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I. INTRODUCTION 

In recent years a multitude of techniques has been developed for 

generating computational grids required in the finite difference or 

finite element solutions of partial differential equations on arbitrary 

regions. The importance of the choice of the grid is well known. A 

poorly chosen grid may cause results to be erroneous or may fail to 

reveal critical aspects of the true solution. Some considerations 

that are involved in grid selection can be noted from the papers of 

Blottner and Roache [1], Crowder and Dalton [2], and Kalnay de Rivas 

[3]. While these papers discuss error for one-dimensional problems, 

few results exist for higher dimensions. This report will examine the 

errors in approximating the derivatives of a function by traditional 

central differences at grid points of a curvilinear coordinate system. 

The implications concerning the accuracy of the numerical solution of 

a partial differential equation will be explained by considering several 

numerical examples. Although this study only considers the two-dimensional 

case, the techniques and implications are equally valid for three­

dimensional grids. 

An interesting feature of the error analysis in this report is its 

simplicity. Most of the results follow by merely working with the trunca­

tion terms of some power series expansion. It is noted that these series 

expansions also give rise to higher-order difference approximations 

which can significantly reduce error when the grid spacing changes rapidly, 

as might be the case in problems with shock waves or thin boundary layers. 
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When transforming a partial differential equation from rectangular 

to curvilinear coordinates, the derivatives of the functions defining 

the transformation must be evaluated. If the relation between rectangular 

and curvilinear variables is given by a simple analytic expression, the 

transformation derivatives may be computed either analytically or 

numerically. Truncation errors in both cases are considered for 

comparison. 

One objective of this work is to provide tools to examine a grid, 

together with a computed solution, and predict possible inaccuracies 

due to the grid. The grid may thus be redefined to give a better 

solution. Directions for future work could be an extension to higher 

dimensions of the one-dimensional grid optimization technique of Pierson 

and Kutler [4J. 

This report also discusses the control of coordinate line spacing 

through functions incorporated in the elliptic generating system for 

the curvilinear coordinates. Attraction of coordinate lines to other 

coordinate lines and also attraction to fixed lines in physical space 

are covered. Appropriate forms of the control functions required to 

produce desired spacing distributions ate derived. Finally a procedure 

for distribution of points around a boundary curve according to local 

boundary curvature is given. In addition a few examples of recent 

generation of coordinate systems are given. 
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II. TRUNCATION ERROR ANALYSIS 

Suppose a curvilinear coordinate system is generated by trans­

forming an arbitrary physical region of the xy-plane onto a rectan­

gular computational region of the t.:n-plane'. The relationship between 

partial derivatives of a function f with respect to physical and 

computational variables is well-known. It will be included here for 

later comparison with approximations derived from series expansions. 

Only first and second order derivatives will be considered: 

()f 
~= 

2 ,,2f 
+ ("o()~) 0 

'-> ay2 
(1) 

The derivatives with respect to n can be obtained by replacing t; with 

II in the first two equations of (1). 

Although this change of variable~ formulation can be easily used 

in deriving difference approximations for derivatives with respect to x and y, 

nothing can be said about truncation error. An error analysis can, however, 

be based on Taylor series expansion of function values at neighboring points 

about a single point in the physical region. In order to distinguish 

between derivatives and differences in the following, the differential 

notation is used for derivatives while subscrip~denote the usual 

second order central difference expressions. The following approximations 

for the central differences are valid when all series are truncated after 
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second derivative terms. A unit mesh width in the sD-plane is assumed 

without loss of generality. 

1 o2f 
+I Yf/s s -2 

oy 

af + af 2 1 2 If 1 
~ xss ax y~~ ay + (xs + 4x~~ ) dX2 + 2(x~ys + 4~s~Y~~) 

(2) 

Together with the corresponding two equations for fD and f~D' this 

constitutes a system of five simultaneous equations which can be solved 

to produce difference expressions of two first and three second derivatives 

of f with respect to x and y. Assuming the third order derivatives of 

f are bounded, the truncation error in the above expressions is 0(h3), 

where h is some measure of the local mesh spacing. Consequently, when 

(2) is solved for the difference approximations of the physical derivatives 

of f, the truncation error is 0(h2) for first derivatives and O(h) for 

second order derivatives. In contrast, solving the system (1) with the 

f, x, and y derivatives replaced by differences (and including the 

corresponding equations for fD and fnn) Simultaneously to produce expres­

sions for the five physical derivatives of f gives rise to O(h) and 0(1) 

truncation errors for the first and second order derivatives. 

In both cases it has been assumed that the coefficient matrices on 

the right hand sides of (1) and (2), i.e., the coordinate derivatives, 

including the omitted ~ differences, are well conditioned. III conditioned 

matrices which may result from extremely skewed coordinate lines could 

cause further deterioration in accuracy. Higher order accuracy can be 



obtained using (1) if second order coordinate differences are assumed 
2 

to be O(h). This effectively limits the rate of change in coordinate 

line spacing and the curvature of coordinate lines, however. No 

simple relation between the coefficients of the second order derivatives 

in the last equation of (1) and (2) was found except for the fact that 

they would be equal if the differences in (2) were replaced by deriva­

tives. 

The variation in numerical solutions using (1) and (2) is illustrated 

in the solution of Laplace's equation. The function 

u(x, y) ;;> 2)) x(l+l/(x +y 

2 2 satisfies Laplace's equation for x + y > 1 and has a vanishing normal 

derivative on the boundary. This boundary value problem was solved 
2 2 numerically on 1 S x + Y S 100. A grid was selected with 39 radial 

coordinate lines and 49 circular coordinate lines. The first 23 

circular coordinate lines were uniformly spaced after which the spacing 

was increased by a factor of 5. The difference between the exact and 

numerical solution is indicated in Figure 1 for difference equations 

derived from (1) and (2). The effect of the sudden change in coordinate 

line spacing was clearly less severe when using difference expressions 

from the higher order series expansion. 

A similar error analysis can be carried out where the derivatives 

of x and y with respect to ~ and n are computed analytically rather than 

approximated by differences. In this case a series expansion in the 

~n-plane is required, followed by substitution of expressions for the 

higher-order ~ and n derivatives in terms of the x and y derivatives 

(see Ref. 5 for complete detail). Retaining physical derivatives of f 

through second order, as in (2), the following approximations are 

generated. The second derivative approximations, f~~ and f~n' are very 

lengthy and only the first and second order derivatives of x and yare 

included here, the complete expressions being given in Ref. 5. The 

first derivative approximation includes third order derivatives~ 
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f sf) 

(3) 

Considerable similarity exists between the approximations in (2) 

and (3) and corresponding statements can be made about the effects of 

the coordinate system on truncation error. For example, it can be noted 

that for the first derivative approximations to be second order accurate, 

the second and third order derivatives of x and y must be O(h 2) and 

O(h3), respectively. Due to the additional restriction on the third 

order derivatives, it is not difficult to find examples where solutions 

of (1) with numerically computed derivatives of x and yare much more 

accurate than solutions using the analytical expressions for these 

derivatives. 

With reasonable care in the selection of the grid any of the above 

difference formulations will give equally good results. For example, 

consider the grid for the regjon about a loukowski airfoil depicted in 

Figure 2. This grid was constructed by the conformal mapping of an 

annular region with uniformly spaced circular coordinates. As in the 

above example, Laplace's equation is solved with vanishing normal 

derivative imposed on the airfoil. The solution is the velocity potential 

for flow about the airfoil at zero angle of attack. Table 1 indicates the 



the difference between the computed solution and the exact solution 

on the surface of the airfoil where the error was greatest. 

Table 1. Comparison of Difference Formulations 

Differencing Bethod Max Error RMS Error --
Taylor Series (2) .03123 .00864 

Analytic (1) .02216 .01256 

Numerical (1) .02411 .00795 

For this example there is clearly no advantage in using the difference 

expression from the series expansion in (2) over using (1) with the 

derivatives of x and y computed either analytically or numerically. 

There is another aspect to the question of the use of analytically 

calculated coordinate derivatives, as opposed to numerical difference 

representatives, when fully conservative difference formulations are 

used. In that case the formulation will not be fully conservative with 

the analytical expression in the sense that a uniform solution on the 

field will not be strictly preserved. This can lead to instability if 

the differences of the coordinate derivatives are large. 

Thus far only problems of error which deal directly with the coor­

dinate system have been considered. This source of error can be controlled 

by limiting the higher order differences of derivatives of x and y. A 

more serious problem in numerical computations is the error in the approxi­

mate solution which results from large higher order derivatives of f. 

In transforming from phySical to computational variables, the derivatives 

of f with respect to ~ and n are replaced by differences regardless of 

whether derivatives or differences are used for x and y. The truncation 

error in approximating the computational derivatives of f can be minimized 

to some degree by a properly chosen grid. However, there are limitations 

in the grid choice since, as we have previously observed, a highly dis­

torted grid also contributes to large truncation errors in the approxima­

tion of the physical derivatives of f. To analyze the total truncation 

error due to solution and grid, it is convenient to introduce matrix 

notation. 

Suppose the derivatives in the physical and computational planes 

are related by (1). This relation can be written 

/;, '" AD 

where 

(4) 
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"-
af af ax ~ 0 0 0 
aE; ax aE; aE; 
af df ax ~ 0 0 0 
al') ay al') all 

a2f a2f a2x £y 2 2~~ 2 
t:. 

aE;2 
D A (ax) af,; aE; (~) 

ax 2 af,;2 aE;2 aE; aE; 

a2
f a2

f a2x iL dx ax ax iz + ax iz Ezh 
af,;all axay aE;all af,;an aE; all dE; an an aE; aE; an 

a2
f a2

f a2x iz 2 2 ax iY 2 
(~ ( 3y) 

an2 a/ an 2 an 2 an an all an 

Difference expressions for D are generated by replacing the elements 

of t:. (and possibly A) by the appropriate difference approximations. If 

the truncation term is retained, the equation (4) becomes ~ 

o + E = AD (5) 

where 0 is the vector containing the difference approximations and 

E = 

1 a3
f 

- 6" aE;3 

1 a3f 
- "6 all3 

1 a4f 
- 12 af,;4 

4 4 
!<_a_f_ +~) 
6 aE;3 all aE;Cl1l3 

1 a4
f 

- 12 an4 



Solving for D in (5) we have 

D = A-16 + A-IE 

Now E is unknown but can be estimated using differences of f. 

Although such numerical differentiation does not tend to be very 

accurate when applied to an approximate solution of a partial differ-
-1 

ential equation, the value of A E has been used successfully to 

distinguish regions of high error from regions of low error. This can 

be illustrated by returning to the numerical solution of potential flow 

about the loukowski airfoil in Figure 2. The comparison of truncation 

error with error in the solution is indicated in Figure 3 for grid 

points beginning near the trailing edge and ending near the leading 

edge of the airfoil. The grid points were chosen to lie on the second 

coordinate line from the airfoil surface so that no extrapolation was 

needed to estimate the elements of [. 

Each factor in the truncation error estimate can be analyzed 
-1 

independently. The factor A deals only with the grid coordinates, 

(6 ) 

while E involves only the solution of the partial differential equation. 

In the above example consideration of E alone would seriously under­

estimate the order of accuracy near the leading and trailing edge since 

the distortion in the coordinate system would not be taken into account. 
-1 

The influence of the factor A can be analyzed by examining the condi-

tion of the matrix A. An ill-conditioned matrix not only magnifies the 

effect of the truncation terms in £ but also the effect of deleting the 

additional terms which appeared in the series expansions (2) and (3). 

We will now consider a case where an extremely ill-conditioned 

matrix is encountered. The Navier-Stokes equations in stream function­

vorticity formulation were solved numerically for viscous flow about a 

circular cylinder. The data in Table 2 illustrates the growth in the 

condition number of A as the circular coordinate lines are concentrated 

near the cylinder to resolve the boundary layer. Only the Laplacian 

of vorticity was included in the truncation error computation since 

this truncation term clearly dominated the remaining truncation terms 

in the equations. As n increases,the dominating factors in the trunca-
-1 

tion term shifts from the elements of £ to the elements of A . An 

examination of vorticity values revealed a clear deterioration of the 

numerical solution for n ~ 4. 
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Table 2. Maximum truncation error for V2 w and 
condition number of A. Circular coordinate lines 

r = 1 + 9(1 - exp(n~/48» I (1 - exp(n», 
n = 0, 1, ---, 48. Reynolds no. = 5. 

-
n Max Truncation Max Cond l 

( A) 

1 .1079 45 

2 .0482 78 

3 .0891 259 

4 3.0918 1017 

For later reference, we have from (2) for the one-dimensional case 

that the simple two-point central difference expression for the first 

derivative, f~/x~, has a truncation error term given by 

1 ,/f 
-2x " -2 

ss ax 

which acts as a numerical diffusion. This effect was pointed out earlier 

in Ref. 1. 



II 1. COORDIN",TE SYSTEH C_ONTROL 

A. Or2$inal Generating System 

In the formulation of boundary-fitted coordinate systems generated 

from elliptic systems as given in Ref. 6 the curvilinear coordinates (~, n) 

were determined as the solution of the system 

2 
\j t;, 

2 
\j 11 

P(';:,l1) 

Q(~,T)) 

(7a) 

(7b) 

which in the transformed plane becomes (from here on, ~ubscripts indicate 

derivatives) 

(8a) 

CSb) 

with a __ x 
11 

C9a) 

(9b) 
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2 2 
Y - Xt; + Yt; (9c) 

J - (9d) 

B. Attraction to Coordinate Lines 

Here the functions P and Q are to be chosen to control the coordinate 

line spacing. In Ref. 6 those control functions were taken as sums of 

decaying exponentials of the form 

n 
p = -[ a.sgn(~ - ~.)exp(-c·l~ - ~. I) 

i=1 1 1 1 1 (lOa) 

n 
Q = -[ a.sgn(~ - n.)exp(-c. In - n. I) 

i=l 1. 1 1 1 
(lOb) 

_ ~ bisgn(n - n.)exp(-d.«~ - ~.)2 + (n _ n.)2)1/2) 
i=1 1 1 1 1 

Here the a., b., C., and d
i 

of the Q functions are not necessarily the 
111 

same as those in the P function. 

In the P function the effect of the amplitude a i is to attract 1;-



coordinate lines toward the s.-line, while the effect of the amplitude 
1 

bi is to attract s-lines toward the single point (~i' ni ). Note that 

this attraction to a pOint is actually attraction of ~-lines to a point 

on another s-line, and as such acts normal to the s-line through the 

point. There is no attraction of n-lines to this point via the P 

function. In each case the range of the attraction effect is determined 

by the decay factors, ci and d
i

. With the inclusion of the sign changing 

function, the attraction occurs on both sides of the ~-line, or the 

(s., n.) point, as the case may be. Without this function, attraction 
1 1 

occurs only on the side toward increasing S, with repulsion occuring 

on the other side. 

A negative amplitude simply reverses all of the above-described 

effects, i.e., attraction becomes repulsion and vice versa. The effect 

of the Q function on n-lines follows analagously. A number of examples 

of this type of coordinate line control have been given in Ref. 6. 

In the case of a boundary that is an n-line, positive amplitudes 

in the Q function will cause n-lines off the boundary to move closer to 

the boundary, assuming that n increases off the boundary. The effect 

of the P function will be to alter the angle at which the s-lines inter­

sect the boundary, since the points on the boundary are fixed, with 

the s-lines tending to lean in the direction of decreasing s. If the 

boundary is such that n decreases off the boundary then the amplitudes 

in the Q function must be negative to achieve attraction to the 

boundary. In any case, the amplitudes a. cause the effects to occur 
1 

all along the boundary, while the effects of the amplitudes bi occur 

only near selected points on the boundary. 

If the attraction line and/or the attraction points are in the 

field, rather than on a boundary, then the attraction is not to a fixed 

line or point in space, since the attraction line or points are them­

selves solutions of the system of equations, the functions P and Q 

being functions of the variables sand n. It is, of course, also 

possible to take these control functions as functions of x and y, instead 

of ~ and n, and achieve attraction to fixed lines and/or points in the 

physical field. This case becomes somewhat more complicated, since it 

must be ensured that coordinate lines are not attracted parallel to 

themselves, and its discussion follows in a later section. 
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C. Control Functions for Certain Spacin~ 

For certain simple geometries it is possible to integrate (8) 

analytically for appropriately selected forms of the control functions, 

and thus to determine the control functions required to produce a certain 

line spacing. In this regard consider the case of two concentric circu­

lar boundaries of radii rl and r2, with r2 > rj. 

With n = 1 on the inner boundary, n = J on the outer boundary, and 

~ varying monotonically from I to I around these boundaries, a solution 

of (8) can be given in the form 

x = r(n) cos [2'11 (;-1)] 
I-I (lla) 

y r(n) sin 

Substitution of these expressions into the equations of (8) with P(t,~) 

yields 

o 

This can be made a perfect differential by taking the control function 

Q to be of the form (following the direction of Ref. 7) 

fll (11) 1 
Q - - fiTriT -2 

r' 

(llb) 

o 

(12) 

where the minus sign has been introduced merely for convenience. Since 

__ 1_ is equal to ~ for the solution given by (11), this form of Q suggests 
r,2 J 

taking Q to be of the form 

Q 
(l3) 



Substitution of (13) into (12) yields 

(14 ) 

which can be integrated twice to yield 

The constants of integration may be evaluated from the boundary condi­

tions, r(l) = r l , r(J) = r 2 , so that 

r(n) (15) 

This equation may then be solved for f(n) to yield 

f(n) - f (1) 
In[r(n)] 

f (J) - f(l) 
r

l 
( 16) r 2 

In[-] 
r

l 

If the distance from the body to the Nth n-line is specified to be 

r N, the following equation must be satisfied: 

feN) - f(l) 
f(J) - f(1) 

(17) 

It should be noted that the form of fen) is still arbitrary, subject to 

(17) . 
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Alternatively, to set r' at the inner boundary, n = 1, we have, 

upon differentiation of (15) with respect to n and subsequent evaluation 

at n = 1, that fCn) must satisfy 

f'(l) 
(18) 

f(J) - f(l) 

The two derivatives appearing in the truncation error of first 

derivatives, as given in last equation in section II, are, from repeated 

differentiation of (15), 

r' 
f(J) - f(l) [rf'en)] (19a) 

r" 
f(J) - f(l) [r'f'(n) + rf"(n) (l9b) 

Thus if a function fCn) with a free parameter is selected, (17) 

may be used to determine the parameter in the function such that the 

Nth n-line lies at a specified distance, rN - r
1
, from the inner 

boundary. Alternatively, the free parameter may be determined by (18) 

such that the spacing at the boundary is set by specification of r' 

there. The derivatives in the truncation error terms may then be 

calculated from (19). With the function fCn) determined, the control 

function Q is then given by (13). 

For example, with the function CRef. 7) 

where K is a free parameter, we have, by (17), that K must be the 

solution of the nonlinear equation 

(20) 



to set the Nth n-line at r N. Alternatively, the value of K required 

to set r' to a specified value at the inner boundary is determined by 

(18) as the solution of the nonlinear equation 

1 + InK 

JKJ - l - 1 
(21) 

For this function, the derivatives appearing in the truncation error 

term, (19), are given by 

f' (n) 

f" (n) 

(1 + nlnK)Kn- l 

n-I 
(2 + nlnK) (lnK)K 

The control function Q is given by (13) as 

Q _ L(~+ nlnK)1nK 
i 1 + nlnK 

(22a) 

(22b) 

(23) 

It can be shown by consideration of the ratios of successive 

derivatives that the higher derivatives of this function are progres­

sively decreasing if K is in the range 

o < InK < t(i5 - 1) (24) 

Since the left side of (21) is a decreasing function of K for positive 

K, the smallest value of the spacing at the boundary, r' (1), that can 

be achieved while maintaining progressively decreasing higher derivatives 

of fen) occurs with K at the upper limit of the inequality (24), viz 

r' (1) . mIn exp[t(iS - l)(J - 1)] - 1 
(25) 
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It is not reasonable to use smaller values of r'(l) since the progressively 

increasing higher derivatives of f(~) will result in significant trunca­

tion error introduced by the coordinate system. 

Another choice of f(~) might be 

sinh [K(ll - 1)] 

for which, from (17), the Nth line occurs at rN for K given by the 

solution of the equation 

sinh [K(N - 1)] 
sinh [K(J - 1)] 

or the spacing at the inner boundary is r'Cl) for K given by (18): 

K 
sinh [K(J - 1)] 

The first two derivatives and the control function are given by 

Q 

f'(ll) Kcosh[K(1l - 1)] 

- ~ Ktanh [K(T) - 1) J 
J 

(26) 

(27) 

(28a) 

(28b) 

(29) 

In this case progressively decreasing higher derivatives occur for K in 

the range 0 < K < 1, so that the smallest practical spacing at the 

inner boundary is 



r' (1) . 
nan 

The control function for the spacing distribution of Roberts, 

Ref. 8, can be determined in the same manner as follows. With the 

notation of Ref. 8 adjusted so that the boundaries occur as used 

above, we have 

wlth 

r 2 + G ( 11 ) --=---l.( 1 - ~) b 
G(n) + 1 r 2 

G(n) 

T1 - J b + r (-----) 
( __ ~) J - I 
b - r 2 

with b a free parameter. 

(30) 

Although the form of fen) could be extracted by substitution of (30) 

into (16), it is simpler to determine the parameter b from either r(N) = r N, 

or for a specified value of r'(l). The derivatives are 

2 b + r 2 G r l 
r'(II) =-J _lln(b _ r) (l --)b 

2 (G + 1)2 r 2 
(31a) 

r"(n) 
1 2 2 b + r Z G(l G) r 1 

2(-J _ 1) In (--) ----- (1 - -)b 
b - r 2 (G + 1)3 r 2 

(31b) 

The control function Q is then given by (13) and (14) as 

Q 
y r" r' - -(- --) 

2 r' r 
J 

(32) 
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with r, r', and r" to be subst ituted from (30) and (31). 

Finally, another type of function is a patched function using 

different functions near and away from the inner boundary to achieve a 

group of closely spaced lines near the inner boundary with fairly 

rapid expansion outside this inner group. This is done as follows: 

Let the spacing of the inner group be such that the same change in 

velocity would occur between each two lines for a velocity distribution 

given by u(r). To do this, invert the velocity function such that 

r = reu), and then take 

u en) 

when uN is the velocity at the edge of the inner group of lines. Then 

r(n) r(u 

From this function all the derivatives and the control function may be 

calculated, the latter being determined by (13) and (14). 

Now outside the inner group of lines, i.e., for N ~ n ~ J, let 

r( q) be a quart ic polynomial: 

r(n) = r' (n - N) + lr" (n - N)2 + lr''' en - N)3 
N 2 N 6 N 

4 + a(n - N) + rN N .s n s J 

where the three derivatives at n = N are determined from the derivatives 

of the inner function, all being evaluated at q = N. The final parameter, 

a, is determined such that dJ) = r 2 · Thus 

(r
J 

- r N) - r' (J - N) - lr" (J _ N)2 - lr'" (J _ N)3 
N 2 N 6 a = 

(J _ N) 4 

The outer control function is then determined from (13) and (14). This 

composite control function has only one continuous derivative, and thus 

could possibly lead to truncation error introduced by the coordinate system. 



It is, of course, also possible to integrate the coordinate 

equation (8) for the one-dimensional case. In that case the control 

function Q is given by 

and 

r(n) 

L L _ y fll(n) 
Q c - i r' - - i "'f'(ri) 

(33) 

(34) 

All the other steps follow in analogy with the two-dimensional case. 

Now, although the two-dimensional case given above applies only to 

concentric circular boundaries, the effect of using the same control 

functions for the general case will be qualitatively the same, with even 

closer spacing near inner boundary with stronger curvature. Thus the 

control functions derived in the above manner can be expected to produce 

the type of spacing desired in general applications. A version of the 

TOHeAT code incorporating several of these functions has been written 

and has been used to produce coordinate systems for airfoils with the 

spacing at the airfoil set at 0.01 automatically through (18). An 
IR 

example is shown in Fig. 4, using the function above (20). Other exam-

ples are given in Ref. 9. 

D. Revised Generating System 

The form of the control function Q taken in (13) naturally leads 

to the idea of replacing the original elliptic system, (7), with the 

system 

(35a) 

(35b) 
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a since the terms multiplying P and Q here are, respectively, equal to 
/ With this system the transformed equations are 

(36a) 

ay~~ - 2SYsn + YY nn ; - (aPy~ + YQY n) (J6b) 

This form has also been given by Shanks and Thompson, Ref. 10, and by 

Thomas and Midd1ecoff, Ref. 11. This form has now been adopted in the 

latest version of the TOHCAT code. 

The exponential forms of the functions P and Q, and the discussion 

given therewith above, are still applicable with this system. Appropriate 

values of the attraction amplitudes are several orders of magnitude smaller 

with this new system because of the relatively large values attained by 

the terms multiplying P and Q for small Jacobians. 

Finally, it is useful to solve (36) simultaneously to display P and 

Q explicitly as 

P 
1 

(Yr]Dx - xr]Dy) aJ 
(37a) 

Q 
I 
YJ 

(y Dx - x Dy) s C; (37b) 

with 

Dx - axC;C; - 2BxC;n + yx 
nn 

(38a) 

Dy - CtYC;s - 2Sy + yy 
sn nn 

(38b) 

With (37) the control functions required to produce any specified 

solution x(s,f), Y(s,n) could be calculated. Although such a procedure 

is normally of only academic interest, since the solution x(s,n), yeS,n) 

is yet to be determined, it might be useful in some cases to determine 



P and Q from (37) for some approximate solution generated, say, by 

simple interpolation from the boundaries, and then to use smoothed 

values of these functions as the control functions for the actual 

solution. Although the approximate solution might have lacked continu­

ity of derivatives, the actual solution determined by solving the 

elliptic system with the smoothed control functions will have continuous 

derivatives, while following generally the form of the approximate 

solution. 

E. Control Functions for Near Orthogonality at BoundaS[ 

Another example of the usefulness of (37) is as follows. The 

solution for the concentric circle case can be generalized slightly to 

include variable spacing of points along the boundaries by taking, 

instead of ell), 

x = 

y 

r(n) cos [211 .&.(0 - g(1:1J g(I) gel) 

rCn) sin [211 g (0 - ~Jlll 
g(I) - gel) 

Substitution of these functions in (37) then results in 

P 

Q 
r' r" 
r - r:-' 

(39a) 

(39b) 

(40a) 

(40b) 

The second of these is the same as (13), using (14) and considering the 

above re-definition of Q, and was used above to generate the control 

function Q. 

With g(n) determined by the boundary point spacing, the control 

function P given here will maintain the s-lines as radial lines, i.e., 
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normal to the circular boundaries. Note that arc length along the 

circular boundary is given by 

s(~) ~ 2n g(~) - gel) r 
g(I) - gel) 

so that the function g(~) may be related to arc length by 

g(O gel) + g(I) - gel) s(s) 
21Tr 

Thus (40a) can be rewritten in terms of arc length as 

p s" 
-7 

(41 ) 

(42) 

(43 ) 

As discussed above for the control function Q, this idea can be 

carried over to the case of general boundaries to produce the same effect 

qualitatively. Thus in the general case, the control function P could 

be determined at each boundary from (43), and then values of P in the 

field could be taken from linear interpolation between the values at 

corresponding boundary points. 

F. Attraction to Fixed Lines in Physical Space 

As mentioned above, the attraction of coordinate lines to fixed lines 

and/or pOints in physical space, rather than to floating coordinate lines 

and/or points, requires further consideration. Recall that in the above 

discussion, n-lines are attracted to other n-lines, and ~-lines are 

attracted to other s-lines. It is unreasonable, of course, to attempt to 

attract n-lines to s-lines, since that would have the effect of collapsing 

the coordinate system: 

s-line 

n-line 



When, however, the attraction is to be to certain fixed lines in 

x-y space, defined by curves y = f(x), care must be exercised to avoid 

attempting to attract n or ~ lines to specified curves that cut the n 

or ~ lines at large angles. Thus, in the figure below: 

n-line 
--\-----~----------

__ y = f (x) 

it is unreasonable to attract ~ lines to the curve f(x), while it is 

natural to attract the n-lines to f(x). 

However in the general situation, the specified line f(x) will not 

necessarily be aligned with either a ~ or n line along its entire length. 

Since it is unreasonable to attract a line parallel to itself, some 

provision is necessary to decrease the attraction to zero as the angle 

between the coordinate line and the given line f(x) goes to zero. This 

can be accomplished by multiplying the attraction function by the cosine 

of the angle between the coordinate line and the line f(x). It is also 

necessary to change the sign on the attraction function on either side 

of the line f(x). This can be done by multiplying by the sine of the 

angle between the line f(x) and the vector to the point on coordinate 

line. 

These two purposes can be accomplished as follows. Let a general 

point (x, y) be located by the vector ~(x, y), and let the attraction 

line y = f(x) be specified by the collection of points S(x., y.), 
- 1 1 

i = 1, 2, --, n. Let the unit tangent to the attraction line be 

t(x., y.), and the unit tangent to a ~-line be T(~). Then the sine 
- 1 1 

and cosine of the angle between the ~-line and the attraction line may 

be written as 

sine 
[~ix(~ - ~i)] . k 

IR-'~1 -,-
- -1 
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cosine t • T (S) 
-i -i 

where ~ is the unit vector normal to the two dimensional plane. These 

relations are evident from the figure 

E;-line 

attraction line 

x 

The control function P(x, y) may then be logically taken as 

n 
P(x,y) = -;, a.(t. 

i=l 1 -1 

with the analagous form for Q: 

Q(x,y) 
n 

-E a.(t. 
i=1 1 -1 

( ) 
[t i x (R - s.)] 

f] - - -1 

~i ) IR-s.1 
- -1 

k 
-e.xp (-d. I R - s I) 

1 - - i 

k 

-eXp ( -d . I R - S. I' ) 
1 - -1 

(44a) 

(44b) 

These functions depend on x and y through both Rand 1(;) or T(n) and 

thus must be recalculated at each point as the iterative solution of (36) 

proceeds. This form of coordinate control will therefore be more expres­

sive than that based on attraction to other coordinate lines. 



There is no real distinction between "line" and "pointlT attraction 

with this type of attraction. "Line" attraction here is simply attraction 

to a group of points that form a line f(x). If line attraction is speci­

fied, then the tangent to the line f(x) is computed from the adjacent 

points on the line. If point attraction is specified, then the "tangent" 

must be input for each point. 

The tangents to the coordinate lines are computed from 

(45a) 

(45b) 

G. Point Distribution on Boundary According to Curvature 

One final technique to mention concerns the placement of points 

along the boundary according to the local boundary curvature. Let a 

boundary curve be described by the function y = f(x). Then if s is arc 

length along the boundary we have 

ds 
dx 

Now take the rate of change of arc length with the curvilinear 

coordinate, (, along the boundary to be exponentially dependent on the 

local radius of curvature, r, of the boundary. Thus let 

ds 
d~ 

1 -
-br 

e 

where b is a free parameter. This function causes the arc length to 

change slowly with ~ where the curvature is large. 
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Then 

ds/cls 
dx dt; 

1 -
-br 

e 

Since f and r are known at each x, a normalized t;(x) may be determined 

from 
x 

J 011 + f,2 
dx' 

-br 
t;(x) 1 + 1 - e 

I ( 46) 

(11 f,2 
J 1 + dx' 

-br o 1 - e 

assuming x is normalized to vary from 0 to 1 and t; to vary from 1 to I. 

The quadrature may be taken numerically if necessary. 

Then for I number of t;-points t; = 1, 2, --, I on the boundary, the 

corresponding values of x can be determined by inversion of t;(x), done 

by interpolation of tabular values if necessary. The arc length between 

each of these points can then be calculated and the value of the free 

parameter b can be adjusted iteratively to produce, say, a specified 

maximum arc spacing along the boundary, or perhaps, to match a specified 

arc spacing at either end or, for that matter, at any given point. In 

application to airfoils, this procedure is applied to the upper surface 

with b chosen to match a specified maximum arc spacing. A separate 

application is then made to the lower surface with b there being chosen 

to match the arc spacing adjacent to the leading edge on the upper 

surface. 

This procedure produces a smooth point distribution on the boundary. 

with points concentrated in regions of large curvature, yet free of the 

rapid spacing changes that lead to coordinate-system-introduced trunca­

tion error of the type discussed in an earlier section. 



IV. SOME RECENT APPLICATIONS OF COORDINATE SYSTEMS 

In addition to extensive application to airfoils, as illustrated 

in Fig. 4, in which the transformed plane is an empty rectangle, some 

more general configurations have recently been treated using a trans­

formed plane that contains rectangular voids as discussed in Ref. 12. 

For example, a coordinate system used in a simulation of a nuclear 

reactor cooling system is shown in Fig. 5, taken from Ref. 13, and 

systems for Charleston harbor (Ref. 14) and a portion of Lake 

Ponchatrain are shown in Figs. 6 and 7. 

V. CONCLUSION 

Control of the spacing of coordinate lines so as to resolve large 

gradients in numerical solution of partial differential equations 

continues to be of paramount importance. Research has provided some 

means of control and of error estimation. The experience gained thus 

far has indicated the versatility of the coordinate systems generated 

from elliptic systems and the possibility of optimization of such 

systems in adaptation to the nature of particular partial differential 

systems and boundary configuration. 
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Figure 1.- Error at grid points on the coordinate 
line 1 S x S 10, y = O. 

Figure 2.- Coordinate system about a Joukowski airfoil. 
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Figure 3.- Comparison of estimated truncation 
error in the Laplacian with the error in 
the solution of Laplace's equation. 

Figure 4.- Airfoil coordinate system with concentration of lines 
(supplied by Dr. Krishna Devarayalu of the Boeing Company). 
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Figure 5.- Nuclear rod-bundle coordinate system (Ref. 13). 



Figure 6.- Coordinate system for Charleston Harbor (Ref. 14). 
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Figure 7.- Coordinate system for a portion of Lake Ponchatrain. 
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