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DEVELOPMENT OF BOOLEAN CALCULUS
AND
ITS APPLICATIONS
(NASA GRANT NSG 1436 1977-1980)
FINAL REPORT

o MOIEZ A. TAPIA
DEPARTMENT OF ELECTRICAL ENGINEERING °
UNIVERSITY OF MIAMI

CORAL GABLES, FLORIDA 33124

-1,  INTRODUCTION

The éeport;describes the significant results obtained during
the NASA GRANT NSG No 1436 period from August 1977 through
December 3l,-i980.tThe primary objectivelof the grant“hes.been to
develop Booledn Calculus so that it can bebadvantageously.applied
to developing new digital system design methodologies that would
be desirable additions to existent methodologies in terms of re-

ducing system complexity , size, cost,. speed power requirements,

etc; New synthesis procedures were developed during the tenure of

the grant w1th the above mentioned obJectives 1n mind These w1ll

be described in the following sections Several publications that

resulted from research effortsiwill be,shown in a later section.w\
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2. FORMALIZATION OF BOOLEAN CALCULUS:

Formalization of the existent and new concepts and re-
lationships in the area of the Boolean Integral Calculus are
given in Appendix I.

.
o

3. NEW SYNTHESIS TECHNIQUES:

Boolean Calculus'has made it possible to synthesize funda-
mental-modevégynchronous sequential system using clock-trigpgered
flipflops. It has been shown that synthesis techniques that uti-
lize edge-sensitiveness property of flipflops require fewer flip-
flops and logic gates than conventional techniques do for many
systems {11]. 1In order to describe the new synthesis technique,

we need the following definitions:

Definition 2.1: Given a Fundamental Mode Asynchronous(FMA) system,

FMAS = (I,S,0,f,g) where
T

set of p distinct input conditions = {IJ}

= set of q states of the system = {S,}

J
set of outputs = {OJ}

= 6utpht fuhction

B T o B
i

g = g(Sk, J) VJ and k “ R | b

= next state function,

N




we will need to tranform it to a Differential Mode System, DMS : j

as defined below: i

DMS = (I',I*',S',0',£',g") |

where I' = I, S' = § g
I*' = {(IJ,Ik)lvb!!} : N i |
0'=0 | |
£! - output function of DMS

g' = next state function of DMS

= g'(sh’Ij’Ik)

0 1T B(Sy,Ty) = 8, e(Sy,T) =8,

and g(Si,Ik) - Si

¥

Sy, if g(sh’Ij) = S, and there exist 8,,,S;5, ===,5;, & §¢

such that g(Sh,Ik)'= 8519

‘ g(sil’Ik) é SiZ’_"’g(Sin'Ik) = Si
L = and_g(Si,Ik) = Si‘ '

—_ if g(Sh,Ij) = Sh & g(sh;xk) T

DR L+ R

;v 1f g(Sp,15) = §p agdrphere exist

g(Sh,Ik) ='Sil’ g(sil’Ik) = Sy9s
g(SiZ'Ik> = Sis’---’ g(sin'ln) s —
=, Af g(8y, 1) # 8y

vf'(sh, Id,ka)

—_— if g‘(Sh, Ij! Ik) is unspecified
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It will be assumed that only cne input variable can change |
at a time.
In order to facilitate understanding of DMS construction, an
example will be presented.
;700 01 11 10
A @:1 C,-—- @p 0 C) -_—
B [®0 | D~} ®1]0D — o
(S —
C B,“‘— @;1 B)'—— @)0
D | A,— | ®o A— | ©1
Figure 1 (FMA System) J
‘155 Figure 1 describes an FMA system.
"x1x2
00 00 01 01 10 10 11 11 o
10 01 11 00 00 11 01 10
A jco | ¢ --- ——— ) - --- c,1 | c,0
B | D,1 D,0 -— -—- --- -—- D,0 D,1 ;
c | —-- - B,1 B, 0 B, 0 B,1 ! | --- -—-
D — ——— A0 Al Al A0 —— _—

4 F P Figure 2 (DM System)
Figure Zvdescribes a DMS;system that has been tréhsfcrmed from the
 FMA system in’Figure‘i.
ObServe that the FMA system tab;e in Figure 1 is in its reduced

i

form. , ' - k ﬂw,
) . FA

It can be shown that the method of state reduction uormally
- used for reducing an FMA table can be applied to the né;t-state and

_output table for a DMS system. If such a reduction is’carried out in

U
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case of Figure 2, one gets the reduced DM system in Figure 3.

X1%2
00 ' 00 01 01 10 10 11 11 | ;
10 01.. 11 00 00 11 01 10 |
(A,C) A A0 A1 | B2 B,0 B,0 B,1 A1 | a0 |
(8,0) B-| B,1 E,O0 A0 A1 A1 A0 B,0 B,1

'Figure 3 (Reduced DM table)

The next step in the synthesis procedure is to assign state
assignments to the states in the system. While doing so, we must

ensure that the assignment is such that it allows only one state

variable to change during state/mransition If the stane diagram

corresponding to the DM table ys not amenable to single—Variab1e~

AT

change assignment, ‘we will need to increase the number of states by

adding equivalent states in order to accomplish 51ng1e-variable-

: - change assignment. This problem will be referred to again in the

report later. Of course, even in the case of traditional techniques

TR, TR AR

for synthesizing FMA systems; the same technique must be resorted to
in order to achieve'sihgle;vér}able—chaﬁge'stateéassignment. . !

In order to get a feeliﬁg for the'problems associated with

o WTETEREEERRSTWSTST T

flipflops, we willvpresent a complete synthesis example given below: i |
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00 01 11 10 |

Ala1|B —|bp—|B— 4

Figure 5

) ~The system in Figure 4 is an FMA system which is to be synthesized
F v using clock~triggered flipflops. The transformation of the system

¥
»
i
[
b
; L into DM system is given in Figure 5.

; When the table in Figure 5 is reduced, we get the reduced DM

o system in Figure 6. Observe that the FMA system in Figure 5 is in
f ‘ its reduted form. |
i /}} )]

i
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(A,B) A

(¢,D) ¢

xlxz
00 on 02 01 11 11 10 10
10 01 11 00 01 10 00 11
A, 1 A, 1 c, 1 A, 1 - — A, 1 e, 1
c,0 A, 1 - - A,— | ¢,— | ¢, — |C, —
Figure 6

Let y = O reoresent A and y = 1 represent C. The excitation table for

the DM system is given in Figure 7.

Xi*g

00 00 01 01 11 11 10 10
Y10 01 11 00 01 10 00 11
0 0 1 0 - - 0 1
1 0 - - 0 1 1 1

' : Figure 7

Observe that in the first row y changes when Xy changes to 1 with

Xy = 1 and when x, changes to 1 with x, = 1. In the second row y

changes when‘xz changes to 1 with X = 0 and when 3 changes to O

with X, = 1, Hence the clock function should go through positive

changes when any of these changes occur.

differential expression for the clock funct;on as follows:

dec = y(x 0dXy + x4dx,) + y(xldx2 + xzdxl)

Observe that

g

fidc‘ =-y ( xlxz ) + Y (;1"2 ) o |
fode = §(§1x2 + x1§2) +‘y(§1§2 + Xq%y)

v/ ' Hence fidec

. dec !~0,and aQ“iS compatibly integrable.

Hence we can write down the

Al




fldc - F(xixz) + y(?lxz) is a possible soulution., Let us, therefore

s

try,
C = F(xy%x5) + y(X3%,)

~C - ?kz , _ég - yxz
axl axl
2L . y(x) + y(X)), -2 . o
axz ”, X Xo

30 e

— = (X Xn) , =—— m X.X

3y 172 1*2

Observe that as far as Xy and xé are concerned, no undesired transi-
tions are caused by them. Since 3C and 3C are non-zero, we must make

]
sure that when y changes, it doegynot caﬁse undesired. transitions.

3§ = XqXg: Hence when X;x, = 1 and y changes from 1 to 0; it‘will

cause a positive change in the value of C. Logking at the excitation
table in Figure 7, we see that when input X, Xg changes to 11 (from
01 or 10), y changes from O to 1 rather than from 1 to 0. Hence
this undesired transition cannot pceur., ‘ 3

Consider next 3C2= xlx2 When X X, = 1 and y changes from 0 to 1,
C will go through gagositive transition, When X1Xg changes fxom
00 or 11 to 01, y changes from 1 to O, rather than from 1 to 0.

Hence, no undesired transition 1s ‘caysed by change in y when xlx2

-

changes from 00 or 11 to 01.

Hence we have no ripple and C=y(x,X,) + y(¥X;X,) realizes the

system. It can be shown that z-§+x2.

R

e ) t;iﬁli‘,)iéﬁ:
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wreai & Togyle

Z
0—-—4:::>-'

X2

=<

Figure 8

A toggle flipflop is used, since ywéhnnges whenever clock

transition occurs,

Observe that §1x2 Ay and X4XoVyare transitions that cannot occur.

7
)t/{
4. DEFINITIONS

The following definitions will

results of the reses:uh:

A

Definition 4.1: m{(x - x,) denotes

deleting the vargébxe x; from the jth minterm of variables

. N
xlpxz"!ga/o .Xnu ;

§

Definitiqn 4.2; mJ(E - xi)Axi denotes the positive transition when

my(%x - %;) = 1 and x,; changes from 0 to 1. J oo

Definition 4.3: md(g -xi)in denotes the negﬁtive transition when

mj(g - X;) = 1 and x changes from 1

 Definition 4.4: TP(CJ) denotes set of all possi%}e pOsifive

transitions of CJ where C‘.j is a funétibn of x aﬁd'i.

The meaningé of notatiocns such

’ md(z,x-yi) in,'eth; easily follow

and will, therefore, not be defined.

»

be needed to describe the

the product term obtained by

7
P
i

4
g
1t
&4
s

to 0.

as mj(g,x-yi), | |

from the above definitions
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Definition 4.5: A differential expression of the form
n ey
dF = mo(x) 151 (“Oidxi + Boidxy)
n

where p = oM.y

is salid to be exactly integrable with respect to variables

X91Xge 0000, %X, 1f there exists a function G(x,y), such that

%iz_- mo(x)uOi + ml(X)ali +....+mp‘z)apia &

) k ,
-_ mo(x)BOi + ml(X)sli AP -+m‘p(1)spir vi‘

Xy

If a function G satisfying the above equations does exist, then

G is called the exact integral of dF with respect to XyXgyeoeo e, X

Defintion 4.6: I, represents thé!binary vector (blle"""’b )

n
such that bi’s are 0's or 1's and k is the numerical value of

(bibz"'bn)' when the latter is interpreted as a binary number.

Observe_thatjmk(ﬁ) | =1
k f K.Ik

Definition 4,7: S reﬁresents the binary vector (bl,bz,;....,bm)

. such that b;'s are 0's or 1's and k is the numerical value of

(bl,bz....bm), when the latter is interpreted as a binary number.

( | | ;
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Observe that m, (y) =]
, oy
L%

Definition 4.8: Si1 and 812 are said to be yj-udjacent to each
other, if their representations as defined in Definition 4,7

agree in every bit except the JEQ one.
[ ]

Definition 4.9: TP (dF) denotes the set of transitions specified

by the differential expression dF which can cause F to change
from O to 1, if dF is compatibly integrable, If dF is not inte-
grable, TP(dF) is not defined,

Definitioﬂmg.loz If a change in the value of state variable ¥y

resulting from a change in input causes another state variable

yy» for some i ¥ j, to change its value, then a secondary trans-

ition or ripple is said to occur in flipflop that is associated
with the state variable Yy If in a DM system a ripple cannot

occur, the system is called ripple~free.

Definition 4.11: mj(§ ~ X;) Ax; and md(i - xi) vx; defined earlier

will also, be denoted by mj(§~- ,xi)dxi and‘mj(ﬁ - xi)dii, respec~
tively.

»

Definition 4.12: amj(g - xi) denotes transitions defined in
Definitions 4.2 and 4.3 as follows:
a(mj(5 - xi)

: md(ﬁ = X,)bXy, if’xi is in true form in mj(ﬁ)

::1(5 - xi)in, if X is in complemented form in mj(x)

RIS PR TR




i
: Definition 4.13: m:j (x - xi)'g xi'denotevs a pair of transitions
: defined by md(g - xi)ij and md(z - xi)in.
§
- Definition 4.14: A DMS system table is said to be level-wise
f‘ output-unambiguous, if there exist no input conditions I,, Ij,
I, and states S, and S, I; and Ik‘being adjacent, IJ R O |
| Sa and S,, not necessarily distinct, such that g'(Sa,IJ,Ii), f 4
1 8'(Sp Iy, Ij), 2'(S, Iy, I;) and £'(Sy, I, I,) are defined and e
r g'(5,, IJ: Ii) " B'(Sb, I Ii) = S, (Say) o ﬁ
é £1(8,, 15, 14) = Oyo # Opp = 2£'(Sp, I, 1)
e} i o L
I 14 | DS S
- %als o S..,0 %a [ SerOe a
(or Sb) ¢’ je c’ ke s. | i
b Sc’okc ﬁ §
A DMS system table which is not level-wise output-unambiguous ‘€
will be called level-wise-ambiguous. | %

4.2 BASIC ASSUMPTIONS _— |
All the theorems that follow are pertaining to realization

’ of,a/DM system taplevusiné 0100k-triggered flipflOpsi Unless

otherwise stated, the following assumptions will be applicable

% Eokbra i e PR

ey o S Tt ol ooy T

% o to all our discussion:

}g L 1. only oneAinput variable;can“chanéé'af a time

» 2., only one state variable is allowed to change during a state

'transitioﬁ,vThis is equivalent to assuming that the specified

St
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table (after state addition if necessary) lends itself to
single-variable-change state assignment, This”iestriction
will be removed later,
3. all flipflops respond’to a positive transition in clock input
4, i (-Ci(x xi)denotes the function defining the input to
the clock pin of the flipflop i, i.e., the flipflop
associated withvvariable vy, for Vy, 1<i<m,

5. an input (condition) Ik corresponds to value of x such that

m, (Xx) =]
k-_
x=I,
6. a state (assignment) Sk represents value of y such that
m (y) | =1
k Y‘Sk‘

7. The number of states in the table is already reduced to

minimum possible,

W
[N
R

The following theorems establish conditions for realizing a
DMS table using clock-triggered flipflops:
Theoremb4 1l: Consider a DMtsjstem table whose realization

i \ ' .
exists. Then corresponding to every row (or state) S l'and input

change from IJl to Ijz’ 0<i<q-1, 0<jl<p-1, 0<j2<p-1, IJl and

1, being x;-adjacent, if the next state function g (Sil' §1° 32)

is defined and

(4.1.2) “>S i1 and Siz are yk-adgacent then
(4.1.3) dcl?mﬂ(Y-) a(mjz(x X, )) 1<k<m

The proof is given in reference 14.

bl A O I SO
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Theorem 4.2: Any finite-state asynchronous sequential system

can be realized using clock-triggered flipflops and logic gates

and employing Boolean calculus method.

The proof is given in Semi-Annual Status Report #2 [15].

Theorem 4.3: The complexity of network realization of a finite-

state asynchronous sequential system, consisting of clock-
triggered flipflops and logic gates obtained by employing

kBoolean”calcuius method is no higher than that of a network re-

~alization of the same system, consisting of S-R flipflops

(without clock inputs) and logic gates'obtained by conventional

method for synthesis of an FMA system.

When the DMS table admits of a unit-distance state assign-
ment, the realization ofkthe’system is possible using any

commercially available flipflops. When the DMS table is such

that unit—disténce state assignment is not possible, then certain

reiationships among the tune response characteristics of the
flipflops must be satisfied sb that the different time re-
Sponses of flipflops do not cause undesired‘transifiohs and
hazards. These need to be obtained.

Synthesis procedures are illustrated in conference papers

given in Appendices II & III,

T I T T e e e
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5., SYNTHESIS USING SP COUNTERf

Efforts to explore the possibility of using an SP (syn-

chronous presettable) counter to realize an FMA sysiem were

successful, Such an approach,significantly reduces the number

of IC packages feduiréd for the system to be realized, thus

reducing network comﬁlexity,'size and cost.

5.1 SP_COUNTER

An SP counter (such as 74LS160) has the following input and

output pins

(1)

(2)

(3)

(4)

(5)

of integest to us:

count-enable inputs P & T, both of which must
be high for the counter to count.

Load input L which, on low level, causes the
data on the data input pins to be transferred
synchronously to the count output pins

"when a positive transition»of clock pulse

occurs. |

Clock input pin CK. Loéding or counting occurs
synchronously on the positive transition of -
clock pulse. : -

Datazlnput pins Dl' D2’ s eey D .~ The data on
these pins are transferred to count output.- plns
Yl' Y2' e Y respectively on the positive
transmtlon of clock pulse when L = O, ,
Output pins Yl' gz, e g Y give the count
output of the counter. '

e
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7 5:2 EXAMPLE S
Before presenting a formal theory and procedure for synthesis, 'i |
we will illustrate the procedure with the following example: ?; |
Consider the FMA system given in Figure 5.2.1. f |
00 01 11 10 # P
a @,O ,@lo b,- @0 .

C a;= ay=~ ©l0 ©:0 1

d a’- @'l C,"' -. i

Figure 5.2.1 |

: Observe that the system is already minimized. Moreover it i

é does not admit of a unit-distance state assignment using |
g‘ ‘ only two state variables. Hence three state variables :
} are needed to realize the system, if conventional synthesis §
procedure is employed. B ; §
i
AT A Using the transformation equations in Definition 2.1 we get :
g o o L &
| : / the Differential Mode System (DMS) given in Figure 5.2.2 which i
; “ _ . L :
? o is equivalent to the system under consideration. . ;
X1%2 e T e
vy 00 00 01 01 11 11 10 10 =
1%2 10 0L 11 00 01 10 00 11 I
, o0 ala,0 [a,0 |b,1 [a,0 - "= la,0 |b,1 | | .
' . — e ‘ i
01 b - ’ - - - d’l. b,l a,o bpl ;
; ~ 11 ¢ - - - - a,1 | c,0la,0 [ec,0 | i 4
A ' 10 4} - - c,0 |a,0 - - - - b
} Ypigure 5.2.2 é
f; , SR .
' ! D) ’
] H fé_.
; ,%

il
ey
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i& |
' Let dC denote the differential expression for the clock I
function. dC is given by i i
C

E5.2.1 f ¥.¢ Y X, +X~dX%. |

Y)Y, (x,8K)+X,dX)) + Y, ¥, (x,dx, +X,dX ) E

Let C, be a compatible integral of dc. Then

E5.2.2 7.7, x, 7.Y.% Y. X, X X |
( ) C) = V¥, x;x, + L,Y,% + Y,¥, (x1x2+xlx2) + YyY,(%)) :

Observe that

(E5.2.3) 3¢ _ %, |
0% ‘

(E5.2.4) D¢, -

— =¥ )%,
3 xl '

(E5.2.5) ¢ _ i

(E5.2.6) a.C1
9K,

Y%

For the positive transitions that occur as shown in equations

(E5.2.3) through (E5.2.6), we need to provide the apbropriate '

values to data input pins D1 and D2 as shown in Figure 5.2.3.




X1%2 X1%2
Y,¥Y, 00 0l 11 10 v,¥, 00 0l 11 10
00 - - 0l - 00 0 0 - 0
)

0, 00 0 - - 0l - 1 1 1

s ! ; ‘
11 00 00 - - 11 - - 0 0
10 00 - 11 - 10 - 1 - -

D;D, Z (Output)
Figure 5.2.3 Figure 5,2.4

From Figures 5.2.3 and 5.2.4 we get

Ty

(E5.2.8) D, = X, and

(E5.2.9) (]2 =Y ®Y,.

Equations (E5.2.2), (E5.2.7), (E5.2.8) and (E5.2.9) give the

system realization with
(E5.2.10) L=0=P =T

5.3 SYNTHESIS PROCEDURE

Given an FMA system that is already reducgd,the first thing

to do is to find an equivalent DMS table using the equations

in Definition 2.1.. If the table thus obfa;ned”is reduced, if

it ié reducible, then the system may"or may not be realizable.

The procedure that follows appliés td DMS table as obtained
after transforming the FMA system. Later wé will present the

prqcedure fox.é&htheslzing‘DMS table that is reducible.
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l. Consider next state for every present state and every
input change. If the next state is different than the
present state for a given present state and input change,
form a differential term that reflects the input change

and the present state in which the change is occurring.
Taking Boolean sum of all such differential terms, form the
differential expression for the clock function.

2, Find a compatible integral, say Cqv of the differential
expression obtained above.

3. Find the Boolean differential dC,, of the function'cl
obtained so as to determine all possible positive trans-
itions that can occur in the ¢lock function.

4, Determine the value of next state and hence values of

next state variables Dy /Dy ...Dh corresponding to every
differential term in dcl. On the Karnaugh map for pi, |

1¢i¢n place the value of D; in the cell corresponding to the
present state and the value of input that prevails after the input
change described in the differential term occurs. The remaining
cells are left unspgcified. Rea%ize functions DIPZ....Dn

from theyKarnaugh maps. ' ‘

|
L.

5. Obt?in the output function z in terms of input variables
and state variables as is usually done.

6. The LOAD pin and count enable inputs P and T are
grounded. The functions Cyr DysDyye..,D, and 2 along with
an SP counter give the desired network realization.

D

LAY

ST e AR g

o i e
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If the DMS table is reduced, then the conditicns in
Theorem 5.4.2 must be satisfied for it to be realized as a
network with an SP counter in it. If the conditions are
satisfied, the procedure mentioned above can be followed

for synthesizing the table.

5.4 REALIZABILITY

Next we will consider some theorems pertaining to realiz-

ability of a given FMA system using an SP counter,

Theorem 5.4.1: Given a DMS table obtained from an FMA system

that has the same number of states as the former, it is re-

almzable using an SP counter. The proof is outlined in reference

[183

Theorem 5.4.2: If the DMS table derived from an FMA system

is reduced, then it is realizable using an SP counter if the

~following conditions are satisfied:

(1) The differential expression for the clock function
for the table is compatibily integrable.
(2) The table is level-wise next-state- and output-

unambiguous.

6. NONCOMBINATIONAL BOOLEAN CALCULUS

In Boolean calculus studied (Je) far it was assumed thaf a
function being studied is the output of a combinational system
whose inputs are the arguments of the function. Also, while

integrability of a dlfferentlal expression was studied it was

" tacitly assumed that an integral, if it exists, would be realized

with a.combinationalksyStem.

«

0
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An attempt was made to _qeneralize the Boolean calculus that i
was developed with thehlimitations shown above. Such calculus, é
to be referred to, henceforth, as noncombinational Boolean |
i{ calculus, will help us describe the output, after an input
{ change, of a noncombinational system in terms of changes in :;fj
f the inputs to tﬁiysystem. Also, if the output, after an input |
? change, is specifﬁed in terms of changes in inputs, realizability fé 4
f% of such a specification using a noncombinational system will be f
% studied. Some results obtained in this direction will be described N f <
f in what follows. It will be assumed that only one variable can o
b change at a time. |

Definition 6.1: lei, 1<ign, denotes a change in x; from

0 to 1.

| | |
) ; 1 when X, changes from 0 to 1
(D6.1.1) Ax, =
' N : oﬂotherwige

in, 1<ign, denotes a change in X, from 1 to“"o.




<

- 22 =

l, when x: changes from 1l to 0
(06.1.2) O, -;; ' !
0, otherwise

Definition 6.2: The terms x¢ﬁxi, K}dxi, X ,Vx, and
§}V7xi will be defined as follows:

(D6.2.1) xizsxi =l&xi

i
(D6.2.2) xiz&xi =0 . v
(D6.2.3) ”1‘7*1 = 0

(d6.2.4) ¥, Vx, W,

Consider a D-flipflop shown below:

_;____>Q

S L

Since the rélationship between Q and xi,wxz'and Xq is nnt
combinational, we cannot express Q in terms of a Boolean
function of variables x;, x, and x;. However we could express

the value of Q immediately follbwing any transition of the clock.

i
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Observe that
(D6.1.1) C = XyX,
so that
(P6.1.2) dc = x;dx, + x,dX;

Since only the positive transitions of clock &re of interest,
we may describe the posit¢ve transitions of clock in terms

of changes in*“l and x, '
6.1.3) Ac = xAx, + x,4x;

Let Q(T+) denote the value of Q immediately following any
transition of clock. Then by definition

(06.1.4) Q(™) =p .4c

or ;
(D6.1.5)  Q(T+) = Dx,Ax, + Dx,Qd»,
If we let ﬁ
(D6.1.6) D = x4, then :
(bG;i.7) Q(T+) = x2x3<3x1 + x133£3x2 '

Equation (D6.1.7) points out that Q is 1 after the following

transitions:
(1) & = %, = 1 and X, changes from 0 to 1.
(2) x; =x3 =1 and x, changes from 0 to 1.

Observe%that if x3 ywo and’ X, = 1 while Xy changes from 0 to'l,

theﬁ a transition does occur making Q %o reriin at or go to 0.

This is not to be seen from equation(p6.1.7) if the function D
(t,e,, X4 in this case; is not kept separate from the transition

‘terms. Hence a more desirable form for Q(T+) than that shown in

{ ﬂm
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equation (6.1,7) would be

(D6.1,8)  Q(14) = D+[x, 4%, + x,dx,1.
Definition 6 .3: The function Q(T+) as shown in equation

(D6.3.1) below will be called next-value function.

(D6.3.1) Q(T+) = D'f;l(diAxi + ﬂiin] where D is a

function of x and y.

Obvicusly the function D outside the square bracket
refers to the value that Q would assume if and when one of

the transition terms inside the square brackets assumes

value of 1.

Addressing ourselves to the reverse problem of synthesizing

the form

(D6,1.9) Q(T+) = D'liidiAx-‘ + Biin)].
‘where «, and B, are assumed to be independent of x;, for all i,
without loss of generality (in view of Definition 6.2), all

that we need to do is to f£ind the‘eximﬁ~integrali if it exists,

of the differential?expxession

=1

(D6.1.10) dg = Z (didxi, +B,dX,) . | | '

Of course, if the differential expression is not exactly

integrable but compatibly integrable and if , i

k\f;ldgyis a compatible integral %f the differential
expression, then | | o




a realization of the form

| D - I -7-——§> Q

will provide not only the transitions that are specified in
equation (D6.1.9) but, also, some additional transitions.

Theorem 6.1: If the next-value function of a system is given

| by ,
(T16,1.1) Q(T+) = D, [:.2-1 (d.iA"i+ﬂ1inJ
where ‘
p ) 7_)} (16.1.2) D =Dy . Xy XygemmmeXyy 1< k<n
| (T6.1.3)  F(x) = j (?:o(id‘x i-;ﬂid?i) and
E i=1
(T6.1.4) F(X) = X;70X,50mnee X, F(X),

© Xk
then Ql('r+) described as '
(T6.1.5) Q,(T+) =D, . [Z oL, Ax +f,Tx, )]

realizes the same x'uext:--valvi..'.,7 function as Q(T+) in equation

(T6.1.1) does. i

RN A AT e e

"!i'roof Suppose due to a transition described by

3mp(x - xq'), Q(T+) =1 if y_=$ ~This implies that
D‘=1whenx~b ay_=S

Hence when y = S and X = bP

~ l=D=p . Xygese Xy,

80 that Dy= 1 for x SBP& Yy = S°

£ s C SRR i
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' Detinitien 5.3: F is said to be a compatible'integtal of

gg;ldenoted by .{du, and dH is said to be cd%gatiblz

integrable if ; ‘, ﬁ ‘
: -
F . F
5,?"01 and é‘;‘"'al (D5.3.1)
i . ‘

for all 1, l<i<n.

Observe that by the defznitzons given above xf dH is exactly
integrable, then F -_gdﬂ goes through exactly the changes
which are described in dH. o
In what £ollows we w;ll obtain ways of finding all possible -
compatible integrals of 4dH, if dH is compatibly integrable.

To accomplish this we need the follow1ng integral operators:

Definition 5. 4 The zeroth order 1ntegra1 of dH, denoted by

,{dﬂ, is defined as

. n //M///"
de = Z (C{-;» + th') \(DSu4cl) \/(
0 i=l S SR S | \
: n -
where dH = b (“idxi~+ aidxi), « - (DS5.4.2)
; i i=]1 - . ) ‘
Also; the first order integral of dH, denoted by_J;dH, is
defined as,-
n « . ,
.fl,‘m = T (agxg + BiX,), (D5.4.3) ‘
S i=] o r
Definition 5. 5: 2 blnary point b € B(n) is said to be "one"
(or "zero") of a function F(X) xf |
F(b) = l(or 0) v " (D5.5.1)

o T e e

e
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Lemma 5.1: If the differential expression
dH = ¢ (uidxi + Bidxi) (L5.1.1)

] i‘l i
is compatibly integrable and Fy is a compatible integril

of dH, then every "one" of 1dH is also a "bne" of F,.

Proof: Since Fll is a compatible integral, by Definition 5.3

aEJ*l :Qu

3% = (L5.1.2)
and 9f1 5, (L5.1.3)
3 -_ ,
i " |
i n 3F1 aF - R
Also | aF, = L, B':T dx, +3x - ax, i) (L5.1.4)
. 9F 3}-"1 =
so that the "ones" of =% X (or . X,), l<i<n, are also the

Yones" of Flj .

From equation (L5.1.2) (or (L5.1.3)) the ”(oneé" of a.x. (or Bi;‘i)"

P i%i

l<i<n, are the "ones" of at . X. (or 3-—-:l'--x.) for all l<ic<n.
-"- e ‘axi 1 ‘;‘. 1 - -
. i

Hence the "ones" of (a i¥; t B X, ), l<i<n, ai:e also. the

"ones" of Fl' Hence the "ones" ofjdH are the "ones" of Fl

Q. E D
Arguing on a similar basis, we can establish the following
lemma. -
Lemma 5 2: If the dlfferentlal express:.on v o

is-cpmpatibly ihtegrable and F‘l (x) is a compatible integral of dH,

then the "ones" of ) dH are "zeroes" of F,.

Proof: The pi."ooff is similar to tha"t_' of Lemma 5.1.

o

R o
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Theorem 5.1: A necessary condition for compatible integrability

of the differential expression

n , _
dﬂ.? igl (uidxi + Bidxi) {(TrS.1.1)

is that
(fdm . (Jam =0 | | (15.1.2)

for all xE B(n).
Proof: Suppose dH is compatibly integrable so that there exists

(x) such that

Also, suppose that there exists bo such that !
[(fcdﬂ) . _(flda,)] = 1. - ~ (T75.1.4)
which implies that x-EQ
S =1 (75.1.5)
5 - 29- es <y
- /")/1 H
and ( fldu)' =1 AN X0, (T5.1.6)
X = by “
From Lemma 5.1 and equation (75.1.6), J
N ” “"' ‘ .
EQ is a one of F,. . (T5.1.7)
vFrom'ﬁﬁmma 5.2 and equatzon (m5 1. 5),‘ ,
b, is a zero"of F, o e ; : (T5.1.8)

o
Statements (T5.1.7) and (T5.1.8) contradict each other.

Hence there exists no b € B(n) that satisfies equation (TS5.1. 4).-

Hence equation (TS. l 2)- ls a necessary condition for dH to be

- compatibly 1ntegrab1g,

Q.E.D.

S —

R s
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xizmna 5.3: If the différent§a1 expression
dH '}indxi + 's‘;a:?i ) (L5.3.1)
satisfies the equation
(Spam . ( Jiam) = 0 for a11 x 2 B(n), (L5.3.2)
then  (a) qu;dﬂ*= aio (L5. 3. 3)
(b) “iJ;ff_:Lini (25.3.4)
and () ay (}Zdu)i- gk, (L5.3.5)

Proof: From Definition 5.4 and equation (L5.3.2) we have

n n
0= b - . -
€ 4&; (a %, + Byxg)) o 4By (ayx. + B.x.))
n n - o
= LK X 0 X X + 0B LK.
iil jil (alajxl.xJ + BlaJxli alijlgj
+ siiji:’c"j). | . (L5.3.6)

Hence for all i, j, l<i<n, 1l3j<n

| aiajxixj + Bi“jxixj + “iijixj + Biijixj =0 (L5.3.7)
so that uiajxixj = Bi“jxixj = aigjxixj = Biijixj = 0, (L5.3.8)
n
A C L] = * “"“I - + ,t- 5. .
Now @y ldH a; (jilaj*J .Bjxj) (L5.3.9)
/\: n ) -
= a.x, + “isixi_ + jil (aiajxj + aiBjx_-j)
- T
A : o .
BEE G B LF
+ L0 LK X . X, + Q.B.X.X. B X X
jil (a;gjxlxj + 430 4% 1% 4 alsjglxj + alijlxj).
jEi L | |
In equation (L5.3.8), setting i=j yields o i
caiBy = 0 ‘_ » ’ . ‘ : (L$.3.10)

for all i, lgign.

L B

o E" Er—
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Hence using equations (L5.3.8)- (L5,3.10), we get °
f : &) = e
Lo ” Iri

By interéhé,zzg;x'q i and j in equation (L5.3.9), we get
ai};dﬁ = aiii'

Now “i'(j;'d?i'i’fﬂ
= ai(f @j;dﬂ’
= ay @ aijodH

. = a; @a Xy (from equation (L5.3.4)

= Qixi .
Q.E.D
Theorem 5.2: If the di fferential e:prekssion
4
n , - '
dH = iil (cxidxi + Bidxi)

satisfjes equation

« B
{J;dl-i) . (fldn) =0

for all x¢€ B(n) / then‘ F-given by

f .
F =Jldn + ¥ (f dn) o
is a compatible integral of dH, where V is an arbitrary

function of x.

st e

13,

(L5.3.3)

(L5.3.5)

(75.2.1)
(75.2.2)
(T5.2.3)
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Proof: ANDing both the sides of equation (75.2.3) by @;, we have

aiF -‘afj:dﬂ + Wui- gfoaﬂ)

=aX, + \?uixi (fran Lemma 5, 3)

*4%4

Since ay is independent of X then

AF _ Qcif)
“i‘axi 2 X.
* |

L 3(“1’?‘&5 ‘1

(from equation (75.2.4)

a.3*
1%
i

o)
[

o)

o)

x|
v
Q

-

mo

|
V)

Similarly =)

S B,

e o

Kl
-

14,

(75.2.4)

(T75.2.5)

(75.2.6)

(T5.2.6)

Hence by Definition 5.2, F is a compatible integral of dH.

. Q.E.D.

* Theorem 5.3: A.differential expression .

n
dH =

FE - is camnpatibly integrable if and only if

(Joam . (fjam = o
for all x€B(n). e

Proo f: The proof 'follc.ws"- fram ..{'i*_heorems 5.1 and 5.2.

(mS.3.1)

(T5.3.2)

5Ly ey g e e b s TS e e
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A word regarding the arbitrvary function ¥ (x) in equation
(r5.2.3) is in order. If sets Do, and Dl,PCDi_B(n), i=0 and
l, are bases (Def:miticn 2.2) of functions _de and - rd“, then
every distinct-¥ would give rise to a distinct compat:.ble
integral provided ¥y is based on a subset (not necessariiy proper)
of D= m In fact if ¥ is based on a subset of D, then
the factor sf‘dﬂ) {:hz:i't is ANDed with ¥ in egquation (T5.2.3) may
be dropped smce'ﬁ' > D.uD, UD:L = D, Hence we can modify Theorem 5.2

as shown in 'the, next theoreaem.

i=1 1 1 1

‘be a differential expression.

If ./dH., jdﬂ = 0 for all xeB(n), (75.4.2)

(b) D, and D, are bases of fodH and

1
jldn respectively,

(c) the number of dist:‘:nct Eoints in the set
D-_(E—UD_TJ.sm, E (15.4.3)

(d) e,. (x), 1<1$2, is a functzon based on a subset of |
D, 9, (x) # e (x) for all i, j, 1#3, 1¢3¢2" and

(e) _Fy jldH + 840 (T5.4.4)

then F, is a cqnpatible integral of dH.

Proof: ’I‘ﬁ‘e"essence of the proof is outlined in the discussion

| prefc‘edifi’gﬂfthe theorem. A fomal proof can be given using the

Tapia-Tucker method ‘[36', .B'B for obtaining the complete solution

for Boolean equations.




TR T

T T T g T

R R R T T T el T

1.

g

We will, now, show an application of the regjults established Ji

in this section, to synthesis of a clock tuncti?!fr;: illustrated in %

the next example. '}

- Example 5.1 1
A clock function c(xl,xz, X 3) is to be realized which goes
throwh, at least, the transitions specified in the differential

' expression .- ‘

|

ac = (x,‘,x3 + x2x3) dxl + (xlx3) dxz
* (XX ) AKX, + (X1%,) dxg + ‘(xlxz) a , (E5.1.1)

Find Cc, if it exists.

We have
de = ,"‘;"2*;3, + xlxzxa) + X X X 5
+ X XX g F XXX XXX 4 (ES.1.2) y
=xlx,2x3+‘x1x2x3+xlx2x3+x1x2x3 :
and | _j_{dc = KRR g+ X XpX g + XgX X q F X XK 3 + XXX g
TR XX
= KX X3 XXX g, | (ES.1.3)
. O
Obviously

“ (de:) . (fydo) = o, » (E5.1.4) -

Hence by Theorem 5.3, a gccmpatible integral does exist.

Also, the term D re_ﬁééred to in equation (75.4.3) is

“’ {(yororl)c (O,l,O), (1,0,0), ’(llofl)l (1‘,1;0), (l,l,l)}

NS i

ittt g TSRS R

= {(0,0,0), (0,1,1)} (E5.1.5)
- SO S ]f;";f”i';’f"i,_ e ,,;#Mﬁﬁm% o
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Thus 8, (x) .E&i&i&n, can be constructed as follows
|
0, (x) =0 (E5.1.6)
8,(k) = X, X% , (ES5.1.7)
83lr) = xxp% 4 (E5.1.8)
04(%) = X)X Xq + X XX, (ES.1.9)
Also note that there are four solutions by Theorem 5.4:
¢, = fl dc + 91 = X XX gt X XX 4 (ES5.1.10)
- - | === (E5.1.11)
Cy ™ XjXXq + XX ha + XXX, )
and ’ ;
L ‘ - —
C4 = X)XpX3 +  KiXoxy + X1X5%,
| + XK g (E5.1.13)
| Observe that
dcy; = (x, @x4) dxg + (x;X,) dxy + (xg%) d,
+okgxp) &gt bgxp) &g (E5.1.14) -
= dc - - (ES.1.15) | |
o o R : R i
Hence C, realizes all the transitions specified in dC , 38
and no transitions which are not specified in dc. 1n :
fact by Definition 5.2, Cl is also the exact integral
of dC in équation (E5.1.1). Let‘us now examine C,. .
dc, = (x, @ xjy) ax; + (XX )dX; + (x;%3) dx,
+,' (xlx3 + X 3) &‘2 + (xlxz) dx3
(T N, - — : : o :
+ xyx, P XX, aXy (ES.1.16)
R¥ ‘ =
£\ P 5 " 3 m
: T N T L

R,

e e e e
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Observe that C, realizes the transitions represented by "
differential terms X% 4X;, X X X, & X,X,d%, which are not _:{5
speci fied in dC in equation (ES,1.1)., However it does realize |
all the transitions specified in dcC.
r Lo As shown ab::ve, a differential expression that is exactly
g integrable is, also, compatibly integrable. Hence the necessary
F ' condition that |
' (fadt) . ( f,am) = 0 | i

for all xéB(n)
for du-z(adx +8dx)
RS Tha S ! i

to l;e comp‘atibly integrable is also necessary for 4H vo be exactly

integrable. It can be shown that the condition is not sufficient

- = for the differential expression to be exactly integrable.

’; ' ) Preliminary results pertaining to necessary and sufficient
conditions for a differential expression to be exactly inteyrable
{ are given in a recent publication [3]. Additional results on

Boolean integrals have been developed and will be published in the

Diebainsshes ol Fia

near futwre.

Given a differential expression

TR T
3

- . aH »- ‘iil (a,dx, + eidxi) ’ S |

if (f(aH0 . (fiaH) # 0 for same bE€B(n), then the expression

kcannot be integrated exactly nor campatibly. However it could

"be decanposed as sum o.f several differential expressions, each one

‘\(

of wlnch may be integrable separately as ;def:.ned below.

......
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Definition 5.5 : ﬁet{dﬂj, ijjjk?fbe a set of Boolean differential

expressions given by

de = igl[(uji)dxi + (aji)dii" (p5.5.1)

Then dH, the Boolean sun of all the differential expressions
de, l<j<k is defined as
k

GH = b1 d!{j & (D5.5.2)
i=1

l k '

Definition 5.6: A dz:ferential expression dH is said to be

integrable by parts if dH can be written as a sum of Boolean
di fferential expressions dﬂj,*l<j<k as defined in equations
(Ds.5.1) and (D5.5.3) such that de is campatibly integrablek
for all j, 15j<k. Any compatible integral of dHJ, 153k, will
be, called a partial integral of dH. A complete set oﬁ partial

intgg:a;s of Boolean di fferential expression dH is a set of
functions,{rl' Fz, _—, Fk} where for all j, 1:3jzk,

aF ;2 aHy. - (D5.6.1)

Observe that k may assune one or more values between 1 and 2n,
It will now be shown that any Boolean differential expression is
integrable by parts.

Theorem 5.5: Any differential expression

dH = 7 (a @k, + 8,dX,)

(&1 (T5.5.1)

is integrable by parts.




Proof: Observe that for any i, l<i<n,

(jl"idxi) . (fo“id"i)
= (agx,) . ‘“1’?1)
= 0
and
(f18,8%,) . (f 8,88,
= 0
so that dﬂl’ { and de,i given by

idxz.

are campatibly integrable by Theorem 5.3 for all i, lzi¢n.

dHl,'i - “idxi and de’i = g

In view of the fact that we can write dH as
n
W= L, )
dH:.is compatibly integrable by Definition 5.6,

Q.E.D.

6. APPLICATION TO SYNTHESIS

20,

(75.5.2)

(T75.5.2)

(T75.5,3)

(75.5.4)

(T5.5.5)

As shown by Smith and Roth [34]; technigues for synthesizing

fundamental-mode asynchronowus systens utilizing edge-sensitiveness

property of clock-triggered flipflops often require fewer flip flops
E

and gates than coﬁvgm;ional techniqws do.

The sﬁ,iﬁh and Rot'f\"techniqm [34, 35] reguires a generalized

edge-sensitive £flipflop (as defined in [35]) in their design. We

will present a procedwe for synthesis of a fundamental-mode

trigg ered flipflop.

,asynchronous system that -uses a ccmmercially; aw.i’lable c-l‘ock-, _

i e sl il T e

TR L IR LD U B T el SR AT D T e DT
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EXAMPLE 6.1

A sequential system with two inputs, Xy and X, and one output,
2 is to be designed such that whenever X, chargss from 0 to 1 the
output chinges to 1 if the output is 0. The output remains at 1
reqardle;a of the valws of Xy till X, changes fram 0 to 1. When

- Xy changes from 0 to 1, Z goes to 0, After that 2 = 0, regardless

of the wlue of xl' till, of course, a positive change in Xy changes
the value of Z to 1. Asswune that X;=X,=Z=0 initially. Taking the
conventional approach, we obtain the following reduced flow table

for the system.

00 01 11 10

(A,a>m1 @0 0 3,- 2,-}
(c,F) 2 |®1 1,~ 4,- @1
(0,6) 3]2,- &1 A1 2,-
(E,8H) 4 ]1,- 1,- @0 @0

Figure 6.1

Since the minimal system shown in Figure 6.1 has 4 states, 2
flip flops will be reéuired poA:reaLigg the system. ,
Now it will be shown that i-f edée-sensi:tive flip flops are used, ’
oné flip flop will be adequate to realize the system. The system
wmder cénsideration can be describ«;adiin tems‘of the state diagram
given in Figure 6.2. The symbolei, i=l or 2, implies a change in
X; fxam 0 to 1. A’xi = 1 if and only if X, changes from 0 to 1.
Axi‘ = 0 otherwise. The transition along a directed branch oc‘curs

if and only if the variable associated with it assumes the' value of 1,

jioo o

[SSENY
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VAR VS

Figure 6.2

fObse:ve that the system must change its state whenever

(a) y=0 and X, changes fram 0 to 1
or (b) y=l and X, changes from 0 to 1.
Hence the clock input function, C, must go throwsh a positive
transition when any of the changes stated abovwe occurs. These
transitions in terms of changes in xl and X, are described by the
differential expression 7
dc = ydx, + ydx,. (F6.1.1)

_ Note that fo dc ._fldc = (F b ¥R . (kg 4 yxymo  (F6-1.2)

so that by Theorem 5.3, dC is compatibly integrable and a éompatible 3

integral, say Cyr ofdC is

'Cl =¥ + X, (E6.1.3)
In fact sincerbouoliﬂﬁﬂ (empty set) ' ; (E6.1.4)

(Dy & Dy de fined in Theorem 5.4),
by Thep:em;5;4 no other campatible integral of dC exists.

(E6.1.5)

Let C = O3 ¥x) + yx,
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 are replaced By'equatioﬁs (T6.2.2) and (T6.2.4) resp;ctiVely as ;

at
193

(T6.2.4)

)

S . - : X M

- 26 =~

so that Q,(T+) = 1. On thé'otger hand if Ql(T+) = 1

due to a transition m (x - x ) whpnix =Sy #henybi =1 f

and F (xf

F(x) = 1'= F(x) . x,, when x = b ,

x-«l
"1k

which implies that (x,,.e==.x, ) =1 when x = b .

=1 . (4 )
= 1 ‘

ix)

=1 for x = b and equation (T6.1.6) implies that

Hence Q(g&)~aﬁd QI(T+) have identical values immediately after

any transition.

i
/4
/ /

given below:
(T6.2.2)

—

D= Dl . xil . xiz.---.xik

The ne;t-baiﬁe functions for different types of flipflops

(other thah B-tYpe) are currently undér study.?THe results

will be reportéd when the study is completed.

TheoremVeig: Theorem 6.1 is valid if equations (T6.1.2)§ (76.1.4)
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7. CONCLUSION

Boolean calculus was developed and formalized with the

specific purpose of applying it to digital system synthesis.

A procedure was developed to synthesize fundamental mode asyn-
chronous systems using commercially available clock-triggered
flipflops and Boolean calculus, It has been shown that synthesis

techniques which utilize edge-sensitive property of flipflops

Judiciously lead to realizations which often require fewer flip-

flops and logic gates than those obtained by conventional
techniques, thus reducing network complexity, size, the number
of IC packages, power requirement, cost etc.

f : It has been established that any fundamental-mode asyn-
»chronous (FMA) system can be realized‘employing the new synthesis
procedure proposed here. The procedure is applicable even when

unit-distance state assignment is not used. However in such a

' ’

‘case certain ‘relationships among the time response characteristics
of the flipflops must be satisfied, which need to be obtained.
... It has been shown that the procedure can be extended to

‘synthe51s of FMA system using a synchronous presettable counter.

Again unit-distance state assignment is not required in this case.‘

i The possibility of using the.''dc'" inputs of the flipflops . [r

'15 .the synthesis procedure has been shown in the Semi-Annual
Status Report #3 {14].

} The concept of norcomblnatlonal Boolean calculus has been
1ntroduced The next-value functions for flipflops are defined

in terms of changes in the 1nputs.,The reverse problem of
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synthesis is also consi&éred. C&ﬁéiderable work remains to be -
done in this area, -
Establishment of conditions for exact integrability,

bomposition of differential functions, multi—Qariable-change

% ; éalculus, methods of augmenting non-realizable DM tables so as
4 to make them realizayle, application to fault location and de-
' ] o i\;",

; ; , tection, etc. are among the many problems that remain to be

% :

o , solved.

The new results in Boolean calculus as well as the synthesis

o0

techniques developed here has opened an avenue for a large class

- 3 of synthesis problems in which the components used(pre edge~ i

sensitive and therefore present the potential of various economies ‘J

L il - if the edge-sensitiveness property is judiciously taken advantage
% o,"MWML; ' :
f | The publications that resulted from the research grant are
§ listed next. | |
§ | f&.ilpUBLICATIONS GENERATED BY THE GRANT E
; :; . f(})f "Boolean Integral Calculus for Digital Systems', revised e E
; ';=‘ L ' and submitted to IEEE Computer Tranmsactions. o j
'2 :(2) "Dévelopment of Boolean Calculus and Its Applications’, NASA
é : e ’ Lgngley Basic Réééarch Review Confereﬁce, Hampton, Va. o
E ‘  ~ April 1978,
§ ‘;~' ‘(3)’\"Application of Boolean Calculus to Digital System Design", 1
f‘ é IR IEEE Southeastcon, Nashville,~fenn.rApril 14-16?;1980., S ,‘#
| |
, o | 1
L ; ( ; - _ ’ o
] = - ‘ :
T
5 3
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(4) Invited to present "Design of Asynchronous System Using
a Synchronous presetiﬁ?le Counter'", Southeastern Symposium
on System Theéry, Virgﬁnia Beach May 19-20, 1980,

(5) "Synthesis of Asynchronous Sequential Systems Us1ng Edge~

sensitive Flipflops'", under preparation.
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Appendix I 4 f
BOOLEAN INTEGRAL CALCULUS FOR DIGITAL SYSTEMS ?
=

ABSTRACT

- The concept of Boolean integration is introduced and
doﬁeloped. When the changes in a desired function are
lppcified in terms of changes in its arguments, then ways
ot%”integrating“ (i.e. realizing) such as a function, if ' .°
mit%ekists, ére presented. Properties of newly defined
infegral operators are studied. Boolean calculus has
apélicatiens in design of logic circuits and in faultr"
an;lysis. In the former case, it often leads to circuits
which utilize fewer flipflops and logic gates than:

cohventional methods.

|
IN#EX TERMS: Boolean algebra, Boolean calculus, direct
;né inverse partial derivatives; Bbolean differential,
deéompostion.of function, Boolean differential expression,
goolean integration, compatible integral exact integral,

igiegration by parts, edge-sensitive. flipflop, asynchronous

sequential system synthesis.
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l. INTRODUCTION

| In recent years concepts of Boolean differentiation,

difference, derivatives, differential and other logical

| oéerators have been introduced, developed and applied to
dﬁgital network analysis and testing [S-Zi]. Also there has
bl;n a growing interest in Boolean integration and its o
apblication to synthesis of various types of logic circuits
E}S; 28-5% . The use of Boolean calculus in design of
aiynchronous sequential circuit with edge-sensitive‘;lipflops“
¢0££en leads to simpler circuits utilizing fewer components than
conventional t{:}eﬁchni‘éues E, 34, 3.'3 .

“ 2. BOOLEAN FUNCTION AND ITS BASE

Throughout the paper, unless stated otherwise, a Boolean
fu#ction F(xl, KXoy === xn) of n Boolean variables xl"x2’
—-—, Xy will be assumed. Also, it will be assumed that only

one variable xgb 1<i<n, can change at a time.

Definition 2.1: The set of 27 binary vectors or points

ykxi, oo === xn) where xi-O or 1, l4¢i<n, such that Xy and

@kjﬁmay-dr may not be equal if i#j, will be called the Boolean

@t of variables x;, X,, ===, X, denoted by B(n), The;w_hk

n

nl

ﬁoolean set of (n-1) variables xl, Xy ---;”Xi_ly xi+1, ———, X

written X/%;, Will be denoted by B(n/i).

"

-

“

i

woi
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"ifijﬁ;'as the sum of 3 functions as

3.

Definition 2.2: Given a set S,P&ssB (n), a function F(x)

- is said to be based on the met S provided

F(x)

=1 if and only ij.‘f""‘._lg._o' € s.

x=b,

- i i |

On the other hand, if a function Rx) is given, then the set
s -{gl b €B(n) and F(b) = 1} is called
the base of the function F(x) and denoted by BASE {F(;s)z,.

A\
)
3. BOOLFEAN DIFFERENTIATION i
. In order to study the effect of change in a variable x;, °

on a function F(xy, X5, ===, X, ) we introduce the concept of

decomposition. F(X) can be decomposed with respect to x

such that P,, Q; and R, are independent of x; and

‘ Definition 3.1: A function F that is decomposed as stated .

above, is said to be the decomposition of F V'w_i,.th re’speycti td

Xy 1<i<n. : ,

It can be shown that the dec"omposi.tifon of F with respect

to X;, 12i2n, is unique. For any_rpbint ¥ with X/X; ¢ BASE {pi}

.1éi<n,

F(x) = l.x; + o.:‘c.. F 0 = x;

i (D3.1.1)

so that F(x) has the same 'value' as x; and therefore 'changes

the same way as x,. ; ) J

.
‘i : ;

.

-
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4.
Dcfj.nition 3.27;’ _ The direct (or irnverg_a) partial derivative of
F(x) with respect to x;, lgicn, denoted by 9F éraj_‘_ ) iil
&oﬂined as a function of (n-l) variables Xy0 Xgo ===y K 1+ i
8 *1-0-‘1' -==, X that is based on the union of all possible points
:_c/:m_i in the set ~Q'.:.({,j}l/:i.) such that
. F(x) = x; (or X;) (D3.2.1)
'rihe‘ concept of partial derivatives has been reported earlier
[3:?] We will show some felationships involving the péftial | }
d@rivatives inr the following theorem. |
’rhedrem 3.1: The direct and inverse ‘partial dg;’ivatives of a
a function F(X) with respect to'x;, lsic<n satisfy the following
‘\ ~ relationships g R N
| = p, = (F(x) 1) (F(x) ) =2 (73.1.1)
| 3F oy = (Ftx) | ). (| ) =RE (g5 5
\1 D%, | x; =0 x; =1 ¥x,
o
| QF B |
l Xy — =0 ol (73.1.3)
| T | ;
1 : i
Pledexy & 28 .y (T3.1.4)
| i
o ,, ;
I Fle)=x; & 2L ., (73.1.5)
X, ~
15 P -
!
. i
" ) - . o
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4. BOOLEAN DIFFERENTIAL

o Boolean differential introduced by fralantsevg 28] and
£urther developed by Brown and Young [33] , is ahalogous to
the’differential of a function in the calculus o! é-s1'
variables and expresses the change in a Boolean functicen

in terms of a change in one of its arguments.

Definition 4.1: dF will denote changes in the value of function

F., These changes can be from "0" to "1" or "1" to "0". dx; or

s

dil will denote a change in the variable x;. The expression

dfrdki means that a "positive" (or "negative") change in X4

caﬁses a "positive" (or "negative") change in F. The expression
w'.&!‘i--d?‘ci means that a "positive" (or "negative") change in Xy
qaﬁses a "negative" (or "positive") change in F. 1In order to
rciate dr, dx,, dii and F, we will need to define dF, dx; and
dii,kfor all i, as entities in a Boolean algebraic system (i.e.
as Boolean v%riables%ﬁben dF dx; and dii are tre&&ed as Eﬁéh =
~ they have 300lean GaIQES‘;s definqd gélbw:*'f 

a 0, imnlies no chance occurring ir valuc o2 V
= Y . P

1, implies a change in value of V

‘where V=F or F ofﬁki or x, for any i, 1l&i¢n.

Note that dV as defined hefe does not specify the di:eétion of
change. dv=l implies merﬁﬁy a change in its wvalue.
If dr=f(;g/xi).dxi(oz// £(x/%;) . ¢X; ), then by definition it

¥
i

0

ﬁnplies‘that F changes the sine (or opposite) way as Xy

- changes thh f..(x/xi) =1,

(D4.1.1)

' nu‘w
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VCOnlider dF, the chénga in P, in terms of X0 Xy and

dxa,'tﬁc EhanQQ in x, as given below:

i ar'= %1%, dx, (o{.l.z)
?ﬁ?" ”1" *z -1 T (D4.1.3)

Equation (D4.1.4) by Definition 4.1 can be interpreted to mean

that a change in F is the way same as the change in x, when

X% = L. S S/ -
“'Qn:thc‘bthcr hand, when LR
%, %y= 0, (D4.1.5)
then ar -“O.dx3 =
S =0, |(Dd1.6)
which means that there is no change in F when Xy X" 0 and b
;

Xq changes.

| I
Definition 4.2:

lgign, denoted by d;F, is defined as
ar o i
] i

Dctinitipn 4.3:

mme 3

variables xl,xz ‘ n

imglx Boolean d;fterential of F,

‘denoted by dP,}is defined as ) :fw
rn
dF= /:',3 diP = (33-— dx 4' L dx ) : (04‘3.1’
' f’-l ) i-l

The Boolean dszerential of .F with. respect to all

The Boolean differential of F with resgect to x,, A
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The Boolean differential of F is useful in analysis as .
it shows how F 1s affected by changes in x;, 1{i¢n. 1In
synthesis, it is of interest to address ourselves to the
question: "Is it poseible to find a function that undergoes
changes as a consequence of éhanges in its argumentsrin
accordance with a given specification?” _The answer to this

question will be pursued in the next section.

5. BOOLEAN INTEGRATION

'i While designing systems, at times we come across situations

ﬁﬁon we want the output of a system to change the same way as
change the opposite way as some inputs under other conditions,

whin the inputs change. 1In order to specify this qesired

rel&tionship between the changes in the output in terms of the

changes in the inputs, we introduce differential expression

§§£ined next.

Definition 5.1: A differential expression, denoted by dH, is a
o . i s
Boolean expression of the form '

n « e - ,’,,," L
dH -iil (ui.dxi + 8 dxg )y (DS5.1.1)

i

- where in general a, and 8; are functions of the (n-l) variables

Xy Xgs mmmg Xy g0 Xyqs 1;-; X, and a, and 8, are indépendent

Y
@

- of x, for all i, lgign.

L L S b

1.
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Observe that since by Th‘eo:‘:em«a.l, 93—5- am:l_‘3 9F are
x
i

independent of x,, 1¢i¢n, the Boolean differential of a
function F(x).as given in equation (D4.3.1) is a differential
expression; however the converse is not true. For a
qiiferential exprassion to be a differential, there must exist
a function such that its differential is the same as the given
diftc;gntial oxpgc:sign. For the cxpfcllion dH in equation |

(DS.1.1) to be a differential, there must exist a function H(x)

such that 2k .
V o 'r,-a-xi' (D5.1.2)

llnvd,' By -_aa_-'i (D5.1.3)
: %

for all i, l<ic<n.

s

Given differential expression dH as described in (D5.1.1),
in order to determine whether a function F exists that changes
dj:c to changes in its arguments as specified in the differential

expression dH, we need the following definitions.

Dcfy_x_irtion 5.2: F is said to be the exact ,integral of dH, denoted

by f dH, and dH is said to be exactly integrable if
E R .

n ) o S
and for all i, 1l<izn 33-- - °i anda— =8y | (D5.2,2)
X4 ‘ax K
‘ \(\
R
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Let us now determine the changes in C in terms of changes in X,

and ’.‘xz.
oC . o . and 2c
== 0, (E6.1.6)
2%, o%,
2c y
2%, and Q€ 0 (E6.1.7)
dc .- |
=7 X,.x, and g; - "1'—"-2 (E6.1.8)

" Observe that the clock transitions described by equations
(E6.1.6) and (E6.1.7) are the desired transitions whereas those
described‘ bﬁr equation (E6.1.8) are the Qées not specified in the
differential expression (E.6.l1.1). However these transitions
cannot occixr as can be seen from what follows, Consider the
firs{: of the equagi'oghs, in (E6.1.8). Whth'?‘clxz = l ‘and y changes
fram 0 to 1, the cjlock_wil*lz go f{:h:;:ou;h"a positiveg transition.
However y changes from:_o to l only if it is preceded by a change
in X1 from 0 to 1 so that; when y changes from 0 to l,xl' cannot
be 0. Henc'e’i i:he change J.n y cannot trigger the flipflop. ‘S-:imilar‘ly

the transition described by the second equation in (E6.1.8) cannot

cause a clock transition,

Observe tﬁat every time a positive transition in the clock
occurs, thé state changes. Hence the input D, of the D-flipflop

'to,be used is given by._

b=y (56.1.9)

e Y o Ml ol 5 5 o :
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Equations (E6.1.5) and (E6.1,9) lead to the network realization
in Figure 6,3 ‘ @
Xo &
C
. xl._______‘: D tLIP- ,
. | FLOP I
| -

ﬁgwes.i fﬁ

A possible haéard;cah be prevented by adding the temm (xIxz)
to the OR—gate in Flgure §.3. It can be shown that this does not
cause any undesxred clockvtranSLtlons. -

It shculd be po;ed here that if a ccnpatlble integral of a
clock dlfferentlal expnesszon has tran51t10ns which are not
speczfied in the dlfferentlal expre351on and which can occur, xt

- poses no problem, s;nce correspondlng to those transitions we can
provade the appropriate value(s) of the next state varlable(s) to

the 1nput(s) D; of the D fllpflop(S) g

bR

,,e,A.A.M..‘,
7 e
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7. POTENTIAL FOR FURTHER APPLICATIONS

The traditional methods of the anlaysis and til'xeé‘asynthefsi; of
log;i’.c'circ‘uits are based on Boolean algebra and ut'zilize the functional
relationships bet’w..’een the output and input values(or levels). Analysis
and‘design by Boolean calculus focuses on the changes in the output
fmc'tj,on in terms of changes in input arguments, Qhe new concepts of |
iuteqration, the ways of integra'ting a Booiéan differeuti,al and the
necessary and sufficient condition for its compatible integrability
open an avenuwe ;f‘:o new areas of applica‘tions. Because of the nature
o f these applicatians, Wthe..s_pecifi'c‘ation in terms of thé Chénces J.n
the output of a systen‘i or a subsy:stent as a consequence of the changes i
in ?hé inputsof the syevteh or the subsystem, is more significant and
desiirable than that in temms of the functional relationship between .
output“and input values. It should be noted here that clock-trlggered
flzpﬂops, synchronom counters and many other MSI and LSI cxrcuits
are sensitive tc¢ input trans:.tlons. It is premature to predict long

term unl:.ty of Boolean calculus but the potentzal benefits dictate

a need/ for ‘&further 1nvest:.gata.on {5, 38-40].

/ 8. CONCLUSION

~Boolean calculus is a powerful tool for analys:.s as Well as
synthesis of logic c:.rcuits. The use of Boolean lntegrata.o"a in
synthes:.s of asynchronous c:.rcu:.ts using clock=triggered fllpflops

has led to c:.rcu:.ts whlch require fewer flipflops and logic gates

than,c:.rcfu;ts synthes:,zed using conventional methods_ (5, 38-40] ,thus

reducing camplexity, cost and size and improving reliability.
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Earlier methods to ;eglike a function from the specified changes
in its‘value in tems of}chadges in its arguments do not possess the
simplicity and ease that the integratiéﬁ‘method presented here does.,
The concept of a compatible integral was introduced in order to
gene;alize %he égﬁcept of the exact ihtegral and recognizing the fact

that we do have don't-care conditions and/or transitions in real-life

el

situations. Moreover, if the exact integral does not exist for a

speci fied d:‘r.kf;ferential_but a compatible integral does, then the

undesired transitions (changes) in the integral may be inhibited using

a simple logic circuit. 1Integration by parts is a further generalization
of comﬁatible integ'ration, which has possible applications in logic

circuits.
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: ABSTRACT : s
Conventional methods for synthesizing '

asynchronous sequential systems do not use
clock=triggered flipflops. It has been
shown that synthesis tachniques for such
systems, which utilize edge-sensitive
flipflops lead to networks which require
fewer flipflops and logic gates than those
obtained by conventional techniques. A
formal procedure for synthesis of asyn-
chronous sequential systems using comerci-
ally available edge-sensitive flipflops,

is given. ’ . "

W

M 1. INTRODUCTION

In conventional asynchronous level-mode
sequential system design direct emphasis
is placed on relationship between outputs
and inputs in terms of their levels only,
and the possibility of ‘using edge sensi-’
tiveness property of logic elements is not
utilized, Smith and Roth have shown (6,%F]
that if edge-sensitive £lipflops are used

- et e W

and the edge-sensitiveness property is
judiciously taken advantage of, then in
many cases it leads to a realization that
requires less flipflops and logic gates
than conventional method does for a given
system. Smith and Roth technique .[6,5]
utilizes a "general model of edge=sensi=-
tive flipflep” in their approach, The
method proposed in this paper is applic-
able to any commercially available clock=-
triggered flipflop that responds to a
clock transition (positive or negative).

,in the design of an asynchronous system I
]

1
H

2, DIFFERENTIAL MODE MODEL

&

3
Definition 2.1: A Furdamental Mode

Asynchronous system ' R
(D2.1.1) ~FMAS & (I,5,0,f,9) where
(p2.1.2) I Q set of p distinct input

- “conditions = (I}
L{D2.1,3)

5 Aset of

states of the
system = (SJ)

0 Aset of outputs = (O,)

».

< N «
B —— b s N ® -

¥z

E3

I (D2 5) ¢ .goutput function é{(sk,lj) v VJ
i s k- :
(

| (D2.1
i k-an
' (p2. 6) g & next stata !unction»_g(sk,xj),

d
Dz.l' -
; t{, & kwill be assumed,

It will further be assumed that only one
state variable and only onae input variable
is allowed to change at a time.

In order to make it convenient to express
the next state and output in terms of the
change in the inp.. and the present state, ,
we will transform the FMA system to a
Differential Mode mocdel defined below,

This is ‘comparable to the DM Mactiine of
Smith and Roth (5,6) but really different
than that.

i

¥

Definition 2.2: Given a fundamental mode
,asynchronous system FMAS, a Differential

'Mode System, DMS will be defined as a
6-tuple as given below: ' 1

’(02.2.1) DMS = (I',I*',8',0',£',9') where

+(D2.2.2) I'er, ‘ oo
T p2.2.3) 7 e Uz, i) | V)
‘ POt A S A
'(D2.2.4) S'=§ : .
(D2.2.5) £'4 output function of DMS
(D2.2.6) " §'9 next state function of
DMS g .

The function ¢' jis related to the function
of the FMA system as shown, below: _

(02.2.9)  9'(S,,1,1,) o
o [ tesspirpEs,etsiny = s,
* and g(sl,xk)~- S, '
’ S i€ (S,,1 )5S, and there exist
Syr i (51405, ane _
C | BuarSgar TSy, 65y ::

| such that g(S,,1,) =S,
.9(S‘l.lk)ts“2“.---, q(?xn'xk’-s‘
- and g‘s‘p;k).sli‘ T

Taw o

" e i
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--in Figure 3.2.

B Fig. 3.1

5 g
TWING rasn o
i

e e e e 5!

—, Lf V(Sh,x ) = sh 5 7(Sh'rk, " omm—
, if 9(Sharj) = 5, and there exist
511‘512""'51 such that
9ISy L) =80 905, ) =S,
gis 2'1 ) = si:"'""(sin'xk’ B m—
- it g(Sh'I ) ¥ s,

The funstion r'(s ,I 1X.) is related to
the function ’<5k'11 )oi the FMA system
as shown below: -

(D2.2.20)"  £!(S,,T,, I,) ‘

"1"1-'}"""1 !(SI, Il:' ig 9'(5'.':‘),01:*)-5‘
— g'(5,,2;,1 8 un- °

! . spcciéitd LA :

o} .

Before we develop procedure for synthe-
sizing the asynchronous sequential system
described by the equations (D2.2,1) through
(D2.2.10), we will assume that thc FMA
system (and hence DM system is amenable to
single variable =~ change state assignment,
Let us further assume that the system has:

A input variables X, ,X,==~,X, m state
variables Y., Y,-=~, Y, and Rence)ﬂ .clock-
triggered Eiipﬁ!ops that respond to
"positiva transitions. We will; thore:o:e,:
‘need to realize clock functions, say C's
such that whenevar an input change occurs
then one {(and only one) of the clock
functions goes through a positive trans-.
ition providing a proper statn tzansition.

1
*
*
-

Voo 3a o:rrznsuwrnn HODE_SYSTEM i
Y > 17 3725 18 N

LTI

1 e .
Consider the FMA system described by the *
reduced flow table given in Figure 3.1,

which is equivalent to the DM systcm given

’

®Tn e ke € ex ¥
»

-

E 2 46 o 1 10 -
;(A.};'I Qo |©o]3,~}2,-
c,m 2 | @il-]a- O
(5,6 3 2,- |OL O] 2.-
(E,H) 4 - 1,- 1, f:}o ,0

L LT
TP A e e

NUT PILAED

P -

QAN LON :ZE""L’E 'CI‘“)VJ; ONICE.- LT

%1%,
00 00 01 0! i1 11 10 10

lo _or 11 00 Ol 10 00 11
112,0] %0 3,21 1,0 - - - -

212,L}1,0 - - » - }2:1} 4,0

st= | - taaflanfaafza) - | -

4 -] -l"=] = ]wo]eo0]1,0]4,0

‘Figu:o .2

Ulinq the conventional methods to reduce
flow tables for FMA systems, the DM kiible
,can reduced as shown in Figure J.3.

xlxz

00 00 oL oL 1 1 10 10
10 01 11 00 01 10 00 11

L, 4a18,1 [A0(8,1[A0]A0[A0]A0]A0

N (2,’)8 B'I A'O B:l B;l E,l Eyl 571 Aic

Figure 3.3

The reduced DM system has only two states.
Let y=0 and y=l be the assignments for
states A and B raspectively,

Observe that if y=0, the flip!lop must
'change its state, when
L(1) xz = 0 and xl changes from 0 to 1 or

'(2) x2 = 1 and x changes from 0 to 1.

‘1e y =1, the fl;p!lop mist change when

(1) X; = 0 and X, chariges from 0 to 1 or

(2) xl = 1 and x2 chanqes trcm 0 to 1
This tells us when the clock should go
through a positive transition. The de=
.8ired changes in cl&&k functicn in terms.
‘of changes in X, and X, can be described
by the Aifferential exfression (E3.1.1)
below:

(E3.1.1) de = {7 Rpdx; xzdg}+y(kldx2+xldxz)
-y dxl +y dxz
It can be shown that dc is compatibly
:ntggrable and a compatible integral of
cis ‘

,(?3:1.2)

0

J‘dc = ¥x, + yx,(See Def. 4.4)

Let us, the1, try oo o

’(EJ 1. Jl . yx

as the input to
_ thc clock p n of l Zlip

lop to be used, .

(EJ 1.4) dcl-ydx1+ydx2+x1xzdy¢x1xzdy

e Smapmemw . b D meimdmersee  semeh (¥

e w————p @ cae
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(D‘- =1) is'given by
a3 frae -

© (D4.4.1)

so that transitions ‘ dy) and (x,%.d¥)
which are not specit c& gy zquationH55
may be present, However a clo:nqxaminut!on
at Figure 1,3 reveals the fact that when
y=0 and input changes to x = 01, then y
does not change to 1 so th&: (Xyx,dy) is a
t:nnlition that cannot occur, Simillrly
d¥) cannot occur either., Hence the
&ci function G, will provide exactly
tho'c t;lnsitioni which are npicLZIced by
equatioy (E3.1.l)., Hence the circuit re~
quires only one (toggle) tliptlop, with
the function given by Cy as input to its
clock pin and output of “the £lipflop (y)
being identified as the output z of the
systcm.Scn rtqurc .4 on page 4.

* 4. REVIEW OF BOOLEAN CA CALCULUS

Thc definitions and theorsms given here
lxc described in references 1, 2, 3 and 7,

TR T . . .

Dc!inition 4.1: HaThaer ‘ %
X - ywhen Xi, l<i<n,changes from

. 0 to L or from:llto 0

v dx; = olwhcn X; does not change at

: 1

“ dF will be defined limillrly

(4.1. 2)d?-dx1 by dafinition implides that
whan X3 changes from 0 to 1 (or 1 to 0),
lo does F change from 0 to 1 (or 1 to 0).

Dit:crential expression, denoted by 4%, .
will be de!incd as i .

(D4.2.1) dE = {-(_!dx‘ + aidx‘)
whcrog(i and '1' l<i<n are !unccions of
Kye Xpom=SiXgoq0 Kpyy ==X, (and inde- = ;
pondont of x‘) and only cnc of the vari~

ables xl,xz.---x is allowed to chnnqc ac
‘ t.i.m. & ..,1-” Csemrp .u.--r. “s s

Definibion 4.3:
order, written as Iodf} of the Boolean

,xprcssicn

;(94.3,,.1) dt;il:z.(o(‘dxiﬂidi?i) et T . :
: is given by B .
04.3,2) fote = %, ( K o48,%)

lnd the integral of first order, written
df, of the expression dt Ih equation

s

z(x +s>~) *
1-1's : y
Definiticn 4.4: A civen’ di!ferential ex-
pression 4 ngcn'{n (D4.3.1) is said to ba
compatibly intecrable if there existl a
function F such that

7‘,“ and_3F 25‘ for all 1.
ax‘ bt AN \:.

e .-...-uu.d

*

-
- e

. r e

The intesral of zeroth |

.
vra ap o FaerT

¥

1¢I¢n. If r satisfying equation (pP4.4.l)
does exist thcn F is called a compatible

‘inteqral of d4f, (See Appendix).

&h rem 4.1: The necessary and sufficient
' congxizon Tor compatible integrability of

o

e

given dit!nzon:ill expression
dag = : (o(ldx +8,dX,) ia that

(55 (5,) =

i Theorem 4.2: If a given differential ex~
ression is integrable, then a compat~
le of dt is given by

jdz- 5188 + K shere &K Ci *j,_d:

5. SYNTHESIS PROCEDURE

Due :o space limitation, it is not posaible

to outline here a general procedure, in de-

tails, for isynthesizing an asynchronous
sequential system using clohk-triggered
£lipflops and Boolean calculus. Only a

brief sketch of the procedure is given

here in what follows,

Given an FMAS table which is already re~
duced, it is firsc transformed into DMS
eabio. It has been shown that the latter
can always be reallized as a network con-
sisting of edge-triggered (clock~-triggered)
£1lipflops and Boolean calculus. From the
D¥S table, differentidl expression [1,2,3,
7] for each clock finction is geternlned

. taking into account what changes in clock’

furictions are necessary in order to bring
about chinges in the state of the corre-

.sponding flipflop. These differential ex-
pressions are gusrainteed to be integrable
other inputs {such as S-R or J-K, if any)

- to the flipflops are determined by looking

at the nature of next states in the entries
in the table, thus a complete netwozk re-
alization is obtained,

- A

wouite often the DMS table il further re~

Y . ¥
‘T‘u'ﬂ,‘ »

S .
Y I

. .
04 sy s W

e .

ducible as shown in the previoul example.
If the reduced DMS table is realizable
using clock-triggered £lipflop, a con=
siderableé saving in the number cf flip-
flops and logic gates results. Synthesis
procedure for a teduced DMS table is
simildr to the procedure just cutlined, buz
a number of relationships have to be -

~.chacked hefore the pracedure can ba
“successfully applied. Due to space limit-

wtions, the detailed procedu:e cannot be
described here. S

. . .
P s -
£

!

-




bt

‘ % s

# 6+ CONCLUSION

Dezign of naynchronous level=-node gsequent= (7) M.A. Tapia, J.0.Tucker and A,W,.Bennett,
fal systems using clockad f£lipClops has "Bonloan Calculus for Pigital Systems,”
been known for a long time, lowever, such : submitted to XEEE Computer Transactions.
design using simpler circuits has been

esgsentially limited to those cases where ! * ’ ACKHOWLEDGEMENT

the lgqic doség?ux Eﬁnczuacu 5g££i§i§nt et

axperience and ingpiration to intuitively The author gratefull ‘NowW 3
obtain such an implementation, Smith and support of ghe NAS% {a§§§23'§333§§c§h°
Roth (5,6) presgnted a formal approach to Center research grant NSG ¥1436 for the
realize asynchronous level-mode sequential research reported hero. o
system using "general medel of edge- N ‘ ) '

sensitive £lipflop" [5,6). The formal o ‘ APPENDIX

uyni?aséi piocnduif piopogod here i ———————

applicable tn synthesis of such systems Dafinition Al: For a Beo

gﬁing ang gifmgiciﬂlly available clock= FTEITR;T:?:TRQ)"Og:, Sﬁifﬁﬁiigmifﬁas.,,x

riggared f£lipflops, St ' . ’ n
& 99 pLlop v ‘ Boolean differential of F, denoted by dp
We have shorn that any asynchronous level- 18 defined as ,

mode sequentinl system codld be realized' " n .,
using the proposed approach. In many cases (Al.l) dF = ¢ (?F AX; + 3F  dK]

:hin apprgnch ieads to insigns whiE? gie i'lkFZ" & FRT

ess complex, less costly, more reliable The summation in Equation (Al 5 W

and smaller in size than those cbtained - renpect to tha inc?uaivénoé?‘;ig ég, ith
using conventional design techniques. In partial derivatives are defined by
t?e,wggiticagebthe complexity .0f the de= . o o i .

sign ebtalned by the proposed approach axe Al.2 P = P .

comparable to that obtained by conventio= (A1.2) Yo (i’]xi_l F‘l)'xl-o and
nal technigquas, . , B A U S i
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Abstract

Recently thexe has besn considerable interest
in synthesis of asynchronous sequential systems
using clock-triygersd flipflops (2=7) . It has been
shown {2,3) that synthesis techniques for such
syetems which utilize edge-sensitive {clock= .
triggered) fiipflops lead to networks which, in -
wany cases, require fewer flipflops and logic gates
and which are less expensive and more relishle than
those obtained by conventional techniques, The pro=
posed paper aims at developing formal procedures
for synthesis of asynchironous sequential systema
utnq co-nchuy available edge-sensitive flipe
glops.

1. Ineroduceion

In conventional asynchronous level-mods se-
quential system design direct emphasis is placsd on
relationship hetween outputs and inputs in terms of
their levels only, and the possibility of using |
edge sensitiveness property of logic elemsnts ianot
utilized, sSmith and Reth have shown(3] that if
edge-sensitive flipflops are usad in the design of
an asynchroncus system and the adga-sensitivenass .
property ix judiciously taken advantage of, then
in many cases it leads to a realization that re=
quires laas flipflops and logic.gates than con= -
ventional method does for a given systam, The Smith
and Roth technique [} utilizes a "general model
of edge-sensitive £flipflop” in their npp:ohch. The
method proposed in this papax is appucablp to any
commercially available clock-triggered flipflop
that responds to a clock transition (poueivo or
negative).

Dl!'o;nntul Modo Model

pefinition 2.1: A !'undnnnul ‘bdc mmhrmul
system

(©2.1.1) rMas = (x,s_,,o,g,q); ‘ uhou
(02.1,2) T = set of p distinct input conditions
. - {Ij)
{D2.1.3) ° 8§ nﬁ;u}o! 4 states of the system
. = {S
}

(D2:1.4) 0 = set of ocutputs = (Oj‘)
{02.1.5) ¢ = output function -2(sk,:5).v;1 &K
and .

(D2,1.6) g = next utate function = q{sn,,:,),vj“
will ba assumed.

1t will, tu,r‘t.ho:; be assuned that qnl'y’., one ine
put variable is allowed to change at n time and that
the system Has n inpué vaxnhnu reeeX, and n
state varisbles ¥, ¥,0vui¥ . | Stiad'to Eletitvate
the expressing of “ths next sqnn ‘and output-in terma
of the change in the input and the present state,
we will traneform the THA system to a Duznmual
Mode System defined bnovn

‘pefinition 2.2; Given a fundasental mode asyne

chzonous system FMAS, 4 Differential Mode System
(ons) will be dqumd A8 A 6=tuple as given balow;
(02,2:1) DMS » (:' x;" t, o !’. g') where
(02.2.2) ' eI,
(022,31 1 {(‘5"0,\1’3 ,(’Jﬂhg
102,2.4)
(D2,2,5) £' = output function of bﬂl
(D2,2,6) g' » next state function of DNS
The function g' is ralated to the function g of cho
FMA system as shown below: :
{p2.2.9) _'_‘:h' Y xk)
l‘, it qish;: )= ’h' Q(Sho:k) - SL
and qtsl.rk) "5
8, it q(lh,:j) -8, and there existy
’u"""zn“x such that
9(8,,T,) = 3
7“11"&"’“"'" 9(3‘,‘,1“‘)-5‘
g(l,‘.x,‘) N
- if ’“htﬁ, - Sh & 9(8h;xk) el | !
-, it q(_sh;i’) =5, and thers exist
’11'51_2""!% such that
9’(Sh,!k) - 'sil' Q(Su, :k) - ’12
TR SLE I A
C = A atsy) #osp.
SR

I

T TR TR RSt hti-taadha

A g i gl L



o

CRa T MU e

3

P | e et

:
g
;
Y
k
&
§

e = 1

The function £° “hlzj 15} dn ralatad ko the
gunction ”’n‘xj) of

(02.2,10) ‘t‘ﬂho 97 xk)
— :"“g,xk)l Y q'(lh.x’.x,‘)-l‘
= Iw, it 9"’h'xj':h) 1o unspecified
Deginition 2:3: '
(62.3.1) dx, =f1, when X;, 1 £ L ¢n, changes
‘ from () to-1 or fxrom 1 to §

0, when X, doas not change at all

4r will be defined similarly,
(D243.2) ar = dx, by dafinition implies that
vhen X, changer from 0 to 1 lor
1 to 0), so does F change from 0
to 1 {or 1 %o 0).
tr oxder to relate changes in P due to changes {n
X, under diZfevent conditions we will treat dF and
dx;, 1¢ien as entities in Boolean algebra having
values of 0 or 1 as defined in equation (D2,3.1),
Conuider the squation ‘

(02.3.3)  dF @ (X3 « Xy)dmy + (X; o X;)dK,
hen Xy ¥y = 1 and X is changing, then dﬁb-o
and dradxl an that F changes the xame wiy as xl_
changes. Similaxly when ‘xi-x,-x. and X, changei,
then dredX, and T changes the sare way s X,
changaes v

Differential expression, denoted by dH,will be de~
tined as

n

where 3yand 8, 1¢ign are functions of
RyaXgemm=Xy 11 Xy g r=e=y xnfund independent of X,)
and only cne of the variables x,_.’xz ,---,,xn is.  °
allowsd to change at a time, ’

pifferantial expression as given {n (02.3.4) will

be used to describe changes in clock functions {n:

terms of changes in input and state variables.

The fullowing definitiony, relationships and

" throrens have been reported eariler {1,4,7] and
will be presented here briefly for the sake of

; tompleteness and conveniance of refersnce,

{cafinition 2.4: For & Boclean function
"‘!'(x_l,;gz,--,x” ,0f n variables xl,xz.--.xn

Boclean differential of F, denoted by dr, is de-
tined as ; , '

{wl\3X e .
4 3X£

tha A system as shown helow

The suwwation in tquation (£2.4,1) is with respest
to the inclusive OR, and the partial derivatives
ave dafined by

(02.4.2) ‘%‘_;_- n_,gl,&,l e FlO Ty og X0 -

(02,43 3. = "l'-”x,.-o . Tl );""1" ,
3'1 )
With the intexpretation niven in Definition D2.3,

equation (D2.4:1) completely describes changes in
¥ due to change in varisble X,, lgizn,

Definition 2.5 The integeal of zeroth order;
written as 7°au. of the Boolean expresidion

n -

is given by
no
(02:8.2) LA =T fa X, +8.X)
) Lol 374 %L

and the_integral of first order, written as ll&n,
of the sxpreseion d¥ {n equation (D2,5.1) is

given by
n L d r
(D2.5:3) !ldn -Lilca‘x‘ + let).
pefinition 2.6, A given differential expression
di given ir (D3,5,1) Is said to be compatibly inte-
grable 1f ‘are exists a function F such that
(02.6.1) . J£ 30 and L2
Y i S el
S Xy
for all i, 1&idn, If P satisfyirg equation (D2:6,1)
does exist)then F is called & gompatible integral
of di, The differential expression {s said to be

exactly integrable if there exists function F such
that

(02,6:2)  dr = du

IZ P satis€ying the above equation does exiat, then
P is called the exact integral of QH,

Theoren 2.1: The necessary and sufficient condition
for compatible integrability of a given different{-
al exprassion

« n
(72,1.1) dH = T (a,dX, + B,4X,)
* {el Fiis ¢ S aanly §
1§.xhge

(12.1:2) LK [ydH w0

Thaorem 2.2: 1f a given differential expression dH

is integrable, then a compatible integrable of dH
is given by .

(12.2,1) [ 8K = [;dH + K where
(r2.2.2) R QTR + Jam)
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). rxample
defore going into a formal synthesis procedure,
we will outline the approach with an example. Con-
sider the FMA system described by Figure 3.1,
X3Xa )
00 01 11 190
A;L .;' D" A;O

10|33 |C= ) A=

= [C0|¢1]D,~

o 0 w »

M= | Ci= D'o Dfx
"ﬂp Nl

on transforming the system, we get the CHMS table in
rigure 3,2,

Xyt

00 00 OL 0L 11 11 lo 10
10 0L 11 00 of 10 00 1l
Ao W]~ -]~ = TA1]0,0
AC D LICL MO0~ | = - -
=~ 1 = [C/L |B,0]|C, 007 A] = | =
=1 = 1° 11500, 1(A1 [D/0

T O - >

rtq- 3.2

%1%a
ey, 90 00 ol ol 11 11 10 1o
.1 H 10 01 11 00 0) 10 00 11
{A)00 ] 00,0 01,1 | = - - - 100,1]10,0

{m)o1 { 00,0 (02,1 [12,1004,0] = - - -
fonf - - 111,101,0011,0110,1] = | ==
(olof =~ | = = | = [11,0]30,3]00,1] 10,0

Fig. 3.2

tat us assume that D=flipflops will be used and
that the flipflops respond to the positive edge of
the clock sulse,

Chserve that in the first row, tha state
changes when XX, changes from 00 to 0L and from 10
to 11, that is"t3 aay that the atate chnngtl when
transitions denoted by 7,dx, and X,dX, occur,
Taking into account all . rows, We Rncd the c¢lock
function to go through positive transitions when=-
svar the transitions indicated on the right hand
side of equation (E3,l) occur.

(£3.1) dccﬁlPZ(ildxz + x,dx,)
& 1112 (x dx1 +* ”2d'1)

+ /ljz (xldx2 + xzdx,)

e 7112 (x dx1 + xzdxl)

By Theorem 2,1 4AC is compatibly Ln:cqrabln and
by Theorem 2.1, a compatible integral of d4c, scy Sy
is ngon ky

(€.2) ¢ = §x;a§z‘* Fyrgny + 1y10%,

tn fact C, is an exact integral of d4C with re-

spect to vurtiblo- X, and x ao that d¢, » dC {f
the tranaitions in dé duo 0 changes 1& oF ¥y
are ignored. whuncvor one of the !Ilnlitlﬂ%l

the right hand side of equation dC does occue, :h-n
ity oF ¥, will change, However, it can be shown

ha: this change in ¥y OF ¥, will not cause a poiai~
tive transition i(n X

W 1%y

¥1¥y 00 01 11 10 3%y 00 01 11 1o
- (4] 1 w . el 1 -
- - 0 ~! «11 )0
4] el - R 1} =] «10
0 1 ]l~l = of 111t
rigure DLI).A rigure D":.s

in Figures 3.4 and ), % respectively
give &%o valu&l of the inputs to tha D-flipflops.

Cbuerve that when ¥1¥,%00; then positive trans-
itions ocour only wnen % chlngnl from 0 to 1 re-
gardless of ths valus of“X,, Hence when x, changus
from 1 to 0, regaxdless of "the value of X, the
value of the next state is left unnpccl!l}d. Sini~
larily it can be sliown that every row has two un~
lpccttzod antrirs in the K-maps for Dyy A well as

‘2. rrom these maps we have

(£3.3) Dyy ™ XyXy + X17) + Koy and
(£3.4) B ® *1"2 + xl’: + Ryllye
The output function, 2, ls obtained as

(£3.5) 2= TOY,) + (X, O1)

Equation (E3,2) describas the expresasion
corresponding to the combinational network whose
cutput would be connected to the clock pins of
both the D=flipflocps. D y,and D, definad in
equations (£3.3) and (:§ 4) are”the expresgion for
the combinational networks whose outputs would he
ccnnac.cd to input pins Q( and 0., of the D=flip~
flops L and 2 zlupoct£$u-,. {See &spondix].

a¥

4. Realizability

In this section we will give resu)ivs, without
proof, pertaining to reallzablility of an asynchron-
ous fundamental=mcde (FMA) aystem using clocke
triggered flipflops and employing Boolean calculus,

Thearem 4.1; If a differential mode systrm darived
fron an FIA system has the 'same number of stitas as
the latter, then the differential mode system (CMS)
i3 realizable using clock triggered flipflops and
other logic gates.
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Theorem 4.2: If the LS rable obtained from an
already-reduced FMAS table 1i reduced further (if
it is reducible), then the reduced table (s realiz-
able using clock=triggered flipflops, if the

table ls output= and next-state-iunambijuous. [The
terms "output-unambigous® and "next-state-unambig-
ous” are defined in reference 7 and will be de=-
fined in Appendix at the end of this paper, {f
space permits.,)

S. Synthesis Procedure

Given an FMAS table, the procedure for syn-

thesizing the systein using D=£1lipflops would be as
follows;

(1) Transform the given FMA syitem table to a DNMS

table using relationships given in Definition
2,2, Assign codes to the states.

(2) ror svery entry in the IMS table that is
lpccltind and that is different than the
‘present' state corrssponding to the row
in which it lies, obtain a differential
term corresponding to its column to form
a Boolean differential expresaion, d4C,
for the CLOCK :unc:ion.

(3) rind a compatible lneoqul. say Gy, of
the differential expression dC
obtained in step (2),

(4) rind Boolean differential, dcl, of -

{5) Corresponding to avery input change
indicated by d¢, that causes C, to
change from 0 to 1, and every ipresent’'
state, deternmine the 'next* state:
using tha DMS table. For input changes
not specified in thd Baolean diffgxential
4C,, leave the 'next’' ¢ntry unspacified.
Based on this mapping, determine the K-
maps for the expresalons corresponding to
the input to D=flipflops denoted by Din'j"'

(6) Determine the output function 2 in terms of
xL‘n and Yj's as is usually dcno.

Cbserve that the: cnocx function c1 obtained in
step (3) iw the comadn input expression for the
clock pins of all the D-flipflops. |

If the DMS table derived from an already-re-
duced TMAS table is further reduced (if it is
reducible), then the reduced table is realizable
using clock-triggered tllpﬁlqpn 1f the conditions
specified in Theorem 4,2 'are satisfied. Synthesis
procedure for such a ¢lass of systam will not be
given hers due to space limitations.

6, Conclusion

A method has bheen presanted that uses clocke
triggered flipflops in synthesis of fundamental~
mode asynchronous systems. The method amploys
Scclean Caléulus. The method leads to a network
that requires fewer IC packages-than those re~
quired by a network arrived at using conventional

methods; thus leadina to reduction in cost,com-

plexity of natwork and power consumed by it.
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Appendix

Definition A.1: A DM system table {3 said to be
level-wise output-unambiguous, i{f there exists no
input conditicns Ii' 40 Ix and states s and Sy

I, and I, being adjacent, I and I, baind adjacent,
T4 and Iy not necessarily distinct’and s, and S
not necessarily distinct, :uch that g'(s,, rj'li)'

q‘(sb kaxi): H (S‘Ij,xl) and ¢’ (S Ik,ri)
are defined and .

(A.1.1) . g(s ,Ij r£) L q'csb,zk,:L) =S,
 {say}
{A.1.2) ~g'(s 0 8geTy) =0 fﬂ. =g (sbuw‘g)-
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Ij :k
Ij I
Sa s..0 S.:0
(or ’b) e!Tie ¢’ ke
Ij Ik tj'rk'
Iy Iy I
s, 54104 “al s_0.
3 510 551 Sct%e
Figure A.l

Definition A.2: A DM system table {3 said to be
level-wise next-state-ambiquous, if there éxist in-

g::: IL' xj andzxk and:::atcl s‘. sb and sc such

:j and :L are adjacent and :.,.-‘ and !1 are adjacent
(A.2.1) S, )

{A.2.1) g' (sl':j':i) - sb and

s f CI.OCK
A2:3) g5 T dy) = S FUNCTION}
b4 4 I, . NETWORK
I I
SJ Sy Oay I Ser OMJ
rigure A2
REALIZATION OF SYSTEM IN FIGURE 3.1
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