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SUMMARY

The time-dependent Navier-Stokes equations in mass—averaged variables are
solved for transonic flow over axisymmetric boattail-plume simulator configura-
tions. Numerical solution of these equations is accomplished with the unsplit
explicit finite-difference algorithm of MacCormack. A grid subcycling procedure
and computer code vectorization are used to improve computational efficiency.
The two-layer algebraic turbulence models of Cebeci-Smith and Baldwin-Lomax are
employed for investigating turbulence closure. Two relaxation models based on
these baseline models are also considered. Results in the form of surface-
pressure distributions for three different circular-arc boattails at two free-
stream Mach numbers (M, = 0.8 and 1.3) are compared with experimental data.

The pressures in the recirculating flow region for all separated cases are
poorly predicted with the baseline turbulence models. Significant improvements
in the predictions are usually obtained by using the relaxation models.

INTRODUCTION

The drag of the afterbody of a fighter aircraft represents a significant
part (approximately 30 to 40 percent) of the total configuration drag at tran-
sonic speeds. The external geometry of the jet-exhaust nozzle has a strong
impact on the drag of the afterbody. Consequently, considerable emphasis is
placed upon optimizing the design of this component of the aircraft afterbody.
Because of the complex nature of the nozzle-boattail/jet-exhaust flow, which can
include strong viscous—inviscid and shock—Dboundary-layer interactions, para-
metric wind-tunnel testing is employed to provide data bases for the design
process. Wind-tunnel models, especially those which have exhaust jets, are
complicated and expensive. In order to minimize the number of required experi-
ments to determine aft-end aerodynamic characteristics, reliable theoretical
techniques are needed.

One approach to the solution of the axisymmetric nozzle-afterbody/jet-
exhaust problem involves a decomposition of the flow field and a subsequent
patching together of the individual components. This dissection of the flow
field generally includes the boattail boundary layer, inviscid jet, exhaust
shear layer, and inviscid external flow. The basic mechanism for coupling these
flow-field elements is the interaction, which is assumed to be weak, between
inviscid and viscous flow regions (i.e., displacement thickness concept).
Interactive effects are taken into account with an iterative procedure. Several
investigators (refs. 1 to 4) have obtained good comparisons between predictions
and experimental data for the nozzle-boattail pressure distribution when the
free-stream flow is subsonic, the boundary layer is turbulent and attached, and
the exhaust flow is simulated (i.e., solid-plume simulator to represent ideally
or nearly ideally expanded jets) or high-pressure air. Some computations
(refs. 5 and 6) have also been made for separated flow on boattail configura-
tions. In reference 5 the separation location is obtained from experimental
data, and the shape of the outer boundary of the recirculating flow region



(discriminating streamline) is assumed and held constant throughout the viscous-
inviscid interaction calculation. In reference 6, the separation location is
computed through the application of an inverse boundary-layer technique. The
discriminating streamline is assumed to be conical in shape, and its slope is
determined in the interaction procedure. The weak-interaction assumption is
made with both of these solution methods. Using these approaches the predicted
pressure variations generally agree fairly well with laboratory data for sub-
critical flows; the largest differences are usually either in the separated-flow
region or in the vicinity of reattachment. For supercritical flows the agree-
ment between theory and experiment is not as good and deteriorates with
increases in Mach number. This is to be expected because of the strong inter-
action due to the presence of a shock. These results for separated flows sug-
gest that difficulties would exist in extending the weak-interaction theory to
general three-dimensional afterbody flows.

Another approach that is currently being applied to the afterbody problem
is the solution of the time-dependent Navier—-Stokes equations. There are no
assumptions made about the type of interactions present in the flow field, and
the viscous and inviscid flow regions are computed simultaneously. The steady-
state solution for the flow is obtained as the time asymptotic limit. Holst
(ref. 7) has calculated surface pressure-coefficient distributions for axisym-
metric boattail-plume simulator geometries when the free stream is supersonic
and the boundary layer is turbulent. These results generally agree well with
experiment. The pressures in the separation region are consistently overpre-
dicted. This is attributed to turbulence modeling. Subsequently, Mikhail,
Hankey, and Shang (ref. 8) computed supersonic flow over nozzle afterbodies
with hot or cold supersonic jets. Since these results were obtained primarily
to demonstrate computational capability, the accuracy is not sufficient for
good predictions. However, the trends of the experimental data are captured.
More recently, Jacocks (ref. 9) and Deiwert (ref. 10) obtained solutions for
subsonic flow past some boattail-plume simulator configurations. Surface-
pressure results compare favorably with experimental data. Once again, in the
case of separated flows, the largest differences appear in the reverse-flow
region.

In the present application the time-dependent, axisymmetric, compressible,
mass—averaged Navier-Stokes equations are solved for transonic flow (both sub-
sonic and supersonic) over nozzle afterbodies. In order to isolate the separa-
tion problem from jet-mixing effects, a solid-plume simulator is used to model
the jet exhaust. Reubush (ref. 11) demonstrated the validity of using solid
cylinders to simulate perfectly or nearly perfectly expanded Jjets when entrain-
ment effects are not important. Because upstream feeding is present in subsonic
flows, special attention is directed towards establishing an appropriate set of
boundary conditions for the mathematical problem. At the time this work was
undertaken, no subsonic calculations for afterbody flows using the Navier-Stokes
equations had been reported. The equations are solved with the unsplit explicit
numerical algorithm of MacCormack (ref. 12). In order to enhance computational
efficiency, especially for subsonic flows, the finite~difference scheme is
coded for the Control Data CYBER 203 computer system. A grid subcycling pro-
cedure is employed also to improve computing time. To close the set of
governing eguations, turbulence modeling is implemented.



From previous Navier-Stokes work, turbulence modeling generally seems to
be the culprit for poor turbulent-flow predictions. Therefore, some special
attention is dedicated to this aspect of the problem. At this time, one-
equation and two-equation models for the turbulence transport processes have
not been adequately shown to provide the best turbulence closure. Since a sub-
stantial increase in computational time results when these models are applied,
only algebraic turbulence models are considered in this investigation. The two-
layer model of Cebeci and Smith (ref. 13) and the two-layer model of Baldwin and
Lomax (ref. 14) are considered. Both of these models are applied with and with-
out the addition of a turbulence lag model (ref. 15), which is used to account
for upstream history effects on the turbulence. The afterbody surface-pressure
distributions obtained using these models are compared with experimehtal data.

SYMBOLS
a speed of sound, é/ﬁm
Cp pressure coefficient
ép,év specific-heat coefficients
ae boattail-exit diameter, 0.0762 meter
dn maximum diameter of boattail, am/ae = 2.0
E total internal energy per unit volume, E/(aw8m2)
K Von Karman constant
k coefficient of thermal conductivity
ET eddy thermal conductivity
J'a ratio of boattail length to boattail-exit diameter, ﬁ/ée
M Mach number
NPr,m molecular Prandtl number, Epﬁ/ﬁ
Npy, ¢ turbulent Prandtl number, Epg ET
NRe Reynolds number, Smamﬁe/ﬁref
js) pressure, ﬁ/(ﬁmﬁm )
a; heat-flux vector
R reattachment location
re radius of curvature of boattail, §C/ae



body radius, rB/de

s

) separation location

T temperature, %/Kﬁw2/év) = @/%ref

u,v axial and radial velocity components, G/Gm, G/Gm

X, Yt independent variables (computational domain), Q/ae, §/3e, an ae
¥y normal distance from wall, §/ae

§+ dimensionless distance from the wall <§+ = \[lTw|pw(§/uw)NRe>
z,r,t independent variables (physical domain), E/ae, E/ae, QGm/ae
zq z at initiation of relaxation

Bc chord boattail angle

Y ratio of specific heats, ép/év

Ax, Ay, At finite-difference increments (computational domain)

Az, Ar At finite-difference increments (physical domain)

$ local boundary-layer thickness, S/Ee

61 local boundary-layer thickness at initiation of relaxation

€ eddy viscosity, g/ﬁref

9 flow inclination angle

A relaxation-length parameter, X/&e

U coefficient of molecular viscosity, ﬁ/aref

o] density, S/Bm

T shear stress, ?/Kawﬁm2)

Ty shear tensor

Subscripts:

e edge conditions

exp experimental conditions

i, 3 X,y grid indices



max maximum conditions

min minimum conditions
ref reference conditions
t total conditions

\ wall conditions

XiYr2Z,T differentiation with respect to %, vy, 2, and «r

oo free~-stream conditions
Superscript:
n time-step index

Turbulence model designations:

B-L Baldwin-Lomax model
C-s Cebeci-sSmith model
R(B-L) Baldwin~-Lomax model with relaxation
R(C-S) Cebeci-Smith model with relaxation

Other notation:

Circumflex over symbol (i.e., 6) denotes dimensional variable

ANALYSIS
Governing Flow Equations

Solutions for turbulent, viscous, transonic flow over axisymmetric after-
body configurations are obtained by solving the equations for conservation of
mass, momentum, and energy. The governing equations are first written in terms
of the instantaneous flow quantities of pressure, density, velocity, and total
internal energy. The dependent variables p,pP are replaced by Reynolds
expansions (sum of mean-flow component and fluctuating component). The remain-
ing flow quantities are expanded in terms of mass-averaged variables. Refer-
ence 16 contains additional details concerning mass—averaged variables. The
equations are time-averaged in the usual sense. The resulting turbulent-flow
equations have the same form as their laminar-flow counterparts, except the
stress tensor is augmented by the Reynolds stress tensor, and the heat-flux
vector is augmented by the additional heat-flux terms associated with the
turbulence. Using the eddy-viscosity hypothesis, this effectively means the



eddy viscosity is added to the molecular viscosity, and the eddy thermal con-
ductivity is added to the molecular thermal conductivity. Thus, the time-
dependent Navier-Stokes equations (written in axisymmetric coordinates and in
nondimensional form) for a turbulent, compressible flow in which body forces
are neglected are

U oF aG _ )
E+B—Z~+E+H—O (la)

where

pu
U=r (1b)

pv

r—pu

2
pu - Tzz
F=r (1c)
puv - T,

- - +
Eu Tzzu Tzrv q

pv

puv - T,
G =1 (14d)

A

- - +
Ev Trzu Trrv a

H = (le)




The elements of
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The flow quantities  and independent variables are

following way:

o = p/ps, p = B[bres
K= ﬁ/ﬁref €= €/ﬁref
v = $/a, E = £/Brer
r = /4, £ = £0,/d,

The reference gquantities are given by

P = Peolle

ref

Hyef =

the stress tensor and heat-flux vector are given by

ey - 2fu+ENV v
Tzz = 3( Nge )(Br + r) *

~N
afu + e\du
B(NRe aZ

nondimensionalized in the

\
T = a/aref
u = af4,
z = 23,

(1£)

(2)

(3)

(4a)

(4b)
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where C; and C,; are constants. The gas is assumed to be thermally and
calorically perfect. Thus,

p= (y - 1)pT (5)

A

and the specific heats 6P and C,, are constants. The molecular viscosity is
evaluated with Sutherland's law as follows:

w=cyr¥2/(r + ¢y (6)

The molecular Prandtl number and turbulent Prandtl number are assumed to be
constant at 0.72 and 0.9, respectively.

Coordinate Transformation

In order to facilitate the implementation of the finite-difference formula-
tion for solving equation (la) and the treatment of the boundary conditions, a
body-fitted curvilinear coordinate transformation is employed. This transforma-
tion maps the physical flow region (fig. 1) in the =z,r plane onto a rectangular
computational region, which has uniformly spaced grid lines, in an x,y plane.
Using the chain rule for partial differentiation, the governing vector equation
takes the following quasi-conservative form:

U JF 9G oF 3G _
E+XZ§+xr3x+y23y+yr®+H_o (7)

The derivatives in the definitions of the components of the stress tensor and
heat-flux vector are expanded in the same manner. The transformation deriva-

tives x X Y, and vy, are determined from the relations

z’ r’
~
X, = er Vg = —er
x, = —Jzy y, = Jzy > (8)
J = X, ¥y = XY, = l/(zxry - zyrx) J

where the subscripts indicate partial differentiation, and where J 1is the
transformation Jacobian. The derivatives are computed numerically.

Grid Generation

The Thompson, Thames, and Mastin (ref. 17) method is currently being used
to produce grids for finite-difference calculations for a wide variety of fluid
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dynamics problems. With this technique, the relationship between grid points in
an arbitrary physical flow region and the corresponding known grid points in a
rectangular computational domain is obtained by solving an elliptic system of
partial differential equations. In terms of the independent variables of the
transformation applied herein (z,r)=>(x,y), the mesh-generating equations are

it

Xyp + Xy P(x,y) . (9a)

Yoz * Yer = Q(%,y) (9b)

where P(x,y) and Q(x,y) are source terms used to control interior grid-line
spacing. The finite-difference solution of equations (9a) and (9b) is simpli-
fied by reversing the roles of the independent and dependent variables and
solving the resulting guasi-linear elliptic system. The quasi-linear equations

OZyy = 282y, + Tzgy = —I%(Pzy + 0z.) (10a)
- _ _+2
ar, . ZBer + Cryy = -J (PrX + er) (10b)
where
2 2
= +
o zy ry
B = ZyZy + ety (10c)
c=22+r?2

are solved on the same rectangular grid with a square mesh (Ax = Ay = 1) as the
flow equations. The coordinates of the grid points on the boundaries of the

physical flow region provide the boundary conditions for the elliptic problem
in the computational plane.

In the Thompson, Thames, and Mastin (TTM) procedure the source terms are
combinations of exponential functions, and they include parameters to control
their effect. These parameters are problem sensitive. To circumvent this

deficiency, Thomas (ref. 18) uses source quantities with special properties.
The functions are

il

P(x,y) ¢(x,y)(x22 +'xr2)

(11)

Q(x,y) w(x,y)(yz2 + yr2)



When P and Q are substituted into equations (9a) and (9b), the elliptic
system in the transformed plane is

U(Zy, + $2,) - ZBZXY + C(zyy + wzy) =0 (12a)
ATy, + $ry) - 28rxy + c‘,(ryy + lpry) = 0 (12b)
and ¢(x,y) and Y(x,y) are parameters. These equations possess exponential

solutions for locally constant ¢ and Y. The parameters ¢ and Y are
determined at the boundaries of the computational region by solving the limiting
forms of equations (l2a) and (12b) at the boundaries. The interior values are
obtained by linear interpolation along constant coordinate lines (i.e.,

x = Constant and y = Constant) between boundaries. With this approach, the
interior grid-point spacing reflects the distributions of the boundary points.

For the afterbody flows being considered, the TTM method is applied with
the source functions of reference 18. The grid points at the inflow and outflow
boundaries of the physical domain are distributed exponentially in the radial
direction. Consequently, the surface viscous layer can be adequately resolved,
and fine-grid spacing is not present where it is not needed (i.e., inviscid
flow). Since the pressure gradients for the boattail portion of the afterbody
flow can be substantial, the grid points in the axial direction are clustered
about a point on the boattail using a stretching function constructed with
polynomials. The cluster point is located in the interval 0.62 to 2. The
location is a function of the free-stream Mach number. 1In this manner good
resolution can be obtained not only in the boattail region but also in the
juncture region of the boattail and plume simulator. The ratio AzmaX/Azmin
varies from about 3 to 6, depending upon £, Azpay (0.3 £ Azpay £ 0.45), and
the length of the afterbody. A typical grid in the physical domain is shown
in figure 2.

- Boundary Conditions

In order to complete the mathematical formulation for the physical problem
-under consideration, an appropriate set of boundary conditions must be speci-
fied. There are four boundaries for the flow region associated with the after-
body (see fig. 1). At the afterbody surface (cylinder-boattail-cylinder con-

figuration), the no-slip condition and a wall temperature are imposed. That is,
u=v=20 (13a)
T, = Constant (13b)
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The remaining boundaries are permeable. Since these boundaries are artificial
(constructed for convenience of solution of physical problem), some special
attention is warranted.

To provide guidelines for suitable boundary conditions for the permeable
boundaries, a method based upon reference-plane characteristic theory (ref. 19)
is applied to the transformed governing flow equations. In this approach,
which is used by Cline (ref. 20) and Thomas (ref. 18), the convection terms
with cross derivatives (i.e., for the inflow boundary in the present case,
9/3y 1is a cross-derivative operator) and the viscous and heat-conduction terms
are treated as forcing functions. Thus, the hyperbolic-parabolic system of
governing partial differential equations is effectively reduced to a hyperbolic
quasi-one~dimensional system. The method of characteristics is applied to this
new system of equations with two independent variables, namely, one spatial
variable (either x or vy) and time t. Moreover, the characteristics and
corresponding compatibility equations associated with the hyperbolic system are
readily obtained. (See ref. 20.) The number of boundary conditions necessary
for a given boundary, which depends on the number of compatibility relations
valid on the characteristic curves that cross the boundary and enter the physi-
cal flow region of interest, is determined (ref. 21). The flow quantities that
may be set at a boundary can be deduced from examining the compatibility
equations.

The quantities specified at the inflow, outflow, and upper boundaries are
discussed in the next three subsections. (See fig. 3.)

Inflow boundary.- If the flow is supersonic {(u > a), there are four com-
patibility equations for the three ingoing characteristics (two Mach lines and
a path line). Therefore, all dependent flow variables may be specified. For
subsonic flow (u < a), there are three compatibility relations associated with
two ingoing characteristic curves (one Mach line and a path line). Although,
in general, p, u, and Vv may be set, the total pressure p, total tempera-
ture T, and flow inclination angle 8 are specified here. Thus, the inflow
boundary emulates a boundary at which disturbances originating from the interior
of the computational domain are absorbed rather than reflected.

Outflow boundary.—- If u > a, there are no ingoing characteristics into the
region of toncern. All flow quantities at this boundary can be determined from
upstream information. For u < a, there is one inward characteristic (Mach
line) and one compatibility equation. Because of physical considerations, the
static pressure is specified.

Upper boundary.- This boundary is located sufficiently far away from the
surface of an afterbody configuration to be considered in the free stream.
However, it is a finite distance from the wall boundary. Therefore, in general,
it can be of the inflow type, outflow type, or a combination of both. The sign
of the r~direction velocity component Vv at any boundary point determines
whether the boundary is treated locally as an inflow type or an outflow type.

If v is negative (inflow) or =zero, the velocity component in the z-direction
u, pressure p, and density  are set to their free-stream values. That is,

u=1, p =1, p = pe (14)
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If v > 0, only the pressure is specified. This scheme for specifying boundary
conditions is used for both subsonic and supersonic free-stream flows.

Numerical Treatment of Boundary Points

At the wall boundary, the density is computed from the continuity equation.
The derivatives in the x-direction vanish because of the no-slip condition. The
derivatives in the y-direction are replaced with second-order—accurate one-sided
differences. Using the density and the specified wall temperature, the pressure
is calculated from the ideal gas equation of state.

In the case of a subsonic inflow boundary, a second-order-accurate
reference-plane characteristic scheme in conjunction with the appropriate
boundary conditions is used to obtain the unknown flow variables. The charac-
teristic compatibility equations, which are derived from the transformed govern-
ing equations (for derivation procedure see ref. 19), are as follows:

dp - a2 ap = Y, 4t (15a)
dv = W3 dt (15b)
dp - pa du = (w + azw - pay ) dt (15¢)
P 4 1 2
2
+ = + +
dp + pa du (w4 a?p, + pay,) at (15d)
and
3
= -py,u, - uy,e - Py, V. - V¥P - P
lpl pyz vy Yy vy ry ry r
Y, = -uy u_ - vy u_ - L + s
2 yz Yy yr Yy P yzpy 2
(16)
= - v, - v.oo- 1 + s
W3 W, Yy ¥y Y 0 yrpy 3

Uy = -uy,py - vy,P, + a2(uyzpy + vy, e,) + Sy )

where the independent variable subscripts denote partial differentiation. The
quantities §i (1 = 2,3,4) are viscous source terms. By assuming that the
viscous terms associated with transport processes in the x-direction are negli-
gible (a reasonable assumption for high Reynolds number flows) and by noting
that the transformation derivatives x, and Y, are essentially zero, these

source terms take the form
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= 1 - 1 )
S, = —|= u + u,,)
R S DS 4 _v
S3 = Npe|® r(3 11yl’VY)Y T3 Pxr (erY r>:}
(17)
= (y - 1) )4 - 2, - 2 3 €
s, = 5 My, v,)® + ulyu,)® + vy Y( + )yT
4 NRe {} vy Y * NPr,m NPr,t Yy
+£ﬂ(z>2-iﬂz(yv)+\(( B4 = )-l-yT}
3 r 3"r "ry NPr,m NPr,t r'ry J
where U = U + €. FEquations (15a) and (15b) are valid along the character-
istic curve
ax
at = *g4 (18)

Compatibility relations

teristics,

Since Py

isentropic relations

(15c) and (15d) are valid along the following charac-—

respectively:
dx
T A L (19a)
dx
a:— = xZ(u + a) (19b)
Ty, and 8 are specified at the inflow boundary points, the
T
t Y -1 2
—_— = +
T 1 5 M (20a)
Y
p - -1
£ (1 P M M2)Y (20b)
P 2

and equation (15c¢) can be used to set up an iterative scheme to determine the
inflow Mach number distribution and, therefore, the dependent flow quantities.
The procedures required to numerically solve the compatibility equation are

discussed by Cline (ref.

20) .

The characteristic formulation used for the inflow boundary is also
employed in the computation of unspecified flow properties at the outflow

boundary when the flow is subsonic.
at outflow points,

the density pD,

Since only the static pressure is given
r-component of velocity v, and z-component

13



of velocity u are calculated along the two outgoing characteristics with
compatibility equations (15a), (15b), and (15d), respectively. When the outflow
is supersonic, all flow quantities are determined with zero-order extrapolation.
That is,

3x - O (21)
where
_ij
u
u* =
v
T
—  J

For subsonic and supersonic free-stream flows, the boundary conditions at
the upper boundary are supplemented with appropriate characteristic equations
in order to determine all flow properties. The compatibility relations, which
are derived in the same manner as those for the inflow and outflow boundaries,
are as follows:

dp - a2 dp = ¢, dt (22a)
Yy du -y dv = (v, ¥, -y, Pj) dt (22b)
dp - py, > du - py, o dv = (azwl =Py, Sy - oy, DUy w4) dt  (22¢)
dp + py, = du + Py, g-dv = (azwl + py, §-¢2 + Py, §-¢3 + w4> dt  (22d)

and
(o 2 4 2)? )
&= (yz Yy )
v
Wy = TPX Uy T UXp0yp - P Y
Yy = - iy + s (23)
2 T TuXjuy o) zPx 2
¢3 = -ux,v, + 53
Uy = —ux,p, + alux,Oy )
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Since the flow at this boundary is essentially inviscid, the viscous source
terms Ei are taken to be zero. The characteristic curve associated with
equations (22a) and (22b) is

av -
5% T Uy *VYy (24)

and the characteristic curves corresponding to equations (22c) and (22d) are,
respectively,

dy _ _

at = Wz t vy, aa (25a)
dy _

ag - Wy * vy, toa (25b)

At inflow points, v 1is calculated with equation (22d), and the boundary con-
ditions u=1, p =1, and p = p, are imposed. Since only p is specified
at outflow points, p, u, and v are computed from equations (22a), (22b),
and (224).

Inflow Profiles and Initial Conditions

As discussed previously, certain flow properties are required at the inflow
boundary of the Navier-Stokes solution domain. Inviscid flow and boundary-layer
solution techniques are employed to compute the necessary inflow profiles. The
procedures used herein are described for the flow over the axisymmetric body
illustrated in figure 1. If the flow is supersonic (M, > 1), the inviscid
pressure distribution on the surface is calculated from the tip of the conical
nose to a location upstream of the beginning of the boattail with a method of
characteristics scheme. Then the turbulent boundary-layer equations with a two-
layer eddy-viscosity model are solved with the method of Price and Harris
(ref. 22). In the case of subsonic (M, < 1) flow, the inviscid pressure field
is determined by solving the full transonic potential flow equation with the
relaxation procedure of South and Jameson (ref. 23). Because of the elliptic
character of the flow field, the flow over the entire configuration must be con-
sidered. An afterbody with a boattail on which the flow does not separate is
used in the inviscid calculation. The resulting inviscid flow field in the
vicinity of the inflow boundary is considered a reasonable approximation to the
one corresponding to other boattail geometries. A boundary-layer solution is
obtained up to a specified position upstream of the start of the boattail.

These profiles are interpolated onto the Navier—-Stokes grid.

An initial solution for the finite-difference calculations is obtained by
extending the inflow profiles over the entire solution domain. For subsonic
flow, this crude starting solution is used only if there are no previous results
for a configuration similar to the one being computed.

15



Numerical Solution of Flow Equations

Finite-difference scheme.- The explicit, predictor-corrector finite-
difference scheme of MacCormack (ref. 12) is used to integrate the governing
flow equations in time to obtain a steady-state solution. This numerical
algorithm is second-order accurate in both time and space. When this scheme
is applied to equation (la), the two steps have the following form:

Predictor step

U =U, . - (%), ——F -

n+1l n At [_n D
i, 3 i,3 i,3 Ax\ i+1,] i,J

At/ n n At [_n n
- . . — p— -— . . —_— F -
)i, Ax63i+l,j Gi,j) RN Ay( irj+1 Fi,j)

At f . n n n
- —(G. ... -G, .] - At H, . 2
(Yr)i,j AY(irJ+1 1,3> ey, (26)
Corrector step
+ + + +
R [ R R e
i,j 2| i,3 i, ] i, j Ax\i,] i-i, 3

I
X

t{ . n+l n+1 At {_n+1 n+1l
.. G, L o- . . - .. —tF, . - F,
r)lrj AX(Gl:J Gl—llj) (YZ)l,J AY(J—:J 1,J-l>

- ¢ 1) - At 5L (27)

7

[
t
/G)\
=]
x '
=
=]
-+
=

where the subscripts i and 3 are node indices, and the superscript refers
to the time level (t = n At). The JF/9x, 0G/9x, 0JF/dy, and 09G/Jy terms
are approximated by forward differences in the predictor step and by backward
differences in the corrector step. The derivatives in the viscous and heat
conduction terms are approximated with backward differences in the predictor
step and forward differences in the corrector step. In all computations the
transformation derivatives are replaced with central differences.

Numerical damping.—- In order to suppress point—-to-point podstshock oscilla-
tions that may occur in supersonic calculations, a fourth-order numerical damp-
ing procedure (ref. 7) is incorporated. The predictor-corrector form for this
scheme can be given by:
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(28) and (29) are appended to the right-hand side of

(26) and (27},

respectively.

<0.1)

Since these terms are fourth-order,
they do not compromise the second-order accuracy of the solution.

The coeffi-

y are used to control the amount of damping that is included
Care must be exercised to keep these coefficients suffi-

(in the current work 0 = (Cx»r Cy) so that shocks present

in the flow field are smeared over the minimum number of grid points possible.

Another form of damping is sometimes necessary for the time-dependent cal-

culations.

the steady-state solution,

domain.

When the initial solution represents a considerable departure from

large disturbances are present in the solution

The damping associated with the physical viscosity and numerical

truncation error is not always adequate to suppress these large initial dis-

turbances.
flow is subsonic.

Because of upstream feeding this possibility is strongest when the
To help remove these large disturbances the solution at each

grid point for the first 200 to 400 complete time steps is replaced with the

average of the solutions at the four neighboring grid points.

The unpublished

work of M. C. Cline of Los Alamos Scientific Laboratory shows that this filter-
ing process can also have a significant beneficial effect on the convergence

rate.
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Numerical stability.- The allowable time step for the MacCormack scheme in
the time-marching process is dictated by the Courant-Friedrichs-Lewy (CFL) con-
dition. This criterion can be given by

At = < : (30)
|vl + [ul +53J 1 + 1
Ar Az (Ar)z (AZ)2

where a is the speed of sound and c¢ 1is a specified constant.

Computational efficiency.- The overall computational efficiency is enhanced
in two basic ways. First, the numerical procedure is programmed on a vector
processor (CYBER 203). Since the algorithm is explicit, it is amenable to com-
plete vectorization (ref. 24). Second, a grid subcycling process is employed
in the numerical integration scheme to relax the effect of the time-step
requirement, which is very restrictive because of the fine-mesh spacing neces-
sary to resolve the turbulent boundary layer. This subcycling process is based
upon the time-step doubling procedure of Holst (ref. 7). The first grid points
in the radial direction at which the local allowable time step is greater than
or equal to ny Atmin’ 2ny Atmin’ 4n, Atmin’ 8ny Atmin' . .+, are designated
time increment points (TIP). The integer ny 2 2, and At

min is the time step
corresponding to the minimum radial grid spacing. At each TIP the At is
increased by a factor of 2 over the value at the previous TIP. To illustrate
the subcycling scheme consider the case where the solution in the y-direction
at a given x-location is advanced 8 Atmin' Assume that only three TIP's exist
(see fig. 4). 1In the initial step the flow equations are integrated from the
wall boundary to the grid point preceding the first TIP. Then, starting at the
surface again, they are integrated to the grid point before the second TIP;
during this calculation At 1is switched from Atmin to 2 Atmin at the first
TIP. All points below the second TIP are then at time t = 2 Atmin' On the
third integration pass, the point preceding the first TIP is the stopping point.
On the fourth pass, integration is continued until the point before the third TIP
is reached, and the solution is then at t = 4 Atmin at all grid points below
the third TIP. The time step is switched from Atp;, to 2 Atpip at the first
TIP and from 2 Atmin to 4 Atpi, at the second TIP. When the subcycling pro-
cess 1is completed, the solution at all mesh points is at the same time level,
which is 8 Atmin for this example. Holst reported that with ny; = 2 an
explicit code (MacCormack algorithm) with subcycling was about 2.5 to 4 times
faster than the same code without subcycling. The speedup depends upon the
minimum value of the radial grid spacing and the value of n,.

In all calculations of this report, the numerical time integration is con-
tinued until the maximum change in surface pressure for one complete time step
{soluticon at all grid points at the same time level) is less than 0.2 percent.
With this criterion the supersonic solutions required about 5 central processing
unit (CPU) minutes on the CYBER 203 computer. When the inflow profiles of the
primitive flow variables (p, u, v, T) are extended over the solution domain,
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convergence for the subsonic computations takes approximately 2.5 CPU hours.
This substantial increase in computing time is primarily due to the elliptic
character of the inviscid flow field as steady state is approached. Moreover,
low-frequency errors in the solution damp out very slowly. If a converged sub-
sonic result is used as an initial solution for another afterbody flow (i.e.,
includes a different boattail), convergence can be achieved in about 1.6 CPU
hours.

Turbulence Modeling

In the present application the algebraic eddy-viscosity models of Cebeci
and Smith (ref. 13) and Baldwin and Lomax (ref. 14) are implemented, and the
results obtained with each model are compared. Each model includes two layers,
and thus the turbulence is modeled with two length scales. That is,

]
A

€ = (31)

€o if

<t
\
=
Q

where § is the normal distance from the wall and §c is the smallest value
of y at which the inner and outer values of € are equal. For separated
flows these basic models are modified with a relaxation formula to account for
upstream history effects on the turbulence.

Cebeci-Smith model.- The Cebeci-Smith (C-S) model represents the eddy
viscosity in the inner layer with

3
i = le2 §§1NRe (32a)
and

21 = KyD (32b)

where Von Karman's constant X = 0.4, and the Van Driest damping factor is as
follows:

D=1- exp(-y /a%) (32¢)
The dimensionless distance

§+ - pquyNRe

H (3248)

w
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(32e)

and

at = 26 (32f)

In all calculations the normal distance is replaced with the radial distance.
The eddy viscosity in the outer layer is given by

N -
€, = 0.01680u,8; "Ny Fyq op (¥) (33a)

o

*
where u, 1is the boundary-layer edge velocity, 6i is the incompressible
displacement thickness

* ye u -
85 =.j§ <1 - E;) dy (33b)

and FKleb(§) is the Klebanoff intermittency function

- -1
C
- KlebY
Frlep(¥) = |1 + 5.5 ——:;——) (33c)
Y
The constant C = 1.0 and §* = §. The distance §O is measured from the

Kleb
surface to the point of zero velocity so as to exclude the separated flow region.

In this way a large reverse flow region dges not cause unrealistic values of gg.
Usually, the edge of the boundary layer Ye 1s defined as the point at which
the u-component of the velocity is 99.5 percent of the free-stream value. How-
ever, this edge criterion can result in a value of §e that is far beyond the
edge of the boundary layer when the velocity profile is distorted because of the
presence of a shock in the flow field or a sufficiently strong viscous-inviscid
interaction. This can result in a displacement thickness that is as much as

2 times larger than the actual value (ref. 25). With this larger value of the
outer-layer length scale, the mixing in the outer region of the turbulent bound-
ary layer is larger. For the transonic flows being considered in this work, a
total-pressure criterion is used to determine the edge of the viscous layer.
Moreover, the point at which the local total pressure is O.995pt,w is defined
as §e' Since a Pt profile is less sensitive to the presence of a transonic
shock wave than the velocity profile, the true edge of the boundary layer should
be more accurately determined.

Baldwin-Lomax model.— The Baldwin-Lomax {(B-L) model represents the inner
eddy viscosity with

20



ey = P2 |wng, - (34a)

where lw[ is the magnitude of the vorticity vector. 1In axisymmetric flow

du ov

Wl =l - == 34b

l I or oz ( )
The form for the outer eddy viscosity is

€0 T 0'0168CcppNRerakeFK1eb(y) (35a)
where

Fwake = ymameax (35Db)
The quantity §max is the location at which the maximum (Fp,y) of F(§)
occurs, and

F(y) = y|w|D (35¢)
In equation (35a) the constants are

CCp = 1.6

(354a)

CKleb 0.3
and

—% -

Y = Ynax (35e)

Relaxation models.- Although the turbulence in a flow does not respond

immediately to a sudden change in the mean flow (i.e., a switch from zero or
favorable pressure gradient to adverse pressure gradient), it does retain memory
of the change. A relaxation or lag model attempts to take into account the
memory of the turbulence. The relaxation models that include the simple alge-
braic models are of the following types: global and local. In a typical global
model, the value of the eddy viscosity at a point on a streamline (or a constant
body-fitted coordinate line) and downstream of some disturbance depends on the
eddy viscosity at a point, e.g. zy, upstream of the change in the flow character
and located on the same streamline. This dependence decreases as the distance
from z; increases, and eventually the viscosity takes on an eguilibrium value.
A local lag model allows the turbulent viscosity at a point in the flow field to
depend only on the viscosity at the preceding point (i.e., Az upstream) on a
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streamline. A number of investigations (refs. 7, 15, 25, and 26) have shown
that a global relaxation model yields better surface-pressure predictions than
the basic algebraic model when the free-stream flow is supersonic and flow
separation occurs. In reference 27 Deiwert employed a local relaxation model
to compute separated transonic flow over a circular-arc airfoil. The surface-
pressure results obtained with this model were in better agreement with experi-
mental data than those calculated without relaxation. However, the pressure
variation in the separated region was not improved.

In the present work the global relaxation model suggested by Shang and
Hankey (ref. 15) is used. With this model the relaxed eddy viscosity is
evaluated from

eglz) = €1 + (€ - €I){l - expl}zl - z)/X]} (36)

where €1 is the value of the eddy viscosity at location z; (the axial
coordinate at the start of relaxation), € 1is the local eddy viscosity calcu-
lated with either the Cebeci-Smith or Baldwin-Lomax model, and A is a relax-
ation length parameter specified at the beginning of a calculation. In the
separated subsonic flows considered in this report, zy 1is placed at the point
of minimum pressure, which occurs on the shoulder of a boattail and upstream of
separation. The minimum-pressure location is determined with A =0 (no
relaxation), and relaxation is initiated in the calculation after this deter-
mination. For the supersonic cases 2z; 1is located at about 65, boundary-layer
thickness at separation, upstream of the separation point (determined with

A = 0). This location nearly corresponds to the point of minimum pressure.

RESULTS AND DISCUSSION

In this section results from the solutions for transonic flow over three
axisymmetric afterbodies, each consisting of a cylinder, circular-arc boattail,
and cylindrical plume simulator, are presented. Calculations were performed for
free-stream Mach numbers of 0.8 and 1.3 for each configuration, and the flows
considered ranged from fully attached to highly separated. The attached or
nearly attached flow cases are used to establish artificial boundary locations
and finite-difference grid requirements. For the subsonic problems the follow-
ing conditions were imposed:

- - - 6
1.70 T, = 3.15 T, = 3.11 Npe = 2.23 % 10

Pref = 58.74 kPa Tyer = 105.2 K

22



In the supersonic cases the prescribed conditions were:

- - _ 6
Pt = 1.17 Ty oo = 1.41 T, = 1.30 Npo = 1.03 x 10

~

Pref = 87-09 kPa T

I
N
S
o
wn
=

The numerical predictions obtained by solving the time-averaged Navier-Stokes
equations are compared with the experimental data of Putnam and Abeyounis
(ref. 1) and Reubush (ref. 11). The parameters describing the boattails are
given in figure 5. The ratio of boattail length to boattail-exit diameter £
varies from 3.5 to 1.6, and the corresponding chord boattail angles BC vary
from 7.9° to 17°.

Subsonic Solutions

Attached flow case.- A solution was obtained for flow over afterbody con-
figuration 3 with M_ = 0.8. The finite-difference grid consisted of 51 points
in the axial direction (22 points in boattail region) and 61 points in the radial
direction (about half the points in the viscous layer). The first mesh point
off the afterbody was located at a distance of" 0.00186 from the surface, and
the y%* value for this point was about 19. Therefore, this point was in the
inner part of the buffer region (transitional region between laminar sublayer
and inner turbulent layer) of the turbulent boundary layer. The inflow bound-
ary of the physical space of concern (see fig. 1) was placed approximately
3.4de ahead of the beginning of the boattail. This was done to ensure that
the flow would have sufficient distance in which to recover from any mismatch
between the approximate solution, which provided the necessary quantities for
the inflow boundary conditions, and the Navier-Stokes solution. The outflow
boundary was situated far enough downstream (5de from the junction of the
boattail and simulator) for the flow to become cylindrical in character and
have minimal influence on the boattail region. The upper boundary was located
at r = 4.

The variation of the calculated surface-pressure coefficient C with the
nondimensional axial distance =z for the physical domain described in the pre-
ceding paragraph is compared with experimental data in figure 6. The prediction
of the recompression of the boattail flow is in very good agreement with the
measured data. The computed CP values on the plume simulator also compare
very well with experiment. However, the pressures in the expansion part of the
boattail flow are overpredicted. This indicates that the inviscid pressures
imposed on the boundary layer in the expansion region are too high, and the
velocities at the edge of the viscous layer are too low.

The overprediction of pressures on the shoulder of the boattail requires

further attention. In the calculation the upper boundary was an inflow bound-
ary, which means that the u~component of velocity is specified and takes on the
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free~stream value. Therefore, if the upper boundary were too close to the sur-
face, the edge velocities of the boundary layer would be forced to be smaller
than they should be.

In order to assess the effect of the upper boundary location, a calculation
was performed with the upper boundary moved to r = 12. The surface-pressure
distribution, which is shown in figure 6, is in excellent agreement with the
experimental data. The Cebeci-Smith (C-S) and the Baldwin-Lomax (B-L) turbulence
models (to be referred to as baseline models) gave essentially the same results
for this problem. In figure 7 the pressure field for the entire flow region is
represented in the form of constant contour levels in intervals of 0.02.

The calculated velocity profiles at three axial stations (slightly beyond
the start of the boattail, just downstream of the end of the boattail, and
almost at the midpoint of the plume simulator) are displayed in figure 8. These
profiles are compared with those from a boundary-layer solution (ref. 22) which
used the surface afterbody pressures obtained from the Navier-Stokes solution.
In the boundary-layer computation the minimum grid spacing in the §—direction
(direction normal to body surface) was about 3.03 X 1076, which is more than
two orders of magnitude smaller than the value for the Navier-Stokes grid.
There were 200 to 300 points, depending upon 6, in the viscous layer. These
solutions are in good agreement. Thus, good boundary-layer definition is indi-
cated for the Navier-Stokes result.

Separated flow cases.- In figure 9 predicted surface pressures are com-
pared with the experimental data for afterbody configuration 2 at a free-stream
Mach number of 0.8. The pressures calculated with the two baseline turbulence
models exhibit only small quantitative differences. With these models the
expansion on the boattail is captured; however, the C values between the
minimum pressure location and separation are too low. There are large differ-
ences between predictions and experiment in the reverse flow region, and there
is early reattachment of the separated flow. Downstream of the positive experi-
mental Cp peak value, the predictions are good. Finally, using either of the
baseline turbulence models, the computed separation location agrees very well
with the value obtained from oil-flow studies (ref. 28).

For the implementation of the C-S and B-L turbulence models with relax-
ation, hereafter designated as R(C-S) and R(B-L), the point at which relaxation
is initiated =z and the relaxation-length scale A must be specified. As
mentioned previously, the delayed response of the turbulence to a rather abrupt
application of an adverse pressure gradient is modeled by starting the relax-
ation at the point of minimum pressure (i.e., just prior to onset of dp/dz > 0).
The influence of the quantity A on the surface-pressure variation for after-
body configuration 2 when the R(C-S) model is employed is shown in figure 10.
The lag length scale is varied from zero to infinity. When A. is zero, the
R(C-S) model reduces to the equilibrium model (C-S), and when A is infinity,
the eddy viscosity at zy and y = Constant is maintained in the downstream
portion of the flow. The result for X = 2081, where 067 is the boundary-layer
thickness at the beginning of the relaxation, appears to exhibit the best over-
all agreement with the experimental data.
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In figure 11 the pressure distributions calculated with the two relaxation
turbulence models are compared. For each case A  equals 2061. The results
obtained with these models are in good agreement with laboratory data upstream
and downstream of the separation region. The solution using the R(B-L) model
agrees a little better with the experiment at the pressure plateau than the
solution using the R(C-S) model. However, both results slightly underpredict
the pressure peak in the vicinity of reattachment. This seems to suggest that
reattachment occurs too soon. Nevertheless, these solutions represent a sub-
stantial improvement over those determined with the baseline models.

In order to understand the effects of relaxation, the viscosity variations
in the radial direction at three axial stations are considered in figure 12.
These distributions were computed with A =0 and A = 2051 using the R(C-S)
model. They show that there is a decrease in eddy viscosity in the outer turbu-
lent layer of the viscous region when relaxation is used. This means that there
is a decrease in turbulent mixing and, therefore, suggests that less streamwise
momentum is being transported from the outer part into the inner part of the
boundary layer. Such behavior could account for the increased longitudinal
extent of the separation bubble when a relaxation model is applied. (See
figs. 9 and 11.) The lower values of eddy viscosity also indicate smaller tur-
bulent shearing stresses in the outer portion of the viscous layer. This would
be a contributing factor in the reduction of surface pressures in the pressure
plateau.

The final case investigated with M, = 0.8 was flow over afterbody con-"
figuration 1, which has the steepest boattail chord angle (about 17°) considered.
Surface pressures determined for this case are compared with measurements in
figure 13. The qualitative and quantitative trends exhibited by the predictions
with the baseline turbulence models are essentially the same as those described
for configuration 2. The wall-pressure solution obtained using the R(C-S) model

and A = 206I shows a pressure plateau region, but the pressures are too high.
This igs probably because separation is predicted too late (nearly 0.3d, beyond
the experimental value). Since the separation location computed with the C-S

model is almost the same, there appears to be a deficiency with the C-S model
for this particular flow. The minimum experimental pressure is slightly over-
predicted, but the recompression is predicted very well. The agreement is
fairly good downstream of reattachment. The complete pressure field for this
solution is presented in figure 14. Also, in figure 15 the u~velocity profiles
at four axial stations are shown.

The wall Cp values determined with the R(B-L) model and A = 2061 are
also given in figure 13. These values agree very poorly with the laboratory
data. Since the prediction for configuration 2 is fairly good, the following
question arises: Why does the R(B-L) model perform so poorly for the configura-
tion 1 case? To investigate this question some of the properties of the B-L
model were considered. For example, with the B-L model the eddy viscosity in
the outer layer of a turbulent boundary layer is proportional to the product
: Where §max is the § location at which the maximum of F(y) occurs.

Fmaxymax _
The function F(y) depends on the magnitude of the vorticity. (See section

entitled "Turbulence Modeling.") The variation of §max with =z for
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configurations 2 and 1 is displayed in figure 16. Note the large drop in §max
for configuration 1 just downstream of the beginning of the boattail. This
drop is caused by an increase in vorticity level in the inner layer of the
viscous region. Moreover, the function F(§) exhibits a double peak rather
than the usual single peak. As a result of the drop in §max' the values of
the outer eddy viscosity undergo an abrupt and substantial decrease. From the
previous discussion on relaxation, one can see that this decrease in turbulent
mixing in conjunction with the subsonic character of the flow would tend to
account for the prediction with the R(B-L) model. Furthermore, if a single
relaxation length is desired in the application of the R(B-L) model to a inen
class of subsonic flows, this behavior points to the need for either redefining
the outer length scale §max or developing a different type of relaxation
formula.

An additional calculation was made with the R(B-L) model and with the local
outer length scale based upon the position at which the second peak value of
F(y) occurs. 1In this case the peak of F(y) was determined by starting at an
approximate location for the edge of the boundary layer and searching inward
along a line where =z = Constant. As shown in figure 17, the resulting pressure
distribution, except for minor differences in the separation bubble, is the same
as that obtained with the R{(C-S) model.

Supersonic Solutions

Nearly attached flow case.- A calculation was done for afterbody configura-
tion 3 when the free-stream Mach number was 1.3. A 41 X 51 grid was used, and
there were 19 points in theAboattail region. The minimum grid spacing in the
radial direction was 0.001d,. The inflow boundary was located at 286 b§fore
the start of the boattail, and the outflow boundary was placed at about 4de
beyond the end of the boattail. In this case, an oblique shock impinges on the
viscous layer just upstream of the point where the boattail joins the plume
simulator. The upper boundary of the physical domain was placed a sufficient
distance from the wall boundary so that the shock did not intersect it. There-
fore, the boundary conditions at this boundary could be applied in the same
manner as in the subsonic case.

Variations of surface-pressure coefficient for the afterbody flow are
shown in figure 18. The decrease in pressure during acceleration of the flow
over the boattail is in good agreement with the experiment. The minimum boat-
tail pressure occurs much further downstream of the start of the boattail
(x2.6d,) than it does in the subsonic case. This is certainly a consequence of
the lack of upstream feeding in the inviscid flow field. There is an overpre-
diction of the pressure rise associated with the shock; however, the Cp vari-
ation beyond the experimental peak value of Cp agrees reasonably well with the
data. The result obtained with the B~L turbulence model is generally in agree-
ment with that determined with the C-S model. It does show a small decrease in
the peak positive value of Cp. In each solution a very small shock-induced
separation region is predicted, and the separation and reattachment points are
indicated in figure 18.
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Solutions computed using.the R{(C-S) and R(B-L) models are also presented
in figure 18. 1In both cases A was assigned a value of 1081 (length scale sug-
gested by previously investigated supersonic flows with separation, refs. 7
and 15), and relaxation was initiated at =z = 4.98. There is less pressure
rise with these predictions than with those obtained with the baseline models.
The longitudinal extent of the reverse flow region is about the same. However,
the overall size of this region is a little larger.

Since the streamwise flow-field gradients are large in the vicinity of the
boattail and plume-simulator juncture, some additional calculations were per-
formed for configuration 3 with a refined grid in the z-direction at the junc-
ture. A 51 X 51 grid was used, and Az at the juncture was about 0.016, which
is approximately 0.125 of the value in the previous computations. For both
baseline turbulence models the refined grid pressure distribution was somewhat
smoother in the neighborhood of the juncture. The results with all four turbu-
lence models exhibited about the same pressure variation in the junctional
region as those determined with the coarser grid. The surface pressures were
slightly higher downstream of =z = 7.4 in the refined grid cases.

In figure 19 the salient features of the supersonic flow field are dis-
played with a pressure contour plot. The approximate position of the oblique
shock is readily discernible. Characteristics of the flow field are also illus-
trated in the computed u-velocity profiles at four axial stations in figure 20.
These characteristics include the inviscid acceleration, which results from the
expansion on the boattail, and the viscous-inviscid interactions.

Separated flow cases.- The surface-pressure distributions for afterbody
configurations 2 and 1 with M_ = 1.3 are shown in figures 21 and 22. The
pressures corresponding to the inviscid expansion are predicted very well,
except near the minimum-pressure location, for all four turbulence models. For
both configurations the calculated Cp values using the baseline models exhibit
very poor agreement with data beyond the experimental negative peak value of Cp.
In the application of the R(C-S) and R(B-L) models, the length scales for
relaxation A were taken to be 561 and 2.551, respectively. The results
with the R(C-S) model are in fairly good agreement except in the pressure pla-
teau region. Although there is a plateau in the recirculating region, the com-
puted Cp values are too high. Separation is probably downstream of where it
should be. With the R(B-L) model, the initial part of the plateau is nearly
reproduced, but the extent of the plateau in the z-direction is underpredicted.
Moreover, the start of the pressure rise in the separation bubble occurs too
early. Such behavior is principally due to 'the sharp decrease in the viscosity
levels when the flow changes from highly accelerating to highly decelerating.
This occurs in the calculation for configuration 2 as well as that for con-
figuration 1 because of the higher streamline curvature with the supersonic
flows than with the subsonic flows.

The influence of A on the pressure variation is shown for configuration 1
in figure 23. The trends displayed in these results calculated with the R(C-S)
model are the same as those associated with the R(B-L) model when the relaxation
parameter is varied between zero and infinity.
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The pressure field for configuration 2 and the Mach number variations for
configuration 1 are presented in the contour plots in figures 24 and 25. The
prominent features of these flow fields are depicted. For example, the separa-
tion and reattachment shocks which coalesce to form a single shock are evident.
The combined effect of this lambda-type shock and the viscous-inviscid inter-
action on the u-velocity profiles for the flow past configuration 1 (computed
with the R(C-S) model) is revealed in figure 26. There is a large separation
region present in this case. The maximum reverse-flow velocity is about 29 per-
cent of the free-stream velocity, and the maximum radial distance from the sur-
face to the outer boundary of the separation bubble is about O.lde. For the
corresponding subsonic case these same quantities are about 13 percent and
0.074d,. 1In the configuration 2 computation, the maximum reverse velocity with
the R(C-S) model is 0.19a, when M, is 1.3, and 0.0%9u, when M_ 1is 0.8.

CONCLUDING REMARKS

The mass—-averaged Navier-~Stokes equations have been solved for turbulent
transonic flows over axisymmetric afterbodies. Although only circular—-arc boat-
tails were considered in this paper, the solution procedure has been formulated
to treat arbitrary geometries. Boattail-plume simulator surface-pressure dis-
tributions have been computed and compared with experimental data. Four alge-
braic models have been considered for turbulence closure. Very good agreement
with experiment was obtained using two-layer eddy-viscosity models for an
attached subsonic (M, = 0.8) turbulent flow. Although a solution for the same
configuration at M, = 1.3 overpredicts the pressures in the vicinity of the
boattail-plume simulator juncture, the agreement with experiment is generally
fairly good.

As expected, the standard equilibrium turbulence models are not adequate in
the calculation of moderately to strongly separated flows. They neither account
for the influences of pressure gradient nor include upstream history effects.
For both subsonic and supersonic cases, the computed surface pressures using
the R(C-S) model (relaxation with Cebeci-Smith model) generally show good quan-
titative agreement with measured data, except in the reverse-flow region. With
this model the qualitative behavior in the separation bubble is captured, but
the pressures in the separation region are overpredicted.

Some similar results were obtained with the R(B-L) model (relaxation with
Baldwin-~Lomax model). The dependency of this model on local vorticity can have
adverse effects on the flow solution when a simple relaxation formula is used,
and the outer length scale in the viscous region is defined in its original
manner.
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The results of this investigation suggest that an eddy-viscosity model in
conjunction with an appropriate form of relaxation may possibly be adequate to
simulate the pressure field of a separated boattail flow. However, detailed
turbulence measurements of afterbody flow fields are required in order to obtain
a satisfactory relaxation formula and to provide calibration and verification of
the associated turbulence model.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

December 1, 1980
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Figure 1.- Navier-Stokes solution region for flow past
cone-cylinder-afterbody configuration.

simulator



I
L — S -
ﬁ.l | _ | ]
o [ 11
I [ 1
1 1T 7 1
l_ | |
. I
I
DR SR 111
1 1 7
- JE _ ] 1 11
1 1T 17
1 T T
—T1
—— 1 111
[ I
1 11
e S5
T T..- T 1T
. N | |
U U S ]

Figure 2.- A typical finite~difference grid in the physical domain.

33



34

Subsonic_cases

Upper boundary
Inflow - p =1, u=1,p=p

oo

Outflow - p = p_

Inflow
boundary

pt’ Tt, e

Wall boundary u=0,v=20,T-=

—

Supersonic cases

Upper boundary

Inflow-p=1l,u=1,p=p

oo

Outfiow - p = p_

Inflow
boundary

ps Uy, v, T

Wall boundary u =0, v=20,T=

—

Figure 3.- Flow quantities specified at boundaries of physical domain.

Qutflow
boundary

p=0p,

Qutflow
boundary

No flow
quantity
specified



® @ © ® ® ©® &® &
® & & ® © ® @ ©

X Grid point

® Grid point at which solution
is. computed

@ Time increment point (TIP)

Atl = Atmin

TIP

Figure 4.- Grid subcycling procedure.

35



g, >

36

-(——ﬂfm——aT

Configuration| 2% dm re Bes deg
3 3.536 2.000 13.000 7.891
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Figure 5.- Boattail geometric parameters.
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