations

then we want the output of a system to change the same way as

some of its inputs under certain conditions and the output to

change the opposite way as some inputs under other conditions,

when the inputs change. 	 In order to specify this desired

relationship between the changes in the output in terms of the

' i changes in the inputs, we introduce differential expression

defined next.

Definition 5.1:	 A differential expression, denoted by dH, is a

Boolean expression of the form

+

n	 -	 --
dH . E	 (ai :dxi + d i dxi) _

	
(D5.1.1)

€ i-1

}
where in general a i and si are functions of the (n-1) variables r:

< 4 xl^ x2 , --r, xi-1' xi+l' ---, xn and a	 and 9 i are independent,

of xi for all i, 1_i<n.

3#

t,

^ Y
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Observe that since by Theorem 3.10 x and 'a F are
i	 xi

independent of xi p 1ri<n, the Boolean differential of a

function F(x)„as given in equation (D4.3.1) is a differential

expression; however the converse is not true. For a

differential expression to be a differential, there must exist

a function such that its differential is the same as the given

differential expression. For the expression dH in equation

(DS.I.l) to be a differential, there must exist a function H(x)

such that
^	

H

(DS.1.2)
^^	

i
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23.

List us now determine the changes in C in teams of :changes in x 1 ^

and x2,

aC 	 and aC _	 0 '	 (E6.1.6)Y

a71

. Y	 and	 7c	 p`_C .	 (E6.1.7)ax2
7r x 2

k

C—
'a y= x

l .x	 and	 a C	
x	 x	 (E6.1.8)

1	 2	 -
r4

1 t̂ ^

Observe thatthat the clock transitions described by equations

(E6,1.6) and	 (E6.1.7)	 are the'desired transitions whereas those

described by equation (E6 ,1, 8) are the ones not specified in _the

' differential expression (E.6.1.1). 	 However these transitions

r cannot occ^-as can be seen from what follows. 	 Consider the

first of the equations in (E6.1,8) .	 When x
1 x 2

= l	 and y changes

fran 0 to 1, the clock will go through a positive transition.

However y changes from 0 to 1 only if it is preceded by a change

in x l from 0 to 1 so that when y changes from 0 _ to 1, x 1 cannot j

be 0.	 Hence the change in y cannot trigger the flip flop. 	 Similarly i^
the transition described by the second equation in (E6.1.8) cannot -'

cause a clock transition.

Observe that every time a positive transition in the clock

occurs, the state changes.	 Hence the input D i of the D-flip,flop

to be used is g i ven by

Dn Y 	(E6.19).
z

i

z
r=

v,

rC

r,
as
y

r-
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24.

Egvations (,E6.1.5) and (E6.1,9), lead to the network realization
in Figure 6.3

j Xls-	 L FLIP-a	 FLOP
Y

'	 l

}	
F iq ure 6. 3

i.: A possible hazard can be prevented by adding the 'team 	 ( xlx'2) {

r to the OR-gate in Figure 6.3. 	 It can be shown that this does not

V
i cause any undesired clock transitions.

It should. b e	 o ed her 'noted	 e that if a compatible integral of a
clock differential expression has transitions which are not -

}

};

specified in the differential expression and which can 'occur, it
r	 ,

poses no problem, since corresponding to ` those transitions we can

4 pro vide the appropriate value ( s) o f the next state variable (s) to
.a

the input (s) Di of the D flip flop(s)
,

a

H^ t	 r.., . µma	 !i 	 +	 .s+-vim'	
^acfi^sxc C 4

3̀'	 'xT,l(Lt.,.}^	
^ rKf+^^`ErtR^Y^1Y`,^A`^"?'-.k`ffiY.A.:9CSA

9
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7. POTENTIAL FOR FURTHER APPLICATIONS

25.

f' The traditional methods of the anlaysis and the .,, synthesis of {i

logic circuits are based on Boolean algebra and utilize the functional f^

f relationships between the output and input values (or	 levels) .	 Analysis

and design :b	 Boolean calculus focuses on the changes in the outputg	 Y	 g	 p  ^

_function in terms of changes in input arguments. 	 The new concepts of r

integration, the ways of integrating a ,Boolean differential and the

_ necessary and sufficient condition for its compatible integrability

open an avenue to new areas of applications. 	 Because of the nature ?

of these applications, the specification in terms of the changes in

the output o f a system or a subsystem ,- as a consequence of the changes r

in the	 inp uts o f the system or the subsystem, is more significant and

desirable than that in terms of the functional relationship between

t output and input values.	 It should be noted 'here that clock- triggered

t flipflops, synchronous counters and many o ther ; MS I and LS I circuits

are sensitive tc input transitions. 	 It is premature to predict long

term utility of Boolean calculus,, but the potential benefits dictate

a need ,for "further investigation {5, 	 38-4-0-1. t

8.	 CONCLUSION Ft

Boolean calc ulus is aower ful tool for anal s s ap	 y	 s well as k

synthesis o f logic circuits.	 The use of Boolean integration. in

synthesis of asynchronous circuits using clock - triggered flipflops

r' has led to circuits which require fewer_ ; flipflops and logic gates

' than circuits synthesized using conventional methods [5 , 	 38-401 ,thus
reducing complexity, cost and size and improving reliability. ,z	 a

i .



26.

Earlier methods to realize a function from the specified changes

R	 in its value in terms of changes  in its arguments do not possess the

simplicity and ease that the integration method presented here does.
i

The concept ; o f a compatible integral was introduced in order to

generalize the concept of the exact integral and recognizing the fact

that we do have don't-care conditions and/or transitions in real-life

-situations.	 Moreover, if the exact integral does not exist for a

specified differential but a compatible integral does, then the

undesired transitions (changes) in the integral may be inhibited using

"	 a simple logic circuit. 	 Integration by parts is a further generalization

of compatible integration, which has possible applications in logic

circuits
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APPLICATION OF BOOLEAN CALCU'.US TO DIGITAL SYSTEM 'DESIGN

S1 Row -7V "k:""!Vf6 r ^^

}s

Moiez A. Tapia

Z
, s

Electrical Engineering Department, University of Miami
Poo. sox 2482,940 Coral Gables, Fla. 33124 )

i.BSTRACT (02.1.5) t ,output function et(Sk,ij)' V
and

! Conventional M*thods for synthesizing (DT.1.6)	 q	 next state .unction ^y(Sk,.Zj),

'
asynchronous	 dosequential systems	 not use yj &k will b

S 
e assumed ►clock-triggered flipflops. it has been

shown that synthesis techniques for such	 '
systems; which utilize edge -sensitive It will further be assumed that only one

flipflops lead to networks which require state variable and only one input variable
is allowed to change at a 	 '3me.

)

.fewer flipflo ps and logic gates than thosr'
" obtained by conventional techniques. A

formal proreduse fos	 ynthesis of aayn-
chronous sequential systems using ccm^arci-

In order to make in t to express
d
toutput

the next state an	 output in terms of the 	 A

ally avail able_ edge-sensitive flipflops, change in the inp^_ 	and the present skate,

is given. we will transform the FMA system to a
F _• Differential Mode model defined below.

I ' 1. INTRODUCTION This is'comparable to the DM Machine of
Smith and Roth ( 5 , 6 1 but really different

In conventional asynchronous level-mode than that.

a;
--	 sequential system design direct emphasis 	 '

is placed on relationship between outputs Definition 2.2: Given a fundamental mode

and inputs in terms of their levels only, 	 1 async^ronous system FMRS, a Differen tial
Made	 DMS will be defined as a_y^stem,

j!

and the possibility of using edge sensi-' 'tu3	 as given below:' tiveness property a	 logic elements is not

."
utilized. Smith and Roth have shown ( 4, `1 ,	 r,	 r	 ,	 ,'DMS --(I	 -,S	 ,0 ,f ,q )	 whose1(02.2 . 1)	 ,2that if edge-sensitive flipflops are use d
in the design of an asynchronous system. 	 t_ .(D2.2.2)	 I'•Z,
and the edge-sensitiveness property is	 i..r I••	 ^/
judiciously	 aken advantage a!, then in

y realization

(02.2.3)	 I'^ ((Ij,Zk)Ioj,k}

 thatany cnsesit leads to a I(D2.2.4)	 sows

a requires less flipflops and logic gates
than conventional method does for a given (02.2.5)	 !'d output function of DMS

tz system. ,Smith And Roth technique (6,51 (D2.2.6)	 y'	 next state function of
utilizes a	 general'model oi' edge-_sensi- Day
Live flipflop" in their approach. The
method proposed in this paper is applic- The function 91 is related to the function
able to any commercially available clock- of thot FMA system as,shown,below 	

rtriggered flipflop'that responds to a `
clock transition (positive or negative). (D2:2.9) g'(S)";Ij,ik)

t

2. DIFFERENTIAL MODE MODEL 	 r St,	 ify(S h ,Ij) •S h ,g'{Sn ,i)	 • S

and g(S3,Z k )	 . Si
Definition 2.1; A Fundamental Mode S	 , if	 (S ,T ) •S 'and there exist1	 h	 hAsynchronous system
(02.1. 1)	 FMAS 0 (ZrSrO,^,9) where

-f_
5;1,512'	 Sin'i	 S 1 	 a

" (D2.1.2)	 I Q set of p distinct input
such that,g(Sh ,Ik )	 • SS1,

conditions	 (I^} 9(Si='Ik)'Si2,---'	 9(Ti»'Ik)^S1
(02.1.3)	 S^set of	 states of the and g ( S 1 ,I ) .Si.
system	 (5 j )

(D2.1.4)	 0 &set of outputs • (Oj
^

•

.,	 f	 _. i
r

^	 .^^.—^_.^	 +.^^^. 4.. ^.• .r :^•	 ♦_..... a	 .^.a	 r	 a	 ...	 r:R.—^_ '"4

4	 i,

,rI	 Y.." -x °^..wa..."..;.. ... 	 an .yMr4+MF	 .ai'J..YIr.^"5%-...	 .•.e, w . i.d. ..1rz `r*ASAtliwlLLr.^tiinlrm.e+eulr.,Y.u,n'ux	 ^.a._•	 _



2,1 1,0 3,1 1,0	 - - - -

2,1 1.0 - -	 - - 2`i 1 4,0

3,1 2,1	 3,l 21 -

-	 1,0 4,0 1,0 4 ► 0

,

E
f	 ^' r

i
11^i	 2

1

r if y(S h ,I j ) ! S  a 7(S h ,Ik) n 	 XlX2

if y(S h ,I j )	 Sh and there exist	 00	 00 " 01	 Ol	 i1	 11	 10	 to
S lI , S l2 ,--- S ln such that	 10	 Ol	 ii.	 00	 01	 10	 00	 11

y(S h ,Ik ) n lt' 9(S11 ' Ik) n S12	 1

g,(s l2 ,ik ) n Bt3^"-- r9(St,n'Ik) n 	 ,

if V(Sh,Ij	 Sh	 2

The function t'(S^,1 1.) is related to 	 3
the function r (Sk , zj ) 0! the FMA system
as shown belowt	

4

• 02.a.10) f!(sh,Ij, 	Ik) Figure 3.2
.
f.	 10 " , t(s i ,	 Ik ),	 if 9'(Sh ,i j , Ik) nSl

•	 °'	 »
`	 )

---- , if^ ( S
specified	 h	 j	 k

is un- using the conventional
flow tables for FMA systems,

methods to reduce
the DM ' 441ble

.'j can reduced as shown in Figure 3.3.
'	 Before we

'
develop procedure for synths-

sizing the asynchronous sequential system X1X2
r	 described by the equations (D2.2,1) through 00 00	 01	 01 11	 11	 10	 10

(D2.2.10) , we will assume that the - F-HA 10 01	 li	 00 01	 10	 00	 it
Ì 	system (and hence DM system is amenable to

single variable	 change state assignment'.	 (1,4)A
Let us further assume that the system has
a input variables X l ,X 2-- ,X m state
variables Y 1 , Y,---, Y. and Renee M ,clock»	 (2,3)e

84 A,0 B,i A,O A,0 A,0 A,O A,O

B,1 A,0 I B.1, J BA 1 8,l 1.8,1 9,l I A;O

'	 'positive transitions. We will; 	 therefore,;,
triggered f ipfIops that respond to 	 Figure 3.3.	 t
need to realize	 clock functions, say c 'is

j	 such that whenever an input change occurs 	 The reduced DM system hag only-,two states.	 #."
then one (and only one) of the clock 	 Let ynO and y-1 be the aosignmtnts for

[	 functions goes through a positive trans-. 	 states A and B respectively,
ition providing s proper state transition.

.,	 Observe that if yn0, the flipflop must
3. A DIFFERENTIAL MODE SYSTEM	 ;change its state, when

_	 (1) X 2 -:n 0 and X 1 changes from 0 to 1 or
EXAMBLE 3.1	 1(2) X2 n 1 and X1 changes from 0 to 1..

'	 consider the FMA system described by the	 it y	 1, the fliprlop must change when

`	 reduced flow table given in Figure 3.1,	 (1) X1 n 0 and X
2- changes from 0 to 1 or

which is equivalent to the DM system given	 (2) X l	 1 and X	 rsgcha	 es from 0 to 1in Figure	 3.2	 ._ ..	 _.	 .,	 ..	 .. ,	 2	 »	 - 
This tells us when the clock should go

e	 through a positive transition. The de-
' X 1 X2	 sired changes in clock function in terms-

00	 01	 11	 10	 of changes in X1 and X2 can be described

Q0 QO	 3,-	 2,-

Ql 1, - 4,- Ql

2,-	 33 11	 2,-

1-	 1,-	 4Q0 010

Fby the dffferen ial ex ression (E3.1.1) 	 ::a
below:

(E3.1.1) dc,1!(Y,72dxl+X2dx) +y(Xlds2+X,ldx2)
i

eydxl+ydx2
It can be shown that do is compatibly
integrable and	 a compatible integral of
do is ,A

..	

Fig.	 3.1	 113.1.2)	 cdc	 yxl + yx2 (See Def.	 4.4)

Let us	 them try

3(E3.1. 31 	c	 yx	 ^+ yx	 as the input to
the clock pin of I flipilop to be used.	 1
Then

i'i+ny^txi)	 (E3.1.1) dcl-ydxl+ydx2+xlx2dy♦xlx2dy

Qa =T'1M 10111 .2 W1ltl 4110 11, -rDNDa1..

k	

,
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so that transitions tt x x dy^ and (X	 dy)
^ywhich are not specif3ac^	 squation l(673.1.D

i,i^«<-ns	 it F satisfying equation	 (P4.4.1)
does exist then F i& called a compatible

^. may be present. However a ciose examination ".Integral of dE. (See Appendix).
at Figure 3.3 reveals the fact that when_ .	 i
ynO and input changes to x x 2 n Ol, then y
does not change to 1 so thlt (x X dy) is a

Th	 rem 4.1s This 	 and sufficient

transition that cannot occur. S}m,1larly
condition for compatible integrability of
given differential expression

(x x'dy) cannot occur either. Hence the
clIci function C	 will. provide exactly

n

transition
dC n 	 L	 (d dX	 +4 d.T	 in that

L	 1	 L 'those	 which are sp cificed by
equation ( E3.1.1) . Hence the c rcuit re-
quires only one ( toggle) flipflop, with

to
rr dCCl , t^ df	 n 0
J n	 t)	 "•

the function given by C 	 as input to its
p	
1 cloak pin and outpu t o! the flipflop (yl

« 1

Theorem 4.2: if a given differential ex-

being identified as the output s of the
system. See Figure 3.4 on page 4.

res-- lion d,	 is integrable, then a compat--pp
ible o! dE is given by

` 4. REVIEw of BOOLEAN CALCULUS fodE „ ^ 1dC + K where 0,K g	 o'$ tJ 1dC

f The definitions and theorems given here S. SYNTHESIS PROCEDURE	 y

are described in references 1, 2, 3 and 7.'
Due to space limitation, it is not possible

Definition 4.1: to outline here a general procedure,, in do-
.	 .	 dx	 =	 ,when X1, 1{i4n,changss Iron'

1
tails,,	 forisynthesizing an asynchronous

O to l or fromalto 0 sequential system using clock- triggered
_•	 dxi n O,whtn Xi does not change at flipflops and Boolean calculus. only a

all.	 • brief sketch of the procedure is given
dF will be defined similarly here in what follows.

(4.1.2)dF-dXj by definition implies that Given; an MI S table which is already re-
when	 X	 D	 1 (or 1 to 0^ changes from	 to	 ), duced, it is first transformed into DMS tso does F change from 0 to l (or 1 to 0). table. It has been shown that the tatter

Differential expression, denoted by df,
reDill	 e

can always be realized as a network con-
lting of edge-triggered ,(clock-triggered)is

defined flipflop9 and Boolean calculus. From the
.-.

(04.2.1)	 dE At	 ldxt + e^ax^
i
r
l

DMS tablle, diifferenpial expression, ( 1,2,3,0
,71 for each clock function is determined

wherr,Q{ 	and 0 1 ,  Il< t<a are functions q!,_',i
taking into account what changes	 n clock'
functions are necessary in order to bring- -

X	 X .--=,X	 , X	 "-_,-X '(and inde- ,'1	 2	 i4l	 1+'l,	 n
about ` chbnges in the state of the eorze-

• pendent of X ) a	 only 	 of the vart-t	 nd •	 y one
sponding flipflop	 These differential ex-
pressions are guaree	 to be integrable

ables X1 ,X2 ,---Xn is allowed to change at
other inputs (such ate S-R or J-K, if any

a a time. _ 	 >.	 - _. to the flipflops sire determined by looking
f t at the' , nature of next states in the entries
E Definition 4.3: The intearal of zeroth in the table, thus a complete network re-

order, written as 	 , o t e BT alization , is obtained.
i

o
expression

".,

n
rther

Quite often the DMS table is further
( (04.3.1)-	 dE n 	(o(,dxf

+8 t dsi ) ducible as shown in theexample. u
If the reduced DMS table is realizable

i is givenby using , clock+triggered flipflop, a con-'
r	 - aiderable saving in the number of flip-

flops and logic	 results. Synthesisgatesn i	 +s ixj )ID4.3,2)	 JodE	 ( 3Xt

f
and	 he ante ral of first order, written
as	 E, o	 the express on	 E	 n equation

procedure fora :educed DMS table is
similar to the procedure just outlined, but

(D4-1i
have to bea number of relationships

-1) is given by	 _ cheered before the pr .̂ cedure can be
(D4,3.3)	 J'dE	 n 	 E f	 X	 + 9 X ),.	 -«1

successfully applied. Due to space limit-
ations, the detailed 	 cannot be '-LR1°f t	 1 ! procedure
described here.

`Definition 4.4: A s-•iven`differential ex-
t

€
press on	 givan4,n (D4.3.1) is said to be
compatibly intearable if there exists a

i	
.-

function  F such that

(D4.4.1)	 and aF	 D: for all i t
i

,
^, )

xl	
a xi _	 ._ _,r _	 w	 _	 —

«

2

7
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*	 6. CONCLUSION

Design of asynchronous lovol-mode aequent- (7) M.A. Tapia, J.H.Tuckor and A,Whponnatt,ial systoms uisissg clocked tlipflops has "nooloan Calculus for D igital Systems,"
•	 been known for a long timei however, such submitted to IEFC Compu tar Transactions.

design using aimplor circuits has boon
essentially limited to those cases where ACHNOWLEOGEMENTthe logic designer possesses sufficient
uxperiunce and inspiration to intuitively The author gratefully acknowledges the
obtain such an implementation. Smith and support of the NASA Langley Research
noth (5,6) presented a formal approach to Center research grant NSG 11436 for the
realize asynchronous level-mode sequential research reported here.
system using ^goneral model of edge-
sensitive fl	 flop"	 (5, 6). The formal APPENDIX
synthesis procedure proposed here is
applicable to synthesis of such systems Definition Alt For a Boolean function
using any commercially available clock-

---xn	 )
X 1 +
	 ,-.--,	 ?,	 ofss	 variables X	 X	 '2	 ntriggered flipflops.	 °• 1,	 2 1

Boolean differential of .F, denoted by dr
WO have sho-O that any asynchronous level- s	 e	 ne	 as
mods; Sequential system coold be realized' n

,using the proposed approach. In manycases (Al .1) 	 dF	 s	 aF	 dx	 f aF	 dX \
i'1(this approach leads to designs which are

!1
less complex, less costly, mare reliable The summation in Equation (A1,1) is with
and smaller in size than those obtained respect to the inclusive a, and the	 }
using conventional design techniques. In Partial, derivatives are defined by
the worst cnSe the complexity,of the de-
;sign obtained by the proposed approach am (A1.2)	 aF	 F(x)IX	 F(x)^
comparable to that obtained by conventio- axlal	 Y.tyQ	 and

_	 .l	 _	 __^jnl tt^chni^uen^

(A1.2)	 D 	 F(x)	 rB	 F(1t)
}Cl	 1
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Recently there has been considerable interest (02.1.6)	 g . nest state function • 9(Akrij)I
ak

in synthesis of asynchronous sequential systems will be anumed.
using clock-triggered •liptlope (2-7). It has been

C shown (2,21	 that synthesis techniques for such
symtenu which.utilirs edge-sensikive ^alock-

It will. Loather, be arruc+wd that only one ins
3

triggered) flip lops le d to nets+orke whLah, 3n
put variab

l
e is allowed to chchange at a time and that

f' wany rases, require fewer tlipflops and logic gates the system time n input variables X1 ,X ,6..xn and m
,oand which , are loss expensive and more reliable than

those obtained by conventional techniques. 'else pro-
state ' variables Y I , Y2 ... .Y

mte
.	 14de	 to laciitate

the expressing of the next sts and output; in terms
posed paper aims at davelepinq-fomal procedures of the

heems t	
h change in n tpu

he npu►
	 and

	
a present state,

—r.	 Y	 ' to- a Diffskential1 for synthesis of as -chsonvus s 	 uentiai • stems
using commerciallyavailable edge•sensitiv 	 flip-

Mods System defined belowe

flops. Definition 2.2 1 	 Civen a fundamental made asyn-

I
10	 introduction

chronous system TMAS, a Differential Mods System
(WS) will be defined ;&a a 6-tuple as given belowe

r In conventional asynchronous level-mode so-
gyential system design direct emphasis is placed on

(02.2.1)	 du •	 (Z,',	 f*', S', O', t', q') where
' relationship between outputs and inputs in teems of (02 , 2.2)	 1'	 •

C 
Z,`

their levels only, and the possibility of using
sdge sensitiveness property of logic elements is not (02.2.21	 !" n1 CI	 ^C'

j
,Z	 j# k i

utili;ed. Smith and Path have shown (31 that it
`	 l

(02 .2.4)	 S' n s'
edge-sonsftive llipflops are used in the design of (02 1 2.2)	 f' •output function of DK>fan asynchronous system and the edge-sensitiveness
property it judiciously taken advantage of, then ( D2.2.6)	 q' • next state !unction of DMI
In many cases it lead• to a realization that tee
quires The function q e it related to the function g of the

_ ntional emethod does toe a given as ystem,Thenssdth [^ systee_as shown below

i and Roth technique (3) utilizes a "general model
flipflop" in-their	 The )	 '(	 ,	 Z	 )(02,2.4	

gSte	 , Z k •'of edge-sensitive	 approich. j
method proposed in this paper is applicabla to any Si, if 9(Sh ,I

1
) • Sh' 9(Sh ,Zk) • Si

commercially available clock-triggered flipflop
arA 9(tirZk) 'Sitthat responds to a clock transition (positive at

negative). Si. if 9(sh ,1j ) • 5  and there exists

2. 1 Diffecential'Made Model Sil'•^'Sinidi'such that
1

9(	 ` k1 • SiI" daDefinition 2.1 2 	 A funmental ,9ode A"nchronous
system 9(Sil"Zk)•Si2,---, 9(Sin,1k)•si

(D2.1.1)	 r%A• • (Sri"r :0rtr91	 where 9(Sit ZO * Se

(02.1.2)	 Z n set of g distinct input conditions
-r it q(Sh ,Zj ) * S 	 9(Sh,Ik) •

• { I j } ' r if 9( SOj) • 3h and then exist
(D2A1.J) -	 S •'.set of 	 states of the system S W SW --- ' Sin such that

(
(S )

j g(Sh"Ik) • SiI' 9(sil , Ik) • Sit
(ffi.1.4)	 0	 met of outputs	 (Aj}

9(si2'Zk)• Sit" •-- " g (Sin . =k) • "
(02.14)	 f ^ output function n f(S,i ) " V j ti k

k	 j -, if q-(Sh ,Zj ) f Sh.
and

t



2.

i
i
1

The function f , (S 	 ) is rel^t e4( rrtsy tho
function L(sk o 1j ) of the AMA system as shown below ►

".be summation In tgwtion (62.4,1) to with compact
to the inclusive OR, and the partial derivatives

j

ace defined by

(02.2,10)	 f91 ti t TO

) , :if
(02.4.2)	 or	 • t(a)i%•1 . r(w	

x nd fit(si, , x%	 +[^(	 ,z ► 	 )e6^	 1 ^	 iiAt 9 '(% f z j 01k) is unspecified and	 _
,!162)	 it n t(4) x nO . r(^) ^ 7

s

De[inition 2j ,► 1

(0263.1)	 dnl n )►snXi , 1 	 i ^n r chaesng
ree0 to 3 or from 1 to 0

11:

Math the interpretation given in Definition D2.2,
changes in

hen xl does not change at alloto ch2angelincvariabieyXi^rir;bas

f dr will be defined similarly,
Definition T.St The integral of 

sera	
greet,

(0263 . 2)	 dr a, d%L by definition implies that ' written as	 odH, of the Iloolean expression

IR When X	 changer from 0 to 1 (or
1

n(D265.1)	 dH • $	 (oidxi+iidxL)
1 to 0) ► so does r change from 0 Lot

to	 1 (of 1 to 0). to given by

# In order to relate changes in r due to changes in
n

(024.2)	 lodN n L (all	 ♦ A^?ti)
7L

n

%i under different conditions we will treat dr and Lai

UL , 1 ,41p as entities in baleen algebra having end the integral-of first orde r ► written as f dN,
values of 0 or l as defined in equation' (02.2.1),

of the expression dH in equation (02.5.1) is
given by

Consider tho oquation n

(02.2.3)	 dr a (XZ. X^)dx 1 + (Xr , x2)dx3.
(02,3.2)	 dldN •ir1 (o LXL + filx 

Definition 2.6. t J1 given differential expression
F When X2 • X2 n land X1 is changing, then dM2 00 dN given i.;ID2.S.1) is said to be compatibly into -
-

and dradxl so that r changes the #same way as X1
grable If	 t•yro exists a function t such that

changes. Similarly when X1nX2.1 and X, changer, (D2.6.1)	 tf. auand 3r ? Bi

than dr♦dx3 and l changes the sane way r ye X3

F

^K1	
i	

J7ct

changes for all i, 1[it, p. it r satisfying equation (024,1)
doer existotSien r is called a compatible integral -	 s

" oiffarential expression, denoted by dH^will be de- of dN. The differential expression is said to be
lined as exactly integrable If there exists function r such

n	 _ that
(D2,3.4)	 dH n 	 1dXi+ 90X 3.

1 (02.6.2)	 dr n dH
Where a iand $I , 1_L4n	 are functions of

il X	 X ,---K	 , X	 f - -f, X (and independent of X)1	 2	 i- 1	 +i	 n	 i

:f r satisfying the above equation does exist, then
r in called the exact Lntearal of dH.

and only one of the	 variables 91 ,X20 ---,Xn it

allowed to change at a time.
Theorem 2.1 16 The necessary and sufficient condition
for compatible integrability of a given differenti-

Differential expeaaaion as given in (02 . 2.4) will
al expression

be used to describe changes in clock functions in (72 . 1.1)	 dH	 L	 (a dX	 + d dY )l	 'iterms of changes irk input and state variables.
nLn 1	 i

The following definitioniu, relationships and
is that

thoiocems have been reported ,earlier (1,1,11 and (T2.1,2)	 odH ' JIM n 0
will be presented' have briefly for the sake of
completeness and convenience of cefeconce.- Theorem 2,23 if a given differential expression dH

" Definition 2.1 3: roe a foolean function- is intogcabie, then a Compatible integrable of dH
in given by0(X1„IZ.--'-.Rn ,of n vsriables XI#X20---#Xn

Boolean dLf!erential of F, denoted by dr # is de- (T2.2.1)	 /ad” n IIdH + K where
!lined as

.,	 n (T2.2.2)	 K ^IIQdH + lldH)
(0.'2.4.1)	 tir n z 	dXL+ 3F

(3,13 Xi _	 3X

;



00 0 0 01 0 1 - - 00, 0,0

O o,o 01,1 11,1 1,0 - . . .

11,1 l,0 11,4 10,1 »

- 11,0 10 0 1100 ' _ 10,0

41	 12	 11	 21
(Z3.4)	 012 - x ix2 + ;1y2 + x2y2'

The output !unction, z, is obtained as

(E^.5)	 x . (k	 Y^)	 (X QY )

a

16

kfars golnq into a formal synthesis procedure,
we will outline the approach with an a$ampIs. Con-
sider the 1'MA system described by rigure 3.1.

XlX2
AA	 At	 11	 1A

AI L s,- 0 0 + APO

/,o not CO - A,'

so- C O O C,1 Do-

At - CO - '00 0 001

rij, 3.1

01 transforming the system, we yet the ws table in
rigure 3.2.

(9202)	 C1 a y1Y2x 2. + Ylyyx l + yly2i2

+ y yx1

in fact C is an exact integral of dC with re-
spect to varilbles x and x so that dC • dC if
the transitions in dk due ilO changes Lh / 11 or y2
are ignores!. Whenever one of the transiticns on
the right hand side of equation dC does occur, then
y or y will change. However, it can be shown
tot this change in yl or y2 will not cause a POOL-
tive transition in Cl.

xlx2	 Xix2

	

Y.Y. 0o 01 11 10	 y y	 00 01 11 10-I s
	

12

	

0 1 +	 1 0

	

1 0	 1	 0
0	 1	 1	 0

A

C

0

00 00 01 01 it 11 10	 10	
riyura i12.4	 Figure L=1.5

10 Al 11 Oo Ol 10 00 11	 0i1 and Djij in Figures 1,4 and 7 .5 respectively

C

a	 a

give a vain i of the inputs to the D-flipflops,

Observe that when y t y,w00, then positive trans-
itions occur Only when X2 changes from 0 to l re-
gardless of the value of X10 Hence when X, changes
from 1 to 0, regardless of the value of X`, the
value of the next state is left unapeeLfi }d. Si1ai-

rig. 7.2	 lazily it can be ihown that every row has two un-

X X	 specified entries in the K-maps for o il as well or
1 2	 DIZ. Frain these wags we have
00'- 00	 Al O1 11	 11 10	 10

YIY2	 10 01	 11 00 01	 10 00 11	 (v it	 0 n x x +- x y + x y	 and
Woo
(g)Ol

I	 (C)11

MID
1	 2	 1

Fig.	 7 .3
Equation (9502) describes the expression

Lt u2 sesame that 0- flipflopr wit	 be used and corresponding to the combinational network whose 	 r

that the llipflops respond to the positive edge of output would be connected to the clock pins of

the clock pulse, both the D-flipfiops. D l and Di , defined in
equations (E1.3) and (EiN are the expression for

Observe that In the first rowi the state' the combinational networks whose outputs would he

changes when X X	 changes from 00 to pl And-from 10 connected	 o input pins 
a'l 

and 'Di	of	 he D-flip
'

to 11, that is lto say that the state changes when bops 1 and 2 respeetiti,;'_;..	 (See Apendix).	 a

transitions denoted by T d% 2 and X dX 22 occur.
in 4.	 Ae+^lizabilitlTaking into account all srte rows,	 Aced the clock

function to go through positive transitions when-
ever the transitions indicated on the right hand _ in this section we will give aesul+,s, without

side of equation ( E3.1) occur, proof, pertaining to realizability of an asynchron-
ou	 fundamental-made (M) system using clock-

(E3.1)	 dC•yly2(xldxZ + xldx2) triggered llipflops and employing Boolean calculus.

+ flyz (x2dx1
 + X

2 TheoremTheor^n 4;11	 if a differential mode syst em derived

+ y1yZ (x ldx2 + xldx2) from an FMA system 1142 the same number o! states as 
the latter, then the differential mode system (r.45)

+
7
1y2 (x2dx1 + M2d;j) is reatizawle using clock triggered fllp!lops-end

other !ogle gates;
By Theorem 2.1 dC is compatibly integrable and

by Theorem 2 . 1, a compatible integral of dC, say C11
is given by

{

'	 _
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c	 ^

^.	 .,
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0000. 	 t	
0000	 ,P
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u

. -,	 0000 s9 .	 r —, u. _.	 . ,	
a
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The	
y-

oree 4.2	 If tM)e CO3 r able obtained from an	 plexty of network and power consulted by it.t
alread	 reduced FMAS table is reduced further (if
it is reducible), then the reduced table is realis- 	 8.	 AcknowledoeMents
able using clock-triggered flipflops, if the
table is output- and next-state-unambiguous. fibs	 The author gratefully acknowledges the support
terms "output-unambigous" and "next-state-unaxbiq- 	 of the NASA Langley Research Center through NASA
ous" are defined in reference 7 and will be de-	 Grant No, 1436 fir the research rc, —od here. fie
fined in Appendix at the and of this paper, if 	 author would, ai.o, Like to express ts.,'si'ncere
space permits.]	 gratitude to Ms. Barbra Verger& for the e-,,alt

and precise typing of the paper,
K	 S.	 Synthesis Procedure
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Observe that the CLACK function C l obtained in
step (3) is the common input expression for the	 Appendix	 $clock pins of all the D-flipflops. 	 a

Definition A.l t 	 A DM system table is said to be
if the DM3 table derived from an already-re- 	 level-wise output-unambiguous, if there `exists no

ducted FMAS table is further reduced (if it is	 input conditions I i , i j , Ik-and states Sa and Sb,
reducible), then the reduced table is realizable 	 I	 and I	 being adjacent, Z'	 and I	 being adjacent,
using clock-triggered flipflops if the conditions 	 13 and Ik not necessarily distinct 	

'
iand Sa and Sb

specified in Theorem 4,2'are satisfied, Synthesis	 not necessarily distinct, such that q'(Sa, Ija+
procedure for such a class of system will not be 	 a
given here due to ;space limitations.

q'(Sb,Ik,Ii). f'(Sa"j ,II ) and f'(Sb,Ik,ri)
6.	 conclusion 	 are defined and

A.msthod has been presented that uses clock-	 (A.1 1)	 g'(Sa ,Ij' II) 	 g'(Sb ,Ik ,'Ii ) • So
triggered flipflops in synthesis of fundamental- 	 (say)
mod* asynchronous 'systems. The method employs 	 (A. 1.21	 f'(S ,I ,I)	 D	 } O.	 't'(Sb.;Iy,Ii)•
Boolean Calculus. 'Ate method leads to a network 	 a	 j	 i	 jc	 tte
that requires fewer IC packages than those rs-
quired by a network arrived at using conventional
methods, thus leading to reduction in cest,com-

,
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Definition A.2t A ON system table is said to be
level-wise next-state-ambiguous, it there exist in-	 xl	 X
puts Ii , Ii and Ik and states Set Sb and S

c 
such

h that

Ij and Zi are adjacent and IX and Si are adjacent

	

NP	 Ne

^II (A.-2. 1)	
9b	

sc,

(A.2.1)	 90 (sa , Ij r I t ) - Sb and

(A.2.3f	 fj'(Sa,Tkrlif	 s^	 CL=
FUNCTION

Ik NETWORK

Ii	 Ii

4s	
SAS, 0	 5,

is	
alb b	 ♦i	 c	 5a i

t.
Figure A.2
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REALIZATION OF SYSTEM IN FIGURE 3.1
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